
Chapter 6 
The Symmetric Group “An Example 
of Finite Nonabelian Group” 

This chapter discusses the group Sn (Corollary 5.1.11), the symmetric group on 
n elements, which is one of the most important examples of finite groups and is 
widely used in applications to geometry and physics (Carter, 2009). The importance 
of symmetry groups in abstract algebra is due to the fact that for any finite group G, 
there is a symmetric group Sn that contains a copy of G. For each n ∈ N, the group 
Sn consists of all the bijective maps of {1, 2, . . . ,  n} to itself, called permutations of 
{1, 2, . . . ,  n}. These permutations are usually denoted by symbols such as φ and ψ . 
The identity permutation that corresponds to the identity map of {1, 2, . . . ,  n} is 
denoted by e. In this chapter, Sect. 6.1 provides a representation of the elements of 
Sn as matrices and specifies the order of Sn in terms of the integer n. Additionally, 
the notion of pairwise disjoint permutations is discussed, and their commutativity is 
verified. In Sect. 6.2, cycles, a special case of permutations, are defined and studied. 
The main result of this section is Proposition 6.2.9, which states that any permutation 
can be written as a finite product of disjoint cycles. The proof of this proposition 
requires a study of orbits of a permutation which discussed in Sect. 6.3 and followed 
by the proof of Proposition 6.2.9. The last two sections of this chapter discuss methods 
for determining the order of permutations and classifying permutations as odd and 
even. 

6.1 Matrix Representation of Permutations 

Let n ∈ N. Each permutation φ of {1, 2, . . . ,  n} can be represented using a 2 × n 
matrix. The first row of the matrix lists elements of the domain of the permutation. 
The images are represented in the second row with the image φ(i ) placed directly 
under i , for each 1 ≤ i ≤ n. i.e., the matrix representation of a permutation φ is 

φ =
(

1 2 3  · · ·  n 
φ(1) φ(2) φ(3) · · ·  φ(n)

)
.
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For example, if n = 4, the permutation φ =
(
1 2  3 4  
3 1 4 2

)
is the map determined by 

φ(1) = 3, φ(2) = 1, φ(3) = 4, and φ(4) = 2. 

The matrix representation of the identity permutation e is

(
1 2  3  · · ·  n 
1 2  3  · · ·  n

)
. 

Remark 6.1.1 The elements in the first row in the matrix representation of φ can be 
written in any order; however, the images of the elements must be carefully arranged 
in the second row, ensuring that the image of any element i must be exactly below i . 
For example, all of the following matrices represent the same permutation:

(
2 1 4 3  
1 3 2 4

)
,

(
1 3 2  4  
3 4  1 2

)
,

(
1 4 2  3  
3 2  1 4

)
,

(
2 1  3 4  
1 3 4 2

)

(
3 2  4 1  
4 1 2 3

)
,

(
3 1 4 2  
4 3 2  1

)
,

(
4 2 1 3  
2 1  3  4

)
. 

When a matrix representation is used, the composition of two permutations (two 
bijective maps) φ and ψ is determined by the equation ψ ◦ φ(k) = ψ(φ(k)). For  
example, 

if φ =
(
1 2  3 4  
3 1 4 2

)
and ψ =

(
1 2 3 4  
4 3 1 2

)
, then ψ ◦ φ =

(
1 2  3 4  
1 4 2 3

)
. 

The computations can be sketched as follows: 

1 
φ −→ 3 ψ −→ 1 gives 1 ψ◦φ −−→ 1, 

2 
φ −→ 1 ψ −→ 4 gives 2 ψ◦φ −−→ 4, 

3 
φ −→ 4 ψ −→ 2 gives 3 ψ◦φ −−→ 2, and 

4 
φ −→ 2 ψ −→ 3 gives 4 ψ◦φ −−→ 3 (Fig. 6.1).

The matrix representation of φ−1 can be obtained by exchanging the two rows in 
the matrix φ. One can check that the composition of φ and φ−1 yields the identity 
map on {1, 2, . . . ,  n}. For example, 

if φ =
(
1 2 3 4  
4 3 1 2

)
, then φ−1 =

(
4 3 1  2  
1 2 3 4

)
=

(
1 2  3 4  
3 4 2 1

)

and the composition of φ and φ−1 yields the identity permutation e.
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Fig. 6.1 A composition of 
two permutations

Example 6.1.2 Let φ =
(
1 2  3  
3 5 2  

4 5  
1 4

)
and ψ =

(
1 2 3  4  5  
2 5 3  4  1

)
be two permutations 

on {1, 2, . . . ,  5}. One can easily check that 
1. φ(3) = 2, φ(5) = 4, ψ(2) = 5, and ψ(4) = 4. 

2. φ2 = φ ◦ φ =
(
1 2 3  
2 4 5  

4 5  
3 1

)
. 

3. φ ◦ ψ =
(
1 2  3  
5 4 2  

4 5  
1 3

)
and ψ ◦ φ =

(
1 2 3  
3 1 5  

4 5  
2 4

)
. 

4. φ−1 =
(
1 2  3  
4 3 1  

4 5  
5 2

)
and ψ−1 =

(
1 2 3  
5 1 3  

4 5  
4 2

)
. 

5. φ−1 ◦ ψ ◦ φ =
(
1 2  3  
1 4 2  

4 5  
3 5

)
. 

The nonequality φ ◦ ψ /= ψ ◦ φ shows that S5 is not abelian. 

Proposition 6.1.3 The group Sn is not abelian for each n ≥ 3. 

Proof Assume that n ≥ 3. Consider the permutations 

φ =
(
1 2 3  4  5  . . .  .  . .  n − 1 n 
2 1 3  4  5  . . .  .  . .  n − 1 n

)
, ψ  =

(
1 2 3 4 5  . . .  .  . .  n − 1 n 
3 2 1 4 5  . . .  .  . .  n − 1 n

)
. 

Both permutations are elements in Sn . Since φ ◦ ψ(1) = 3 /= 2 = ψ ◦φ(1), thus 
Sn is not abelian. ∎

Example 6.1.4 The following statements describe the elements of S1, S2, S3, and 
S4. 

1. There exists only one bijection of the set {1}. Thus, S1 contains only the identity 
map
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φ =
(
1 
1

)
= e. 

2. For φ ∈ S2, a bijective map of {1, 2}, there are two choices for the image of 
number 1 under φ, namely 1 or 2. After choosing the image of 1, only one choice 
is left for the image of 2. Therefore, either φ(1) = 1 and φ(2) = 2, yielding 
the identity map on {1, 2}, or  φ(1) = 2 and φ(2) = 1. These values are all the 
possibilities for φ. Hence, 

S2 =
{(

1 2  
1 2

)
,

(
1 2  
2 1

)}
. 

Note that |S2| = 2 × 1 = 2!. 
3. In the case of S3, the choices are branched. For a bijective map φ on {1, 2, 3}, there 

are three choices for φ(1). On choosing the image for number 1, two choices are 
left for φ(2), and having chosen one of these, only one choice remains for φ(3). 
By the multiplication rule (De Temple & Webb, 2014), there are 3 × 2 × 1 = 3! 
ways to form φ. Figure 6.2. illustrates the choices for determining an element 
of S3. 

S3 =
{(

1 2 3  
1 2 3

)
,

(
1 2  3  
1 3 2

)
,

(
1 2 3  
2 1  3

)
,

(
1 2 3  
2 3  1

)
,

(
1 2  3  
3 1 2

)
,

(
1 2 3  
3 2 1

)}

4. For the group S4, one can use a tree similar to that shown in (3) to find all possible 
permutations. Table 6.1 lists all possible choices for φ(i), 1 ≤ i ≤ 4.

Each column, from the second on, represents an element of S4. For  
example, the second column represents the identity permutation, and the third 

column represents the permutation

(
1 2  
1 2  

3 4  
4 3

)
. Clearly, there exist 24 = 4! 

permutations in S4. 

The same method used to solve this example can be used to prove the following 
theorem. 

Theorem 6.1.5 Let n ∈ N. There exist n! permutations in Sn . 

Proof The number of elements in Sn is equal to the number of all possibilities 
of φ. To construct φ, the process is initiated by choosing an element for φ(1) from 
{1, 2, . . . ,  n}. There are n choices for φ(1). Once φ(1) is chosen, n−1 choices remain 
for φ(2), namely {1, 2, . . . ,  n}\{φ(1)}. After  φ(1) and φ(2) have been selected, n−2 
choices remain for φ(3), and so on. Continuing such selections, eventually, only one 
choice remains for φ(n). By the multiplication rule, the number of ways to form φ is 

n × (n − 1) × (n − 2) ×  · · ·  ×  2 × 1 = n!. 

Therefore, there are n! possibilities for φ. ∎
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Fig. 6.2 Elements of S3

Table 6.1 Elements of S4 

φ(1) 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 

φ(2) 2 2 3 3 4 4 1 1 3 3 4 4 1 1 2 2 4 4 1 1 2 2 3 3 

φ(3) 3 4 2 4 2 3 3 4 1 4 1 3 2 4 1 4 1 2 2 3 1 3 1 2 

φ(4) 4 3 4 2 3 2 4 3 4 1 3 1 4 2 4 1 2 1 3 2 3 1 2 1

Definition 6.1.6 Let n ∈ N, φ be a permutation on {1, 2, . . . ,  n}, and k be an element 
of {1, 2, . . . ,  n}. We say  φ fixes k if φ(k) = k; otherwise, we say φ moves k. The  
subset of all elements in {1, 2, . . . ,  n} that are moved by φ is denoted by Move(φ). 
The subset of all permutations in Sn that fix k is denoted by (Sn)k . i.e., 

Move(φ) = {k : φ(k) /= k} and (Sn)k = {φ ∈ Sn : φ(k) = k}. 

For example, in S3, 

Move

((
1 2  3  
1 3 2

))
= {2, 3}, Move

((
1 2  3  
1 2  3

))
= ∅, 

(S3)2 =
{(

1 2  3  
1 2  3

)
,

(
1 2 3  
3 2 1

)}
, (S3)1 =

{(
1 2 3  
1 2 3

)
,

(
1 2  3  
1 3 2

)}
.
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Remark 6.1.7 The element k ∈ Move(φ) if and only if φ(k) ∈ Move(φ). This result 
follows directly by the injectivity of φ. 

Definition 6.1.8 Let n ∈ N and φ, ψ be two distinct permutations on {1, 2, . . . ,  n}. 
The permutations φ and ψ are said to be disjoint if Move(φ) ∩ Move(ψ) = ∅. Let  
φ1, . . . , φm be distinct permutations on {1, 2, . . . ,  n}. The permutations φ1, . . . , φm 

are called pairwise disjoint if φi , φ  j are disjoint for all i /= j, where 1 ≤ i, j ≤ m. 

Having two disjoint permutations on {1, 2, . . . ,  n} means that if one of them moves 
an element k then the other one fixes k. For any integer n, the identity permutation on 
{1, 2, . . . ,  n} does not move any element. Therefore, Move(e) = ∅, and it is disjoint 
from other permutations. 

Example 6.1.9 The permutations 

φ1 =
(
1 2  3  
1 5 3  

4 5  
2 4

)
, φ2 =

(
1 2  3  
3 2  1  

4 5  
4 5

)

are disjoint permutations in S5. Similarly, 

φ1 =
(
1 2 3  
3 2 1  

4 5 6  
4 5 6

)
, φ2 =

(
1 2  3  
1 5 3  

4 5 6  
4 2 6

)
and 

φ3 =
(
1 2 3  
1 2 3  

4 5 6  
6 5 4

)

are pairwise disjoint permutations in S6. The permutations 

φ1 =
(
1 2  3  
3 1 2

)
, φ2 =

(
1 2 3  
2 1 3

)

are in S3 and are not disjoint as Move(φ1) ∩ Move(φ2) = {1, 2} /= ∅. 
Proposition 6.1.10 Let n ∈ N, and let φ, ψ be permutations on {1, 2, . . . ,  n}. If 
φ, ψ are disjoint, then φ ◦ ψ = ψ ◦ φ (any two disjoint permutations commute). 

Proof Assume that φ, ψ are disjoint. Let k be an element in {1, 2, . . . ,  n}. Since 
Move(φ) ∩ Move(ψ) = ∅, only one of the following three cases holds: 
1. k ∈ Mov(φ) ∧ k /∈ Mov(ψ). 
2. k ∈ Mov(ψ) ∧ k /∈ Mov(φ). 
3. k /∈ Mov(φ) ∪ Mov(ψ). 

If the first case holds, then Remark 6.1.7 implies that φ(k) ∈ Mov(φ). Thus, 
φ(k) /∈ Mov(ψ) and 

φ ◦ ψ(k) = φ(ψ(k)) = φ(k) = ψ(φ(k)) = ψ ◦ φ(k).
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Similarly, the second case follows by exchanging the role of φ and ψ . For the last 
case, φ(k) = k = ψ(k), which implies that 

φ ◦ ψ(k) = φ(ψ(k)) = φ(k) = k = ψ(k) = ψ(φ(k)).

∎

According to Lemma 5.4.5 (2), 

Corollary 6.1.11 Let n ∈ N. If φ and ψ are two disjoint permutations on 
{1, 2, . . . ,  n}, then 

(φψ)k = φk ψk for all k ∈ N. 

Using Exercises 5.25 and 6.2.7, one can easily show the following corollary. 

Corollary 6.1.12 Let m ∈ N and φ1, φ2, . . . , φm be a set of pairwise disjoint 
permutations. If (φ1φ2 . . . φm)k = e for some k ∈ N, then φk 

i = e for each 
1 ≤ i ≤ m. 

The following example shows that the converse of Proposition 6.1.10 is not true. 

Example 6.1.13 On {1, 2, 3, 4}, consider the permutations 

φ =
(
1 2 3 4  
2 1  3  4

)
and ψ =

(
1 2 3 4  
2 1 4 3

)
. 

As φ ◦ ψ =
(
1 2  3 4  
1 2 4 3

)
= ψ ◦ φ, the two permutations commute, but they are not 

disjoint since Move(φ) ∩ Move(ψ) = {1, 2} /= ∅. In general, for any permutation 
φ not equal to the identity, φ commutes with itself, but Move(φ) ∩ Move(φ) = 
Move(φ) /= ∅, and thus, φ and φ are not disjoint. 

6.2 Cycles on {1, 2, . . . ,  n} 

Although the matrix representation gives a complete description of a permutation, 
there are other representations that are often useful. One such representation based 
on the notion of cycles. 

Definition 6.2.1 Let n, k ∈ N and i1, i2, . . . ,  ik be distinct elements in {1, 2, . . . ,  n}. 
A cycle (or a cyclic permutation) ψ = (i1i2 . . .  ik) on {1, 2, . . . ,  n} means the function 
defined on {1, 2, . . . ,  n} by
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ψ( j ) = 

⎧⎨ 

⎩ 

is+1 j = is ∧ 1 ≤ s < k 
i1 j = ik 
j j  /∈ {i1, . . . ,  ik} 

for any j ∈ {1, 2, . . . ,  n}. The number k is called the length of the cycle. A cycle of 
length k is called a k-cycle, and a 2-cycle is called a transposition. The trivial cycle 
is a cycle of length 1. Let  a be an element in {1, 2, . . . ,  n}. We say that a appears in 
the cycle (i1i2 . . .  ik), denoted by a ∈ (i1i2 . . .  ik), if  a = is for some 1 ≤ s ≤ k. 

Intuitively, a cycle (i1i2 . . .  ik) is the function on {1, 2, . . . ,  n} that takes is to the 
following element in the line, takes the last element to the first element, and fixes all 

elements that do not appear in the cycle, i.e., (i1i2 . . .  ik)(is) =
{
is+1 1 ≤ s < k 
i1 s = k 

. 

For example, the cycle (3 2  6 4) on {1, 2, 3, 4, 5, 6} is the function that takes 3 → 
2, 2 → 6, 6 → 4, 4 → 3 and fixes all other elements in {1, 2, 3, 4, 5, 6}. The 
length of (3 2  6 4) is 4. The cycle (1 4) is the function on {1, 2, 3, 4, 5, 6} that takes 
1 → 4, 4 → 1 and fixes all other elements in {1, 2, 3, 4, 5, 6}. The length of (1 4) 
is 2. The cycle (1 4) represents a transposition. The map Rs,t in Example 1.5.17 is 
the transposition (s t) on {1, 2, . . . ,  n}. Using Definition 6.2.1, one can easily verify 
that for any k such that 1 ≤ k ≤ n, 

(i2 . . .  iki1) = (i1i2 . . .  ik) = (iki1i2 . . .  ik−1) 

as all of these cycles represent the following function 

i1 → i2, i2 → i3, . . . ,  ik−1 → ik, ik → i1 ∧ j → j ∀ j /∈ {i1, . . . ,  ik}. 

For example, on {1, 2, . . . ,  8}, the cycles 

(3 1 5 2), (2  3 1 5), (5 2  3 1), and (1 5 2 3) 

represent the same cycle of length 4. The transposition (3 5) exchanges 5 and 3. The  
cycles (3 1 5 2) and (3 5) are visualized as in Fig. 6.3. 

Definition 6.2.2 (Product of cycles) Let  n, k, r ∈ N, and let (i1i2 . . .  ik) and 
( j1 j2 . . .  jr ) be two cycles on {1, 2, . . . ,  n}. The product of (i1i2 . . .  ik) and

Fig. 6.3 Cycles (3 1 5 2) 
and (3 5) 
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( j1 j2 . . .  jr ) is defined as their composition (i1i2 . . .  ik) ◦ ( j1 j2 . . .  jr ), obtained by 
applying ( j1 j2 . . .  jr ) then (i1i2 . . .  ik). i.e., 

(i1i2 . . .  ik) ◦ ( j1 j2 . . .  jr )( j ) = (i1i2 . . .  ik)(( j1 j2 . . .  jr )( j)). 

The product of (i1i2 . . .  ik) and ( j1 j2 . . .  jr ) is denoted by (i1i2 . . .  ik) ( j1 j2 . . .  jr ). 

Remark 6.2.3 Let n ∈ N. 

1. For each i ∈ {1, 2, . . . ,  n}, the trivial cycle (i ) on {1, 2, . . . ,  n} maps i to itself 
and fixes all other elements. Hence, 

(1) = (2) =  · · ·  =  (i ) =  · · ·  =  (n) 

all of which represent the identity function on {1, 2, . . . ,  n}. 
2. For i, j ∈ {1, 2, . . . ,  n} such that i /= j , (i j  )2 = (i j)(i j  ) = e. 
3. No representation exists for the identity function as a transposition. 

Example 6.2.4 

1. On {1, 2, 3, 4, 5}, consider the two cycles (2 4 1) and (3 5 4). The product of the 
two cycles can computed as (2 4 1)(3 5 4) = (3 5 1 2  4) or (3 5 4)(2 4 1) = 
(2 3  5 4 1). Cleary that the product of cycles need not be commutative. 

2. Consider the set {1, 2, 3, 4, . . .  ,  8}. If  ρ = (1 4 3 8)(2 6  3)(4 2) (a product of 
three cycles), then 

ρ(1) = 4, ρ(2) = 3, ρ(3) = 2, ρ(4) = 6, 
ρ(5) = 5, ρ(6) = 8, ρ(7) = 7, ρ(8) = 1. 

The product ρ can be written as a product of the two cycles (1 4 6 8)(2 3). 
However, ρ has no representation as one cycle. 

3. On {1, 2, 3, 4, . . .  ,  10}, consider σ = (2 5)(2 7)(2 4)(2 1). This permutation 
can be written as one cycle σ = (2 1  4 7  5). 

4. On {1, 2, 3, 4, . . .  ,  9}, (2 3  6 7  9)(3) = (2 3 6  7  9)(8) = (2 3  6 7  9)(7) = 
(2 3  6 7  9). 

5. On {1, 2, 3, 4, . . .  ,  8}, (2 5  6 1  7)(4 5 3 2 6 1) = (4 6 7 2 1)(5 3) 

(2 7 4 3)(4 6 3)(5 2) = (2 5  7 4 6) 
(2 7  4 3)(4 6 3)(5 1) = (1 5)(2 7  4 6). 

6. The product of two cycles is not necessarily a cycle. For 
example, on {1, 2, 3, 4, . . .  ,  11}, consider (2 5 6  1  7)(4 5 3 2 6 1) and 
(2 7  4 3)(4 6 3)(5 1). Both products are product of cycles but cannot be 
written as one cycle. 

The following lemma is needed later and can be easily proved using Definition 
6.2.1 and induction on r .
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Lemma 6.2.5 Let n ∈ N, and let (i1i2 . . .  ik) be a cycle on {1, 2, . . . ,  n}. For any 
positive integer r and any 1 ≤ s ≤ k, 

((i1i2 · · ·  ik))r (is) = i f (s,r) 

where f (s, r) =
{
r + s mod k if r + s /= qk  for all q ∈ N 
k if r + s = qk  for some q ∈ N 

. 

As the product (composition) of the two cycles (i1i2 . . .  ik) and (ikik−1 . . .  i1) is 
the identity, both cycles are bijective maps on {1, 2, . . . ,  n}. This result is stated in 
the following proposition. 

Proposition 6.2.6 Let n, k ∈ N, and let i1, i2, . . . ,  ik be distinct elements in 
{1, 2, . . . ,  n}. The cycle (i1i2 . . .  ik) is a permutation on {1, 2, . . . ,  n}, whose inverse 
is the cycle (ikik−1 . . .  i1). 

As an example for applying Proposition 6.2.6, consider the group S7 and the 
permutation φ = (2  3 1 4 7 5). The inverse permutation is φ−1 = (5 7 4 1 3 2). 
The reader should notice that although the inverse of a cycle is a cycle, the set of all 
cycles in Sn is not closed under the product of cycles (composition in Sn), as shown 
in items (2) and (6) in Example 6.2.4. Hence, the subset of all cycles in Sn does not 
form a group under the composition (the product of cycles). 

If (i1i2 . . .  ik) is a cycle on {1, 2, . . . ,  n}, then by renaming the elements in 
{1, 2, . . . ,  n}\{i1, i2, . . . ,  ik} to be ik+1, ik+2, . . . ,  in , the following corollary can be 
easily proved: 

Corollary 6.2.7 Let n, k ∈ N such that k ≤ n. Any cycle (i1i2 . . .  ik) on {1, 2, . . . ,  n} 
has a matrix representation as

(
i1 i2 . . .  ik−1 ik ik+1 ik+2 . . .  in 
i2 i3 . . .  ik i1 ik+1 ik+2 . . .  in

)
. 

Example 6.2.8 

1. The cycle (2  3 1 5) on {1, 2, 3, 4, 5} can be represented as
(
1 2  3 4 5  
5 3 1 4 2

)
. 

2. Let 

φ =
(
1 2 3  
4 2 1  

4 5 6  
7 5 3  

7 8 9  
6 8 9

)
. 

The permutation φ is the matrix representation for the cycle (1 4 7 6 3). 
3. Let 

φ =
(
1 2 3  
3 2 1  

4 5 6  
4 5 6

)
.
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The permutation φ is a matrix representation for the transposition (1 3). 
4. Let 

ψ =
(
1 2 3  
4 5 1  

4 5 6  
7 9 3  

7 8 9  
6 8 2

)
. 

The permutation ψ cannot be written as a cycle on {1, 2, 3, . . .  ,  9}. However, 
it can be written as a product of cycles as: (1 4 7 6 3)(2 5 9). 

5. Let 

ψ =
(
1 2 3  
6 3 5  

4 5 6  
1 2 4

)
. 

The permutation ψ cannot be written as a cycle on {1, 2, 3, . . .  ,  6}. However, 
it can be written as a product of cycles as: (1 6 4)(2 3 5). 

6. Consider the group S7. If  φ = (2 3 1)(4 7 5), then 

φ−1 = ((2 3 1)(4 7 5))−1 = (4 7 5)−1 (2 3 1)−1 = (5 7 4)(1 3 2). 

As seen in the above example that certain permutations cannot be written as 
cycles but can be written as a product of two or more cycles. In general, we have the 
following proposition. 

Proposition 6.2.9 Let n ∈ N. Any permutation on {1, 2, . . . ,  n} can be written as a 
finite product of disjoint cycles. 

The importance of the decomposition in Proposition 6.2.9 is due to the fact that 
disjoint cycles commute (Proposition 6.1.10). Therefore, one can write any permu-
tation as a product of commuting cycles. We postpone the proof of the proposition 
to the subsequent sections. We end this section by recalling the notion of disjoint 
cycles and presenting several observations. As any cycle is a permutation (Proposi-
tion 6.2.6), thus all definitions and universal results for permutations apply to cycles. 
For example, Definition 6.1.8 still holds for cycles. Proposition 6.1.10 implies that 
any disjoint cycles on {1, 2, . . . ,  n} commute, and if φ and ψ are two disjoint cycles 
on {1, 2, . . . ,  n}, then by Corollary 6.1.11, 

(φψ)k = φk ψk for all k ∈ N. 

Lemma 6.2.10 Let n ∈ N. If (i1i2 . . .  ik) is a cycle on {1, 2, . . . ,  n}, then 

Move((i1i2, . . . ,  ik)) = {i1, i2, . . . ,  ik}. 

Proof Assume that φ = (i1i2 . . .  ik). As  i1 
φ −→ i2, i2 

φ −→ i3, . . . ,  ik−1 
φ −→ ik, ik 

φ −→ i1 
and all is s are distinct, then φ(is) /= is for each 1 ≤ s ≤ k. Hence, {i1, i2, . . . ,  ik} ⊆ 
Move(φ). For the other inclusion, if j /∈ Move(φ), then by definition of a cycle, 
φ( j ) = j, which implies that j /∈ {i1, i2, . . . ,  ik}. ∎
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The above lemma and Definition 6.1.8 imply the following results: 

Corollary 6.2.11 Let n, k, r ∈ N. The cycles (i1i2 . . .  ik) and ( j1 j2 . . .  jr ) on 
{1, 2, . . . ,  n} are disjoint if and only if is /= jt for all s, t such that 1 ≤ s ≤ k, 
1 ≤ t ≤ r . 

This corollary can be used to decide if two cycles are disjoint. For example, one 
can directly say that the cycles (1 5) and (2 7  4 6) on {1, 2, 3, 4, 5, 6, 7} are disjoint 
while (2 7 4 3) and (4 6 3) are not. 

6.3 Orbits of a Permutation 

In this section, we use the elements of Sn to define equivalence relations on the 
set {1, 2, . . . ,  n} where n ∈ N. Each φ ∈ Sn defines an equivalence relation on 
{1, 2, . . . ,  n}, dividing the set {1, 2, . . . ,  n} into disjoint sets (equivalence classes) 
called orbits of φ. More information regarding equivalence relations can be found in 
Sect. 1.4. 

Definition 6.3.1 Let n ∈ N and φ ∈ Sn . On  {1, 2, . . . ,  n} define the relation ∼=φ by 

i ∼=φ j ⇔ ∃  m ∈ Z ∍ j = φm (i ), where i, j ∈ {1, 2, . . . ,  n}. 

Lemma 6.3.2 Let n ∈ N and φ ∈ Sn . The relation ∼=φ in Definition 6.3.1 is an 
equivalence relation. 

Proof For each i ∈ {1, 2, . . . ,  n}, i = φ0(i), thus i ∼=φ i and ∼=φ is reflexive. Assume 
that i ∼=φ j . i.e., there exists m ∈ Z ∍ j = φm(i). Applying the function φ−m on both 
sides yields i = φ−m( j ). Therefore, ∃ l = −m ∈ Z such that i = φl ( j ), i.e., j ∼=φ i , 
and ∼=φ is symmetric. Finally, let i ∼=φ j and j ∼=φ k. According to the definition of ∼=φ, there exist m, l ∈ Z such that j = φm(i ) and k = φl ( j ). Set s = l + m ∈ Z, 
then 

φs (i) = φl+m (i) = φl
(
φm (i)

) = φl ( j ) = k. 

i.e., i ∼=φ k and ∼=φ is transitive. By Definition 1.4.1, the relation ∼=φ is an equivalence 
relation. ∎

The equivalence classes generated by the relation ∼=φ form a partition of the set 
{1, 2, . . . ,  n} (Theorem 1.4.10). These equivalence classes are called the orbits of φ. 

Definition 6.3.3 Let n ∈ N and φ ∈ Sn . For each 0 ≤ i ≤ n, the equivalence class 
of ∼=φ that contains i , denoted by Orφ(i ), is called the orbit of i under φ. The  sets  
Orφ(i), i ∈ {1, 2, . . . ,  n} are called the orbits of φ.
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Any two orbits of φ ∈ Sn (by their construction) are either identical or disjoint, 
and the union of the orbits of φ is the set {1, 2, . . . ,  n}. One also has that for each 
i ∈ {1, 2, . . . ,  n}, 

Orφ(i) = {
j ∈ {1, 2, . . . ,  n} : i ∼=φ j

} = {
j ∈ {1, 2, . . . ,  n} : ∃  m ∈ Z ∍ j = φm (i )

}
= {

φm (i ) : m ∈ Z
}
. 

Proposition 6.3.4 Let n ∈ N, φ ∈ Sn , and i ∈ {1, 2, . . . ,  n}. The orbit of i under 
φ is a nonempty finite set given by 

Orφ(i ) = {
i, φ(i ), φ2 (i ), . . . , φk−1 (i )

}

where k is the smallest nonnegative integer satisfying φk(i ) = i . 

Proof Let i ∈ {1, 2, . . . ,  n}. As  i = φ0(i ) ∈ {φm(i ) : m ∈ Z} = Orφ(i ) ⊆ 
{1, 2, . . . ,  n}, then Orφ(i ) is a nonempty finite set. Hence, there exist m1, m2 ∈ Z 
such that 

m1 < m2 and φ
m1 (i ) = φm2 (i). 

Applying the function φ−m1 on both sides yields φm2−m1 (i) = i ; i.e., there exists 
a nonnegative integer s = m2 − m1 such that φs(i ) = i . Let  k be the smallest 
nonnegative integer satisfying φk(i ) = i and B = {

i, φ(i), φ2(i ), . . . , φk−1(i )
}
, we  

show that B = Orφ(i ). Since 

B = {
i, φ(i ), φ2 (i ), . . . , φk−1 (i )

} ⊆ {
φm (i) : m ∈ Z

} = Orφ(i ), 

then B ⊆ Orφ(i ). For the other inclusion, let φm(i ) be any element of Orφ(i ) where 
m ∈ Z. Applying the Euclidean Algorithm 2.4.1 on m, k, gives that there exist two 
integers q, r ∈ Z such that 

m = qk  + r, 0 ≤ r < k. 

That is, 

φm (i ) = φr+qk  (i) = φr
(
φqk  (i )

) = φr
((

φk
)q 

(i )
)

= 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

φr 

⎛ 

⎜⎝φk ◦ φk ◦  · · ·  ◦  φk︸ ︷︷ ︸
q times 

(i) 

⎞ 

⎟⎠ = φr (i ) q ≥ 0 

φr 

⎛ 

⎜⎝φ−k ◦ φ−k ◦  · · ·  ◦  φ−k︸ ︷︷ ︸
−q times 

(i ) 

⎞ 

⎟⎠ = φr (i ) q < 0
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i.e., φm(i ) = φr (i) ∈ B, which implies that Orφ(i ) ⊆ B. ∎

The last proposition provides a practical method for determining the orbits of a 
permutation φ in Sn , as follows: 

• Begin by choosing an integer i ∈ {1, 2, . . . ,  n}, and compute φ(i ), φ2(i ), . . .  until 
i is reached. 

• The set
{
φ(i), φ2(i), . . . ,  i

}
forms Orφ(i ), the first orbit. 

• Choose an integer from the set {1, 2, . . . ,  n}\Orφ(i) and compute its orbit in the 
same way as the first orbit. 

• Repeat the same process until the obtained orbits contains all the elements in 
{1, 2, . . . ,  n}. 

Example 6.3.5 Let 

φ =
(
1 2 3  4  5 6 7 8 9 10  11  
9 6 8 10  2  5 7 1 3  4  11

)

be a permutation on {1, 2, . . . ,  11}. The orbits of φ can be obtained as follows: 

• By choosing a number in {1, 2, . . . ,  11}, say  i = 2, one can compute 

φ(2) = 6, φ2 (2) = φ(6) = 5, φ3 (2) = φ(5) = 2 

to obtain Orφ(2) = {2, 5, 6}. 
• Select a number in the set {1, 2, . . . ,  11}\{2, 5, 6}, say  i = 1. Compute 

φ(1) = 9, φ(9) = 3, φ(3) = 8, φ(8) = 1 

to obtain Orφ(1) = {1, 3, 8, 9}. 
• Choose a number in {1, 2, . . . ,  11}\{2, 5, 6, 1, 3, 8, 9}, say  i = 4. Compute 

φ(4) = 10, φ(10) = 4 to obtain Orφ(4) = {4, 10}. 
• Choose a number in {1, 2, . . . ,  11}\{2, 5, 6, 1, 3, 8, 9, 4, 10}, say  i = 7. Compute 

φ(7) = 7 to obtain Orφ(7) = {7}. 
• Only one element remains in the set {1, 2, . . . ,  11}\{2, 5, 6, 1, 3, 8, 9, 4, 10, 7}, 

which is 11. Compute φ(11) = 11, which yieldsOrφ(11) = {11}. 
• Terminate the process as there are no elements remain in {1, 2, . . . ,  11}. 

Thus, all the distinct orbits of φ are {2, 6, 5}, {1, 9, 3, 8}, {4, 10}, {7}, {11}. Note  
that since the orbits of a permutation are equivalence classes (either identical or 
disjoint), then Orφ(5) = Orφ(6) = {2, 5, 6}, Orφ(9) = Orφ(3) = Orφ(8) = 
{1, 3, 8, 9}, and Orφ(10) = {4, 10}. 

The following definition restates Definition 1.5.3 using the notation of this chapter. 
We remind the reader that any permutation φ ∈ Sn is a bijective function from 
{1, 2, . . . ,  n} to itself.



6.3 Orbits of a Permutation 199

Definition 6.3.6 Let n ∈ N, φ ∈ Sn , and A ⊆ {1, 2, . . . ,  n}. The restriction of φ on 
the subset A, denoted by φ|A is the function on A that satisfies φ|A (x) = φ(x) ∀ x ∈ 
A. 

The next proposition shows that the restriction of a permutation on one of its 
orbits is a cycle that is formed by the elements of such an orbit. 

Proposition 6.3.7 Let n ∈ N, φ ∈ Sn , and i ∈ {1, 2, . . . ,  n}. The restriction of φ 
on Orφ(i) is the cycle

(
i φ(i ) φ2(i ) . . . φk−1(i )

)
on {1, 2, . . . ,  n}. i.e., 

φ|Orφ (i) =
(
i φ(i) φ2 (i) . . . φk−1 (i )

)

where kis the smallest nonnegative integer satisfying φk(i ) = i . 

Proof Assume that i ∈ {1, 2, . . . ,  n}. We show that 

φ|Orφ (i) ( j ) =
(
i φ(i) φ2 (i ) . . . φk−1 (i )

)
( j ) ∀ j ∈ Orφ(i ). 

Let j ∈ Orφ(i). Since Orφ(i) = {
i, φ(i ), φ2(i), . . . , φk−1(i )

}
, there exists an 

integer s such that 0 ≤ s ≤ k − 1 and j = φs(i). Using Definition 6.2.1, we obtain

(
i φ(i ) φ2 (i ) . . . φk−1 (i )

)
( j ) = (

i φ(i)φ2 (i) . . . φk−1 (i )
)(

φs (i)
)

=
{

φs+1(i ) 0 ≤ s < k − 1 
i s  = k − 1 

=
{

φs+1(i ) 0 ≤ s < k − 1 
φk(i ) s = k − 1 

= φs+1 (i ) = φ
(
φs (i)

) = φ( j ) = φ|Orφ (i ) ( j).

∎

Intuitively, the pervious proposition indicates that if φ is a permutation on 
{1, 2, . . . ,  n}, then for each i ∈ {1, 2, . . . ,  n}, the restriction φ|Orφ (i) is the cycle 
obtained by inserting i as the first element in the cycle and continuously applying φ 
on the element to obtain the next one. This process is repeated until all the elements 
in the orbit have been considered. 

Example 6.3.8 

1. Let φ =
(
1 2 3  4  5 6 7 8 9 10  11  
9 6 8 10 2 5 7 1 3 4 11

)
. 

The orbits of φ are 

{1, 3, 8, 9}, {2, 5, 6}, {4, 10}, {7}, {11} (Example 6.3.5). 

Therefore, according to the results of the last proposition,
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φ|{1,3,8,9} = (1 9 3 8), φ|{7} = (7), φ|{2,5,6} = (2 6  5), φ|{4,10} = (4 10), φ|{11} = (11). 

2. The orbits of φ =
(
1 2  3  4  
3 1  2  4

)
as a permutation in S4 are 

Orφ(1) = {1, 2, 3} = Orφ(2) = Orφ(3), Orφ(4) = {4}. 

The permutation φ has only one orbit that contains more than one element. 
Therefore, φ is a cycle. 

Corollary 6.3.9 Let n ∈ N, and φ ∈ Sn . For each i ∈ {1, . . . ,  n} not fixed by φ, 

Move
(
φ|Orφ (i)

)
= Orφ(i ). 

Proof Let i ∈ {1, 2, . . . ,  n}. The results of Lemma 6.2.10, Propositions 6.3.4, and 
6.3.7 can be used to obtain 

Move
(
φ|Orφ (i)

)
= Move

((
i φ(i )φ2 (i ) . . . φk−1 (i )

))
= {

i, φ(i ), φ2 (i), . . . , φk−1 (i )
} = Orφ(i ).

∎

As the orbits of φ (by construction) are disjoint, the following direct result can be 
obtained. 

Corollary 6.3.10 Let n ∈ N, φ ∈ Sn , and i ∈ {1, 2, . . . ,  n}. The cycles obtained by 
the restriction of φ on its orbits are disjoint cycles. 

Next, we prove Proposition 6.2.9 by showing that any permutation φ is a product 
of the cycles obtained by the restrictions of φ on its orbits. 

Proof of Proposition 6.2.9 
Let n ∈ N, φ ∈ Sn , and A1, . . . ,  Am be the distinct orbits of φ. For each 1 ≤ j ≤ m, 
let ψ j be the cycle obtained by the restriction of φ on A j . We show that 

φ(i ) = ψm ◦ ψm−1 ◦  · · ·  ◦  ψ2 ◦ ψ1(i ) for each i ∈ {1, 2, . . . ,  n}. 

Assume i ∈ {1, 2, . . . ,  n}. As the orbits of φ form a partition for {1, 2, . . . ,  n}, 
there exists l, 1 ≤ l ≤ m such that i ∈ Al and i /∈ A j for all j /= l. Therefore, 
i ∈ Move(ψl ) and i /∈ Move

(
ψ j

)
for all j /= l (Corollary 6.3.9). Therefore, 

• ψ j (i ) = i for each 1 ≤ j < l 
• ψl (i ) = φ(i ) (Proposition 6.3.7) 
• ψ j (φ(i)) = φ(i ) for each l < j ≤ m
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where the last line follows by Remark 6.1.7. That is, 

ψl−1 ◦  · · ·  ◦  ψ1(i) = i, ψl (i ) = φ(i ), ψm ◦  · · ·  ◦  ψl+1(φ(i)) = φ(i) 

which implies 

ψm ◦  · · ·  ◦  ψ1(i ) = ψm ◦  · · ·  ◦  ψl+1(ψl (ψl−1 ◦  · · ·  ◦  ψ1(i ))) = φ(i ). 

According to Corollary 6.3.10, the cycles ψ j are disjoint. ∎

Example 6.3.11 

1. Let φ =
(
1 2 3  4  5 6 7 8 9 10  11  
9 6 8 10  2  5 7 1 3  4  11

)
be a permutation in S11. The distinct 

orbits of φ are {1, 9, 3, 8}, {2, 6, 5}, {4, 10}, {7}, {11}, and the corresponding 
cycles are 

(1 9 3 8), (2 6 5), (4 10), (7), (11). 

Hence, φ can be written as the following product of disjoint cycles 

φ = (1 9 3 8)(2 6  5)(4 10)(7)(11) = (1 9 3 8)(2 6  5)(4 10). 

2. Let φ =
(
1 2  
3 5  

3 4  
1 6  

5 6 7  
2 7 4

)
be a permutation in S7. Similar to (1), the 

permutation φ can be written as a product of disjoint cycles as follows: 

φ = (1 3)(2 5)(4 6 7). 

The reader may notice that 

• For a permutation φ ∈ Sn , the number of disjoint cycles (with a length greater 
than one) form φ is less than n/2. This occurs because of the simple fact that if 
the set {1, 2, . . . ,  n} was divided into disjoint subsets where each subset contains 
at least two elements, then the number of such subsets must be less than or equal 
to half of the original set. 

• The set of distinct orbits (equivalence classes) of the permutation φ is unique 
(Corollary 1.4.14). Therefore, if all the cycles (length one included) are considered 
in writing the permutation as a product of disjoint cycles, this product will be 
unique up to cycle rearrangements. 

Proposition 6.3.12 Let n ∈ N. If all cycles of length one are considered, then any 
permutation on {1, 2, . . . ,  n} can be uniquely (up to rearrangement) written as a 
finite product of disjoint cycles.
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Example 6.3.13 Using the results of Example 6.1.4, one can easily verify that the 
group S1 consists of only 1-cycle (identity permutation). For n = 2, the symmetric 
group S2 = {(1), (12)} consists of two cycles: 1-cycle and 2-cycle (a transposition). 
The group S3 consists of six cycles: one 1-cycle, two 2-cycles, and three 3-cycles. 
The group S4 contains cycles and permutations that cannot be written as one cycle. 
The elements of S4 consist of one 1-cycle, six 2-cycles, eight 3-cycles, six 4-cycles, 
and three permutations written as a product of two cycles. Similarly, one can continue 
to analyze the structure of Sn using the multiplication rule, as in Example 6.1.4. 

6.4 Order of a Permutation 

For any n ∈ N, the orders of the permutations in Sn can be investigated. We start 
with an example of which computing φk for different permutation φ in Sn for some 
chosen k and n. 

Example 6.4.1 

1. In (S5, ◦), if  φ = (1 2  3 4), then 

φ2 = (1 2 3 4)2 = (1 2  3 4)(1 2 3 4) = (13)(24) 
φ3 = (1 2 3 4)3 = (1 2  3 4)(13)(24) = (1 4 3 2) 
φ4 = φ2 φ2 = (13)(24)(13)(24) = (13)(13)(24)(24) = (1)(2) = e. 

2. In (S3, ◦), if  φ = (1 2), then 

φ2 = (1 2)2 = (1) = e. 
φ3 = (1 2)3 = (1 2)(1 2)2 = (1 2)e = (1 2). 

In general, φ2k+1 = (1 2), and φ2k = e for any integer k. 
3. In (S7, ◦), if  φ = (1 2  3)(2 7 1  6), then φ = (1 6 3)(2 7) and 

φ2 = ((1 6 3)(2 7))2 = (1 6 3)(2 7)(1 6 3)(2 7) 
= (1 6 3)(1 6 3)(2 7)(2 7) = ((1 6 3))2 = (1 3 6) 

φ3 = φ2 φ = (1 3 6)(1 6 3)(2 7) = (2 7) 
φ4 = φ3 φ = (2 7)(1 6 3)(2 7) = (2 7)(2 7)(1 6 3) = (1 6 3) 
φ5 = φ4 φ = (1 6 3)(1 6 3)(2 7) = (1 3 6)(2 7) 
φ6 = φ5 φ = (1 3 6)(2 7)(1 6 3)(2 7) = (1 3 6)(1 6 3)(2 7)(2 7) = e. 

4. In (S6, ◦), if  φ = (2 5  4)(6 3 1)(4 3), then
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φ = (1 6 3 2 5 4) 
φ2 = (1 3 5)(2 4 6) 
φ3 = φ2 φ = (1 2)(3 4  )(5 6) 
φ4 = φ2 φ2 = (1 5 3)(2 6 4) 
φ5 = φ4 φ = (1 4 5 2 3 6) 
φ6 = φ5 φ = (1 4 5 2  3 6)(1 6 3 2  5 4) = e. 

The reader may note that computing φk becomes increasingly complicated as k 
and n become bigger, and some of the above computations were cumbersome. The 
computations of the exponent can be simplified using Propositions 6.2.9, and 6.2.6 
and the results presented in this section. The following lemma computes the order 
of a cycle. Recall the order of an element in a group defined in Sect. 5.5. 

Lemma 6.4.2 Let n ∈ N. The order of a cycle in Sn is equal to its length, i.e., 

ord((i1i2 . . .  ik)) = k 

where i1, i2, . . . ,  ik are elements in {1, 2, . . . ,  n}. In particular, the order of a 
transposition is 2. 

Proof We show that k is the smallest positive integer such that (i1i2 . . .  ik)k = e. Let  
1 ≤ s ≤ k. By Lemma 6.2.5, 

(i1i2 . . .  ik)k (is) = i f (s,k) 

where 

f (s, k) =
{
k + s mod k if k + s /= qk  for all q ∈ N 
k if k + s = qk  for some q ∈ N 

=
{
s mod k if k + s /= qk  for all q ∈ N 
k if k + s = qk  for some q ∈ N 

Since 1 ≤ s ≤ k, then k + 1 ≤ s + k ≤ 2k, which implies that the only possibility 
for s + k to be a multiple of k is 2k, i.e., 

f (s, k) =
{
s mod k k  + s /= 2k 
k k  + s = 2k 

=
{
s mod k s /= k 
k s  = k 

= s. 

i.e., (i1i2 . . .  ik)k (is) = is for each 1 ≤ s ≤ k, and (i1i2 . . .  ik)k = e. Let  r be a 
positive integer such that r < k. We compute (i1i2 . . .  ik)r (i1) as follows:
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(i1i2 . . .  ik)r (i1) = i f (1,r ) 

where 

f (1, r ) =
{
r + 1 mod  k if r + 1 /= qk  for all q ∈ N 
k if r + 1 = qk  for some q ∈ N. 

Since r < k, we have r +1 < k + 1 ≤ 2k, which implies that the only possibility 
for r + 1 to be a multiple of k is k. i.e., 

f (1, r) =
{
r + 1 mod  k if r + 1 /= k 
k if r + 1 = k. 

In both cases f (1, r ) = r + 1 /= 1. i.e., (i1i2 . . .  ik)r (i1) /= i1. Therefore 
((i1i2 . . .  ik))r /= e. ∎

Since every permutation in Sn is a finite product of disjoint commuting cycles, 
one can calculate the order of a permutation using the orders (lengths) of its factor 
cycles using the following lemma. 

Proposition 6.4.3 Let n ∈ N. The order of a permutation is the least common 
multiple of the orders of its factor disjoint cycles. i.e., if ψ1, ψ2, . . . , ψs are a set of 
pairwise disjoint cycles such that length ψi equals ki , where 1 ≤ i ≤ s, then 

ord(ψ1ψ2 · · ·  ψs) = lcm(k1, k2, . . . ,  ks). 

Proof Let l = lcm(k1, k2, . . . ,  ks). For each 1 ≤ i ≤ s, there exists an integer mi 

such that l = ki mi . As  ψ1, ψ2, . . . , ψs are pairwise disjoint cycles, they commute, 
which implies that 

(ψ1ψ2 · · · ψs)
l = (ψ1)

l (ψ2)
l · · · (ψs)

l = (ψ1)
k1m1 (ψ2)

k2m2 · · ·  (ψs)
ksms 

= e · e · · · e = e. 

By Lemma 5.5.6, ord(ψ1ψ2 · · ·  ψs) divides l. On another hand, since 

(ψ1ψ2 . . . ψs)
ord(ψ1ψ2...ψs ) = e 

and the cycles ψ1, ψ2, . . . , ψs are disjoint, by Corollary 6.1.12, ψ
ord(ψ1ψ2...ψs ) 
i = 

e for each 1 ≤ i ≤ s, which implies that ki divides ord(ψ1ψ2 . . . ψs) for each 
1 ≤ i ≤ s. Therefore, the least common multiple l = lcm(k1, k2, . . . ,  ks) divides 
ord(ψ1ψ2 . . . ψs). Proposition 2.2.5 (3) implies the result. ∎

Considering the above results, we compute some of the permutations in Example 
6.4.1, leaving the others as an exercise: 

• In (S5, ◦), if  φ = (1 2 3 4), then ord(φ) = 4, and
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φ2 = (1 2  3 4)2 = (1 2 3 4)(1 2  3 4) = (1 3)(2 4) 
φ3 = (1 2  3 4)3 = (1 2 3 4)(1 3)(2 4) = (1 4 3 2) 
φ4 = ((1 2  3 4))4 = e. 

• In (S7, ◦), let  φ = (1 2  3)(2 7 1  6). The permutation φ is not a cycle but can 
be written as a product of disjoint cycles φ = (1 6 3)(2 7). Thus, ord(φ) = 
lcm(3, 2) = 6, and 

φ2 = ((1 6 3)(2 7))2 = ((1 6 3))2 = (1 3 6) 
φ3 = φ2 φ = (1 3 6)(1 6 3)(2 7) = e(2 7) = (2 7) 
φ4 = ((1 3 6))2 = (1 6 3) 
φ5 = φ4 φ = (1 6 3)(1 6 3)(2 7) = (1 3 6)(2 7) 
φ6 = e. 

• In (S6, ◦), let  φ = (2 5  4)(6 3 1)(4 3). This permutation is a product of cycles 
that are not disjoint. By rewriting φ as a product of disjoint cycles, we obtain 
φ = (1 6 3 2 5 4), a 1-cycle of length 6. Therefore, ord(φ) = 6. 

Example 6.4.4 Consider the permutation φ = (2 4)(1 3 6) in S7. To find φ100, 
one first computes the order of φ. As  φ is a product of disjoint cycles, ord(φ) = 
lcm(2, 3) = 6. i.e., φ6 = e. Applying the division algorithm on 6 and 100 yields 
100 = 16 × 6 + 4. Thus, 

φ100 = φ4+16×6 = φ4
(
φ6

)16 
= φ4 (e)16 = φ4 . 

The cycles (2 4) and (1 3 6) are disjoint, and thus, they commute. Consequently, 

φ4 = ((2 4)(1 3 6))4 = (2 4)4 (1 3 6)4 . 

Since (2 4)4 = (
(2 4)2

)2 = e2 = e and (1 3 6)4 = (1 3 6)3 (1 3 6)1 = 
e(1 3 6) = (1 3 6), then φ4 = (1 3 6). 

The next example shows that both conditions a ∗ b = b ∗ a and 
gcd(ord(a), ord(b)) = 1 in Proposition 5.5.11 cannot be eliminated. 

Example 6.4.5 The cycles (1 2), (1 3), and (3 4) are elements in the group S4. Each 
of these cycles is a cycle of order 2, and 

ord((1 2)(1 3)) = Ord((1 3 2)) = 3 /= 4 = ord((1 2)) · ord((1 3)) 
ord((1 2)(1 3 4)) = Ord((1 3 4 2)) = 4 /= 6 = ord((1 2)) · ord((1 3 4)) 
ord((1 2)(3 4)) = 2 /= 4 = ord((1 2)) · ord((3 4)).
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The next example shows that the assumption for a group G to be abelian in 
Proposition 5.5.13 is essential. Recall that for any m ∈ Z, mG = {am : a ∈ G} and 
G[m] = {a ∈ G : am = e}. 
Example 6.4.6 Consider the symmetric group S4. As shown in Example 6.3.13, the  
group S4 consists of one 1-cycle, six 2-cycles, eight 3-cycles, six 4-cycles, and three 
products of 2-cycles. Each of these permutations, except the 3-cycles, has an order 
that divides 4. Therefore, 

1. The set 4S4 contains only the identity and the 3-cycles. Since (1 2 3)(1 2 4) = 
(1 3)(2 4) is not an element in 4S4, the  set  4S4 is not closed under the product 
of cycles, so it is not a group. 

2. The set S4[4] contains all the permutations, except the 3-cycles. Since 
(1 2)(2 4) = (1 2 4) is not an element of S4[4], the  set  S4[4] is not closed 
under the product of cycles, so it is not a group. 

6.5 Odd and Even Permutations 

In this section, each permutation in Sn for n ∈ N is classified as an even or odd 
permutation. For n > 1, this determination is based on expressing a permutation φ 
as a finite product of transpositions. Expressing φ as a product of transpositions can 
be performed by expressing the permutation as a product of cycles, then writing each 
cycle as a product of transpositions. In the case where n = 1, the group S1 has only 
one cycle of length 1. Hence, no transposition in S1. Recall that a cycle (i1i2 . . .  ik) 
in Sn , where 2 ≤ k ≤ n, is  

(i1i2 . . .  ik)(is) =
{
is+1 1 ≤ s < k 
i1 s = k 

for 1 ≤ s ≤ k. 

Proposition 6.5.1 Let n ∈ N such that n > 1. Any cycle in Sn can be written as a 
product of transpositions. Namely, e = (i1i2)(i1i2) for any i1 /= i2 and 

(i1i2 . . .  ik) = (i1ik)(i1ik−1) . . .  (i1i3)(i1i2) for any 2 ≤ k ≤ n. 

Proof The statement for the identity element is clear. Let n ≥ 2 and assume 
that (i1i2 . . .  ik) is a cycle in Sn . It suffices to show that (i1i2 . . .  ik)(is) = 
(i1ik)(i1ik−1) . . .  (i1i3)(i1i2)(is) for any 1 ≤ s ≤ k. 

• If s = 1, then applying the product (i1ik)(i1ik−1) . . .  (i1i3)(i1i2) on i1 is given by 
the steps 

i1 
(i1i2)−−→ i2 

(i1i3)−−→ i2 · · · i2 (i1ik−1) −−−→ i2 
(i1ik )−−→ i2 

and yields i2, which is (i1i2 . . .  ik)(i1).
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• If 1 < s < k, then applying the product (i1ik)(i1ik−1) . . .  (i1i3)(i1i2) on is is given 
by the steps 

is 
(i1i2)−−→ is 

(i1i3)−−→ is · · ·  (i1is−1) −−−→ is 
(i1is )−−→ i1 

(i1is+1) −−−→ is+1 
(i1is+2) −−−→ is+1 · · ·  is+1 

(i1ik )−−→ is+1 

Thus, is+1 = (i1i2 . . .  ik)(is). 
• If s = k, then applying the product (i1ik)(i1ik−1) . . .  (i1i3)(i1i2) to ik is given by 

the steps 

ik 
(i1i2)−−→ ik 

(i1i3)−−→ ik · · · ik (i1ik−1) −−−→ ik 
(i1ik )−−→ i1 

and yields i1 = (i1i2 . . .  ik)(ik). 
Hence, the equality is satisfied for all 1 ≤ s ≤ k. ∎

Remark 6.5.2 

1. According to the previous proposition, any cycle of length k, where k > 1, can 
be written as a product of k − 1 transpositions. 

2. For any n ∈ N, and for any i, j ∈ {1, 2, . . . ,  n} such that i /= j , the transposition 
(i j  ) can be written as (i j  ) = (aj  )(ai )(aj  ), where a ∈ {1, 2, . . . ,  n}\{i, j}. 

Corollary 6.5.3 Let n ∈ N such that n > 1. 

1. Any permutation in Sn can be written as a product of a finite number of 
transpositions. 

2. Any permutation in Sn can be written as a product of a finite number 
of transpositions of the form (aki ) for fixed a ∈ {1, 2, . . . ,  n} with ki ∈ 
{1, 2, . . . ,  n}\{a}. 

Example 6.5.4 Consider the group (S9, ◦) 

e = (5 8)(5 8), e = (1 2  3)(3 2  1) = (1 3)(1 2)(3 1)(3 2), 
= (1 3)(1 2)(1 3)(1 3)(1 2)(1 3). 

φ = (3 6 4 2)(5 8 7) = (3 2)(3 4)(3 6)(5 7)(5 8) 
= (3 2)(3 4)(3 6)(3 7)(3 5)(3 7)(3 8)(3 5)(3 8). 

ψ = (4 3 5 1) = (4 1)(4 5)(4 3). 

Using Corollary 6.5.3, one can classify the permutations into odd and even 
permutations, as follows 

Definition 6.5.5 Let n ∈ N such that n > 1, and φ ∈ Sn . We say that φ is an odd 
permutation if it can be written as a product of an odd number of transpositions. We 
say that φ is an even permutation if φ can be written as a product of an even number 
of transpositions. 

Example 6.5.6
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1. The identity permutation is an even permutation. 
2. Let 

φ =
(
1 2  3  4  5 6 7 8 9 10  11  
9 6 8 10  2  5 7 1 3  4  11

)
. 

As φ = (1 9 3 8)(2 6  5)(4 10) = (1 8)(1 3)(1 9)(2 5)(2 6)(4 10), then φ 
is even. 

3. Let 

φ =
(

1 2  
3 4  

3 4  
5 6  

5 6  
2 1  

7 8  
7 8

)
. 

The permutation φ = (1 3 5 2 4 6) is a cycle of length 6, and thus, it is an 
odd permutation. 

Writing a permutation as a product of transpositions is not unique. For example, 
if φ = τm . . . τ2τ1, where τ1, τ2, . . . , τm are transpositions, then 

τm . . . τ2τ1(1 3)(1 2)(3 1)(3 2) and τm . . . τ2τ1(5 8)(5 8) 

are equal to φ. However, if φ is represented as a product of an odd (resp. even) number 
of transpositions, then the number of transpositions in any other such representation 
of φ must be odd (resp. even). In the remainder of this section, we prove that any 
permutation φ cannot be simultaneously even and odd. We show the result for the 
identity permutation, and then for the general case. The following technical lemmas 
are needed. 

Lemma 6.5.7 Let n ∈ N such that n > 1. If σ and (i j) are different transpositions 
in Sn , then there exists a transposition τ in Sn and l ∈ {1, 2, . . . ,  n} such that i /∈ τ 
and σ (i j  ) = (il)τ . 

Proof If σ and (i j  ) are disjoint cycles, they commute, and the result follows by 
putting τ = σ and l = j . If  σ and (i j  ) are not disjoint, then σ = (is) or σ = (s j  ) 
for some s ∈ {1, 2, . . . ,  n}\{i, j}. 
• If σ = (is), then 

σ (i j) = (is)(i j  ) = (i js) = ( jsi  ) = ( j i  )( js) = (i j  )( js). 

and the result follows by putting τ = ( js) and l = j . 
• If σ = (s j  ), then 

σ (i j) = (s j  )(i j  ) = ( j is) = (s ji  ) = (si  )(s j) = (is)( js) 

and the result follows by putting τ = ( js) and l = s. ∎
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Lemma 6.5.8 Let n ∈ N, n > 1, and φ ∈ Sn . Let φ = τkτk−1 · · ·  τ1, k ≥ 2 be 
a representation of φ as a product of transpositions. Let s ∈ τ1 for some s ∈ 
{1, 2, . . . ,  n}. If φ cannot be expressed as a product of k − 2 transpositions, then 
for each i such that 1 ≤ i ≤ k, there is a representation of φ as a product of 
transpositions 

αkαk−1 · · · αi · · ·  α1 

such that αi is the first transposition that moves s. 

Proof The proof is done by induction on i . Assume that φ cannot be written as a 
product of k − 2 transpositions. 

• If i = 1, let  αt = τt for all 1 ≤ t ≤ k, then αkαk−1 · · ·  α1 is a representation of φ 
as a product of transpositions such that α1 is the first transposition that moves s; 
i.e., the statement is true at i = 1. 

• Assume that the statement is true for i . That is, there exists σkσk−1 · · ·  σ1, a repre-
sentation of φ as a product of transpositions such that σi is the first transposition 
that moves s. 

• To prove the statement for i +1, we need to find a representation of φ as a product 
of transpositions αkαk−1 · · ·  α1, such that the first transposition that moves s is 
αi+1. 

By the induction hypothesis φ = σkσk−1 · · ·  σ1 such that σi is the first transposi-
tion that moves s. If  σi+1 = σi , then σi+1σi = e, and φ can be written as a product 
of k − 2 transpositions, which contradicts the assumption. Thus, σi+1 /= σi . By  
Lemma 6.5.7, there exists a transposition τ and l ∈ {1, 2, . . . ,  n}, such that s /∈ τ 
and σi+1σi = (sl)τ . By defining the following set of transpositions 

α j = 

⎧⎨ 

⎩ 

(sl) j = i + 1 
τ j = i 
σ j j /∈ {i, i + 1} 

the product 

αkαk−1 · · ·  αi+2αi+1αi αi−1 · · ·  α1 = σkσk−1 · · ·  σi+2(sl)τσi−1 · · ·  σ1 

= σkσk−1 · · ·  σi+2σi+1σi σi−1 · · · σ1 = φ 

is an expression for φ as a product of transpositions such that αi+1 is the first 
transposition that moves s. Thus, by induction, the statement is true for all i 
where 1 ≤ i ≤ k. ∎

Lemma 6.5.9 Let n ∈ N, n > 1, and e ∈ Sn . If e is written as a product of k 
transpositions, then it can be written as a product of k − 2 transpositions. 

Proof Assume that e = τkτk−1 · · ·  τ1 for some k ≥ 2 and s ∈ τ1 where 
s ∈ {1, 2, . . . ,  n}. If  e cannot be written as a product of k − 2 transpositions, then
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by Lemma 6.5.8, there exists an expression for e as a product of transpositions 
αkαk−1 · · · α1, where αk is the first transposition that moves s. Hence, αk(s) /= s. 
However, s = e(s) = αkαk−1 · · ·  α1(s) = αk(s), which is a contradiction. ∎

The identity permutation is an even permutation as e = (i j  )(i j  ) for any i /= j . 
The following result shows that e cannot be odd. 

Corollary 6.5.10 Let n ∈ N. The identity permutation e ∈ Sn is not an odd 
permutation. 

Proof Assume that e can be written as a product of k transpositions where k is odd, 
i.e., k = 2q + 1 for some integer q. Repeatedly applying Lemma 6.5.9, e can be 
written as a product of k − 2 transpositions then as k − 4 transpositions, and finally 
after q repetitions, e can be written as a product of k − 2q transpositions. Since 
k − 2q = 1, then e is a transposition, which contradicts that e is the identity map. ∎

Corollary 6.5.11 Let n ∈ N, n > 1, and φ ∈ Sn . The permutation φ is either even 
or odd and cannot be both. 

Proof Let φ = τk · · ·  τ1 and φ = αs · · ·  α1 be two expressions for φ as product of 
transpositions. Using the second expression, we obtain φ−1 = α−1 

1 α−1 
2 · · ·  α−1 

s which 
implies that 

e = φ−1 φ = α−1 
1 α−1 

2 · · ·  α−1 
s · τk · · · τ1 = α1 · · ·αs · τk · · ·  τ1 

Thus, e is a product of k + s transpositions. As e cannot be an odd permutation, 
then k + s must be an even integer. Therefore, k and s must be either both even, or 
both odd. ∎

Using the last corollary and Remark 6.5.2 (1), one obtains the following result. 

Corollary 6.5.12 Let n, k ∈ N, n > 1, k ≤ n, and φ is a cycle of length k. The 
cycle φ is an odd permutation if and only if k is even, and vice versa. 

For each n ∈ N, the set of even permutations in Sn is denoted by An , while Bn 

denotes the set of all odd permutation of Sn . Since e is an even permutation, An is 
never empty. The last corollary shows that the two sets do not intersect. 

An = {φ ∈ Sn : φ is even}, Bn = {φ ∈ Sn : φ is odd}. 

If n = 1, then S1 = A1 = {e} and B1 = ∅. 
If n = 2, then S2 = {e, (1 2)}, A2 = {e}, and B2 = {(1 2)}. 

Example 6.5.13 To list all the elements in A3 and B3, list all the elements of S3 

S3 = {e, (1 2 3), (1 3 2), (1 3), (1 2), (2 3)}.
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As all the permutations S3 are cycles, by using Corollary 6.5.12, we obtain 

A3 = {(1 2)(1 2), (1 3)(1 2), (1 2)(1 3)}, B3 = {(1 3), (1 2), (2 3)}. 

Another way to determine if a permutation is odd or even is by defining a function 
on Sn, called the sign function. 

Definition 6.5.14 Let n ∈ N, and φ in Sn . The sign of φ, denoted by sgn(φ), is  
defined as (−1)k , where k is the number of transpositions in any expression for φ as 
a product of transpositions. 

Corollary 6.5.15 Let n ∈ N. The map sgn : Sn → {−1, 1} satisfies 

sgn(φ) =
{
1 if  φ is even 
−1 if  φ is odd 

for any φ ∈ Sn . 

The following proposition provides a computationally convenient way to deter-
mine the sign of a permutation without the need of writing it as a product of 
transpositions. 

Proposition 6.5.16 Let n ∈ N, and φ in Sn . The sign of φ is computed using the 
following equation 

sgn(φ) =
∏

1≤i< j≤n 

φ( j ) − φ(i ) 
j − i 

. 

Example 6.5.17: Let φ = (1 2) ∈ S3. As the permutation φ is odd, then sgn(φ) is 
−1. Using the formula in Proposition 6.5.16, 

sgn(φ) = 
φ(3) − φ(2) 

3 − 2 
φ(3) − φ(1) 

3 − 1 
φ(2) − φ(1) 

2 − 1 

= 
3 − 1 
1 

· 3 − 2 
2 

· 1 − 2 
1 

= (2)
(
1 

2

)
(−1) = −1, 

as expected. 

Our next goal is to show that An is always a group, and Bn is not a group for any 
n. We begin with the following proposition. 

Proposition 6.5.18 Let n ∈ N, and φ, ψ ∈ Sn . 

1. If φ, ψ have the same parity, then φ ◦ ψ is even. 
2. If φ, ψ have opposite parity, then φ ◦ ψ is odd. 
3. The product of two even (odd) permutations is an even permutation.
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4. The product of a finite number of even permutations is an even permutation. 
5. φ−1 is even (odd) if and only if φ is even (odd). 
6. The cycle (i1 . . .  ik) is even (odd) if and only if k is odd (even). 

Proof Let φ = τk · · ·  τ1 and ψ = βs · · · β1 be expressions of φ, ψ as products of 
transpositions. The composition φ ◦ ψ = τk · · ·  τ1 · βs · · ·  β1 is a product of k + s 
transpositions. 

1. If k and s have the same parity (either both even or both odd), then k + s is even, 
and φ ◦ ψ is even. 

2. If k and s have the opposite parity (one is even and the other is odd), then k + s 
is odd, so φ ◦ ψ is odd. 

3. The statement (3) follows form (1). 
4. The statement of (4) follows from (3) by induction on the number of permutations. 
5. The result of (5) follows as φ−1 = τ −1 

1 · · ·  τ −1 
k = τ1 · · ·  τk can be expressed using 

the same number of transpositions forming φ. 
6. The result in (6) follows by Remark 6.5.2 which states that any cycle of length 

k where k > 1, can be written as a product of k − 1 transpositions. ∎
Note that since the product of two odd permutations is even, Bn is never closed 

and thus is never a group under the composition of maps. 

Corollary 6.5.19 Let n ∈ N, n > 1. The set An of all even permutations on 
{1, 2, . . . ,  n} forms a group under composition. 
Proof As e ∈ An , the  set  An is a nonempty subset of Sn . As the composition of 
two even permutations is even, An is closed under composition, which implies that 
◦ forms a binary operation on An (Proposition 4.1.6). The associativity property 
is inherited from Sn , and e serves as an identity element in An . As the inverse of 
an even permutation is even (Proposition 6.5.18 (5)), An is closed undertaking the 
inverse, and thus, it is a group. ∎
Definition 6.5.20 Let n ∈ N, n > 1. The group An is called the alternating group 
of degree n. 

Figure 6.4 summarized the main results about permutation that are shown in this 
chapter. 

Fig. 6.4 Summary
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Exercises 

Solved Exercises 

6.1 Consider the following permutations. 

α = (2 5 6)(3 4) ∈ S7 

β = (2 5 3)(8 9 1 1)(7 1 4) ∈ S11 

γ =
(
1 2 3 4 5 6 7  
5 2 3 1 6 4 7

)
∈ S7 

δ =
(
1 2 3  4  5 6 7 8 9 10  
5 2  3 10  6  4 7 9 8  1

)
∈ S10. 

(a) Write the matrix representation of the permutations α and β. 
(b) Write the permutations γ and δ as a product of disjoint cycles. 
(c) Find the order of all the above permutations. 
(d) For each of the permutations determine whether it is odd or even. 
(e) Find Move(α), Move(γ ). 
(f) Find γ 39 and δ121. 
(g) Are the permutations α and γ disjoint? Explain. 

Solution: 

(a) Using the result in Corollary 6.2.7, we have  

α =
(
1 2 3 4 5 6 7  
1 5 4 3 6 2 7

)

β =
(
1 2  3 4 5 6 7 8  9  10 11  
4 5 2 7 3 6 1 9 11 10 8

)
. 

(b) Applying the method in the proof of Proposition 6.2.9 yields 

γ = (1 5 6 4) and δ = (1 5 6 4 10)(8 9). 

(c) By Proposition 6.4.3, 

ord(α) = lcm(3, 2) = 6, and ord(β) = lcm(3, 3, 3) = 3. 

As γ = (1 5 6 4) is a cycle of length 4, then ord(γ ) = 4. Finally, 
ord(δ) = lcm(5, 2) = 10. 

(d) Using the results in Proposition 6.5.18, one can obtain
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• α = (2 5  6)(3 4) is a product of an even cycle and an odd cycle, and 
thus an odd permutation. 

• β = (2 5 3)(8 9 11)(7 1 4) is a product of three even cycles, and 
thus, it is an even permutation. 

• γ = (1 5 6 4) is a 4-cycle, and thus, it is an odd permutation. 
• δ = (1 5 6 4 10)(8 9) is a product of even and odd permutations, and 

thus, it is an odd permutation. 

(e) Using Definition 6.1.6, we obtain 

Move(α) = {2, 3, 4, 5, 6} and Move(γ ) = {1, 4, 5, 6}. 

(f) Several methods can be used to compute γ 39, we present two methods 
both of which use the fact that ord(γ ) = 4. The first method applies the 
quotient-remainder theorem on 39 and 4 to obtain 

γ 39 = γ 9×4+3 = (
γ 4

)9 
γ 3 = γ 3 = (4 6 5 1). 

An alternative method that uses fewer computations starts by noting 
that γ γ 39 = γ 40 = (γ 4)10 = e, thus γ 39 = γ −1 = (1 5 6 4)−1 = 
(4 6 5 1). 

The two methods are applied to compute δ121 using the fact that 
ord(δ) = 10, as follows: 

δ121 = δ12×10+1 = (δ10 )12 δ = eδ = δ. 

and 

δ−1 δ121 = δ120 = (δ10 )12 = e, which implies that δ120 = δ. 

(g) No. The permutations α and γ are not disjoint since Move(α) ∩ 
Move(γ ) /= ∅. 

6.2. Let α =
(
1 2  3 4  
1 2  4 3

)
, and β =

(
1 2 3 4  
2 1  3  4

)
. Do  α and β commute? Find (αβ)4 . 

Solution: 

Expressing α and β as a product of cycles yields 

α = (3 4) and β = (1 2). 

Since α and β are disjoint, by Proposition 6.1.10, αβ = βα. Using  the  
result of Corollary 6.1.11, we obtain 

(αβ)4 = α4 β4 = (
(34)2

)2(
(12)2

)2 = e.
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6.3. Let α = (2 5 6)(3 2 4 1) ∈ S7. Find  α−1(2) and α(5). 

Solution: 
Since α takes 5 to 6 then α(5) = 6. To compute α−1(2), we must compute 

α−1 using one of the following methods: 

• α = (256)(3241) = (135624), which implies that α−1 = (426531). 
• α−1 = (3241)−1(256)−1 = (1423)(652). 

In both cases, α−1(2) = 6. 
6.4. Let A be any nonempty set. Consider the symmetric group of A (Corollary 

5.1.11). For each element f in SA, define the relation ∼= f on A as follows: 

i ∼= f j ⇔ ∃  m ∈ Z ∍ j = f m (i ). 

The relation ∼= f is an equivalence relation on the set A (Check!). The 
equivalence classes of such relation are called the orbits of f and given for 
each i ∈ A as 

Or f (i ) =
{
f k (i ) : k ∈ Z

}
. 

Consider the additive group (Z, +). Let  f : Z → Z be the map defined 
by f (n) = n + 2. As  f is a bijective map on Z, then f belongs to SZ, the  
symmetric group on Z. Find all the distinct orbits of f . 

Solution: 

Let i ∈ Z be an arbitrary element. 

Or f (i ) =
{
f k (i ) : k ∈ Z

}
. 

One can show by induction on k that f k(i ) = i + 2k. Therefore, for any 
i ∈ Z 

Or f (i ) = {i + 2k : k ∈ Z} = i + 2Z. 

By applying the quotient-remainder theorem (Theorem 2.1.2) on  i and 2, 
one obtain that there exist q, r ∈ Z such that i = 2q + r , where 0 ≤ r < 2, 
i.e., 

Or f (i ) = i + 2Z = r + 2q + 2Z = r + 2Z, where r = 0, 1. 

Hence, only two orbits of f exist, namely 2Z (at r = 0) and 1 + 2Z at 
(r = 1). 

6.5. Consider the symmetric group S9. Find two elements α, β in S9 such that 

ord(α) = ord(β) = 5 and ord(αβ) = 9.
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Solution: 

Let α = (1 2 3 4 5), β  = (1 6 7 8 9) ∈ S9. As the order of any cycle is 
equal to its length, then ord(α) = 5 = ord(β). The product 

αβ = (1 2  3 4 5)(1 6 7 8 9) = (1 6 7 8 9 2  3 4 5). 

Therefore, ord(αβ) = 9. 
6.6. Prove that α = (4 5 7 2 1 8) ∈ S8 is not a product of 3-cycles. 

Solution: 
Assume that α is a product of only 3-cycles. As any 3-cycle is an even 

permutation, thus by Proposition 6.5.18 (4), α is an even permutation, which 
contradicts the fact that 

α = (4 8)(4 1)(4 2)(4 7)(4 5) 

is a product of five transpositions. Therefore, α cannot be a product of only 
3-cycles. 

6.7. Let n ∈ N such that n > 1. Prove that in Sn , the number of even permutations 
equals the number of odd permutations. Namely, 

|An| = |Bn| = 
n! 
2 

. 

Solution: 

Since n > 1, then (1 2) ∈ Sn . Define 

f : An → Bn 

φ |→ (12)φ. 

The permutation (1 2) is an odd permutation. Therefore, by Proposition 
6.5.18 (2), the permutation (1 2)φ is odd for each φ ∈ An . Hence, f defines 
a function from An to Bn . The  map  f is injective since 

f (φ1) = f (φ2) ⇒ (1 2)φ1 = (1 2)φ2 

⇒ (1 2)(1 2)φ1 = (1 2)(1 2)φ2 

⇒ φ1 = φ2. 

Since for any ψ ∈ Bn, the permutation (1 2)ψ ∈ An and satisfies 
f ((1 2)ψ) = ψ , then f is also surjective. Thus, f is a bijective map, 
and |An| = |Bn|. Since {An, Bn} form a partition of the set Sn , then 
n! =  |Sn| = |An| + |Bn| = 2|An|, which implies the result. 

6.8. Let n ∈ N. Show that An = Sn if and only if n = 1.



6.5 Odd and Even Permutations 217

Solution: 
If n = 1, then S1 = {e}. Since A1 is a group, it cannot be empty, and 

A1 is a nonempty subset of {e}. Thus, S1 = A1. For the other direction, 
assume that n > 1, then α = (1 2) belongs to Sn . As the permutation α is 
odd permutation then α does not belong to An . Therefore, Sn /= An . 

6.9. Let n ∈ N and α be a cycle in Sn . Show that 

ord(α) is odd if and only if α is an even permutation. 

Solution: 
Assume that α = (i1i2 . . .  ik) is a cycle in Sn . According to Lemma 6.4.2, 

we obtain ord(α) = k. Proposition 6.5.18 (6) now implies the result. 
6.10. Let n ∈ N, where n ≥ 3. Show that no nontrivial cycle belongs to the center 

of Sn . i.e., C(Sn) = {e} for all n ≥ 3. 

Solution: 

Let α = (i1i2 . . .  ik) be any cycle in Sn such that k ≥ 2. 

• If k = 2, then α = (i1i2). By choosing i3 ∈ {1, 2, . . . ,  n}\{i1, i2} (n ≥ k), 
and direct computations yield, 

α(i1i3) = (i1i3i2) /= (i1i2i3) = (i1i3)α, 

and α is not in the center. 
• If k > 2, then (i1i2 . . .  ik)(i1ik)(ik) = i2 /= ik = (i1ik)(i1i2 . . .  ik)(ik). i.e., 

α(i1ik)(ik) /= (i1ik)α(ik) 

and α is not in the center. 

Unsolved Exercises 

6.11. Let φ =
(
1 2 3 4 5  
3 4 1 5 2

)
and ψ =

(
1 2 3 4 5  
2 3 1  4  5

)
be permutations in S6. 

Express both φ and ψ as a product of disjoint cycles. Find φ ◦ ψ and ψ ◦φ. 
6.12. In S4, find α6431, where α = (1 2 3 4). 
6.13. Consider the group S6 and the permutations 

φ =
(
1 2  3 4 5 6  
3 5 2 1 6 4

)
, ψ  =

(
1 2 3 4 5 6  
2  4  5 3 1 6

)
, ϕ  =

(
1 2 3 4 5 6  
2  4  5 6 5 4

)

Find the order of these permutations. Find the permutation ψ ◦ φ ◦ ϕ and 
its inverse. 

6.14. Find the order of the given permutations:
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α = (2 4 1 7)(3 5 6) as an element in S7 

β = (1 4 2)(8 6)(3 5 6 7) as an element in S8 

6.15. Consider the group S7. Write the following permutations as a product of 
transpositions. 

• (1 2  3)(4 3 6 5). 
• (1 2  3 4 5). 
• (5 7)(3 2 4)(1 6). 
• (1 2  3)(4 5 6). 
• (3 4 2  6)(3 4 2 6). 

6.16. Consider the group S8. Let  φ =
(
1 2 3 4 5 6 7 8  
5 4 6 2 3 8 1 7

)
, and ψ = (1 5 3 4) 

i. Find the permutations 

φ3 ψ−2 φ, ψ2 φψ, φ2 ψ2 , φψφ, ψφ,  φψ, ψ−1 , φ−1 . 

ii. Find the parity of φ, ψ , and all permutations in (i). 
iii. Find ord(φ), ord(ψ), ord

(
φ2

)
, and ord

(
ψ4

)
. 

iv. Find the orbits of φ and ψ and the orbits of all permutations in (i). 
v. Compute φ7, ψ6, φ22. 

6.17. Consider the permutations φ = (1 3 5)(1 2) and ψ =
(
1 2  3 4 5 6 7  
5 2  1 7 3 6 4

)
as 

elements in S7. Determine if these permutations are even or odd. 

6.18. Let α =
(
1 2 3 4  
2 4 3  1

)
and β =

(
1 2 3 4  
2 3  1  4

)
be elements in S4. 

a. Express α, β as products of transpositions. 
b. Determine if α, β are even or odd permutations. 
c. Find α ◦ β and β ◦ α and determine their parity. 
d. Find the orders of α ◦ β, β ◦ α, β, α. 
e. Does α(2) ∈ Move(α)? Find  Move(α) ∩ Move(β). 
f. Find all the distinct orbits of α and β.

6.19. Repeat all the questions in Exercise 6.18 given that β = (2 4 3 5) and α = 
(1 2 3 6) as elements in S6. 

6.20. Consider the permutations φ =
(
1 2  3 4  
1 3 2 4

)
and ψ =

(
1 2  3 4  
4 3 2 1

)
as elements 

in S4. Find  (ψφ)5 and its order as an element of S4. 
6.21. Give an example of n ∈ N, and elements α and β in Sn such that ord(α) = 

ord(β)and ord(αβ) = 4. 
6.22. Give an example of n ∈ N, and elements α and β in Sn such that ord(α) = 3, 

ord(β) = 4. and ord(αβ) /= lcm(3, 4) 
6.23. List all possible orders of an element of A6.
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Table 6.2 Table of the group (A, ∗) 
* x y z g h k 

x x y z g h k 

y y x k h g z 

z z h x k y g 

g g k h x z y 

h h z g y k x 

k k g y z x h 

6.24. Show that C(Sn) = {e}, for each n ≥ 3. 
6.25. How many cycles of order 3 are in S5? How many cycles of order 3 are in 

S6? 
6.26. How many permutations in S5 are of the form of a product of two 

transpositions? 
6.27. Let n ∈ N, and consider the group Sn . Let  φ and ψ be two disjoint 

permutations in Sn . Show that if φψ = e, then φ = ψ = e. 
6.28. Let G = (S3, ◦), A = {x, y, z, g, h, k}, and f : A → G be the bijective 

map given by f (x) = e, f (y) = (1 2), f (z) = (1 3), f (g) = (2 3), f (h) = 
(1 2 3), f (k) = (1 3 2). Let  (A, ∗) be the group defined in Exercise 5.21. 
Show that the group structure on A is given by Table 6.2. 
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