
Chapter 1 
Background Results in Set Theory 

This chapter summarizes the basic mathematical information required for studying 
this book, including definitions and results regarding operations on sets, functions, 
and matrices. The first section discusses operations on sets such as unions, intersec-
tions and differences. Moreover, the properties and fundamental results of these oper-
ations are presented. Section 1.2 describes the principle of mathematical induction. 
Section 1.3 is devoted to binary relations on sets and their properties while Sect. 1.4 
classifies binary relations into different types. Equivalence and ordered relations are 
also discussed. The concept of a function, which is a special and important type of 
binary relations, is defined and examined in Sect. 1.5. Section 1.6 describes matrices 
and their operations. The last section contains results regarding the symmetries of 
the regular n-polygon. 

1.1 Operations on Sets 

Set theory is considered the foundation of most branches of mathematics. Abstract 
algebra, for example, focused on sets that are closed under one or more operations. 
This section discusses the basic operations on sets such as unions, intersections, and 
symmetric differences. The essential results related to these operations are presented. 
The reader may refer to (Printer, 2014) and (Halmos, 2013) for proofs of these results. 

Definition 1.1.1 A set is any collection of distinct objects, which are called elements 
of the set. 

Sets are denoted by uppercase letters such as A, B, C, . . ., while lowercase letters 
such as x, y, a, b, c, . . .  are usually used to denote the elements. The notation a ∈ A 
(read a belongs to A, or  a in A) is used to express that a is an element of A. If  
a is not an element of A, the notation a /∈ A is used. The symbol ∅ denotes the 
empty set {}, which has no elements. The universal set that contains all the elements 
under consideration is denoted by U . A set can be described by two methods: One
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2 1 Background Results in Set Theory

method is to list (if possible) all the elements of the set between two curly braces 
{}, this method is known as the roster method. To describe an infinite set in roster 
notation, some dots are placed at the end of the list, or at both ends, to indicate that 
the list continues forever. The other method, the descriptive method, involves stating 
a common characteristic of all elements of the set. The type of elements of a given 
set determines the method that is more appropriate. A set is called finite if it has a 
finite number of elements; otherwise, the set is called infinite. Figure 1.1 lists the 
most important infinite sets. 

Example 1.1.2 

1. The rainbow color set is a finite set that can be expressed by listing all its elements 
as {red, orange, yellow, green, blue, indigo, violet}. 

2. The set of positive integers, denoted by N, is an infinite set described using the 
roster method as {1, 2, 3, 4, 5, . . .  , . . .}. 

3. The finite set {2, 4, 6, 8} can be expressed using the descriptive method as 

{x ∈ N : x is even ∧ 1 ≤ x ≤ 8} 

4. The set {7, 8, 9, 10} can be expressed sing the descriptive method as 

{x ∈ N : 7 ≤ x ≤ 10} 

5. The infinite set of all integers {. . . ,  −3, −2, −1, 0, 1, 2, 3, . . .} is denoted by Z, 
which can be described as 

{x : x ∈ N ∨ x = 0 ∨ x = −y, y ∈ N} 

6. The set of rational numbers, denoted by Q, is expressed as 

{m/n : m, n ∈ Z ∧ n /= 0}. 

7. The set of all real numbers, denoted by R, consisting of rational and irrational 
numbers, cannot be easily described using the abovementioned methods. 

8. The set of complex numbers, denoted by C, is formed using real numbers and 
described as

{
a + ib  : a, b ∈ R, i2 = −1

}

9. Several sets are difficult or impossible to list using the roster method. These sets 
can be expressed using only the descriptive method. For example, 

a. The set of second-year students at King Faisal University (KFU) can be 
expressed as 

{x ∈ SKFU : x is a student in the second year}
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Fig. 1.1 Sets of numbers

where SKFU denotes all the students in King Faisal university. 
b. The set of integers that are greater than 100 can be described as 

{x ∈ Z : x > 100} 

c. The set of real numbers that lie between 0 and 1 can be described as 

{x ∈ R : 0 < x < 1} 

In Fig 1.1, the main sets of numbers are listed. 

Definition 1.1.3 Let A be any set. The cardinality of A, denoted by |A|, is defined 
as the number of its elements if A is finite. If A is an infinite set, the cardinality of A 
is said to be infinite. 

Definition 1.1.4 Let A and B be two sets. The set A is a subset of B, denoted by 
A ⊆ B, if each element in A belongs to B, i.e., A ⊆ B ⇔ (x ∈ A ⇔ x ∈ B). The  
sets A and B are said to be equal, denoted by A = B, if  A ⊆ B and B ⊆ A. The  set  
of all subsets of a given set A is called the power set of A and is denoted by P( A). 

Example 1.1.5 

1. The empty set ∅ is a subset of any set, and any set is a subset of itself. 
2. The sets {1, 2}, {1, 3} and {3} are subsets of {1, 2, 3}. 
3. The set of positive integers N, is a subset of Z. As  Z = {m/1 : m ∈ Z}, the  set  

Z can be considered as a subset of the rational numbers Q. Generally, 

N ⊆ Z ⊆ Q ⊆ R ⊆ C. 

4. The set of all negative integers −N is a subset of Z. 
5. The set {−2, 0, 2} is a subset of Z but not a subset of N. 
6. For any set A, the power set of A is never empty as ∅ ⊆  A and A ⊆ A for any 

A.
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7. P({1}) = {∅, {1}}, P(∅) = {∅}. 
8. P({1, 2, 3}) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. 
9. P(Z) is an infinite set. 
10. The sets A = {x ∈ Z : |x | =  1} and B = {

x ∈ R : x2 − 1 = 0
}
are equal. The 

integer solutions of |x | = 1 and the real solution of x2 − 1 = 0 are the same, 
both sets are equal to {1, −1}. 

11. The sets A = {
x ∈ Q : x3 = x

}
and B = {

x ∈ R : x2 = x
}
are not equal. 

The set A is the rational solutions of the equation x3 = x, specifically, A = 
{−1, 0, 1}, while B is the real solutions of the equation x2 = x , which are 0 
and 1. 

12. The sets A = {
x ∈ R : x2 + 1 = 0

}
and B = {

x ∈ C : x2 + 1 = 0
}
are not 

equal. The set A is the empty set ∅, while B equals to {i, −i}. 
In the above examples, we saw that 

• The power set of ∅ has only one element, i.e., |P(∅)| = 1 = 20. 
• The power set of {1, 2, 3} has eight elements, i.e., |P({1, 2, 3})| = 8 = 23. 
• If A has six elements, |P(A)| = 64 = 26. 

In general, the following proposition holds, the proof of which is presented in 
Exercise 1.5. 

Proposition 1.1.6 Let A be a finite set. The power set of A is a finite set whose 
cardinality equals 2|A|. 

Definition 1.1.7 Let be any set. The compliment of A, denoted by Ac, is defined as the 
set of all elements in the universal set U that are not in A, i.e., Ac = {x ∈ U : x /∈ A}. 
Definition 1.1.8 Let A and B be any two sets. 

1. The union of A and B, denoted by A ∪ B, is the set of elements that are either in 
A, in  B, or both, i.e., A ∪ B = {x : x ∈ A ∨ x ∈ B}. 

2. The intersection of A and B, denoted by A ∩ B, is the set of elements that are in 
both A and B, i.e., A ∩ B = {x : x ∈ A ∧ x ∈ B}. 
– If A ∩ B = ∅, we say that A and B are disjoint sets. The sets A1, A2, . . . ,  An 

are called mutually disjoint if Ai ∩ A j = ∅  for each i /= j . 

3. The difference of A and B, denoted by A\B or A − B, is the set of elements that 
are in A but not in B, i.e., A\B = {x : x ∈ A ∧ x /∈ B}. 

4. The symmetric difference (disjunctive union) of A and B, denoted by A∆B, is  
the set of elements in either A or B but not in their intersection, i.e., A∆B = 
( A\B) ∪ (B\A). 

Example 1.1.9 

1. Let A = {1, 2, 3, 4, 5, 6} and B = {5, 6, 7, 8}.
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A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8}, A ∩ B = {5, 6 } 
A\B = {1, 2, 3, 4}, B\A = {7, 8}, 
A∆B = {1, 2, 3, 4, 7, 8}. 

Clearly, the sets A and B are not disjoint. Note that A\B and B\A are different 
sets. 

2. The set of positive integers N, and the set of negative integers −N are examples 
of disjoint sets. 

Proposition 1.1.10 Let A, B, and C be any sets. 

1. A ⊆ A ∪ B, B ⊆ A ∪ B, A ∩ B ⊆ A, and A ∩ B ⊆ B. 
2. A ∪ (B\A) = A ∪ B, and A ∩ (B\A) = ∅. 
3. If A ⊆ B, then A ∪ B = B and A ∩ B = A. 
4. If A ⊆ B and C ⊆ D, then A ∪ C ⊆ B ∪ D, and A ∩ C ⊆ B ∩ D. 
5. A\B = A ∩ Bc. 
6. A ⊆ B if and only if Bc ⊆ Ac. 

Proposition 1.1.11 Let A, B, and C be sets, and U be the universal set. The 
following identities hold. 

1. Complementation Law:(Ac)c = A. 
2. Idempotent Laws: A ∪ A = A, and A ∩ A = A. 
3. Identity Laws: A ∪ ∅  =  A, and A ∩ U = A. 
4. Domination Laws: A ∪ U = U , and A ∩ ∅  =  ∅. 
5. A\∅ = A, and A\A = ∅. 
6. A ∆ A = ∅, A ∩ Ac = ∅, and A ∪ Ac = U. 
7. Commutative Laws: A ∪ B = B ∪ A, A ∩ B = B ∩ A and A∆B = B∆A 
8. Associative Laws: 

A ∪ (B ∪ C) = (A ∪ B) ∪ C, 
A ∩ (B ∩ C) = (A ∩ B) ∩ C, 
(A∆B)∆C = A∆(B∆C). 

9. Distributive Laws: 

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), 
A ∪ (B ∩ C) = (A ∪ B) ∩ ( A ∪ C) 

10. De Morgan’s Laws: 

( A ∪ B)c = Ac ∩ Bc , (A ∩ B)c = Ac ∪ Bc
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11. Difference Laws: 

A\(B ∪ C) = ( A\B) ∩ (A\C) 
A\(B ∩ C) = (A\B) ∪ (A\C) 

Definition 1.1.12 Let I be an index set. For each i ∈ I , let  Ai be a set indexed by 
i . The union and intersection of Ai for all values of i are defined as.

∐

i=I 

Ai = {x : ∃  i ∈ I ∆ x ∈ Ai},
∩

i∈I 
Ai = {x : x ∈ Ai ∀ i ∈ I } 

If I = {k, k + 1, . . . ,  m} is a finite set,
∐

i∈I 
Ai = Ak ∪ Ak+1 ∪  · · ·  ∪  Am = 

m∐

i=k 

Ai 

and

∩

i∈I 
Ai = Ak ∩ Ak+1 ∩  · · ·  ∩  Am = 

m∩

i=k 

Ai 

If F is a collection of sets,
∐

A∈F 
A = {x : ∃  A ∈ F ∆ x ∈ A} 

and

∩

A∈F 
A = {x : x ∈ A ∀A ∈ F} 

Proposition 1.1.13 Let I be an index set. For each i ∈ I , let  Ai be the set indexed 
by i . 

1. For each j ∈ I,
∩

i∈I 
Ai ⊆ A j and A j ⊆ ∪

i∈I 
Ai . 

2. If B is a set such that for all i ∈ I , Ai ⊆ B, then
∪

i∈I 
Ai ⊆ B. 

3. If B is a set such that for all i ∈ I, B ⊆ Ai , then B ⊆ ∩

i∈I 
Ai . 

If I = F is a collection of sets, the above statements can be restated as follows: 

1. For all B ∈ F ,
∩

A∈F 
A ⊆ B and B ⊆ ∪

A∈F 
A.
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2. If A ⊆ B for all A ∈ F , then
∪

A∈F 
A ⊆ B. 

3. If B ⊆ A for all A ∈ F , then B ⊆ ∩

A∈F 
A. 

Example 1.1.14 

1. Let I = {1, 2, 3}. If  A1 = {1, 2, 3, 5, 7}, A2 = {3, 7, 8, 9}, and A3 = {3, 4, 6, 7}, 
then 

3∐

i=1 

Ai = {1, 2, 3, 4, 5, 6, 7, 8, 9} and 
3∩

i=1 

Ai = {3, 7}. 

2. For each i ∈ N, let  Ai = {m ∈ N : m ≥ i}. Since Ai ⊆ N for all i ∈ I,
∐

i=1 

Ai ⊆ N = A1 ⊆
∐

i∈I 
Ai . 

Hence, 
∞∪

i=1 
Ai = N 

Moreover, 
∞∩

i=1 
Ai = ∅. For if not, then there exists x ∈ 

∞∩

i=1 
Ai , i.e., 

x ∈ Ai = {m ∈ N : m ≥ i} for each i ∈ N. 

That is, x ≥ i ∀ i ∈ N. If i = x + 1, then x ≥ x +1, which is a contradiction. 
3. Let I = {x ∈ R : x > 0} and for all x ∈ I, let Ax = (−x, x). We show that∪

x∈I 
Ax = R as follow: since Ax ⊆ R for each x ∈ I, then

∪

x∈I 
Ax ⊆ R. For  the  

other inclusion, let y ∈ R and pick x = |y| + 1, then |y| < x , i.e., −x < y < x . 
Hence, y ∈ Ax . Since y ∈ R is an arbitrary element, then R ⊆ ∪

x∈I Ax . 
For the intersection, {0} ⊆ (−x, x) = Ax for each x ∈ I , and thus, {0} ⊆∩

x∈I 
Ax . However, if y /= 0, then |y| > 0. Let  x = |y| 

2 < |y|, then y /∈ (−x, x). 

Hence, y /∈ ∩

x∈I 
Ax and

∩

x∈I 
Ax ⊆ {0}. Therefore, ∩

x∈I 
Ax = {0}. 

Proposition 1.1.15 Let I be an index set and Ai be a set for all i ∈ I . The following 
identities hold: 

1. (
∪

i∈I 
Ai )

c = ∩

i∈I 
Ac 
i and (

∩

i∈I 
Ai )

c = ∪

i∈I 
Ac 
i . 

2. B ∪ (
∩

i∈I 
Ai ) = ∩

i∈I 
(B ∪ Ai ) and B ∩ (

∪

i∈I 
Ai ) = ∪

i∈I 
(B ∩ Ai ). 

The equations in item (1) in Proposition 1.1.15 are known by Generalized De 
Morgan’s Laws. 

Definition 1.1.16 (Partition of a set) Let A be a nonempty set and C ⊆ P(A). The  
set C is called a partition of A if
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1. ∅ /∈ C and
∪

E∈C 
E = A 

2. For all E, F ∈ C, either E = F (equal) or E ∩ F = ∅  (disjoint). 

A partition of a set can be considered a split of the set into smaller separate and 
nonempty parts. 

Example 1.1.17 Let A = {1, 2, 3, 4}. Each of the sets 

C1 = {{1}, {2, 4}, {3}}, C2 = {{1, 2}, {3, 4}}, and C3 = {{1}, {2, 3, 4}}. 

is an example of a partition of A, as they all satisfy the above two conditions. 
However, none of the sets 

D1 = {{1, 2}, {2, 3, 4}}, D2 = {∅, {1}, {2, 3, 4}}, and D3 = {{1, 3}, {4}} 

forms a partition of A (Check!). 

Example 1.1.18 

1. Consider the set of integers Z. Let  E1 and E2 be the sets of positive and negative 
integers, respectively. The set C = {E1, E2} is not a partition of Z because 
E1 ∪ E2 /= Z. The  set  D = {E1, E2, {0}} forms a partition of Z. 

2. Consider the set of positive integers N. Let E1, E2 and E3 be the sets of even 
positive integers, odd positive integers, and primes, respectively. The set C = 
{E1, E2} forms a partition of N, and D = {E1, E2, E3} does not, because E2 ∩ 
E3 /= ∅. 

3. Consider the set of positive real numbers R+. For each n ∈ N, let  En = 
(n − 1, n). The  set  C = {En : n ∈ N} is not a partition of R+ since

∪

n∈N 
En = 

R
+\Z /= R+. If  En is replaced by [n − 1, n], then C will not form a partition 

of R+ because En ∩ En+1 /= ∅. If  En is replaced by (n − 1, n], then C forms a 
partition of R+. 

Another operation that is defined on sets is the Cartesian product, in which two 
sets form a new one using the notion of ordered pairs. An ordered pair of a and b is 
defined as the set {{a}, {a, b}} and expressed as (a, b), where a and b are called the 
first and second components of the pair. Two ordered pairs (a, b) and (c, d) are equal 
if and only if a = c and b = d. In general, the n-tuple of a1, a2, . . . ,  an is the ordered 
list (a1, a2, . . . ,  an). The  j th element in the n-tuple is called the j th component. 

Definition 1.1.19 (Cartesian product of sets) Let A and B be two sets. The Cartesian 
product of A and B, denoted by A× B, is defined as the set of all ordered pairs whose 
first and second components are elements of A and B, respectively. That is, 

A × B = {(a, b) : a ∈ A, b ∈ B}.



1.1 Operations on Sets 9

In general, if A1, A2, . . . ,  An are sets, then their Cartesian product, denoted by 
A1 × A2 × . . .  × An, is the set of n-tuples of which the i th component belongs to 
Ai . That is 

A1 × A2 × . . .  × An = {(a1, a2, . . . ,  an) : ai ∈ Ai , 1 ≤ i ≤ n}. 

Proposition 1.1.20 Let A and B be any sets, the following statements hold. 

1. A × ∅  =  ∅. 
2. A × B = ∅  if and only if A = ∅  or B = ∅. 
3. If A and B are nonempty sets, then A × B = B × A ⇔ A = B. 
4. |A × B| = |B × A| = |A||B|. 
5. If A × B /= ∅, then A × B ⊆ C × D if and only if A ⊆ C and B ⊆ D. 
6. If A × B /= ∅, then A × B = C × D if and only if A = C and B = D. 
7. (A × B) ∩ (C × D) = (A ∩ C) × (B ∩ D). 

Example 1.1.21 

1. If A = {1, 2} and B = {x, y, z}, then 

A × B = {(1, x), (1, y), (1, z), (2, x), (2, y), (2, z)}. 

2. If A = {1, 2} and B = {0}, then 

A × B = {(1, 0), (2, 0)}. 

3. If A = R, and B = {0}, then 

A × B = {(x, y) : x ∈ R ∧ y = 0} = {(x, 0) : x ∈ R} 

is the set of points that represent the x-axis on the plane. 
4. Consider the real numbers R. Let  A = (0, 1) and B = [0, 1), then 

A × B = {(x, y) : 0 < x < 1 ∧ 0 ≤ y < 1} 

is the set of points on the plane represented by a square bounded by the lines 
x = 0, x = 1, y = 0, and y = 1. The square’s side on the x-axis (y = 0) is 
included (Fig. 1.2).

5. The set Z × R = {(x, y) : x ∈ Z ∧ y ∈ R} represents all vertical lines on the 
plane at which the x-coordinates are integers (Fig. 1.3)

6. The set Z × Z = {(x, y) : x ∈ Z, y ∈ Z} consists of points in the plane with both 
of coordinates integers. This set is represented on the plane as (Fig. 1.4):

7. The set R × R = {(x, y) : x, y ∈ R} = R2 represents the entire plane. Note that 
R × R∗ = {(x, y) : x, y ∈ R ∧ y /= 0} represents the plane R2 except the line 
y = 0.
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Fig. 1.2 Graph of (0,1) × 
[0,1) in the plane

Fig. 1.3 Graph of Z × R

Fig. 1.4 Graph of Z × Z
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1.2 Principle of Mathematical Induction 

The principle of mathematical induction, or simply, mathematical induction, is a 
mathematical technique used to prove a statement defined for the set of integers Z, 
or any of its subsets. Among the many forms of mathematical induction, we present 
two forms and examples of each form. For the proofs of the theorem and proposition 
provided in this section, see (Hammack, 2013). 

Theorem 1.2.1 (Principle of mathematical induction) Let n ∈ Z and P(n) be a 
mathematical statement that depends on n. If 

1. there exists m ∈ Z such that P(m) is a true statement, and 
2. for all n ≥ m, 

P(n) is true ⇒ P(n + 1) is true 

then P(n) is a true statement for all n ≥ m. 

The statement in item (1), in above theorem, is called Base step, the statement in 
item (2) is called Inductive step. The process of the mathematical induction is intu-
itive, as the base step assumes that the statement is true for m; subsequently, the 
inductive step ensures that the statement is true for the next integer. Figure 1.5 
provides an intuitive justification for the principle of mathematical induction. 

P(m) true ⇒ P(m + 1) true ⇒ P(m + 2) true ⇒ P(m + 3) true · · · · · ·  

Remark 1.2.2 The principle of mathematical induction can also be used to prove 
mathematical statements on a finite subset of Z. If  A = {m, m + 1, m + 2, . . . ,  n} is 
a subset of Z and P(k) is a mathematical statement, then we can show that P(k) is 
true for all k ∈ A by demonstrating that P(m) is true, and P(k) is true ⇒ P(k + 1) 
is true for all m ≤ k < n. 

Example 1.2.3 Let n ∈ N. Using the principle of mathematical induction, one can 
show that 

1 + 2 +  · · ·  +  n = 
n(n + 1) 

2 
for all n ≥ 1 

as follows:

Fig. 1.5 Principle of mathematical induction 
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Base step: since 1 = 1(2)/2, then the equality holds if n = 1. 
Inductive step: Assume that the statement is true for n, i.e., 1 + 2 +  · · ·  +  n = 

n(n + 1)/2. We verify  

1 + 2 +  · · ·  +  n + (n + 1) = (n + 1)(n + 2)/2 

as follows: 

L.H.S = 1 + 2 +  · · ·  +  n + (n + 1) = n(n + 1)/2 + (n + 1) 
= (n(n + 1) + 2(n + 1))/2 = (n + 1)(n + 2)/2 = R.H.S. 

As the two conditions are satisfied, according to the principle of mathematical 
induction, the statement is true for all n ≥ 1. 

In mathematical induction, the validity of the statement at n + 1 is derived from 
the validity of the statement at the previous value n. However, in several situations, 
the process might need information about several values to complete the proof. For 
example, if 

a1 = 1, a2 = 4 and an = 4an−1 − 4an−2 for all n ≥ 3, 

then two values must be considered to show that an = n2n−1 for all n ≥ 1. Such 
a problem cannot be solved using the principle of mathematical induction in the 
abovementioned form. Other forms of the principle can be used to address such 
situations, one of which is called the principle of strong induction or simply strong 
induction. 

Proposition 1.2.4 (The principle of strong induction) Let n ∈ Z and P(n) be a 
mathematical statement that depends on n. If  

1. There exists m ∈ Z such that P(m) is a true statement, and “Base step” 
2. If P(k) is true for all k such that m ≤ k < n implies that P(n) is true. “Inductive 

step” 

then P(n) is a true statement for all n ≥ m. 

Example 1.2.5 Let a1 = 1, a2 = 4, and an = 4an−1 − 4an−2 for all n ≥ 3. Using  
the principle of strong induction, we can show that 

an = n2n−1 for all n ≥ 1 

as follows: 

Base step: The statement is true for n = 1 and n = 2. 
Inductive step: Assume that n > 2 and the statement is true for all 1 ≤ k < n, as  

1 ≤ n − 2, n − 1 < n, then
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an−1 = (n − 1)2n−2 , and an−2 = (n − 2)2n−3 . 

Hence, 

an = 4(n − 1)2n−2 − 4(n − 2)2n−3 

= 4(2(n − 1) − (n − 2))2n−3 = n2n−1 . 

i.e., the statement is true for n. According to the strong induction, the statement holds 
for all n ≥ 1. 

1.3 Binary Relations on Sets 

As in any other field of study, objects in mathematics are related in various ways. 
For example, the relation of a point lying on a line, or the inclusion relation for sets. 
In mathematics, relations are usually represented by a set of ordered pairs in which 
the first and second components are related. For example, let P be a set of points 
and L be a set of lines on the plane. The set J = {(p, l) ∈ P × L : p lies on l} 
represents the relation that p lies on l. The inclusion relation among a family of sets 
is represented by S = {(A, B) ∈ F × F : A ⊆ B}, where F is a collection of sets. In 
general, the following definition can be stated. 

Definition 1.3.1 Let A and B be two sets. A binary relation (or simply, a relation) 
R from A to B is a subset of A × B, i.e., 

R ⊆ {(a, b) : a ∈ A, b ∈ B} 

If A = B, we say  R is a relation on A. 
For an ordered pair, (a, b) ∈ A × B, either (a, b) ∈ R or aRb is used to denote 

that a is related to b through the relation R. Both notations (a, b) /∈ R and a−Rb are 
used to express that a and b are not related through the relation R. The notion of a 
binary relation is generalized to more than two sets as follows: 

Let A1, A2, . . . ,  An be any sets. A relation R of these sets is a subset of A1 × 
A2 × . . .× An , i.e., R ⊆ {(a1, a2, . . . ,  an) : a1 ∈ A1, a2 ∈ A2,  . . . ,  an ∈ An}. In this  
book, only the binary relation is considered unless otherwise stated. 

For any two sets A and B, two relations always exist from A to B. Namely, R = ∅  
and R = A × B. More examples are presented below. 

Example 1.3.2 

1. The set R = {(1, 7), (1, 8), (1, 9), (3, 7)} is a relation from {1, 3} to {7, 8, 9}. 
2. The set R = {(a, 7), (a, 8), (a, 9), (b, 7)} is a relation from {a, b} to {7, 8, 9}. 
3. The set R = {(1, 1), (2, 2), (1, 3)} is a relation on {1, 2, 3}. 
4. The set S = {(A, B) ∈ F × F : A ⊆ B} is a relation on F, where F is any family 

of sets.
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5. The set S = {(m, n) ∈ Z × Z : n divides m} is a relation on Z. 
6. The set R = {

(x, y) ∈ N2 : y = x + 1
}
is a relation on N. 

7. The set R = {
(x, y) ∈ R2 : y = x + 1

}
is a relation on R. 

8. Let R1 = {
(x, y) ∈ R × R : x2 + y2 = 1

}
and R2 ={

(x, y) ∈ R × R : x2 + y2 ≤ 1
}
be the unit circle and the unit disk in the 

plane, respectively. Both R1 and R2 are relations on R. The  sets  R1 and R2 are 

not relations on Z since
(

1 √
2 
, 1 √

2

)
belongs to R1 and R2 but it does not belong 

to Z × Z. 

Definition 1.3.3 Let A and B be any two sets and R be a relation from A to B. 

1. The domain of R, denoted by D(R), is the set of elements of A that 
appear as the first components in the elements of R. i.e., D(R) = 
{a ∈ A : ∃  b ∈ B ∧ (a, b) ∈ R}. 

2. The range of R, denoted by Rang(R), is the set of elements of B that 
appear as the second components in the elements of R. i.e., Rang(R) = 
{b ∈ B : ∃  a ∈ A ∧ (a, b) ∈ R}. 

3. The set B is called the codomain of R. 
4. For each (a, b) ∈ R, the element b is called the image of a under R. 

For any sets A and B, we have  
D(∅) = Rang(∅) = ∅, D( A × B) = A, and Rang(A × B) = B. 

Example 1.3.4 The domains and ranges of the relations in Example 1.3.2 are 

1. D(R) = {1, 3}, and Rang(R) = {7, 8, 9}. 
2. D(R) = {a, b}, and Rang(R) = {7, 8}. 
3. D(R) = {1, 2}, and Rang(R) = {1, 2, 3}. 
4. D(R) = F, and Rang(R) = F (This is true because any set is a subset of itself). 
5. D(R) = Z, and Rang(R) = Z\{0}. 
6. D(R) = N, and Rang(R) = N\{1}. 
7. D(R) = R, and Rang(R) = R. 
8. D(R1) = D(R2) = [−1, 1], and Rang(R1) = Rang(R2) = [−1, 1]. 

In the following, we restrict our study to the relations in which A = B. We  
study the properties of these relations and discuss two types of relations that appear 
frequently in algebra. Recall that a relation from A to A is called a relation on A. 

Definition 1.3.5 (Properties of a relation on a set) Let  A be any set and R be a 
relation on A. The relation R is 
1. Reflexive: if (a, a) ∈ R for all a ∈ A. 
2. Symmetric: if for all a, b ∈ A, (a, b) ∈ R ⇒ (b, a) ∈ R. 
3. Antisymmetric: if for all a, b ∈ A, ((a, b) ∈ R ∧ (b, a) ∈ R) ⇒ a = b. 
4. Transitive: if for all a, b, c ∈ A, ((a, b) ∈ R ∧ (b, c) ∈ R) ⇒ (a, c) ∈ R.
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Definition 1.3.6 Let A be any set and R be a relation on  A. The relation R is called 
a connex relation if either (a, b) ∈ R or (b, a) ∈ R for each a, b ∈ A. 

It is clear that any connex relation is reflexive. 

Example 1.3.7 

1. Let A = ∅. As  A × A is the empty set ∅, the only relation that can be defined 
on A is the empty relation ∅. Clearly, ∅ is reflexive (if not, then there exists 
a ∈ A = ∅  such that (a, a) /∈ R, which is impossible). As ∅ does not contain 
any elements, the conditional statement for the symmetry is true, which implies 
that ∅ is symmetric. The same justification implies that ∅ is antisymmetric and 
transitive. Clearly, since there are no elements in A, the relation ∅ is a connex 
relation. 

2. Let A /= ∅. The  set  ∅ represents a relation on A that is symmetric, antisymmetric, 
and transitive. It is not reflexive (pick a ∈ A, then (a, a) /∈ ∅), therefore, it is not 
a connex relation. 

3. Let A = {1, 2, 3}. The relation R = {(1, 1), (2, 2), (1, 3)} is not reflexive since 
(3, 3) /∈ R. It is not symmetric as (1, 3) ∈ R but (3, 1) /∈ R. The relation 
R is transitive since the only ordered pairs in the form (a, b), (b, c) in R are 
(1, 1), (1, 3) and (a, c) = (1, 3) ∈ R. Moreover, R is antisymmetric, because 
no elements in R in the form (a, b), (b, a) where a /= b. As  R is not reflexive, 
it is not a connex relation. 

4. For any set A, define the relation ∆A = {(a, a) ∈ A × A : a ∈ A}. It straight-
forward to check that ∆A is reflexive, symmetric, antisymmetric, and transitive. 
Moreover, ∆A is not a connex relation for any A such that |A| ≥ 2 (if a /= b are 
two elements in A, then neither (a, b) nor (b, a) belongs to ∆A). The relation
∆A expresses the equality relation and is called the identity (or the diagonal) 
relation. The symbol ∆A denotes the identity relation on A. If  A = {1, 2, 3}, 
then ∆A = {(1, 1), (2, 2), (3, 3)} is an example for the identity relation on a 
finite set. The line y = x is a visualization for ∆A = {(x, x) ∈ R × R : x ∈ R}, 
an example of an infinite identity relation. 

5. Let A /= ∅  be any set. The relation R = A × A = {(a, b) ∈ A × A : a, b ∈ A} 
is reflexive, symmetric, and transitive. It is not antisymmetric for any A having 
more than one element. Let a /= b be elements in A, according to the definition 
of R, both (a, b) and (b, a) belong to R, but  a /= b, which implies that R is 
not antisymmetric. Clearly, as (a, b) ∈ R for all a, b ∈ A, then R is a connex 
relation. 

6. Let A = N and R = {
(x, y) ∈ N2 : y = x + 1

}
. The relation R is not reflexive, 

not symmetric, and not transitive. As R is not reflexive, it is not a connex relation. 
7. Let A = R and R = {

(x, y) ∈ R × R : x2 + y2 = 1
}
. The relation R is not 

reflexive since 2 ∈ A, but  (2, 2) /∈ R ( 22 + 22 = 8 /= 1). It is symmetric, for 
if (x, y) ∈ R then x2 + y2 = 1. i.e., y2 + x2 = 1 and (y, x) ∈ R. The relation 
R is not antisymmetric as both (1, 0), (0, 1) ∈ R but 0 /= 1. Finally, it is not 
transitive as (1, 0), (0, −1) ∈ R, but  (1, −1) /∈ R. Clearly, it is not a connex 
relation (Fig. 1.6).
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Fig. 1.6 Graph of R ={
(x, y) ∈ R × R : x2 + y2 = 1

}

1.4 Types of Binary Relations on Sets 

A relation can be classified depending on its properties. In this book, we will 
encounter specific types of relations, such as equivalence and order relations. Readers 
can refer to (Halmos, 2013) for more details regarding the types of relations. 

Definition 1.4.1 (Types of relations) Let  A be a set and R be a relation on A. The  
relation R is said to be 

1. An equivalence relation if R is reflexive, symmetric, and transitive. 
2. A partial order relation if R is reflexive, antisymmetric, and transitive. 
3. A total order relation if R is antisymmetric, transitive, and a connex relation. 

As any connex relation is reflexive, a total order relation must be a partial order 
relation. By order relation, we mean a partial order relation. 

The identity relation (Example 1.3.7(4)) is the canonical example of an equiva-
lence relation, where for any a, b ∈ A, (a, b) ∈ R if and only if a = b. The partial 
order relation generalizes the concept of ordering or arranging the elements of a set. 
For a, b ∈ A, the pair (a, b) belongs to a partial order relation means that one of the 
elements precedes the other in the order. The word “partial” indicates that not every 
pair of elements in A are related, i.e., if a and b are arbitrary elements in A, then 
the partial order relation does not require (a, b) or (b, a) to be R. In contrast, due 
to the connexity property, the total order relation requires that either (a, b) ∈ R or 
(b, a) ∈ R for each a, b ∈ A. i.e., in a total order relation, any two elements in A are 
comparable. The set endowed with a total order relation is called a chain. For order 
relations, the notation ≤ is usually used instead of R, and the notation a ≤ b is used 
instead of aRb. 

Example 1.4.2 

1. In Example 1.3.7, 

• The relation ∅ in (1) is an equivalence relation, a partial order, and a total 
order relation.
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• The set ∅ in (2) and the relation in (3) are not reflexive; hence these relations 
are neither equivalence nor order relations. 

• The relation ∆A in (4) is an equivalence relation and a partial order relation. 
If |A| ≥ 2, we pick  a, b ∈ A such that a /= b. Since neither (a, b) nor 
(b, a) belongs to ∆A, then ∆A cannot be a total order relation for any set that 
contains more than one element. 

• The relation in (5) is an equivalence relation, it is not an order relation since 
it is not antisymmetric. 

• The relation in (6) is neither an equivalence relation nor an order relation. 
This result remains true if N is replaced with Z, Q, or R. 

• The relation in (7) is not reflexive, so it is neither equivalence nor order relation. 

2. Let A = R, and R be the natural order on R. i.e., aRb ⇔ a ≤ b for all a, b ∈ R. 
It is straightforward to verify that R is reflexive, antisymmetric, and transitive. 
The relation R is not symmetric. For any two distinct real numbers, one must be 
greater than the other. Hence, the natural order is a total (hence, a partial) order 
relation, but not an equivalence relation. 

Definition 1.4.3 Let A be a nonempty set and ≤ be a partial order relation on A. For  
any nonempty subset B of A, 

1. an element a ∈ A is called a lower bound of B if a ≤ b for all b ∈ B, 
2. an element d ∈ A is called an upper bound of B if b ≤ d for all b ∈ B, 
3. the set B is called bounded below (bounded above) if B has a lower bound (an 

upper bound), 
4. the set B is called bounded if it is bounded below and above; otherwise, it is 

called unbounded. 

Definition 1.4.4 Let A be a nonempty set and ≤ be a partial order relation on A. For  
any nonempty subset B of A, 

1. an element c ∈ B is called minimal in B if for all b ∈ B, b ≤ c ⇒ c = b, 
2. an element c ∈ B is called the minimum of B if c ≤ b for all b ∈ B, 
3. an element d ∈ B is called maximal in B if for all b ∈ B, d ≤ b ⇒ d = b, 
4. an element d ∈ B is called the maximum of B if b ≤ d for all b ∈ B. 

Note that if we read c ≤ b as c is less than or equal to b, then 

in the above definition, (1) states that c ∈ B is minimal if c is less than or equal 
to every element in B that is comparable with c. Item  (2) states that c ∈ B is 
minimum if c is less than or equal to every element in B. Thus, the minimum is 
always a minimal element, the maximal and maximum elements can be similarly 
distinguished, and the maximum element is always maximal. The converse is not 
true, as shown in the following example. 

Example 1.4.5 Let A = {a, b, c}.
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1. Let R = {(a, a), (b, b), (c, c), (a, b), (a, c)}. The relation R is a partial order 
relation on A (Check!). Clearly, b is a maximal element in A, but is not maximum, 
since there exists an element c ∈ A such that c ≰ b. The element c is also 
maximal. 

2. Let R = {(a, a), (b, b), (c, c), (b, c), (a, c)}. The relation R is a partial order 
relation on A (Check!). The element b is a minimal element in A that is not 
minimum, since there exists an element a ∈ A such that a ≰ c. The element a 
is also minimal. 

3. Let R = {(a, a), (b, b), (c, c), (a, b), (a, c), (b, c)}. It is easy to check that c is 
a maximal and maximum element in A, and a is minimal and minimum. 

Proposition 1.4.6 Let A be a nonempty set and ≤ be a partial order relation on A. 
If B is a nonempty subset of A, then B has at most one maximum and one minimum 
element. If ≤ is a total order relation on B, then a minimal (res. maximal) is the 
minimum (res. maximum) element in B. 

Next, we focus on equivalence relations. Recall the definition of a partition of 
a set given in Definition 1.1.16. We show that any equivalence relation results in a 
partition of the underlying set (Theorem 1.4.10 below). We begin with the following 
definition. 

Definition 1.4.7 (Equivalence classes) Let  A be a nonempty set and R be an equiv-
alence relation on A. For all a ∈ A, the equivalence class of a, denoted by [a]R or 
simply [a], is the set of elements of A that are related to a via R. That is, 

[a]R = {b ∈ A : (a, b) ∈ R} = {b ∈ A : (b, a) ∈ R} 
= {b ∈ A : aRb} = {b ∈ A : bRa}. 

Two elements of the set A are called equivalent if and only if they belong to 
the same equivalence class, i.e., if and only if they are related by R. The  set of all  
equivalence classes for all elements in A is called equivalence classes of R. 

Example 1.4.8 

1. Let A = {1, 2, 3} and R1 = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}. The relation R1 

is an equivalence relation (Verify!). The equivalence classes are Fig 1.7 visualizes 
the equivalence class for each element in A. 

[1] = {1, 2} = [2] and [3] = {3}

2. Let A = {1, 2, 3, 4} and ∆A = {(1, 1), (2, 2), (3, 3), (4, 4)}. As explained in 
Example 1.3.7, the relation∆A is an equivalence relation. The equivalence classes 
are 

[1] = {1}, [2] = {2}, [3] = {3}, and [4] = {4}.
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Fig. 1.7 Equivalence 
classes of R1

In general, the equivalence class of an element in a set A, endowed with ∆A, 
consists of one element [a] = {a}, see also Fig. 1.8. 
Proposition 1.4.9 Let A be a nonempty set and R be an equivalence relation on A. 
For all a, b ∈ A, the following statements are satisfied: 

1. a ∈ [a]. 
2. b ∈ [a] if and only if [a] = [b]. 
3. [a] ∩ [b] /= ∅  if and only if [a] = [b]. 
4. If (a, b) /∈ R, then [a] ∩ [b] = ∅. 

Item (3) in the above proposition states that any two equivalence classes are either 
equal or disjoint. This is an important fact for proving the following theorem. 

Theorem 1.4.10 Let A be a nonempty set. The equivalence classes of any 
equivalence relation on A form a partition of A. 

Example 1.4.11 Let A = Z and R = {
(a, b) ∈ Z2 : (a − b)/3 ∈ Z

}
. The relation 

R is an equivalence relation on Z and satisfies the following properties: 

• Reflexive: For all a ∈ Z, ((a − a)/3) = 0 ∈ Z, which implies that (a, a) ∈ R. 
• Symmetric: Assume that (a, b) ∈ R for arbitrary integers a and b. According 

to the definition of R, (a − b)/3 ∈ Z, which is equivalent to (b − a)/3 = 
−(a − b)/3 ∈ Z. Hence, (b, a) ∈ R. 

• Transitive: Assume that (a, b) ∈ R and (b, c) ∈ R for arbitrary integers a, b, 
and c. According to the definition of R, both (a − b)/3 and (b − c)/3 ∈ Z. 
Consequently, 

a − c 
3 

= 
a − b 
3 

+ 
b − c 
3

∈ Z.

Fig. 1.8 Equivalence 
classes of ∆A 
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Fig. 1.9 Equivalence classes of R on A 

Therefore, the relationR is an equivalence relation. For any a ∈ Z, the equivalence 
class of a is 

[a] = {b ∈ Z : (a, b) ∈ R} =
{
b ∈ Z : a − b 

3 
∈ Z

}
=

{
b ∈ Z : ∃  k ∈ Z ∆ a − b 

3
= k

}

= {b ∈ Z : ∃  k ∈ Z ∆ b = a − 3k, k ∈ Z} =  a + {3l : l ∈ Z} =  a + 3Z. 

For example, 

[0] = 0 + 3Z = {. . .  − 6, −3, 0, 3, 6, . . .}, [1] = 1 + 3Z = {. . .  − 5, −2, 1, 4, 7, . . .} 
[2] = 2 + 3Z = {. . .  − 4, −1, 2, 5, 8, . . .}, [3] = 3 + 3Z = {. . .  − 3, 0, 3, 6, 9, . . .} = [0] 

By Proposition 1.4.9 (3), 
. . .  = [−6] = [−3] = [0] = [3] = [6] = . . .  = multiple of 3 
. . .  = [−5] = [−2] = [1] = [4] = [7] = . . .  = ( multiple of 3) + 1. 
. . .  = [−4] = [−1] = [2] = [5] = [8] = . . .  = ( multiple of 3) + 2 (Fig. 1.9). 
To show that these classes are the only equivalent classes for the relation R, let  

m be an arbitrary element in Z. Confine m between two consecutive multiples of 3, 
i.e., find n such that 

3n ≤ m < 3(n + 1) = 3n + 3 

The possible values for the integer m are 

m = 3n ∈ 3Z = [0], m = 3n + 1 ∈ 3Z + 1 = [1], or  m = 3n + 2 ∈ Z + 2 = [2]. 
This indicates that at most three equivalence classes exist, namely: [0], [1], [2], 

see Fig 1.10. According to Proposition 1.4.9 (4), as (0, 1), (0, 2), and (1, 2) are not 
elements of R, the three equivalence classes are disjoint. The set of equivalence 
classes of R is {[0], [1], [2]} = {[6], [−8], [−4]} = . . .  etc. 

In the previous example, using an equivalence relation on Z, the  set  Z was divided 
into three disjoints parts. By defining another similar equivalence relation on Z, 
the set Z can be divided into another number of sets. For example, the relation 
R = {

(a, b) ∈ Z2 : (a − b)/9 ∈ Z
}
on Z divides Z into nine disjoint sets. In general, 

for any n ∈ Z∗, the relation

Fig. 1.10 Only three 
different equivalence classes 
of R 
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R =
{
(a, b) ∈ Z2 : a − b 

n 
∈ Z

}

divides Z into n disjoint sets in the form m + nZ, where m = 0, 1, 2, . . .  ,  n − 1 
(Exercise 1.19). 

Example 1.4.12 Let Z∗ be the set of nonzero integers and 

A = Z × Z∗ = {(m, n) : m, n ∈ Z ∧ n /= 0}. 

On A, define the relation ∼ as (m, n) ∼ (r, s) ⇔ ms = nr . The relation ∼ 
satisfies the following properties: 

1. Reflexive: For an arbitrary element (m, n) ∈ A, the integers m, n satisfy mn = 
nm, which implies that (m, n) ∼ (m, n). 

2. Symmetric: Assume that (m, n), (r, s) ∈ A are arbitrary elements such that 
(m, n) ∼ (r, s), then 

(m, n) ∼ (r, s) ⇒ ms = nr ⇒ rn  = sm ⇒ (r, s) ∼ (m, n). 

3. Transitive: Suppose (m, n), (r, s), (k, l) are arbitrary elements in A such that 
(m, n) ∼ (r, s) and (r, s) ∼ (k, l). Therefore, m, n, r, s, k, l are inte-
gers where n, s, l /= 0 , and 

(m, n) ∼ (r, s) and (r, s) ∼ (k, l) ⇒ ms = nr ∧ rl  = sk. 

Multiplying both sides of ms = nr by l and both sides of rl  = sk by n yields 

msl = nrl and nrl = nsk 

which implies that msl = nsk. As  s /= 0, dividing both sides of msl = nsk by s 
yields ml = nk. Thus, (m, n) ∼ (k, l), and ∼ is transitive. 
Thus, the relation ∼ is an equivalence relation. By definition, the equivalence 

class of (m, n) is given by 

[(m, n)] = {(r, s) ∈ A : (m, n) ∼ (r, s)} = {(r, s) ∈ A : ms = nr}. 

If (m, n) is identified with the rational fraction m/n, then [(m, n)] is identified 
with the set of all equivalent fractions to m/n. In fact, the set of rational fractions Q 
is defined as the set of equivalence classes of the relation ∼. 

Q = {[(m, n)] :  m, n ∈ Z ∧ n /= 0} := {m/n : m, n ∈ Z ∧ n /= 0}. 

The set Q∗ = Q\[(0, n)] is identified with {m/n : m, n ∈ Z ∧ m, n /= 0}. 
If A is any nonempty set and C is any partition of A, a relation R on A can be 

defined as follows:
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(a, b) ∈ R if and only if a, b belong to the same element (set) of C. 
It is straightforward to verify that the relation R is an equivalence relation. The 

equivalence class of any element a in A is [a] = {b ∈ A : (a, b) ∈ R} = {b ∈ A : 
a, b belong to the same set in C} =  E 

where E is the element in C containing a. 
Proposition 1.4.13 Let A be a nonempty set. Any partition C of A defines an 
equivalence relation on A whose equivalence classes are the elements of C. 
Corollary 1.4.14 Let A be a nonempty set. There exists a one to one corresponding 
between the set of equivalence relations on A and the set partitions of A. 

Next, we provide examples of relations defined on the set of equivalence classes. 
If A is a nonempty set, R is an equivalence relation on A, and C = {[a] :  a ∈ A} 
is the set of equivalence classes of R, then a relation R' can be defined from C to a 
given set B, i.e., 

R' ⊆ {([a], b) ∈ C × B : a ∈ A, b ∈ B} 

A relation on the set of equivalence classes C is in the form 

R' ⊆ {([a], [b]) ∈ C × C : a, b ∈ A} 

Example 1.4.15 

1. Consider the relation in Example 1.4.11 and its equivalence classes C = 
{[0],[1],[2]}. The  set  

R' = {([0], 1), ([5], 2), ([12], 3)} and R'' = {([0], 1), ([5], 2), ([4], 3)} 

are relations from C to the set {1, 2, 3}. The  sets  

S ' = {([0], [1]), ([5], [−4]), ([12], [−7])}, 
S '' = {([0], [1]), ([5], [−4]), ([12], [−8])} 

are relations on C. 
2. Consider the equivalence relation in Example 1.4.12 and its equivalence classes 

Q = {[(m, n)] : m, n ∈ Z ∧ n /= 0}. The set J = 
{([(m, n)], m) : m, n ∈ Z ∧ n /= 0} forms a relation from Q to Z. The  set  
T = Q∗ × Q∗ = {([(m, n)], [(r, s)]) : m, n, r, s ∈ Z∗} is a relation on Q∗. 

1.5 Functions 

In this section, a specific type of relations, called functions, is examined. The impor-
tance of studying functions springs from their presence and role in almost every
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branch of mathematics. The symbol f, the first letter of function, is used instead of 
R to denote a relation that is a function. 
Definition 1.5.1 Let A and B be any sets and f ⊆ A × B be a relation from A to B. 
The relation f is said to be a function on A if for each element a ∈ A, there exists a 
unique element b ∈ B such that (a, b) ∈ f , i.e., the conditional statement 

a ∈ A ⇒ ∃  !  b ∈ B such that (a, b) ∈ f 

is true for all a ∈ A. The notation ∃ !  indicates uniqueness. 

The notation f : A → B denotes that f is a function from A to B, and the notation 
b = f (a) is used instead of (a, b) ∈ f . Note that the uniqueness requirement in this 
definition is equivalent to the following statement: 

a1 = a2 ⇒ f (a1) = f (a2) for all a1, a2 ∈ A. 

Remark 1.5.2 If R is an equivalence relation on A, and f : {[a] : a ∈ A} → B is 
a function on the set of all equivalence classes of R, then uniqueness requirement 
means that the definition of f does not depend on the representatives used for the 
equivalence class of a, i.e., if a and b are elements in A such that [a] = [b], then 
their images under f must be equal. This is called well-defined property of f , i.e., 
a function f from {[a] : a ∈ A} to B must satisfy that 

a1Ra2 ⇒ f ([a1]) = f ([a2]) ∀a1, a2 ∈ A 

In general, if the domain of f involves equivalence classes (e.g., f : A → B, 
where A is a set defined using equivalence classes), then the well-defined property 
must be verified. For more explanation, see the Example 1.5.6 (4–9). 

Definition 1.5.3 Let A and B be any sets, f : A → B be a function from  A to B, 
and A1 be any subset of A. The restriction of f on A1, denoted by f|A1 , is the map 
from A1 to B defined by f|A1 (a) = f (a) for all a ∈ A1. 

As for any other relation on sets (Definition 1.3.3), the following definition holds: 

Definition 1.5.4 Let A and B be any two sets and f : A → B be a function. 

• The set A is called the domain of f, denoted by D( f ), and B is called the codomain 
of f . 

• The element b ∈ B such that b = f (a) is called the image of a under f or the 
value of a. 

• The set of all images of A is f (A) = { f (a) : a ∈ A}, which is called the range 
of f , denoted by Rang( f ). 

• If b ∈ B, then the preimage (inverse image) of b under f is the set 

f −1 (b) = {a ∈ A : b = f (a)}.
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• If Y ⊆ B, then the preimage (inverse image) of Y under f is the set 

f −1 (Y ) = {a ∈ A : f (a) ∈ Y }. 

Remark 1.5.5 

1. To calculate f −1(Y ), it is easier to  

• calculate f −1({b}) = {x : f (x) = b} for all b ∈ Y, then 
• use the equality f −1(Y ) = ∪

b∈Y 
f −1({b}). 

2. If a function is defined on a subset of R as an algebraic expression f (x) in 
a variable x , the domain of f is taken to be all possible values x, where the 
expression is valid. For example, the domain of f (x) = x2+1 

x2−3x+2 is R\{1, 2}. 
Example 1.5.6 Let A = {a, b, c, d} and B = {1, 2, 3, 4}. 

1. The relation f = {(a, 1), (b, 1), (c, 1), (d, 2)} from A to B is a function whose 
domain is A, and the image of each element in A is given as 

f (a) = 1, f (b) = 1, f (c) = 1, and f (d) = 2. 

2. The relation g = {(a, 1), (b, 1), (a, 2), (c, 3), (d, 1)} from A to B is not a 
function, as both (a, 1) and (a, 2) are in g but 1 /= 2. 

3. The relation h = {(a, 2), (b, 3), (c, 4)} from A to B is not a function, as it is not 
defined for every element in A. 

4. The relation R' in Example 1.4.15 is not a function. It is not defined for every 
element in C ({[0], [5], [12]} = {[0], [2]} /= C), and it is not well-defined since 
[0] = [12], but  1 /= 3. 

5. The relation R'' in Example 1.4.15 represents a function on C; it is defined for 
every element in C ({[0], [5], [4]} = {[0], [1], [2]}). Since [0] /= [5], [0] /= [4] 
and [4] /= [5], there are no equal equivalence classes in the domain of R''. 

6. The relation S ' in Example 1.4.15 is not a function. It is not defined for every 
element in C, and it is not well-defined since [0] = [12] but [1] /= [−7]. 

7. The relation S '' in Example 1.4.15 is not a function. Note that [0] and [12] are 
the only equal equivalence classes in the domain of S '', and as their images under 
S '' ([1] and [−8], respectively) are equal, then S '' is well-defined. However, it is 
not a function on C as it is not defined for every element in C. 

8. The relation J in Example 1.4.15 is defined for every element in Q, but it is not 
well-defined since [(2, 4)] = [(1, 2)], but their images under J are not equal. 

9. The relation T in Example 1.4.15 is defined for every element in Q∗, but it is not 
well-defined since every element in Q∗ is an image of all other elements in Q∗. 
For example, [(1, 2)] has infinitely many different images under T . 

Example 1.5.7 Let f : {1, 2, 3, 4, 5, 6} →  {a, b, c, d} be the function
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f = {(1, a), (2, b), (3, a), (4, b), (5, c), (6, d)} 

The images of the elements in {1, 2, 3, 4, 5, 6} are given by 

f (1) = a, f (2) = b, f (3) = a, f (4) = b, f (5) = c, f (6) = d 

Therefore, Rang( f ) = {a, b, c, d}. If X = {1, 3, 6}, then the image of X is 

f (X ) = { f (1), f (3), f (6)} = {a, d}. 

If Y = {a, b}, the preimage (inverse image) of Y is 

f −1 (Y ) = f −1 ({a}) ∪ f −1 ({b}) = {1, 3} ∪ {2, 4} = {1, 2, 3, 4}. 

Example 1.5.8 

1. Consider the identity relation on a nonempty set A, defined by ∆A = 
{(a, a) : a ∈ A}. Clearly, for each a ∈ A there exists a unique element a in 
A such that∆A(a) = a. Therefore,∆A is a function on A. This function is called 
the identity function on A, and usually written as I : A → A such that I (a) = a. 

2. Let A be any set and B ⊆ A. The inclusion map of B, denoted by ιB : B → A 
and defined by ιB(a) = a for all a ∈ B, is a function from B to A. In fact, the 
map ιB is the restriction of the identity function ∆A on the subset B. 

3. The relations 

f = {
(x, y) ∈ R × R : y = x2

}
and h = {

(x, y) ∈ R × R : y = x2 − 5
}

are functions on R (Check!). Geometrically, the function f is the parabola x2, 
and h is the same parabola shifted 5 units downwards. 

4. The relation f = {
(x, y) ∈ R × R : x2 + y2 = 1

}
is not a function, as both 

(0, 1) and (0, −1) belong to f, and 1 /= −1. The equation x2 + y2 = 1 implies 
that y = ±  

√
1 − x2. This means that every element x such that x /∈ {−1, 1} is 

related to two elements in the codomain, which violates the uniqueness condition. 
5. The relation

{
(x, y) ∈ R × [0, ∞) : x2 + y2 = 1

}
retains the uniqueness condi-

tion in the definition of functions, but it is not defined for every element of R. 
For example, (3, y) does not belong to the relation for any y in (0, ∞), and thus, 
the relation is not a function. 

6. The relation
{
(x, y) ∈ [−1, 1] × [0, ∞) : x2 + y2 = 1

}
defines a unique 

element
√
1 − x2 in [0, ∞) for every element in [−1, 1]. Therefore, this relation 

is a function that represents the top semicircle of the unit circle. Such a relation 
can be easily expressed as f (x) = √

1 − x2, where −1 ≤ x ≤ 1. 
7. The relation {(x, y) ∈ R × R : y = x + 1} defines a unique element x + 1 in R 

for every element x ∈ R. Therefore, this relation is a function on R that is written 
as f (x) = x + 1.
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Example 1.5.9 Let Q = {m/n : m, n ∈ Z ∧ n /= 0} (Example 1.4.12). Define 

f : Q × Q −→ Q and g : Q × Q −→ Q where 
f (a/b, c/d ) = ad+cb 

bd g(a/b, c/d ) = ac bd 

Both f and g are functions on Q × Q. To show this, let (a/b, c/d) be an arbi-
trary element in Q × Q. Since both b /= 0 and d /= 0, then bd /= 0. There-
fore, both f (a/b, c/d) and g(a/b, c/d) belong to Q. To verify the uniqueness 
requirement, assume that (a/b, c/d) and

(
a'/b', c'/d ') are two elements in Q × Q 

such that (a/b, c/d) = (
a'/b', c'

/d '). It is necessary to show that f (a/b, c/d) = 
f
(
a'/b', c'

/d ') and g(a/b, c/d) = g
(
a'/b', c'

/d '). As  a/b = a'/b' and c/d = c'
/d ', 

then ab' = a'b and cd ' = c'd (Example 1.4.12). Thus, 

(ad + cb)
(
b'd ') = adb'd ' + cbb'd '

= (
ab')(dd ') + (

cd ')(bb')

= (
a'b

)(
dd ') + (

c'd
)(
bb')

= (
a'd ')(bd) + (

c'b')(bd) 
= (a'd ' + c'b')(bd) 

According to the definition of the equivalence relation (Example 1.4.12), 

ad + cb 
bd 

= 
a'd ' + c'b'

bd 

Similarly, 

ac
(
b'd ') = ab'(cd ') = a'b

(
c'd

) = a'c'(bd) 

which implies that 

ac 

bd 
= 

a'c'

b'd '

as required. 
Functions can be expressed as equations, tables, or graphs. The functions in 

Example 1.5.8(3) and (6) are expressed as equations. If the domain of a function 
is a finite set, the function can be presented in tabular form. In this representation, 
the inputs and the outputs are listed in different columns. For example, the function 
in Example 1.5.6 (1) can be represented as in Table 1.1.

If f : A×B → C is a function in which A and B are both finite, then the outputs of 
f can be presented in a tabular form. If A = {a1, a2, . . . ,  an}, B = {b1, b2, . . . ,  bm}, 
and f : A × B → C is a function, then the outputs of f can be listed as in Table 
1.2.
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Table 1.1 Representation of 
the function in Example 1.5.6 
(1) 

x f (x) (x, f (x)) 
a 1 (a, 1) 
b 1 (b, 1) 
c 1 (c, 1) 
d 2 (d, 2)

Table 1.2 Tabular representation of function on finite domain and codomain 

f a1 a2 · · · an 

b1 f (a1, b1) f (a2, b1) · · · f (an , b1) 
b2 f (a1, b2) f (a2, b2) · · · f (an , b2) 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 
bm f (a1, bm ) f (a2, b2) · · · f (an , bm ) 

If the domain is a subset of the real numbers R, or a subset of the plane R2, then 
f can be graphically visualized. The graph of a function f from A to B is the set 
{(x, f (x)) : x ∈ A}. To learn more about graphing functions, the reader can refer to 
(Hungerford & Shaw, 2009). 

Definition 1.5.10 (Piecewise defined function) A function defined by multiple 
expressions is called a piecewise defined function, or simply a piecewise function. 
Each expression is applied to a certain part of the domain. 

The following are examples of piecewise functions: 

f (x) =
{
2 x ≥ 7 
−x2 + 1 x < 7 

g(x) = 

⎧ 
⎨ 

⎩ 

x x  > 0 
5 x = 0 
−1 x < 0 

h(x) = |x | =
{
x x  ≥ 0 
−x x  < 0 

Definition 1.5.11 (Composition of functions) Let  A, B, H and K be any sets. Let 
f : A → B and g : H → K be two functions such that Rang( f ) ⊆ D(g). The  
composition of f and g is the function. 

g ◦ f : A −→ K , where g ◦ f (x) = g( f (x)). 

It is left to the reader (Exercise 1.21) to verify that a composition of two functions 
is a function. 

Example 1.5.12 Let f : R → R, where f (x) = x − 1, and let g : R → R, where 
g(x) = x2. The corresponding compositions are.
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g ◦ f (x) = g( f (x)) =
g(z)=z2 

( f (x))2 =
f (x)=x−1 

(x − 1)2 = x2 − 2x + 1. 

and 

f ◦ g(x) = f (g(x)) =
f (z)=z−1 

g(x) − 1 = x2 − 1. 

Clearly, g ◦ f and f ◦ g. are not equal. 
Note that for g ◦ f to be defined, the range of f must be a subset of the domain 

of g. Otherwise, the composition cannot be defined. For example, if f : R → R is 
defined by f (x) = x − 1 and g : (R+ ∪ {0}) → R is defined by g(x) = √

x , then 
the composition g ◦ f cannot be donfined at x = 0 (Verify!). 

The following proposition can be obtained by applying the composition of two 
functions twice. 

Proposition 1.5.13 Let A, B and C be any three sets. If f : A → B, g : B → C, 
and h : C → D are three functions such that Rang( f ) ⊆ D(g) and Rang(g) ⊆ 
D(h), then 

h ◦ (g ◦ f ) = (h ◦ g) ◦ f. 

Definition 1.5.14 (Injective and surjective functions) Let A and B be two sets. Let 
f : A → B be a function. The map f is called 

1. Injective (one-to-one) if x /= y ⇒ f (x) /= f (y) for all x, y ∈ A. Equivalently, 

f (x) = f (y) ⇒ x = y for all x, y ∈ A. 

2. Surjective (onto) if for each y ∈ B, there exists an x ∈ A such that f (x) = y. 
3. Bijective if f is both injective and surjective. 

Example 1.5.15 

1. The map f : R → R, where f (x) = x, is an injective and a surjective map, so 
it is bijective. 

2. The map g : R → R, where g(x) = x2, is neither injective nor surjective. 
However, we can obtain injective or surjective functions from g by restricting 
the domain or codomain. For example, 

• The map g1 : R → R+, where g1(x) = x2, is surjective but not injective. 
• The map g2 : R+ → R, where g2(x) = x2, is injective but not surjective. 
• The map g3 : R+ → R+, where g3(x) = x2, is both injective and surjective. 

Therefore, this map is bijective. 

For the proof of the following lemma, see Exercise 1.6. 

Lemma 1.5.16 Let A and B be two finite sets such that |A| = |B|, and let f : A → 
B be a function. The map f is injective if and only if it is surjective.
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Example 1.5.17 For n ∈ N, let  s, t ∈ {1, 2, . . . ,  n} and Rs,t : {1, 2, . . . ,  n} →  
{1, 2, . . . ,  n} be defined as 

Rs,t (k) = 

⎧ 
⎨ 

⎩ 

k k /= s ∧ k /= t 
t k  = s 
s k  = t 

Clearly, the map Rs,t is defined for any element in {1, 2, . . . ,  n}, and any element 
in the domain has a unique image under Rs,t. Hence, it is a function on {1, 2, . . . ,  n}. 
To show that Rs,t is an injective map, let k, k ' be elements in {1, 2, . . . ,  n} such that 
Rs,t (k) = Rs,t

(
k '). 

• If k /= s ∧ k /= t , then k = Rs,t (k) = Rs,t
(
k '), which implies that k = k '. 

• If k = s, then t = Rs,t (k) = Rs,t
(
k '), which implies that k ' = s = k. 

• If k = t , then s = Rs,t (k) = Rs,t
(
k '), which implies that k ' = t = k. 

In all cases k ' = k. Thus, Rs,t is injective. By Lemma 1.5.16, the  map  Rs,t is also 
surjective. 

The map Rs,t permutes the two elements s and t .Consequently, it is known as a 
“transposition”. The following proposition is proved in Chap 6. 

Proposition 1.5.18 Any bijective map on {1, 2, . . . ,  n} is a composition of transpo-
sitions. 

Definition 1.5.19 (Invertible function) Let  A and B be two sets. A function f : A → 
B is said to be invertible if there exists a function g : B → A such that g ◦ f = ιA 
and f ◦ g = ιB . The  map  g is called the inverse of f and is denoted by f −1. 

The conditions g ◦ f = ιA and f ◦ g = ιB means (a, b) ∈ f ⇔ (b, a) ∈ g. This  
relation can be intuitively expressed as follows: if f connects a to b, then g returns b 
to its preimage a, and vice versa. There are many examples of noninvertible functions. 
For example, the function f : R → R defined by f (x) = x2 is not invertible. If f 
was invertible, then there would exist g : R → R such that 

f ◦ g(x) = (g(x))2 = x 

which implies that g(x) = ±  
√
x , i.e., g takes either the value of

√
x or − 

√
x , and 

thus, is not a function. In addition, g is not defined for the negative real numbers. 

Theorem 1.5.20 Let f : A → B be a function. The map f is invertible if and only 
if it is a bijective map. 

According to the Theorem above, to show that a map f : A → B is bijective, 
it suffices to show that there exists a map g : B → A such that g ◦ f = ιA and 
f ◦ g = ιB (Exercise 1.8). 

Example 1.5.21
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1. Let f : R → R be defined as f (x) = 2x + 1, then f is a bijective map and 
is thus invertible. To find its inverse, let y = f (x), and solve for x as follows: 
y = 2x + 1 ⇔ x = (y − 1)/2. Interchanging x and y yields y = (x − 1)/2. 
Hence, the inverse of f (x) is the map g(x) = (x − 1)/2. It can be verified that 
f ◦ g(x) = x = g ◦ f (x). Therefore, g is the inverse of f . 

2. Let f : R → [−1, 1] be defined as f (x) = cos x . Since cos
(

π 
4

) = cos
(−π 

4

)
, 

then f is not one to one, hence it is not invertible. However, if the domain of 
cos x is restricted to be 0 ≤ x ≤ π , then cos x will be invertible, with the inverse 
g(x) = cos−1 x . The domain of g is [−1, 1]. 

1.6 Matrices 

This section focuses on matrices, a type of maps that can be presented using arrays. 
Many functions on matrices, such as matrix addition and matrix multiplication are 
defined and briefly discussed. For additional information and proofs, the reader can 
refer to (Burton, 2007) and (Hartman, 2011). 

Definition 1.6.1 Let m, n ∈ N, and let K be any set. A K -matrix of type m × n 
(read m by n) is a map  

A : {1, 2, . . . ,  m} × {1, 2, . . . ,  n} → K 

that assigns an element ai j  in K for each (i, j ) ∈ {1, 2, . . . ,  m} × {1, 2, . . . ,  n}. 
Such a map can be presented as a rectangular array with m rows and n columns 

in the following form: 

A = 

⎛ 

⎜⎜⎜ 
⎝ 

a11 a12 
a21 a22 

· · ·  a1n 
· · ·  a2n 

... 
... 

am1 am2 

... 
... 

· · ·  amn 

⎞ 

⎟⎟⎟ 
⎠ 

where A((i, j )) = ai j  ∈ K for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. 
If there is no risk of ambiguity, a K -matrix is simply referred to as a matrix. If a 

formula for the elements ai j  is given, the matrix can be written as
(
ai j

)
1 ≤ i ≤ m 
1 ≤ j ≤ n 

or simply
(
ai j

)
. Here, the elements ai j  are called the entries of the matrix A, and the 

integers m and n are called the dimensions of the matrix A. A matrix that consists 
of m rows and n columns is called an m × n matrix. The set of all m × n matrices 
with entries in K is denoted by Mmn(K ). The  set  Mnn(K ) can be abbreviated to 
Mn(K ). A matrix in Mn(K ) is called a square matrix of dimension n. The entries 
aii  in a square matrix are called diagonal entries.
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Example 1.6.2 

1. The set M3×2(Z) consists of all 3 × 2 matrices with integers entries. 
2. The setM5×1(R) consists of all 5×1 matrices with real entries, and such matrices 

have the form 
⎛ 

⎜⎜⎜⎜⎜ 
⎝ 

a11 
a21 
a31 
a41 
a51 

⎞ 

⎟⎟⎟⎟⎟ 
⎠ 

where ai1 is an element in R. This matrix can be considered an element in R5. In 
fact, there exists a bijection map between M5×1(R) and R5. In general, an n × 1 
matrix consists of one column in the form 

⎛ 

⎜⎜⎜⎜⎜ 
⎝ 

a11 
a21 
... 
a(n−1)1 

an1 

⎞ 

⎟⎟⎟⎟⎟ 
⎠ 

This matrix can be identified with an element in Rn . 
3. A 1 × n matrix consisting of one row can be expressed as

(
a11 a12 · · ·  a1(n−1) a1n

)

and identified with an element in Rn . 
4. The set M7(C) consists of all square matrices of dimension 7 with complex 

entries. 
5. Let X = {a, b, c}. The  set  M3×2(P(X )) consists of all 3 × 2 matrices whose 

entries are subsets of X . An example of a matrix in M3×2(P(X )) is 

⎛ 

⎝ 
{a, b} {b, c} 
∅ {b} 
{a, c} {a} 

⎞ 

⎠ 

Definition 1.6.3 Let n ∈ N, and let K /= ∅  be a subset of C such that K contains 0 
and 1. Let  Mn(K ) be the set of square matrices of dimension n over K . 

1. A matrix
(
ai j

) ∈ Mn(K ) with entries ai j  = 0 whenever i /= j can be expressed 
as
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⎛ 

⎜⎜⎜ 
⎝ 

a11 0 
0 a22 

· · ·  0 
· · ·  0 

... 
... 

0 0  

... 
... 

· · ·  ann 

⎞ 

⎟⎟⎟ 
⎠ 

This matrix is called a diagonal matrix. The set of all diagonal matrices in 
Mn(K ) is denoted by D(K ). A diagonal matrix with all diagonal entries are 
equal to 1 is called a unit matrix, denoted by In . 

In =
(
ai j

)
where ai j  =

{
1 i f  i  = j 
0 i f  i /= j 

A notable example of diagonal matrices is the subset {A ∈ Mn(C) : A = λIn} 
in which all the diagonal elements are equal. 

2. A matrix
(
ai j

) ∈ Mn(K ) with entries ai j  = 0 whenever i > j can be expressed 
as 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜ 
⎝ 

a11 a12 
0 a22 

a13 a14 
a23 a24 

· · ·  a1n 
· · ·  a2n 

0 0  
... 

... 
a33 a34 
0 a44 

· · ·  a3n 
· · ·  a4n 

0 0  
0 0  

... 
... 

0 0  
· · ·  

... 
· · ·  ann 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟ 
⎠ 

. 

This matrix is called an upper triangular matrix. The set of all upper triangle 
matrices over K is denoted by U (K ). i.e., 

U (K ) = {(
ai j

) ∈ Mn(K ) : ai j  = 0 ∀ i > j
}

3. A matrix
(
ai j

) ∈ Mn(K ) with all its entries ai j  = 0 whenever i < j is in the 
form 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜ 
⎝ 

a11 0 
a21 a22 

0 0  
0 0  

· · ·  0 
· · ·  0 

a31 a32 
a41 a42 

a33 0 
a43 a44 

· · ·  0 
· · ·  0 

... 
... 

an1 an2 

... 
... 

an3 an4 

... 0 
· · ·  ann 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟ 
⎠ 

. 

This matrix is called a lower triangular matrix. The set of all lower triangle 
matrices over K is denoted by L(K ). i.e.,
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L(K ) = {(
ai j

) ∈ Mn(K ) : ai j  = 0 ∀ i < j
}
. 

In the following, we define several algebraic operations on matrices. For the 
remainder of this chapter, the set K denotes a nonempty subset of the complex 
numbers C such that. 

1. K contains 0 and 1. 
2. K is closed under the usual addition on C, the usual multiplication on C, and 

the conjugation. 

Definition 1.6.4 Let m, n ∈ N. Let  Mmn(K ) be the set of m × n matrices with 
K -entries. Let A = (

ai j
)
and B = (

bi j
)
be two matrices in Mmn(K ). 

1. For any c ∈ K , the multiplication of the matrix A by any constant c is the matrix 
cA  obtained from A by multiplying each entry by c, i.e., cA  = (

cai j
)
. 

2. The addition of A and B is the matrix A + B obtained from A and B by adding 
the entries of A and B that have the same indices i and j . That is, 

A + B = (
ai j  + bi j

)

where ai j  + bi j  is the usual sum of the complex numbers ai j  and bi j  . 

Note that matrices with two different dimensions cannot be added. For example, 
a 2 × 3 matrix and a 4 × 7 matrix cannot be added. Therefore, matrix addition is 
defined only for matrices with the same dimensions. 

Example 1.6.5 

1. The matrices 

A =
(
2 −3 7  
3 2 4

)
, B =

(−3 5  −5 
−1 2  −2

)

are elements in M2×3(Z). Multiplying these matrices by 2 and 0 respectively, 
yields 

2A = 2
(
2 −3 7  
3 2 4

)
=

(
4 −6 14  
6 4 8

)
, 0B = 0

(−3 5  −5 
−1 2  −2

)
=

(
0 0 0  
0 0 0

)
. 

The sum A + B is
(−1 2 2  
2 4  2

)
. 

2. The matrices 

E11 =
(
1 0  
0 0

)
, E12 =

(
0 1  
0 0

)
, E21 =

(
0 0  
1 0

)
, E22 =

(
0 0  
0 1

)
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are elements in M2×2(C). Any matrix

(
a11 a12 
a21 a22

)
in M2×2(C) can be expressed 

using such matrices, as follows:

(
a11 a12 
a21 a22

)
= a11 E11 + a12 E12 + a21 E21 + a22 E22 = 

2∑

i=1 

2∑

j=1 

ai j  Ei j  . 

3. In general, a matrix
(
ai j

)
in Mmn(C) can be expressed as 

m∑

i=1 

n∑

j=1 

ai j  Ei j  

where Ei j  = (akl ) in Mm×n(C) with akl =
{
1 i f  k  = i ∧ l = j 
0 elsewhere 

Definition 1.6.6 Let m, n, l ∈ N. Let  A = (
ai j

) ∈ Mmn(K ) and B =
(
bi j

) ∈ 
Mnl (K ). The product of A and B is the matrix AB  ∈ Mml (K ), defined as

(
ci j

)
, 

where 

ci j  = ai1b1 j + ai2b2 j +  · · ·  +  ainbnj  = 
n∑

k=1 

aikbk j  . 

In this definition, the entry ci j  is formed using the i-th row in A and the j-th 
column in B entries. i.e., 

ci j  =
(
ai1 ai2 . . .  ain

) · 

⎛ 

⎜⎜⎜ 
⎝ 

b1 j 
b2 j 
... 
br j  

⎞ 

⎟⎟⎟ 
⎠ 

= 
n∑

k=1 

aikbk j  . 

Note that matrix multiplication can be performed if and only if the number of 
columns in the left matrix equals the number of rows in the right matrix. The multi-
plication of square matrices is only defined if the two matrices have the same dimen-
sion. If A is an m × n matrix and B is an n × l matrix, then their product A · B is 
an m × l matrix. We will also use AB  to denote the multiplication A · B of any two 
matrices A and B. 

Example 1.6.7 

1. Let A = 

⎛ 

⎝ 
1 −3 
4 1  
0 7  

⎞ 

⎠ ∈ M3×2(Z) and B =
(
2 6  7  
−3 2 4

)
∈ M2×3(Z).
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AB  = 

⎛ 

⎝ 
11 0 −5 
5 26  32  
−21 14 28 

⎞ 

⎠ ∈ M3×3(Z) and BA  =
(
26 49 
5 39

)
∈ M2×2(Z). 

2. Let A =
(
1 5  
6 −1

)
∈ M2×2(Z) and B =

(
6 1  0  
−2 3  3

)
∈ M2×3(Z). 

AB  =
(−4 16 15  
38 3 −3

)
∈ M2×3(Z) and BA  is not possible. 

3. Let Ei j  ∈ Mmn(C) and Eks ∈ Mnl (C) be defined as in Example 1.6.5 (3). It is 

straightforward to show that Ei j  Eks = δ jk  Eis, where δ jk  =
{
1 j = k 
0 j /= k 

. 

Proposition 1.6.8 Let m, n ∈ N. The matrix addition + :  Mmn(K ) × Mmn(K ) → 
Mmn(K ) and the matrix multiplication · :  Mn(K ) × Mn(K ) → Mn(K ) are both 
functions. 

Proof Let (A, B) ∈ Mmn(K ) × Mmn(K ) be an arbitrary element. As all elements 
in Mmn(K ) are of the same type, then the addition of A and B is defined. To 
verify the uniqueness requirement, assume that (A, B) and

(
A', B ') are elements in 

Mmn(K ) × Mmn(K ) such that (A, B) = (
A', B '). According to the equality of the 

order pairs, A = A' and B = B ', which implies that. 

+(A, B) = A + B = A' + B ' = +(
A', B ')

Thus, the matrix addition identifies a unique element in Mmn(K ) for each pair 
of matrices in Mmn(K ) × Mmn(K ). 

For the matrix multiplication, if (A, B) ∈ Mn(K ) × Mn(K ), then A and B are 
square matrices of the same dimension. The multiplication of A and B is defined and 
yields a square matrix of dimension n. To verify the uniqueness requirement, assume 
that (A, B) and

(
A', B ') are elements in Mn(K ) × Mn(K ) such that (A, B) =(

A', B '). According to the equality of the order pairs, A = A' and B = B ', which 
implies that aik  = a '

ik  and bkj  = b'
k j  for all 1 ≤ i, j ≤ n, i.e., 

ci j  = 
n∑

k=1 
aikbk j  = 

n∑

k=1 
a

'
ikb

'
k j  is the i j-entry in the multiplication A'B '. 

Thus, 

·( A, B) = AB  = A'B ' = ·(A', B ')

Therefore, the matrix multiplication identifies a unique element in Mn(K ) for 
each pair of matrices in Mn(K ) × Mn(K ). ∆

Proposition 1.6.9 Let n ∈ N and Mn(K ) be the set of all square matrices of 
dimension n.
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1. The multiplication of two diagonal matrices is a diagonal matrix. If A and B 
are diagonal matrices, then AB  = BA. 

2. The multiplication of two upper matrices is an upper matrix. 
3. The multiplication of two lower matrices is a lower matrix. 

Proof 

1. Assume that A and B are arbitrary matrices in D(K ). The multiplication A · B 
is

(
ci j

)
where 

ci j  = 
n∑

k=1 

aikbk j  

For s /= t , ast = bst = 0, which implies that for i /= j, 

ci j  = 
n∑

k=1 

aikbk j =
k /=i⇒aik=0 

aii  bi j =
i /= j⇒bi j=0 

0 

i.e., AB  is a diagonal matrix. Similarly, BA  is a diagonal matrix. The diagonal 
entries in AB  are 

cii  = 
n∑

k=1 

aikbki =
k /=i⇒aik=0 

aii  bii  

which are also the diagonal entries in BA  as 

n∑

k=1 

bikaki =
k /=i=bik=0 

biiaii  = aii  bii  

2. Assume that A and B are arbitrary matrices in U (K ). The multiplication AB  is 
(ci j  ) where 

ci j  = 
n∑

k=1 

aikbk j  . 

As for s > t, ast = bst = 0, then for i > j 

ci j  = 
n∑

k=1 

aikbk j =
k<i⇒aik=0 

n∑

k=i 

aikbk j =
k≥i> j⇒bkj=0 

0. 

That is, AB  is an upper matrix. 
3. Similar to (2). ∆
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Many functions that can be defined on matrices, several of which are introduced 
below. 

Definition 1.6.10 (The conjugate map) Let  m, n ∈ N and Mmn(K ) be the set of all 
m × n matrices over K . Define the map 

Mmn(K ) −→ Mmn(K )
(
ai j

) |→ (
ai j

)

where ai j  is the complex conjugate of ai j  . This map is called the conjugate map. The 
conjugate of a matrix A is denoted by A. 

It is clear that for any matrix A ∈ Mmn(R), A = A. The conjugate of a matrix 
over C can be computed using the conjugates of complex numbers as in the following 
example: 

If A =
(
1 + 3i 2 2  − i 
5i −1 6  + 7i

)
∈ M2×3, then A =

(
1 − 3i 2 2  + i 
−5i −1 6  − 7i

)

The complex conjugate of a complex number x + iy  is x − iy. The following 
propositions are straightforward. 

Proposition 1.6.11 Let m, n, l ∈ N. Let Mmn(K ) be the set of all m × n matrices 
over K , and Mnl (K ) be the set of all n × l matrices over K . For A ∈ Mmn(K ) and 
B ∈ Mnl (K ), 

A = A, and AB  = A B 

Proposition 1.6.12 Let m, n ∈ N and Mmn(K ) be the set of all m × n matrices 
overK . The conjugate map is a function on Mmn(K ). 

The second example of a function on matrices is the transpose map, which 
exchanges the rows of a matrix with its columns. 

Definition 1.6.13 (The transpose map) Let m, n ∈ N and Mmn(K ) be the set of all 
m × n matrices over K . The  map  

T : Mmn(K ) −→ Mnm(K )
(
ai j

) |→ (
a j i

)

is called the transpose map. The transpose of a matrix A is denoted by AT . 

The reader can easily check that (8)T = (8), (1 2)T =
(
1 
2

)
,

(
1 2  
3 4

)T 

=
(
1 3  
2 4

)
, 

and
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⎛ 

⎝ 
1 −3 
4 1  
0 7  

⎞ 

⎠ 

T 

=
(
1 4  0  
−3 1 7

)

Proposition 1.6.14 Let m, n ∈ N and Mmn(K ) be the set of all m × n matrices 
over K . The transpose map is a function from Mmn(K ) to Mnm(K ), which satisfies 
the following statements: 

1.
(
AT

)T = A 
2. For all α ∈ C, (α A)T = α AT 

3. (A + B)T = AT+BT 

for any A, B ∈ Mmn(K ). 

Proposition 1.6.15 Let m, n, l ∈ N. For any A ∈ Mmn(K ) and B ∈ Mnl (K ), 

(AB)T = BT AT . 

Definition 1.6.16 (The Hermitian conjugate map) Let  m, n ∈ N and Mmn(K ) be 
the set of all m × n matrices over K . The  map  

∗ :  Mmn(K ) −→ Mnm(K )
(
ai j

) |→ (
a j i

)

is called the Hermitian conjugate map. The entry a j i  is the element in K obtained by 
taking the conjugate of the element a j i  in the transpose matrix of (ai j  ). The Hermitian 
conjugate of a matrix A is denoted by A∗. 

For any n ∈ N, the Hermitian conjugate of In is In . The Hermitian conjugate map 

is a composition of the conjugate and the transpose maps (A∗ = A T for any matrix 
A in Mmn(K )). Therefore, the Hermitian conjugate is a function. It is also known 
by conjugate transpose, or Hermitian transpose map. The following proposition is 
straightforward. 

Proposition 1.6.17 Let m, n, l ∈ N and Mmn(K ) be the set of all m × n matrices 
over K . For  A ∈ Mmn(K ) and B ∈ Mnl (K ).

(
A∗)∗ = A, (AB)∗ = B∗ A∗. 

The following functions are defined only on square matrices. 

Definition 1.6.18 (The trace map) Let  n ∈ N and Mn(K ) be the set of all n × n 
matrices over K . The trace map is defined as 

trace: Mn(K ) −→ C 

A |→ 
n∑

i=1 

aii
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Proposition 1.6.19 Let n ∈ N and Mn(K ) be the set of all n × n matrices over K . 
The trace  : Mn(K ) → C is a function that satisfies the following statements: 

1. trace
(
AT

) = trace(A) 
2. trace(A + B) = trace(A) + trace(B) 
3. trace(AB) = trace(BA) 

for all A, B ∈ Mn(K ). 

Definition 1.6.20 (The determinant map) Let  n ∈ N and Mn(K ) be the set of all 
n × n matrices over K . Let  det : Mn(K ) → C be the recursive map defined for 
square matrices as 

1. det((c)) = c(determinant of 1 × 1 matrix is the entry of such matrix). 
2. For any A ∈ Mn(K ), such that n ≥ 2, 

det(A) = 
n∑

k=1 

(−1)i+k aikdet( Aik) 

where i is any integer such that 1 ≤ i ≤ n, and Aik  is the matrix obtained from 
A by deleting row i and column k. 

In some linear algebra books, the notation |A| is used instead of det(A). 
Throughout this book, det(A) is used to denote the determinant of A 

Remarks 1.6.21 In the abovementioned definition, a fixed row i is chosen, and 
the entries of the row are used to compute the determinant of the matrix A. The  
determinant can also be defined using a fixed column j and the entries of this column, 
as follows: 

• det((c)) = c (determinant of 1 × 1 matrix is the entry of such matrix). 
• For any A ∈ Mn(K ) such that n ≥ 2, 

det(A) = 
n∑

k=1 

(−1) j+k ak j  det
(
Akj

)

where j is any integer such that 1 ≤ j ≤ n, and Akj  is the matrix obtained from 
A by deleting row k and column j . 

Example 1.6.22 

1. Consider an arbitrary matrix A =
(
a b  
c d

)
in M2(K ). To find the determinant 

of A, either a row or a column must be selected. Using the first row, we have 

det(A) = 
2∑

k=1 

(−1)1+k a1k det(A1k) = (−1)2 a det((d)) + (−1)3 b det((c))
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= ad − bc 

For example, 

det

((
2 7  
−3 5

))
= 10 − (−21) = 31 and 

det

((
cos θ − sin θ 
sin θ cos θ

))
= cos θ 2 + sin θ 2 = 1 for any angle θ.  

2. Consider an arbitrary matrix A = 

⎛ 

⎝ 
x1 y1 z1 
x2 y2 z2 
x3 y3 z3 

⎞ 

⎠ in ∈ M3(K ). To compute the 

determinant of A, either a row or a column must be selected. Choosing the first 
column this time, 

det( A) = 
n∑

k=1 

(−1)1+k ak1 det(Ak1) 

i.e., det( A) is 

(−1)2 x1 det

((
y2 z2 
y3 z3

))
− x2 det

((
y1 z1 
y3 z3

))
+ x3 det

((
y1 z1 
y2 z2

))

= x1(y2z3 − z2 y3) − x2(y1z3 − z1y3) + x3(y1z2 − z1y2). 

Notably, the choice of the column or row in calculating the determinant determines 
the ease of the calculation. For example, the second row is the optimal choice to 
calculate the determinant of 

⎛ 

⎝ 
1 5 1  
2 0 0  
3 2 7  

⎞ 

⎠ 

because the second row contains many zero entries. Using the second row, we obtain 

det 

⎛ 

⎝ 
1 5 1  
2 0 0  
3 2 7  

⎞ 

⎠ = −2 det

((
5 1  
2 7

))
+ 0 + 0 = −2(35 − 2) = −66 

Proposition 1.6.23 Let n ∈ N and Mn(K ) be the set of all n × n matrices over 
K . Let A, B ∈ Mn(K ) be arbitrary matrices. The map det : Mn(K ) → C is a 
function that satisfies
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1. det(A) = det(AT ) 
2. det(k A) = kndet(A) 
3. det(A · B) = det( A) · det(B). 

The abovementioned functions are used to create special subsets of Mn(K ). 
These subsets have important applications in algebra and other mathematical fields. 
We briefly mention them below. 

Definition 1.6.24 Let n ∈ N and Mn(K ) be the set of all n × n matrices over K . 

1. A matrix  A ∈ Mn(K ) is called an orthogonal matrix if A·AT = AT · A = In . 
The subset of all orthogonal matrices is denoted by O(n, K ), or simply, O(n). 
i.e., 

O(n) = {
A ∈ Mn(K ) : A · AT = AT · A = In

}
. 

2. A matrix  A ∈ Mn(K ) is called a unitary matrix if A·A∗ = A∗ · A = In . The  
subset of all unitary matrices is denoted by U (n, K ), or simply U (n). i.e., 

U (n) = {
A ∈ Mn(K ) : A · A∗ = A∗ · A = In

}
. 

Notation 1.6.25 Let n ∈ N and Mn(K ) be the set of all n × n matrices over K . 

1. The set of all matrices in Mn(K ) whose determinant is not zero is denoted by 
GL(n, K ) or GLn(K ). i.e., 

GLn(K ) = {A ∈ Mn(K ) : det(A) /= 0}. 

2. The set of all matrices in Mn(K ) whose determinant equals 1 is denoted by 
SL(n, K ) or SLn(K ). i.e., 

SLn(K ) = {A ∈ Mn(K ) : det(A) = 1}. 

In the following, we discuss the invertibility of a square matrix. The invertibility 
of a matrix is not defined if the matrix is not a square matrix. 

Definition 1.6.26 (Invertible matrices) Let n ∈ N and Mn(K ) be the set of all n × n 
matrices over K . Let  A be a matrix in  Mn(K ). The matrix A is said to be invertible 
if there exists a matrix B ∈ Mn(K ) such that AB  = BA  = In . The matrix B (if it 
exists) is called the inverse of A and is denoted by A−1. 

Not every matrix in Mn(K ) is invertible. For example, the zero matrix 0n = (0) 
belongs to Mn(K ), but no matrix in Mn(K ) satisfies 0n B = B 0n = In . Therefore, 

Mn(K ) −→ Mn(K ) 
A |→ A−1
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is not a function on Mn(K ). To define a formula for the inverse of an invertible 
matrix, the following definition is needed. 

Definition 1.6.27 Let n ∈ N and Mn(K ) be the set of all n×n matrices over K . The  
adjugate matrix of a matrix A in Mn(K ) is the matrix computed from A as follows: 

Adj(A) = (
(−1)i+ j Ai j

)T 

where Ai j  is the determinant of the matrix obtained from A by deleting the i th row 
and the j th columnn. 

Proposition 1.6.28 Let n ∈ N and Mn(K ) be the set of all n × n matrices over K . 
A matrix  A in Mn(K ) is invertible if and only if det(A) /= 0. In this case, 

A−1 = 1 

det(A) 
Adj(A) 

where Ad j (A) is the adjugate matrix of A. 

Proposition 1.6.29 Let n ∈ N and Mn(K ) be the set of all n × n matrices over K . 
If A and B are invertible matrices in Mn(K ), then (AB)−1 = B−1 A−1. 

1.7 Geometric Transformations and Symmetries 
in the Plane 

The rotation and reflection are two important basic transformations that operate on 
a plane (generally in Rn). This section will study Rθ , the rotation around the origin 
with angle θ , and lθ , the reflection of a line passing through the origin, inclined at 
an angle θ from the x-axis. Any other rotation or reflection of a line (in the plane) 
can be defined using either Rθ or lθ . Readers can refer to (Boyd & Vandenberghe, 
2018) for more details regarding geometric transformations and vectors in the plane. 
As mentioned in Example 1.6.2, there exists a correspondence between the points 
in Rn and the n × 1 matrices with real entries. By restricting the study to R2, this  
correspondence can be expressed in the following lemma. 

Lemma 1.7.1 The map. 

g : R2 −→
{(

x 
y

)
: x, y ∈ R

}

(x, y) |→
(
x 
y

)

is a bijection map identifying the points in R2 with the matrices in M2×1(R).
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Using this lemma, any function on the plane can be defined directly on the matrices 
M2×1(R). 

Reminder 1.7.2 Any point P in the plane can be represented using at least two 
coordinate systems of the plane: 

1. The Cartesian coordinates of P = (x, y), where x and y are given by the 
projections of the point P on the x-axis and y-axis, respectively. 

2. The polar coordinates of P = (r, ψ), where r is the distance from P to the origin 
of the plane, and ψ is the angle that the line −→

OP  makes with x-axis. 

The relations between the two representations are given by the following equations 

x = r cos ψ, y = r sin ψ, r2 = x2 + y2 , y = x tan ψ 

Recall that a rotation around the origin with an angle θ in the plane changes the 
polar coordinates of a point from (r, ψ) to (r, ψ  + θ ). According to the next propo-
sition, a rotation by θ around the origin is represented by a matrix multiplication, 
which will be denoted by Rθ . The matrix Rθ is called the rotation matrix by θ . 

Proposition 1.7.3 The rotation of the point (x, y) in the plane around the origin 
with an angle θ is equivalent to the function. 

f : R2 −→ R
2

(
x 
y

)
|→ Rθ ·

(
x 
y

)

where Rθ =
(
cos θ − sin θ 
sin θ cos θ

)
. 

Proof Let f : R
2 → R

2 be the rotation by an angle θ around the origin. 
The rotation f moves the point (x, y) = (rcosψ, rsinψ) to

(
x ', y') = 

(r cos(ψ + θ ), r sin(ψ + θ )). Thus, the coordinates after the rotation are 

x ' = r cos(ψ + θ)  = (r cos ψ)  cos θ − (r sin ψ)  sin θ = x cos θ − y sin θ 

and 

y' = r sin(ψ + θ)  = (r cos ψ)  sin θ + (r sin ψ)  cos θ = x sin θ + y cos θ.  

These equations can be expressed as

(
x '

y'

)
=

(
cos θ − sin θ 
sin θ cos θ

)(
x 
y

)
.
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The following proposition matches the expected geometrical fact that “rotation by 
an angle θ followed by rotation by an angle β is equivalent to a rotation by θ +β ”. ∆

Proposition 1.7.4 Let θ and β be any two angles. Then, 

Rθ +β = Rθ Rβ = Rβ Rθ . 

Proof According to the identities for the trigonometric functions, 

Rθ +β =
(
cos(θ + β) − sin(θ + β) 
sin(θ + β) cos(θ + β)

)

=
(
cos θ cos β − sin θ sin β −(sin θ cos β + cos θ sin β) 
sin θ cos β + cos θ sin β cos θ cos β − sin θ sin β

)

=
(
cos θ − sin θ 
sin θ cos θ

)(
cos β − sin β 
sin β cos β

)
= Rθ Rβ . 

Similarly, Rβ+θ = Rβ Rθ . The result follows as θ + β = β + θ . ∆

Example 1.7.5 

1. According to Proposition 1.7.3, 

• The rotation matrix by 0 is  R0 =
(
1 0  
0 1

)
= I2. 

• The rotation matrix by π 
2 is Rπ/2 =

(
0 −1 
1 0

)
. 

• The rotation matrix by π is Rπ =
(−1 0  
0 −1

)
= −I2. 

Rn can also be computed using Proposition 1.7.4, to obtain the same answer. 
• Proposition 1.7.4 can be used to obtain 

• R3π/2 = Rπ/2 Rπ =
(
0 1  
−1 0

)
, 

• R2π = Rπ/2 R3π/2 =
(
1 0  
0 1

)
. 

2. Similarly, Rπ/3 =
(

1 
2 − 

√
3 
2 √

3 
2 

1 
2

)

, R2π/3 = Rπ/3 Rπ/3 =
(

− 1 
2 − 

√
3 
2 √

3 
2 − 1 

2

)

• Rπ = Rπ/3 R2π/3 = −I2,, 
• R4π/3 = Rπ/3 Rπ = −Rπ/3,, 
• R5π/3 = Rπ/3 R4π/3 = −R2π/3, and 
• R2π = Rπ/3 R5π/3 = R0.
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Fig. 1.11 Rotating u 
by π/2 

To find a matrix that represents a reflection around a line lθ passing the origin 
and making an angle θ with the x-axis, we need an expression for the unit vector 
in the direction of lθ . Recall that if lθ makes an angle θ with the x-axis, then the 
coordinates for the unit vector u on lθ are (cos θ,  sin θ), which can be identified 

with u =
(
cos θ 
sin θ

)
. The unit vector ν that is perpendicular to lθ can be obtained by 

rotating u with π 
2 see Fig. 1.11. According to Proposition 1.7.3, 

ν = Rπ/2

(
cos θ 
sin θ

)
=

(− sin θ 
cos θ

)
. 

Proposition 1.7.6 Let lθ be the straight line that passes the origin and makes an 
angle θ with the x-axis. The reflection of the point (x, y) around lθ in the plane is 
equivalent to the function. 

f : R2 −→ R

(
x 
y

)
|→ lθ ·

(
x 
y

)

where lθ =
(
cos 2θ sin 2θ 
sin 2θ − cos 2θ

)
. 

Proof Let w =
(
x 
y

)
be a point in the plane, then w can be expressed as a line 

vector that starts from the origin and passes the point w. Such a vector is the sum of 
two vectors w = w|| + w⊥ where w|| is in the direction of lθ and w⊥ is perpendicular 
direction on lθ (Fig. 1.12). i.e.,
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Fig. 1.12 Vector 
w = w|| + w⊥ 

• w|| = 〈w, u〈u = (x cos θ + y sin θ)

(
cos θ 
sin θ

)
=

(
x cos2 θ + y sin θ cos θ 
x sin θ cos θ + y sin2 θ

)
. 

• w⊥ = 〈w, v〈v = (−x sin θ + y cos θ)

(− sin θ 
cos θ

)
=

(
x sin2 θ − y sin θ cos θ 
−x sin θ cos θ + y cos2 θ

)
where 〈w, u〈 and 〈w, v〈 are the inner products 

of w with u and v, respectively (Boyd & Vandenberghe, 2018). 

The reflection of w around lθ is the point w
' = w|| − w⊥ (Fig.1.13). Therefore, 

w' = w|| − w⊥ 

=
(
x cos2 θ + y sin θ cos θ 
x sin θ cos θ + y sin2 θ

)
−

(
x sin2 θ − y sin θ cos θ 
−x sin θ cos θ + y cos2 θ

)

=
(
x
(
cos2 θ − sin2 θ

) + 2y sin θ cos θ 
2x sin θ cos θ + y

(
sin2 θ − cos2 θ

)
)

=
(
x cos 2θ + y sin 2θ 
x sin 2θ − y cos 2θ

)
=

(
cos 2θ sin 2θ 
sin 2θ − cos 2θ

)(
x 
y

)
.

The above proposition shows that the reflection about a straight line that passes 
through the origin and makes the angle θ with the x-axis can be represented by 
a matrix multiplication. This matrix is called the reflection matrix about lθ and is 
denoted by lθ . Applying the reflection about the line lθ twice returns each point to 
itself. That is, lθ 

2 = I2
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Fig. 1.13 Reflection of w 
around lθ

Proposition 1.7.7 For angles θ and β the following identities hold: 

1. Rθ +β = Rθ Rβ = Rβ Rθ . 
2. lθ lθ = R0. 
3. lθ lβ = R2(θ −β). 
4. Rθ lβ = lβ+ θ 

2 
. 

5. lβ Rθ = lβ− θ 
2 
. 

6.
(
lβ Rθ

)2 = (
Rθ lβ

)2 = R0 

Proof The first identity is the result in Proposition 1.7.4. Items (2) and (3) can be 
easily verified using Proposition 1.7.3, and 1.7.6, matrix multiplication, and trigono-
metric identities. To show (4), we first replace θ by θ 

2 +β in (3) to obtain l θ 
2 +βlβ = Rθ . 

Using this identity and the identity in (2), we get 

Rθ lβ =
(
l θ 
2 +βlβ

)
lβ = l θ 

2 +β 

To obtain the identity in (5), we compute lβlβ− θ 
2 
using the identity in (3) to get 

lβlβ− θ 
2 

= Rθ 

Using this identity and the identity in (2), we get 

lβ Rθ = lβ
(
lβlβ− θ 

2

)
= lβ− θ 

2 

The last equality follows directly from (2), (4), and (5). ∆
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The geometric interpretation for the relation in (3) is that a reflection about lθ 
followed by a reflection about lβ is equivalent to a rotation with an angle that is 
double the angle between lθ and lβ . This aspect can be explained as follows. 

It is straightforward to show, using Proposition 1.7.6, that a refection about lθ 
maps a point (r, α)  to the point (r, 2θ − α). Therefore, applying another reflection 
lθ leads to 

(r, α)lβ → (r, 2β − α)lθ → (r, 2θ − (2β − α)) = (r, 2(θ − β) + α) 

.i.e., the composition of lθ and lβ is a rotation by angle 2(θ − β). 

Example 1.7.8 By using the abovementioned notation, 

l0 =
(
1 0  
0 −1

)
, and lπ/4 =

(
0 1  
1 0

)

(
lπ/4

)2 = lπ/4lπ/4 = I2, lπ/4 Rπ/2 = l0, and lπ/3 =
(

1 
2 

√
3 
2 √

3 
2 − 1 

2

)

. 

From now on, a rotation by angle θ is identified with its rotation matrix Rθ . A  
reflection about the line that passes through the origin and makes an angle θ with x-
axis is identified with its reflection matrix lθ . Therefore, Rθ (similarly, lθ ) represents 
both the matrix and the symmetry represented by the matrix. 

Let n ∈ N such that n ≥ 3. Consider a regular (sides of equal lengths and 
equal interior angles) n-polygon. There exist 2n types of symmetries for such a 
polygon: rotations about the center by an angle moving each vertex to the next 
vertex, reflections about the lines that pass the center of the polygon and the vertices, 
reflections about the lines that pass the center of the polygon and divide opposite 
sides of the polygon into equal halves, and their compositions. For example, see 
Fig. 1.14. The following steps can be implemented to identify such symmetries. 

1. Select one of the vertices, and number it as vertex 1. 
2. Identify the center of the polygon with the origin of the plane such that the line 

passes the center and vertex 1 lies on the x-axis. 

As the polygon is regular, the required symmetries are 

• the rotations by the angles 0, 2π 
n , 

4π 
n , . . . ,  2(n−1)π 

n , 
• the reflections about lines passing the origin and making angles 

0, π 
n , 

2π 
n , 

3π 
n , . . . ,  (n−1)π 

n with the x-axis, and 
• any compositions of these. 

According to a Propositions 1.7.3 and 1.7.6, these symmetries can be represented 
by the matrices 

R0, R 2π 
n 
, R 4π 

n 
, . . . ,  R 2(n−1)π 

n 
, l0, l π 

n 
, . . . ,  l (n−1)π 

n
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and any matrix resulting by their multiplications. Note that lθ and lπ +θ represent the 
same line of symmetry. This can be checked easily using the result of Proposition 
1.7.6. 

Example 1.7.9 (The symmetries of a Square) Consider a square with the center at 
the origin and one of its vertices on the x-axis. The symmetries of the square are 
represented by R0 = I2, Rπ/2, Rπ , R3π/2, l0, lπ/4,lπ/2,l3π/4 and the products of any of 
these matrices. The equations in Proposition 1.7.7 easily shows that these are all the 
different symmetries of the square. The following table is obtained using Proposition 
1.7.7. Note that l0 = lπ as they represent the same line. Similarly, lπ/4 = l5π/4, 
lπ/2 = l3π/2 and l3π/4 = l7π/4 (see Fig. 1.15 and Table 1.3). 

The next example pertains to a polygon with an odd number of vertices. 

Example 1.7.10 (The symmetries of a Pentagon) Consider a pentagon with the center 
at the origin, and one of its vertices on the x-axis. The symmetries of the pentagon 
are represented by 

R0 = I2, R2π/5, R4π/5, R6π/5, R8π/5, l0, lπ/5, l2π/5, l3π/5, l4π/5 

and their products. The equations in Proposition 1.7.7 shows that these are all the 
different symmetries of the regular pentagon (Fig. 1.16).

Fig. 1.14 Regular 
6-polygon 

Fig. 1.15 Regular 
4-polygon
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Table 1.3 Composition of the symmetries of a square 

· R0 Rπ/2 Rπ R3π/2 l0 lπ/4 lπ/2 l3π/4 

R0 R0 Rπ/2 Rπ R3π/2 l0 lπ/4 lπ/2 l3π/4 

Rπ/2 Rπ/2 Rπ R3π/2 R0 lπ/4 lπ/2 l3π/4 l0 

Rπ Rπ R3π/2 R0 Rπ/2 lπ/2 l3π/4 l0 lπ/4 

R3π/2 R3π/2 R0 Rπ/2 Rπ l3π/4 l0 lπ/4 lπ/2 

l0 l0 l3π/4 lπ/2 lπ/4 R0 R3π/2 Rπ Rπ/2 

lπ/4 lπ/4 l0 l3π/4 lπ/2 Rπ/2 R0 R3π/2 Rπ 

lπ/2 lπ/2 lπ/4 l0 l3π/4 Rπ Rπ/2 R0 R3π/2 

l3π/4 l3π/4 lπ/2 lπ/4 l0 R3π/2 Rπ Rπ/2 R0

Fig. 1.16 Regular 
5-polygon 

Summary 1.7.11 Let n ∈ N such that n ≥ 3. The symmetries of the regular n-
polygon are 

• n rotations, each of which shifts each vertex to the next vertex position, 
• n reflections, each of which pertain to the line passing the center and making an 

angle π k 
n , where k = 0, 1, . . . ,  n − 1, 

• any compositions of these entities. 

Using Proposition 1.7.7 and = lθ lπ +θ , one can easily show that the product of any 
two of these matrices 

R0, R 2π 
n 
, . . . ,  R 2(n−1)π 

n 
, l0, l π 

n 
, l 2π 

n 
· · ·  , l (n−1)π 

n 

is again one of the matrices listed above. 

Corollary 1.7.12 Let n ∈ N such that n ≥ 3. The set.
{
R0, R 2π 

n 
, . . . ,  Rn 

2(n−1)π 
n 

, l0, l π 
n 
, l 2π 

n 
. . . ,  l (n−1)π 

n

}

contains all the different symmetries of the regular n-polygon. 
The following picture shows the effects of all the possible symmetries of an 

octagon (Fig. 1.17).
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Fig. 1.17 Symmetries of regular 8-polygon 

Exercises 

Solved Exercises 

1.1 Show that any nonempty finite subset of Z has unique minimum and maximum 
elements. 

Solution: Let n ∈ N and A = {a1, a2, . . . ,  an} be a nonempty finite subset 
of Z. Using mathematical induction on n, we show that A has minimum and 
maximum elements. i.e., we show that there exist x, y ∈ A such that x ≤ a ≤ y 
for all a ∈ A. 

Base step: if n = 1, then A = {a1} for some integer a1 ∈ Z. As  a1 ≤ a1 ≤ a1, 
then by letting x = y = a1, the statement is true for n = 1. 

Inductive step: assume that the statement is true for n. That is, any subset 
of Z that contains n elements must have minimum and maximum elements. 
Let A = {a1, a2, . . . ,  an, an+1} be a subset of Z with n + 1 elements. Let 
B = A\{an+1} = {a1, a2, . . . ,  an} be a subset that only contains n elements. 
According to the induction hypothesis, B has minimum and maximum elements. 
i.e., there exist x, y ∈ B such that x ≤ ai ≤ y for all ai ∈ B ⊆ A. Three 
possibilities can be listed for an+1: 

an+1 ≤ x, x ≤ an+1 ≤ y, or y ≤ an+1 

• If an+1 ≤ x , then an+1 ≤ x ≤ ai ≤ y for all ai ∈ A, 1 ≤ i ≤ n. Thus, an+1 

is a minimum element of A and y is a maximum element. 
• If x ≤ an+1 ≤ y, then x ≤ ai ≤ y for all ai ∈ A, 1 ≤ i ≤ n + 1. Thus, x is 

a minimum element of A and y is a maximum of A. 
• If y ≤ an+1 then x ≤ ai ≤ y ≤ an+1 for all ai ∈ A, 1 ≤ i ≤ n. Thus, x is a 

minimum element of A while an+1 is a maximum element of A. 

In all three cases, A has minimum and maximum elements. Therefore, according 
to the principle of mathematical induction, the statement is true for any n ∈ N. 
The uniqueness follows as the relation ≤ is a total order relation on Z. 

1.2 Let A be any set. Consider the identity relation on A that is defined in Example 
1.3.7 (4). Show that 

i Any subset of ∆A is a transitive relation on A.
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ii A relation R on A is both symmetric and antisymmetric if and only if R is 
a subset of the identity relation ∆A. 

Solution 

i. Let R be any subset of ∆A and (a, b), (b, c) ∈ R, then a = b and b = c. 
Therefore, (a, c) = (a, b) ∈ R, and R is transitive. 

ii. Assume that R is a relation on A such that R is both symmetric and anti-
symmetric. Let (a, b) be an arbitrary element in R. Since R is symmetric, 
the ordered pair (b, a) must also be in R. However, since R is anti-
symmetric, then a = b, and thus, R ⊆ ∆A. For the other direction, if 
R ⊆ ∆A, any element in R is in the form (a, a) for some a ∈ A. That is, 
R = {(a, a) ∈ A × A : a ∈ B} for some B ⊆ A. i.e., R = ∆B for some 
subset B. By Example 1.3.7 (4), R is both symmetric and antisymmetric. 

1.3 Let R be a relation on Z defined as aRb if and only if a − b is divisible by 2. 
Determine whether R is reflexive, symmetric, antisymmetric, and/or transitive. 
What type of relation is R? 

Solution: 
R is reflexive: since a − a = 0 and 0 = 0 · 2 is divisible by 2, and aRa. 
R is symmetric: if aRb, then a − b is divisible by 2. i.e., there exists k ∈ Z 

such that a − b = 2k. This implies that b − a = 2(−k) is divisible by 2. i.e., 
bRa. 

R is not antisymmetric: 2R4 and 4R2 (Check!), but 2 /= 4. 
R is transitive: if aRb and bRc, then there exist k, h ∈ Z such that 

a − b = 2k and b − c = 2h. 

Therefore, 
a − c = (a − b) + (b − c) = 2k + 2h = 2(k + h) is divisible by 2 
i.e., aRc, and thus, R is transitive. 

1.4 Consider the set of positive integers N, and let A = 
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Define 

R = {
(x + 2, x + 3) ∈ N2 : x ∈ A

}
. 

Here R is a relation on N. Determine the domain and the range of R. What 
is the domain and range of R if A is replaced by N? 

Solution: The relation R can be expressed as follows: 

R = {(2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10), (10, 11), (11, 12), (12, 13)} 

Therefore, 

D(R) = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} 
Rang(R) = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
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If A is replaced by N, then the domain and the range would be the following 
infinite sets 

D(R) = {3, 4, 5, 6, 7, . . .}, Rang(R) = {4, 5, 6, 7, 8, . . .} 

1.5 Let A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ×  {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Let  

R = {
((x, y), (u, v))  ∈ A2 : 3x + y ≤ 3u + v

}

be a relation on A. Determine whether R is an equivalence, a partial order, or 
a total order relation. 

Solve the question with R = {
((x, y), (u, v)) ∈ A2 : 11x + y ≤ 11u + v

}

as well. 
Solution: The properties of R can be checked as follows: 
Reflexivity: since 3x + y ≤ 3x + y, we have ((x, y), (x, y)) ∈ R for each 

(x, y) ∈ A. i.e., R is reflexive. 
Symmetry: since ((0, 0), (1, 2)) ∈ R and ((1, 2), (0, 0)) /∈ R, the relation 

R is not symmetric. 
Antisymmetry: since both ((0, 4), (1, 1)) and ((1, 1), (0, 4)) are elements 

in R and (0, 4) /= (1, 1), R is not antisymmetric. 
Transitivity: If both ((x, y), (u, v)) and ((u, v), (z, w)) are elements in R, 

then 
3x + y ≤ 3u + v and 3u + v ≤ 3z + w. 
This implies that 3x + y ≤ 3z + w and ((u, v), (z, w)) ∈ R. So, R is 

transitive. 
Therefore, R is not an equivalence or an order relation. 
If R = {

((x, y), (u, v)) ∈ A2 : 11x + y ≤ 11u + v
}
, the abovementioned 

reasons can be used to show that R is reflexive, not symmetric and transitive. 
R is antisymmetric because if ((x, y), (u, v)) and ((u, v), (x, y)) are both 
elements in R, then 11x + y = 11u + v implying that v − y = 11(x − u) 
is a multiple of 11. That is, there exists q ∈ Z such that v − y = 11q. 
Since both y and v belong to A, we have  |v − y| ≤ 10. So, zero is the only 
possible value of q. i.e., v = y, and x = u. Therefore, (x, y) = (u, v), 
and R is antisymmetric. Hence, R is a partial order relation. To show that 
R is a total order relation, assume that (x, y) and (u, v) are two elements 
in A. Since 11x + y and 11u + v are elements in N, they are comparable. 
i.e., either 11x + y ≤ 11u + v or 11u + v ≤ 11x + y. In general, R ={
((x, y), (u, v)) ∈ A2 : kx  + y ≤ ku + v

}
is a total order relation whenever 

k > 10. 
1.6 Let A and B Be two finite sets such that |A| = |B| and f : A → B be a 

function. Show that the map f is injective if and only if f is surjective. 
Solution: Assume that |A| = |B| =  n. Let  B = {b1, · · ·  , bn}, where 

b1, · · ·  , bn are distinct elements in B. For all 1 ≤ i ≤ n, let  Ai = {a ∈ 
A : f (a) = bi } and ki = |Ai |, the number of elements in Ai . The  sets
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{Ai ,1 ≤ i ≤ n} form a partition of A (Check!). Therefore, 

n = |A| =  k1 +  · · ·  +  kn 

Note that, 

• the function f is surjective if and only if Ai /= ∅ for all 1 ≤ i ≤ n, that is, 
if and only if ki ≥ 1 for all 1 ≤ i ≤ n. 

• the function f is injective if and only if for all 1 ≤ i ≤ n, the set Ai contains 
at most one element. That is, if and only if ki ≤ 1 for all 1 ≤ i ≤ n. 

If f is injective, then ki ≤ 1 for all 1 ≤ i ≤ n, so  ki ∈ {0, 1}. Since the sum 
k1 +  · · ·  +  kn = n, then ki = 1 for all 1 ≤ i ≤ n. Therefore, f is surjective. 

For the other direction, suppose f is surjective, then ki ≥ 1 for all 1 ≤ i ≤ 
n. Let  li = ki − 1 ≥ 0. Here, 

n = k1 +  · · ·  +  kn = (1 + l1) +  · · ·  +  (1 + ln) = 1 +  · · ·  +  1︸ ︷︷ ︸
n times 

+l1 +  · · ·  +  ln. 

Therefore, n = n + (l1 +  · · ·  +  ln) and l1 +  · · ·  +  ln = 0. Since li ≥ 0 for 
all 1 ≤ i ≤ n, then li = 0 for all 1 ≤ i ≤ n, and ki = 1 for all 1 ≤ i ≤ n. 
Hence, f is injective. 

1.7 Consider the following relations: 

1. R = A × B where A = ∅  and B is any nonempty set. 
2. S = A × B where B = ∅  and A is any nonempty set. 
3. f = {(x, y) ∈ R × R : y2 − x2 = 1}. 
4. g = {

(x, y) ∈ R × R : x2 − y2 = 1
}
. 

Determine whether each relation is a function. 

Solution: 

1. If A = ∅, then R = A × B = ∅  for any nonempty set B. Since there are 
no elements in A, then the conditional statement 

(a ∈ A ⇒ ∃  !  b ∈ B such that (a, b) ∈ R) 

is true. Therefore, R is a function. 
2. Assume that B = ∅, and A is a nonempty subset. If S is a function, then 

for each a ∈ A there exists b ∈ B such that (a, b) ∈ S, which contradicts 
that B is empty, So, S is not a function. 

3. For each x ∈ R, there exist two ordered pairs in f . Namely, (x,
√
1 + x2) 

and (x, − 
√
1 + x2) preventing f from being a function (Fig. 1.18). If we 

restrict the codomain to only the nonnegative real numbers, and define f 
as 

f = {
(x, y) ∈ R × (

R
+ ∪ {0}) : y2 − x2 = 1

}
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then f would assign only one image for each x in R, and thus, it is a 
function on R. 

4. The relation g = {
(x, y) ∈ R × R : x2 − y2 = 1

}
is not a function 

because the ordered pairs
(
x,

√
x2 − 1

)
and (x, − 

√
x2 − 1) are both in 

g. Even if we restrict the codomain to the nonnegative real numbers, the 
relation would not be a function on R, because not every element in the 
domain has an image. If x is any real number such that |x | < 1, then there 
is no y such that (x, y) ∈ g since that would give 1 + y2 = x2 < 1, which 
implies that y2 < 0. Thus, for x with |x | < 1, no image exists under g 
and g is not a function (Fig. 1.19).

1.8 Let f : A → B Be a Function. Prove that the Map f is Invertible if and Only 
if It is a Bijective Map. 

Solution: 
Assume that f is invertible and g : B → A is the inverse function of f . If  

f (a) = f (b), applying g on both sides of the equation yields 

a = g( f (a)) = g( f (b)) = b 

which means that f is injective. Let b ∈ B be an arbitrary element, and 
a = g(b). Then 

f (a) = f (g(b)) = f ◦ g(b) = ιB(b) = b. 

So, f is surjective. Therefore, f is bijective. 
For the other direction, assume that f is bijective, and let 

g = {(b, a) : (a, b) ∈ f } ⊆  B × A.

Fig. 1.18 Graph of 
f = {(x, y) ∈ R × R : 
y2 − x2 = 1} 
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Fig. 1.19 Graph of g ={
(x, y) ∈ R × R : x2 − y2 = 1

}

We show that g : B → A is a function such that g ◦ f = ιA and f ◦ g = ιB . 
Let b ∈ B be an arbitrary element. Since f is surjective (onto), there exists 
a ∈ A such that f (a) = b. i.e., (a, b) ∈ f , so  (b, a) ∈ g. That is, g is defined 
for each element in B. 

To show the uniqueness of images of elements in B under g, let  (b, a1) and 
(b, a2) be two elements in g, so  (a1, b) and (a2, b) belong to f . Since f is 
injective (one-to-one), then a1 = a2, as required. We still need to show that 
for all a ∈ A, g ◦ f (a) = a and for all b ∈ B, f ◦ g(b) = b. Let  a ∈ A, since 
f is defined for all elements of A, then there exists a unique element b ∈ B 
such that (a, b) ∈ f i.e., (b, a) ∈ g. Therefore, 

g ◦ f (a) = g( f (a)) = g(b) = a. 

Since a is an arbitrary element in A, then g ◦ f = ιA. Similarly, according 
to the surjectivity of f, for each b ∈ B there exists a ∈ A such that (a, b) ∈ f . 
This implies that (b, a) ∈ g. i.e., 

f ◦ g(b) = f (g(b)) = f (a) = b. 

Since b is an arbitrary element in B, then f ◦ g = ιB . 
1.9 Let n ∈ N, K be any subset of C, and A ∈ Mn(K ) be an invertible matrix. 

Show that 

det
(
A−1

) = 1 

det( A)
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and det(A) = det
(
A−1

)
if and only if det(A) ∈ {1, −1}. 

Solution: If A ∈ Mn(K ) is an invertible matrix, then there exists A−1 ∈ 
Mn(K ) such that 

AA−1 = In 

Therefore, 

det(A) det
(
A−1

) = det
(
AA−1

) = det(In) = 1 

The result now follows. Moreover, we have 

det(A) = det
(
A−1) ⇔ det(A) = 1 

det(A) 
⇔ (det(A))2 = 1 ⇔ det(A) ∈ {1, −1} 

1.10 Compute all possible symmetries of a regular triangle and list their multipli-
cations. 

Solution: According to Corollary 1.7.12, the  set.

{
R0, R2π/3, R4π/3, lo, lπ/3, l2π/3

}

contains all the symmetries of the regular triangle. Using the relations in 
Proposition 1.7.7, and, 

lθ = lπ +θ 

we obtain the following Table 1.4 that contains all their compositions. 

Unsolved Exercises

Table 1.4 Compositions of the symmetries of a regular triangle 

· R0 R2π/

3 
R4π/

3 
l0 lπ/

3 
l2π/

3 

R0 R0 R2π/

3 
R4π/

3 
l0 lπ/

3 
l2π/

3 
R2π/

3 
R2π/

3 
R4π/

3 
R0 lπ/

3 
l2π/

3 
l0 

R4π/

3 
R4π/

3 
R0 R2π/

3 
l2π/

3 
l0 lπ/

3 

l0 l0 l2π/

3 
l2π/

3 
R0 R4π/

3 
R2π/

3 
lπ/

3 
lπ/

3 
l0 l2π/

3 
R2π/

3 
R0 R4π/

3 
l2π/

3 
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1.11 Let ∆ denote the symmetric difference defined in Definition 1.1.8. Show that 
(A∆B)∆C = A∆(B∆C) for any sets A, B and C. 

1.12 Let r be a real number such that 0 < r < 1. Show that 

r−1 + 1 + r + r2 +  · · ·  +  rn = 
rn+2 − 1 
r (r − 1) 

for every integer n such that n ≥ −1. 
1.13 Show that 2n+2 + 32n+1 is divisible by 7 for every nonnegative integer n. 
1.14 Show that if x ∈ R, x > −1, then (1 + x)n ≥ 1 + nx  for every integer n such 

that n ≥ 0. 
1.15 For each of the following relations 

1. R = {
(x, y) ∈ Z2 : x + y < 5

}
, 

2. T = {(x, y) ∈ N2 : x + y > 1}, and 
3. V = {

(x, y) ∈ Z2 : x + y is even
}
, 

determine whether the relation is reflexive, symmetric, antisymmetric, or 
transitive. 

1.16 Let A be a nonempty set. For any relations R and T on A, the composition 
relation is defined as 

R◦T = {
(a, c) ∈ A2 : ∃  b ∈ A, (a, b) ∈ T ∧ (b, c) ∈ R

}

Show that if R and T are equivalence relations on A, then R ◦ T is an 
equivalence relation on A if and only if R ◦ T = T ◦ R. 

1.17 Let A = Z\{0} andR = {
(x, y) ∈ A2 : xy  > 0

}
be a relation on  A. Determine 

whether R is an equivalence relation. 
1.18 Let A = Z\{0} and R = {

(x, y) ∈ A2 : x |y} be a relation on  A. Show that R 
is a partial order relation. Is R a total order relation? 

1.19 Let n ∈ N and R = {
(a, b) ∈ Z2 : b−a 

n ∈ Z
} = {

(a, b) ∈ Z2 : n|(b − a)
}
. 

a. Show that R is an equivalence relation on Z. 
b Show that the equivalence classes of R can be expressed as m +nZ, where 

m = 0, 1, 2, . . . ,  n − 1. 

1.20 Consider the set of integers Z. Let  f : Z × Z → Z and g : Z × Z → Z be the 
maps defined by 

f (a, b) = a + b, g(a, b) = ab 

Show that f and g define functions on Z. 
1.21 Show that the composition of two functions is a function, and the composition 

of two bijective maps is a bijective map. Show that the inverse of a bijective 
map is bijective. 

1.22 Determine whether the functions
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a. f : R → R, where f (x) = x2 − 5 
b. g : R\{0} →  R, where g(x) = 1 x + 2 

are injective or surjective. Find the domains and ranges of these functions. 
1.23 Let A and B Be Two Sets and f :A→B Be a Function. Show that 

ιB ◦ f = f ◦ ιA = f 

where iA and iB are the inclusion functions of A and B respectively. 
1.24 Let A and B be two sets and f : A → B be a Function. Show that 

• f is injective if and only if for any H ⊆ A, f −1( f (H )) = H . 
• f is surjective if and only if for any K ⊆ B, f

(
f −1(K )

) = K . 

where f (H) denotes the image of H under f, and f −1(K ) is the preimage of 
K . 

1.25 Let f : C → C be the map takes z = x+iy  to its complex conjugate z = x−iy. 
Show that the map f is a bijective function, and for all z, z1, z2 ∈ C 

¯̄z = z, and z1z2 = z̄1 z̄2 

1.26 Show that the multiplication of diagonal matrices is commutative. 
1.27 Show that if A is an upper or a lower tringle matrix, then the determinant of A 

is the product of its diagonal entries. i.e., 

det(A) = 
n∏

i=1 

ai = a11 a22 . . . . . .  ann . 

1.28 List all possible symmetries for a regular octagon and the compositions of any 
two of these symmetries. 
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