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Young man, in mathematics you don’t 
understand things, you just get used to them.1 

John von Neumann

1 Gary Zukav: “The Dancing Wu Li Masters. An Overview of the New Physics”. 
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Preface 

Group theory has been studied since the late eighteenth century and continues to gain 
importance due to its widespread applications in the fields of physics, chemistry, 
geometry, and mathematics. This book aims to serve as an introductory course in 
group theory, directed toward second-year university students. The main goal of the 
book is to provide students with adequate knowledge to continue studying advanced 
courses in algebra. This book reflects the authors’ many years of experience in 
teaching mathematics, making it a rich source of purposive examples and exercises 
for other lecturers to utilize. 

The text can be broadly divided into three parts. The first part includes the initial 
three chapters, establishes the prerequisites needed to study group theory, covering 
topics in set theory, geometry, and number theory. Each of the three chapters ends 
with solved and unsolved exercises relating to the topic. In this part, the authors hope 
to rectify any gap in the reader’s background. 

The course on group theory consist of Chaps. 4–9. First, binary operations and 
semigroups are described in Chap. 4, along with some relevant notions. Chapter 5 
contains the core of our study, “the groups”. This chapter provides many examples 
and studies of the main characteristics of groups. Chapter 6 presents an important 
example of a finite group, which contains copies of all finite groups. Chapter 7 
describes the notion of subgroups. As the longest and richest chapter of the book, 
this chapter covers two important theorems: Lagrange and Cauchy theorems. In 
Chap. 8, the authors considered the concepts of group homomorphisms, and their 
bijective versions, group isomorphisms. The notion of isomorphic groups and the 
three fundamental theorems of homomorphisms are described in Chap. 8. The course 
on group theory ends with Chap. 9, which describes the classification of finite abelian 
groups. Chapter 9 begins by studying cyclic groups, then primary groups, which are 
not necessarily abelian but play an important role in proving the fundamental theorem 
of finite abelian groups. As in the first three chapters, each chapter in this part of the 
book is supplemented by many solved and unsolved exercises. 

The last part of the book introduces Sage, a mathematical software that is used to 
solve group theory problems. In Chap. 10, the authors explain some of the important
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commands in Sage and provide many examples and exercises. The authors hope that 
the book will be a beneficial contribution to the field. 

The authors acknowledge the Deanship of Scientific Research at King Faisal 
University in Al-Ahsa for the financial support for the authorship of the book (Grant 
No. 184006/GRANT75). 

Al-Ahsa, Saudi Arabia Bana Al Subaiei 
Muneerah Al Nuwairan
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Chapter 1 
Background Results in Set Theory 

This chapter summarizes the basic mathematical information required for studying 
this book, including definitions and results regarding operations on sets, functions, 
and matrices. The first section discusses operations on sets such as unions, intersec-
tions and differences. Moreover, the properties and fundamental results of these oper-
ations are presented. Section 1.2 describes the principle of mathematical induction. 
Section 1.3 is devoted to binary relations on sets and their properties while Sect. 1.4 
classifies binary relations into different types. Equivalence and ordered relations are 
also discussed. The concept of a function, which is a special and important type of 
binary relations, is defined and examined in Sect. 1.5. Section 1.6 describes matrices 
and their operations. The last section contains results regarding the symmetries of 
the regular n-polygon. 

1.1 Operations on Sets 

Set theory is considered the foundation of most branches of mathematics. Abstract 
algebra, for example, focused on sets that are closed under one or more operations. 
This section discusses the basic operations on sets such as unions, intersections, and 
symmetric differences. The essential results related to these operations are presented. 
The reader may refer to (Printer, 2014) and (Halmos, 2013) for proofs of these results. 

Definition 1.1.1 A set is any collection of distinct objects, which are called elements 
of the set. 

Sets are denoted by uppercase letters such as A, B, C, . . ., while lowercase letters 
such as x, y, a, b, c, . . .  are usually used to denote the elements. The notation a ∈ A 
(read a belongs to A, or  a in A) is used to express that a is an element of A. If  
a is not an element of A, the notation a /∈ A is used. The symbol ∅ denotes the 
empty set {}, which has no elements. The universal set that contains all the elements 
under consideration is denoted by U . A set can be described by two methods: One
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method is to list (if possible) all the elements of the set between two curly braces 
{}, this method is known as the roster method. To describe an infinite set in roster 
notation, some dots are placed at the end of the list, or at both ends, to indicate that 
the list continues forever. The other method, the descriptive method, involves stating 
a common characteristic of all elements of the set. The type of elements of a given 
set determines the method that is more appropriate. A set is called finite if it has a 
finite number of elements; otherwise, the set is called infinite. Figure 1.1 lists the 
most important infinite sets. 

Example 1.1.2 

1. The rainbow color set is a finite set that can be expressed by listing all its elements 
as {red, orange, yellow, green, blue, indigo, violet}. 

2. The set of positive integers, denoted by N, is an infinite set described using the 
roster method as {1, 2, 3, 4, 5, . . .  , . . .}. 

3. The finite set {2, 4, 6, 8} can be expressed using the descriptive method as 

{x ∈ N : x is even ∧ 1 ≤ x ≤ 8} 

4. The set {7, 8, 9, 10} can be expressed sing the descriptive method as 

{x ∈ N : 7 ≤ x ≤ 10} 

5. The infinite set of all integers {. . . ,  −3, −2, −1, 0, 1, 2, 3, . . .} is denoted by Z, 
which can be described as 

{x : x ∈ N ∨ x = 0 ∨ x = −y, y ∈ N} 

6. The set of rational numbers, denoted by Q, is expressed as 

{m/n : m, n ∈ Z ∧ n /= 0}. 

7. The set of all real numbers, denoted by R, consisting of rational and irrational 
numbers, cannot be easily described using the abovementioned methods. 

8. The set of complex numbers, denoted by C, is formed using real numbers and 
described as

{
a + ib  : a, b ∈ R, i2 = −1

}

9. Several sets are difficult or impossible to list using the roster method. These sets 
can be expressed using only the descriptive method. For example, 

a. The set of second-year students at King Faisal University (KFU) can be 
expressed as 

{x ∈ SKFU : x is a student in the second year}
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Fig. 1.1 Sets of numbers

where SKFU denotes all the students in King Faisal university. 
b. The set of integers that are greater than 100 can be described as 

{x ∈ Z : x > 100} 

c. The set of real numbers that lie between 0 and 1 can be described as 

{x ∈ R : 0 < x < 1} 

In Fig 1.1, the main sets of numbers are listed. 

Definition 1.1.3 Let A be any set. The cardinality of A, denoted by |A|, is defined 
as the number of its elements if A is finite. If A is an infinite set, the cardinality of A 
is said to be infinite. 

Definition 1.1.4 Let A and B be two sets. The set A is a subset of B, denoted by 
A ⊆ B, if each element in A belongs to B, i.e., A ⊆ B ⇔ (x ∈ A ⇔ x ∈ B). The  
sets A and B are said to be equal, denoted by A = B, if  A ⊆ B and B ⊆ A. The  set  
of all subsets of a given set A is called the power set of A and is denoted by P( A). 

Example 1.1.5 

1. The empty set ∅ is a subset of any set, and any set is a subset of itself. 
2. The sets {1, 2}, {1, 3} and {3} are subsets of {1, 2, 3}. 
3. The set of positive integers N, is a subset of Z. As  Z = {m/1 : m ∈ Z}, the  set  

Z can be considered as a subset of the rational numbers Q. Generally, 

N ⊆ Z ⊆ Q ⊆ R ⊆ C. 

4. The set of all negative integers −N is a subset of Z. 
5. The set {−2, 0, 2} is a subset of Z but not a subset of N. 
6. For any set A, the power set of A is never empty as ∅ ⊆  A and A ⊆ A for any 

A.
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7. P({1}) = {∅, {1}}, P(∅) = {∅}. 
8. P({1, 2, 3}) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. 
9. P(Z) is an infinite set. 
10. The sets A = {x ∈ Z : |x | =  1} and B = {

x ∈ R : x2 − 1 = 0
}
are equal. The 

integer solutions of |x | = 1 and the real solution of x2 − 1 = 0 are the same, 
both sets are equal to {1, −1}. 

11. The sets A = {
x ∈ Q : x3 = x

}
and B = {

x ∈ R : x2 = x
}
are not equal. 

The set A is the rational solutions of the equation x3 = x, specifically, A = 
{−1, 0, 1}, while B is the real solutions of the equation x2 = x , which are 0 
and 1. 

12. The sets A = {
x ∈ R : x2 + 1 = 0

}
and B = {

x ∈ C : x2 + 1 = 0
}
are not 

equal. The set A is the empty set ∅, while B equals to {i, −i}. 
In the above examples, we saw that 

• The power set of ∅ has only one element, i.e., |P(∅)| = 1 = 20. 
• The power set of {1, 2, 3} has eight elements, i.e., |P({1, 2, 3})| = 8 = 23. 
• If A has six elements, |P(A)| = 64 = 26. 

In general, the following proposition holds, the proof of which is presented in 
Exercise 1.5. 

Proposition 1.1.6 Let A be a finite set. The power set of A is a finite set whose 
cardinality equals 2|A|. 

Definition 1.1.7 Let be any set. The compliment of A, denoted by Ac, is defined as the 
set of all elements in the universal set U that are not in A, i.e., Ac = {x ∈ U : x /∈ A}. 
Definition 1.1.8 Let A and B be any two sets. 

1. The union of A and B, denoted by A ∪ B, is the set of elements that are either in 
A, in  B, or both, i.e., A ∪ B = {x : x ∈ A ∨ x ∈ B}. 

2. The intersection of A and B, denoted by A ∩ B, is the set of elements that are in 
both A and B, i.e., A ∩ B = {x : x ∈ A ∧ x ∈ B}. 
– If A ∩ B = ∅, we say that A and B are disjoint sets. The sets A1, A2, . . . ,  An 

are called mutually disjoint if Ai ∩ A j = ∅  for each i /= j . 

3. The difference of A and B, denoted by A\B or A − B, is the set of elements that 
are in A but not in B, i.e., A\B = {x : x ∈ A ∧ x /∈ B}. 

4. The symmetric difference (disjunctive union) of A and B, denoted by A∆B, is  
the set of elements in either A or B but not in their intersection, i.e., A∆B = 
( A\B) ∪ (B\A). 

Example 1.1.9 

1. Let A = {1, 2, 3, 4, 5, 6} and B = {5, 6, 7, 8}.
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A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8}, A ∩ B = {5, 6 } 
A\B = {1, 2, 3, 4}, B\A = {7, 8}, 
A∆B = {1, 2, 3, 4, 7, 8}. 

Clearly, the sets A and B are not disjoint. Note that A\B and B\A are different 
sets. 

2. The set of positive integers N, and the set of negative integers −N are examples 
of disjoint sets. 

Proposition 1.1.10 Let A, B, and C be any sets. 

1. A ⊆ A ∪ B, B ⊆ A ∪ B, A ∩ B ⊆ A, and A ∩ B ⊆ B. 
2. A ∪ (B\A) = A ∪ B, and A ∩ (B\A) = ∅. 
3. If A ⊆ B, then A ∪ B = B and A ∩ B = A. 
4. If A ⊆ B and C ⊆ D, then A ∪ C ⊆ B ∪ D, and A ∩ C ⊆ B ∩ D. 
5. A\B = A ∩ Bc. 
6. A ⊆ B if and only if Bc ⊆ Ac. 

Proposition 1.1.11 Let A, B, and C be sets, and U be the universal set. The 
following identities hold. 

1. Complementation Law:(Ac)c = A. 
2. Idempotent Laws: A ∪ A = A, and A ∩ A = A. 
3. Identity Laws: A ∪ ∅  =  A, and A ∩ U = A. 
4. Domination Laws: A ∪ U = U , and A ∩ ∅  =  ∅. 
5. A\∅ = A, and A\A = ∅. 
6. A ∆ A = ∅, A ∩ Ac = ∅, and A ∪ Ac = U. 
7. Commutative Laws: A ∪ B = B ∪ A, A ∩ B = B ∩ A and A∆B = B∆A 
8. Associative Laws: 

A ∪ (B ∪ C) = (A ∪ B) ∪ C, 
A ∩ (B ∩ C) = (A ∩ B) ∩ C, 
(A∆B)∆C = A∆(B∆C). 

9. Distributive Laws: 

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), 
A ∪ (B ∩ C) = (A ∪ B) ∩ ( A ∪ C) 

10. De Morgan’s Laws: 

( A ∪ B)c = Ac ∩ Bc , (A ∩ B)c = Ac ∪ Bc
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11. Difference Laws: 

A\(B ∪ C) = ( A\B) ∩ (A\C) 
A\(B ∩ C) = (A\B) ∪ (A\C) 

Definition 1.1.12 Let I be an index set. For each i ∈ I , let  Ai be a set indexed by 
i . The union and intersection of Ai for all values of i are defined as.

∐

i=I 

Ai = {x : ∃  i ∈ I ∆ x ∈ Ai},
∩

i∈I 
Ai = {x : x ∈ Ai ∀ i ∈ I } 

If I = {k, k + 1, . . . ,  m} is a finite set,
∐

i∈I 
Ai = Ak ∪ Ak+1 ∪  · · ·  ∪  Am = 

m∐

i=k 

Ai 

and

∩

i∈I 
Ai = Ak ∩ Ak+1 ∩  · · ·  ∩  Am = 

m∩

i=k 

Ai 

If F is a collection of sets,
∐

A∈F 
A = {x : ∃  A ∈ F ∆ x ∈ A} 

and

∩

A∈F 
A = {x : x ∈ A ∀A ∈ F} 

Proposition 1.1.13 Let I be an index set. For each i ∈ I , let  Ai be the set indexed 
by i . 

1. For each j ∈ I,
∩

i∈I 
Ai ⊆ A j and A j ⊆ ∪

i∈I 
Ai . 

2. If B is a set such that for all i ∈ I , Ai ⊆ B, then
∪

i∈I 
Ai ⊆ B. 

3. If B is a set such that for all i ∈ I, B ⊆ Ai , then B ⊆ ∩

i∈I 
Ai . 

If I = F is a collection of sets, the above statements can be restated as follows: 

1. For all B ∈ F ,
∩

A∈F 
A ⊆ B and B ⊆ ∪

A∈F 
A.
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2. If A ⊆ B for all A ∈ F , then
∪

A∈F 
A ⊆ B. 

3. If B ⊆ A for all A ∈ F , then B ⊆ ∩

A∈F 
A. 

Example 1.1.14 

1. Let I = {1, 2, 3}. If  A1 = {1, 2, 3, 5, 7}, A2 = {3, 7, 8, 9}, and A3 = {3, 4, 6, 7}, 
then 

3∐

i=1 

Ai = {1, 2, 3, 4, 5, 6, 7, 8, 9} and 
3∩

i=1 

Ai = {3, 7}. 

2. For each i ∈ N, let  Ai = {m ∈ N : m ≥ i}. Since Ai ⊆ N for all i ∈ I,
∐

i=1 

Ai ⊆ N = A1 ⊆
∐

i∈I 
Ai . 

Hence, 
∞∪

i=1 
Ai = N 

Moreover, 
∞∩

i=1 
Ai = ∅. For if not, then there exists x ∈ 

∞∩

i=1 
Ai , i.e., 

x ∈ Ai = {m ∈ N : m ≥ i} for each i ∈ N. 

That is, x ≥ i ∀ i ∈ N. If i = x + 1, then x ≥ x +1, which is a contradiction. 
3. Let I = {x ∈ R : x > 0} and for all x ∈ I, let Ax = (−x, x). We show that∪

x∈I 
Ax = R as follow: since Ax ⊆ R for each x ∈ I, then

∪

x∈I 
Ax ⊆ R. For  the  

other inclusion, let y ∈ R and pick x = |y| + 1, then |y| < x , i.e., −x < y < x . 
Hence, y ∈ Ax . Since y ∈ R is an arbitrary element, then R ⊆ ∪

x∈I Ax . 
For the intersection, {0} ⊆ (−x, x) = Ax for each x ∈ I , and thus, {0} ⊆∩

x∈I 
Ax . However, if y /= 0, then |y| > 0. Let  x = |y| 

2 < |y|, then y /∈ (−x, x). 

Hence, y /∈ ∩

x∈I 
Ax and

∩

x∈I 
Ax ⊆ {0}. Therefore, ∩

x∈I 
Ax = {0}. 

Proposition 1.1.15 Let I be an index set and Ai be a set for all i ∈ I . The following 
identities hold: 

1. (
∪

i∈I 
Ai )

c = ∩

i∈I 
Ac 
i and (

∩

i∈I 
Ai )

c = ∪

i∈I 
Ac 
i . 

2. B ∪ (
∩

i∈I 
Ai ) = ∩

i∈I 
(B ∪ Ai ) and B ∩ (

∪

i∈I 
Ai ) = ∪

i∈I 
(B ∩ Ai ). 

The equations in item (1) in Proposition 1.1.15 are known by Generalized De 
Morgan’s Laws. 

Definition 1.1.16 (Partition of a set) Let A be a nonempty set and C ⊆ P(A). The  
set C is called a partition of A if



8 1 Background Results in Set Theory

1. ∅ /∈ C and ∪

E∈C 
E = A 

2. For all E, F ∈ C, either E = F (equal) or E ∩ F = ∅  (disjoint). 

A partition of a set can be considered a split of the set into smaller separate and 
nonempty parts. 

Example 1.1.17 Let A = {1, 2, 3, 4}. Each of the sets 

C1 = {{1}, {2, 4}, {3}}, C2 = {{1, 2}, {3, 4}}, and C3 = {{1}, {2, 3, 4}}. 

is an example of a partition of A, as they all satisfy the above two conditions. 
However, none of the sets 

D1 = {{1, 2}, {2, 3, 4}}, D2 = {∅, {1}, {2, 3, 4}}, and D3 = {{1, 3}, {4}} 

forms a partition of A (Check!). 

Example 1.1.18 

1. Consider the set of integers Z. Let  E1 and E2 be the sets of positive and negative 
integers, respectively. The set C = {E1, E2} is not a partition of Z because 
E1 ∪ E2 /= Z. The  set  D = {E1, E2, {0}} forms a partition of Z. 

2. Consider the set of positive integers N. Let E1, E2 and E3 be the sets of even 
positive integers, odd positive integers, and primes, respectively. The set C = 
{E1, E2} forms a partition of N, and D = {E1, E2, E3} does not, because E2 ∩ 
E3 /= ∅. 

3. Consider the set of positive real numbers R+. For each n ∈ N, let  En = 
(n − 1, n). The  set  C = {En : n ∈ N} is not a partition of R+ since

∪

n∈N 
En = 

R
+\Z /= R+. If  En is replaced by [n − 1, n], then C will not form a partition 

of R+ because En ∩ En+1 /= ∅. If  En is replaced by (n − 1, n], then C forms a 
partition of R+. 

Another operation that is defined on sets is the Cartesian product, in which two 
sets form a new one using the notion of ordered pairs. An ordered pair of a and b is 
defined as the set {{a}, {a, b}} and expressed as (a, b), where a and b are called the 
first and second components of the pair. Two ordered pairs (a, b) and (c, d) are equal 
if and only if a = c and b = d. In general, the n-tuple of a1, a2, . . . ,  an is the ordered 
list (a1, a2, . . . ,  an). The  j th element in the n-tuple is called the j th component. 

Definition 1.1.19 (Cartesian product of sets) Let A and B be two sets. The Cartesian 
product of A and B, denoted by A× B, is defined as the set of all ordered pairs whose 
first and second components are elements of A and B, respectively. That is, 

A × B = {(a, b) : a ∈ A, b ∈ B}.
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In general, if A1, A2, . . . ,  An are sets, then their Cartesian product, denoted by 
A1 × A2 × . . .  × An, is the set of n-tuples of which the i th component belongs to 
Ai . That is 

A1 × A2 × . . .  × An = {(a1, a2, . . . ,  an) : ai ∈ Ai , 1 ≤ i ≤ n}. 

Proposition 1.1.20 Let A and B be any sets, the following statements hold. 

1. A × ∅  =  ∅. 
2. A × B = ∅  if and only if A = ∅  or B = ∅. 
3. If A and B are nonempty sets, then A × B = B × A ⇔ A = B. 
4. |A × B| = |B × A| = |A||B|. 
5. If A × B /= ∅, then A × B ⊆ C × D if and only if A ⊆ C and B ⊆ D. 
6. If A × B /= ∅, then A × B = C × D if and only if A = C and B = D. 
7. (A × B) ∩ (C × D) = (A ∩ C) × (B ∩ D). 

Example 1.1.21 

1. If A = {1, 2} and B = {x, y, z}, then 

A × B = {(1, x), (1, y), (1, z), (2, x), (2, y), (2, z)}. 

2. If A = {1, 2} and B = {0}, then 

A × B = {(1, 0), (2, 0)}. 

3. If A = R, and B = {0}, then 

A × B = {(x, y) : x ∈ R ∧ y = 0} = {(x, 0) : x ∈ R} 

is the set of points that represent the x-axis on the plane. 
4. Consider the real numbers R. Let  A = (0, 1) and B = [0, 1), then 

A × B = {(x, y) : 0 < x < 1 ∧ 0 ≤ y < 1} 

is the set of points on the plane represented by a square bounded by the lines 
x = 0, x = 1, y = 0, and y = 1. The square’s side on the x-axis (y = 0) is 
included (Fig. 1.2).

5. The set Z × R = {(x, y) : x ∈ Z ∧ y ∈ R} represents all vertical lines on the 
plane at which the x-coordinates are integers (Fig. 1.3)

6. The set Z × Z = {(x, y) : x ∈ Z, y ∈ Z} consists of points in the plane with both 
of coordinates integers. This set is represented on the plane as (Fig. 1.4):

7. The set R × R = {(x, y) : x, y ∈ R} = R2 represents the entire plane. Note that 
R × R∗ = {(x, y) : x, y ∈ R ∧ y /= 0} represents the plane R2 except the line 
y = 0.
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Fig. 1.2 Graph of (0,1) × 
[0,1) in the plane

Fig. 1.3 Graph of Z × R

Fig. 1.4 Graph of Z × Z
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1.2 Principle of Mathematical Induction 

The principle of mathematical induction, or simply, mathematical induction, is a 
mathematical technique used to prove a statement defined for the set of integers Z, 
or any of its subsets. Among the many forms of mathematical induction, we present 
two forms and examples of each form. For the proofs of the theorem and proposition 
provided in this section, see (Hammack, 2013). 

Theorem 1.2.1 (Principle of mathematical induction) Let n ∈ Z and P(n) be a 
mathematical statement that depends on n. If 

1. there exists m ∈ Z such that P(m) is a true statement, and 
2. for all n ≥ m, 

P(n) is true ⇒ P(n + 1) is true 

then P(n) is a true statement for all n ≥ m. 

The statement in item (1), in above theorem, is called Base step, the statement in 
item (2) is called Inductive step. The process of the mathematical induction is intu-
itive, as the base step assumes that the statement is true for m; subsequently, the 
inductive step ensures that the statement is true for the next integer. Figure 1.5 
provides an intuitive justification for the principle of mathematical induction. 

P(m) true ⇒ P(m + 1) true ⇒ P(m + 2) true ⇒ P(m + 3) true · · · · · ·  

Remark 1.2.2 The principle of mathematical induction can also be used to prove 
mathematical statements on a finite subset of Z. If  A = {m, m + 1, m + 2, . . . ,  n} is 
a subset of Z and P(k) is a mathematical statement, then we can show that P(k) is 
true for all k ∈ A by demonstrating that P(m) is true, and P(k) is true ⇒ P(k + 1) 
is true for all m ≤ k < n. 

Example 1.2.3 Let n ∈ N. Using the principle of mathematical induction, one can 
show that 

1 + 2 +  · · ·  +  n = 
n(n + 1) 

2 
for all n ≥ 1 

as follows:

Fig. 1.5 Principle of mathematical induction 
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Base step: since 1 = 1(2)/2, then the equality holds if n = 1. 
Inductive step: Assume that the statement is true for n, i.e., 1 + 2 +  · · ·  +  n = 

n(n + 1)/2. We verify  

1 + 2 +  · · ·  +  n + (n + 1) = (n + 1)(n + 2)/2 

as follows: 

L.H.S = 1 + 2 +  · · ·  +  n + (n + 1) = n(n + 1)/2 + (n + 1) 
= (n(n + 1) + 2(n + 1))/2 = (n + 1)(n + 2)/2 = R.H.S. 

As the two conditions are satisfied, according to the principle of mathematical 
induction, the statement is true for all n ≥ 1. 

In mathematical induction, the validity of the statement at n + 1 is derived from 
the validity of the statement at the previous value n. However, in several situations, 
the process might need information about several values to complete the proof. For 
example, if 

a1 = 1, a2 = 4 and an = 4an−1 − 4an−2 for all n ≥ 3, 

then two values must be considered to show that an = n2n−1 for all n ≥ 1. Such 
a problem cannot be solved using the principle of mathematical induction in the 
abovementioned form. Other forms of the principle can be used to address such 
situations, one of which is called the principle of strong induction or simply strong 
induction. 

Proposition 1.2.4 (The principle of strong induction) Let n ∈ Z and P(n) be a 
mathematical statement that depends on n. If  

1. There exists m ∈ Z such that P(m) is a true statement, and “Base step” 
2. If P(k) is true for all k such that m ≤ k < n implies that P(n) is true. “Inductive 

step” 

then P(n) is a true statement for all n ≥ m. 

Example 1.2.5 Let a1 = 1, a2 = 4, and an = 4an−1 − 4an−2 for all n ≥ 3. Using  
the principle of strong induction, we can show that 

an = n2n−1 for all n ≥ 1 

as follows: 

Base step: The statement is true for n = 1 and n = 2. 
Inductive step: Assume that n > 2 and the statement is true for all 1 ≤ k < n, as  

1 ≤ n − 2, n − 1 < n, then
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an−1 = (n − 1)2n−2 , and an−2 = (n − 2)2n−3 . 

Hence, 

an = 4(n − 1)2n−2 − 4(n − 2)2n−3 

= 4(2(n − 1) − (n − 2))2n−3 = n2n−1 . 

i.e., the statement is true for n. According to the strong induction, the statement holds 
for all n ≥ 1. 

1.3 Binary Relations on Sets 

As in any other field of study, objects in mathematics are related in various ways. 
For example, the relation of a point lying on a line, or the inclusion relation for sets. 
In mathematics, relations are usually represented by a set of ordered pairs in which 
the first and second components are related. For example, let P be a set of points 
and L be a set of lines on the plane. The set J = {(p, l) ∈ P × L : p lies on l} 
represents the relation that p lies on l. The inclusion relation among a family of sets 
is represented by S = {(A, B) ∈ F × F : A ⊆ B}, where F is a collection of sets. In 
general, the following definition can be stated. 

Definition 1.3.1 Let A and B be two sets. A binary relation (or simply, a relation) 
R from A to B is a subset of A × B, i.e., 

R ⊆ {(a, b) : a ∈ A, b ∈ B} 

If A = B, we say  R is a relation on A. 
For an ordered pair, (a, b) ∈ A × B, either (a, b) ∈ R or aRb is used to denote 

that a is related to b through the relation R. Both notations (a, b) /∈ R and a−Rb are 
used to express that a and b are not related through the relation R. The notion of a 
binary relation is generalized to more than two sets as follows: 

Let A1, A2, . . . ,  An be any sets. A relation R of these sets is a subset of A1 × 
A2 × . . .× An , i.e., R ⊆ {(a1, a2, . . . ,  an) : a1 ∈ A1, a2 ∈ A2,  . . . ,  an ∈ An}. In this  
book, only the binary relation is considered unless otherwise stated. 

For any two sets A and B, two relations always exist from A to B. Namely, R = ∅  
and R = A × B. More examples are presented below. 

Example 1.3.2 

1. The set R = {(1, 7), (1, 8), (1, 9), (3, 7)} is a relation from {1, 3} to {7, 8, 9}. 
2. The set R = {(a, 7), (a, 8), (a, 9), (b, 7)} is a relation from {a, b} to {7, 8, 9}. 
3. The set R = {(1, 1), (2, 2), (1, 3)} is a relation on {1, 2, 3}. 
4. The set S = {(A, B) ∈ F × F : A ⊆ B} is a relation on F, where F is any family 

of sets.
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5. The set S = {(m, n) ∈ Z × Z : n divides m} is a relation on Z. 
6. The set R = {

(x, y) ∈ N2 : y = x + 1
}
is a relation on N. 

7. The set R = {
(x, y) ∈ R2 : y = x + 1

}
is a relation on R. 

8. Let R1 = {
(x, y) ∈ R × R : x2 + y2 = 1

}
and R2 ={

(x, y) ∈ R × R : x2 + y2 ≤ 1
}
be the unit circle and the unit disk in the 

plane, respectively. Both R1 and R2 are relations on R. The  sets  R1 and R2 are 

not relations on Z since
(

1 √
2 
, 1 √

2

)
belongs to R1 and R2 but it does not belong 

to Z × Z. 

Definition 1.3.3 Let A and B be any two sets and R be a relation from A to B. 

1. The domain of R, denoted by D(R), is the set of elements of A that 
appear as the first components in the elements of R. i.e., D(R) = 
{a ∈ A : ∃  b ∈ B ∧ (a, b) ∈ R}. 

2. The range of R, denoted by Rang(R), is the set of elements of B that 
appear as the second components in the elements of R. i.e., Rang(R) = 
{b ∈ B : ∃  a ∈ A ∧ (a, b) ∈ R}. 

3. The set B is called the codomain of R. 
4. For each (a, b) ∈ R, the element b is called the image of a under R. 

For any sets A and B, we have  
D(∅) = Rang(∅) = ∅, D( A × B) = A, and Rang(A × B) = B. 

Example 1.3.4 The domains and ranges of the relations in Example 1.3.2 are 

1. D(R) = {1, 3}, and Rang(R) = {7, 8, 9}. 
2. D(R) = {a, b}, and Rang(R) = {7, 8}. 
3. D(R) = {1, 2}, and Rang(R) = {1, 2, 3}. 
4. D(R) = F, and Rang(R) = F (This is true because any set is a subset of itself). 
5. D(R) = Z, and Rang(R) = Z\{0}. 
6. D(R) = N, and Rang(R) = N\{1}. 
7. D(R) = R, and Rang(R) = R. 
8. D(R1) = D(R2) = [−1, 1], and Rang(R1) = Rang(R2) = [−1, 1]. 

In the following, we restrict our study to the relations in which A = B. We  
study the properties of these relations and discuss two types of relations that appear 
frequently in algebra. Recall that a relation from A to A is called a relation on A. 

Definition 1.3.5 (Properties of a relation on a set) Let  A be any set and R be a 
relation on A. The relation R is 
1. Reflexive: if (a, a) ∈ R for all a ∈ A. 
2. Symmetric: if for all a, b ∈ A, (a, b) ∈ R ⇒ (b, a) ∈ R. 
3. Antisymmetric: if for all a, b ∈ A, ((a, b) ∈ R ∧ (b, a) ∈ R) ⇒ a = b. 
4. Transitive: if for all a, b, c ∈ A, ((a, b) ∈ R ∧ (b, c) ∈ R) ⇒ (a, c) ∈ R.
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Definition 1.3.6 Let A be any set and R be a relation on  A. The relation R is called 
a connex relation if either (a, b) ∈ R or (b, a) ∈ R for each a, b ∈ A. 

It is clear that any connex relation is reflexive. 

Example 1.3.7 

1. Let A = ∅. As  A × A is the empty set ∅, the only relation that can be defined 
on A is the empty relation ∅. Clearly, ∅ is reflexive (if not, then there exists 
a ∈ A = ∅  such that (a, a) /∈ R, which is impossible). As ∅ does not contain 
any elements, the conditional statement for the symmetry is true, which implies 
that ∅ is symmetric. The same justification implies that ∅ is antisymmetric and 
transitive. Clearly, since there are no elements in A, the relation ∅ is a connex 
relation. 

2. Let A /= ∅. The  set  ∅ represents a relation on A that is symmetric, antisymmetric, 
and transitive. It is not reflexive (pick a ∈ A, then (a, a) /∈ ∅), therefore, it is not 
a connex relation. 

3. Let A = {1, 2, 3}. The relation R = {(1, 1), (2, 2), (1, 3)} is not reflexive since 
(3, 3) /∈ R. It is not symmetric as (1, 3) ∈ R but (3, 1) /∈ R. The relation 
R is transitive since the only ordered pairs in the form (a, b), (b, c) in R are 
(1, 1), (1, 3) and (a, c) = (1, 3) ∈ R. Moreover, R is antisymmetric, because 
no elements in R in the form (a, b), (b, a) where a /= b. As  R is not reflexive, 
it is not a connex relation. 

4. For any set A, define the relation ∆A = {(a, a) ∈ A × A : a ∈ A}. It straight-
forward to check that ∆A is reflexive, symmetric, antisymmetric, and transitive. 
Moreover, ∆A is not a connex relation for any A such that |A| ≥ 2 (if a /= b are 
two elements in A, then neither (a, b) nor (b, a) belongs to ∆A). The relation
∆A expresses the equality relation and is called the identity (or the diagonal) 
relation. The symbol ∆A denotes the identity relation on A. If  A = {1, 2, 3}, 
then ∆A = {(1, 1), (2, 2), (3, 3)} is an example for the identity relation on a 
finite set. The line y = x is a visualization for ∆A = {(x, x) ∈ R × R : x ∈ R}, 
an example of an infinite identity relation. 

5. Let A /= ∅  be any set. The relation R = A × A = {(a, b) ∈ A × A : a, b ∈ A} 
is reflexive, symmetric, and transitive. It is not antisymmetric for any A having 
more than one element. Let a /= b be elements in A, according to the definition 
of R, both (a, b) and (b, a) belong to R, but  a /= b, which implies that R is 
not antisymmetric. Clearly, as (a, b) ∈ R for all a, b ∈ A, then R is a connex 
relation. 

6. Let A = N and R = {
(x, y) ∈ N2 : y = x + 1

}
. The relation R is not reflexive, 

not symmetric, and not transitive. As R is not reflexive, it is not a connex relation. 
7. Let A = R and R = {

(x, y) ∈ R × R : x2 + y2 = 1
}
. The relation R is not 

reflexive since 2 ∈ A, but  (2, 2) /∈ R ( 22 + 22 = 8 /= 1). It is symmetric, for 
if (x, y) ∈ R then x2 + y2 = 1. i.e., y2 + x2 = 1 and (y, x) ∈ R. The relation 
R is not antisymmetric as both (1, 0), (0, 1) ∈ R but 0 /= 1. Finally, it is not 
transitive as (1, 0), (0, −1) ∈ R, but  (1, −1) /∈ R. Clearly, it is not a connex 
relation (Fig. 1.6).
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Fig. 1.6 Graph of R ={
(x, y) ∈ R × R : x2 + y2 = 1

}

1.4 Types of Binary Relations on Sets 

A relation can be classified depending on its properties. In this book, we will 
encounter specific types of relations, such as equivalence and order relations. Readers 
can refer to (Halmos, 2013) for more details regarding the types of relations. 

Definition 1.4.1 (Types of relations) Let  A be a set and R be a relation on A. The  
relation R is said to be 
1. An equivalence relation if R is reflexive, symmetric, and transitive. 
2. A partial order relation if R is reflexive, antisymmetric, and transitive. 
3. A total order relation if R is antisymmetric, transitive, and a connex relation. 

As any connex relation is reflexive, a total order relation must be a partial order 
relation. By order relation, we mean a partial order relation. 

The identity relation (Example 1.3.7(4)) is the canonical example of an equiva-
lence relation, where for any a, b ∈ A, (a, b) ∈ R if and only if a = b. The partial 
order relation generalizes the concept of ordering or arranging the elements of a set. 
For a, b ∈ A, the pair (a, b) belongs to a partial order relation means that one of the 
elements precedes the other in the order. The word “partial” indicates that not every 
pair of elements in A are related, i.e., if a and b are arbitrary elements in A, then 
the partial order relation does not require (a, b) or (b, a) to be R. In contrast, due 
to the connexity property, the total order relation requires that either (a, b) ∈ R or 
(b, a) ∈ R for each a, b ∈ A. i.e., in a total order relation, any two elements in A are 
comparable. The set endowed with a total order relation is called a chain. For order 
relations, the notation ≤ is usually used instead of R, and the notation a ≤ b is used 
instead of aRb. 

Example 1.4.2 

1. In Example 1.3.7, 

• The relation ∅ in (1) is an equivalence relation, a partial order, and a total 
order relation.
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• The set ∅ in (2) and the relation in (3) are not reflexive; hence these relations 
are neither equivalence nor order relations. 

• The relation ∆A in (4) is an equivalence relation and a partial order relation. 
If |A| ≥ 2, we pick  a, b ∈ A such that a /= b. Since neither (a, b) nor 
(b, a) belongs to ∆A, then ∆A cannot be a total order relation for any set that 
contains more than one element. 

• The relation in (5) is an equivalence relation, it is not an order relation since 
it is not antisymmetric. 

• The relation in (6) is neither an equivalence relation nor an order relation. 
This result remains true if N is replaced with Z, Q, or R. 

• The relation in (7) is not reflexive, so it is neither equivalence nor order relation. 

2. Let A = R, and R be the natural order on R. i.e., aRb ⇔ a ≤ b for all a, b ∈ R. 
It is straightforward to verify that R is reflexive, antisymmetric, and transitive. 
The relation R is not symmetric. For any two distinct real numbers, one must be 
greater than the other. Hence, the natural order is a total (hence, a partial) order 
relation, but not an equivalence relation. 

Definition 1.4.3 Let A be a nonempty set and ≤ be a partial order relation on A. For  
any nonempty subset B of A, 

1. an element a ∈ A is called a lower bound of B if a ≤ b for all b ∈ B, 
2. an element d ∈ A is called an upper bound of B if b ≤ d for all b ∈ B, 
3. the set B is called bounded below (bounded above) if B has a lower bound (an 

upper bound), 
4. the set B is called bounded if it is bounded below and above; otherwise, it is 

called unbounded. 

Definition 1.4.4 Let A be a nonempty set and ≤ be a partial order relation on A. For  
any nonempty subset B of A, 

1. an element c ∈ B is called minimal in B if for all b ∈ B, b ≤ c ⇒ c = b, 
2. an element c ∈ B is called the minimum of B if c ≤ b for all b ∈ B, 
3. an element d ∈ B is called maximal in B if for all b ∈ B, d ≤ b ⇒ d = b, 
4. an element d ∈ B is called the maximum of B if b ≤ d for all b ∈ B. 

Note that if we read c ≤ b as c is less than or equal to b, then 

in the above definition, (1) states that c ∈ B is minimal if c is less than or equal 
to every element in B that is comparable with c. Item  (2) states that c ∈ B is 
minimum if c is less than or equal to every element in B. Thus, the minimum is 
always a minimal element, the maximal and maximum elements can be similarly 
distinguished, and the maximum element is always maximal. The converse is not 
true, as shown in the following example. 

Example 1.4.5 Let A = {a, b, c}.
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1. Let R = {(a, a), (b, b), (c, c), (a, b), (a, c)}. The relation R is a partial order 
relation on A (Check!). Clearly, b is a maximal element in A, but is not maximum, 
since there exists an element c ∈ A such that c ≰ b. The element c is also 
maximal. 

2. Let R = {(a, a), (b, b), (c, c), (b, c), (a, c)}. The relation R is a partial order 
relation on A (Check!). The element b is a minimal element in A that is not 
minimum, since there exists an element a ∈ A such that a ≰ c. The element a 
is also minimal. 

3. Let R = {(a, a), (b, b), (c, c), (a, b), (a, c), (b, c)}. It is easy to check that c is 
a maximal and maximum element in A, and a is minimal and minimum. 

Proposition 1.4.6 Let A be a nonempty set and ≤ be a partial order relation on A. 
If B is a nonempty subset of A, then B has at most one maximum and one minimum 
element. If ≤ is a total order relation on B, then a minimal (res. maximal) is the 
minimum (res. maximum) element in B. 

Next, we focus on equivalence relations. Recall the definition of a partition of 
a set given in Definition 1.1.16. We show that any equivalence relation results in a 
partition of the underlying set (Theorem 1.4.10 below). We begin with the following 
definition. 

Definition 1.4.7 (Equivalence classes) Let  A be a nonempty set and R be an equiv-
alence relation on A. For all a ∈ A, the equivalence class of a, denoted by [a]R or 
simply [a], is the set of elements of A that are related to a via R. That is, 

[a]R = {b ∈ A : (a, b) ∈ R} = {b ∈ A : (b, a) ∈ R} 
= {b ∈ A : aRb} = {b ∈ A : bRa}. 

Two elements of the set A are called equivalent if and only if they belong to 
the same equivalence class, i.e., if and only if they are related by R. The  set of all  
equivalence classes for all elements in A is called equivalence classes of R. 

Example 1.4.8 

1. Let A = {1, 2, 3} and R1 = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}. The relation R1 

is an equivalence relation (Verify!). The equivalence classes are Fig 1.7 visualizes 
the equivalence class for each element in A. 

[1] = {1, 2} = [2] and [3] = {3}

2. Let A = {1, 2, 3, 4} and ∆A = {(1, 1), (2, 2), (3, 3), (4, 4)}. As explained in 
Example 1.3.7, the relation∆A is an equivalence relation. The equivalence classes 
are 

[1] = {1}, [2] = {2}, [3] = {3}, and [4] = {4}.
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Fig. 1.7 Equivalence 
classes of R1

In general, the equivalence class of an element in a set A, endowed with ∆A, 
consists of one element [a] = {a}, see also Fig. 1.8. 
Proposition 1.4.9 Let A be a nonempty set and R be an equivalence relation on A. 
For all a, b ∈ A, the following statements are satisfied: 

1. a ∈ [a]. 
2. b ∈ [a] if and only if [a] = [b]. 
3. [a] ∩ [b] /= ∅  if and only if [a] = [b]. 
4. If (a, b) /∈ R, then [a] ∩ [b] = ∅. 

Item (3) in the above proposition states that any two equivalence classes are either 
equal or disjoint. This is an important fact for proving the following theorem. 

Theorem 1.4.10 Let A be a nonempty set. The equivalence classes of any 
equivalence relation on A form a partition of A. 

Example 1.4.11 Let A = Z and R = {
(a, b) ∈ Z2 : (a − b)/3 ∈ Z

}
. The relation 

R is an equivalence relation on Z and satisfies the following properties: 

• Reflexive: For all a ∈ Z, ((a − a)/3) = 0 ∈ Z, which implies that (a, a) ∈ R. 
• Symmetric: Assume that (a, b) ∈ R for arbitrary integers a and b. According 

to the definition of R, (a − b)/3 ∈ Z, which is equivalent to (b − a)/3 = 
−(a − b)/3 ∈ Z. Hence, (b, a) ∈ R. 

• Transitive: Assume that (a, b) ∈ R and (b, c) ∈ R for arbitrary integers a, b, 
and c. According to the definition of R, both (a − b)/3 and (b − c)/3 ∈ Z. 
Consequently, 

a − c 
3 

= 
a − b 
3 

+ 
b − c 
3

∈ Z.

Fig. 1.8 Equivalence 
classes of ∆A 
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Fig. 1.9 Equivalence classes of R on A 

Therefore, the relationR is an equivalence relation. For any a ∈ Z, the equivalence 
class of a is 

[a] = {b ∈ Z : (a, b) ∈ R} =
{
b ∈ Z : a − b 

3 
∈ Z

}
=

{
b ∈ Z : ∃  k ∈ Z ∆ a − b 

3
= k

}

= {b ∈ Z : ∃  k ∈ Z ∆ b = a − 3k, k ∈ Z} =  a + {3l : l ∈ Z} =  a + 3Z. 

For example, 

[0] = 0 + 3Z = {. . .  − 6, −3, 0, 3, 6, . . .}, [1] = 1 + 3Z = {. . .  − 5, −2, 1, 4, 7, . . .} 
[2] = 2 + 3Z = {. . .  − 4, −1, 2, 5, 8, . . .}, [3] = 3 + 3Z = {. . .  − 3, 0, 3, 6, 9, . . .} = [0] 

By Proposition 1.4.9 (3), 
. . .  = [−6] = [−3] = [0] = [3] = [6] = . . .  = multiple of 3 
. . .  = [−5] = [−2] = [1] = [4] = [7] = . . .  = ( multiple of 3) + 1. 
. . .  = [−4] = [−1] = [2] = [5] = [8] = . . .  = ( multiple of 3) + 2 (Fig. 1.9). 
To show that these classes are the only equivalent classes for the relation R, let  

m be an arbitrary element in Z. Confine m between two consecutive multiples of 3, 
i.e., find n such that 

3n ≤ m < 3(n + 1) = 3n + 3 

The possible values for the integer m are 

m = 3n ∈ 3Z = [0], m = 3n + 1 ∈ 3Z + 1 = [1], or  m = 3n + 2 ∈ Z + 2 = [2]. 
This indicates that at most three equivalence classes exist, namely: [0], [1], [2], 

see Fig 1.10. According to Proposition 1.4.9 (4), as (0, 1), (0, 2), and (1, 2) are not 
elements of R, the three equivalence classes are disjoint. The set of equivalence 
classes of R is {[0], [1], [2]} = {[6], [−8], [−4]} = . . .  etc. 

In the previous example, using an equivalence relation on Z, the  set  Z was divided 
into three disjoints parts. By defining another similar equivalence relation on Z, 
the set Z can be divided into another number of sets. For example, the relation 
R = {

(a, b) ∈ Z2 : (a − b)/9 ∈ Z
}
on Z divides Z into nine disjoint sets. In general, 

for any n ∈ Z∗, the relation

Fig. 1.10 Only three 
different equivalence classes 
of R 
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R =
{
(a, b) ∈ Z2 : a − b 

n 
∈ Z

}

divides Z into n disjoint sets in the form m + nZ, where m = 0, 1, 2, . . .  ,  n − 1 
(Exercise 1.19). 

Example 1.4.12 Let Z∗ be the set of nonzero integers and 

A = Z × Z∗ = {(m, n) : m, n ∈ Z ∧ n /= 0}. 

On A, define the relation ∼ as (m, n) ∼ (r, s) ⇔ ms = nr . The relation ∼ 
satisfies the following properties: 

1. Reflexive: For an arbitrary element (m, n) ∈ A, the integers m, n satisfy mn = 
nm, which implies that (m, n) ∼ (m, n). 

2. Symmetric: Assume that (m, n), (r, s) ∈ A are arbitrary elements such that 
(m, n) ∼ (r, s), then 

(m, n) ∼ (r, s) ⇒ ms = nr ⇒ rn  = sm ⇒ (r, s) ∼ (m, n). 

3. Transitive: Suppose (m, n), (r, s), (k, l) are arbitrary elements in A such that 
(m, n) ∼ (r, s) and (r, s) ∼ (k, l). Therefore, m, n, r, s, k, l are inte-
gers where n, s, l /= 0 , and 

(m, n) ∼ (r, s) and (r, s) ∼ (k, l) ⇒ ms = nr ∧ rl  = sk. 

Multiplying both sides of ms = nr by l and both sides of rl  = sk by n yields 

msl = nrl and nrl = nsk 

which implies that msl = nsk. As  s /= 0, dividing both sides of msl = nsk by s 
yields ml = nk. Thus, (m, n) ∼ (k, l), and ∼ is transitive. 
Thus, the relation ∼ is an equivalence relation. By definition, the equivalence 

class of (m, n) is given by 

[(m, n)] = {(r, s) ∈ A : (m, n) ∼ (r, s)} = {(r, s) ∈ A : ms = nr}. 

If (m, n) is identified with the rational fraction m/n, then [(m, n)] is identified 
with the set of all equivalent fractions to m/n. In fact, the set of rational fractions Q 
is defined as the set of equivalence classes of the relation ∼. 

Q = {[(m, n)] :  m, n ∈ Z ∧ n /= 0} := {m/n : m, n ∈ Z ∧ n /= 0}. 

The set Q∗ = Q\[(0, n)] is identified with {m/n : m, n ∈ Z ∧ m, n /= 0}. 
If A is any nonempty set and C is any partition of A, a relation R on A can be 

defined as follows:
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(a, b) ∈ R if and only if a, b belong to the same element (set) of C. 
It is straightforward to verify that the relation R is an equivalence relation. The 

equivalence class of any element a in A is [a] = {b ∈ A : (a, b) ∈ R} = {b ∈ A : 
a, b belong to the same set in C} =  E 

where E is the element in C containing a. 
Proposition 1.4.13 Let A be a nonempty set. Any partition C of A defines an 
equivalence relation on A whose equivalence classes are the elements of C. 
Corollary 1.4.14 Let A be a nonempty set. There exists a one to one corresponding 
between the set of equivalence relations on A and the set partitions of A. 

Next, we provide examples of relations defined on the set of equivalence classes. 
If A is a nonempty set, R is an equivalence relation on A, and C = {[a] :  a ∈ A} 
is the set of equivalence classes of R, then a relation R' can be defined from C to a 
given set B, i.e., 

R' ⊆ {([a], b) ∈ C × B : a ∈ A, b ∈ B} 

A relation on the set of equivalence classes C is in the form 

R' ⊆ {([a], [b]) ∈ C × C : a, b ∈ A} 

Example 1.4.15 

1. Consider the relation in Example 1.4.11 and its equivalence classes C = 
{[0],[1],[2]}. The  set  

R' = {([0], 1), ([5], 2), ([12], 3)} and R'' = {([0], 1), ([5], 2), ([4], 3)} 

are relations from C to the set {1, 2, 3}. The  sets  

S ' = {([0], [1]), ([5], [−4]), ([12], [−7])}, 
S '' = {([0], [1]), ([5], [−4]), ([12], [−8])} 

are relations on C. 
2. Consider the equivalence relation in Example 1.4.12 and its equivalence classes 

Q = {[(m, n)] : m, n ∈ Z ∧ n /= 0}. The set J = 
{([(m, n)], m) : m, n ∈ Z ∧ n /= 0} forms a relation from Q to Z. The  set  
T = Q∗ × Q∗ = {([(m, n)], [(r, s)]) : m, n, r, s ∈ Z∗} is a relation on Q∗. 

1.5 Functions 

In this section, a specific type of relations, called functions, is examined. The impor-
tance of studying functions springs from their presence and role in almost every
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branch of mathematics. The symbol f, the first letter of function, is used instead of 
R to denote a relation that is a function. 
Definition 1.5.1 Let A and B be any sets and f ⊆ A × B be a relation from A to B. 
The relation f is said to be a function on A if for each element a ∈ A, there exists a 
unique element b ∈ B such that (a, b) ∈ f , i.e., the conditional statement 

a ∈ A ⇒ ∃  !  b ∈ B such that (a, b) ∈ f 

is true for all a ∈ A. The notation ∃ !  indicates uniqueness. 

The notation f : A → B denotes that f is a function from A to B, and the notation 
b = f (a) is used instead of (a, b) ∈ f . Note that the uniqueness requirement in this 
definition is equivalent to the following statement: 

a1 = a2 ⇒ f (a1) = f (a2) for all a1, a2 ∈ A. 

Remark 1.5.2 If R is an equivalence relation on A, and f : {[a] : a ∈ A} → B is 
a function on the set of all equivalence classes of R, then uniqueness requirement 
means that the definition of f does not depend on the representatives used for the 
equivalence class of a, i.e., if a and b are elements in A such that [a] = [b], then 
their images under f must be equal. This is called well-defined property of f , i.e., 
a function f from {[a] : a ∈ A} to B must satisfy that 

a1Ra2 ⇒ f ([a1]) = f ([a2]) ∀a1, a2 ∈ A 

In general, if the domain of f involves equivalence classes (e.g., f : A → B, 
where A is a set defined using equivalence classes), then the well-defined property 
must be verified. For more explanation, see the Example 1.5.6 (4–9). 

Definition 1.5.3 Let A and B be any sets, f : A → B be a function from  A to B, 
and A1 be any subset of A. The restriction of f on A1, denoted by f|A1 , is the map 
from A1 to B defined by f|A1 (a) = f (a) for all a ∈ A1. 

As for any other relation on sets (Definition 1.3.3), the following definition holds: 

Definition 1.5.4 Let A and B be any two sets and f : A → B be a function. 

• The set A is called the domain of f, denoted by D( f ), and B is called the codomain 
of f . 

• The element b ∈ B such that b = f (a) is called the image of a under f or the 
value of a. 

• The set of all images of A is f (A) = { f (a) : a ∈ A}, which is called the range 
of f , denoted by Rang( f ). 

• If b ∈ B, then the preimage (inverse image) of b under f is the set 

f −1 (b) = {a ∈ A : b = f (a)}.



24 1 Background Results in Set Theory

• If Y ⊆ B, then the preimage (inverse image) of Y under f is the set 

f −1 (Y ) = {a ∈ A : f (a) ∈ Y }. 

Remark 1.5.5 

1. To calculate f −1(Y ), it is easier to  

• calculate f −1({b}) = {x : f (x) = b} for all b ∈ Y, then 
• use the equality f −1(Y ) = ∪

b∈Y 
f −1({b}). 

2. If a function is defined on a subset of R as an algebraic expression f (x) in 
a variable x , the domain of f is taken to be all possible values x, where the 
expression is valid. For example, the domain of f (x) = x2+1 

x2−3x+2 is R\{1, 2}. 
Example 1.5.6 Let A = {a, b, c, d} and B = {1, 2, 3, 4}. 

1. The relation f = {(a, 1), (b, 1), (c, 1), (d, 2)} from A to B is a function whose 
domain is A, and the image of each element in A is given as 

f (a) = 1, f (b) = 1, f (c) = 1, and f (d) = 2. 

2. The relation g = {(a, 1), (b, 1), (a, 2), (c, 3), (d, 1)} from A to B is not a 
function, as both (a, 1) and (a, 2) are in g but 1 /= 2. 

3. The relation h = {(a, 2), (b, 3), (c, 4)} from A to B is not a function, as it is not 
defined for every element in A. 

4. The relation R' in Example 1.4.15 is not a function. It is not defined for every 
element in C ({[0], [5], [12]} = {[0], [2]} /= C), and it is not well-defined since 
[0] = [12], but  1 /= 3. 

5. The relation R'' in Example 1.4.15 represents a function on C; it is defined for 
every element in C ({[0], [5], [4]} = {[0], [1], [2]}). Since [0] /= [5], [0] /= [4] 
and [4] /= [5], there are no equal equivalence classes in the domain of R''. 

6. The relation S ' in Example 1.4.15 is not a function. It is not defined for every 
element in C, and it is not well-defined since [0] = [12] but [1] /= [−7]. 

7. The relation S '' in Example 1.4.15 is not a function. Note that [0] and [12] are 
the only equal equivalence classes in the domain of S '', and as their images under 
S '' ([1] and [−8], respectively) are equal, then S '' is well-defined. However, it is 
not a function on C as it is not defined for every element in C. 

8. The relation J in Example 1.4.15 is defined for every element in Q, but it is not 
well-defined since [(2, 4)] = [(1, 2)], but their images under J are not equal. 

9. The relation T in Example 1.4.15 is defined for every element in Q∗, but it is not 
well-defined since every element in Q∗ is an image of all other elements in Q∗. 
For example, [(1, 2)] has infinitely many different images under T . 

Example 1.5.7 Let f : {1, 2, 3, 4, 5, 6} →  {a, b, c, d} be the function
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f = {(1, a), (2, b), (3, a), (4, b), (5, c), (6, d)} 

The images of the elements in {1, 2, 3, 4, 5, 6} are given by 

f (1) = a, f (2) = b, f (3) = a, f (4) = b, f (5) = c, f (6) = d 

Therefore, Rang( f ) = {a, b, c, d}. If X = {1, 3, 6}, then the image of X is 

f (X ) = { f (1), f (3), f (6)} = {a, d}. 

If Y = {a, b}, the preimage (inverse image) of Y is 

f −1 (Y ) = f −1 ({a}) ∪ f −1 ({b}) = {1, 3} ∪ {2, 4} = {1, 2, 3, 4}. 

Example 1.5.8 

1. Consider the identity relation on a nonempty set A, defined by ∆A = 
{(a, a) : a ∈ A}. Clearly, for each a ∈ A there exists a unique element a in 
A such that∆A(a) = a. Therefore,∆A is a function on A. This function is called 
the identity function on A, and usually written as I : A → A such that I (a) = a. 

2. Let A be any set and B ⊆ A. The inclusion map of B, denoted by ιB : B → A 
and defined by ιB(a) = a for all a ∈ B, is a function from B to A. In fact, the 
map ιB is the restriction of the identity function ∆A on the subset B. 

3. The relations 

f = {
(x, y) ∈ R × R : y = x2

}
and h = {

(x, y) ∈ R × R : y = x2 − 5
}

are functions on R (Check!). Geometrically, the function f is the parabola x2, 
and h is the same parabola shifted 5 units downwards. 

4. The relation f = {
(x, y) ∈ R × R : x2 + y2 = 1

}
is not a function, as both 

(0, 1) and (0, −1) belong to f, and 1 /= −1. The equation x2 + y2 = 1 implies 
that y = ±  

√
1 − x2. This means that every element x such that x /∈ {−1, 1} is 

related to two elements in the codomain, which violates the uniqueness condition. 
5. The relation

{
(x, y) ∈ R × [0, ∞) : x2 + y2 = 1

}
retains the uniqueness condi-

tion in the definition of functions, but it is not defined for every element of R. 
For example, (3, y) does not belong to the relation for any y in (0, ∞), and thus, 
the relation is not a function. 

6. The relation
{
(x, y) ∈ [−1, 1] × [0, ∞) : x2 + y2 = 1

}
defines a unique 

element
√
1 − x2 in [0, ∞) for every element in [−1, 1]. Therefore, this relation 

is a function that represents the top semicircle of the unit circle. Such a relation 
can be easily expressed as f (x) = √

1 − x2, where −1 ≤ x ≤ 1. 
7. The relation {(x, y) ∈ R × R : y = x + 1} defines a unique element x + 1 in R 

for every element x ∈ R. Therefore, this relation is a function on R that is written 
as f (x) = x + 1.
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Example 1.5.9 Let Q = {m/n : m, n ∈ Z ∧ n /= 0} (Example 1.4.12). Define 

f : Q × Q −→ Q and g : Q × Q −→ Q where 
f (a/b, c/d ) = ad+cb 

bd g(a/b, c/d ) = ac bd 

Both f and g are functions on Q × Q. To show this, let (a/b, c/d) be an arbi-
trary element in Q × Q. Since both b /= 0 and d /= 0, then bd /= 0. There-
fore, both f (a/b, c/d) and g(a/b, c/d) belong to Q. To verify the uniqueness 
requirement, assume that (a/b, c/d) and

(
a'/b', c'/d ') are two elements in Q × Q 

such that (a/b, c/d) = (
a'/b', c'

/d '). It is necessary to show that f (a/b, c/d) = 
f
(
a'/b', c'

/d ') and g(a/b, c/d) = g
(
a'/b', c'

/d '). As  a/b = a'/b' and c/d = c'
/d ', 

then ab' = a'b and cd ' = c'd (Example 1.4.12). Thus, 

(ad + cb)
(
b'd ') = adb'd ' + cbb'd '

= (
ab')(dd ') + (

cd ')(bb')

= (
a'b

)(
dd ') + (

c'd
)(
bb')

= (
a'd ')(bd) + (

c'b')(bd) 
= (a'd ' + c'b')(bd) 

According to the definition of the equivalence relation (Example 1.4.12), 

ad + cb 
bd 

= 
a'd ' + c'b'

bd 

Similarly, 

ac
(
b'd ') = ab'(cd ') = a'b

(
c'd

) = a'c'(bd) 

which implies that 

ac 

bd 
= 

a'c'

b'd '

as required. 
Functions can be expressed as equations, tables, or graphs. The functions in 

Example 1.5.8(3) and (6) are expressed as equations. If the domain of a function 
is a finite set, the function can be presented in tabular form. In this representation, 
the inputs and the outputs are listed in different columns. For example, the function 
in Example 1.5.6 (1) can be represented as in Table 1.1.

If f : A×B → C is a function in which A and B are both finite, then the outputs of 
f can be presented in a tabular form. If A = {a1, a2, . . . ,  an}, B = {b1, b2, . . . ,  bm}, 
and f : A × B → C is a function, then the outputs of f can be listed as in Table 
1.2.
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Table 1.1 Representation of 
the function in Example 1.5.6 
(1) 

x f (x) (x, f (x)) 
a 1 (a, 1) 
b 1 (b, 1) 
c 1 (c, 1) 
d 2 (d, 2)

Table 1.2 Tabular representation of function on finite domain and codomain 

f a1 a2 · · · an 

b1 f (a1, b1) f (a2, b1) · · · f (an , b1) 
b2 f (a1, b2) f (a2, b2) · · · f (an , b2) 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 
bm f (a1, bm ) f (a2, b2) · · · f (an , bm ) 

If the domain is a subset of the real numbers R, or a subset of the plane R2, then 
f can be graphically visualized. The graph of a function f from A to B is the set 
{(x, f (x)) : x ∈ A}. To learn more about graphing functions, the reader can refer to 
(Hungerford & Shaw, 2009). 

Definition 1.5.10 (Piecewise defined function) A function defined by multiple 
expressions is called a piecewise defined function, or simply a piecewise function. 
Each expression is applied to a certain part of the domain. 

The following are examples of piecewise functions: 

f (x) =
{
2 x ≥ 7 
−x2 + 1 x < 7 

g(x) = 

⎧ 
⎨ 

⎩ 

x x  > 0 
5 x = 0 
−1 x < 0 

h(x) = |x | =
{
x x  ≥ 0 
−x x  < 0 

Definition 1.5.11 (Composition of functions) Let  A, B, H and K be any sets. Let 
f : A → B and g : H → K be two functions such that Rang( f ) ⊆ D(g). The  
composition of f and g is the function. 

g ◦ f : A −→ K , where g ◦ f (x) = g( f (x)). 

It is left to the reader (Exercise 1.21) to verify that a composition of two functions 
is a function. 

Example 1.5.12 Let f : R → R, where f (x) = x − 1, and let g : R → R, where 
g(x) = x2. The corresponding compositions are.
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g ◦ f (x) = g( f (x)) =
g(z)=z2 

( f (x))2 =
f (x)=x−1 

(x − 1)2 = x2 − 2x + 1. 

and 

f ◦ g(x) = f (g(x)) =
f (z)=z−1 

g(x) − 1 = x2 − 1. 

Clearly, g ◦ f and f ◦ g. are not equal. 
Note that for g ◦ f to be defined, the range of f must be a subset of the domain 

of g. Otherwise, the composition cannot be defined. For example, if f : R → R is 
defined by f (x) = x − 1 and g : (R+ ∪ {0}) → R is defined by g(x) = √

x , then 
the composition g ◦ f cannot be donfined at x = 0 (Verify!). 

The following proposition can be obtained by applying the composition of two 
functions twice. 

Proposition 1.5.13 Let A, B and C be any three sets. If f : A → B, g : B → C, 
and h : C → D are three functions such that Rang( f ) ⊆ D(g) and Rang(g) ⊆ 
D(h), then 

h ◦ (g ◦ f ) = (h ◦ g) ◦ f. 

Definition 1.5.14 (Injective and surjective functions) Let A and B be two sets. Let 
f : A → B be a function. The map f is called 

1. Injective (one-to-one) if x /= y ⇒ f (x) /= f (y) for all x, y ∈ A. Equivalently, 

f (x) = f (y) ⇒ x = y for all x, y ∈ A. 

2. Surjective (onto) if for each y ∈ B, there exists an x ∈ A such that f (x) = y. 
3. Bijective if f is both injective and surjective. 

Example 1.5.15 

1. The map f : R → R, where f (x) = x, is an injective and a surjective map, so 
it is bijective. 

2. The map g : R → R, where g(x) = x2, is neither injective nor surjective. 
However, we can obtain injective or surjective functions from g by restricting 
the domain or codomain. For example, 

• The map g1 : R → R+, where g1(x) = x2, is surjective but not injective. 
• The map g2 : R+ → R, where g2(x) = x2, is injective but not surjective. 
• The map g3 : R+ → R+, where g3(x) = x2, is both injective and surjective. 

Therefore, this map is bijective. 

For the proof of the following lemma, see Exercise 1.6. 

Lemma 1.5.16 Let A and B be two finite sets such that |A| = |B|, and let f : A → 
B be a function. The map f is injective if and only if it is surjective.
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Example 1.5.17 For n ∈ N, let  s, t ∈ {1, 2, . . . ,  n} and Rs,t : {1, 2, . . . ,  n} →  
{1, 2, . . . ,  n} be defined as 

Rs,t (k) = 

⎧ 
⎨ 

⎩ 

k k /= s ∧ k /= t 
t k  = s 
s k  = t 

Clearly, the map Rs,t is defined for any element in {1, 2, . . . ,  n}, and any element 
in the domain has a unique image under Rs,t. Hence, it is a function on {1, 2, . . . ,  n}. 
To show that Rs,t is an injective map, let k, k ' be elements in {1, 2, . . . ,  n} such that 
Rs,t (k) = Rs,t

(
k '). 

• If k /= s ∧ k /= t , then k = Rs,t (k) = Rs,t
(
k '), which implies that k = k '. 

• If k = s, then t = Rs,t (k) = Rs,t
(
k '), which implies that k ' = s = k. 

• If k = t , then s = Rs,t (k) = Rs,t
(
k '), which implies that k ' = t = k. 

In all cases k ' = k. Thus, Rs,t is injective. By Lemma 1.5.16, the  map  Rs,t is also 
surjective. 

The map Rs,t permutes the two elements s and t .Consequently, it is known as a 
“transposition”. The following proposition is proved in Chap 6. 

Proposition 1.5.18 Any bijective map on {1, 2, . . . ,  n} is a composition of transpo-
sitions. 

Definition 1.5.19 (Invertible function) Let  A and B be two sets. A function f : A → 
B is said to be invertible if there exists a function g : B → A such that g ◦ f = ιA 
and f ◦ g = ιB . The  map  g is called the inverse of f and is denoted by f −1. 

The conditions g ◦ f = ιA and f ◦ g = ιB means (a, b) ∈ f ⇔ (b, a) ∈ g. This  
relation can be intuitively expressed as follows: if f connects a to b, then g returns b 
to its preimage a, and vice versa. There are many examples of noninvertible functions. 
For example, the function f : R → R defined by f (x) = x2 is not invertible. If f 
was invertible, then there would exist g : R → R such that 

f ◦ g(x) = (g(x))2 = x 

which implies that g(x) = ±  
√
x , i.e., g takes either the value of

√
x or − 

√
x , and 

thus, is not a function. In addition, g is not defined for the negative real numbers. 

Theorem 1.5.20 Let f : A → B be a function. The map f is invertible if and only 
if it is a bijective map. 

According to the Theorem above, to show that a map f : A → B is bijective, 
it suffices to show that there exists a map g : B → A such that g ◦ f = ιA and 
f ◦ g = ιB (Exercise 1.8). 

Example 1.5.21
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1. Let f : R → R be defined as f (x) = 2x + 1, then f is a bijective map and 
is thus invertible. To find its inverse, let y = f (x), and solve for x as follows: 
y = 2x + 1 ⇔ x = (y − 1)/2. Interchanging x and y yields y = (x − 1)/2. 
Hence, the inverse of f (x) is the map g(x) = (x − 1)/2. It can be verified that 
f ◦ g(x) = x = g ◦ f (x). Therefore, g is the inverse of f . 

2. Let f : R → [−1, 1] be defined as f (x) = cos x . Since cos
(

π 
4

) = cos
(−π 

4

)
, 

then f is not one to one, hence it is not invertible. However, if the domain of 
cos x is restricted to be 0 ≤ x ≤ π , then cos x will be invertible, with the inverse 
g(x) = cos−1 x . The domain of g is [−1, 1]. 

1.6 Matrices 

This section focuses on matrices, a type of maps that can be presented using arrays. 
Many functions on matrices, such as matrix addition and matrix multiplication are 
defined and briefly discussed. For additional information and proofs, the reader can 
refer to (Burton, 2007) and (Hartman, 2011). 

Definition 1.6.1 Let m, n ∈ N, and let K be any set. A K -matrix of type m × n 
(read m by n) is a map  

A : {1, 2, . . . ,  m} × {1, 2, . . . ,  n} → K 

that assigns an element ai j  in K for each (i, j ) ∈ {1, 2, . . . ,  m} × {1, 2, . . . ,  n}. 
Such a map can be presented as a rectangular array with m rows and n columns 

in the following form: 

A = 

⎛ 

⎜⎜⎜ 
⎝ 

a11 a12 
a21 a22 

· · ·  a1n 
· · ·  a2n 

... 
... 

am1 am2 

... 
... 

· · ·  amn 

⎞ 

⎟⎟⎟ 
⎠ 

where A((i, j )) = ai j  ∈ K for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. 
If there is no risk of ambiguity, a K -matrix is simply referred to as a matrix. If a 

formula for the elements ai j  is given, the matrix can be written as
(
ai j

)
1 ≤ i ≤ m 
1 ≤ j ≤ n 

or simply
(
ai j

)
. Here, the elements ai j  are called the entries of the matrix A, and the 

integers m and n are called the dimensions of the matrix A. A matrix that consists 
of m rows and n columns is called an m × n matrix. The set of all m × n matrices 
with entries in K is denoted by Mmn(K ). The  set  Mnn(K ) can be abbreviated to 
Mn(K ). A matrix in Mn(K ) is called a square matrix of dimension n. The entries 
aii  in a square matrix are called diagonal entries.
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Example 1.6.2 

1. The set M3×2(Z) consists of all 3 × 2 matrices with integers entries. 
2. The setM5×1(R) consists of all 5×1 matrices with real entries, and such matrices 

have the form 
⎛ 

⎜⎜⎜⎜⎜ 
⎝ 

a11 
a21 
a31 
a41 
a51 

⎞ 

⎟⎟⎟⎟⎟ 
⎠ 

where ai1 is an element in R. This matrix can be considered an element in R5. In 
fact, there exists a bijection map between M5×1(R) and R5. In general, an n × 1 
matrix consists of one column in the form 

⎛ 

⎜⎜⎜⎜⎜ 
⎝ 

a11 
a21 
... 
a(n−1)1 

an1 

⎞ 

⎟⎟⎟⎟⎟ 
⎠ 

This matrix can be identified with an element in Rn . 
3. A 1 × n matrix consisting of one row can be expressed as

(
a11 a12 · · ·  a1(n−1) a1n

)

and identified with an element in Rn . 
4. The set M7(C) consists of all square matrices of dimension 7 with complex 

entries. 
5. Let X = {a, b, c}. The  set  M3×2(P(X )) consists of all 3 × 2 matrices whose 

entries are subsets of X . An example of a matrix in M3×2(P(X )) is 

⎛ 

⎝ 
{a, b} {b, c} 
∅ {b} 
{a, c} {a} 

⎞ 

⎠ 

Definition 1.6.3 Let n ∈ N, and let K /= ∅  be a subset of C such that K contains 0 
and 1. Let  Mn(K ) be the set of square matrices of dimension n over K . 

1. A matrix
(
ai j

) ∈ Mn(K ) with entries ai j  = 0 whenever i /= j can be expressed 
as
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⎛ 

⎜⎜⎜ 
⎝ 

a11 0 
0 a22 

· · ·  0 
· · ·  0 

... 
... 

0 0  

... 
... 

· · ·  ann 

⎞ 

⎟⎟⎟ 
⎠ 

This matrix is called a diagonal matrix. The set of all diagonal matrices in 
Mn(K ) is denoted by D(K ). A diagonal matrix with all diagonal entries are 
equal to 1 is called a unit matrix, denoted by In . 

In =
(
ai j

)
where ai j  =

{
1 i f  i  = j 
0 i f  i /= j 

A notable example of diagonal matrices is the subset {A ∈ Mn(C) : A = λIn} 
in which all the diagonal elements are equal. 

2. A matrix
(
ai j

) ∈ Mn(K ) with entries ai j  = 0 whenever i > j can be expressed 
as 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜ 
⎝ 

a11 a12 
0 a22 

a13 a14 
a23 a24 

· · ·  a1n 
· · ·  a2n 

0 0  
... 

... 
a33 a34 
0 a44 

· · ·  a3n 
· · ·  a4n 

0 0  
0 0  

... 
... 

0 0  
· · ·  

... 
· · ·  ann 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟ 
⎠ 

. 

This matrix is called an upper triangular matrix. The set of all upper triangle 
matrices over K is denoted by U (K ). i.e., 

U (K ) = {(
ai j

) ∈ Mn(K ) : ai j  = 0 ∀ i > j
}

3. A matrix
(
ai j

) ∈ Mn(K ) with all its entries ai j  = 0 whenever i < j is in the 
form 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜ 
⎝ 

a11 0 
a21 a22 

0 0  
0 0  

· · ·  0 
· · ·  0 

a31 a32 
a41 a42 

a33 0 
a43 a44 

· · ·  0 
· · ·  0 

... 
... 

an1 an2 

... 
... 

an3 an4 

... 0 
· · ·  ann 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟ 
⎠ 

. 

This matrix is called a lower triangular matrix. The set of all lower triangle 
matrices over K is denoted by L(K ). i.e.,
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L(K ) = {(
ai j

) ∈ Mn(K ) : ai j  = 0 ∀ i < j
}
. 

In the following, we define several algebraic operations on matrices. For the 
remainder of this chapter, the set K denotes a nonempty subset of the complex 
numbers C such that. 

1. K contains 0 and 1. 
2. K is closed under the usual addition on C, the usual multiplication on C, and 

the conjugation. 

Definition 1.6.4 Let m, n ∈ N. Let  Mmn(K ) be the set of m × n matrices with 
K -entries. Let A = (

ai j
)
and B = (

bi j
)
be two matrices in Mmn(K ). 

1. For any c ∈ K , the multiplication of the matrix A by any constant c is the matrix 
cA  obtained from A by multiplying each entry by c, i.e., cA  = (

cai j
)
. 

2. The addition of A and B is the matrix A + B obtained from A and B by adding 
the entries of A and B that have the same indices i and j . That is, 

A + B = (
ai j  + bi j

)

where ai j  + bi j  is the usual sum of the complex numbers ai j  and bi j  . 

Note that matrices with two different dimensions cannot be added. For example, 
a 2 × 3 matrix and a 4 × 7 matrix cannot be added. Therefore, matrix addition is 
defined only for matrices with the same dimensions. 

Example 1.6.5 

1. The matrices 

A =
(
2 −3 7  
3 2 4

)
, B =

(−3 5  −5 
−1 2  −2

)

are elements in M2×3(Z). Multiplying these matrices by 2 and 0 respectively, 
yields 

2A = 2
(
2 −3 7  
3 2 4

)
=

(
4 −6 14  
6 4 8

)
, 0B = 0

(−3 5  −5 
−1 2  −2

)
=

(
0 0 0  
0 0 0

)
. 

The sum A + B is
(−1 2 2  
2 4  2

)
. 

2. The matrices 

E11 =
(
1 0  
0 0

)
, E12 =

(
0 1  
0 0

)
, E21 =

(
0 0  
1 0

)
, E22 =

(
0 0  
0 1

)
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are elements in M2×2(C). Any matrix

(
a11 a12 
a21 a22

)
in M2×2(C) can be expressed 

using such matrices, as follows:

(
a11 a12 
a21 a22

)
= a11 E11 + a12 E12 + a21 E21 + a22 E22 = 

2∑

i=1 

2∑

j=1 

ai j  Ei j  . 

3. In general, a matrix
(
ai j

)
in Mmn(C) can be expressed as 

m∑

i=1 

n∑

j=1 

ai j  Ei j  

where Ei j  = (akl ) in Mm×n(C) with akl =
{
1 i f  k  = i ∧ l = j 
0 elsewhere 

Definition 1.6.6 Let m, n, l ∈ N. Let  A = (
ai j

) ∈ Mmn(K ) and B =
(
bi j

) ∈ 
Mnl (K ). The product of A and B is the matrix AB  ∈ Mml (K ), defined as

(
ci j

)
, 

where 

ci j  = ai1b1 j + ai2b2 j +  · · ·  +  ainbnj  = 
n∑

k=1 

aikbk j  . 

In this definition, the entry ci j  is formed using the i-th row in A and the j-th 
column in B entries. i.e., 

ci j  =
(
ai1 ai2 . . .  ain

) · 

⎛ 

⎜⎜⎜ 
⎝ 

b1 j 
b2 j 
... 
br j  

⎞ 

⎟⎟⎟ 
⎠ 

= 
n∑

k=1 

aikbk j  . 

Note that matrix multiplication can be performed if and only if the number of 
columns in the left matrix equals the number of rows in the right matrix. The multi-
plication of square matrices is only defined if the two matrices have the same dimen-
sion. If A is an m × n matrix and B is an n × l matrix, then their product A · B is 
an m × l matrix. We will also use AB  to denote the multiplication A · B of any two 
matrices A and B. 

Example 1.6.7 

1. Let A = 

⎛ 

⎝ 
1 −3 
4 1  
0 7  

⎞ 

⎠ ∈ M3×2(Z) and B =
(
2 6  7  
−3 2 4

)
∈ M2×3(Z).
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AB  = 

⎛ 

⎝ 
11 0 −5 
5 26  32  
−21 14 28 

⎞ 

⎠ ∈ M3×3(Z) and BA  =
(
26 49 
5 39

)
∈ M2×2(Z). 

2. Let A =
(
1 5  
6 −1

)
∈ M2×2(Z) and B =

(
6 1  0  
−2 3  3

)
∈ M2×3(Z). 

AB  =
(−4 16 15  
38 3 −3

)
∈ M2×3(Z) and BA  is not possible. 

3. Let Ei j  ∈ Mmn(C) and Eks ∈ Mnl (C) be defined as in Example 1.6.5 (3). It is 

straightforward to show that Ei j  Eks = δ jk  Eis, where δ jk  =
{
1 j = k 
0 j /= k 

. 

Proposition 1.6.8 Let m, n ∈ N. The matrix addition + :  Mmn(K ) × Mmn(K ) → 
Mmn(K ) and the matrix multiplication · :  Mn(K ) × Mn(K ) → Mn(K ) are both 
functions. 

Proof Let (A, B) ∈ Mmn(K ) × Mmn(K ) be an arbitrary element. As all elements 
in Mmn(K ) are of the same type, then the addition of A and B is defined. To 
verify the uniqueness requirement, assume that (A, B) and

(
A', B ') are elements in 

Mmn(K ) × Mmn(K ) such that (A, B) = (
A', B '). According to the equality of the 

order pairs, A = A' and B = B ', which implies that. 

+(A, B) = A + B = A' + B ' = +(
A', B ')

Thus, the matrix addition identifies a unique element in Mmn(K ) for each pair 
of matrices in Mmn(K ) × Mmn(K ). 

For the matrix multiplication, if (A, B) ∈ Mn(K ) × Mn(K ), then A and B are 
square matrices of the same dimension. The multiplication of A and B is defined and 
yields a square matrix of dimension n. To verify the uniqueness requirement, assume 
that (A, B) and

(
A', B ') are elements in Mn(K ) × Mn(K ) such that (A, B) =(

A', B '). According to the equality of the order pairs, A = A' and B = B ', which 
implies that aik  = a '

ik  and bkj  = b'
k j  for all 1 ≤ i, j ≤ n, i.e., 

ci j  = 
n∑

k=1 
aikbk j  = 

n∑

k=1 
a

'
ikb

'
k j  is the i j-entry in the multiplication A'B '. 

Thus, 

·( A, B) = AB  = A'B ' = ·(A', B ')

Therefore, the matrix multiplication identifies a unique element in Mn(K ) for 
each pair of matrices in Mn(K ) × Mn(K ). ∆

Proposition 1.6.9 Let n ∈ N and Mn(K ) be the set of all square matrices of 
dimension n.
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1. The multiplication of two diagonal matrices is a diagonal matrix. If A and B 
are diagonal matrices, then AB  = BA. 

2. The multiplication of two upper matrices is an upper matrix. 
3. The multiplication of two lower matrices is a lower matrix. 

Proof 

1. Assume that A and B are arbitrary matrices in D(K ). The multiplication A · B 
is

(
ci j

)
where 

ci j  = 
n∑

k=1 

aikbk j  

For s /= t , ast = bst = 0, which implies that for i /= j, 

ci j  = 
n∑

k=1 

aikbk j =
k /=i⇒aik=0 

aii  bi j =
i /= j⇒bi j=0 

0 

i.e., AB  is a diagonal matrix. Similarly, BA  is a diagonal matrix. The diagonal 
entries in AB  are 

cii  = 
n∑

k=1 

aikbki =
k /=i⇒aik=0 

aii  bii  

which are also the diagonal entries in BA  as 

n∑

k=1 

bikaki =
k /=i=bik=0 

biiaii  = aii  bii  

2. Assume that A and B are arbitrary matrices in U (K ). The multiplication AB  is 
(ci j  ) where 

ci j  = 
n∑

k=1 

aikbk j  . 

As for s > t, ast = bst = 0, then for i > j 

ci j  = 
n∑

k=1 

aikbk j =
k<i⇒aik=0 

n∑

k=i 

aikbk j =
k≥i> j⇒bkj=0 

0. 

That is, AB  is an upper matrix. 
3. Similar to (2). ∆
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Many functions that can be defined on matrices, several of which are introduced 
below. 

Definition 1.6.10 (The conjugate map) Let  m, n ∈ N and Mmn(K ) be the set of all 
m × n matrices over K . Define the map 

Mmn(K ) −→ Mmn(K )
(
ai j

) |→ (
ai j

)

where ai j  is the complex conjugate of ai j  . This map is called the conjugate map. The 
conjugate of a matrix A is denoted by A. 

It is clear that for any matrix A ∈ Mmn(R), A = A. The conjugate of a matrix 
over C can be computed using the conjugates of complex numbers as in the following 
example: 

If A =
(
1 + 3i 2 2  − i 
5i −1 6  + 7i

)
∈ M2×3, then A =

(
1 − 3i 2 2  + i 
−5i −1 6  − 7i

)

The complex conjugate of a complex number x + iy  is x − iy. The following 
propositions are straightforward. 

Proposition 1.6.11 Let m, n, l ∈ N. Let Mmn(K ) be the set of all m × n matrices 
over K , and Mnl (K ) be the set of all n × l matrices over K . For A ∈ Mmn(K ) and 
B ∈ Mnl (K ), 

A = A, and AB  = A B 

Proposition 1.6.12 Let m, n ∈ N and Mmn(K ) be the set of all m × n matrices 
overK . The conjugate map is a function on Mmn(K ). 

The second example of a function on matrices is the transpose map, which 
exchanges the rows of a matrix with its columns. 

Definition 1.6.13 (The transpose map) Let m, n ∈ N and Mmn(K ) be the set of all 
m × n matrices over K . The  map  

T : Mmn(K ) −→ Mnm(K )
(
ai j

) |→ (
a j i

)

is called the transpose map. The transpose of a matrix A is denoted by AT . 

The reader can easily check that (8)T = (8), (1 2)T =
(
1 
2

)
,

(
1 2  
3 4

)T 

=
(
1 3  
2 4

)
, 

and
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⎛ 

⎝ 
1 −3 
4 1  
0 7  

⎞ 

⎠ 

T 

=
(
1 4  0  
−3 1 7

)

Proposition 1.6.14 Let m, n ∈ N and Mmn(K ) be the set of all m × n matrices 
over K . The transpose map is a function from Mmn(K ) to Mnm(K ), which satisfies 
the following statements: 

1.
(
AT

)T = A 
2. For all α ∈ C, (α A)T = α AT 

3. (A + B)T = AT+BT 

for any A, B ∈ Mmn(K ). 

Proposition 1.6.15 Let m, n, l ∈ N. For any A ∈ Mmn(K ) and B ∈ Mnl (K ), 

(AB)T = BT AT . 

Definition 1.6.16 (The Hermitian conjugate map) Let  m, n ∈ N and Mmn(K ) be 
the set of all m × n matrices over K . The  map  

∗ :  Mmn(K ) −→ Mnm(K )
(
ai j

) |→ (
a j i

)

is called the Hermitian conjugate map. The entry a j i  is the element in K obtained by 
taking the conjugate of the element a j i  in the transpose matrix of (ai j  ). The Hermitian 
conjugate of a matrix A is denoted by A∗. 

For any n ∈ N, the Hermitian conjugate of In is In . The Hermitian conjugate map 

is a composition of the conjugate and the transpose maps (A∗ = A T for any matrix 
A in Mmn(K )). Therefore, the Hermitian conjugate is a function. It is also known 
by conjugate transpose, or Hermitian transpose map. The following proposition is 
straightforward. 

Proposition 1.6.17 Let m, n, l ∈ N and Mmn(K ) be the set of all m × n matrices 
over K . For  A ∈ Mmn(K ) and B ∈ Mnl (K ).

(
A∗)∗ = A, (AB)∗ = B∗ A∗. 

The following functions are defined only on square matrices. 

Definition 1.6.18 (The trace map) Let  n ∈ N and Mn(K ) be the set of all n × n 
matrices over K . The trace map is defined as 

trace: Mn(K ) −→ C 

A |→ 
n∑

i=1 

aii
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Proposition 1.6.19 Let n ∈ N and Mn(K ) be the set of all n × n matrices over K . 
The trace  : Mn(K ) → C is a function that satisfies the following statements: 

1. trace
(
AT

) = trace(A) 
2. trace(A + B) = trace(A) + trace(B) 
3. trace(AB) = trace(BA) 

for all A, B ∈ Mn(K ). 

Definition 1.6.20 (The determinant map) Let  n ∈ N and Mn(K ) be the set of all 
n × n matrices over K . Let  det : Mn(K ) → C be the recursive map defined for 
square matrices as 

1. det((c)) = c(determinant of 1 × 1 matrix is the entry of such matrix). 
2. For any A ∈ Mn(K ), such that n ≥ 2, 

det(A) = 
n∑

k=1 

(−1)i+k aikdet( Aik) 

where i is any integer such that 1 ≤ i ≤ n, and Aik  is the matrix obtained from 
A by deleting row i and column k. 

In some linear algebra books, the notation |A| is used instead of det(A). 
Throughout this book, det(A) is used to denote the determinant of A 

Remarks 1.6.21 In the abovementioned definition, a fixed row i is chosen, and 
the entries of the row are used to compute the determinant of the matrix A. The  
determinant can also be defined using a fixed column j and the entries of this column, 
as follows: 

• det((c)) = c (determinant of 1 × 1 matrix is the entry of such matrix). 
• For any A ∈ Mn(K ) such that n ≥ 2, 

det(A) = 
n∑

k=1 

(−1) j+k ak j  det
(
Akj

)

where j is any integer such that 1 ≤ j ≤ n, and Akj  is the matrix obtained from 
A by deleting row k and column j . 

Example 1.6.22 

1. Consider an arbitrary matrix A =
(
a b  
c d

)
in M2(K ). To find the determinant 

of A, either a row or a column must be selected. Using the first row, we have 

det(A) = 
2∑

k=1 

(−1)1+k a1k det(A1k) = (−1)2 a det((d)) + (−1)3 b det((c))



40 1 Background Results in Set Theory

= ad − bc 

For example, 

det

((
2 7  
−3 5

))
= 10 − (−21) = 31 and 

det

((
cos θ − sin θ 
sin θ cos θ

))
= cos θ 2 + sin θ 2 = 1 for any angle θ.  

2. Consider an arbitrary matrix A = 

⎛ 

⎝ 
x1 y1 z1 
x2 y2 z2 
x3 y3 z3 

⎞ 

⎠ in ∈ M3(K ). To compute the 

determinant of A, either a row or a column must be selected. Choosing the first 
column this time, 

det( A) = 
n∑

k=1 

(−1)1+k ak1 det(Ak1) 

i.e., det( A) is 

(−1)2 x1 det

((
y2 z2 
y3 z3

))
− x2 det

((
y1 z1 
y3 z3

))
+ x3 det

((
y1 z1 
y2 z2

))

= x1(y2z3 − z2 y3) − x2(y1z3 − z1y3) + x3(y1z2 − z1y2). 

Notably, the choice of the column or row in calculating the determinant determines 
the ease of the calculation. For example, the second row is the optimal choice to 
calculate the determinant of 

⎛ 

⎝ 
1 5 1  
2 0 0  
3 2 7  

⎞ 

⎠ 

because the second row contains many zero entries. Using the second row, we obtain 

det 

⎛ 

⎝ 
1 5 1  
2 0 0  
3 2 7  

⎞ 

⎠ = −2 det

((
5 1  
2 7

))
+ 0 + 0 = −2(35 − 2) = −66 

Proposition 1.6.23 Let n ∈ N and Mn(K ) be the set of all n × n matrices over 
K . Let A, B ∈ Mn(K ) be arbitrary matrices. The map det : Mn(K ) → C is a 
function that satisfies
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1. det(A) = det(AT ) 
2. det(k A) = kndet(A) 
3. det(A · B) = det( A) · det(B). 

The abovementioned functions are used to create special subsets of Mn(K ). 
These subsets have important applications in algebra and other mathematical fields. 
We briefly mention them below. 

Definition 1.6.24 Let n ∈ N and Mn(K ) be the set of all n × n matrices over K . 

1. A matrix  A ∈ Mn(K ) is called an orthogonal matrix if A·AT = AT · A = In . 
The subset of all orthogonal matrices is denoted by O(n, K ), or simply, O(n). 
i.e., 

O(n) = {
A ∈ Mn(K ) : A · AT = AT · A = In

}
. 

2. A matrix  A ∈ Mn(K ) is called a unitary matrix if A·A∗ = A∗ · A = In . The  
subset of all unitary matrices is denoted by U (n, K ), or simply U (n). i.e., 

U (n) = {
A ∈ Mn(K ) : A · A∗ = A∗ · A = In

}
. 

Notation 1.6.25 Let n ∈ N and Mn(K ) be the set of all n × n matrices over K . 

1. The set of all matrices in Mn(K ) whose determinant is not zero is denoted by 
GL(n, K ) or GLn(K ). i.e., 

GLn(K ) = {A ∈ Mn(K ) : det(A) /= 0}. 

2. The set of all matrices in Mn(K ) whose determinant equals 1 is denoted by 
SL(n, K ) or SLn(K ). i.e., 

SLn(K ) = {A ∈ Mn(K ) : det(A) = 1}. 

In the following, we discuss the invertibility of a square matrix. The invertibility 
of a matrix is not defined if the matrix is not a square matrix. 

Definition 1.6.26 (Invertible matrices) Let n ∈ N and Mn(K ) be the set of all n × n 
matrices over K . Let  A be a matrix in  Mn(K ). The matrix A is said to be invertible 
if there exists a matrix B ∈ Mn(K ) such that AB  = BA  = In . The matrix B (if it 
exists) is called the inverse of A and is denoted by A−1. 

Not every matrix in Mn(K ) is invertible. For example, the zero matrix 0n = (0) 
belongs to Mn(K ), but no matrix in Mn(K ) satisfies 0n B = B 0n = In . Therefore, 

Mn(K ) −→ Mn(K ) 
A |→ A−1
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is not a function on Mn(K ). To define a formula for the inverse of an invertible 
matrix, the following definition is needed. 

Definition 1.6.27 Let n ∈ N and Mn(K ) be the set of all n×n matrices over K . The  
adjugate matrix of a matrix A in Mn(K ) is the matrix computed from A as follows: 

Adj(A) = (
(−1)i+ j Ai j

)T 

where Ai j  is the determinant of the matrix obtained from A by deleting the i th row 
and the j th columnn. 

Proposition 1.6.28 Let n ∈ N and Mn(K ) be the set of all n × n matrices over K . 
A matrix  A in Mn(K ) is invertible if and only if det(A) /= 0. In this case, 

A−1 = 1 

det(A) 
Adj(A) 

where Ad j (A) is the adjugate matrix of A. 

Proposition 1.6.29 Let n ∈ N and Mn(K ) be the set of all n × n matrices over K . 
If A and B are invertible matrices in Mn(K ), then (AB)−1 = B−1 A−1. 

1.7 Geometric Transformations and Symmetries 
in the Plane 

The rotation and reflection are two important basic transformations that operate on 
a plane (generally in Rn). This section will study Rθ , the rotation around the origin 
with angle θ , and lθ , the reflection of a line passing through the origin, inclined at 
an angle θ from the x-axis. Any other rotation or reflection of a line (in the plane) 
can be defined using either Rθ or lθ . Readers can refer to (Boyd & Vandenberghe, 
2018) for more details regarding geometric transformations and vectors in the plane. 
As mentioned in Example 1.6.2, there exists a correspondence between the points 
in Rn and the n × 1 matrices with real entries. By restricting the study to R2, this  
correspondence can be expressed in the following lemma. 

Lemma 1.7.1 The map. 

g : R2 −→
{(

x 
y

)
: x, y ∈ R

}

(x, y) |→
(
x 
y

)

is a bijection map identifying the points in R2 with the matrices in M2×1(R).
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Using this lemma, any function on the plane can be defined directly on the matrices 
M2×1(R). 

Reminder 1.7.2 Any point P in the plane can be represented using at least two 
coordinate systems of the plane: 

1. The Cartesian coordinates of P = (x, y), where x and y are given by the 
projections of the point P on the x-axis and y-axis, respectively. 

2. The polar coordinates of P = (r, ψ), where r is the distance from P to the origin 
of the plane, and ψ is the angle that the line −→

OP  makes with x-axis. 

The relations between the two representations are given by the following equations 

x = r cos ψ, y = r sin ψ, r2 = x2 + y2 , y = x tan ψ 

Recall that a rotation around the origin with an angle θ in the plane changes the 
polar coordinates of a point from (r, ψ) to (r, ψ  + θ ). According to the next propo-
sition, a rotation by θ around the origin is represented by a matrix multiplication, 
which will be denoted by Rθ . The matrix Rθ is called the rotation matrix by θ . 

Proposition 1.7.3 The rotation of the point (x, y) in the plane around the origin 
with an angle θ is equivalent to the function. 

f : R2 −→ R
2

(
x 
y

)
|→ Rθ ·

(
x 
y

)

where Rθ =
(
cos θ − sin θ 
sin θ cos θ

)
. 

Proof Let f : R
2 → R

2 be the rotation by an angle θ around the origin. 
The rotation f moves the point (x, y) = (rcosψ, rsinψ) to

(
x ', y') = 

(r cos(ψ + θ ), r sin(ψ + θ )). Thus, the coordinates after the rotation are 

x ' = r cos(ψ + θ)  = (r cos ψ)  cos θ − (r sin ψ)  sin θ = x cos θ − y sin θ 

and 

y' = r sin(ψ + θ)  = (r cos ψ)  sin θ + (r sin ψ)  cos θ = x sin θ + y cos θ.  

These equations can be expressed as

(
x '

y'

)
=

(
cos θ − sin θ 
sin θ cos θ

)(
x 
y

)
.
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The following proposition matches the expected geometrical fact that “rotation by 
an angle θ followed by rotation by an angle β is equivalent to a rotation by θ +β ”. ∆

Proposition 1.7.4 Let θ and β be any two angles. Then, 

Rθ +β = Rθ Rβ = Rβ Rθ . 

Proof According to the identities for the trigonometric functions, 

Rθ +β =
(
cos(θ + β) − sin(θ + β) 
sin(θ + β) cos(θ + β)

)

=
(
cos θ cos β − sin θ sin β −(sin θ cos β + cos θ sin β) 
sin θ cos β + cos θ sin β cos θ cos β − sin θ sin β

)

=
(
cos θ − sin θ 
sin θ cos θ

)(
cos β − sin β 
sin β cos β

)
= Rθ Rβ . 

Similarly, Rβ+θ = Rβ Rθ . The result follows as θ + β = β + θ . ∆

Example 1.7.5 

1. According to Proposition 1.7.3, 

• The rotation matrix by 0 is  R0 =
(
1 0  
0 1

)
= I2. 

• The rotation matrix by π 
2 is Rπ/2 =

(
0 −1 
1 0

)
. 

• The rotation matrix by π is Rπ =
(−1 0  
0 −1

)
= −I2. 

Rn can also be computed using Proposition 1.7.4, to obtain the same answer. 
• Proposition 1.7.4 can be used to obtain 

• R3π/2 = Rπ/2 Rπ =
(
0 1  
−1 0

)
, 

• R2π = Rπ/2 R3π/2 =
(
1 0  
0 1

)
. 

2. Similarly, Rπ/3 =
(

1 
2 − 

√
3 
2 √

3 
2 

1 
2

)

, R2π/3 = Rπ/3 Rπ/3 =
(

− 1 
2 − 

√
3 
2 √

3 
2 − 1 

2

)

• Rπ = Rπ/3 R2π/3 = −I2,, 
• R4π/3 = Rπ/3 Rπ = −Rπ/3,, 
• R5π/3 = Rπ/3 R4π/3 = −R2π/3, and 
• R2π = Rπ/3 R5π/3 = R0.
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Fig. 1.11 Rotating u 
by π/2 

To find a matrix that represents a reflection around a line lθ passing the origin 
and making an angle θ with the x-axis, we need an expression for the unit vector 
in the direction of lθ . Recall that if lθ makes an angle θ with the x-axis, then the 
coordinates for the unit vector u on lθ are (cos θ,  sin θ), which can be identified 

with u =
(
cos θ 
sin θ

)
. The unit vector ν that is perpendicular to lθ can be obtained by 

rotating u with π 
2 see Fig. 1.11. According to Proposition 1.7.3, 

ν = Rπ/2

(
cos θ 
sin θ

)
=

(− sin θ 
cos θ

)
. 

Proposition 1.7.6 Let lθ be the straight line that passes the origin and makes an 
angle θ with the x-axis. The reflection of the point (x, y) around lθ in the plane is 
equivalent to the function. 

f : R2 −→ R

(
x 
y

)
|→ lθ ·

(
x 
y

)

where lθ =
(
cos 2θ sin 2θ 
sin 2θ − cos 2θ

)
. 

Proof Let w =
(
x 
y

)
be a point in the plane, then w can be expressed as a line 

vector that starts from the origin and passes the point w. Such a vector is the sum of 
two vectors w = w|| + w⊥ where w|| is in the direction of lθ and w⊥ is perpendicular 
direction on lθ (Fig. 1.12). i.e.,
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Fig. 1.12 Vector 
w = w|| + w⊥ 

• w|| = 〈w, u〈u = (x cos θ + y sin θ)

(
cos θ 
sin θ

)
=

(
x cos2 θ + y sin θ cos θ 
x sin θ cos θ + y sin2 θ

)
. 

• w⊥ = 〈w, v〈v = (−x sin θ + y cos θ)

(− sin θ 
cos θ

)
=

(
x sin2 θ − y sin θ cos θ 
−x sin θ cos θ + y cos2 θ

)
where 〈w, u〈 and 〈w, v〈 are the inner products 

of w with u and v, respectively (Boyd & Vandenberghe, 2018). 

The reflection of w around lθ is the point w
' = w|| − w⊥ (Fig.1.13). Therefore, 

w' = w|| − w⊥ 

=
(
x cos2 θ + y sin θ cos θ 
x sin θ cos θ + y sin2 θ

)
−

(
x sin2 θ − y sin θ cos θ 
−x sin θ cos θ + y cos2 θ

)

=
(
x
(
cos2 θ − sin2 θ

) + 2y sin θ cos θ 
2x sin θ cos θ + y

(
sin2 θ − cos2 θ

)
)

=
(
x cos 2θ + y sin 2θ 
x sin 2θ − y cos 2θ

)
=

(
cos 2θ sin 2θ 
sin 2θ − cos 2θ

)(
x 
y

)
.

The above proposition shows that the reflection about a straight line that passes 
through the origin and makes the angle θ with the x-axis can be represented by 
a matrix multiplication. This matrix is called the reflection matrix about lθ and is 
denoted by lθ . Applying the reflection about the line lθ twice returns each point to 
itself. That is, lθ 

2 = I2



1.7 Geometric Transformations and Symmetries in the Plane 47

Fig. 1.13 Reflection of w 
around lθ

Proposition 1.7.7 For angles θ and β the following identities hold: 

1. Rθ +β = Rθ Rβ = Rβ Rθ . 
2. lθ lθ = R0. 
3. lθ lβ = R2(θ −β). 
4. Rθ lβ = lβ+ θ 

2 
. 

5. lβ Rθ = lβ− θ 
2 
. 

6.
(
lβ Rθ

)2 = (
Rθ lβ

)2 = R0 

Proof The first identity is the result in Proposition 1.7.4. Items (2) and (3) can be 
easily verified using Proposition 1.7.3, and 1.7.6, matrix multiplication, and trigono-
metric identities. To show (4), we first replace θ by θ 

2 +β in (3) to obtain l θ 
2 +βlβ = Rθ . 

Using this identity and the identity in (2), we get 

Rθ lβ =
(
l θ 
2 +βlβ

)
lβ = l θ 

2 +β 

To obtain the identity in (5), we compute lβlβ− θ 
2 
using the identity in (3) to get 

lβlβ− θ 
2 

= Rθ 

Using this identity and the identity in (2), we get 

lβ Rθ = lβ
(
lβlβ− θ 

2

)
= lβ− θ 

2 

The last equality follows directly from (2), (4), and (5). ∆
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The geometric interpretation for the relation in (3) is that a reflection about lθ 
followed by a reflection about lβ is equivalent to a rotation with an angle that is 
double the angle between lθ and lβ . This aspect can be explained as follows. 

It is straightforward to show, using Proposition 1.7.6, that a refection about lθ 
maps a point (r, α)  to the point (r, 2θ − α). Therefore, applying another reflection 
lθ leads to 

(r, α)lβ → (r, 2β − α)lθ → (r, 2θ − (2β − α)) = (r, 2(θ − β) + α) 

.i.e., the composition of lθ and lβ is a rotation by angle 2(θ − β). 

Example 1.7.8 By using the abovementioned notation, 

l0 =
(
1 0  
0 −1

)
, and lπ/4 =

(
0 1  
1 0

)

(
lπ/4

)2 = lπ/4lπ/4 = I2, lπ/4 Rπ/2 = l0, and lπ/3 =
(

1 
2 

√
3 
2 √

3 
2 − 1 

2

)

. 

From now on, a rotation by angle θ is identified with its rotation matrix Rθ . A  
reflection about the line that passes through the origin and makes an angle θ with x-
axis is identified with its reflection matrix lθ . Therefore, Rθ (similarly, lθ ) represents 
both the matrix and the symmetry represented by the matrix. 

Let n ∈ N such that n ≥ 3. Consider a regular (sides of equal lengths and 
equal interior angles) n-polygon. There exist 2n types of symmetries for such a 
polygon: rotations about the center by an angle moving each vertex to the next 
vertex, reflections about the lines that pass the center of the polygon and the vertices, 
reflections about the lines that pass the center of the polygon and divide opposite 
sides of the polygon into equal halves, and their compositions. For example, see 
Fig. 1.14. The following steps can be implemented to identify such symmetries. 

1. Select one of the vertices, and number it as vertex 1. 
2. Identify the center of the polygon with the origin of the plane such that the line 

passes the center and vertex 1 lies on the x-axis. 

As the polygon is regular, the required symmetries are 

• the rotations by the angles 0, 2π 
n , 

4π 
n , . . . ,  2(n−1)π 

n , 
• the reflections about lines passing the origin and making angles 

0, π 
n , 

2π 
n , 

3π 
n , . . . ,  (n−1)π 

n with the x-axis, and 
• any compositions of these. 

According to a Propositions 1.7.3 and 1.7.6, these symmetries can be represented 
by the matrices 

R0, R 2π 
n 
, R 4π 

n 
, . . . ,  R 2(n−1)π 

n 
, l0, l π 

n 
, . . . ,  l (n−1)π 

n
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and any matrix resulting by their multiplications. Note that lθ and lπ +θ represent the 
same line of symmetry. This can be checked easily using the result of Proposition 
1.7.6. 

Example 1.7.9 (The symmetries of a Square) Consider a square with the center at 
the origin and one of its vertices on the x-axis. The symmetries of the square are 
represented by R0 = I2, Rπ/2, Rπ , R3π/2, l0, lπ/4,lπ/2,l3π/4 and the products of any of 
these matrices. The equations in Proposition 1.7.7 easily shows that these are all the 
different symmetries of the square. The following table is obtained using Proposition 
1.7.7. Note that l0 = lπ as they represent the same line. Similarly, lπ/4 = l5π/4, 
lπ/2 = l3π/2 and l3π/4 = l7π/4 (see Fig. 1.15 and Table 1.3). 

The next example pertains to a polygon with an odd number of vertices. 

Example 1.7.10 (The symmetries of a Pentagon) Consider a pentagon with the center 
at the origin, and one of its vertices on the x-axis. The symmetries of the pentagon 
are represented by 

R0 = I2, R2π/5, R4π/5, R6π/5, R8π/5, l0, lπ/5, l2π/5, l3π/5, l4π/5 

and their products. The equations in Proposition 1.7.7 shows that these are all the 
different symmetries of the regular pentagon (Fig. 1.16).

Fig. 1.14 Regular 
6-polygon 

Fig. 1.15 Regular 
4-polygon
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Table 1.3 Composition of the symmetries of a square 

· R0 Rπ/2 Rπ R3π/2 l0 lπ/4 lπ/2 l3π/4 

R0 R0 Rπ/2 Rπ R3π/2 l0 lπ/4 lπ/2 l3π/4 

Rπ/2 Rπ/2 Rπ R3π/2 R0 lπ/4 lπ/2 l3π/4 l0 

Rπ Rπ R3π/2 R0 Rπ/2 lπ/2 l3π/4 l0 lπ/4 

R3π/2 R3π/2 R0 Rπ/2 Rπ l3π/4 l0 lπ/4 lπ/2 

l0 l0 l3π/4 lπ/2 lπ/4 R0 R3π/2 Rπ Rπ/2 

lπ/4 lπ/4 l0 l3π/4 lπ/2 Rπ/2 R0 R3π/2 Rπ 

lπ/2 lπ/2 lπ/4 l0 l3π/4 Rπ Rπ/2 R0 R3π/2 

l3π/4 l3π/4 lπ/2 lπ/4 l0 R3π/2 Rπ Rπ/2 R0

Fig. 1.16 Regular 
5-polygon 

Summary 1.7.11 Let n ∈ N such that n ≥ 3. The symmetries of the regular n-
polygon are 

• n rotations, each of which shifts each vertex to the next vertex position, 
• n reflections, each of which pertain to the line passing the center and making an 

angle π k 
n , where k = 0, 1, . . . ,  n − 1, 

• any compositions of these entities. 

Using Proposition 1.7.7 and = lθ lπ +θ , one can easily show that the product of any 
two of these matrices 

R0, R 2π 
n 
, . . . ,  R 2(n−1)π 

n 
, l0, l π 

n 
, l 2π 

n 
· · ·  , l (n−1)π 

n 

is again one of the matrices listed above. 

Corollary 1.7.12 Let n ∈ N such that n ≥ 3. The set.
{
R0, R 2π 

n 
, . . . ,  Rn 

2(n−1)π 
n 

, l0, l π 
n 
, l 2π 

n 
. . . ,  l (n−1)π 

n

}

contains all the different symmetries of the regular n-polygon. 
The following picture shows the effects of all the possible symmetries of an 

octagon (Fig. 1.17).
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Fig. 1.17 Symmetries of regular 8-polygon 

Exercises 

Solved Exercises 

1.1 Show that any nonempty finite subset of Z has unique minimum and maximum 
elements. 

Solution: Let n ∈ N and A = {a1, a2, . . . ,  an} be a nonempty finite subset 
of Z. Using mathematical induction on n, we show that A has minimum and 
maximum elements. i.e., we show that there exist x, y ∈ A such that x ≤ a ≤ y 
for all a ∈ A. 

Base step: if n = 1, then A = {a1} for some integer a1 ∈ Z. As  a1 ≤ a1 ≤ a1, 
then by letting x = y = a1, the statement is true for n = 1. 

Inductive step: assume that the statement is true for n. That is, any subset 
of Z that contains n elements must have minimum and maximum elements. 
Let A = {a1, a2, . . . ,  an, an+1} be a subset of Z with n + 1 elements. Let 
B = A\{an+1} = {a1, a2, . . . ,  an} be a subset that only contains n elements. 
According to the induction hypothesis, B has minimum and maximum elements. 
i.e., there exist x, y ∈ B such that x ≤ ai ≤ y for all ai ∈ B ⊆ A. Three 
possibilities can be listed for an+1: 

an+1 ≤ x, x ≤ an+1 ≤ y, or y ≤ an+1 

• If an+1 ≤ x , then an+1 ≤ x ≤ ai ≤ y for all ai ∈ A, 1 ≤ i ≤ n. Thus, an+1 

is a minimum element of A and y is a maximum element. 
• If x ≤ an+1 ≤ y, then x ≤ ai ≤ y for all ai ∈ A, 1 ≤ i ≤ n + 1. Thus, x is 

a minimum element of A and y is a maximum of A. 
• If y ≤ an+1 then x ≤ ai ≤ y ≤ an+1 for all ai ∈ A, 1 ≤ i ≤ n. Thus, x is a 

minimum element of A while an+1 is a maximum element of A. 

In all three cases, A has minimum and maximum elements. Therefore, according 
to the principle of mathematical induction, the statement is true for any n ∈ N. 
The uniqueness follows as the relation ≤ is a total order relation on Z. 

1.2 Let A be any set. Consider the identity relation on A that is defined in Example 
1.3.7 (4). Show that 

i Any subset of ∆A is a transitive relation on A.
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ii A relation R on A is both symmetric and antisymmetric if and only if R is 
a subset of the identity relation ∆A. 

Solution 

i. Let R be any subset of ∆A and (a, b), (b, c) ∈ R, then a = b and b = c. 
Therefore, (a, c) = (a, b) ∈ R, and R is transitive. 

ii. Assume that R is a relation on A such that R is both symmetric and anti-
symmetric. Let (a, b) be an arbitrary element in R. Since R is symmetric, 
the ordered pair (b, a) must also be in R. However, since R is anti-
symmetric, then a = b, and thus, R ⊆ ∆A. For the other direction, if 
R ⊆ ∆A, any element in R is in the form (a, a) for some a ∈ A. That is, 
R = {(a, a) ∈ A × A : a ∈ B} for some B ⊆ A. i.e., R = ∆B for some 
subset B. By Example 1.3.7 (4), R is both symmetric and antisymmetric. 

1.3 Let R be a relation on Z defined as aRb if and only if a − b is divisible by 2. 
Determine whether R is reflexive, symmetric, antisymmetric, and/or transitive. 
What type of relation is R? 

Solution: 
R is reflexive: since a − a = 0 and 0 = 0 · 2 is divisible by 2, and aRa. 
R is symmetric: if aRb, then a − b is divisible by 2. i.e., there exists k ∈ Z 

such that a − b = 2k. This implies that b − a = 2(−k) is divisible by 2. i.e., 
bRa. 

R is not antisymmetric: 2R4 and 4R2 (Check!), but 2 /= 4. 
R is transitive: if aRb and bRc, then there exist k, h ∈ Z such that 

a − b = 2k and b − c = 2h. 

Therefore, 
a − c = (a − b) + (b − c) = 2k + 2h = 2(k + h) is divisible by 2 
i.e., aRc, and thus, R is transitive. 

1.4 Consider the set of positive integers N, and let A = 
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Define 

R = {
(x + 2, x + 3) ∈ N2 : x ∈ A

}
. 

Here R is a relation on N. Determine the domain and the range of R. What 
is the domain and range of R if A is replaced by N? 

Solution: The relation R can be expressed as follows: 

R = {(2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10), (10, 11), (11, 12), (12, 13)} 

Therefore, 

D(R) = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} 
Rang(R) = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
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If A is replaced by N, then the domain and the range would be the following 
infinite sets 

D(R) = {3, 4, 5, 6, 7, . . .}, Rang(R) = {4, 5, 6, 7, 8, . . .} 

1.5 Let A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ×  {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Let  

R = {
((x, y), (u, v))  ∈ A2 : 3x + y ≤ 3u + v

}

be a relation on A. Determine whether R is an equivalence, a partial order, or 
a total order relation. 

Solve the question with R = {
((x, y), (u, v)) ∈ A2 : 11x + y ≤ 11u + v

}

as well. 
Solution: The properties of R can be checked as follows: 
Reflexivity: since 3x + y ≤ 3x + y, we have ((x, y), (x, y)) ∈ R for each 

(x, y) ∈ A. i.e., R is reflexive. 
Symmetry: since ((0, 0), (1, 2)) ∈ R and ((1, 2), (0, 0)) /∈ R, the relation 

R is not symmetric. 
Antisymmetry: since both ((0, 4), (1, 1)) and ((1, 1), (0, 4)) are elements 

in R and (0, 4) /= (1, 1), R is not antisymmetric. 
Transitivity: If both ((x, y), (u, v)) and ((u, v), (z, w)) are elements in R, 

then 
3x + y ≤ 3u + v and 3u + v ≤ 3z + w. 
This implies that 3x + y ≤ 3z + w and ((u, v), (z, w)) ∈ R. So, R is 

transitive. 
Therefore, R is not an equivalence or an order relation. 
If R = {

((x, y), (u, v)) ∈ A2 : 11x + y ≤ 11u + v
}
, the abovementioned 

reasons can be used to show that R is reflexive, not symmetric and transitive. 
R is antisymmetric because if ((x, y), (u, v)) and ((u, v), (x, y)) are both 
elements in R, then 11x + y = 11u + v implying that v − y = 11(x − u) 
is a multiple of 11. That is, there exists q ∈ Z such that v − y = 11q. 
Since both y and v belong to A, we have  |v − y| ≤ 10. So, zero is the only 
possible value of q. i.e., v = y, and x = u. Therefore, (x, y) = (u, v), 
and R is antisymmetric. Hence, R is a partial order relation. To show that 
R is a total order relation, assume that (x, y) and (u, v) are two elements 
in A. Since 11x + y and 11u + v are elements in N, they are comparable. 
i.e., either 11x + y ≤ 11u + v or 11u + v ≤ 11x + y. In general, R ={
((x, y), (u, v)) ∈ A2 : kx  + y ≤ ku + v

}
is a total order relation whenever 

k > 10. 
1.6 Let A and B Be two finite sets such that |A| = |B| and f : A → B be a 

function. Show that the map f is injective if and only if f is surjective. 
Solution: Assume that |A| = |B| =  n. Let  B = {b1, · · ·  , bn}, where 

b1, · · ·  , bn are distinct elements in B. For all 1 ≤ i ≤ n, let  Ai = {a ∈ 
A : f (a) = bi } and ki = |Ai |, the number of elements in Ai . The  sets
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{Ai ,1 ≤ i ≤ n} form a partition of A (Check!). Therefore, 

n = |A| =  k1 +  · · ·  +  kn 

Note that, 

• the function f is surjective if and only if Ai /= ∅ for all 1 ≤ i ≤ n, that is, 
if and only if ki ≥ 1 for all 1 ≤ i ≤ n. 

• the function f is injective if and only if for all 1 ≤ i ≤ n, the set Ai contains 
at most one element. That is, if and only if ki ≤ 1 for all 1 ≤ i ≤ n. 

If f is injective, then ki ≤ 1 for all 1 ≤ i ≤ n, so  ki ∈ {0, 1}. Since the sum 
k1 +  · · ·  +  kn = n, then ki = 1 for all 1 ≤ i ≤ n. Therefore, f is surjective. 

For the other direction, suppose f is surjective, then ki ≥ 1 for all 1 ≤ i ≤ 
n. Let  li = ki − 1 ≥ 0. Here, 

n = k1 +  · · ·  +  kn = (1 + l1) +  · · ·  +  (1 + ln) = 1 +  · · ·  +  1︸ ︷︷ ︸
n times 

+l1 +  · · ·  +  ln. 

Therefore, n = n + (l1 +  · · ·  +  ln) and l1 +  · · ·  +  ln = 0. Since li ≥ 0 for 
all 1 ≤ i ≤ n, then li = 0 for all 1 ≤ i ≤ n, and ki = 1 for all 1 ≤ i ≤ n. 
Hence, f is injective. 

1.7 Consider the following relations: 

1. R = A × B where A = ∅  and B is any nonempty set. 
2. S = A × B where B = ∅  and A is any nonempty set. 
3. f = {(x, y) ∈ R × R : y2 − x2 = 1}. 
4. g = {

(x, y) ∈ R × R : x2 − y2 = 1
}
. 

Determine whether each relation is a function. 

Solution: 

1. If A = ∅, then R = A × B = ∅  for any nonempty set B. Since there are 
no elements in A, then the conditional statement 

(a ∈ A ⇒ ∃  !  b ∈ B such that (a, b) ∈ R) 

is true. Therefore, R is a function. 
2. Assume that B = ∅, and A is a nonempty subset. If S is a function, then 

for each a ∈ A there exists b ∈ B such that (a, b) ∈ S, which contradicts 
that B is empty, So, S is not a function. 

3. For each x ∈ R, there exist two ordered pairs in f . Namely, (x,
√
1 + x2) 

and (x, − 
√
1 + x2) preventing f from being a function (Fig. 1.18). If we 

restrict the codomain to only the nonnegative real numbers, and define f 
as 

f = {
(x, y) ∈ R × (

R
+ ∪ {0}) : y2 − x2 = 1

}
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then f would assign only one image for each x in R, and thus, it is a 
function on R. 

4. The relation g = {
(x, y) ∈ R × R : x2 − y2 = 1

}
is not a function 

because the ordered pairs
(
x,

√
x2 − 1

)
and (x, − 

√
x2 − 1) are both in 

g. Even if we restrict the codomain to the nonnegative real numbers, the 
relation would not be a function on R, because not every element in the 
domain has an image. If x is any real number such that |x | < 1, then there 
is no y such that (x, y) ∈ g since that would give 1 + y2 = x2 < 1, which 
implies that y2 < 0. Thus, for x with |x | < 1, no image exists under g 
and g is not a function (Fig. 1.19).

1.8 Let f : A → B Be a Function. Prove that the Map f is Invertible if and Only 
if It is a Bijective Map. 

Solution: 
Assume that f is invertible and g : B → A is the inverse function of f . If  

f (a) = f (b), applying g on both sides of the equation yields 

a = g( f (a)) = g( f (b)) = b 

which means that f is injective. Let b ∈ B be an arbitrary element, and 
a = g(b). Then 

f (a) = f (g(b)) = f ◦ g(b) = ιB(b) = b. 

So, f is surjective. Therefore, f is bijective. 
For the other direction, assume that f is bijective, and let 

g = {(b, a) : (a, b) ∈ f } ⊆  B × A.

Fig. 1.18 Graph of 
f = {(x, y) ∈ R × R : 
y2 − x2 = 1} 
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Fig. 1.19 Graph of g ={
(x, y) ∈ R × R : x2 − y2 = 1

}

We show that g : B → A is a function such that g ◦ f = ιA and f ◦ g = ιB . 
Let b ∈ B be an arbitrary element. Since f is surjective (onto), there exists 
a ∈ A such that f (a) = b. i.e., (a, b) ∈ f , so  (b, a) ∈ g. That is, g is defined 
for each element in B. 

To show the uniqueness of images of elements in B under g, let  (b, a1) and 
(b, a2) be two elements in g, so  (a1, b) and (a2, b) belong to f . Since f is 
injective (one-to-one), then a1 = a2, as required. We still need to show that 
for all a ∈ A, g ◦ f (a) = a and for all b ∈ B, f ◦ g(b) = b. Let  a ∈ A, since 
f is defined for all elements of A, then there exists a unique element b ∈ B 
such that (a, b) ∈ f i.e., (b, a) ∈ g. Therefore, 

g ◦ f (a) = g( f (a)) = g(b) = a. 

Since a is an arbitrary element in A, then g ◦ f = ιA. Similarly, according 
to the surjectivity of f, for each b ∈ B there exists a ∈ A such that (a, b) ∈ f . 
This implies that (b, a) ∈ g. i.e., 

f ◦ g(b) = f (g(b)) = f (a) = b. 

Since b is an arbitrary element in B, then f ◦ g = ιB . 
1.9 Let n ∈ N, K be any subset of C, and A ∈ Mn(K ) be an invertible matrix. 

Show that 

det
(
A−1

) = 1 

det( A)
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and det(A) = det
(
A−1

)
if and only if det(A) ∈ {1, −1}. 

Solution: If A ∈ Mn(K ) is an invertible matrix, then there exists A−1 ∈ 
Mn(K ) such that 

AA−1 = In 

Therefore, 

det(A) det
(
A−1

) = det
(
AA−1

) = det(In) = 1 

The result now follows. Moreover, we have 

det(A) = det
(
A−1) ⇔ det(A) = 1 

det(A) 
⇔ (det(A))2 = 1 ⇔ det(A) ∈ {1, −1} 

1.10 Compute all possible symmetries of a regular triangle and list their multipli-
cations. 

Solution: According to Corollary 1.7.12, the  set.

{
R0, R2π/3, R4π/3, lo, lπ/3, l2π/3

}

contains all the symmetries of the regular triangle. Using the relations in 
Proposition 1.7.7, and, 

lθ = lπ +θ 

we obtain the following Table 1.4 that contains all their compositions. 

Unsolved Exercises

Table 1.4 Compositions of the symmetries of a regular triangle 

· R0 R2π/

3 
R4π/

3 
l0 lπ/

3 
l2π/

3 

R0 R0 R2π/

3 
R4π/

3 
l0 lπ/

3 
l2π/

3 
R2π/

3 
R2π/

3 
R4π/

3 
R0 lπ/

3 
l2π/

3 
l0 

R4π/

3 
R4π/

3 
R0 R2π/

3 
l2π/

3 
l0 lπ/

3 

l0 l0 l2π/

3 
l2π/

3 
R0 R4π/

3 
R2π/

3 
lπ/

3 
lπ/

3 
l0 l2π/

3 
R2π/

3 
R0 R4π/

3 
l2π/

3 
l2π/

3 
lπ/

3 
l0 R4π/

3 
R2π/

3 
R0 
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1.11 Let ∆ denote the symmetric difference defined in Definition 1.1.8. Show that 
(A∆B)∆C = A∆(B∆C) for any sets A, B and C. 

1.12 Let r be a real number such that 0 < r < 1. Show that 

r−1 + 1 + r + r2 +  · · ·  +  rn = 
rn+2 − 1 
r (r − 1) 

for every integer n such that n ≥ −1. 
1.13 Show that 2n+2 + 32n+1 is divisible by 7 for every nonnegative integer n. 
1.14 Show that if x ∈ R, x > −1, then (1 + x)n ≥ 1 + nx  for every integer n such 

that n ≥ 0. 
1.15 For each of the following relations 

1. R = {
(x, y) ∈ Z2 : x + y < 5

}
, 

2. T = {(x, y) ∈ N2 : x + y > 1}, and 
3. V = {

(x, y) ∈ Z2 : x + y is even
}
, 

determine whether the relation is reflexive, symmetric, antisymmetric, or 
transitive. 

1.16 Let A be a nonempty set. For any relations R and T on A, the composition 
relation is defined as 

R◦T = {
(a, c) ∈ A2 : ∃  b ∈ A, (a, b) ∈ T ∧ (b, c) ∈ R}

Show that if R and T are equivalence relations on A, then R ◦ T is an 
equivalence relation on A if and only if R ◦ T = T ◦ R. 

1.17 Let A = Z\{0} andR = {
(x, y) ∈ A2 : xy  > 0

}
be a relation on  A. Determine 

whether R is an equivalence relation. 
1.18 Let A = Z\{0} and R = {

(x, y) ∈ A2 : x |y} be a relation on  A. Show that R 
is a partial order relation. Is R a total order relation? 

1.19 Let n ∈ N and R = {
(a, b) ∈ Z2 : b−a 

n ∈ Z
} = {

(a, b) ∈ Z2 : n|(b − a)
}
. 

a. Show that R is an equivalence relation on Z. 
b Show that the equivalence classes of R can be expressed as m +nZ, where 

m = 0, 1, 2, . . . ,  n − 1. 

1.20 Consider the set of integers Z. Let  f : Z × Z → Z and g : Z × Z → Z be the 
maps defined by 

f (a, b) = a + b, g(a, b) = ab 

Show that f and g define functions on Z. 
1.21 Show that the composition of two functions is a function, and the composition 

of two bijective maps is a bijective map. Show that the inverse of a bijective 
map is bijective. 

1.22 Determine whether the functions
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a. f : R → R, where f (x) = x2 − 5 
b. g : R\{0} →  R, where g(x) = 1 x + 2 

are injective or surjective. Find the domains and ranges of these functions. 
1.23 Let A and B Be Two Sets and f :A→B Be a Function. Show that 

ιB ◦ f = f ◦ ιA = f 

where iA and iB are the inclusion functions of A and B respectively. 
1.24 Let A and B be two sets and f : A → B be a Function. Show that 

• f is injective if and only if for any H ⊆ A, f −1( f (H )) = H . 
• f is surjective if and only if for any K ⊆ B, f

(
f −1(K )

) = K . 

where f (H) denotes the image of H under f, and f −1(K ) is the preimage of 
K . 

1.25 Let f : C → C be the map takes z = x+iy  to its complex conjugate z = x−iy. 
Show that the map f is a bijective function, and for all z, z1, z2 ∈ C 

¯̄z = z, and z1z2 = z̄1 z̄2 

1.26 Show that the multiplication of diagonal matrices is commutative. 
1.27 Show that if A is an upper or a lower tringle matrix, then the determinant of A 

is the product of its diagonal entries. i.e., 

det(A) = 
n∏

i=1 

ai = a11 a22 . . . . . .  ann . 

1.28 List all possible symmetries for a regular octagon and the compositions of any 
two of these symmetries. 
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Chapter 2 
Algebraic Operations on Integers 

Counting began with the positive integers N = {1, 2, 3, . . .  }. The counterparts of 
these numbers, the negative numbers, and the zero were later introduced to form the 
integers. Namely, the integers can be expressed as 

Z = {. . . ,  −4, −3, −2, −1, 0, 1, 2, 3, 4, . . .  }. 

Any integer has two parts, sign and magnitude. The sign of an integer is either 
positive, negative, or neutral (if the integer equals zero). The magnitude of an integer 
a is mathematically defined as the absolute value of a, i.e., 

|a| =
{

a a  ≥ 0 
−a a  < 0 

In this chapter, we study the basic operations on integers, and present several 
fundamental results. In Sect. 2.1, the quotient–remainder theorem is discussed and 
illustrated. The divisibility of integers and basic results are illustrated in Sect. 2.2. 
In Sect 2.3, the common divisor and the greatest common divisor are defined and 
discussed. In Sect. 2.4, the Euclidean algorithm for computing the greatest common 
divisor is studied. The Bézout’s lemma and methods of writing the common divisor as 
a linear combination of the integers are studied in Sect. 2.5. Section 2.6 is devoted to 
relatively prime numbers and their properties, and Sect. 2.7 is devoted to the common 
multiples of integers. The fundamental theorem of arithmetic and the prime numbers 
are considered in Sect. 2.8. The last section is divided into two parts pertaining to 
applications of the Euclidean algorithm. The first part pertains to testing the primality 
of an integer, and the second discusses the computation of the greatest common 
divisor and the least common multiple. The readers can refer to (Burton, 2007) for  
the results presented in this chapter and their proofs.
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2.1 Basic Algebraic Operations on Integers 

Four basic operations can be performed on integers: addition, subtraction, multipli-
cation, and division. We assume that the reader is familiar with these fundamental, 
their properties, and the usual methods used to compute them. Since the addition 
(subtraction) of two integers a and b defines a unique element a + b (a − b) in Z 
for each a, b ∈ Z, then the addition (subtraction) forms a function on Z. Note that 
the subtraction is not a function on N as a subtraction of two elements in N is not 
necessarily in N. The multiplication (product) of two integers is defined using the 
addition operation. If a and b are two positive integers, the multiplication of a and 
b, denoted by a × b, refers to the addition of a to itself b times, and vice versa, i.e., 
for two positive integers a and b, a × b = a + a + a +  · · ·  +  a︸ ︷︷ ︸

b times 

. The definition of 

multiplication for any integers can be generalized as follows: 
Let a and b be two nonzero integers. The multiplication of a and b is defined as 

the integer whose absolute value is |a| × |b| and whose sign is determined by the 
following rule: 

Sign(a × b) = 

⎧⎨ 

⎩ 

+ Sign(a) = Sign(b) 

− Sign(a) /= Sign(b) 

If either a or b is zero, then a × b = 0. 

Proposition 2.1.1 The three operations of addition, subtraction, and multiplication 
are functions on the set of integers Z. Only addition and multiplication form functions 
on N. Subtraction is not a function on N. 

The rest of this section discusses dividing two integers. If a and b are two positive 
integers, the quotient of a and b is the maximum number of times one can subtract b 
from a without obtaining a negative result. The value that remains in a afterward is 
called the remainder. For example, the quotient of 7 and 2 is 3, as one can subtract 2 
three times from 7 without obtaining a negative result, and the remainder is 1. The 
operation of finding the quotient and remainder is called division. The quotient-
remainder theorem, stated below, shows the existence and uniqueness of the quotient 
and remainder of any two integers, with the restriction that the divisor is nonzero. 
Dividing by zero is always undefined. 

Theorem 2.1.2 (Quotient-remainder theorem) Let a, b ∈ Z and b /= 0. There exist 
unique elements q, r ∈ Z such that a = qb + r, where 0 ≤ r < |b|. 
Definition 2.1.3 Let a, b ∈ Z, b /= 0, and q, r be as in Theorem 2.1.2. The number 
q is called the quotient of a by b, and r is called the remainder. The numbers a and 
b are called the dividend and the divisor, respectively. 

To find the numbers q and r in dividing 39 by 5 (for example), one starts by listing 
the multiples of 5 that are not greater than 39 in increasing order.
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0, 5, 10, 15, 20, 25, 30, 35 

As the largest of these is 35 = 5 × 7, then q = 7, and the remainder r = 
39 − 7 × 5 = 4. This method of finding q and r is not practical when q is large. 
The quotient and the remainder of two positive integers are usually found using 
the division algorithm (long division). The long division can only be carried out on 
positive integers, the quotient and the remainder for dividing integers a and b can 
be obtained from long division of the positive integers |a| and |b| using the steps 
outlined below. 

An algorithm to find the quotient and the remainder: 

To find the quotient q and remainder r of dividing a by b where b /= 0, use the long 
division to divide |a| and |b| to obtain Q and R, such that |a| = Q|b| + R where 
0 ≤ R < |b|. 
1. If a > 0 and b > 0, let  q = Q and r = R. 
2. If a > 0 and b < 0, let  q = −Q and r = R ( a = Q|b| + R = (−Q)b + R). 
3. If a < 0 and b > 0, then a = −|a| = −Qb − R. 

(a) If R = 0, let  q = −Q and r = 0 
(b) If R /= 0, let  q = −Q − 1 and r = b − R (a = (−Q − 1)b + (b − R)). 

4. If a < 0 and b < 0, then a = −|a| = −Q|b| − R = Qb − R. 

(a) If R = 0, let  q = Q and r = 0 
(b) If R /= 0, let  q = Q + 1 and r = |b| − R (a = (Q + 1)b + |b| − R). 

It is left to the reader to verify that in all cases, the equation a = qb + r , where 
0 ≤ r < |b|, holds. As r = a − qb, the remainder forms a linear combination 
of a and b. For a nonzero integer b, the remainder r of dividing any integer by b 
satisfies 0 ≤ r < |b|. Hence, the set of positive integers that are less than |b| contains 
all possible remainders that result from dividing by b. For example, {0, 1, 2, 3, 4} 
contains all remainders of 5, while {0, 1, 2, 3, 4, 5, 6, 7} contains the remainders of 
−8. 

Definition 2.1.4 Let b ∈ Z such that b /= 0. The  set  {0, 1, 2, . . .  |b| − 1} is called 
the set of remainders of b. 

Example 2.1.5 To find the quotient and remainder of dividing a by b, where 

i. a = 123, b = 21, ii. a = 123, b = −21, iii. a = −123, b = 21, iv.  a = 
−123, b = −21 

we apply long division on the positive integers |123| and |21| to obtain 

123 = 5 · 21 + 18, i.e., Q = 5 and R = 18. 

Therefore, by applying the algorithm described above, we obtain
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i. For a = 123, b = 21, the quotient is 5, and the remainder is 18. 
ii. For a = 123, b = −21, the quotient is −5, and the remainder is 18. 
iii. For a = −123, b = 21, the quotient is −6, and the remainder is 3. 
iv. For a = −123, b = −21, the quotient is 6, and the remainder is 3. 

2.2 Divisibility of Integers 

This section studies the notion of divisibility, which is almost equivalent to division 
with a zero remainder, the only exceptions to this equivalence is when determining 
divisibility by zero. We state and prove several results that are needed for subsequence 
chapters. 

Definition 2.2.1 Let a, b ∈ Z. We say  b divides a, denoted by b|a, if there exists 
c ∈ Z such that a = bc. In this a case, we say a is divisible by b, we also say  a is a 
multiple of b. 

Lemma 2.2.2 Let a, b ∈ Z such that b /= 0. The integer a is divisible by b if and 
only if the remainder of dividing a by b is zero. 

Proof Assume that a, b ∈ Z. By Theorem 2.1.2, there exist two integers q and r 
such that a = qb + r and 0 ≤ r < |b|. In this equation, r = 0 if and only if 
a = qb. ∎

Definition 2.2.3 For an integer a, 

1. The set Div(a) = {b ∈ Z : b|a} is called the divisors of a. 
2. The set Mult(a) = {c ∈ Z : a|c} is called the multiples of a. 

For example: 

Div(12) = {±1, ±2, ±3, ±4, ±6, ±12}, Mult(12) = {0, ±12, ±24, ±36, . . .} = 12Z. 

Div(13) = {±1, ±13}, Mult(13) = {0, ±13, ±26, ±39, . . .} = 13Z. 
Div(15) = {±1, ±3, ±5, ±15}, Mult(15) = {0, ±15, ±30, ±45, . . .  .} = 15Z. 

Although division by zero is not defined, the first item in the following proposition 
shows that zero can be divided by, and is thus a multiple of, any integer. 

Proposition 2.2.4 

1. Any integer is a divisor of zero, and zero is the only multiple of zero, i.e., 

Div(0) = Z and Mult(0) = {0} (a|0 for any a ∈ Z, and 0|a ⇒ a = 0).
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2. The only divisors of 1 and of −1 are 1 and −1. Any integer is a multiple of 1 
and of −1, i.e., 

Div(1) = Div(−1) = {±1} and Mult(1) = Mult(−1) = Z. 

(1|a for any a ∈ Z, −1|a for any a ∈ Z, and a|1 ⇒ a = ±1). 

3. Any integer is a divisor and a multiple of itself, i.e., 

a ∈ Div(a) and a ∈ Mult(a) for any integer a. (a|a for any a ∈ Z). 

4. For an integer a, Mult(a) = aZ = {ab : b ∈ Z}. (In particular, Mult(0) = 
{0} = 0Z). 

Proof 

1. Let a ∈ Z be an arbitrary element. As the equation 0×a = 0 holds for a, we have  
a|0, i.e., a belongs to Div(0), which implies that Z ⊆ Div(0). As  Div(0) ⊆ Z, 
then Div(0) = Z. 

If 0|a, then there exists b ∈ Z such that a = 0 × b, which implies that a = 0, 
and thus, Mult(0) = {0}. 

2. If a|1, then there exists b ∈ Z such that 1 = ab. The only possible integer 
solutions for this equation are a = 1, b = 1 and a = −1, b = −1, and thus 
a = ±1. Since any integer a can be written as a = a × 1, we have  1|a and 
Mult(1) = Z. Similar results hold for Div(−1) and Mult(−1). 

3. Let a be any integer. The equation a = a × 1 implies a|a, thereby implying both 
results in this item. 

4. As ab is a multiple of a for any b ∈ Z, then aZ ⊆ Mult(a). In the other direction, 
by definition, any multiple of a is an element in aZ. ∎

Note that for any integer a /= 0, the set of multiples of a, Mult(a), is an infinite 
subset of Z. 

Proposition 2.2.5 Let a and b be two integers. 

1. The integer b divides a if and only if −b divides a if and only if b divides −a, 
i.e., 

b ∈ Div(a) ⇔ −b ∈ Div(a) ⇔ b ∈ Div(−a). 

Hence, Div(a) = Div(−a). 
2. If a /= 0, and b divides a, then |b| ≤ |a| (The magnitude of the divisor cannot 

exceed that of the dividend). 
3. If a|b and b|a, then |b| = |a| and vice versa (If two integers divide each other, 

then they may differ only in sign).
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Proof 

1. The integer b divides a if and only if there exists c ∈ Z such that a = b × c = 
(−b) × (−c) if and only if −b|a. For the second statement, b|a if and only if 
there exists c ∈ Z such that a = b × c, if and only if there exists c ∈ Z such that 
−a = b × (−c), if and only if there exists d = −c ∈ Z such that −a = b × d, 
this is if and only if b|(−a). 

2. Assume a /= 0 and b|a, then there exists c ∈ Z such that a = bc and c /= 0. 
Hence, |a| = |bc| = |b||c| ≥ |b| · 1 = |b| (|c| ≥ 1 since c /= 0). 

3. If a = 0 or b = 0, then by item (1) in Proposition 2.2.4, both a and b equal to zero, 
and thus, |a| = 0 = |b|. If  a /= 0 and b /= 0, by item (2), |a| ≤ |b| and |b| ≤ |a|. 
Therefore, |a| = |b|. ∎

Remark 2.2.6 

• Proposition 2.2.5 (2) implies that the set of divisors of any nonzero integer a, 
Div(a), is a finite set bounded by −|a| and |a|. 

(a /= 0 ⇒ Div(a) ⊆ {−|a|, −|a| + 1, . . . ,  0, . . . ,  |a| − 1, |a|}) 

• Since a ∈ Div(a) (Proposition 2.2.4 (3)) and Div(a) = Div(−a) (Proposition 
2.2.5), then −a ∈ Div(a). 

Proposition 2.2.7 Let a, b, and c be any integers. 

1. If b|a and a|c, then b|c (The divisibility relation is transitive). 
2. If b|a and b|c, then b|(xa  + yc) for any x, y ∈ Z (A divisor for two integers 

divides any linear combination of them). 
3. If a /= 0, then ab|ac if and only if b|c. 
Proof 

1. Assume that b|a and a|c, then there exist m, n ∈ Z such that a = mb and c = na. 
Therefore, c = n(mb) = (nm)b and b|c. 

2. Assume that b|a and b|c, then there exist m, n ∈ Z such that a = mb and 
c = nb. Therefore, xa  + yc = x(mb) + y(nb) = (xm  + yn)b. Since xm  + yn 
is an integer, then b|(xa  + yc). 

3. Assume that a /= 0. The integer b divides c if and only if there exists d ∈ Z such 
that c = bd if and only if there exists d ∈ Z such that ac = abd, this is, if and 
only if ab|ac ∎

Example 2.2.8 

1. We can show that 1 is the only positive integer that divides both 231 and 10 as 
follows: Assume that a is a positive integer that divides both 231 and 10. Using  
long division, the following mathematical statement can be obtain
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231 = (23 × 10) + 1 

i.e. 

231 − (23 × 10) = 1. 

Therefore, 1 is a linear combination of 231 and 10. As  a divides 231 and 10, by  
Proposition 2.2.7 (2), a divides 1. Therefore, by Proposition 2.2.4 (2), the integer a 
is either 1 or −1. Since a > 0, then a must be 1. 

2. We show that the integers 1 and 2 are the only positive integers that divide both 
40 and 26 as follows: Assume that a is a positive integer such that a divides both 
40 and 26. By applying long division for dividing 40 by 26, one gets 

40 = (1 × 26) + 14, i.e., 40 − (1 × 26) = 14. 

Therefore, 14 is a linear combination of 40 and 26. As  a divides 40 and 26, 
by Proposition 2.2.7 (2), a divides 14, i.e., a divides both 14 and 26. Repeating 
the same process with the numbers 14 and 26, one obtains 12 = 26 − (1 × 14) 
and a|12. Repeating the same process one more time for 12 and 14, one obtains 
2 = 14− (1 × 12), and thus, a|2. By Proposition 2.2.5 (2), |a| ≤ |2| = 2. Therefore, 
a = ±1 or a = ±2. As  a is positive integer, then a = 1 or a = 2. 

Remark 2.2.9 In Example 2.2.8 (2), the process continued until the remainder divides 
the smaller integer. If we applied the long division one more time and obtained a 
linear combination from 12 and 2, then we get 0 = 12 − (2 × 6), which yields a|0. 
Since all integers divide 0, then a cannot be determined in such case. Hence, it is 
necessary to terminate the process at certain stage, i.e., when the remainder divides 
the smaller integer. 

2.3 Common Divisors of Integers 

This section defines the common divisors of given integers. Several essential prop-
erties of common divisors are examined, and the greatest common divisor is 
introduced. 

Definition 2.3.1 (Common Divisor) Let  a, b, c ∈ Z. If  c divides both a and b, then 
c is called a common divisor of a and b. The set of all common divisors of a and b 
is denoted by D(a, b). i.e., D(a, b) = {c ∈ Z : c|a ∧ c|b}. 

For any integers a and b, D(a, b) = D(b, a). As  1 ∈ D(a, b), then D(a, b) is a 
nonempty subset of Z.
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Definition 2.3.2 Let a1, a2, . . . ,  an be any integers. If c divides ai for each 1 ≤ i ≤ n, 
then c is said to be a common divisor of a1, a2, . . . ,  an . The set of all common divisors 
of a1, a2, . . . ,  an is denoted by D(a1, a2, . . . ,  an), i.e., 

D(a1, a2, . . . ,  an) = {c ∈ Z : c|ai ∀ 1 ≤ i ≤ n}. 

As 1 ∈ D(a1, a2 . . .  an), then D(a1, a2 . . .  an) is a nonempty subset of Z. An  
integer a is a common divisor of any finite subset of aZ. For example, 2 is a common 
divisor of any finite subset of even integers, and 3 is a common divisor of any subset 
of 3Z. 

Lemma 2.3.3 For any a ∈ Z, 

D(a, a) = D(a, 0) = Div(a). 

In particular, D(0, 0) = Z. 
Proof By definition, D(a, a) = {c ∈ Z : c|a} =  Div(a). It is clear that D(a, 0) ⊆ 
Div(a). For the other direction, if c ∈ Div(a), then c|a. Since all integers divide 0 
(Proposition 2.2.4 (1)), then c ∈ D(a, 0). Therefore, D(a, 0) = Div(a). The  last  
statement follows as Div(0) = Z. ∎
Lemma 2.3.4 If a, b ∈ Z then 

1. D(a, b) = D(|a|, |b|). 
2. D(a, b) = D(a − qb, b) for any q ∈ Z. 
Proof By Proposition 2.2.5 (1), Div(c) = Div(−c) for any integer c. Hence, 

D(a, b) = D(−a, b) = D(a, −b) = D(−a, −b). 

The result follows as |c| is either c or −c for any c ∈ Z. For the second statement, 
assume that q ∈ Z. If  c ∈ D(a, b), then by Proposition2.2.7 (2), c divides any linear 
combination of a and b. In particular, c divides a − qb, i.e., c ∈ D(a − qb, b). For  
the other direction, let c ∈ D(a − qb, b). As  c divides both a − qb and b, it divides 
their linear combination (a − qb) + qb = a. That is, c|a, and c ∈ D(a, b). ∎

As D(0, 0) = Z, then D(0, 0) is an unbounded set. However, if a /= 0 or b /= 0, 
then any element c in D(a, b) must satisfy −|a| ≤ c ≤ |a| or −|b| ≤ c ≤ |b| 
(Remark 2.2.6). Therefore, if a /= 0 or b /= 0, then for any c in D(a, b), the  
following inequality holds 

max{−|a|, −|b|} ≤  c ≤ min{|a|, |b|}. 

This discussion can be summarized as follows: 

Lemma 2.3.5 Let a, b ∈ Z such that a /= 0 or b /= 0. The set D(a, b) is a nonempty 
finite subset of Z bounded below by max{−|a|, −|b|} and above by min{|a|, |b|}. The 
set D(0, 0) = Z is an unbounded set.
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The following corollary is a direct result for Lemma 2.3.5 and Exercise 1.1. 

Corollary 2.3.6 Let a, b ∈ Z such that a /= 0 or b /= 0. The set D(a, b) of all 
common divisors of a and b has a unique maximum element. 

In general, if a1, a2, . . . ,  an ∈ Z such that they are not all zeros. The set 
D(a1, a2 . . .  an) of all common divisor of a1, a2, . . . ,  an has a unique maximum 
element. 

Definition 2.3.7 Let a and b be integers such that at least one of them is not zero. The 
greatest common divisor of a and b, denoted by gcd(a, b), is defined as the maximum 
element in D(a, b). The greatest common divisor of zero and zero, gcd(0, 0), is not 
defined. 

In general, 

Definition 2.3.8 Let a1, a2, . . . ,  an ∈ Z such that they are not all zeros. The greatest 
common divisor of a1, a2, . . . ,  an , denoted by gcd(a1, . . . ,  an), is defined as the 
maximum element in D(a1, a2, . . . ,  an). 

Remark 2.3.9 Let a and b are integers such that at least one of them is not zero. 
Since D(a, b) = D(b, a), the maximum elements of the two sets are equal, i.e., 
gcd(a, b) = gcd(b, a). 

Corollary 2.3.10 Let a and b be integers such that a /= 0 or b /= 0. Then, 

1. gcd(a, b) ≥ 1 and gcd(a, b) = gcd(|a|, |b|). 
2. For any q ∈ Z, the integers a − qb and b are not both zero, and 

gcd(a, b) = gcd(a − qb, b) 

(i.e., the greatest common divisor of two integers does not change if we replace 
one of the integers by the remainder of their division). 

3. If b|a, then gcd(a, b) = |b|. In particular, if a /= 0, then gcd(a, 0) = |a|. 
Proof Since 1 ∈ D(a, b), we have  gcd(a, b) ≥ 1. As  D(a, b) = D(|a|, |b|), the  
maximum elements of the two sets are equal. For the second statement, assume q to 
be any integer. If both b and a − qb are zero, then a = (a − qb) + qb = 0 + 0 = 0, 
which contradicts the corollary’s assumption. Hence, b and a − qb cannot be both 
zero. The equality in (2) follows as D(a, b) = D(a − qb, b) (Lemma 2.3.4). For the 
last statement, assume that b|a, then |b| ∈ D(a, b). The result follows by Lemma 
2.3.5 as any element in D(a, b) is less than or equal to |b|. ∎

2.4 Euclidean Algorithm (Euclid’s Algorithm) 

The Euclidean algorithm, or Euclid’s algorithm can be used to determine the greatest 
common divisor of two integers. As gcd(a, b) = gcd(|a|, |b|) (Corollary 2.3.10),
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Fig. 2.1 The integer 4 measures 20 

we only consider nonnegative integers in applying the Euclidean algorithm. The 
method was established by the Greek mathematician Euclid (300 BC). In that period, 
mathematics focused on geometry. Mathematicians described positive integers as 
lengths of intervals (sticks). Hence, the statement “b divides a” was expressed as “b 
measures a”, which means that stick b could be used to measure a. The following 
illustration shows how 4 measures 20 (Fig. 2.1). 

The Greeks called the common divisor, the common measure. The problem was to 
determine the largest common measure that can be used to measure lengths (sticks) 
a and b. Euclid adopted the idea of using the shorter stick, let us say b, to measure the 
longer stick a. If the measurement could be performed, then b is the required largest 
common measure. However, this scenario is not always possible. For example, 9 is 
not a suitable candidate for the scale measurement of the lengths 24 and 9. A stick 
with length of 9 cannot be used to measure 24 as there will be part with length 6 that 
cannot be measured by 9 (Figs. 2.2 and 2.3). 

Remarkably, Euclid noticed that the required scale measurement for 24 and 9 must 
also measure the remainder 6. Thus, instead of using sticks of length 24 and 9, Euclid 
had many sticks of length 9 and one stick of length 6. To measure these sticks, it is 
necessary to use a scale measurement that can measure 9 and 6. Hence, the problem 
of finding the largest scale measurement for 24 and 9 turns into a problem of finding 
the largest scale measurement for 9 and 6. Applying the same process on lengths 9 
and 6, it is necessary to determine the largest scale measurement that can measure 
6 and 3. Since 3 can measure 6, then 3 is the largest common measurement for 3

Fig. 2.2 The integer 9 does not measure 24 

Fig. 2.3 The largest common measurement that measures 3, 6, 9, and 24 
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Table 2.1 The Euclidean algorithm’s steps to find the common divisor of 47840 and 10452 

and 6. Therefore, 3 is the largest common measurement that can be used to measure 
3, 6, 9, and 24. This method to find the greatest common divisor for two integers is 
known as the Euclidean algorithm. 

Euclidean Algorithm 2.4.1 The greatest common divisor of two positive integers 
can be computed using the following steps: 

1. Determine the greater integer, call it a, and label the other integer b. 
2. Divide a by b and determine the remainder r . 
3. If r /= 0, replace a by b, and replace b by r . 
4. Repeat steps (2) and (3) until r = 0. 
5. Return the last value of b. 

The outcome of the Euclidean algorithm is the greatest common divisor of the 
two integers. 

Example 2.4.2 Table 2.1 summarizes the steps of the Euclidean algorithm to find 
the common divisor of 47840 and 10452. According to the Euclidean algorithm, the 
greatest common divisor is 52. 

The next goal is to show that the output of the Euclidean algorithm is the greatest 
common divisor of the two input integers. To better understand the applied algorithm, 
we analyze it for positive integers a and b as follows: let a and b be any positive 
integers such that a ≥ b. Let  a = a0, b = b0 and apply the Euclidean algorithm on 
a0 and b0. The process generates the following equations: 

a0 = q0b0 + r0 such that q0, r0 ∈ Z and 0 ≤ r0 < b0 

(If r0 /= 0, let a1 = b0, b1 = r0 and apply the division algorithm on a1, b1) 

a1 = q1b1 + r1 such that q1, r1 ∈ Z and 0 ≤ r1 < b1 = r0
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(If r1 /= 0, let a2 = b1, b2 = r1 and apply the division algorithm on a2, b2) 

a2 = q2b2 + r2 such that q2, r2 ∈ Z and 0 ≤ r2 < b2 = r1 

... 
... 

... 
... 
... 

(If rk−1 /= 0, let ak = bk−1, bk = rk−1, and apply the division algorithm on ak, bk ) 

ak = qkbk + rk such that qk, bk ∈ Z and 0 ≤ rk < bk = rk−1 

... 
... 

... 
... 
... 

The algorithm iterates until an= qnbn +rn such that qn, bn ∈ Z and rn = 0. Then, 
the process is terminated, yielding bn as the output. 

Remark 2.4.3 Applying the Euclidean algorithm on two positive integers generates 
a list of. 

1. Decreasing nonnegative integers rk, where 0 ≤ k ≤ n, and rn = 0. 
2. Equations ak= qkbk + rk such that qk, rk ∈ Z, and 0 ≤ rk < bk , 0 ≤ k ≤ n, 

where for each k ≥ 1, ak = bk−1 and bk = rk−1. 

The process used in the Euclidean algorithm is implemented by applying long divi-
sion (division algorithm) in each step. By Corollary 2.3.10 (2), the greatest common 
divisor does not change in each step. For each k, ak = bk−1 and bk = rk−1, which 
implies that 

gcd(ak, bk) = gcd(bk, ak) = gcd(rk−1, bk−1) 

= gcd(ak−1 − qk−1bk−1, bk−1) = gcd(ak−1, bk−1). 

That is, the greatest common divisor is preserved in each step during the process 
of applying the Euclidean algorithm, as proven in the following lemma. 

Lemma 2.4.4 Let a, b ∈ N such that a ≥ b. In applying the Euclidean algorithm 
on a and b, 

gcd(a, b) = gcd(ak, bk) 

for all 0 ≤ k ≤ n. The integers ak, and bk are defined in the Euclidean algorithm. 

Proof Following the algorithm, let a = a0 and b = b0. The result is obtained using 
the mathematical induction on k. 

• If k = 0, then gcd(a, b) = gcd(a0, b0) as required.
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• Assume that the equality holds for k − 1, i.e., gcd(a, b) = gcd(ak−1, bk−1). 
• Using Corollary 2.3.10 (2) and the argument after Remark 2.4.3, one can show that 

gcd(ak, bk) = gcd(ak−1, bk−1). By induction hypothesis, this is equal to gcd(a, b) 
as required. 

By the abovementioned steps, and the principle of mathematical induction, the 
result holds for any k such that 0 ≤ k ≤ n. ∎

Corollary 2.4.5 Let a, b ∈ N, such that a ≥ b. The returned integer after applying 
the Euclidean algorithm on a and b is their greatest common divisor. 

Proof By Lemma 2.4.4, gcd(a, b) = gcd(ak, bk) for all 0 ≤ k ≤ n. In particular, 

gcd(a, b) = gcd(an, bn). 

Using the result of Corollary 2.3.10 (2), we obtain 

gcd(a, b) = gcd(an, bn) = gcd(bn, an − qnbn) 
= gcd(bn, rn) = gcd(bn, 0) = bn. ∎

In the following example, the Euclidean algorithm is applied to find the greatest 
common divisor of 57970 and 10353. 

gcd(47840, 10452) = gcd(10452, 6032) = gcd(6032, 4420) 
= gcd(4420, 1612) = gcd(1612, 1196) = gcd(1196, 416) 
= gcd(416, 364) = gcd(364, 52) = gcd(52, 0) = 52. 

2.5 Bézout’s Lemma (Bézout’s Identity) 

As shown in Proposition 2.2.7 (2), a divisor for two integers also divides any linear 
combination of them. Therefore, the greatest common divisor of two integers divides 
any linear combination of these integers. Furthermore, as we show below, the greatest 
common divisor of two integers is the only positive divisor that can be expressed 
as a linear combination of the two integers. The idea is attributed to the French 
mathematician É. Bézout. 

Theorem 2.5.1 (Bézout’s lemma) For any a, b ∈ Z, such that a /= 0 or b /= 0, 
there exist x, y ∈ Z such that gcd(a, b) = xa  + yb i.e., gcd(a, b) can be written as 
a linear combination of a and b. 

A generalization of Bézout’s lemma (Exercise 2.9) is the following. 

Theorem 2.5.2 Let a1, a2, . . . ,  ak be integers at least one of which is nonzero. There 
exist xi ∈ Z, 1 ≤ i ≤ k such that gcd(a1, a2, . . . ,  ak) = x1a1 + x2a2 +  · · ·  +  xkak.
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Recall that in computing gcd(a, b), we built a sequence of long divisions ai = 
qi bi + ri , where a0 = a, b0 = b, and for each 2 ≤ i ≤ k, ai = bi−1, bi = ri−1 

with, in the final step, rk = 0, i.e., bk a divisor of ak (Remark 2.4.3). We showed 
that gcd(a, b) = bk = gcd(ai , bi ) for 1 ≤ i ≤ k. Next, we discuss two methods 
used to write the greatest common divisor of two numbers as a linear combination 
of these numbers. The two methods utilize the same steps that were used in the 
Euclidean algorithm to determine the gcd. In backward substitution method, we start 
with the step before the last ak−1 = qk−1bk−1 + bk, which since gcd(a, b) = bk, can 
be rewritten as 

gcd(a, b) = ak−1 − qk−1bk−1 

yielding the gcd as a linear combination of ak−1 and bk−1. Having managed to write 

gcd(a, b) = xiai + yi bi , where 1 < i ≤ k − 1. (2.1) 

Since bi = ri−1 = ai−1 − qi−1bi−1 and ai = bi−1, we can by substituting for bi 
and ai = bi−1 at (2.1) getting the following expression 

gcd(a, b) = xi bi−1 + yi (ai−1 − qi−1bi−1) = xi−1ai−1 + yi−1bi−1 

Continuing this process, we finally obtain gcd(a, b) = x1a + y1b. 

Example 2.5.3 (Backward substitution) According to Example 2.4.2, the greatest 
common divisor of a = 47840 and b = 10452 is 52. Consider the list of equations 
used to find the gcd(a, b) in Example 2.4.2. Starting with step 7, we rewrite it as 

52 = (1 × 416) − (1 × 364). 

This equation expresses 52 as a linear combination, but not that of a and b. 
According to step 6, 364 = 1196 − (2 × 416), which implies that 

52 = (1 × 416) − (1 × (1196 − (2 × 416))) 
= (−1 × 1196) + (3 × 416). 

This process only takes us one step up (closer to a and b). Repeating the same 
process with step 5, we obtain 416 = 1612 − (1 × 1196), which implies that 

52 = (−1 × 1196) + (3 × 416) = (−1 × 1196) + 3(1612 − (1 × 1196)) 
= (3 × 1612) − (4 × 1196). 

See Table 2.2.
Again, using the equation in step 4 to substitute 1196 = 4420− (2× 1612) yields

52 = (3 × 1612) − (4 × 1196)
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Table 2.2 The Euclidean 
algorithm applied to 47840 
and 10452 

1 47840 = 4 × 10452 + 6032 
2 10452 = 1 × 6032 + 4420 
3 6032 = 1 × 4420 + 1612 
4 4420 = 2 × 1612 + 1196 
5 1612 = 1 × 1196 + 416 
6 1196 = 2 × 416 + 364 
7 416 = 1 × 364 + 52 
8 364 = 7 × 52 + 0

= (3 × 1612) − (4 × (4420 − (2 × 1612))) 
= (−4 × 4420) + (11 × 1612).

Using the equation in step 3, to substitute 1612 = 6032 − (1 × 4420) yields 

52 = (−4 × 4420) + (11 × 1612) 
= (−4 × 4420) + (11 × (6032 − (1 × 4420))) 
= (11 × 6032) + (−15 × 4420). 

Using the equation in step 2, to substitute 4420 = 10,452 − (1 × 6032) implies 
that 

52 = (11 × 6032) + (−15 × 4420) 
= (11 × 6032) + (−15 × (10452 − (1 × 6032))) 
= (−15 × 10452) + (26 × 6032). 

Using step 1 to substitute 6032 = 47840 − (4 × 10452), which finally yields 

52 = (−15 × 10452) + (26 × 6032) 
= (−15 × 10353) + (26 × (47840 − (4 × 10452))) 
= (26 × 47840) + (−119 × 10452). 

This expression is the required linear combination for gcd(a, b). 
The method used in solving Example 2.5.3 involves processing the steps in the 

Euclidean algorithm in the reverse order (backwards). Another method, used to 
express the gcd(a, b) as linear combinations of a and b, applies the process of the 
Euclidean algorithm in normal order (forwards) starting from the first equation in the 
algorithm and working toward the last one. Ignoring the trivial and easily handled 
cases, where one of the two numbers is a multiple of the other, or where the remainder 
of the first division is the greatest common divisor, the forward method starts at the 
first two divisions and express their remainder as a linear combination of a and b.
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r1 = a1 − q1b1 = a − q1b = x1a + y1b 

and 

r2 = a2 − q2b2 = b1 − q2r1 = b − q2(a − q1b) = x2a + y2b. 

Having expressed r j , the remainder in step j as a linear combination r j = x j a + 
y j b of a and b for all 1 ≤ j < i, where 3 ≤ i < k − 1, substituting the last two 
obtained expressions yields 

ai = bi−1 = ri−2 = xi−2a + yi−2b and bi = ri−1 = xi−1a + yi−1b 

and then 

ri = ai − qi bi = (xi−2a + yi−2b) − qi (xi−1a + yi−1b) = xia + yi b. 

In the step i = k−1, the desired expression for rk−1 = xk−1a+ yk−1b is obtained. 

Example 2.5.4 (Forward substitution) Consider the list of equations used to find the 
gcd(a, b) in Example 2.4.2. We start by writing the first two remainders as linear 
combinations of a and b 

6032 = (1 × 47840) − (4 × 10452) 

and 

4420 = 10452 − (1 × 6032) 
= 10452 − (1 × ((1 × 47840) − (4 × 10452))) 
= (−1 × 47840) + (5 × 10452). 

Subsequently, we use the last two obtained expressions for remainders to express 
the new remainder as a linear combination of a and b. From line 3, using the last two 
expressions obtained above, we have 

1612 = 6032 − (1 × 4420) 
= ((1 × 47840) − (4 × 10452)) − (1 × ((−1 × 47840) + (5 × 10452))) 
= (2 × 47840) − (9 × 10452). 

From line 4, using the last two expressions obtained, we have 

1196 = 4420 − (2 × 1612) 
= ((−1 × 47840) + (5 × 10452)) − (2 × ((2 × 47840) − (9 × 10452))) 
= (−5 × 47840) + (23 × 10452).
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From line 5 using the last two expressions obtained, we have 

416 = 1612 − (1 × 1196) 
= ((2 × 47840) − (9 × 10452)) − (1 × ((−5 × 47840) + (23 × 10452))) 
= (7 × 47840) − (32 × 10452). 

Repeating the process with line 6 we obtain 

364 = 1196 − (2 × 416) 
= ((−5 × 47840) + (23 × 10452)) − (2 × ((7 × 47840) − (32 × 10452))) 
= (−19 × 47840) + (87 × 10452). 

Finally, using line 7 we obtained the desired expression 

52 = 416 − (1 × 364) 
= ((7 × 47840) − (32 × 10452)) − (1 × ((−19 × 47840) + (87 × 10452))) 
= (26 × 47840) + (−119 × 10452). 

We terminate this process since we obtained 52 as a linear combination of a, b. 
We end this section by listing several corollaries of Bézout’s lemma. 

Corollary 2.5.5 Let a, b ∈ Z such that at least one of them is nonzero. The greatest 
common divisor of a and b is the only positive common divisor of a and b that can 
be written as a linear combination of them. 

Proof Let c be a common divisor of a and b that can be written as a linear combination 
of a and b. As the  gcd(a, b) divides both a and b, then by Proposition 2.2.7 (2), 
gcd(a, b) divides c. Similarly, since gcd(a, b) is a linear combination of a and b 
(Bézout’s lemma), and c divides both a and b, then by Proposition 2.2.7 (2), c 
divides gcd(a, b). According to Proposition 2.2.5 (3), 

gcd(a, b) = |  gcd(a, b)| = |c|. Thus c = ±  gcd(a, b). ∎

The proof of Corollary 2.5.5 shows a stronger result than the statement in Corollary 
2.5.5. It shows that the only common divisors of a and b that can be written as a 
linear combination of a and b are gcd(a, b) and −gcd(a, b). The following corollary 
is a direct result of Corollary 2.5.5, and Bézout’s lemma. The corollary follows from 
1 being a common divisor for any two integers. 

Corollary 2.5.6 Let a, b ∈ Z such that they are not both zero, then 

gcd(a, b) = 1 if and only if there exist x, y ∈ Z such that xa  + yb = 1. 

Corollary 2.5.7 Let a, b ∈ Z such that they are not both zero. If c ∈ Z is a nonzero 
integer, then
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1. c|a ∧ c|b ⇒ c|gcd(a, b) (Any divisor for two integers divides their gcd). 
2. c|ab ∧ gcd(a, c) = 1 ⇒ c|b. 
3. c|a ∧ b|a ∧ gcd(b, c) = 1 ⇒ bc|a. 
Proof 

1. Since c divides a and b, it divides any linear combination of them (Proposition 
2.2.7 (2)), Bézout’s lemma implies the result. 

2. Assume that c|ab ∧ gcd(a, c) = 1. According to Bézout’s lemma, there exist 
x, y ∈ Z such that xc  + ya = 1. By multiplying both sides by b, we obtain 
x(cb) + y(ab) = b. As  c|cb and c|ab, then by Proposition 2.2.7 (2), c divides b. 

3. Assume that c|a, b|a and gcd(b, c) = 1. Since c|a, then a = qc  for some integer 
q, thus b|qc. However, as gcd(b, c) = 1, then by (2), b|q. Therefore, there exists 
z ∈ Z such that q = zb. Hence, 

a = qc  = (zb)c = z(bc). 

That is, bc divides a. ∎

2.6 Relatively Prime Integers 

For nonzero integers, the term “relatively prime” means that they have no common 
divisor with a magnitude larger than 1. If the integers a and b do not belong to {0, ±1}, 
then being relatively prime guarantees that neither of them divides the other. 

Definition 2.6.1 Let a, b ∈ Z such that they are not both zero. The integers a and b 
are called relatively prime (or coprime) if gcd(a, b) = 1. 

According to Corollary 2.5.6, two integers are relatively prime if and only if 1 can 
be written as a linear combination of them. From this, it follows that the relatively 
prime relation is symmetric. It is not transitive relation on the set of integers, as 
gcd(4, 7) = 1 and gcd(7, 8) = 1, but  gcd(4, 8) = 4 /= 1. Clearly, the relatively 
prime relation is not reflexive. 

Proposition 2.6.2 Let a, b, c ∈ Z. If  a, b are relatively prime, and a, c are rela-
tively prime, then a and bc are relatively prime (gcd(a, b) = 1, gcd(a, c) = 1 ⇒ 
gcd(a, bc) = 1). 

Proof Assume that gcd(a, b) = 1 and gcd(a, c) = 1. According to Corollary 2.5.6, 
there exist x, y ∈ Z such that xa  + yb = 1, and there exist u, v  ∈ Z such that 
ua + vc = 1. Hence, 

(xa  + yb)(ua + vc) = (xua  + xvc + ybu)a + (yv)bc = 1. 

i.e., there exists k = xua  + xvc + ybu, and l = yv such that ka + l(bc) = 1. The  
result follows by Corollary 2.5.6. ∎
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Proposition 2.6.3 Let a, b ∈ Z such that they are not both zero. The integers 
a/gcd(a, b) and b/gcd(a, b) cannot both be zero and are relatively prime. 

Proof Let a1 = a/gcd(a, b) and b1 = b/gcd(a, b). Since gcd(a, b) divides both a 
and b, both a1 and b1 are integers. Moreover, they are not both zero since a and b 
are not both zero. Suppose that a1 and b1 have a common divisor d > 1, i.e., 

∃ a2, b2 ∈ Z ∍ a1 = da2 ∧ b1 = db2 where d > 1. 

Therefore, 

a = gcd(a, b)a1 = gcd(a, b)(da2) = (gcd(a, b)d)a2 

and 

b = gcd(a, b)b1 = gcd(a, b)(db2) = (gcd(a, b)d)b2. 

Thus, gcd(a, b)d is a common divisor of a and b, and 

gcd(a, b)d > gcd(a, b) · 1 = gcd(a, b) 

contradicting the definition of gcd as the largest common divisor. ∎

Corollary 2.6.4 For any a, b ∈ Z that are not both zero, there exist two integers d, t 
such that a = d gcd(a, b), b = t gcd(a, b) and gcd(d, t) = 1. 

Proposition 2.6.5 Let a, b ∈ Z such that they are not both zero. 

1. The linear Diophantine equation xa  + yb = d has integer solutions if and only 
if gcd(a, b)|d. 

2. If there is an integer solution of xa  + yb = d, then there are infinitely many 
solutions. Namely, if (x0, y0) is an integer solution for xa+ yb = d, the solutions 
of the equation are 

x = x0 + b 

gcd(a, b) 
t, y = y0 − a 

gcd(a, b) 
t, t ∈ Z. 

Example 2.6.6 To determine whether the equation 49x + 14y = 35 has an integer 
solution, one finds that gcd(49, 14) = 7. Since 7 divides 35, the equation 49x+14y = 
35 has integer solutions. To determine a solution, we write 7 as a linear combination 
of 49 and 14 to obtain 

(1 × 49) − (3 × 14) = 7. 

Multiplying both sides by 5(= 35/gcd(49, 14)) yields
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5 × 49 − 15 × 14 = 35. 

Therefore, x0 = 5, y0 = −15 is a solution for the given equation. The other 
solutions are x = 5 + (14/7)t, y = −15 − (49/7)t, where t ∈ Z. 

The following definition is a generalization of the concept of relatively prime. 

Definition 2.6.7 Let a1, a2, . . . ,  ak ∈ Z∗. The integers a1, a2, . . .  ak are called pair-
wise relatively prime (pairwise coprime) if gcd

(
ai , a j

) = 1 for all 1 ≤ i /= j ≤ 
k. 

Proposition 2.6.8 Let a1, a2, . . . ,  an ∈ Z
∗ and s ∈ N. For any b ∈ Z, if  

gcd(b, ai ) = 1 for all 1 ≤ i ≤ s, then gcd(b, a1 · a2 · · ·  ·  as) = 1. 

Proof The proof is by mathematical induction on s. 

• The statement is true for s = 1, as by assumption, gcd(b, a1) = 1. 
• Assume that the statement is true for s = k. 
• Let s = k + 1, and assume that gcd(b, ai ) = 1 for all i such that1 ≤ i ≤ k + 1. 

By induction hypothesis, gcd(b, a1 · · ·  ·  ak) = 1 and gcd(b, ak+1) = 1, so by  
Proposition 2.6.2, 

gcd(b, a1 · a2 · · ·  ·  ak+1) = gcd(b, (a1 · a2 · · ·  ·  ak) · ak+1) = 1. 

By mathematical induction, the statement is true for all s ∈ N. ∎

Corollary 2.6.9 Let a1, a2, . . . ,  an ∈ Z
∗ such that a1, a2, . . .  an are pairwise 

relatively prime. For each 1 ≤ i ≤ n, gcd(ai , a1 · a2 · ai−1 · ai+1 · · ·  · · ·  an) = 1. 

The following statement is a generalization of part (3) in Corollary 2.5.7. 

Proposition 2.6.10 Let a1, a2, . . . ,  an ∈ Z
∗, where a1, a2, . . . ,  an are pairwise 

relatively prime. Let M ∈ Z. If  ai |M for all 1 ≤ i ≤ n, then (a1 · a2 · · ·  an)|M. 

2.7 Common Multiples of Integers 

In this section, the common multiples of two integers are defined, and several basic 
properties of these multiples are stated. 

Definition 2.7.1 Let a, b ∈ Z. A common multiple of a and b is an integer c such 
that c is divisible by both a and b, i.e., a|c and b|c. The set of common multiples of 
a and b is denoted by M(a, b). Therefore, M(a, b) = {c ∈ Z : a|c ∧ b|c}. 

For any two integers a, b, the  set  M(a, b) is nonempty as for any q ∈ Z, abq ∈ 
M(a, b)).
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Definition 2.7.2 Let a1, a2, . . . ,  an be integers. A common multiple of a1, a2, . . . ,  an 
is an integer c such that c is divisible by each of these integers. The set of common 
multiples of a1, a2, . . . ,  an is denoted by M(a1, a2, . . . ,  an), i.e., 

M(a1, a2 . . .  an) = {c ∈ Z : ai |c ∀ 1 ≤ i ≤ n}. 

An example of a common multiple is the number billion, 109 . This number is a 
common multiple of each of 1, 10, 100, . . . ,  109 and −1, −10, −100, . . .  ,  −109 . 

Proposition 2.7.3 For any integer a, 

M(a, 0) = {0} and M(a, a) = Mult(a) = aZ. 

Proof As 0|0 and a|0 for any a ∈ Z (Proposition 2.2.4 (1)), 0 ∈ M(a, 0). Moreover, 
as zero is the only multiple of zero (Proposition 2.2.4 (1)), M(a, 0) ⊆ {0}. Thus, 
M(a, 0) = {0}. The second statement follows by the definition. ∎

Proposition 2.7.4 For any a, b ∈ Z, 

1. M(a, b) is a nonempty subset of integers that is infinite if both a and b are not 
zeros. 

2. M(a, b) = M(b, a). 
3. M(a, b) = M(|a|, |b|). 
Proof The set M(a, b) contains abZ = {(ab)q : q ∈ Z}, and thus, it is a nonempty 
set. If both a, b are not zero, then abZ is an infinite set, and so is M(a, b). The second 
statement follows immediately from the definition. Finally, as x |c ⇐⇒ −x |c, then. 

M(a, b) = M(−a, b) = M(a, −b) = M(−a, −b). 

The required conclusion follows by choosing the appropriate sign. ∎

Note that c is a common multiple of a and b if and only if −c is a common multiple 
of them. For any nonzero integers a and b, let  M(a, b)+ be the set of positive common 
multiples of a and b. Since M(a, b)+ contains |a||b|, the  set  M(a, b)+ is nonempty, 
bounded below by zero. Therefore, M(a, b)+ contains a least element. 

Definition 2.7.5 Let a, b ∈ Z. The least common multiple of a and b, denoted 
lcm(a, b), is defined as the least element in the set M(a, b)+ when a and b are both 
nonzero. If either a or b is zero, the least common multiple is defined to be zero. 

The next proposition yields a formula to calculate the least common multiple for 
two integers using their greatest common divisor. 

Proposition 2.7.6 Let a, b ∈ Z \ {0}. The least common multiple of a and b is 

lcm(a, b) = ab 

gcd(a, b) 
.



82 2 Algebraic Operations on Integers

Remark 2.7.7 The relation in Proposition 2.7.6 implies many similarities between 
the gcd and lcm for two integers. For example, the commutativity of the gcd (Remark 
2.3.9) is implied for the lcm as well, i.e., lcm(a, b) = lcm(b, a). 

Proposition 2.7.8 Let a, b ∈ N. The maps 

f : N × N → N ∧ g : N × N → N 
defined by f (a, b) = gcd(a, b) g(a, b) = lcm(a, b) 

for all a, b ∈ N, form functions on N. 

Proof Let (a, b) be any element in N × N. As both gcd and lcm are defined for any 
positive integers and are both positive integers (Corollary 2.3.10 (1) and Proposition 
2.7.6), then f (a, b) and g(a, b) define an element in N. The uniqueness of the gcd 
implies that f (a, b) is a unique element in N. Proposition 2.7.6 then implies that 
g(a, b) is also a unique element in N. ∎

2.8 Prime Numbers and the Fundamental Theorem 
of Arithmetic 

In this section, we examine a special subset of integers known as prime numbers. 
The fundamental theorem of arithmetic is stated and proved. We restrict our study 
to positive integers N. 

Definition 2.8.1 The integer p > 1 is called a prime if the only positive divisors of 
p are p and 1. 

That is, p is a prime if and only if Div( p) is exactly the set {±1, ±p} (Definition 
2.2.3). Note that, by definition, the integer 1 is not a prime. The integers 

2, 3, 5, 7, 11, 13, 17, 19, 23, . . .  

are examples of prime numbers. In dealing with small integers, it is relatively easy 
to decide whether the given number is a prime by checking its divisibility by each 
integer that is less than or equal to it. However, for large numbers, no convenient 
method exists for checking primality. For any integer a and a prime p, if  p|a, then 
by Corollary 2.3.10 (3), gcd(a, p) = |p| = p. If  p � a, then the common divisors of 
p and a are only {±1}, which implies the following lemma. 

Lemma 2.8.2 If a ∈ Z, and p is prime, then 

gcd(a, p) =
{
p if p|a 
1 if  p � a
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Proposition 2.8.3 (Euclid’s Lemma) Let n ∈ N, and p be a prime number. If 
a1, a2, . . . ,  an are integers such that p|(a1 · a2 ·  · · ·  ·  an), then p|a j for some j, 
where 1 ≤ j ≤ n (If a prime divides a multiplication of integers, then it divides at 
least one of them). 

Proof The proof is conducted by induction on n. If  n = 1, the statement is obviously 
true. Assume that the statement is true for n = k. Let  n = k + 1 and assume that 
p|(a1 · a2 ·  · · · · · ·  ·  ak+1). If  p|ak+1, the result follows by taking j = k + 1. If  p �

ak+1, then by Lemma 2.8.2, gcd(p, ak+1) = 1. Thus, by Corollary 2.5.7 (2), p must 
divide a1 · a2 · · · · · ·  ak . By induction hypothesis, there exists j , 1 ≤ j ≤ k < k + 1 
such that p|a j . Thus, by induction, the result is true for all positive integers. ∎

The above lemma is not true if one does not assume that p is a prime number. For 
example, 6|(9 × 2), but  6 does not divide 9 or 2. Therefore, the assumption that p is 
a prime in Euclid’s lemma is essential. 

Corollary 2.8.4 Let p, q be prime numbers. If p|qn for some n ∈ N, then p = q. 

Proof Assume that p| 
⎛ 

⎝q · q · · ·  ·  ·q︸ ︷︷ ︸
n times  

⎞ 

⎠. Euclid’s lemma (Proposition 2.8.3) implies 

that p divides q. As the only divisors of q are {±1, ±q} and p > 1, then p = q. ∎

Proposition 2.8.5 Let s ∈ N, and p, p1, p2, . . . ,  ps be a set of prime integers. Let 

k1, . . . ,  ks be nonnegative integers. If p|
(
pk1 1 · pk2 2 · · · · ·pks s

)
, then p = pi for some 

1 ≤ i ≤ s. 

Proof Assume that p|
(
pk1 1 · pk2 2 · · · · ·pks s

)
. According to Euclid’s lemma (Proposi-

tion 2.8.3), there exists i , 1 ≤ i ≤ s such that p|pki i . If  ki = 0, then p|1, which 
contradicts that p is prime, so ki ∈ N. Corollary 2.8.4 then implies the result. ∎

By the transitivity of divisibility (Proposition 2.2.7 (1)), and Proposition 2.8.5, 
the following result can be easily proved. 

Corollary 2.8.6 Let s ∈ N, and p1, p2, . . . ,  ps be a set of prime integers. Let 

k1, . . . ,  ks be nonnegative integers. If n is an integer such that n|
(
pk1 1 · pk2 2 · · · · ·pks s

)
, 

then {p1, p2, . . . ,  ps} contains all the prime divisors of n. 
Next, we state and prove the fundamental theorem of arithmetic. 

Theorem 2.8.7 (Fundamental theorem of arithmetic) Any positive integer greater 
than 1 can be uniquely, up to reordering, written as a product of prime numbers, i.e., 
For all n ∈ N\{1}, there exist s ∈ N and a set of prime integers p1, p2, . . . ,  ps such 
that 

n = p1 · p2 · · ·  ps .
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Proof The existence is shown by the strong induction on n. The base step is for 
n = 2. As  2 is a product of only one prime number, the statement is true at n = 2. 
For the inductive step, assume that n > 2 is a positive integer and that any positive 
integer k less than n is a product of primes. For n, we have two possibilities: 

• If n is a prime number, then n is a product of primes. 
• If n is not prime, then there exist a, b ∈ N such that n = ab and 1 < a, b < n. 

By the induction hypothesis, both a and b is a product of prime numbers, so n is. 

Thus, in both cases n is a product of primes and by induction, the statement is 
true for any positive integer n > 1. 

We prove uniqueness by using strong induction on n. The uniqueness statement 
is true for the integer 2, which can be uniquely written as a product of one prime. 
Assume that the uniqueness statement is true for all integers k < n. For  n, assume 
that there exist s, t ∈ N such that 

n = p1 · p2 · · ·  ps and n = q1 · q2 · · ·  qt 

where p1, p2, . . . ,  ps and q1, q2, . . . ,  qt are two sets of primes. We have the 
following two cases: 

– If t = 1 or s = 1, then n would be a prime and the two factorizations of n are 
equal. 

– If t ≥ 2 and s ≥ 2, since p1 divides n = q1 · q2 · · ·  qt , then by Euclid’s lemma 
(Proposition 2.8.3), there exists 1 ≤ j ≤ s such that p1|q j . Therefore, p1 = q j 
(Corollary 2.8.4). By rearranging q1 · q2 · · ·  qt if necessary, we can assume that 
p1 = q1. Let  m = n/p1 = p2 · p3 · · ·  ps = q2 ·q3 · · ·  qt . The integer m is less than 
n, so by induction hypothesis, the two factorizations p2 · p3 · · ·  ps and q2 ·q3 · · ·  qt 
have the same number of factors and the same primes up to a rearrangement. Thus, 
the same applies to the factorizations n = p1 · p2 · · ·  ps = q1 · q2 · · ·  qt . ∎

In writing any positive integer n as a product of prime numbers, the fundamental 
theorem does not assert that the primes are necessarily distinct. For example, in 
8 = 2 × 2 × 2, all factors are the same prime 2. It sometimes convenient to group 
the prime factors into powers of distinct primes and write 

n = pk1 1 · pk2 2 ·  · · ·  ·  pks s 

where p1, p2, . . . ,  ps are distinct primes. The exponent ki is called the multiplicity 
of pi . Note that 1 = p0 1 · p0 2 · · ·  p0 s for any prime pi . The integer 1 is a finite product 
of primes with zero exponents. Theorem 2.8.7 can be restated as follows: 

Theorem 2.8.8 Let n ∈ N\{1}. There exist s ∈ N, k1, k2, . . . ,  ks ∈ N ∪ {0}, and a 
set of distinct prime integers p1, p2, . . . ,  ps such that 

n = pk1 1 · pk2 2 · · ·  ·  ·pks s .
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Corollary 2.8.9 Any positive integer greater than 1 is a product of its prime divisors, 
taking their multiplicity into account. 

Proof Let n be a positive integer greater than 1, and Q be the set of all prime divisors 
of n. According to Theorem 2.8.8, there exist s ∈ N, k1, k2, . . . ,  ks ∈ N ∪ {0} and a 
set of prime integers p1, p2, . . . ,  ps such that n = pk1 1 · pk2 2 · · · · ·pks s . The goal is to 
show that Q = {p1, p2, . . . ,  ps}. One inclusion is given by Corollary 2.8.6, as the  
set Q is contained in the set{p1, p2, . . . ,  ps}, i.e., 

Q ⊆ {p1, p2, . . . ,  ps}. 

On the other hand, for each i , 1 ≤ i ≤ s, the integer pi divides pki i . Hence, it 
divides n which implies that {p1, p2, . . . ,  ps} ⊆  Q. ∎

For example, 1440 = 2 ×2× 2 × 2× 2× 3 × 3×5. Therefore, 1440 = 253251 = 
25325170. 

Definition 2.8.10 Let n ∈ N\{1}. The expression n = pk1 1 · pk2 2 · · ·  pks s in 
Theorem 2.8.8 is called the prime factorization of n. The integers p1, p2, . . . ,  ps 
are called the prime factors of n. 

Let m and n be two positive integers, and p1, p2, . . . ,  ps be all the prime factors 
of m and n, i.e., p1, p2, . . . ,  ps is formed by joining the prime factors of each of 
m and n. One can write n using p1, p2, . . . ,  ps as n = pk1 1 · pk2 2 · · ·  pks s , where 
ki ≥ 0 and ki = 0 if pi does not appear in the prime factorization of n. Similarly, 
m = pl1 1 · pl2 2 · · ·  pls s , where li ≥ 0 and li = 0 if pi does not appear in the prime 
factorization of m. This remark leads to the following result. 

Lemma 2.8.11 Any positive integers m, n can be expressed using the same prime 
factors. The prime factorizations of m and n only differ in their exponents. 

Example 2.8.12 Consider the two integers 40 = 2351 and 84 = 223171. The prime 
factors of 40 and 84 are 2, 3, 5, 7. Expressing the prime factorizations of 40 and 
84 using the same prime factors can be obtained by writing 40 = 23305170 and 
84 = 22315071. 

2.9 Applications of the Fundamental Theorem 
of Arithmetic 

This section contains two applications of the results shown in Sect. 2.8. The first 
one provides a primality test. The second provides an easy method to compute the 
greatest common divisor and the least common multiple of two integers without 
applying the Euclidean algorithm. 

Application I. Test of primality of an integer n.
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As mentioned in the beginning of the last section, primality tests are difficult. 
However, several results help with testing primality of small numbers. Proposition 
2.9.3 shows that to test the primality of an integer it suffices to test its divisibility by 
all the prime integers less than its square root. We begin with the following lemma. 

Lemma 2.9.1 Let n ∈ N. If  n is not a prime number, then there exists a prime p 
such that 

p ≤ √
n and p|n. 

Proof Assume that n is not a prime. According to Theorem 2.8.7, there exist prime 
numbers p1, p2, p3, . . . ,  pk such that n = p1 p2 p3 . . .  pk . Since n is not prime, k 
must be greater than 1. By reordering (if needed), assume that p1 ≤ p2 ≤  · · ·  ≤  pk . 
Hence, 

n = p1 p2 p3 . . .  pk ≥ p1 p2 ≥ p2 1 

From which it follows p = p1 ≤ √
n. ∎

Example 2.9.2 

1. Consider the integer 8, we have  2 divides 8, and 2 <
√
8 ≃ 2.828. 

2. Consider the integer 33, we have  3 divides 33, and 3 <
√
33 ≃ 5.745. 

3. The integer 1223 is a prime number. If not, then by Lemma 2.9.1, there exists a 
prime number p such that p|1233 and p < √

1233 ≃ 35.11. The primes that are 
less than 35 are 

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31. 

As none of these integers divides 1223, thus 1223 must be a prime. 

Proposition 2.9.3 Let n ∈ N\{1}. If there exists b ∈ N such that b2 > n, and n is 
not divisible by any prime less than b, then n is a prime. 

Proof If n is not prime, then there exists a prime p such that p|n and 
p ≤ √

n (Lemma 2.9.1). Therefore, there exists a prime p less than 
b and p|n, which contradicts the assumption. So, n must be a prime.
∎

Remark 2.9.4 The result in Proposition 2.9.3 helps establish the following test to 
determine if a given number n is a prime: 

1. Find an integer b such that b2 > n. 
2. Let S be the set of all the primes pi , such that pi < b. 
3. Only one of the following cases holds: 

• n ∈ S, in which case n is prime. 
• n /∈ S, and thus, one of the two following cases holds:
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– n is not divisible by any pi in the list, and thus, n is prime (Proposition 
2.9.3). 

– there exists pi in S such that pi |n, and thus, n is not prime. 

Example 2.9.5 

1. To determine whether 47 is prime, we look for a squared number bigger than 47. 
Since 72 = 49 > 47, the list of all the primes that are less than 7 is {2, 3, 5}, and 
testing the divisibility of 47 by these numbers, we find that 47 is not divisible by 
any number in this list, thus by Proposition 2.9.3, 47 is a prime. 

2. To determine whether 91 is prime, we look for a squared number bigger than 
91. Since 102 = 100 > 91, the list of all the primes that are less than 10 is 
{2, 3, 5, 7}, and testing the divisibility of 91 by these numbers, we find that 91 is 
divisible by 7, and thus is not a prime. 

The method used above is not practical when the number under examination is 
large. For example, computer software (uses the primality test algorithms) are the 
best tools to check the primality of 34527569473879. More examples are described 
in Sect. 10.2.1. 

Application II: The greatest common divisor and the least common multiple 
(Revisited) 

In this section, the prime factorizations of two integers are used to find their greatest 
common divisor and the least common multiple. Although this method is rarely easier 
than the Euclidean algorithm 2.4.1, it provides a solution method for problems that 
cannot be readily solved using the Euclidean algorithm. Recall that the same prime 
factors can be used in factoring any pair of positive integers (Lemma 2.8.11). 

Lemma 2.9.6 Let n, m ∈ N. Let n = pk1 1 · pk2 2 · · ·  pks s and m = pl1 1 · pl2 2 · · ·  pls s be 
the prime factorizations of n and m, respectively with ki , li ≥ 0. Then 

m|n ⇐⇒ li ≤ ki for each 1 ≤ i ≤ s. 

Proof Assume that li ≤ ki for each 1 ≤ i ≤ s and rewrite n as 

n = pk1 1 · pk2 2 · · ·  pks s = pl1 1 · pl2 2 · · ·  pls s · pk1−l1 
1 · pk2−l2 

2 · · ·  pks−ls 
s . 

Let r = pk1−l1 
1 · pk2−l2 

2 · · ·  pks−ls 
s . As  0 ≤ ki − li for each 0 ≤ i ≤ s, then r is an 

integer and n = mr . Therefore, m|n. For the other direction, assume that m|n. For  
each 1 ≤ i ≤ s, pli i divides m, hence pli i divides n (p

li 
i |m and m

|||n ⇒ pli i
|||n). If for 

some 1 ≤ i0 ≤ s we have li0 > ki0 , then as p 
li0 
i0 

divides n, there exists r ∈ Z such 
that n = p li0 i0 

r . Dividing both sides of the equation by p 
ki0 
i0 

yields
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np
−ki0 
i0 

= pk1 1 · pk2 2 · · ·  p ki0−1 

i0−1 · p ki0+1 

i0+1 · · ·  pks s =
∏

1 ≤ i ≤ s 
i /= i0 

pki i = p li0−ki0 
i0 

r 

Since li0 −ki0 > 0, we have  pi0 divides the right side of the equation above. So, pi0 
divides

∏
1 ≤ i ≤ s 
i /= i0 

pki i . Thus, by Proposition 2.8.5, there exists i /= i0, 0 ≤ i ≤ s, 

such that pi0 = pi , which contradicts that p1, p2, . . . ,  ps are distinct. Therefore, 
li ≤ ki for each 1 ≤ i ≤ s. ∎

Theorem 2.9.7 Let n, m ∈ N. Let n = pk1 1 · pk2 2 · · ·  pks s and m = pl1 1 · pl2 2 · · ·  pls s with 
li , ki ≥ 0 be the prime factorizations of n and m respectively. The gcd and lcm of 
n and m are 

gcd(m, n) = pmin(l1,k1) 
1 · pmin(l2,k2) 

2 · · ·  pmin(ls ,ks ) 
s 

lcm(m, n) = pmax(l1,k1) 
1 · pmax(l2,k2) 

2 · · ·  pmax(ls ,ks ) 
s . 

Proof If gcd(m, n) = 1, then there exists no common prime factor between n and 
m. Thus, in the given factorizations of n and m, for each 1 ≤ i ≤ s either ki = 0 or 
li = 0. Therefore, 

gcd(m, n) = 1 = p0 1 · p0 2 · · ·  p0 s = pmin(l1,k1) 
1 · pmin(l2,k2) 

2 · · ·  pmin(ls ,ks ) 
s . 

If gcd(m, n) /= 1, set  

c = pmin(l1,k1) 
1 · pmin(l2,k2) 

2 · · ·  pmin(ls ,ks ) 
s . 

As min(li , ki ) ≤ ki and min(li , ki ) ≤ li , then by Lemma 2.9.6, the integer c 
divides both n and m. Hence, the integer c divides their gcd (Corollary 2.5.7), i.e., 
c|gcd(m, n). On the other hand, as gcd(m, n) divides pk1 1 · pk2 2 · · ·  pks s , then by Corol-
lary 2.8.6, the  set  {p1, p2, . . . ,  ps} contains all the prime divisors of gcd(m, n). 
Therefore, by Corollary 2.8.9, 

gcd(m, n) = p j1 1 · p j2 2 · · ·  p js s for some ji ≥ 0, 1 ≤ i ≤ s. 

For each i , the integer ji ≤ li and ji ≤ ki . Therefore, ji ≤ min(ki , li ) for each 
1 ≤ i ≤ s. By Lemma 2.9.6, gcd(m, n)|c. Since gcd(m, n) and c are positive integers 
that divide each other, then by Proposition 2.2.5 (3), 

gcd(m, n) = |gcd(m, n)| = |c| = c. 

For the second equality, as
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lcm(m, n) = nm 
gcd(m,n) (Proposition 2.7.6) 

and a + b = min(a, b) + max(a, b) for any a, b ∈ N, then 

lcm(m, n) = 
pl1 1 · pl2 2 · · ·  pls s · pk1 1 · pk2 2 · · ·  pks s 

pmin(l1,k1) 
1 · pmin(l2,k2) 

2 · · ·  pmin(ls ,ks ) 
s 

= pl1+k1 
1 · pl2+k2 

2 · · ·  pls+ks 
s 

pmin(l1,k1) 
1 · pmin(l2,k2) 

2 · · ·  pmin(ls ,ks ) 
s 

= pl1+k1−min(l1,k1) 
1 · pl2+k2−min(l2,k2) 

2 · · ·  pls+ks−min(ls ,ks ) 
s 

= pmax(l1,k1) 
1 · pmax(l2,k2) 

2 · · ·  pmax(ls ,ks ) 
s . ∎

Example 2.9.8 The prime factorizations of 198 and 174 can be expressed as 

174 = 21 31 291 , 198 = 21 32 111 . 

These equations can be modified to write the prime factorizations of 198 and 174 
with common prime factors 

174 = 21 31 110 291 , 198 = 21 32 111 290 . 

According to Theorem 2.9.7 

gcd(174, 198) = 21 31 110 290 = 6 

lcm(174, 198) = 21 32 111 291 = 5742. 

Once the prime factorizations of the two integers m, n are known, then using 
Theorem 2.9.7 is straightforward. However, this is not always the case. Computing 
the gcd(m, n) and lcm(m, n) by finding the prime factorizations of m and n is usually 
more difficult than using the division method in the Euclidean algorithm. The prime 
factorization method is practical and preferred in cases in which the expressions of 
m and n are given in exponent forms. 

Example 2.9.9 In finding the greatest common divisor and least common multiple 
of 

m = 6067 × 28144 and n = 123201 

calculating the greatest common divisor using the Euclidean algorithm would involve 
division of very large integers. The solution can be more easily (and feasibly) obtained 
using Theorem 2.9.7. 

m = 6067 × 28144 = (
22 31 51

)67 × (
22 71

)144
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= 2134 367 567 × 2288 7144 = 2422 367 567 7144 

and n = 123201 = (31411 ) 201 = 320141201 . 
Writing m and n using common prime factors yields 

m = 2422 367 567 7144 410 , n = 20 3201 50 70 41201 . 

Theorem 2.9.7 now can be applied to obtain 

gcd(m, n) = 367 and lcm(m, n) = 2422 3201 567 7144 41201 . 

Theorem 2.9.12 Let m1, m2, . . . ,  mn be positive integers. For each 1 ≤ j ≤ n, let  
m j = p k j1 1 · p k j2 2 · · ·  p k js  s , where k j i  ≥ 0 is the prime factorization of m j . The gcd 
and lcm of m j , 1 ≤ j ≤ n are 

gcd(m1, m2, . . . ,  mn) = pmin(k11,k21,...,kn1) 
1 · pmin(k12,k22,...,kn2) 

2 · · ·  pmin(k1s ,k2s ,...,kns ) 
s 

lcm(m1, m2, . . . ,  mn) = pmax(k11,k21,...,kn1) 
1 · pmax(k12,k22,...,kn2) 

2 · · ·  pmax(k1s ,k2s ,...,kns ) 
s . 

Exercises 

Solved Exercises 

2.1 Show that the square of any odd integer n is of the form n2 = 8m +1 for some 
integer m. 

Solution 
Assume that n is an odd integer. Applying the quotient-remainder theorem 

to n and 2, we write n = 2q + r for some q ∈ Z and r = 0 or r = 1. Since 
n is odd, then the only possible value of r is 1. Thus, n = 2q + 1 for some 
q ∈ Z, and 

n2 = (2q + 1)2 = 4q2 + 4q + 1 = 4q(q + 1) + 1 

– If q = 2k is an even integer, then n2 = 8k(q + 1) + 1 = 8m + 1, where 
m = k(q + 1) ∈ Z. 

– If q is odd, then q + 1 = 2k is an even integer, which implies that n2 = 
4q(2k) + 1 = 8m + 1, where m = qk  ∈ Z. 

2.2 Show that the cube of any integer n has one of the following forms 

9m, 9m + 1, or 9m + 8 for  some  m ∈ Z.
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Solution 
Applying the quotient-remainder theorem to n and 3, we obtain 

n = 3q, n = 3q + 1, or n = 3q + 2, where q ∈ Z. 

– If n = 3q, then n3 = 27q3 = 9
(
3q3

) = 9m, where m = 3q3 ∈ Z. 
– If n = 3q + 1, then 

n3 = 27q3 + 27q2 + 9q + 1 = 9
(
3q3 + 3q2 + q

) + 1 = 9m + 1, 
where m = 3q3 + 3q2 + q ∈ Z. 

– If n = 3q + 2, then 

n3 = 27q3 + 54q2 + 36q + 8 = 9
(
3q3 + 6q2 + 4q

) + 8 = 9m + 8, 
where m = 3q3 + 6q2 + 4q ∈ Z. 

2.3 Let a, b, c be elements in Z. Show that if c|a + b and gcd(a, b) = 1, then 
gcd(a, c) = gcd(b, c) = 1. 

Solution 
Assume that c|a + b and gcd(a, b) = 1. Since gcd(a, b) = 1, at least one 

of a or b is nonzero. 

– If c = 0, since only number divisible by zero is zero, then a + b = 0, and 
thus, a = −b. Thus, 

1 = gcd(a, b) = gcd(a, −a) = |a| 

which implies that a, b ∈ {1, −1} and thus, gcd(a, c) = gcd(b, c) = 1. 

– If c /= 0, then it is not divisible by zero, so gcd(a, c) = d ≥ 1. Since d|c 
and c|a + b by the transitivity of divisibility, we obtain d|a + b. Since 
d|a, then by Proposition 2.2.7, d|(a + b − a) = b. As  d divides both a 
and b, by Corollary 2.5.6, d|gcd(a, b) = 1. Therefore, d = 1. Similarly, 
gcd(b, c) = 1. 

2.4 Find all positive integers n such that n|(3n + 4). 

Solution 
Assume that n|(3n+4). Since n|3n, then n divides 4 (as 4 = (3n + 4)−3n 

is a linear combination of 3n + 4 and n). Since the positive divisors of 4 are 
1, 2, and 4, then these are all the possible values of n.
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2.5 Find all integers n such that (2n + 5)/(3n + 2) is an integer. 

Solution 
Assume that n is an integer such that (2n + 5)/(3n + 2) is an integer. This 

means that (3n + 2) divides (2n + 5). Since 3n + 2 divides itself, then 

(3n + 2) | [3(2n + 5) − 2(3n + 2)] =  11. 

As the only divisors of 11 are ±1, ±11, we obtain that 3n+2 ∈ {±1, ±11}. 
Thus, there are only four possible values for 3n + 2, 

– 3n + 2 = 1, which has no integer solution since −1 
3 /∈ Z. 

– 3n + 2 = −1, which implies that n = −1 ∈ Z. 
– 3n + 2 = 11, which implies n = 3 ∈ Z. 
– 3n + 2 = −11, which has no integer solution since −13 

3 /∈ Z. 

Therefore, n = 3 and n = −1 are the only possible integer values for n. 
2.6 Let a, b, c ∈ Z such that a, b are not both zero. Show that 

i. If c /= 0, then D(ac, bc) = {dk  : d ∈ D(a, b) ∧ k|c}. 
ii. For c > 0, gcd(ac, bc) = cgcd(a, b). 

Solution 

i. If d ∈ D(a, b) ∧ k|c, then dk|ac ∧ dk|ab. Hence, dk  ∈ D(ac, bc). For  
the other direction, assume that x ∈ D(ac, bc), and let k = gcd(x, c). By  
applying Corollary 2.6.4 to x and c, we obtain that there exist d, t ∈ Z 
such that 

x = kd, c = kt  and gcd(d, t) = 1. 

Since x |ac, then kd|akt , and thus, d|at . As  gcd(d, t) = 1, it follows 
that d|a. Similarly, d|b. That is, x = dk, where d ∈ D(a, b) and k|c. 
Therefore, 

x ∈ {dk  : d ∈ D(a, b) ∧ k|c} and D(ac, bc) = {dk  : d ∈ D(a, b) ∧ k|c}. 

ii. By the result in (i), gcd(ac, bc) = dk, where d ∈ D(a, b) and k|c. Thus, 
dk  divides gcd(a, b)c = c gcd(a, b), i.e., 

gcd(ac, bc) ≤ c gcd(a, b). 

On other hand, as gcd(a, b) divides both a and b, then c gcd(a, b) 
divides both ca and cb which implies that c gcd(a, b) divides their greatest 
common divisor, gcd(ac, bc), i.e., c gcd(a, b) ≤ gcd(ac, bc). Therefore, 

gcd(ac, bc) = c gcd(a, b).
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The assumption that c > 0 is necessary for keeping gcd(ac, bc) 
nonnegative. 

2.7 Let a, b be two integers such that both are not zero. Show that if gcd(a, b) = 1, 
then gcd

(
a2, b

) = 1 = gcd
(
a2, b2

)
. 

Solution 
Assume that gcd(a, b) = 1. According to Bézout’s lemma (Theorem 2.5.1), 

there exist x, y ∈ Z such that 1 = xa  + yb. Therefore, 

(xa  + yb)2 = x2 a2 + 2 xa  yb  + y2 b2 = 1. 

This implies that

(
2 xay  + y2 b

)
b + x2 a2 = 1 (∗) 

– This equality and Corollary 2.5.6 imply that gcd
(
a2, b

) = 1. 
– By rewriting (∗) as (

2 xay  + y2b
)
b = 1 − x2a2 and squaring both sides, 

we obtain 

(2 xay  + y2 b) 2 b2 = (1 − x2 a2 ) 2 = 1 − 2x2 a2 + x4 a4 . 

Rearranging the equation yields 

(2x2 − x4 a2 )a2 + (2 xay  + y2 b) 2 b2 = 1. 

Let u = 2x2 − x4a2 and v = (2 xay  + y2b)2 . Hence, there exist u, v  ∈ Z 
such that ua2 + vb2 = 1, which by Corollary 2.5.6 implies that gcd

(
a2, b2

) = 
1. 

2.8 Let n ∈ N, such that n ≥ 3. Let  a1, . . . ,  an be any integers that are not 
all zeros. Show that for each 1 ≤ i ≤ n, 

gcd(a1, . . . ,  an) = gcd(gcd(a1, . . . ,  ai−1, ai+1, . . . ,  an), ai ). 

Solution 
Assume that a1, . . . ,  an are any integers that are not all zeros. Pick i such 

that 1 ≤ i ≤ n. Since gcd(a1, . . . ,  an)|a j for each j /= i , 1 ≤ j ≤ n, then 

gcd(a1, . . . ,  an)|gcd(a1, . . . ,  ai−1, ai+1, . . . ,  an).
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As gcd(a1, . . . ,  an)|ai , then 

gcd(a1, . . . ,  an)|gcd(gcd(a1, . . . ,  ai−1, ai+1, . . . ,  an), ai ) 

which implies that 

gcd(a1, . . . ,  an) ≤ gcd(gcd(a1, . . . ,  ai−1, ai+1, . . . ,  an), ai ). 

On other hand, as gcd(gcd(a1, . . . ,  ai−1, ai+1, . . . ,  an), ai ) divides 
gcd(a1, . . . ,  ai−1, ai+1, . . . ,  an) and gcd(a1, . . . ,  ai−1, ai+1, . . . ,  an)|a j for 
each j /= i, thus by transitivity, 

gcd(gcd(a1, . . . ,  ai−1, ai+1, . . . ,  an), ai )|a j for each j /= i, 1 ≤ j ≤ n. 

As also gcd(gcd(a1, . . . ,  ai−1, ai+1, . . . ,  an), ai )|ai , then 

gcd(gcd(a1, . . . ,  ai−1, ai+1, . . . ,  an), ai )|gcd(a1, . . . ,  an) 

which implies that 

gcd(gcd(a1, . . . ,  ai−1, ai+1, . . . ,  an), ai ) ≤ gcd(a1, . . . ,  an). 

Therefore, 

gcd(a1, . . . ,  an) = gcd(gcd(a1, . . . ,  ai−1, ai+1, . . . ,  an), ai ). 

2.9 Generalization of Bézout’s Lemma: Let a1, . . . ,  an be any integers that are not 
all zeros. Show that there exist integers x1, . . . ,  xn such that 

gcd(a1, . . . ,  an) = x1a1 +  · · ·  +  xnan 

Solution 
We prove the result using induction on n. 
Base step: If n = 2, then the result is Bézout’s lemma. 
Inductive step: Suppose the result is true for n, that is, if a1, . . . ,  an are 

integers that are not all zeros, then there exist integers x1, . . . ,  xn such that 

gcd(a1, . . . ,  an) = x1a1 +  · · ·  +  xnan. 

For n + 1, assume that a1, . . . ,  an, an+1 are integers that are not all zeros. By 
Exercise 2.8, we have  

gcd(a1, a2, . . . ,  an, an+1) = gcd
(
gcd(a1, a2, . . . ,  an), an+1

)
.
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By Bézout’s lemma, there exist x, y ∈ Z such that 

gcd(a1, a2, . . . ,  an, an+1) = x gcd(a1, a2, . . . ,  an) + y an+1. 

By induction assumption, there exist integers x1, . . . ,  xn such that 

gcd(a1, . . . ,  an) = x1a1 +  · · ·  +  xnan. 

Therefore, 

gcd(a1, a2, . . . ,  an, an+1) = x(x1a1 +  · · ·  +  xnan) + yan+1 

= (xx1)a1 +  · · ·  +  (xxn)an + y an+1. 

as required. 
2.10 List the first four positive common multiples of 10 and 25 and find lcm(25, 10). 

Solution 
The positive multiples of 10 are: 

10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, . . .  

The positive multiples of 25 are: 

25, 50, 75, 100, 125, 150, 175, 200, 225, 250, . . .  

Therefore, the first four positive common multiples of 10 and 25 are 
50, 100, 150, 200 and the least common multiple is 50. 

2.11 Show that gcd(p, 1 − p) = gcd
(
p2, 1 − p

) = 1 for any prime p. 
Solution 
Since 1 × p + 1 × (1 − p) = 1 and 1 × p2 + (1 + p) × (1 − p) = 1, by 

Corollary 2.5.5, we obtain gcd(p, 1 − p) = 1 and gcd
(
p2,1 − p

) = 1. 
2.12 Let m ∈ N, and p1, . . . ,  pn be the distinct prime divisors of m. Let  k1, . . . ,  kn 

be nonnegative integers such that m = pk1 1 p
k2 
2 · · ·  pkn n is the prime factorization 

of m. Show that 

if mi = m/pki i =
∏
j /=i 

p 
k j 
j , then gcd(m1, . . . ,  mn) = 1. 

Solution 
Let gcd(m1, . . . ,  mn) = c. If  c /= 1, then there exists a prime p such that 

p|c. As  c|mi for each 1 ≤ i ≤ n, we have  p|mi for each 1 ≤ i ≤ n. So, p is a 
prime divisor of mi , and thus, a member of {p j : j /= i}. Hence, p belongs to 
the intersection of these sets which is empty. Since the assumption that c /= 1 
leads to a contradiction we must have c = 1. 

2.13 Prove that 509 is a prime number.
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Solution 
Assume that 509 is not a prime. By Lemma 2.9.1, there exists a prime 

number p such that p | 509 and p < √
509 ∼= 22.56. As the prime numbers 

that are less than 22 are 2, 3, 5, 7, 11, 13, 17, 19, and none of them divide 509, 
then 509 is a prime. 

Unsolved Exercises 

2.14 Show that any integer n can be written as one of the following forms: 

n = 5q, n = 5q + 1, n = 5q + 2, n = 5q + 3, or n = 5q + 4 

for some q ∈ Z 
2.15 Prove that for any integer n, the integer n2 − n + 3 is odd. 
2.16 Let n be an integer. Show that n4 is of the form 5k, or 5k + 1 for some integer 

k. 
2.17 Let a, b be integers that are not both zero. Show that gcd(a, b) is the only 

divisor of a, b that is divisible by any other common divisor of a and b, i.e., 
if d|a, d|b and c|d for all c ∈ D(a, b), then d = gcd(a, b). 

2.18 Let a, b, c ∈ Z such that one of a, b is not zero. Show that if c /= 0, then 

gcd(ca, cb) = |c| gcd(a, b) and lcm(ca, cb) = |c| lcm(a, b). 

2.19 Show that gcd(a, a + 1) = 1 for any integer a. 
2.20 Let n ∈ N, such that n ≥ 3. Let  a1, . . . ,  an be any integers that are not all zero. 

Show that for each 1 ≤ i ≤ n., 

lcm(a1, . . . ,  an) = lcm(lcm(a1, . . . ,  ai−1, ai+1, . . . ,  an), ai ). 

2.21 Determine whether the equation 23x + 12y = 134 has an integer solution. If 
so, find all possible solutions. 

2.22 Using Proposition 2.6.2 and mathematical induction, show that for any integers 
a, b, if  gcd(a, b) = 1, then gcd

(
a, bk

) = 1 for each k ≥ 1. 
2.23 Find the integer b such that gcd(45, b) = 3 and lcm(45, b) = 405. 
2.24 Let c be an integer and a1, a2, . . . ,  an be a set of integers such that ai |c ∀ 1 ≤ 

i ≤ n. Show that gcd(a1, a2, . . . ,  an)|c and lcm(a1, a2, . . . ,  an)|c. 
2.25 Let d be an integer and a1, a2, . . . ,  an be a set of integers such that d|ai 

∀ 1 ≤ i ≤ n. Show that d|gcd(a1, a2, . . . ,  an) and d|lcm(a1, a2, . . . ,  an). 
2.26 Prove that the only prime that can be expressed as n2 − 4 is 5. 
2.27 Prove that 1063 is a prime number. 
2.28 Determine whether 97, 257 and 103 are primes.
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Chapter 3 
The Integers Modulo n 

In this chapter, for each positive integer n, a set of integers is defined. Such a set is 
called the “integers modulo n” or “the residue classes mod n” and denoted by Zn . 
Like any other algebraic structure, many operations are defined and performed on the 
integers modulo n. Section 3.1 describes, in detailed, the structure of Zn , Sect. 3.2 
presents several examples of functions defined on Zn . Section 3.3 is devoted to the 
study of the basic operations (addition and multiplication) on Zn . The presentation 
of these operations using tables is given and discussed in Sect. 3.4. In Sect. 3.5, an  
alternative new formula for integers modulo n was introduced. Such formula utilizes 
solving the linear equations on Zn , which are defined and studied in Sect. 3.6. For  
more information about integers modulo n, see (Bloch, 2000). 

3.1 Structure of Integers Modulo n 

For a positive integer n, the structure of the integers modulo n is based on a partition 
of Z into n disjoint subsets, with each subset representing an integer modulo n. This  
partition is performed by introducing an equivalence relation on Z using n, resulting 
in a partition into equivalence classes of this relation (Fig. 3.1).

Definition 3.1.2 For each n ∈ N, define the relation modulo n, denoted by ∼=n , on  
Z by 

a ∼=n b ⇐⇒ n|(b − a) for any a, b ∈ Z. 

The mathematical statement a ∼=n b is read as “a congruent to b modulo n”. If 
n is obvious from the context, the symbol ∼= can be used instead of ∼=n to simplify 
notation. The statement a ≇n b is the negation of a 

∼=n b and is read as “a is not 
congruent to b modulo n”. 

It can be easily verified that for n ∈ N and a, b ∈ Z,
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Fig. 3.1 Strategy to build the integers modulo n

1. a ∼=n b if and only if ∃ q ∈ Z ∍ b − a = qn 
2. If a ∼=n b, then a ∼=m b for each m ∈ Z such that m|n (It follows by the transitive 

property of divisibility). 

One can easily check that the following statements are correct. 

5 ∼=4 1, −17 ∼=8 7, 119≇59 2, 23 ∼=4 −5 

119 ∼=2 1, 100 ∼=3 −26, 89 ∼=17 55, 456 ∼=2 4 

5 ∼=11 −6, 436 ∼=436 0, 436 ≇3 0, 436 ∼=2 8 

29 ∼=12 5, 81 ∼=35 11, 111 ∼=16 −33, −100 ∼=9 −1 

Note that the relation R in Example 1.4.11 is the relation ∼=3. According to this 
the strategy, and Example 1.4.11, the integers modulo 3 are [0], [1], [2]. The next 
proposition lists some important properties of the relation ∼=n . 

Proposition 3.1.3 Let n ∈ N and a, b ∈ Z. 

1. If a ∼=n b, then ra  ∼=n rb  and ra  ∼=rn  rb  for each r ∈ Z. 
2. If a ∼=n b, then ar ∼=n br and ar ∼=rn  br for each r ∈ N. 
3. If ra  ∼=n rb, for  some  r ∈ N, then a ∼= n 

gcd(n,r ) 
b. If gcd(r, n) = 1, then a ∼=n b. 

4. If ar ∼=n br , for  some  r ∈ N, then a ∼= n 
gcd(n,r ) 

b. If gcd(r, n) = 1, then a ∼=n b. 

Proof If a ∼=n b, there exists q ∈ Z such that b − a = qn. Multiplying both sides 
of the equation by r, one obtains rb  − ra  = rqn  = (rq)n = q(rn). Therefore, 
ra  ∼=n rb  and ra  ∼=rn  rb. Similarly, the second statement can be derived. For (3), 
assuming that ra  ∼=n rb, there exists q ∈ Z such that rb  − ra  = qn. Dividing both 
sides by gcd(r, n), yields the following equation 

r 

gcd(r, n) 
(b − a) = q 

n 

gcd(r, n) 
. 

So,

(
n 

gcd(r, n)

)
|
(

r 

gcd(r, n) 
(b − a)

)
.



3.1 Structure of Integers Modulo n 101 

According to Proposition 2.6.3, gcd
(

n 
gcd(r,n) ,

r 
gcd(r,n)

)
= 1. Hence, Corollary 2.5.7 

(2) implies that

(
n 

gcd(r, n)

)
|(b − a). 

Item (4) can be proved in similar manner. ∎
Example 3.1.4 

1. As 5 ∼=3 2, then 60 = 5 × 12 ∼=36 2 × 12 = 24, i.e., 60 ∼=36 24. 
2. As 42 ∼=7 14, then 126 = 42 × 3∼=21 14 × 3 = 42, i.e., 126∼=21 42. 
3. Since 4 × 7 = 28∼=6 16 = 4 × 4 and (6/gcd(6, 4)) = 3, applying Proposition 

3.1.3 (3) with r = 4 yields 7 ∼=3 4. 
4. Since 6 × 21 = 126∼=21 42 = 6 × 7 and (21/gcd(21, 6)) = 3, applying 

Proposition 3.1.3 (3) with r = 6 yields 21∼=7 7. 
5. Since 2 × 21 = 42 ∼=7 14 = 2 × 7 and (7/gcd(7, 2)) = 7, applying Proposition 

3.1.3 (3) with r = 2 yields 21∼=7 7. 
6. Since 42 ∼=4 50, then 2 × 21 = 42 ∼=4 50 = 2 × 25. Hence, applying Proposition 

3.1.3 (3) with r = 2 yields 21∼=2 25 (note (4/gcd(4, 2)) = 2). 

Proposition 3.1.5 Let n ∈ N. The relation ∼=n is an equivalence relation on Z. 

Proof For all a ∈ Z, a−a = 0 = 0·n and 0 ∈ Z, i.e., a ∼=na. Hence, ∼=n is reflexive. 
Assume that a ∼=n b for some a, b ∈ Z. By definition of ∼=n, there exists q ∈ Z such 
that b − a = nq, i.e., there exists q ∈ Z such that a − b = nl, l = −q ∈ Z, 
which implies that b ∼=n a and ∼=n is symmetric. To verify the transitivity, assume 
that a, b, c ∈ Z such that a∼=n b, b ∼=n c. By Definition 3.1.2, there exist q1, q2 ∈ Z 
such that b − a = nq1 ∧ c − b = nq2. Thus, 

c − a = (c − b) + (b − a) = n(q1 + q2) = nq 

where q = q1 + q2 ∈ Z. Thus, a ∼=n c, and the relation ∼=n is transitive. According 
to Definition 1.4.1, the relation ∼=n is an equivalence relation on Z. ∎

Next, we compute the equivalence classes of the equivalence relation ∼=n . Recall 
the definition of equivalence classes (Definition 1.4.7). 

Lemma 3.1.6 Let n ∈ N, and a ∈ Z. The equivalence class of ∼=n that contains a 
is a + nZ. 

Proof Let a ∈ Z. By Definition 1.4.7, the equivalence class of ∼=n that contains a is 

[a]n = {b ∈ Z : a ∼=n b} = {b ∈ Z : n|(b − a)} 
= {b ∈ Z : ∃  q ∈ Z ∧ b − a = nq} 
= {a + nq : q ∈ Z} = a + nZ.

∎
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It can be easily verified that for any n ∈ N, 

1. [a]n = [b]n ⇔ a ∼=n b ⇔ n|(b − a) for any a, b ∈ Z. 
2. For any q, r ∈ Z, [qn + r ]n = [r ]n . In particular, [qn]n = [0]n = [n]n . 

Proposition 3.1.7 Let n ∈ N. There are exactly n distinct equivalence classes of the 
relation ∼=n, namely, [0]n, [1]n, . . . ,  [n − 1]n . 
Proof Let a ∈ Z. According to the quotient-remainder theorem (Theorem 2.1.2) 
applied on a and n, there exist q, r ∈ Z such that a = qn + r, 0 ≤ r < n, i.e., there 
exist q, r ∈ Z such that 

[a]n = [qn + r ]n = [r ]n, 0 ≤ r < n. 

Therefore, the set {[r ]n : r ∈ Z, 0 ≤ r < n} = {[0]n, [1]n, . . . ,  [n − 1]n} contains 
all the equivalent classes of the relation ∼=n. To show that these classes are distinct, 
assume that there exist r1, r2 ∈ Z such that 0 ≤ r1, r2 < n and [r1]n = [r2]n . Without 
loss of generality, assume that r1 ≤ r2. Hence, 

[r1]n = [r2]n ⇒ r1 ∼=n r2 ⇒ r2 − r1 = qn, q ∈ Z. 

Since 0 ≤ r2 − r1 ≤ r2 < n, then |q|n = |r2 − r1| = r2 − r1 < n. Therefore, 
|q| < 1. Since q is an integer, q = 0, which implies that r2 −r1 = 0 and r1 = r2. ∎

If there is no ambiguity, we omit the index n in [a]n and write [a] instead of [a]n . 
Definition 3.1.8 Let n ∈ N. The set of all equivalence classes of ∼=n , denoted by Zn , 
is called the integers modulo n or the residue classes mod n. i.e., 

Zn = {[0], [1], . . . ,  [n − 1]}. 

The element [a] in Zn is called the class of a modulo n. 

For any n ∈ Z, the  set  Zn forms a partition for Z into n disjoint subsets 
(Theorem 1.4.10), as illustrated in the next example. 

Example 3.1.9 Every element in Zn is of the form m + nZ for some 0 ≤ m ≤ n − 1 
(Definition 3.1.2, Exercise 1.19), i.e., the set Zn contains only n elements with every 
element having infinitely many representations. For example, 

1. The set Z2 consists of two elements [0] and [1], with [0] =  0 + 2Z = 2Z(even 
integers) and [1] =  1 + 2Z (odd integers). 

2. In Z9 = {[0], [1], . . . ,  [8]}, 
a. [0] = 0 + 9Z = {0 + 9q : q ∈ Z} = {. . . ,  −18, −9, 0, 9, 18, . . .  }, 
b. [7] = 7 + 9Z = {7 + 9q : q ∈ Z} = {. . . ,  −11, −2, 7, 16, 25, . . .  }, 
c. [18] = [2 × 9] = [0] = 0 + 9Z = {. . . ,  −18, −9, 0, 9, 18, . . .  }, 
d. [25] = [2 × 9 + 7] = [7] = 7 + 9Z, 

e. [−100] = [−9 × 12 + 8] = [8] = 8+9Z = {. . . ,  −10, −1, 8, 17, 26, . . .  }, 
f. [1105] = [122 × 9 + 7] = [7] = 7 + 9Z.
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3. In Z15 = {[0], [1], . . . ,  [14]}, 
a. [45] = [15 × 3] = [0] = 15Z, 
b. [3021] = [15 × 201 + 6] = [6] =  6 + 15Z, 
c. [246] = [15 × 16 + 6] = [6] =  6 + 15Z, 

d. [−3] = [15 × (−1) + 12] = [12] =  12 + 15Z, 
e. [−1004] = [15 × (−67) + 1] = [1] =  1 + 15Z, 
f. [21] = [15 × 1 + 6] = [6] =  6 + 15Z, 

g. [−21] = [15 × (−2) + 9] = [9] =  9 + 15Z. 

3.2 Functions on the Integers Modulo n 

Let n ∈ N. Since Zn consists of equivalence classes, one must be careful when 
defining functions on Zn , and must verify that the function is well-defined (Sect. 1.5). 

Example 3.2.1 

1. On Z5, define the relation f ⊆ Z5 × {−1, 1} given by f ([a]) = (−1)a . Since 
[0] = [5] in Z5 and f ([0]) = 1 /= −1 = f ([5]), then f is not well-defined. 
Therefore, f is not a function on Z5. 

2. Let n ∈ N. Define g : Z → Zn by g(a) = [a] for all a ∈ Z. One can easily verify 
that g is a function on Z, as follows: if a ∈ Z, then by the quotient-remainder 
theorem (Theorem 2.1.2) applied on a and n, there exist unique elements q, r ∈ Z 
such that 

a = qn + r, 0 ≤ r < n. 

Therefore, 

[a] = [qn + r ] = [r ] ∈  Zn 

i.e., for each element in Z, there exists a unique image in Zn under g, so  g is a 
function on Z. 

Example 3.2.3 

1. Let f : Z3 → Z6 be defined as f ([a]3) = [a]6. The relation f is not well-defined. 
Since [0]3 = [3]3, but f ([0]3) = [0]6 /= [3]6 = f ([3]3). 

2. To verify that g : Z12 → Z60 defined by g([a]12) = [5a]60 is a well-defined 
map, assume that [a]12 = [b]12, then 

[a]12 = [b]12 ⇒ 12|(b − a) ⇒ b − a = 12q, q ∈ Z 
⇒ 5b − 5a = 60 q, q ∈ Z 
⇒ 60|(5b − 5a) ⇒ [5a]60 = [5b]60 ⇒ g([a]12) = g([b]12).
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3. Let h : Z4 → Z11 be defined by h([a]4) = [7a]11. The relation h is not well-
defined, as the elements [0]4 = [4]4, while h([0]4) = [0]11 /= [28]11 = h([4]4). 

Example 3.2.4 Let m, n, k ∈ N. Define f : Zn → Zm as 

[x]n |→ [kx]m 

then, f is a well-defined map if and only if m divides kn. We show the two directions 
as follows: 

Assume that f is a well-defined map. As [0]n = [n]n then [0]m = f ([0]n) = 
f ([n]n) = [kn]m , which means that m|(kn − 0). For the other direction, assume that 
m divides kn, i.e., there exists l ∈ Z such that kn = ml. If  a, b ∈ Z with [a]n = [b]n , 
then 

[a]n = [b]n ⇒ n|(b − a) ⇒ b − a = nq, q ∈ Z 
⇒ kb − ka = knq, q ∈ Z 
⇒ kb − ka = mlq = m(lq), q, l ∈ Z 
⇒ m|(kb − ka) ⇒ [ka]m = [kb]m 
⇒ f ([a]n) = f ([b]n). 

and f is well-defined. 
The reader may notice that if m does not divide kn, then the zero element in the 

domain can be selected to show that f : Zn → Zm defined by f ([a]n) = [ka]m is not 
well-defined. For if m does not divide kn, then kn is not a multiple of m which implies 
that [kn]m /= [0]m . Therefore, [0]n = [n]n , but  f ([0]n) = [0]m /= [kn]m = f ([n]n). 

3.3 Algebraic Operations the Integers Modulo n 

In this section, algebraic operations like addition and multiplication on Zn are defined 
and discussed. We advise the reader to review Sect. 1.3 regarding relations on a set. 

Definition 3.3.1 Let n ∈ N. The addition and multiplication relations on Zn × Zn 

are defined as: 

⊕n : Zn × Zn → Zn ⊗n : Zn × Zn → Zn 

[a] ⊕n [b] = [a + b] [a] ⊗n [b] = [ab] for all[a], [b] ∈ Zn. 

where a + b and ab denote the addition and multiplication of integers, respectively, 
on a and b. 

Note that in the above definition, the notation [a] ⊕n [b] and [a] ⊗n [b] are used 
instead of ⊕n([a], [b]) and ⊗n([a], [b]), respectively.
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Proposition 3.3.2 Let n ∈ N. The relations ⊕n and ⊗n, defined in Definition 3.3.1, 
are functions on Zn . 

Proof First, we verify that the result of applying each operation on two elements of 
Zn is an element of Zn . Let  [a], [b] ∈ Zn be arbitrary elements. According to the 
quotient-remainder theorem (Theorem 2.1.2), there exist q1, q2, r1, r2 ∈ Z such that 
a + b = q1n + r1 and ab = q2n + r2, where 0 ≤ r1, r2 < n. Therefore, 

[a] ⊕n [b] = [a + b] = [r1] ∈ Zn and [a] ⊗n [b] = [ab] = [r2] ∈ Zn. 

To verify that the operations are well-defined, assume that a, b, c, d ∈ Z such that 

[a] = [c] ∧ [b] = [d]. 

According to the definition of the relation modulo n, there exist q1, q2 ∈ Z such that 

a − c = q1n, b − d = q2n. 

Hence, 

(a + b) − (c + d) = (a − c) + (b − d) = (q1 + q2)n 

where q1 + q2 ∈ Z, and 

ab − cd = ab − ad + ad − cd = a(b − d) + (a − c)d 
= (aq2 + q1c)n 

where aq2 + q1c ∈ Z. Therefore, 

[a + b] = [c + d] and [ab] = [cd], which implies that 

[a] ⊕n [b] = [c] ⊕n [d] and [a] ⊗n [b] = [c] ⊗n [d].

∎

Definition 3.3.3 The maps ⊕n and ⊗n on Zn , are called the addition modulo n, and 
multiplication modulo n, respectively. 

Example 3.3.4 

1. Considering the set Z13, the reader may easily verify that 

[2] ⊕13 [7] = [9], [12] ⊕13 [10] = [22] = [9], [8] ⊕13 [9] = [17] = [4], 
[2] ⊗13 [7] = [14] = [1], [12] ⊗13 [10] = [120] = [3], [8] ⊗13 [9] = [72] = [7].
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2. Considering the set Z6, the reader may easily verify that 

[2] ⊕6 [15] = [17] = [5], [−5] ⊕6 [1] = [−4] = [2], [2] ⊕6 [4] = [6] = [0], 
[13] ⊕6 [−4] = [9] = [3], [2] ⊗6 [7] = [14] = [2], [2] ⊗6 [7] = [2] ⊗6 [1] = [2], 
[2] ⊗6 [3] = [6] = [0], [−5] ⊗6 [4] = [−20] = [4]. 

Note that [2] ⊗6 [3] = [0] is an example for multiplying two nonzero elements 
that could be zero. This example is not encountered the multiplication of integers. 
The example shows that the multiplication of modulo n has different rules than those 
of the multiplication of integers. 

Proposition 3.3.5 Let n be an integer such that n > 1, and [a] ∈  Zn . 

There exists [b] ∈  Zn such that [a] ⊗n [b] = [1] if and only if gcd(a, n) = 1. 

Proof Assume that [a]∈ Zn . By applying Bézout’s lemma (Theorem 2.5.1) to  a and 
n, we have  

gcd(a, n) =1 ⇔ there exist b, q ∈ Z such that ab + nq = 1 
⇔ there exist b, q ∈ Z such that nq = 1 − ab 
⇔ there exist b, q ∈ Z such that n|(1 − ab) 
⇔ [ab] = [1] ⇔ [a] ⊗n [b] = [1].

∎

Definition 3.3.6 Let n be an integer such that n > 1, and [a] ∈  Zn . If there exists 
[b] ∈  Zn such that [a] ⊗n [b] = [1], then [b] is called the multiplicative inverse of 
[a], denoted by [a]−1 . If no such [b] exists, we say [a] is not invertible or that [a]−1 

is not defined. 

Definition 3.3.7 Let n ∈ N, k ∈ Z, and [a] ∈  Zn . For  k > 0, k[a], and [a]k are 
defined as follows 

k[a] = [a] ⊕n [a] ⊕n · · ·  ⊕n [a]︸ ︷︷ ︸
k times 

[a]k = [a] ⊗n [a] ⊗n · · ·  ⊗n [a]︸ ︷︷ ︸
k times 

0[a] and [a]0 are defined as [0] and [1], respectively. For k < 0, 

• k[a] is defined as follows: 

k[a] = [−a] ⊕n [−a] ⊕n · · ·  ⊕n [−a]︸ ︷︷ ︸
−k times
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• [a]k is only defined if [a] has a multiplicative inverse. In this case, 

[a]k = [a]−1 ⊗n [a]
−1 ⊗n · · ·  ⊗n [a]

−1︸ ︷︷ ︸
−k times 

. 

According to the definition of addition and multiplication modulo n, for any k ≥ 0, 

k[a] = [ka] and [a]k = [ak]. 

Note that the equality [a]k = [ak] is usually not true for k < 0 even when of 
[a]−1 is defined (Exercise). The following propositions are easy to verify using the 
definition. 

Proposition 3.3.8 Let n ∈ N, then n[a] = [0] for any a ∈ Z. If  [a], [b] ∈  Zn and 
[a] = [b], then [a]k = [b]k for any k ∈ N ∪ {0}. 
Proposition 3.3.9 Let n ∈ N and [a] ∈ Zn. For any k1, k2 ∈ Z, 

1. (k1 + k2)[a] = k1[a] ⊕n k2[a]. 
2. If k1, k2 ≥ 0, then [a](k1+k2) = [a]k1 ⊗n [a]k2 and

([a]k1)k2 = [a]k1k2 . 
Example 3.3.10 

1. In Z9, 

a. 3[3] = [3] ⊕9 [3] ⊕9 [3] = [6] ⊕9 [3] = [9] = [0], or simply, 3[3] = 
[3 × 3] = [9] = [0]. 

b. [3]3 = [3] ⊗9 [3] ⊗9 [3] = [9] ⊗9 [3] = [0] ⊗9 [3] = [0], or simply, 
[3]3 = [

33
] = [27] = [0]. 

c. 4[2] = [2] ⊕9 [2] ⊕9 [2] ⊕9 [2] = [8], or simply, 4[2] = [4 × 2] = [8]. 
d. [7]4 = [7] ⊗9 [7] ⊗9 [7] ⊗9 [7] = [49] ⊗9 [49] = [4] ⊗9 [4] = [16] = [7], 

or simply, [7]4 = [
74

] = [2401] = [7]. 

2. In Z10, 

a. 

−322[2]13 = −322
(
[2]4 ⊗10 [2]

4 ⊗10 [2]
4 ⊗10 [2]

1)
= −322([6] ⊗10 [6] ⊗10 [6] ⊗10 [2]) = −322([6] ⊗10 [2]) 

= −322([2]) = −(32 × 10 + 2)[2] = −(32 × 10[2] ⊕10 2[2]) 

= −(32 × [0] ⊕10 2[2]) = −([0] ⊕10 2[2]) = −[4] = [−4] = [6]. 

We can also compute it as follows: 

[2]13 = [2]5 ⊗10 [2]
5 ⊗10 [2]

3 = [2] ⊗10 [2] ⊗10 [8] = [4] ⊗10 [8] = [2] 
and − 322[2]13 = −322[2] = −[644] = −[4] = [6].

b. [2]−322 = (
[2]−1

)322 
is not defined.
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Table 3.1 Addition and multiplication tables for Z1 and Z2 

c. [3]2 = [3] ⊗10 [3] = [9], [3]3 = [9] ⊗10 [3] = [27] = [7], and 2[3]2 = 
2[9] = [18] = [8]. 

d. 
−42[3]7 = −42

(
[3]3 ⊗10 [3]

3 ⊗10 [3]
) = −42([7] ⊗10 [7] ⊗10 [3]) 

= −42([9] ⊗10 [3]) = −42[7] = [6]. 
e. [4]−42 = (

[4]−1
)42 

is not defined. 
f. Since [5]k = [5] in Z10 for any k ∈ N (Check!), then [5]2063 = [5], and 

2063[5]3 = 2063[5] = (206 × 10 + 3)[5] 
= (206 × 10)[5] + (3)[5] 
= [0] + (3)[5]=[5]. 

3.4 The Addition Modulo n and Multiplication Modulo n 
Tables 

As Zn is a finite set, the addition and multiplication modulo n on Zn can be represented 
using tables (Sect. 1.5). Theoretically, these tables can be built for any positive integer 
n, however, this process is impractical when n is large. 

Example 3.4.1 The following tables pertain to the addition and multiplication on Zn 

for several chosen integers n (Tables 3.1, 3.2 and 3.3).

3.5 Use of the “mod n” Formula  

In this section, we present a different but equivalent notation for the congruent 
formula a ∼=n b. The introduced notation is “a ≡ b mod n”, which is called the 
mod n formula. This change in notation helps deal with linear equations on Zn 

defined in the next section. As a ∼=n b means that [a]n = [b]n , then we obtain 

a ≡ b mod n ⇔ a ∼=n b ⇔ [a]n = [b]n. 

Recall that [a]n is an element in Zn .
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Table 3.2 Addition and multiplication tables for Z3 and Z4 

Table 3.3 Addition and multiplication tables for Z6 and Z7

Example 3.5.1 In the following statements, the congruent formulas are rewritten as 
mod n formulas, and vice versa. 

7 ≡ 31 mod 8 ⇔ [7]8 = [31]8 
23 ≡ −3 mod 13 ⇔ [23]13 = [−3]13 

a ≡ 5 mod 13 ⇔ [a]13 = [5]13 

Example 3.5.2 The following mathematical statements can be easily verified.

1. 119 ≡ 1 mod  2  (119 − 1 = 118 and 2|118). 
2. 119 ≡ 1 mod 59 (119 − 1 = 118 and 59|118). 
3. 23 ≡ −1 mod  6  (24 = 23 − (−1) and 6|24).



110 3 The Integers Modulo n

4. 89 ≡ 55 mod 17 (34 = 89 − 55 and 17|34). 
5. 100 ≡ −20 mod 24 (120 = 100 − (−20) and 24|120). 

To simplify the use of the mod n formula, we rewrite all the previous results and 
definitions with both formulas: 

Definition 3.5.3 For n ∈ N and a, b ∈ Z, 

a ≡ b mod n ⇔ a ∼=n b ⇔ [a]n = [b]n. 

The properties of the equivalence relation modulo n, stated in Propositions 3.1.5 
and 3.1.3 can be expressed as follows: 

Lemma 3.5.4 For n ∈ N and a, b, c ∈ Z, 

1. a ≡ a mod n (mod n  is reflexive). 
2. a ≡ b mod n ⇔ b ≡ a mod n (mod n is symmetric). 
3. a ≡ b mod n, b ≡ c mod n ⇒ a ≡ c mod n (mod n is transitive). 

Proposition 3.5.5 For r, n ∈ N and a, b, c ∈ Z 

1. a ≡ b mod n ⇒ ra  ≡ rb  mod n. 
2. a ≡ b mod n ⇒ ra  ≡ rb  mod rn. 
3. a ≡ b mod n ⇒ ar ≡ br mod n. 
4. a ≡ b mod n ⇒ ar ≡ br mod rn. 
5. ra  ≡ rb  mod n ⇒ a ≡ b mod

(
n 

gcd(n,r )

)
. 

6. ar ≡ br mod n ⇒ a ≡ b mod
(

n 
gcd(n,r )

)
. 

The well-defined property of addition and multiplication modulo n in Proposition 
3.3.2 can be rewritten as: 

Proposition 3.5.6 Let n ∈ N and a, b, c, d ∈ Z. If  a ≡ c mod n and b ≡ d mod n, 
then 

a + b ≡ c + d mod n and ab ≡ cd mod n. 

Proposition 3.3.8 can be restated as follows: 

Lemma 3.5.7 Let n ∈ N. If  a, b ∈ Z such that a ≡ b mod n, then ak ≡ bk mod 
n ∀ k ∈ N. 

Example 3.5.8 To show that (17)6 − 1 is divisible by 7, one needs to prove that 
176 ≡ 1 mod  7. The integer 176 is a large number, but one can avoid computing it 
by using Lemma 3.5.7, and the transitivity property of mod 7 as follows:
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As 17 ≡ 3 mod  7, using Lemma 3.5.7, yields 176 ≡ 36 mod 7. Since 36 = 93 
and 9 ≡ 2 mod  7, then 36 = 93 ≡ 23 mod 7. Applying the transitivity property 
of mod 7, yields 176 ≡ 23 mod 7. However, 23 = 8 ≡ 1mod 7, which implies (by 
property of mod 7) that 176 ≡ 1 mod  7, as required. 

Another way to show that 176 ≡ 1mod 7 is by using Proposition 3.5.6 as follows: 
Since 17 ≡ 3 mod  7, then applying Proposition 3.5.6, yields 17 × 17 ≡ 3 × 

3 mod  7. That is, 172 ≡ 9 mod  7. However, since 9 ≡ 2 mod  7, then by the transitive 
property of mod 7, one gets 172 ≡ 2 mod  7. Therefore, 173 = 172 × 17 ≡ 2 × 3 = 
6 mod  7  ⇒ 173 ≡ 6 mod  7. Applying Proposition 3.5.6 again yields 176 = 173 × 
173 ≡ 6 × 6 = 36 ≡ 1 mod  7, as required. 

Example 3.5.9 

1. One can show that the product of any three consecutive positive integers is divis-
ible by 6 as follows: Suppose D = n(n + 1)(n + 2) for some positive integer n. 
Since either n or n + 1 is even, then D is an even integer, i.e., D is divisible by 2. 
We show that 3 divides D by examining n and the elements of Z3 = {[0], [1], [2]}. 
• If n ∈ [0], then n ≡ 0 mod  3. Thus, n is divisable by 3 and 3|D. 
• If n ∈ [1], then n ≡ 1 mod  3. Thus, n + 2 is divisable by 3 and 3|D. 
• If n ∈ [2], then n ≡ 2 mod  3. Thus, n + 1 is divisable by 3 and 3|D. 

In all cases, D is divisible by 3. Since2|D, 3|D, and gcd(2, 3) = 1, by Corollary 
2.5.7 (3), 6|D. 

2. For all n ∈ N, as  n3 − n = n
(
n2 − 1

) = (n − 1)n(n + 1) is a product of three 
consecutive numbers, then by item 1, one obtains 6|(n3 −n), i.e., n3 ≡ n mod 6. 

3. For all n ∈ N, 5n3 + n is divisible by 6. To Show this, we use that n3 ≡ n mod 6 
to obtain 5n3 ≡ 5n mod 6. As  5n ≡ −n mod 6, by the transitive property of 
mod 6, 

5n3 ≡ 5n ≡ −n mod 6. 

Therefore, 6|(5n3 + n) and 5n3 + n is divisible by 6. 

In cryptography, one needs to compute the class of ab mod n for very large 
numbers a, b and n. In these applications computing ab is not practical. Let’s illustrate 
a possible strategy with an example. 

Example 3.5.10 To compute 67789 mod 100, we start with the exponent and repeat 
diving by 2 (with remainder) to get 

789 = 394 × 2 + 1, 394 = 2 × 197, 197 = 2 × 98 + 1, 
98 = 2 × 49, 49 = 2 × 24 + 1, 24 = 2 × 12, 
12 = 2 × 6, 6 = 2 × 3, 3 = 2 × 1 + 1. 

We compute classes modulo 100 starting with the last division and work our way 
up as follow:
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672 ≡ 89 mod 100, 
673 ≡ 672 × 671 ≡ 89 × 67 ≡ 63 mod 100, 
676 ≡ (

673
)2 ≡ 63 × 63 ≡ 69 mod 100, 

6712 ≡ (
676

)2 ≡ 69 × 69 ≡ 61 mod 100, 

6724 ≡ (
6712

)2 ≡ 61 × 61 ≡ 21 mod 100, 

6749 ≡ (
6724

)2 × 67 ≡ 21 × 21 × 67 ≡ 47 mod 100, 

6798 ≡ (
6749

)2 ≡ 47 × 47 ≡ 9 mod 100, 

67197 ≡ (
6798

)2 × 67 ≡ 9 × 9 × 67 ≡ 27 mod 100, 

67394 ≡ (
67197

)2 ≡ 27 × 27 ≡ 29 mod 100, and 

67789 ≡ (
67394

)2 × 67 ≡ 29 × 29 × 67 ≡ 47 mod 100. 

Note that 

• Although 67789 has more than 1000 digits, we only used, in above computation, 
numbers less than 100 and exponents 1 or 2. 

• One can choose to begin by dividing on any number rather than 2, however, 
this might complicate the computation as the exponents that appear in the 
computations will contain numbers more than 2. 

3.6 Linear Equations on the Integers Modulo n 

As in the case of integers, linear equations can be defined on Zn using the addition 
and multiplication modulo n. 

Definition 3.6.1 Let n ∈ N and a, b, c ∈ Z. 

1. The general form of a linear equation with one variable on Zn is 

([a] ⊗n [x]) ⊕n [b] = [c]. 

2. A solution of ([a] ⊗n [x]) ⊕n [b] = [c] is an element [x0] ∈ Zn such that 

([a] ⊗n [x0]) ⊕n [b] = [c]. 

Remark 3.6.2 
([a] ⊗n [x]) ⊕n [b] = [c] ⇔ ([ax]) ⊕n [b] = [c] 

⇔ [ax + b] = [c] 
⇔ ax + b ≡ c mod n. 

Thus, the equation in Definition 3.6.1 (1) can be rewritten as ax + b ≡ c mod n, 
which simplifies the notations. 

Example 3.6.3 Consider the equation 4x + 2 ≡ 10 mod 12.
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1. The class 2 mod 12 is a solution for the equation, since 

4 · 2 + 2 = 8 + 2 = 10 ≡ 10 mod 12. 

Equivalently, we can write [2] ∈  Z12 is a solution for ([4] ⊗12 [x])⊕12[2] = [10]. 
2. The classes 5 mod 12 and 8 mod 12 are also solutions for the equation as 

4 · 5 + 2 = 20 + 2 = 22 ≡ 10 mod 12 

and 

4 · 8 + 2 = 32 + 2 = 34 ≡ 10 mod 12. 

3. The class 7 mod 12 is not a solution for the equation, since 

4 · 7 + 2 = 28 + 2 = 30 /≡ 10 mod 12. 

Note that the symbol = means equality, while the symbol ≡ means equality 
modulo n or equivalence. 

Example 3.6.4 

1. Considering all the elements of Z8, one can determine [3] is the only solution in Z8 

for the equation [x]⊕8[2] = [5]. Although finding a solution for such an equation 
in Z8 seems easy, it is impractical to examine all the elements in cases involving 
a large Zn . The equation [x] ⊕8 [2] = [5] can be solved without examining all 
the elements in Z8 by using the form in Remark 3.6.2 and Proposition 3.5.6. 

x + 2 ≡ 5 mod  8  ⇒ x + 2 − 2 ≡ 5 − 2 mod  8  

⇒ x ≡ 3 mod  8. 

Therefore, [3] is a solution in Z8. 
Note that the second method is not applicable to the more general equation 

ax + b ≡ c mod n. To obtain solutions to this more general equation, the results 
in Proposition 3.6.7 below are needed. 

2. To find a solution for x + 7 ≡ 3 mod  8, we add −7 to both sides, to obtain 
x ≡ −4 mod  8. Since 4 ≡ −4 mod  8, then by the transitive property of mod 8, 
x ≡ 4 mod  8, and [4] is a solution to the equation [x] ⊕8 [7] = [3] in Z8. 

3. The equation 3x −2 ≡ 5 mod  9  has no solution in Z9. If  a mod 9 was a solution, 
then 

3a − 2 ≡ 5 mod  9  ⇒ 3a − 2 + 2 ≡ 5 + 2 mod  9  

⇒ 3a ≡ 7 mod  9  ⇒ ∃  a ∈ Z ∍ 9|(3a − 7).



114 3 The Integers Modulo n 

As 3|9, then by transitivity of divisibility, we obtain ∃ a ∈ Z ∍ 3|(3a − 7). 
Since3|3a, then 3 divides 7 (since 7 is a linear combination of (3a − 7) and 
3a), which contradicts that 7 is a prime number. Therefore, no solution to this 
equation exists in Z9. 

4. To find a solution in Z15 for the equation 3x + 7 ≡ 1 mod 15, we follow the 
same steps as in the last two examples: 

3x + 7 ≡ 1 mod 15 ⇒ 3x ≡ −6 mod 15 ⇒ 3x ≡ 9 mod 15 

⇒ x ≡ 3 mod 15. 

Thus, [3] is a solution for the given equation in Z15. This solution is not the only 
solution to this equation since [8] and [13] are also solutions to the same equation 
in Z15. 

Note that a linear equation on Zn in one variable may have more than one solution. 
This differs from that of equations on the integers, where a linear equation in one 
variable has at most one solution. Corollary 3.6.6 provides the necessary conditions 
for ax +b ≡ c mod n to have a solution, and Proposition 3.6.7 determines all possible 
solutions of this equation in Zn if they exist. We begin with the following lemma. 

Lemma 3.6.5 Let n ∈ N and a, c be integers. The equation ax ≡ c mod n has a 
solution if and only if gcd(a, n)|c. 
Proof The equation ax ≡ c mod n has a solution if and only if there exists [b] ∈  Zn 

such that 

ab ≡ c mod n 

i.e., if and only if ab − c = qn for some q, b ∈ Z. In other words, if and only if 

ab + qn = c for some b, q ∈ Z 

i.e., if and only if the equation ax + ny = c has integer solutions. According to 
Proposition 2.6.5 (1), this holds if and only if gcd(a, n)|c. ∎

Applying the result of Lemma 3.6.5 on ax ≡ (c − b) mod n, yields 

Corollary 3.6.6 Let n ∈ N, and a, b, c be any integers. The equation ax + b ≡ 
c mod n has a solution if and only if gcd(a, n)|(c − b). 

Proposition 3.6.7 Let n ∈ N and a, b, c be integers. If [x0] ∈  Zn is a solution to 
the equation ax + b ≡ c mod n, then the set

{[
x0 + n 

gcd(a, n) 
t

]
: t ∈ Z

}

contains all possible solutions for the equation ax +b ≡ c mod n in Zn. The subset



3.6 Linear Equations on the Integers Modulo n 115 

A =
{[

x0 + n 

gcd(a, n) 
t

]
: t ∈ Z, 0 ≤ t < gcd(a, n)

}

forms all distinct solutions in Zn . 

Proof If [x0] ∈  Zn such that ax0 + b ≡ c mod n, then for any t ∈ Z, 

a

(
x0 + n 

gcd(a, n) 
t

)
+ b = (ax0 + b) +

(
at 

gcd(a, n)

)
n 

≡ c + 0 = c mod n. 

Hence, x0 + (n/gcd(a, n))t is a solution for this equation for all t ∈ Z. If  x1 is also 
a solution for the equation ax + b ≡ c mod n, then 

ax0 + b ≡ c mod n, ax1 + b ≡ c mod n. 

By transitive property of mod n, ax1 + b ≡ ax0 + b mod n, which implies that 

ax1 ≡ ax0 mod n. 

According to Proposition 3.1.3, x1 ≡ x0 mod (n/gcd(a, n)). Thus, there exists 
t ∈ Z such that 

x1 − x0 = t (n/gcd(a, n)). 

Therefore, 

x1 = x0 + (n/ gcd(a, n))t for some t ∈ Z. 

To demonstrate that A contains all the different solutions, one must show that 

• A contains all the solutions for the given equation. 
• All elements in A are distinct. 

as follows: 
Assume that t ∈ Z is an arbitrary integer. By applying the quotient-remainder 

theorem (Theorem 2.1.2) on  t and gcd(a, n), there exist two integers q, r such that 

t = q gcd(a, n) + r, 0 ≤ r < gcd(a, n). 

Therefore,

[
x0 + n 

gcd(a, n) 
t

]
=

[
x0 + n 

gcd(a, n) 
(q gcd(a, n) + r )

]

=
[
x0 + nq + n 

gcd(a, n) 
r

]
=

[
x0 + n 

gcd(a, n) 
r

]
⊕n [nq]
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=
[
x0 + n 

gcd(a, n) 
r

]
⊕n [0] =

[
x0 + n 

gcd(a, n) 
r

]
∈ A. 

To show that all elements in A are different, let t1, t2 ∈ Z such that 0 ≤ t1, t2 < 

gcd(a, n) and

[
x0 + n 

gcd(a, n) 
t1

]
=

[
x0 + n 

gcd(a, n) 
t2

]

converting this equation to the mod n formula yields 

x0 + n 

gcd(a, n) 
t1 ≡ x0 + n 

gcd(a, n) 
t2 mod n 

which implies that 

n 

gcd(a, n) 
t1 ≡ n 

gcd(a, n) 
t2 mod n. 

Multiplying both sides of the statement by gcd(a, n) (Proposition 3.1.3), one 
obtains 

nt1 ≡ nt2 mod (ngcd(a, n)). 

This statement implies that n(t2 − t1) = qn gcd(a, n) for some q ∈ Z. i.e., 
(t2 − t1) = q gcd(a, n). That is, gcd(a, n) divides |t2 − t1|. As both t1, t2 are nonneg-
ative integers that are less than gcd(a, n), so  |t2 − t1| < gcd(a, n), and thus |t2 − t1| 
must be zero. Therefore, t1 = t2, and all elements in A are distinct. ∎

Although the last proposition appears similar to Proposition 2.6.5, the reader 
should note that Proposition 2.6.5 pertain to a linear equation on Z in two variables 
x and y, whereas this proposition is an equation in one variable. Moreover, once 
a solution for ax + b ≡ c mod n has been obtained, the integers b and c are not 
relevant anymore. The integers a and n determine the other solutions. Note also 
that the statement in Proposition 3.6.7 implies that if a solution to the equation 
ax +b ≡ c mod n exists in Zn , then the number of distinct solutions for the equation 
equals to gcd(a, n). 

Example 3.6.8 To find all possible solutions for the equation 2x ≡ 3 mod  5  in Z5, 
one computes gcd(5, 2). As  gcd(5, 2) = 1 divides 3, then by Lemma 3.6.5, the given 
equation has a solution in Z5. Proposition 3.6.7 ensures that there is only one solution 
(at t = 0). We present two methods to find it. 

Method 1: 

The equation 2x ≡ 3 mod  5  is equivalent to [x] ⊗5 [2] = [3]. By substituting all 
elements of Z5 in [x] ⊗5 [2] = [3], the solution [x] can be sequentially determined, 
as indicated in Table 3.4.
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Table 3.4 The solutions for 
the equation 2x ≡ 3 mod  5  

[x] = [0] [0] ⊗5 [2] = [0] /= [3] [0] is not a solution 
[x] = [1] [1] ⊗5 [2] = [2] /= [3] [1] is not a solution 

[x] = [2] [2] ⊗5 [2] = [4] /= [3] [2] is not a solution 

[x] = [3] [3] ⊗5 [2] = [1] /= [3] [3] is not a solution 

[x] = [4] [4] ⊗5 [2] = [3] [4] is a solution 

Thus, [x] = [4] is the required solution. 
Method 2: 

As gcd(5, 2) = 1, then by Bézout’s lemma (Theorem 2.5.1) using backward 
substitution 

1 = gcd(5, 2) = 5 × 1 − 2 × 2. 

Multiply both sides of the equation by 3 to obtain 3 = 5 × 3 + 2 × (−6). Apply the 
relation mod 5 on both sides to get 2 × (−6) ≡ 3 mod  5. Since −6 = 4 in Z5, 

3 ≡ 2 × 4 mod  5. 

Therefore, [x] = [4] is the solution of the given equation in Z5. 

Example 3.6.9 To find all possible solutions for the equation 12x ≡ 6 mod 27 
in Z27, one must compute gcd(12, 27). Using the Euclidean Algorithm 2.4.1, the  
gcd(12, 27) = 3. As  3|6, there exist three distinct solutions for 12x ≡ 6 mod 27 in 
Z27 (Lemma 3.6.5 and Proposition 3.6.7). By Bézout’s lemma (Theorem 2.5.1), and 
backward substitution, 

gcd(12, 27) = 3 = 27 + 12 × (−2). 

By multiplying both sides of the equation by 2, one obtains 6 = 27×2+12×(−4). 
Applying the relation mod27 to both sides yields 6 ≡ 12 × (−4) mod 27. Since 
−4 ≡ 23 in Z27, then 6 ≡ 12 × 23 mod 27 and [x] = [23] is a solution for 
the given equation in Z27. According to Proposition 3.6.7, the distinct solutions for 
12x ≡ 6 mod 27 are 

23 + 9t mod 27, 0 ≤ t < 3. 

Therefore, the distinct solutions for the given equation in Z27 are 

[23], [23 + 9] = [32] = [5], [23 + 18] = [41] = [14]. 

Exercises 

Solved Exercises
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3.1. Let a, b, c ∈ Z and n be positive integers such that a ∼=n b. Without using the 
well-defined property of ⊕n and ⊗n , show that 

1. a + c ∼=n b + c, a − c ∼=n b − c. 
2. ac ∼=n bc. 

Solution: 
Assume that a ∼=n b. 

1. a ∼=n b ⇔ n|(b − a) ⇔ there exists q ∈ Z such that b − a = qn 

⇔ there exists q ∈ Z such that b + c − (a + c) = q n  
⇔ n|(b + c − (a + c)) ⇔ a + c ∼=n b + c. 

The second statement follows as a −c = a+ (−c), and b−c = b+ (−c). 
2. a ∼=n b ⇔ n|(b − a) ⇔ there exists q ∈ Z such that b − a = qn 

⇔ there exists q ∈ Z such that bc − ac = q n  c  
⇔ n|(bc − ac) 
⇔ ac ∼=n bc. 

3.2. Find a positive integer n that satisfies: 

i. 347∼=n 340. 
ii. 27 ≡ 17 mod n. 

Solution: 
Using the relations in Definition 3.1.2, we obtain. 

i. 347∼=n 340 ⇔ n|(340 − 347) ⇔ n|7. As the only divisors of 7 are 1 and 
7, then n = 1 or n = 7. 

ii. 27 ≡ 17 mod n ⇔ n|(17 − 27) ⇔ n|(−10). As the positive divisors of 
−10 are 1, 2, 5 and 10, then these are all possible values of n. 

3.3. Let m, n, q be integers such that mq ∼= n mod q2. Show that q|n. 
Solution: 
Assume that mq ∼= n mod q2. By Definition 3.1.2, q2|(n − mq), and thus, 

there exists s ∈ Z such that n − mq = s q2, i.e., n = sq2 +mq = q(sq +m) 

for some s ∈ Z. Therefore, q|n. 
3.4. Show that the following relations are not well-defined. Give examples to 

support your answer. 

• f : Z6 → Z5 defined by f ([a]6) = [3a]5. • g : Z4 → Z8 defined by g([a]4) = [a]8. • h : Z6 → Z10 defined by h([a]6) = [2a]10. 
Solution:
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According to the result of Example 3.2.4, all the above relations are not 
well-defined. 

• For f , the classes [0]6 and [6]6 are equal, however 

f ([0]6) = [0]5 /= [3]5 = f ([6]6). 

Also, [1]6 and [7]6 are equal in Z6, but their images are not (Check!). 
• For g, the classes [0]4 and [4]4 are equal, however 

g([0]4) = [0]8 /= [4]8 = f ([4]4). 

Also, [2]4 and [6]4 are equal in Z4, but their images are not (Check!). 
• For h, the classes [0]6 and [6]6 are equal, however 

h([0]6) = [0]10 /= [2]10 = f ([6]6). 

Also, [5]6 and [−1]6 are equal in Z6, but their images are not (Check!). 

3.5. Give an example for an integer n and two nonzero elements [a], [b] ∈  Zn such 
that 

[a] ⊕n [b] = [0] and [a] ⊗n [b] = [0]. 

Solution: 
One can obtain an example by choosing n = 4, [a] = [2], and [b] = [2]. 

3.6. Let a be any integer. Show that either a2 ≡ 0 mod  4  or a2 ≡ 1 mod  4. 
Solution: 
Assume that a is any integer. By applying the quotient-remainder theorem 

to a and 2, we obtain a = 2q + r for some q ∈ Z and r = 0, 1. 

• If r = 0, then a = 2q and a2 = 4q2 ≡ 0 mod  4. 
• If r = 1, then a = 2q + 1, and 

a2 = 4q2 + 4q + 1 = 4
(
q2 + q

) + 1 ≡ 1 mod  4.

3.7. Let a, b, r be integers and p be a prime such that p � r . Show that if ra  ≡ 
rb  mod p then a ≡ b mod p. 

Solution: 
Assume that ra  ≡ rb  mod p. Since p � r and p is a prime, then 

gcd(p, r ) = 1. According to Proposition 3.5.5 (5), a ≡ b mod p. 
3.8. Show that 41 divides 220 − 1. 

Solution: 
To solve the question, we must show that 220 ≡ 1 mod 41. We start by 

listing 2k for some k, to get
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22 = 4, 23 = 8, 24 = 16, 25 = 32, 26 = 64. 

We terminate the process at 26, as 41 is between 25 and 26. Since 41 = 25+9, 
then 25 ≡ −9 mod 41. According to Lemma 3.5.7, 

220 = (25 )4 ≡ (−9)4 mod 41 

≡ 81 × 81 mod 41. 

As 81 ≡ −1 mod 41, then by Lemma 3.5.4 (3), 

220 ≡ (−1) × (−1) ≡ 1 mod 41. 

3.9. Let p be a prime number. Find the solutions for x2 ≡ x mod p in Z p, if there 
are any. 

Solution: 
If x2 ≡ x mod p, then p|x2 − x, i.e., p|x(x − 1). According to Euclid’s 

lemma (Proposition 2.8.3), p|x or p|(x − 1). 

• If p|x , then there exists q ∈ Z such that x = qp  ≡ 0 mod  p. 
• If p|(x − 1), then there exists q ∈ Z such that x − 1 = qp  ≡ 0 mod  p. 

i.e., x ≡ 1 mod  p. 

Therefore, the only possible values of x in Z p are [0] and [1]. 
3.10. Find all distinct solutions for the following equations in Z5. 

[3] ⊗5 [x] = [1], x ≡ 3 mod  5, 2x ≡ 4 mod  5. 

Solution: 
For any a /= 5q, q ∈ Z, we have  gcd(a, 5) = 1. Therefore, all the given 

equations have only one solution in Z5 (Proposition 3.6.7). Since Z5 contains 
only five elements, all the elements of Z5 can be examined to determine the 
possible solution. 

• For [3] ⊗5 [x] = [1]: 
According to the computations in Table 3.5, [2] is the required solution 

for [3] ⊗5 [x] = [1] in Z5 . 
• For x ≡ 3 mod  5  : Considering all elements in Z5, 3 is the only element 

in {0, 1, 2, 3, 4} that satisfies the equation x ≡ 3 mod  5. Therefore, [3] is 
the required solution for x ≡ 3 mod  5  in Z5. 

• For 2x ≡ 4 mod  5: 
According to the computations in Table 3.6, [x] = [2] is a solution for 

the given equation in Z5.

3.11. Find all the distinct solutions for the following equation in Z10. 

2x ≡ 7 mod 10, [x] ⊗10 [1] = [6],
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Table 3.5 The solution for 
[3] ⊗5 [x] = [1] [x] = [0] [3] ⊗5 [0] = [0] /= [1] [0] is not a solution 

[x] = [1] [3] ⊗5 [1] = [3] /= [1] [1] is not a solution 

[x] = [2] [3] ⊗5 [2] = [1] [2] is a solution 

[x] = [3] [3] ⊗5 [3] = [4] /= [1] [3] is not a solution 

[x] = [4] [3] ⊗5 [4] = [2] /= [1] [4] is not a solution 

Table 3.6 The solution for 
2x ≡ 4 mod  5  

[x] = [0] [2] ⊗5 [0] = [0] /= [4] [0] is not a solution 
[x] = [1] [2] ⊗5 [1] = [2] /= [4] [1] is not a solution 

[x] = [2] [2] ⊗5 [2] = [0] [2] is a solution 

[x] = [3] [2] ⊗5 [3] = [1] /= [4] [3] is not a solution 

[x] = [4] [2] ⊗5 [4] = [3] /= [4] [4] is not a solution 

[5] ⊗10 [x] = [0], 3x ≡ 5 mod 10.

Solution: 
Using the result of Lemma 3.6.5 and Proposition 3.6.7, 

• As gcd(2, 10) = 2 and 2 � 7, no solution for 2x ≡ 7 mod 10 exists in Z10. 
• Clearly, [6] is a solution for the equation [x]⊗10 [1] = [6]. As  gcd(1, 10) = 

1, there exists one solution for [x] ⊗10 [1] = [6] in Z10. Therefore, [6] is 
the only possible solution in Z10. 

• As gcd(5, 10) = 5 and 5|0, there exist five solutions for [5] ⊗10 [x] = [0] 
in Z10. Checking all the elements in Z10, one obtains that 

[0], [2], [4], [6], [8] 

are the only possible solutions in Z10. 
• Finally, as gcd(3, 10) = 1, there exists one solution for 3x ≡ 5 mod 10 in 

Z10. Checking all the elements in Z10, one finds that [5] is the only possible 
solution in Z10. 

3.12. Let p, q ∈ Z such that gcd( p, q) = 1. Show that for any a, b ∈ Z, the  
equations 

x ≡ a mod p and x ≡ b mod q 

have a common solution. 
Solution: 
By Bézout’s lemma (Theorem 2.5.1), there exist u, v  ∈ Z such that up  + 

vq = 1. i.e. 

up  ≡ 1 mod  q and vq ≡ 1 mod  p
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which implies that for any integers a, b, 

bup ≡ b mod q and vaq ≡ a mod p. 

Let x = avq + bup ∈ Z, then x ≡ avq mod p and x ≡ bup mod q. 
As vaq ≡ a mod p and bup ≡ b mod q, by transitivity, we obtain 

x ≡ a mod p and x ≡ b mod q 

i.e., x is a common solution. 

Unsolved Exercises 

3.13. Find a positive integer n such that 

i. 54 ∼=n 76. 
ii. 27 ≡ 10 mod n. 

3.14. Show that 97 divides 248 − 1. 
3.15. Verify the following statements 

7 ≡ 0 mod  7, 29 ≡ 3 mod 13, 119 ≡ 19 mod 4, 

6 ≡ −5 mod 11, 456 ≡ 4 mod  2, 121 ≡ 71 mod 5, 

−4 ≡ 23 mod 27, 436 ≡ 0 mod 436, 436 ≡ 0 mod  3. 

3.16. List all the elements of Z13 and Z8. Give examples of functions f : Z13 → Z8 

and g : Z8 → Z13. 
3.17. Determine whether the following are functions: 

• f : Z5 → Z10, where f ([a]5) = [6a]10 • f : Z4 → Z6, where f ([a]4) = [3a]6 • f : Z7 → Z12, where f ([a]7) = [a]12 • f : Z12 → Z7, where f ([a]12) = [a]7 
3.18. Let k be any integer. Is f : Z8 → Z4 defined by f ([a]8) = [ka]4 a function? 

Explain your answer. 
3.19. Let f : Z4 → Z8, where f ([a]4) = [ka]8. List all integers k that render f 

well-defined. 
3.20. Let m, n ∈ N such that m > n. Does f : Zn → Zm, where f ([a]n) = [a]m 

form a function? Explain your answer. 
3.21. Write the addition and multiplication tables for the additive groups Z7, Z10. 

3.22. Let m, n ∈ N such that n|m. Show that for any integers a, b 

a ≡ b mod m ⇒ a ≡ b mod n. 

3.23. Find the solutions of the following equations if any exist:
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• 3x + 3 ≡ 1 mod  9. 
• 12x − 10 ≡ 2 mod  7. 
• [6] ⊗3 [x] ⊕3 [10] = [20]. 
• [7] ⊗6 [x] = [3]. 

Reference 

Bloch, E. D. (2000). Proofs and fundamentals: A first course in abstract mathematics. Birkhaeuser.



Chapter 4 
Semigroups and Monoids 

This chapter examines semigroups and monoids, studies their basic properties, and 
presents several examples. The first section defines binary operations and presents 
several examples and results. Moreover, properties of binary operations such as 
associativity and commutativity are studied, and the notion of the identity element is 
introduced. The section provides the preliminary knowledge for studying Sect. 4.2, 
which discusses semigroups, and their stronger version, monoids. Section 4.3 defines 
and describes the set of invertible elements in a monoid, which paves the way for 
defining groups in Chap. 5, that contains the core of our study. The last and shortest 
section of this chapter discusses the notion of idempotent elements. The main result 
of Sect. 4.4 is presented in Proposition 4.4.5, which states that the identity element is 
the only idempotent invertible element in a monoid. Following most mathematicians, 
we use the letter G to denote a set whenever we discuss semigroups or monoids. 

4.1 Binary Operations on Sets 

In this section, we define and study binary operations on sets and highlight several 
of their algebraic properties. 

Definition 4.1.1 Let G be any set. A binary operation ∗ on G means a function 
∗ :  G × G → G. 

The symbols +, ·, •, ∗, and similar symbols are used to denote binary operations 
instead of the usual notation for functions. Thus, a∗b is used instead of ∗(a, b) to 
denote the result of the operation, and (G, ∗) is used to denote a set G equipped 
with a binary operation ∗. Recall that the map ∗ :  G × G → G is a function if each 
element (a, b) in G × G has a unique image a ∗ b in G (Definition 1.5.1) (Fig. 4.1).
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Fig. 4.1 The binary operation definition 

Example 4.1.3 

1. The map ∗ :  Z × Z → Z defined by 

a ∗ b = a + b 

forms a function on Z (Sect. 2.1). Therefore, the addition of integers forms a binary 
operation on Z. 

2. The map ∗ :  Z × Z → Z defined by 

a ∗ b = 
a + b 
a − b 

is not a function on Z, since a ∗ a is not defined for any integer a. Therefore, the 
above expression does not define a binary operation on Z. 

3. The map ∗ :  N × N → N defined by 

a ∗ b = a − b 

is not a function on N, as  2 ∗ 7 = −5 /∈ N. Indeed, the image a ∗ b does not belong 
to N when b ≥ a. Thus, subtraction is not a binary operation on N. However, the 
above expression defines a binary operation on Z. 

4. Let Q∗ = Q\{0} and Z∗ = Z\{0}. Define ∗ :  Q∗ × Q∗ → Q∗ by
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a 

b 
∗ 
c 

d 
= 

a + c 
bd 

a, b, c, d ∈ Z∗. 

This relation is not a function on Q∗. For each a, b ∈ Z∗, 

a 

b 
∗ −  

a 

b 
= 

0 

b2 
= 0 /∈ Q∗. 

Therefore, ∗ is not a binary operation on Q∗. Another reason for not being a binary 
operation is that this relation is not well-defined as 1/3 = 2/6, while 

1 

3
∗4 
7 

= 
5 

21
/= 

6 

42 
= 

2 

6 
∗ 
4 

7 
. 

5. Let ∗ :  Q × Q → Q be defined as 

a 

b 
∗ 
c 

d 
= 

a + c 
bd 

a, c ∈ Z, b, d ∈ Z∗. 

The relation ∗ is not well-defined for the same reason given in (4). Thus, it is not 
binary operation. 

6. The map ∗ :  Q × Q → Q defined by 

a 

b 
∗ 
c 

d 
= 

ad + bc 
bd 

a, c ∈ Z, b, d ∈ Z∗ 

is a function on Q (Example 1.5.9). Therefore, ∗ is a binary operation on Q. 

Definition 4.1.4 Let G be a set with a subset B ⊆ G, and ∗ be a binary operation 
on G. The  set  B is said to be closed under ∗ if a ∗ b ∈ B for all a, b ∈ B. 

Example 4.1.5 

1. Since the sum of two even integers is an even integer, the subset of all even 
integers of Z is closed under the addition. 

2. For n ∈ Z, consider nZ = {nm : m ∈ Z} ⊆ Z. For any a, b ∈ nZ, there exists 
m1, m2 ∈ Z, such that a = nm1 and b = nm2. Thus, 

a + b = nm1 + nm2 = n(m1 + m2) ∈ nZ. 

Therefore, nZ is closed under the addition on Z. 

3. Consider N, the subset of all positive integers in Z. The  set  N is not closed 
under the subtraction on Z. For example, both 2 and 3 are positive integers, but 
2 − 3 = −1 /∈ N.
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Proposition 4.1.6 Let G be a set with B ⊆ G, and ∗ be a binary operation on G. 
The operation ∗ is a binary operation on B if and only if B is closed under ∗. 

Proof If ∗ is a binary operation on B, then B is closed under ∗(by the definition of 
a binary operation). For the other direction, assume that B is closed under ∗, and 
let a, b ∈ B be arbitrary elements. Since ∗ is an operation on G, the image a ∗ b is 
defined and unique, it belongs to B since B is closed under ∗, i.e., the operation ∗ 
forms a binary operation on B. ∎

Next, we define and examine several properties of binary operations. 

Definition 4.1.7 Let ∗ be a binary operation on G. 

1. The operation ∗ is said to be associative if a ∗(b ∗ c) = (a ∗ b)∗c ∀ a, b, c ∈ G. 
2. The operation ∗ is said to be commutative if a ∗ b = b ∗ a ∀ a, b ∈ G. 

Proposition 4.1.8 Let G be a set and B ⊆ G. Let ∗ be a binary operation on G and 
B be closed under ∗. If the operation ∗ is an associative (commutative) operation 
on G, then it is an associative (commutative) operation on B. That is, B inherits the 
associativity (commutative property) from G. 

Proof The operation ∗ is a binary operation on B (Proposition 4.1.6). If a, b, c ∈ B, 
then a, b, c ∈ G. By associativity of ∗ on G, one finds that a ∗ (b ∗ c) = (a ∗ b) ∗ c, 
where both sides of the equation are in B. Similarly, for the commutativity, if a, b 
are elements in B, then they are elements in G and a ∗ b = b ∗ a, where both sides 
of the equation are in B. ∎

Example 4.1.9 Let ∗ be defined for all a, b ∈ Z by a∗b = ab−a−b. The operation 
∗ forms a binary commutative and not an associative operation on Z. For  if  a, b ∈ Z, 
then the image a ∗ b defines a unique element in Z. Hence, ∗ is a binary operation 
on Z. The relation is commutative because for any a, b ∈ Z, 

a ∗ b = ab − a − b = ba − b − a = b ∗ a. 

To show that ∗ is not associative, consider the three integers 2, 3, 4. It is easy to 
verify that 

3 ∗ (4 ∗ 2) = 1 /= 3 = (3 ∗ 4) ∗ 2. 

Therefore, ∗ is not associative. 
If G is a set with a binary operation ∗, then one can discuss the existence of an 

identity element in G. This element may or may not exist in G. 

Definition 4.1.10 Let G be a set and ∗ be a binary operation on G. 

1. An element el ∈ G is called a left identity with respect to ∗ if 

el ∗ a = a for all a ∈ G.
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2. An element er ∈ G is called a right identity with respect to ∗ if 

a ∗ er = a for all a ∈ G. 

3. An element e ∈ G is called an identity with respect to ∗ if 

a ∗ e = e ∗ a = a for all a ∈ G. 

If the operation ∗ is the only operation defined on G and there is no risk of 
ambiguity, we can drop the words “with respect to ∗” when discussing identity 
element. 

Remark 4.1.11 If the operation ∗ is commutative on G, it is enough to check for 
the existence of a left or a right identity. For if el is a left identity of G and ∗ is 
commutative, then 

a ∗ el = el ∗ a = a ∀ a ∈ G. 

i.e., el is also a right identity. Likewise for a right identity in G. 

Example 4.1.12 

1. Let + be the sum operation defined on the integers Z. For each a ∈ Z, 

a + 0 = a = 0 + a, 

which implies that 0 is an identity element for (Z, +). Similarly, 0 is an identity 
element for (Q, +), (R, +), and (C, +). The subset N has no identity element with 
respect to the sum operation +. For  if  N has an identity with respect to +, then it 
must be zero, which does not belong to N. 

2. Let · be the multiplication operation defined on the positive integers N. For each 
a ∈ N, a · 1 = a = 1 · a, which implies that 1 is an identity element for (N, ·). 
Similarly, 1 is an identity element for (Z, ·), (Q, ·), (R, ·), and (C, ·). 

3. Let − be the subtraction operation defined on the integers Z. The subtraction is 
a binary operation on Z (Example 4.1.3 (3)). It can be easily verified that Z has 
the zero as a right identity with respect to − but no left identity exists. 

Example 4.1.13 Let ∗ be the binary operation defined on Z by a ∗ b = ab − a − b 
for each a, b ∈ Z. (Example 4.1.9). No element in Z can serve as a left identity, for 
if el is a left identity in (Z, ∗), then b = el ∗ b for all b ∈ Z. In particular, 

1 = el ∗ 1 = el − el − 1 = −1. 

which contradicts 1 /= −1. Since ∗ is a commutative operation, no right identity 
exists in (Z, ∗), and consequently, no identity element exists in (Z, ∗).
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Example 4.1.14 Let G be a set containing at least two elements. For each a, b ∈ G, 
define a ∗ b as the element on the left side of ∗, i.e., a ∗ b = a. Clearly, ∗ is a function 
(and thus a binary operation) on G. As  a ∗ (b ∗ c) = a ∗ b = a = a ∗ c = (a ∗ b) ∗ c 
for all a, b, c ∈ G, thus ∗ is an associative operation on G. The operation ∗ is 
noncommutative, as for any a /= b, a ∗ b = a /= b = b ∗ a. If  c ∈ G is an arbitrary 
element, then c satisfies a ∗ c = a ∀ a ∈ G. Therefore, c is a right identity, i.e., any 
element in G is a right identity. However, the set G has no left identity, since if d 
is an element in G, such that x = d ∗ x for all x ∈ G, then by the definition of the 
operation ∗, we have  x = d ∗ x = d, i.e., x = d for any x ∈ G, and G has only one 
element. 

The above examples demonstrate that the set G may have a left (right) identity or 
may not. If G has both left and right identities, then they must be equal. If el , er are 
left and right identities of G, respectively, then by Definition 4.1.10 (1-2), 

el =
er is a right identity 

el ∗ er =
el is a left identity 

er . 

Moreover, if G has the two identity elements e, e' ∈ G, then by Definition 4.1.10 
(3), 

e =
e' is an identity 

e ∗ e' =
e is an identity 

e'. 

These results are stated in the following lemma and corollary. 

Lemma 4.1.15 Let G be a set and ∗ be a binary operation on G. If  G has right and 
left identities, then they coincide. 

Corollary 4.1.16 (The uniqueness of the identity). Let G be a set and ∗ be a binary 
operation on G. An identity of G (if it exists) is unique. 

To emphasize the uniqueness of the identity, if (G, ∗) has an identity element, we 
call it the identity element of G, and we use e to denote the identity. 

4.2 Semigroups and Monoids 

In this section, we define the semigroups and monoids, and we present several exam-
ples of both. An important of a semigroup, known by the transformation semigroup 
is also defined. 

Definition 4.2.1 

1. A semigroup is a set G equipped with an associative binary operation ∗. If the  
operation ∗ is commutative, (G, ∗) is called a commutative semigroup.
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2. A monoid is a semigroup (G, ∗) that contains an identity element. If the operation 
∗ is commutative, (G, ∗) is called a commutative monoid. 

Remark 4.2.2 In a semigroup (G, ∗), changing the operation application order of ∗ 
on any finite sequence of elements of G (that contains more than two elements) does 
not change the value of the expression. For example, 

a1 ∗ (a2 ∗ (a3 ∗ a4)) = (a1 ∗ a2) ∗ (a3 ∗ a4) = a1 ∗ (a2 ∗ a3) ∗ a4 

for any a1, a2, a3, a4 elements of G. Note that only the operation application order 
is changed, whereas the order of the elements themselves remains unchanged. In 
general, if a1, a2, . . . ,  an are elements in a semigroup G, as long as the same order 
of the elements is maintained, applying the operations in any order yields the same 
element of G. We usually omit the parentheses between the elements and write a∗b∗c 
to denote any of the sides of the equation in Definition 4.1.7 (1). 

Notation 4.2.3: Let  n ∈ N, and (G, ∗) be semigroups and a1, a2, . . . ,  an be 
elements of G. The notation a1 ∗ a2 ∗  · · ·  ∗  an is used to denote the value obtained 
by applying the operations in any order. If ai = a for all 1 ≤ i ≤ n, we denote 
a ∗ a ∗  · · ·  ∗  a
︸ ︷︷ ︸

n times 

by an . 

Proposition 4.2.4 Let (G, ∗) be a commutative semigroup. For any bijection map 
f on the finite set {1, 2, . . . ,  n}, 

a1 ∗ a2 ∗  · · ·  ∗  an = a f (1) ∗ a f (2) ∗  · · ·  ∗  a f (n). 

i.e., in a commutative semigroup, one can apply the operation in any arbitrary order 
for the elements. 

Proof Let f be any bijection map on {1, 2, . . . ,  n}. The  map  f can be expressed as 
a composition of adjacent transpositions Rs,s+1 for some s where 1 ≤ s ≤ n − 1 
(Proposition 1.5.18). Hence, it suffices to show the assertion for f = Rs,s+1, 1 ≤ 
s ≤ n − 1, where 

Rs,s+1 : {1, 2, . . . ,  n} → {1, 2, . . . ,  n} 

Rs,s+1(k) = 

⎧ 
⎨ 

⎩ 

k k /= s ∧ k /= s + 1 
s + 1 k = s 
s k  = s + 1. 

If f = Rs,s+1, then 

a f (1) ∗ a f (2) ∗  · · ·  ∗  a f (n) = a1 ∗ a2 ∗  · · ·  as−1 ∗ as+1 ∗ as ∗  · · ·  ∗  an 
= (a1 ∗ a2 ∗  · · ·  as−1) ∗ (as+1 ∗ as) ∗ (· · ·  ∗  an) 
= (a1 ∗ a2 ∗  · · ·  as−1) ∗ (as ∗ as+1) ∗ (· · ·  ∗  an)
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= a1 ∗ a2 ∗  · · ·  as−1 ∗ as ∗ as+1 ∗  · · ·  ∗  an 
= a1 ∗ a2 ∗ . . .  ∗ an .

∎
Example 4.2.5 

1. Let +, · be the usual addition and multiplication on the integers. Then 
(N, +), (N, ·), (Z, +) and (Z, ·) are commutative semigroups. All these semi-
groups except (N, +) are monoids. The zero serves as identity element in (Z, +), 
whereas 1 is the identity element in (N, ·), and (Z, ·). 

2. Let+, · be the usual sum and multiplication defined on the set of rational numbers. 
Then (Q, +) and (Q, ·) are commutative monoids. The zero and 1 serve as identity 
elements in (Q, +) and (Q, ·), respectively. 

3. Let +, · be the usual sum and multiplication defined on the set of real numbers. 
Then (R, +) and (R, ·) are commutative monoids. The zero and 1 serve as identity 
elements in (R, +) and (R, ·), respectively. 

4. Let +, · be the usual sum and multiplication defined on the set of complex 
numbers. Then (C, +) and (C, ·) are commutative monoids. The zero and 1 
serve as identity elements in (C, +) and (C, ·), respectively. 

5. Let − be the usual subtraction defined on the set of integers. In this case, (Z, −) 
is not a semigroup, and thus not a monoid. The operation − is not associative on 
Z. For example, 

(3 − 2) − 1 = 0 /= 2 = 3 − (2 − 1) and 3 − 2 = 1 /= −1 = 2 − 3. 

6. Let − be the usual subtraction defined on the set of complex numbers. This 
operation is not associative, thus (C, −) is not a semigroup and not a monoid. 
Clearly, the operation − is not commutative on C. 

7. Let m, n ∈ N and + be the addition operation defined on the matrices Mmn(C). 
This operation is an associative commutative binary operation on Mmn(C), and 
thus (Mmn(C), +) is a commutative semigroup. Proposition 4.3.14 shows that 
(Mmn(C), +) is a monoid. 

8. Let m, n ∈ N and let − be the subtraction operation defined on the matrices 
Mmn(C). As in the case of addition, one can easily show that the subtraction 
of matrices is a binary operation on Mmn(C). However, the subtraction is not 
associative, and hence Mmn(C) is not a semigroup under subtraction. Clearly, 
this operation is not commutative. 

9. Let n ∈ N, and let · be the matrix multiplication defined on Mn(C). The  
matrix multiplication is associative and not a commutative binary operation 
on Mn(C). Therefore, (Mn(C), ·) is a semigroup, that is not commutative. 
Proposition 4.3.15 shows that (Mn(C), ·) is a monoid. 

10. Consider the empty set ∅. On  ∅, consider the empty relation f = ∅ ⊆ ∅  ×  ∅. 
As f is a function on ∅, it is a binary operation and vacuously satisfies the 
conditions of associativity and commutativity. Therefore, ∅ is a commutative 
semigroup. This semigroup is not a monoid as it does not contain an identity 
element.
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Example 4.2.6 Let ∗ be defined on the real numbers R by 

a ∗ b = ab/5 a, b ∈ R. 

(R, ∗) is a commutative semigroup. To verify this, let a, b be arbitrary elements 
in R. Clearly, a ∗ b defines a unique element that belongs to R, i.e., the operation 
∗ is a binary operation on R. For associativity, let a, c, b be arbitrary elements in R. 
Since 

a ∗ (b ∗ c) = a ∗
(

bc 

5

)

= 
a(bc) 
25 

= 
(ab)c 

25 
=

(

ab 

5

)

∗ c = (a ∗ b) ∗ c, 

then (R, ∗) is a semigroup. Moreover, 

a ∗ b = ab/5 = ba/5 = b ∗ a for any a, b ∈ R. 

Thus, ∗ is commutative. To check if (R, ∗) contains an identity element, assume 
that e is the identity element in R, i.e., e ∗ a = a ∗ e = a for any element a in R. If  
a /= 0, then 

e ∗ a = a ⇔ 
ea 

5 
= a ⇔ 

e 

5 
= 1(a /= 0) ⇔ e = 5. 

If a = 0, then 5 ∗ 0 = 5×0 
5 = 0. Therefore, 5 is an element in R that satisfies 

5 ∗ a = a for any element a in R. As  ∗ is a commutative operation, 5 also satisfies 
a ∗ 5 = a, and (R, ∗) is a monoid whose identity element is 5. 

Example 4.2.7 Let ∗ and • be the binary operations defined on the positive integers 
N by 

a ∗ b = gcd(a, b) 

a • b = lcm(a, b) 

for all a, b ∈ N. Both  (N, ∗) and (N, •) are examples of commutative semigroups. 
As both operations are functions on N (Proposition 2.7.8), they both form binary 
operations on N. The discussions in Remark 2.3.9 and Remark 2.7.7 demonstrate 
that both operations are commutative. To show that ∗ is associative, let a, b, c ∈ N 
be arbitrary elements. Apply the result of Exercises 2.8 (n = 3) and the commutative 
property of ∗ to obtaim 

a ∗ (b ∗ c) = gcd(a, gcd(b, c)) = gcd(gcd(b, c), a) = gcd(b, c, a) 
= gcd(a, b, c) = gcd(gcd(a, b), c) = (a ∗ b) ∗ c.
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Similarly, using the result of Exercise 2.20, the operation • is also associative. 
Therefore, both (N, ∗) and (N, •) are semigroups. The semigroup (N, ∗) has no 
identity element. For if k is an integer such that gcd(a, k) = a for all a ∈ N, then 
a|k for all a ∈ N, i.e., N ⊆ Div(k). Remark 2.2.6 and Proposition 2.2.4 (1) imply 
that k = 0. Hence, the zero is the only integer satisfying a ∗ 0 = a for any a ∈ N. 
Since 0 /∈ N, then (N, ∗) has no identity element. For the operation •, as  1 ∈ N and 
a • 1 = lcm(a, 1) = a for each a ∈ N, then 1 is the identity element in (N, •), and 
(N, •) is a monoid. 

Definition 4.2.8 Let A be a nonempty set. The set AA is defined to be the set of all 
functions from A to A, i.e., AA = {  f : A → A, f is a function}. 
Proposition 4.2.9 If A is a nonempty set, and ◦ is the composition of functions 
defined on AA, then

(

AA, ◦)

is a monoid. This monoid is noncommutative for any A 
with more than one element. 

Proof The composition of two functions from A to A is a function from A to A 
(Exercise 1.21), thus the map 

◦ :  AA × AA → AA where 

f ◦ g(x) = f (g(x)) ∀ x ∈ A 

defines a binary operation on AA. The operation is associative since 

f ◦ (g ◦ h)(x) = f ((g ◦ h)(x)) = f (g(h(x))) 

and 

( f ◦ g) ◦ h(x) = ( f ◦ g)(h(x)) = f (g(h(x))). 

The identity map IA : A → A, where IA(x) = x ∀ x ∈ A is an element in AA 

and satisfies 

IA ◦ f (x) = f ◦ IA(x) = f (x) ∀ x ∈ A and ∀ f ∈ AA . 

Therefore, IA serves as an identity element in
(

AA, ◦)

. If  A has only one element, 
then AA has only the identity function and composition is commutative. If a and b are 
two different elements in A, then by defining the functions f : A → A, f (x) = a 
for all x ∈ A, and g : A → A, g(x) = b for all x ∈ A, one can easily show 
that f ◦ g(x) = a /= b = g ◦ f (x) for all x in A. Thus, the composition is not 
commutative in this case. ∎

The monoid in Proposition 4.2.9 is known by the transformation (composition) 
semigroup.
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4.3 Invertible Elements in Monoids 

In this section, we assume that G is a monoid (semigroup with an identity element). 
We define and study the subset of the invertible elements in G. We observe that each 
element in this set is paired with another element, called its inverse. 

Definition 4.3.1 Let G be a set equipped with a binary operation ∗, and e be an 
identity element in G. Let  a, b ∈ G, 

1. b is said to be a left inverse of a if b ∗ a = e. 
2. b is said to be a right inverse of a if a ∗ b = e. 
3. b is said to be an inverse of a if b is a left and right inverse of a. i.e., a ∗ b = 

b ∗ a = e. 

Remark 4.3.2 If the binary operation ∗ is commutative on G, then the existence of 
one-sided inverse guarantees the existence of both one-sided inverses. For if b is a 
left inverse and ∗ is commutative, then a ∗ b = b ∗ a = e, which means that b is a 
right inverse, and thus, an inverse. Likewise for a right inverse. 

Let G be a monoid and a ∈ G. If  bl ∈ G is a left inverse of a, and br ∈ G is a 
right inverse of a, then by Definition 4.3.1, 

bl = bl ∗ e = bl ∗ (a ∗ br ) = (bl ∗ a) ∗ br 
= e · br = br 

which means that the left and right inverse (if they both exist) are equal. This leads 
to the following result. 

Lemma 4.3.3 Let (G, ∗) be a monoid, and a ∈ G. If a has a left and right inverse 
in G, then they coincide. 

Corollary 4.3.4 Let (G, ∗) be a monoid, and a ∈ G. An inverse element of a (if it 
exists) is unique. The inverse of a is denoted as a−1. 

Proof Let b, c be two inverses of a in G. According to Definition 4.3.1, 

b = b ∗ e = b ∗ (a ∗ c) =(b ∗ a) ∗ c 
= e ∗ c = c.

∎
Let G = {a, b, c} and ∗ :  G × G → G be defined as in Table 4.1. One can 

easily verify that ∗ is a binary operation on G. The element a is the identity element 
(Check!). The element b satisfies 

(b ∗ b) ∗ c = b ∗ c = a /= b = b ∗ a = b ∗ (b ∗ c),

which shows that (G, ∗) is not a semigroup. This leads the following remark.



136 4 Semigroups and Monoids

Table 4.1 The operation on 
G

∗ a b c 

a a b c 

b b b a 

c c a a

Remark 4.3.5 The results in Lemma 4.3.3, and Corollary 4.3.4 are satisfied only if 
G is a semigroup and are not guaranteed for any binary operation on set G. 

Definition 4.3.6 Let (G, ∗) be a monoid and a ∈ G. The element a is said to be 
invertible in G if it has an inverse in G, that is, if there exists b ∈ G such that 

a ∗ b = b ∗ a = e. 

where e is the identity element in G. The set of all invertible elements in (G, ∗) is 
denoted by Inv((G, ∗)), or simply,  Inv(G) if the operation ∗ is not ambiguous, i.e., 

Inv(G) = {a ∈ G : a is invertible} 
= {a ∈ G : ∃  b ∈ G ∍ a ∗ b = b ∗ a = e}. 

Note that G∗ is used to denote the set of invertible elements in G in some of algebra 
books. In this book, we use Inv(G) as mentioned above and reserve the notation K ∗ 

to denote K\{0}, where K ⊆ C. 

Proposition 4.3.7 Let (G, ∗) be a monoid, and a, b ∈ G be arbitrary elements in 
G. 

1. If a ∈ G is invertible in G, then a−1 is invertible in G and
(

a−1
)−1 = a. 

2. If a, b ∈ G are invertible in G, then a ∗ b is invertible in G and 

(a ∗ b)−1 = b−1 ∗ a−1 . 

Proof The first statement follows directly from Definition 4.3.1(3), and 

a ∗ a−1 = a−1 ∗ a = e. 

For the second statement, assume that a, b are invertible elements in G. The result 
follows as

(

b−1 ∗ a−1
) ∗ (a ∗ b) = b−1 ∗ (

a−1 ∗ a
) ∗ b = b−1 ∗ e ∗ b = b−1 ∗ b = e 

and 

(a ∗ b) ∗ (

b−1 ∗ a−1) = a ∗ (

b ∗ b−1) ∗ a−1 = a ∗ e ∗ a−1 = a ∗ a−1 = e.
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The result in item 2 means that the subset Inv(G) is closed under ∗. Therefore, 
the result in Proposition 4.1.6 yields: ∎

Corollary 4.3.8 Let (G, ∗) be a monoid. The set Inv(G) of all invertible elements 
in G forms a monoid with respect to ∗. 

The following generalization of Proposition 4.3.7 can be easily proved using 
mathematical induction on n. 

Proposition 4.3.9 Let (G, ∗) be a monoid and a1, a2, . . . ,  an be invertible elements 
in G. The element a1 ∗ a2 ∗ · · · ∗  an is invertible in G and 

(a1 ∗ a2 ∗ · · · ∗  an)−1 = a−1 
n ∗ a−1 

n−1 ∗ · · · ∗  a−1 
1 . 

Proposition 4.3.10 Let (G, ∗) be a monoid and a be an invertible element in G. 
The left and right cancellation laws hold for a, i.e., for all b, c in G, the following 
statements hold: 

1. b ∗ a = c ∗ a ⇒ b = c. 
2. a ∗ b = a ∗ c ⇒ b = c. 

Proof Assume that a is an invertible element in G, and b∗a = c ∗a. By multiplying 
both sides of the equation on the right by a−1, one obtains (b ∗ a)∗a−1 = (c ∗ a)∗a−1, 
which implies that b = c. The second part of the proposition is proved in similar 
manner. ∎

Example 4.3.11 Consider the monoid (Z, +), where + is the addition operation on 
integers. Every element in Z is invertible. For if a ∈ Z, then −a ∈ Z, satisfies 

a + (−a) = (−a) + a = 0. 

Similarly, every element in (Q, +), (R, +), and (C, +) is invertible. i.e., 

Inv((Z, +)) = Z, Inv((Q, +)) = Q, Inv((R, +)) = R, Inv((C, +)) = C. 

Note that N has no identity with respect to the sum operation; hence, there is no 
point to look for invertible elements in (N, +). 

Example 4.3.12 

1. In the monoid (N, ·), where · is multiplication of integers, the only invertible 
element in (N, ·) is 1, i.e., Inv((N, ·)) = {1}. The  inverse of  1 is itself. 

2. In the monoid (Z, ·), where · is multiplication of integers, the invertible elements 
are 1 and −1, with each being the inverse of itself. If a is an invertible element 
in Z with an inverse b, then by Definition 4.3.1, a · b = 1. Therefore, |a · b| = 
|a| · |b| = 1, which implies that |a| = |b| = 1. Hence, a ∈ {1, −1}, and 
Inv((Z, ·)) = {1, −1}.
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3. In the monoid (Q, ·), where · is multiplication of rational numbers, any nonzero 
element in Q is invertible. If a ∈ Q is a nonzero element in Q, then 1/a is an 
element in Q that satisfies a · (1/a) = (1/a) · a = 1. The zero is not invertible. 
Therefore, Inv((Q, ·)) = Q∗ = Q\{0}. 

4. Similar to (3), every nonzero element a in (R, ·) and (C, ·) is invertible with an 
inverse 1/a, where · is multiplication of real and complex numbers, respectively. 
i.e., Inv((R, ·)) = R∗ = R\{0} and Inv((C, ·)) = C∗ = C\{0}. 

Example 4.3.13 Let (R, ∗) be the monoid defined in Example 4.2.6, i.e., 

a ∗ b = 
ab 

5 
a, b ∈ R. 

To find the invertible elements in R, assume that a ∈ R. Consider the following 
two cases: 

– If a /= 0, then for any b in R, 

a ∗ b = 5 ⇔ 
ab 

5 
= 5 ⇔ b = 

25 

a 
. 

As 25/a ∈ R, the element a has a right inverse in R. The element 25/a ∈ R is 
a left inverse (∗ is commutative). Hence, a is invertible, with a−1 = 25/a. One can 
easily check that a ∗ (25/a) = (25/a) ∗ a = 5. 

– If a = 0, then 0 ∗ b = 0 /= 5 for all elements b in R. Thus, 0 is not invertible. 

Therefore, the set of invertible elements in (R, ∗) are Inv(R) = R∗ = R\{0}. 
Proposition 4.3.14 Let m, n ∈ N, and let Mmn(C) be the set of all m × n matrices 
with complex coefficients. Let + be defined on Mmn(C) as the sum of matrices. The 
set 

(Mmn(C), +) 

is a commutative monoid, and every element in Mmn(C) is invertible. 

Proof The sum of matrices is a function from Mmn(C) × Mmn(C) to Mmn(C) 
(Proposition 1.6.8), and thus the sum of matrices is a binary operation on Mmn(C). 
Assume that A = (

ai j
)

1 ≤ i ≤ m 
1 ≤ j ≤ n 

, B = (

bi j
)

1 ≤ i ≤ m 
1 ≤ j ≤ n 

, and C = (

ci j
)

1 ≤ i ≤ m 
1 ≤ j ≤ n 

are elements in Mmn(C). According to the definition of +, 

A + (B + C) = (

ai j
) + ((

bi j
) + (

ci j
))

= (

ai j
) + (

bi j  + ci j
) = (

ai j  +
(

bi j  + ci j
))
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= ((

ai j  + bi j
) + ci j

) = (

ai j  + bi j
) + (

ci j
)

= ((

ai j
) + (

bi j
)) + (

ci j
) = ( A + B) + C. 

Therefore, + is an associative operation on Mmn(C). For the commutativity, 

A + B = (

ai j  + bi j
) = (

bi j  + ai j
) = B + A 

is satisfied for all A, B ∈ Mmn(C). Therefore, (Mmn(C), +) is a commutative 
semigroup. 

Let 0mn = (0) = 

⎛ 

⎜ 
⎜ 
⎜ 
⎝ 

0 0  
0 0  

· · ·  0 
· · ·  0 

... 
... 

0 0  
· · ·  

... 
· · ·  0 

⎞ 

⎟ 
⎟ 
⎟ 
⎠ 
. The matrix 0mn ∈ Mmn(C), and satisfies that 

for each A = (

ai j
)

in Mmn(C), 

A + 0mn =
(

ai j  + 0
) = A = (

0 + ai j
) = 0mn + A. 

Thus, 0mn is the identity element in (Mmn(C), +). 
For any A = (

ai j
) ∈ Mmn(C), let  B = (−ai j

)

. The matrix B is an element of 
Mmn(C) that satisfies 

A + B = (

ai j  +
(−ai j

)) = 0mn =
(−ai j  + ai j

) = B + A. 

Therefore, B is the inverse of A with respect to +. Consequently, every element 
in Mmn(C) is invertible. ∎

For m, n ∈ N, the multiplication of two matrices in Mmn(C) is not defined unless 
m = n. Recall that we use the notation AB  to denote the multiplication A · B. 
Proposition 4.3.15 Let n ∈ N, and let Mn(C) be the set of all n × n matrices with 
complex coefficients. Let · be matrix multiplication on Mn(C). The  set  

(Mn(C), ·) 

is a noncommutative monoid, where every matrix in Mn(C) with a nonzero 
determinant is invertible. 

Proof As the matrix multiplication is a function on Mn(C) (Proposition 1.6.8), it is 
a binary operation on Mn(C). To show that · is an associative operation, let A1 =
(

a1 i j

)

, A2 =
(

a2 i j

)

, and A3 =
(

a3 i j

)

be matrices in Mn(C), where 1 ≤ i, j ≤ n. 
According to the definition of matrix multiplication (Definition 1.6.6), 

A1 A2 =
(

ci j
)

where ci j  = 
n

Σ

l=1 

a1 ila
2 
l j
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A2 A3 =
(

di j
)

where di j  = 
n

Σ

k=1 

a2 ika
3 
k j  . 

Hence, 

A1( A2 A3) = A1
(

di j
) = 

n
Σ

l=1 

a1 ildl j  = 
n

Σ

l=1 

a1 il  

n
Σ

k=1 

a2 lka
3 
k j  

= 
n

Σ

l=1 

n
Σ

k=1 

a1 il  (a
2 
lka

3 
k j  ) = 

n
Σ

k=1 

n
Σ

l=1 

(a1 ila
2 
lk)a

3 
k j  

= 
n

Σ

k=1 

cika
3 
k j  =

(

ci j
)

A3 = (A1 A2)A3. 

Thus, matrix multiplication is an associative operation, and (Mn(C), ·) is a 
semigroup. 

Let In = 

⎛ 

⎜ 
⎜ 
⎜ 
⎝ 

1 0  
0 1  

· · ·  0 
· · ·  0 

... 
... 

0 0  
· · ·  

... 
· · ·  1 

⎞ 

⎟ 
⎟ 
⎟ 
⎠ 
. The matrix In is an element in Mn(C). For each A =

(

ai j
) ∈ Mn(C), the multiplication In A =

(

ci j
)

, where 

ci j  = 
n

Σ

l=1 

Iilal j  = 0 + . . .  + 0 + Iii ai j  + 0 + . . .  + 0 = 1 · ai j  = ai j  ∀ 1 ≤ i, j ≤ n, 

i.e., In A = A. Similarly, AIn = A. Therefore, In is the identity element in Mn(C) 
with respect to matrix multiplication. The last statement in the proposition is a restated 
form of the first part of Proposition 1.6.28, i.e., 

Inv((Mn(C), ·)) = {A ∈ Mn(C) : det(A) /= 0}. 

Finally, let 

A1 = 

⎛ 

⎜ 
⎜ 
⎜ 
⎝ 

0 0  
0 0  

· · ·  1 
· · ·  1 

... 
... 

0 0  
· · ·  

... 
· · ·  1 

⎞ 

⎟ 
⎟ 
⎟ 
⎠ 

, A2 = 

⎛ 

⎜ 
⎜ 
⎜ 
⎝ 

1 0  
1 0  

· · ·  0 
· · ·  0 

... 
... 

1 0  
· · ·  

... 
· · ·  0 

⎞ 

⎟ 
⎟ 
⎟ 
⎠ 

. 

Both A1, A2 are elements in Mn(C), and A1 A2 = A2 /= A1 = A2 A1. Thus, 
matrix multiplication is not commutative. ∎

Example 4.3.16 Let G = {A, B, C} ⊆ M2(C), where
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A =
(

1 0  
0 0

)

, B =
(

0 1  
0 0

)

, and C =
(

0 0  
0 0

)

. 

Let · be matrix multiplication on M2(C). Since 

AX  = X, BX  = C, CX  = C ∀ X ∈ G, 

then G is closed under matrix multiplication, rendering · a binary operation on G 
(Proposition 4.1.6). The subset G inherits the associativity property from (M2(C), ·). 
Therefore, (G, ·) is a semigroup. Since for each X ∈ G, AX  = X , then A is a left 
identity of G. Since BX  = C /= B for all X ∈ G, the semigroup G has no right 
identity. We do not discuss the invertible elements, as there is no identity element in 
G. 

4.4 Idempotent Elements in Semigroups 

As in the previous section, a special subset of the semigroup G, called the set of 
idempotents of G, is considered in this section. 

Definition 4.4.1 Let (G, ∗) be a semigroup. The element a ∈ G is called idempotent 
if a2 = a. The set of idempotent elements of G is denoted by E(G). 

Example 4.4.2 

1. The identity element in any semigroup (if it exists) is idempotent. 
2. Zero is the only idempotent element in (K , +), where K = Z, Q, R or C. 
3. The integers 0, 1 are the only idempotent elements in (K , ·), where K = Z, Q, R 

or C. 

4. In (M2(C), ·), the matrices

(

0 0  
0 1

)

and

(

1 0  
0 0

)

are examples of idempotent 

elements. 
5. On the closed interval I = [0, 1], define x ∗ y = min(x, y), where x, y ∈ I . 

Clearly, (I, ∗) is a semigroup with an identity equal to 1. For all x ∈ I , 

x2 = x ∗ x = min(x, x) = x . 

Therefore, all elements in (I, ∗) are idempotents. 

6. Let G be any nonempty set. Define ∗ on G by a ∗ b = a. Any element in G is 
an idempotent element, i.e., E(G) = G. 

Proposition 4.4.3 Let (G, ∗) be a semigroup, and a, b ∈ G such that a ∗ b = b ∗ a. 
If a, b are idempotent elements, then a ∗ b is idempotent.
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Proof If a and b are idempotent elements in G, then 

(a ∗ b)2 = (a ∗ b) ∗ (a ∗ b) = a ∗ (b ∗ a) ∗ b = a ∗ (a ∗ b) ∗ b 
= (a ∗ a) ∗ (b ∗ b) = a2 ∗ b2 = a ∗ b.

∎

Corollary 4.4.4 If (G, ∗) is a commutative semigroup, then the set of all idempotent 
elements in G forms a semigroup with respect to ∗. 
Proposition 4.4.5 Let (G, ∗) be a monoid. The identity is an idempotent, and any 
other idempotent element in G is not invertible. 

Proof Let e be the identity element in G. As  e∗e = e, then e is idempotent. Assume 
that a is an idempotent and invertible element in G. If  b is the inverse element of a, 
then 

a = a ∗ e = a ∗ (a ∗ b) = (a ∗ a) ∗ b = a ∗ b = e. 

Thus, there is no idempotent invertible element other than e. ∎
Exercises 

Solved Exercises 

4.1 Let G = {1, 2, 3, 4, 5}. Determine which of the following formulas define a 
binary operation on G. For those that do, determine whether the operation is 
associative or commutative. 

1. a ∗ b = a + b ∀ a, b ∈ G 
2. a ∗ b = 5 ∀ a, b ∈ G 
3. a ∗ b = b − 1 ∀ a, b ∈ G 

4. a ∗ b = 

⎧ 
⎪ 
⎨ 

⎪ 
⎩ 

1 if a, b are odd 
4 if a, b are even 
5 if otherwise. 

Solution: 

1. As 5 ∗ 4 = 5 + 4 = 9 /∈ G, the operation ∗ is not a binary operation on G. 
2. If a, b ∈ G, then a ∗ b = 5 is defined and belongs to G. Therefore, ∗ is a binary 

operation on G. For any a, b, c ∈ G, 

(a ∗ b) ∗ c = 5 ∗ c = 5 = a ∗ 5 = a ∗ (b ∗ c). 

Hence, ∗ is associative. Furthermore, for any a, b ∈ G, a ∗ b = 5 = b ∗ a, and ∗ 
is commutative.
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3. As 2 ∗ 1 = 1 − 1 = 0 /∈ G, the operation ∗ is not a binary operation on G. 
4. Let a, b ∈ G, then a ∗ b is defined and belongs to G. Hence, ∗ defines a binary 

operation on G. Clearly, ∗ is commutative. Since 

1 ∗ (1 ∗ 2) = 1 /= 5 = (1 ∗ 1) ∗ 2, 

then ∗ is not associative. 

4.2 Let P be a set of prime numbers and Bp be the set of positive integers that can 
be written as a product of elements of P, i.e., 

BP = {n ∈ N : ∃  p1, ..., ps ∈ P ∍ n = p1 · · ·  ps}. 

Show that multiplication of integers forms a binary operation on BP . Is addition 
a binary operation on BP? 

Solution: 

As BP ⊆ N, then by Proposition 4.1.6, it suffices to show that BP is closed under the 
multiplication •. Let  n1 = p1 · · ·  ps and n2 = q1 · · ·  qr be the elements in BP, then 

n1 • n2 = p1 · · ·  ps · q1 · · ·  qr 

is a product of elements of P, i.e., n1 • n2 ∈ BP . For the sum operation +, the  sum  

n1 + n2 = p1 · · ·  ps + q1 · · ·  qr 

is not necessarily an element of BP . For example, if P = {2, 3}, then 2, 3 ∈ BP , 
but 2 + 3 = 5 /∈ BP . Therefore, BP is not closed under +. Note that, due to 
Theorem 2.8.7, BP will be closed under + if P is the set of all primes. Indeed, this 
is the only case where BP will be closed. 

4.3 On the set of complex numbers C, define the operation ∗ by a ∗b = a + b−ab. 

– Does ∗ define a binary operation on C ? 
– Is (C, ∗) a semigroup? Is (C, ∗) commutative? 
– Does (C, ∗) have an identity element with respect to ∗ ? If yes, find the 

invertible elements. 
– Find the solutions of 7 ∗ b = i and a ∗ a = −1 in (C, ∗). 

Solution: 

– For each a, b ∈ C, the image a ∗ b defines a unique element in C. Therefore, ∗ is 
a binary operation on C. 

– For each a, b, c ∈ C,
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– 

a ∗ (b ∗ c) = a ∗ (b + c − bc) 
= a + (b + c − bc) − a(b + c − bc) 
= a + b + c − bc − ab − ac + abc 
= a + b − ab + c − ac − bc + abc 
= (a + b − ab) + c − (a + b − ab)c 
= (a + b − ab) ∗ c = (a ∗ b) ∗ c 

i.e., the operation ∗ is associative and (C, ∗) forms a semigroup. 
For each a, b ∈ C, 
a ∗ b = a + b − ab = b + a − ba = b ∗ a. 
Therefore, the operation ∗ is commutative and (C, ∗) is a commutative semigroup. 

– To determine if an identity element exist, let e ∈ C, such that 

a ∗ e = a ∀ a ∈ C. 

Since a + e − ae = a ∀ a ∈ C if and only if e(1 − a) = 0 ∀ a ∈ C, then e 
must be 0. (1 − a = 0 does not hold for each element a in C). We verify that 0 is an 
identity element as follows: 

a ∗ 0 = a + 0 − a · 0 = a, and 0 ∗ a = 0 + a − 0 · a = a for each a ∈ C. 
To determine the invertible elements in C, it is enough to find the elements that 

have a left inverse (as ∗ is commutative). The element a ∈ C has a left inverse if and 
only if there exists b ∈ C, such that b ∗ a = b + a − ba = 0, i.e., b = −a 

1−a . The  
element b is defined for any a in C, such that a /= 1 (verify that b is a left inverse of 
a /= 1). If a = 1, then b ∗ 1 = 1 /= 0 ∀ b ∈ R. Therefore, a = 1 is not invertible 
and the invertible elements in C are C\{1}. 
– If 7 ∗ b = i , then 7 + b − 7b = i , which yields b = (7 − i )/6. 
– If a ∗ a = −1, then a + a − a2 = −1, which implies that a2 − 2a − 1 = 0, i.e., 

a = 1 ± √
2. 

4.4 Let n ∈ N. Consider the semigroup (Mn(C), ·) and let 

G = {(

ai j
) ∈ Mn(C) : a1 j = 0 ∀ 1 ≤ j ≤ n

}

be the subset of all matrices in Mn(C), whose first row consists of zeros. 

1. Show that (G, ·) is a semigroup. 
2. Find the left (right) identity, if it exists. 
3. Find the invertible elements in G, if any. 

Solution: 

1. If A = (

ai j
)

and B = (

bi j
)

are arbitrary elements in G, then a1 j = b1 j = 0 for 
all 1 ≤ j ≤ n. Therefore, AB  = (

ci j
)

where ci j  = ∑n 
l=1 ailbl j  and
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c1 j = 
n

Σ

l=1 

a1lbl j  = 
n

Σ

l=1 

0 · bl j  = 0 ∀1 ≤ j ≤ n. 

Therefore, AB  ∈ G and G is closed under ·. According to Proposition 4.1.6, the  
operation · is a binary operation in G. Since (G, ·) inherits the associativity property 
from (Mn(C), ·), it is a semigroup. 

2. Let El =
(

di j  .
)

where di j  = 

⎧ 
⎨ 

⎩ 

0 i /= j 
0 i = j, i = 1 
1 i = j, i /= 1 

The matrix El is an element in 

G, that satisfies that for each A = (

ai j
)

in G, the multiplication El A =
(

ci j
)

, 
where 

ci j  = 
n

Σ

k=1 

dikak j  = 0 +  · · ·  +  0 + diiai j  + 0 +  · · ·  +  0 =
{

0 i = 1 
ai j  i /= 1 

= ai j  . 

Therefore, El is a left identity for G. To show that the semigroup G has no right 
identity, let 

A = (

ai j
)

, where ai j  =
{

1 if  i = 2, j = 1 
0 otherwise. 

A is an element in G. For any matrix B = (

bi j
)

in G, AB  = (

ci j
)

, where 

ci j  = 
n

Σ

l=1 

ailbl j  =
︸︷︷︸

b1 j=0 

n
Σ

l=2 

ailbl j  =
︸︷︷︸

ail=0 ∀ l≥2 

0. 

Therefore, AB  = 0n /= A, and B is not a right identity element of G. 

3. Since G does not have an identity element, the notion of invertibility does not 
apply. 

4.5 Consider the set S = {a, b, c}. Let ∆ be the function defined on S by Table 4.2 
(Sect. 1.5). 

i. Is (S,∆) a semigroup? Does (S,∆) have an identity? 
ii. Is (S,∆) commuative? 
iii. Does (S,∆) have idempotent elements?

Table 4.2 The operation on 
S

∆ a b c 

a a a a 

b a b b 

c a b c
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iv. Find the invertible elements in S, if possible. 

Solution: 

i. Clearly, ∆ is a binary operation on S. For each x, y, z in S, we have  

x∆(y∆z) = (x∆y)∆z. 

In fact, if any of x, y, z is a, the result of both side of the equation above is a. 
Otherwise, (x, y, z are all in {b, c}) if one of them is b, the result is b. That leaves 
only the case x = y = z = c, and the result is c in that case, and ∆ is associative. 

Since a∆c = c∆a = a, b∆c = c∆b = b, and c∆c = c, then c is an identity 
element in S. Therefore, (S,∆) is a semigroup whose identity is c. 

ii. From the table, clearly x∆y = y∆x for any x, y ∈ S. 
iii. As a2 = a, b2 = b, and c2 = c, every element in S is idempotent. 
iv. According to (iii) and Proposition 4.4.5, Inv(S) = {c}. 
4.6 Let (G, ∗) be a commutative semigroup, and E(G) be the subset of all idem-

potent elements of G. Show that E(G) is a semigroup. If G is a monoid, then 
E(G) is a monoid. 

Solution: 

If E(G) = ∅, then it is a semigroup. Assume that E(G) is not empty, and let a, b 
be elements in E(G). As  a ∗ b = b ∗ a, then by Proposition 4.4.3, a ∗ b ∈ E(G), 
i.e., E(G) is closed under ∗. According to Proposition 4.1.8, E(G) is a semigroup. 
If there exists an identity element e in G, then e ∗ e = e belongs to E(G), i.e., E(G) 
is also a monoid. 

4.7 An element a in a semigroup (G, ∗) is called cancellative if 

a ∗ b = a ∗ c ⇒ b = c and b ∗ a = c ∗ a ⇒ b = c for all b, c in G. 

The semigroup (G, ∗) is called cancellative if every element in G is cancellative. 
Show that if a cancellative semigroup (G, ∗) has an identity element e, then e is the 
only idempotent in G, i.e.,E(G) = {e}. 
Solution: 

Assume that (G, ∗) is a cancellative semigroup and let a be an idempotent element in 
G. According to the definition of E(G), a2 = a ∗a = a = a ∗ e. By the cancellative 
property of a, we obtain a = e. 

Unsolved Exercises 

4.8 Determine whether the operation defined on the set A is a binary operation. 
Explain your answer, where 

1. A is the set of negative integers, and ∗ is the subtraction of integers.
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2. A is the set of rational numbers Q, and ∗ is the subtraction of rational numbers. 
4.9 Let x, y ∈ Z. Let  ∗ be an operation defined on R by 

a ∗ b = xa  + yb for all a, b ∈ R. 

– Show that ∗ is associative if and only if x, y ∈ {0, 1}. 
– Show that ∗ is commutative if and only if x = y. 

4.10 Let ∗ be the operation defined on the complex numbers C as follows: 

a ∗ b = ab + (

a2 − 1
)(

b2 − 1
) ∀ a, b ∈ C. 

Show that the operation ∗ is a binary operation that is not associative. Is 
the operation ∗ commutative? Does C contain an identity element? Find the 
invertible elements if any. Is the inverse unique in this case. 

4.11 Let G be a nonempty set. Define ∗ on the elements of G by 

a ∗ b = b ∀ a, b ∈ G. 

Show that ∗ is a binary operation on G, any element in G is a left identity, and 
if G has more than one element, then G has no right identity. 

4.12 Let i = 
√−1, and consider Z[i] = {a + bi : a, b ∈ Z}. Show that the set 

Z[i] is a semigroup under multiplication and has an identity element. Find the 
invertible elements in Z[i] if any exist. This semigroup is called “Gaussian 
integers”. 

4.13 Let n ∈ N. Consider the semigroup (Mn(C), ·), and let G ⊆ Mn(C) be the 
subset of all matrices whose first column consist of zeros, i.e., 

G = {(

ai j
) ∈ Mn(C) : ai1 = 0 ∀ 1 ≤ i ≤ n

}

. 

Show that · is a binary operation on G. Show that G has a right identity, but 
has no left identity. 

4.14 Determine whether the given operation on G is a binary, associative, or commu-
tative operation. Does G contain an identity element? Find the invertible 
elements if any exist. 

– G = Q, and ∗ is defined by a ∗ b = ab + 1 ∀ a, b ∈ Q. 
– G = N, and ∗ is defined by a ∗ b = max(a, b) ∀ a, b ∈ N. 
– G = N, and ∗ is defined by a ∗ b = min(a, b) ∀ a, b ∈ N. 

4.15 Let A be a nonempty subset of R, and ∗ :  A× A → R be the operation defined 
as follows: 

a ∗ b = ab + a − b ∀ a, b ∈ A.

a. Let A = N. Does ∗ define a binary operation on A? What would the answer 
be if A is replaced by N ∪ {0}, Z, or  R ?
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Table 4.3 The operation on 
A

∆ a b c 

a a a a 

b a b c 

c a b c 

b. In any of the above cases, if ∗ is a binary operation, check whether it is 
associative or commutative. Does A contain an identity element? Find the 
invertible elements if any. 

4.16 Let n ∈ N. Consider the semigroup (Mn(C), +). Let  L(C) be the subset of 
all lower triangular matrices in Mn(C) (Definition 1.6.3). Does + define a 
binary operation on L(C)? Is it associative? Is + commutative? Does L(C) 
contain an identity element? Find the invertible elements if any exist. 

4.17 Repeat your answer for Question 4.16 after replacing the matrix addition by 
matrix multiplication. 

4.18 Consider the set A = {a, b, c} and the operation ∆ defined on A, as shown  in  
Table 4.3. 

– Is (A,∆) a monoid? Is (A,∆) commuative? 
– If A has an identity, list all invertible elements in A if there are any. 

Does (A,∆) have idempotent elements?



Chapter 5 
Groups 

Groups play an important role in many branches of mathematics and physics. The 
remainder of the book is devoted to the study of groups and their properties. This 
chapter contains the basic definitions and background results regarding groups. The 
first section presents the definition of a group, several basic results, and examples 
of groups. Section 5.2 is a short section devoted to the definition and examples of 
Cayley’s tables for finite groups. Section 5.3 presents two important examples of 
groups, the additive and multiplicative groups of integers modulo n. The underlying 
set of both these groups is the integers modulo n, which was introduced in Chap. 3. 
Section 5.4 discusses abelian groups and defines the center of the group. A group G 
will be abelian if and only if it is equal to its center. The results in Sect. 5.5 are about 
the orders of elements of a given group and its relation to the order of the group. 
Section 5.6 presents a systemic method to construct a new group from given groups. 
However, the presented method is not the only approach and Chap. 7 also describes 
other methods to form a group from old ones. The section ends by defining the group 
exponent, which is needed in Chap. 9. 

5.1 Definition and Basic Examples 

In this section, we provide that basic definitions and examples that are needed for 
the remainder of this book. 

Definition 5.1.1 A monoid in which all elements are invertible is called a group. 
That is, a monoid (G, ∗) is a group if and only if Inv((G, ∗)) = G. 
When the operation ∗ is clear from context, and there is no risk of ambiguity, 

we say that G is a group instead of (G, ∗). As the empty set ∅ does not contain an 
identity element, it cannot form a group. Let G be a nonempty set endowed with a 
binary operation ∗. The following statements must be verified to confirm that (G, ∗) 
is a group.
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1. a ∗ (b ∗ c) = (a ∗ b) ∗ c ∀a, b, c ∈ G. 
2. There exists e ∈ G such that e ∗ a = a ∗ e = a ∀ a ∈ G. 
3. For each a ∈ G, there exists a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e. 

Since any group is a monoid and therefore a semigroup, all the results of semi-
groups and monoids (Chap. 4) is applied to groups. The following proposition restates 
Corollaries 4.1.16, 4.3.4, and Propositions 4.3.7, 4.3.10, and 4.4.5 for the case of 
groups. 

Proposition 5.1.2 Let (G, ∗) be a group. 

1. The identity element of G is unique. 
2. The inverse of any element in G is unique, and 

(a−1 )−1 = a for all a ∈ G, (a ∗ b)−1 = b−1 ∗ a−1 for all a, b ∈ G. 

3. The identity element is the only idempotent element in G. 
4. The left and the right cancellation laws hold in G. 

Proposition 5.1.3 Let (G, ∗) be a group. For any a, b ∈ G, 

1. the equation x ∗ a = b has a unique solution in G, given by x = b ∗ a−1. 
2. the equation a ∗ x = b has a unique solution in G, given by x = a−1 ∗ b. 

Proof If a, b ∈ G are arbitrary elements, then b∗a−1 is an element of G that satisfies

(
b ∗ a−1

) ∗ a = b ∗ (
a−1 ∗ a

) = b ∗ e = b. 

Therefore, b∗a−1 is a solution for x ∗a = b. To show that this is the only solution, 
assume that y is an element in G such that y ∗ a = b, then 

y = y ∗ e = y ∗ (
a ∗ a−1) = (y ∗ a) ∗ a−1 = b ∗ a−1 . 

The proof of the second statement is similar. ∎

Example 5.1.4 

1. Consider the commutative semigroups (N, +), (N, ·) (Example 4.2.5 (1)). The 
semigroup (N, +) is not a monoid. The semigroup (N, ·) is a monoid, where 1 
is the only invertible element in (N, ·). Therefore, either (N, +) or (N, ·) forms 
a group. 

2. Consider the monoid (Z, +). As  Inv((Z, +)) = Z (Example 4.3.11), Z is a 
group under addition. As + is commutative, then (Z, +) is a commutative group. 
Similarly, (Q, +), (R, +), and (C, +) form groups. 

3. Consider the monoid (Z, ·) (Example 4.3.12). Since Inv((Z, ·)) = {1, −1} /= Z, 
thus Z is not a group under multiplication. Since Inv((Q, ·)) = Q∗ /= Q, the  
rational numbers do not form a group under multiplication since zero has no 
multiplicative inverse. Similarly, (R, ·), and (C, ·) are not groups.
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4. Consider the semigroups (N, ∗) and (N, ·) defined in Example 4.2.7 as 

a ∗ b = gcd (a, b), a · b = lcm (a, b) for any a, b ∈ N. 

Since the semigroup (N, ∗) has no identity element, then it is not a group. The 
monoid (N, ·) has an identity which equals 1. However if a, b ∈ N such that 
lcm(a, b) = 1, then a = b = 1, which implies that 1 is the only invertible 
element in (N, ·). Hence, (N, ·) is not a group. 

5. Let m, n ∈ N, and Mmn(C) be the set of all m × n matrices with complex coeffi-
cients. Consider +, the sum of matrices on Mmn(C), the monoid (Mmn(C), +) 
is a group (Proposition 4.3.14). 

6. Let n ∈ N, and consider the semigroup (Mn(C), ·). According to Proposition 
4.3.15, (Mn(C), ·) is a noncommutative monoid (semigroup with an identity 
element In). However, the zero matrix 0n has no inverse (0n · A = 0n /= In for 
any A ∈ Mn(C)). Therefore, (Mn(C), ·) is not a group. Another noninvertible 
element in Mn(C) is the matrix E11 = (

ai j
)
with a11 = 1 and ai j  = 0 for 

all i /= 1 ∨ j /= 1. Since the matrix E11 ∈ Mn(C) is an idempotent element 
different than the identity element In , it is not invertible (Proposition 4.4.5). 

7. Let n ∈ N, such that n ≥ 3. Consider the regular n-polygon with the center at 
the origin and one of its vertices at (1, 0). Let  D2n be the set of all symmetries 
of the regular n-polygon. As explained in Summary 1.7.11, D2n consists of all 
the rotations by the angles 0, 2π 

n , 
4π 
n , . . . ,  2(n−1)π 

n , and the reflections around the 
lines passing through the origin and making angles 0, π 

n , 
2π 
n , . . . ,  (n−1)π 

n with the 
x-axis. i.e., 

D2n =
{
R0, R 2π 

n 
, . . . ,  R 2(n−1)π 

n 
, lo, l π 

n 
, l 2π 

n 
, . . . ,  l (n−1)π 

n

}
. 

The set D2n is a nonempty subset that is closed under the composition (Proposi-
tion 1.7.7). The rotation by the zero angle serves as an identity element in D2n . 
Using the results of Proposition 1.7.7, we obtain that the inverse of a rotation by 
angle 2kπ 

n is the rotation by angle 2(n−k)π 
n for any 1 ≤ k ≤ n, and the inverse of 

any reflection around a line is its own inverse (Check!). So, any element in D2n 

has an inverse in D2n . Therefore, the set D2n forms a group under the compo-
sition. The group (D2n, ◦) of all symmetries for the regular n-polygon is called 
the dihedral group. 

Example 5.1.5 Let X be any set and G = P(X ) be the power set of X . On the  
elements of G, define ∆ to be the symmetric difference of two sets. i.e., 

A∆B = (A\B) ∪ (B\A) for all A, B ∈ G. 

Clearly the operation ∆ : P(X ) × P(X ) → P(X ) is a binary operation on G. 
By Proposition 1.1.11 (8), the operation ∆ is an associative operation on G. For all 
A ∈ G, A∆∅ =  A = ∅∆A, thus ∅ is an identity element in G with respect to ∆. 
For any A ∈ G, A∆A = ∅, and thus, every element in G is invertible and equals
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to its inverse. Therefore, (G,∆) is a group. Note that by Proposition 1.1.11 (7), the 
operation ∆ is commutative. 

The following proposition provides a method to obtain a group from a given 
monoid. 

Proposition 5.1.6 Let (G, ∗) be a monoid with identity e. Let  f : G → G be a 
function such that 

1. f (e) = e 
2. f ( f (a)) = a for all a ∈ G 
3. f (a ∗ b) = f (b) ∗ f (a) for all a, b ∈ G 

The subset G f = {a ∈ G : a ∗ f (a) = f (a) ∗ a = e} forms a group under the 
operation ∗. 
Proof As e ∈ G and e ∗ f (e) = e = f (e) ∗ e, then G f is a nonempty subset of G 
that is closed under the operation ∗, because for a, b ∈ G f , 

(a ∗ b) ∗ f (a ∗ b) = (a ∗ b) ∗ ( f (b) ∗ f (a)) = a ∗ (b ∗ f (b)) ∗ f (a) 
= a ∗ e ∗ f (a) = a ∗ f (a) = e. 

Using a similar argument, we obtain f (a ∗ b) ∗ (a ∗ b) = e. Hence, ∗ is a binary 
operation on G f (Proposition 4.1.6). The subset G f inherits the associativity property 
from G, and e serves as an identity element for G f . For any a ∈ G f , let b = f (a). 
The element b = f (a) ∈ G and satisfies 

b ∗ f (b) =
b= f (a) 

f (a) ∗ f ( f (a)) =
f ( f (a))=a 

f (a) ∗ a =
a∈G f 

e, and 

f (b) ∗ b = f ( f (a)) ∗ f (a) = a ∗ f (a) = e, 

which implies that b ∈ G f . As  b satisfies 

a ∗ b = a ∗ f (a) = e = f (a) ∗ a = b ∗ a, 

then b is the inverse of a in G f . ∎

Corollary 5.1.7 Let (G, ∗) be a monoid. The subset Inv(G) of all invertible elements 
in G forms a group under the same operation ∗. 
Proof According to Corollary 4.3.8, Inv(G) = {a ∈ G : a is invertible in G} is a 
semigroup that contains the identity element e as e is invertible, and thus, Inv(G) is 
a monoid. The result follows by applying Proposition 5.1.6 on Inv(G) with f being 
the inverse map ( f : Inv(G) → Inv(G) taking a → a−1). ∎
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Example 5.1.8 

1. Let (Q, ·), (Z, ·), and (R, ·) be the monoids defined in Example 4.2.5. According 
to the corollary above, 

Inv(Q) = Q∗ = Q\{0}, Inv(Z) = {1, −1}, and Inv(R) = R∗ = R\{0} 

are groups under multiplication. 
2. Let n ∈ N, and (Mn(C), ·) be the semigroup consisting of all n × n matrices 

with complex coefficients (Proposition 4.3.15). The set 

Inv(Mn(C)) = {A ∈ (Mn(C) : det(A) /= 0} 

forms a group under matrix multiplication, called the general linear group, 
denoted by GLn(C). 

3. The set of real positive numbers
(
R

+, ·), endowed with the usual multiplication 
of real number, forms a group (Check!). 

Example 5.1.9 Let n ∈ N, and consider the monoid (Mn(R), ·) (Proposition 4.3.15). 
On Mn(R), define the transpose function T : Mn(R) → Mn(R) that takes A to AT, 
the transpose of A (Definition 1.6.13). As T satisfies the conditions of Proposition 
5.1.6, the subset

{
A ∈ Mn(R) : AT A = AAT = In

}

forms a group under matrix multiplication, which plays a key role in many applica-
tions of group theory. This group is called the orthogonal group of order n, denoted 
by O(n). The identity element of O(n) is In , and the inverse of any matrix A in the 
group O(n) is its transpose AT, which can be easily computed. 

Proposition 5.1.10 Let A be a nonempty set, and AA = { f : f : A → A} be the set 
of all functions on A. On  AA define the operation ◦ to be the composition of maps. 
i.e., 

f ◦ g(x) = f (g(x)) ∀ f, g ∈ AA ∧ ∀  x ∈ A. 

In this case,
(
AA, ◦)

is a noncommutative monoid. The monoid
(
AA, ◦)

is not a 
group if A has more than one element. 

Proof By Proposition 4.2.9, the  set  AA is a noncommutative monoid under the 
composition of maps. If A has only one element, then AA has only the identity map 
and

(
AA, ◦)

forms a group in this case. Assume that A has more than one element 
and select x0 ∈ A. Define 

f : A → A by f (x) = x0 ∀ x ∈ A.
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The map f is an element of AA. For all g ∈ AA and x /= x0, 

f ◦ g(x) = f (g(x)) = x0 /= x . 

That is, f ◦ g /= IA. Therefore, f is not invertible in AA, and
(
AA, ◦)

is not a 
group. ∎

Corollary 5.1.11 Let A be any nonempty set. The set of all bijective maps on A, 
denoted by SA, forms a group under the composition of maps. 

Proof By Corollary 5.1.7, the subset of all invertible elements in the monoid
(
AA, ◦)

forms a group under the operation ◦. The result follows since the map f : A → A 
is invertible if and only if it is bijective (Theorem 1.5.20). ∎

The group SA is called the symmetric group of A. In the case of A = {1, 2, . . . ,  n}, 
the symbol Sn is used instead of SA, and the group (Sn, ◦) is called the nth 
symmetric group; i.e., the group (Sn, ◦) consists of all bijective maps from 
{1, 2, . . . ,  n} to itself. We devote Chap. 6 to study the nth symmetric group. 

5.2 Cayley’s Tables for Finite Groups 

If G is a finite set, then any binary operation ∗ on G can be represented using a 
table (Sect. 1.5). If G is a group, such a table is called Cayley’s table of G. In  
such tables, the identity element and inverse of an arbitrary element can be easily 
identified. Moreover, one can directly determine if the operation ∗ is commutative by 
examining the symmetry around the diagonal of the table. The following subsequent 
examples illustrate the use Cayley’s table to represent binary operations. 

Example 5.2.1 Let G = {e, a, b} and ∗ be the operation defined on the elements of 
G, as in Table 5.1. It can be easily determined that ∗ is an associative binary operation 
by examining all the cases. Clearly that e forms an identity element. Moreover, the 
inverse of any element exists in G, and a−1 = b, b−1 = a, e−1 = e. Thus, (G, ∗) 
forms a group. 

Example 5.2.2 (Klein group) Let V = {e, a, b, c} and ∗ be defined on V , as in Table 
5.2. It can be shown that (V , ∗) is a group in which every element is its own inverse. 
Any group with four elements that satisfies this property is called the Klein 4-group, 
or simply, the Klein group.

Table 5.1 Cayley’s table of 
the group G

∗ e a b 

e e a b 

a a b e 

b b e a 
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Table 5.2 Cayley’s table of Klein group 

∗ e a b c 

e e a b c 

a a e c b 

b b c e a 

c c b a e 

Table 5.3 Cayley’s table of the symmetries of the square 

. R0 Rπ/2 Rπ R3π/2 l0 lπ/4 lπ/2 l3π/4 

R0 R0 Rπ/2 Rπ R3π/2 l0 lπ/4 lπ/2 l3π/4 

Rπ/2 Rπ/2 Rπ R3π/2 R0 lπ/4 lπ/2 l3π/4 l0 

Rπ Rπ R3π/2 R0 Rπ/2 lπ/2 l3π/4 l0 lπ/4 

R3π/2 R3π/2 R0 Rπ/2 Rπ l3π/4 l0 lπ/4 lπ/2 

l0 l0 l3π/4 lπ/2 lπ/4 R0 R3π/2 Rπ Rπ/2 

lπ/4 lπ/4 l0 l3π/4 lπ/2 Rπ/2 R0 R3π/2 Rπ 

lπ/2 lπ/2 lπ/4 l0 l3π/4 Rπ Rπ/2 R0 R3π/2 

l3π/4 l3π/4 lπ/2 lπ/4 l0 R3π/2 Rπ Rπ/2 R0 

Example 5.2.3 Let G = {
R0, Rπ/2, Rπ , R3π/2, l0, lπ/4, lπ/2, l3π/4

}
, the  set of all  

symmetries of the square illustrated in Example 1.7.9. It can be easily checked that 
G with matrix multiplication forms a group. Using Proposition 1.7.7, Cayley’s table 
for such a group can be obtained as given in Table 5.3. 

Example 5.2.4 Let G = {1, −1, i, −i, j, − j, k, −k}, where 1, i, j, k are distinct 
elements, and the operation · be the operation defined in Table 5.4. By checking 
all the cases, one can easily show that · is associative operation. Clearly that 1 is 
an identity element for G. The inverses of any element in G are given as follows: 
1−1 = 1, (−1)−1 = −1, (x)−1 = −x , for any x ∈ {±i, ± j, ±k}. Therefore, (G, ·) 
forms a group. Note that the operation · is not commutative (Table 5.4).

5.3 Additive and Multiplicative Groups of Integers 
Modulo n 

In this section, we briefly present two examples of finite groups defined on Zn , the  
set of integers modulo n, where n ∈ N. Recall that Zn = {[0], [1], [2], . . . ,  [n − 1]} 
is the set of equivalence classes of the relation ∼=n on Z. The  set  Zn forms a group 
under the sum operation defined on Zn (Definition 3.3.1). 

Proposition 5.3.1 Let n ∈ N, and ⊕n be the sum modulo n defined on Zn . The pair 
(Zn, ⊕n) forms a commutative group for each n.
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Table 5.4 Cayley’s table of the group (G, ·) 
· 1 −1 i −i j − j k −k 

1 1 −1 i −i j − j k −k 

−1 −1 i1 −i i − j −i −k k 

i i −i −1 1 k −k − j j 

−i −i i 1 −1 −k k j − j 

j j − j −k k −1 1 i −i 

− j − j j k −k 1 −1 −i i 

k k −k j − j −i i −1 1 

−k −k k − j j i −i 1 −1

Proof According to Proposition 3.3.2, the operation ⊕n forms a binary operation on 
Zn . Let  [a], [b], [c] ∈ Zn , 

[a] ⊕n ([b] ⊕n [c]) = [a] ⊕n ([b + c]) = [a + (b + c)] 
= [(a + b) + c] = [a + b] ⊕n [c] = ([a] ⊕n [b]) ⊕n [c]. 

The above equations imply that ⊕n is associative. As [a] ⊕n [0]=[a + 0] = 
[a] ∀[a] ∈ Zn , the element [0] is the identity element for Zn . For an arbitrary 
element [a] ∈ Zn , the element [n − a] ∈ Zn and satisfies 

[n − a] ⊕n [a] = [n − a + a] = [n] = [0]. 

That is, [n − a] is the inverse of [a]. Therefore, Zn is a group under the sum 
modulo n. Note that we only needed to verify one direction since the operation ⊕n is 
commutative as [a]⊕n [b] = [a + b] = [b + a] = [b]⊕n [a] for all [a], [b] ∈ Zn . ∎

The tables in Example 3.4.1 are examples of Cayley’s tables of the group (Zn, ⊕n) 
for some positive integers n. 

Next, we discuss the multiplication operation ⊗n defined on Zn , where n ∈ N. 
We shall see that (Zn, ⊗n) is not a group for each n > 1. However, using a proper 
subset of (Zn, ⊗n) one can construct a group under the operation ⊗n . We shall prove 
that the subset 

{[a] ∈ Zn : gcd(a, n) = 1} 

forms a group under multiplication operation ⊗n . Such a group is fundamental in 
number theory and has many applications in factorization and cryptography. We begin 
our study with the set Z1 that contains only one element [0]. As  [0] ⊗1 [0]=[0], the  
operation ⊗1 is associative and commutative. The element [0] serves as the identity 
element and is the inverse of itself. So,(Z1, ⊗1) forms a group. For n > 1, we have  
the following proposition.
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Proposition 5.3.2 Let n ∈ N\{1} and ⊗n be the multiplication modulo n defined on 
Zn . The set Zn is a commutative monoid, but it is not a group for any n. 

Proof According to Proposition 3.3.2, the operation ⊗n is a binary operation on Zn . 
The operation ⊗n is associative, as for each [a], [b], [c] ∈ Zn , 

[a] ⊗n ([b] ⊗n [c]) = [a] ⊗n ([bc]) = [a(bc)] = [(ab)c] 
= [ab] ⊗n [c] = ([a] ⊗n [b]) ⊗n [c]. 

Hence, (Zn, ⊗n) is a semigroup. The element [1] ∈ Zn satisfies 

[1] ⊗n [a] = [a] ⊗n [1]=[a × 1] = [a] 

for each [a] ∈ Zn , and thus [1] is an identity element in (Zn, ⊗n). However, for each 
n > 1 and each [a] ∈ Zn 

[0] ⊗n [a] = [0 × a]=[0]/=[1]. 

That is, [0] has no inverse with respect to the operation ⊗n , and (Zn, ⊗n) is not a 
group for each n > 1. The operation ⊗n is commutative, as for each [a], [b] ∈ Zn , 

[a] ⊗n [b] = [ab] = [ba] = [b] ⊗n [a].

∎

As the monoid (Zn, ⊗n) is not a group for n > 1, in the remainder of the book, 
by the group Zn , we refer to the additive group (Zn, ⊕n). 

Lemma 5.3.3 Let n ∈ N\{1}. The invertible elements in (Zn, ⊗n) are the elements 
of the set 

Inv(Zn) = {[a] ∈ Zn : gcd(a, n) = 1}. 

Proof Let [a] ∈ Zn . According to Definition 4.3.6, the element [a] is invertible in 
(Zn, ⊗n) if and only if there exists b ∈ Z such that [a] ⊗n [b] = [1], which occurs 
if and only if gcd(a, n) = 1 (Proposition 3.3.5). ∎

Example 5.3.4 The following are examples of the invertible elements in Zn for some 
positive integers n. 

Inv(Z1) = {[0]}, Inv(Z2) = {[1]}, Inv(Z3) = {[1],[2]}, 
Inv(Z4) = {[1], [3]}, Inv(Z5) = {[1], [2], [3], [4]}, Inv(Z6) = {[1], [5]}, 
Inv(Z7) = {[1], [2], [3], [4], [5], [6]}, and Inv(Z8) = {[1], [3], [5], [7]}. 

Lemma 5.3.3 and Corollary 5.1.7 imply the following result.
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Table 5.5 Cayley’s tables of 
(Inv(Z3), ⊗3)

⊗3 [1] [2] 

[1] [1] [2] 

[2] [2] [1] 

Table 5.6 Cayley’s tables of 
(Inv(Z4), ⊗4)

⊗4 [1] [3] 

[1] [1] [3] 

[3] [3] [1] 

Corollary 5.3.5 

1. For each n ∈ N, (Inv(Zn), ⊗n) forms a group. 
2. For a prime p, the set Inv

(
Z p

) = Z∗
p = {[1], [2], [3], . . . ,  [ p − 1]} forms a group 

under the multiplication module p. 

The group in Corollary 5.3.5 is called the multiplicative group of Zn . Note that 
Z

∗
n = Zn\{[0]} is not always equal to Inv(Zn). For example, Inv(Z6) = {[1], [5]} /= 

Z6\{[0]}. The set Inv(Zn) = Z∗
n if and only if n is prime. In fact, if n is not prime, 

then there exist two integers q, l such that n = ql and 1 < q, l < n. Hence, [q] ∈ Zn 

and gcd(q, n) = q /= 1. i.e., [q] is not invertible, and Z∗
n /= Zn\{[0]}. On the  

other hand, for any prime p, gcd(k, p) = 1 for any 0 < k < p, which implies that 
Inv

(
Z p

) = Z∗
p = Z p\{[0]}. 

Example 5.3.6 Cayley’s tables for (Inv(Z3), ⊗3) and (Inv(Z4), ⊗4) are given in 
Tables 5.5 and 5.6. 

Example 5.3.7 To check whether [12] is invertible in Z53, one only needs to compute 
gcd(12, 53). This computation can be performed using the Euclidean algorithm 2.4.1 
to obtain gcd(12, 53) = 1. Therefore, [12] is an invertible element in Z53. To find 
the inverse of [12], the backward (or forward) substitution method, as illustrated in 
Example 2.5.3, can be used to write 1 as a linear combination of 12 and 53, thereby 
obtaining 1 = 53 × 5 − 12 × 22. Applying the relation mod 53 to both sides yields 
12× (−22) ≡ 1(mod 53). Since [−22] = [31] in Z53, then [31] is the multiplicative 
inverse of [12] in Z53. 

Definition 5.3.8 Let ϕ : N → N be the map defined by 

ϕ(n) = |{[a] ∈ Zn : gcd(a, n) = 1}| 

for each positive integer n. 

The map ϕ is known by Euler totient function. Clearly, ϕ(p) = p − 1 for any 
prime p. For any positive integer n, the number ϕ(n) can be computed using the 
formula ϕ(n) = n

⊓

p|n 
(1 − 1 p ) (Burton, 2007).
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Corollary 5.3.9 For any n ∈ N, 

|Inv(Zn)| = n
⊓

p|n

(
1 − 

1 

p

)
. 

5.4 Abelian Groups and the Center of a Group 

In this short section, we define and briefly study abelian groups, which are groups 
with commutative binary operations. We also define the center of G and show that 
the center of any group forms a group. The classification of finite abelian groups will 
be discussed in detail in Chap. 9. 

Definition 5.4.1 Let (G, ∗) be a group, and a, b be two elements in G. We say  a 
and b commute if a ∗ b = b ∗ a. 

The operation ∗ is called commutative when every two elements in G commute. 
In this case, the group G is said to be abelian. The formal definition is as follows: 

Definition 5.4.2 Let (G, ∗) be a group. The group G is said to be abelian if 

a ∗ b = b ∗ a for all a, b ∈ G. 

The groups in Examples 5.1.4 (2, 5) and 5.1.8 (1) are abelian. The dihedral group 
(Example 5.1.4 (7)) and the general linear group (Example 5.1.8 (2)) are examples 
of nonabelian groups. The additive and multiplicative groups of integers modulo n 
in Proposition 5.3.1 and Corollary 5.3.5 as well as the groups in Examples 5.2.1, 
5.2.2 are finite abelian groups. 

Example 5.4.3 Any group with four elements or less is an abelian group. We show 
this by showing the equivalent statement, any nonabelian group has at least five 
elements. To see this, assume that G is nonabelian. By definition of nonabelian 
groups, there exist two elements such that x ∗ y /= y ∗ x . 

• Since x ∗ y /= y ∗ x , we have  x /= y, x /= e, and y /= e. 
• Since y /= e, we have  x /= x ∗ y and x /= y ∗ x . 
• Since x /= e, we have  y /= x ∗ y and y /= y ∗ x . 
• Since x ∗ y /= y∗ x , we also have  x /= y−1, y /= x−1, thus x ∗ y /= e and y∗x /= e. 

Thus, e, x, y, x ∗ y, y ∗ x are distinct and the group has at least five elements. 

Recall that if a is an element of (G, ∗), then an denotes a ∗ a ∗  · · ·  ∗  a︸ ︷︷ ︸
n times 

, where 

n ∈ N (Notation 4.2.3), and if a2 = e, then by the uniqueness of the inverse element, 
we obtain a = a−1.
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Proposition 5.4.4 Let (G, ∗) be a group. If a2 = e for every a ∈ G, then G is 
abelian. 

Proof The hypothesis is that a−1 = a for every a ∈ G. If  a, b are two elements in 
G, then a ∗ b is an element in G and a ∗ b = (a ∗ b)−1 . According to Proposition 
5.1.2 (2), 

a ∗ b = (a ∗ b)−1 = b−1 ∗ a−1 = b ∗ a.

∎

Lemma 5.4.5 Let (G, ∗) be a group, and a, b be two elements in G. If a and b 
commute, then for every positive integer n, 

1. a ∗ bn = bn ∗ a. 
2. (a ∗ b)n = an ∗ bn . 

Proof We show the results by induction as follows: 

1. For n = 1, this is the hypothesis. Suppose that a ∗ bn = bn ∗ a is given, then 

a ∗ bn+1 = a ∗ bn ∗ b = bn ∗ a ∗ b = bn ∗ b ∗ a = bn+1 ∗ a. 

So, by induction, we have a ∗ b = b ∗ a ⇒ a ∗ bn = bn ∗ a for all n ≥ 1. 
2. The statement is true for n = 1, as  (a ∗ b)1 = a ∗ b = a1 ∗ b1. 

Inductive step: Assume that the statement is true for n = k. i.e., (a ∗ b)k = 
ak ∗ bk . 

For n = k + 1, by using the induction hypothesis and (1), we obtain 

(a ∗ b)k+1 = (a ∗ b)k ∗ (a ∗ b) = (
ak ∗ bk

) ∗ a ∗ b = ak ∗ (
bk ∗ a

) ∗ b 
= ak ∗ (

a ∗ bk
) ∗ b = ak+1 ∗ bk+1 . 

Hence, the result follows by induction. ∎

Note that the statements in Lemma 5.4.5 are trivial for n = 0. If  n is a negative 
integer, the statements can be expressed as: If a, b commute, then a ∗ bn = bn ∗ a 
and (a ∗ b)n = bn ∗ an . For  if  n = −m, where m > 0, then 

a ∗ bn = a ∗ b−m = a ∗ (
b−1)m = (

b−1)m ∗ a = bn ∗ a 

and 

(a ∗ b)n = (a ∗ b)−m = (
(a ∗ b)−1

)m = (
b−1 ∗ a−1

)m = b−m ∗ a−m = bn ∗ an . 

For a generalization of the above lemma to finite pairwise commutative elements; 
see Exercise 5.25.
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Corollary 5.4.6 Let (G, ∗) be a group. 

(G, ∗) is abelian ⇔ (a ∗ b)2 = a2 ∗ b2 ∀ a, b ∈ G. 

Proof If G is abelian, then a, b commute for all a, b in G, and Lemma 5.4.5 (2) 
implies the required result. For the other direction, assume that (a ∗ b)2 = a2 ∗ b2 
for all a, b ∈ G. This implies that 

(a ∗ b) ∗ (a ∗ b) = (a ∗ a) ∗ (b ∗ b) for all a, b ∈ G 

i.e., 

a ∗ (b ∗ a) ∗ b = a ∗ (a ∗ b) ∗ b for all a, b ∈ G. 

By applying the left and right cancelation laws, we obtain b ∗ a = a ∗ b for all 
a, b ∈ G and G is abelian. ∎

Note that if G is abelian, then by Lemma 5.4.5 (2), we obtain (a ∗ b)n = an ∗ 
bn ∀ a, b ∈ G for all n ∈ N. On the other hand, if (a ∗ b)n = an ∗ bn ∀ a, b ∈ G 
and ∀ n ∈ N, then (a ∗ b)2 = a2 ∗ b2 for all a, b ∈ G, which gives 

(G, ∗) is abelian ⇔ (a ∗ b)n = an ∗ bn ∀ a, b ∈ G and ∀ n ∈ N. 

Definition 5.4.7 Let (G, ∗) be a group. The center of G, denoted by C(G), is the  
set of elements of G that commute with every element in G. Therefore, 

C(G) = {a ∈ G : a ∗ g = g ∗ a ∀g ∈ G}. 

As the identity element commutes with every element in the group, the center of 
any group is never empty. 

Proposition 5.4.8 The center of any group is a group. 

Proof Let (G, ∗) be a group with identity e. As  e ∈ C(G), then C(G) is a nonempty 
subset of G. For  a, b ∈ C(G) and each g ∈ G, 

(a ∗ b) ∗ g = a ∗ (b ∗ g) = a ∗ (g ∗ b) = (a ∗ g) ∗ b 
= (g ∗ a) ∗ b = g ∗ (a ∗ b) 

i.e., a ∗ b ∈ C(G) and ∗ is a binary operation on C(G) (Proposition 4.1.6). The 
subset C(G) inherits the associativity property from G, and e serves as an identity 
element in C(G). For  a ∈ C(G), the inverse a−1 ∈ G satisfies 

a−1 ∗ g = (
g−1 ∗ a

)−1 = (
a ∗ g−1

)−1 = g ∗ a−1 ∀ g ∈ G 

i.e., a−1 ∈ C(G). Hence, C(G) forms a group. ∎
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Example 5.4.9 

1. According to the definition of abelian groups, the group G is abelian if and only 
if C(G) = G. For example, 

C((Z, +)) = Z, C((C, +)) = C, C((Mmn(C), +)) = Mmn(C). 

2. Consider the general linear group GLn(C) (Example 5.1.8 (2)). The center of 
GLn(C) is 

C(GLn(C)) = {
λIn, λ  ∈ C∗}. 

For if λ ∈ C∗ then λIn A = λA = AλIn for any A ∈ GLn(C), which implies 
that

{
λIn, λ  ∈ C∗} ⊆ C(GLn(C)). 

For the other direction, let B be an arbitrary element in C(GLn(C)). We show  
that B is equal to λIn for some λ ∈ C∗. For each 1 ≤ k, l ≤ n, consider the 
matrix Ekl , the matrix in Mn(C) defined by akl = 1 with all other entries being 
zero (Example 1.6.5 (3)). Let Akl = Ekl + In . The matrix Akl is an element in 
GLn(C) (Check!). Since B is an element in C(GLn(C)), then BAkl = Akl B, 
which implies that BEkl = Ekl B for each 1 ≤ k, l ≤ n. i.e., B commutes with all 
matrices of the form Ekl , where 1 ≤ k, l ≤ n. In particular, for each 1 ≤ k, l ≤ n, 

Ekl BElk  = Ekl Elk  B = Ekk B (∗) 

where the last equality is computed using the result in Example 1.6.7 (3). Since 
B ∈ Mn(C), then we have B = Σn 

i, j=1 bi j  Ei j  for some bi j  in C (Example 1.6.5 
(3)). Substituting the expression of B in both sides of the equation (∗), we obtain 

L.H.S = Ekl BElk  = Ekl 

⎛ 

⎝ 
nΣ

i, j=1 

bi j  Ei j  

⎞ 

⎠Elk = 
nΣ

i, j=1 

bi j  Ekl Ei j  Elk  

= 
nΣ

i, j=1 

bi j  δil  δ jl  Ekk = bll Ekk . 

R.H.S = Ekk B = Ekk 

nΣ

i, j=1 

bi j  Ei j  = 
nΣ

i, j=1 

bi j  Ekk Ei j  

= 
nΣ

i, j=1 

bi j  δik  Ek j  = 
nΣ

j=1 

bkj  Ek j  .
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Therefore, bll Ekk = Σn 
j=1 bkj  Ek j  , which implies that bkj  = 0 for all j /= k, 

and bkk = bll . Namely, the matrix B is a diagonal matrix with diagonal entries 
equal to bkk . Since B /= 0n (B is invertible), bkk cannot be zero. As k is arbitrary, 
there exists λ ∈ C∗ such that λ = bkk , as required. 

3. As a special case of the example in (2), the center of the general linear group of 

order 2 is C(GL2(R)) =
{(

a 0 
0 a

)
: a ∈ R∗

}
. 

5.5 The Order of an Element in a Group 

Recall that for an element a in a semigroup G and n ∈ N, the notation an denotes 
the element of G given by a ∗ a ∗  · · ·  ∗  a︸ ︷︷ ︸

n times 

(Notation 4.2.3). If G is a group, then the 

inverses of its elements are defined, and the case in which n is a negative integer or 
zero can be generalized as follows: 

Definition 5.5.1 Let G be a group and n ∈ Z. For each a ∈ G, 

1. an = a ∗ a ∗ . . .  ∗ a︸ ︷︷ ︸
n times 

if n > 0. 

2. an = a−1 ∗ a−1 ∗ . . .  ∗ a−1
︸ ︷︷ ︸

−n times 

if n < 0. 

3. a0 = e. 

The proof of the next proposition is straightforward and left as an exercise. 

Proposition 5.5.2 Let G be a group with identity e and a be an element of G. For 
each n, m ∈ Z, 

en = e,
(
an

)−1 = (
a−1

)n = a−n , am an = am+n and
(
am

)n = amn . 

Definition 5.5.3 Let (G, ∗) be a group and a be an element in G. 

1. The order of a, denoted by ord(a), is defined as the smallest positive integer k 
such that ak = e. If no such number exists, we say that a has an infinite order. 

2. The order of G is defined as the number of its elements (cardinality of G) if  G 
is finite; otherwise, we say that G has infinite order. 

Example 5.5.4 

1. The identity element of any group G has order equal to 1, i.e., ord(e) = 1. 
2. Let G = {1, −1, i, −i}. The  set  G, endowed with the multiplication of the 

complex numbers, forms a group (Check!) whose order is 4. The identity of G 
is 1 and ord(1) = 1, the element −1 /= 1, while (−1)2 = 1, so  ord(−1) = 2. 
To determine the order of i , compute a list of i k , where k is positive integer and 
k ≥ 1, as follows:
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i1 = i /= 1, i2 = −1 /= 1, i3 = −i /= 1, i4 = 1. 

Since k = 4 is the smallest positive integer satisfies that i k = 1, then ord(i ) = 
4. Similarly, ord(−i) = 4. 

3. Any element in the Klein group (Example 5.2.2) has order 2. 
4. In the additive group (Z, +), every nonzero element has an infinite order. If m /= 

0, then for any positive integer k, we have  mk = m + m +  · · ·  +  m︸ ︷︷ ︸
k times 

= mk /= 0, 

and thus, ord(m) is infinite. The order of Z is also infinite as the group Z has an 
infinite number of elements. 

5. In the dihedral group (D2n, ◦) (Example 5.1.4 (7)), the order of the rotation by 
angle 0 is 1, the order of the rotation by 2π/n is n, and the order of any reflection 
in D2n is 2. 

Next, we study the relation between the order of a given group and the order of its 
elements. We shall see that if the group has a finite order, all its elements have finite 
orders. However, if G has infinite order, then its elements may have an infinite or a 
finite order. We begin with the following lemmas; the first lemma follows directly 
by Definition 5.5.3 (1). 

Lemma 5.5.5 Let G be a group and a be an element of G. If there exists n ∈ N 
such that an = e then a has a finite order that is less than or equal to n. 

Lemma 5.5.6 Let G be a group. Let a be an element of G, such that ord(a) is finite. 
For each n ∈ N, 

an = e ⇔ ord(a)|n . 

Proof If ord(a)|n, then there exists q ∈ Z such that n = q ord(a). Therefore, 

an = aq ord(a) = (
aord(a)

)q = eq = e. 

For the other direction, assume that n ∈ N such that an = e. According to the 
quotient-remainder theorem (Theorem 2.1.2), applied to n and ord(a), there exist 
q, r ∈ Z such that 

n = q ord(a) + r where 0 ≤ r < ord(a). 

Thus, 

an = e ⇒ aq ord(a)+r = e ⇒ (
aord(a)

)q ∗ ar = e ⇒ ar = e. 

Since ord(a) is the smallest positive integer satisfying aord(a) = e, then r must be 
zero. Hence, n = q ord(a) and ord(a)|n. ∎
Corollary 5.5.7 Let G be a group, and p be a prime number. Let a be an element 
of G such that a has a finite order.
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1. If a p = e, then either a = e or ord(a) = p. 
2. If ord(a) = kp  for some k ∈ N, then ord

(
ak

) = p. 

Proof Assume that a p = e. According to Lemma 5.5.6, ord(a) must divide p. 
If a /= e, then ord(a) /= 1, and thus, it is equal to p. For the second statement, 
assume that ord(a) = kp, i.e., then kp  is the smallest positive integer such that 
akp  = (

ak
)p = e. As  k < kp, then ak /= e. The result follows by (1). ∎

The following corollary states that a group with a finite order must have all its 
elements with finite orders. 

Corollary 5.5.8 Let (G, ∗) be a group. 

1. If G has a finite order, then the order of any element of G is finite and less than 
or equal to the order of G. 

2. If G contains an element with an infinite order, then the order of G is infinite. 

Proof To show the first statement, assume that G is finite and let a be any element 
in G. As  G is closed under the operation ∗, the  set

{
a, a2, a3, . . . ,  as, .  .  .

}
is a 

subset of G. Since G is finite, the subset
{
a, a2, a3, . . . ,  as, .  .  .

}
must be finite. 

i.e., there exist s, t ∈ N such that as = at . Assume (without loss of generality) that 
s > t , 

as = at ⇒ as ∗ a−t = at ∗ a−t ⇒ as−t = a0 = e. 

By Lemma 5.5.5, the order of a is finite. Let k = ord(a), the  set{
e, a, a2, a3, . . . ,  ak−1

}
contains distinct elements (Exercise 5.28). If k is greater 

than the order of G, then this set contains more elements than G, contradicting that{
e, a, a2, a3, . . . ,  ak−1

}
is a subset of G, and thus, the first statement holds. The 

second statement is the contrapositive of the first statement. ∎

Note that G may have an infinite order while every element in G has a finite order. 
For example, consider the abelian group in Example 5.1.5. If the  set  X is an infinite 
set, then G is an example of an infinite group in which the order of every element is 
at most 2. For if A /= ∅  is an element in G, then A2 = A∆A = ∅. 

The following proposition is a more general form of the result in Corollary 5.5.7 
(2). 

Proposition 5.5.9 Let G be a group and a ∈ G such that ord(a) < ∞. For any 
positive integer k ∈ N. 

ord
(
ak

) = ord(a) 
gcd(k, ord(a)) 

. 

Proof Let ord(a) = n and k be an arbitrary element in N. Set ord
(
ak

) = m and 

q = n 

gcd(k, n) 
.
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As

(
ak

)q = (
ak

) n 
gcd(k,n) = (

an
) k 

gcd(k,n) = e, 

then by Lemma 5.5.6, m|q, which implies that m ≤ q. On the other hand, as akm =(
ak

)m = e, so by Lemma 5.5.6, n|km. Dividing both sides by gcd(k, n) yields, 

n 

gcd(k, n) 
divides 

km 

gcd(k, n) 
. 

As gcd
(

n 
gcd(k,n) ,

k 
gcd(k,n)

)
= 1 (Proposition 2.6.3), then by Corollary 2.5.7 (2) 

q = n 

gcd(k, n) 
divides m 

which implies that q ≤ m. Therefore, m = q, as required. ∎

Note that according to the above result, 

gcd(k, ord(a)) = 1 ⇒ ord
(
ak

) = ord(a). 

The following result states that an element a and its inverse must have the same 
order. 

Lemma 5.5.10 Let (G, ∗) be a group. For any a in G, ord(a) = ord
(
a−1

)
. 

Proof If ord(a) = n < ∞, then (a−1)n = a−n = (an)−1 = e, which implies that 
a−1 has a finite order m ≤ n (Lemma 5.5.5). Moreover, 

am =
((
a−1

)−1
)m =

((
a−1

)m)−1 = e 

which implies that n ≤ m. Hence, m = n. 
If ord(a) = ∞, then from the finite cases, a finite order of a−1 implies a finite 

order for its inverse a (as
(
a−1

)−1 = a), which contradicts ord(a) = ∞. Therefore, 
a−1 must have an infinite order. ∎

Next, we study the order of a ∗ b for two elements a and b in a group G and its 
relation to the orders of a and b. Note that ord(a) and ord(b) do not provide any 
information regarding the order of a ∗ b and vice versa. For example, in (Z, +), 

• ord(1) = ord(−1) = ∞  and ord(1 + (−1)) = ord(0) = 1. 
• ord(1) = ord(2) = ∞  and ord(1 + 2) = ord(3) = ∞. 
• ord(0) = 1 and ord(0 + 0) = ord(0) = 1.
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As a further example, in GL2(C) (Example 5.1.8), if a =
(
0 1  
1 0

)
and b =

(
0 2  
1 
2 0

)
, 

ord(a) = ord(b) = 2 ∧ ord(ab) = ord
(( 1 

2 0 
0 2

))
= ∞. 

The next proposition shows that if a, b commute and have finite orders, then 
ord(a ∗ b) is finite, and in certain cases the order of a ∗ b can be obtained using the 
orders of a and b. However, the converse is not true, as shown in the above examples. 
Nevertheless, in all cases, ord(a ∗ b) = ord(b ∗ a) for any a, b that belong to any 
group G (Exercise 5.11). 

Proposition 5.5.11 Let (G, ∗) be a group and a, b be commuting elements of 
G. If ord(a) and ord(b) are both finite, then ord(a ∗ b) is finite and divides 
lcm(ord(a), ord(b)). Moreover, if gcd(ord(a), ord(b)) = 1, then ord(a ∗ b) = 
ord(a)ord(b). 

Proof Let a, b be elements in G such that they commute. Let m = ord(a) < ∞, 
n = ord(b) < ∞ and l = lcm(m, n). By the definition of least common multiple of 
two integers, there exist k1, k2 ∈ Z such that l = mk1 and l = nk1. Using Lemma 
5.4.5 (2), 

(a ∗ b)l = al ∗ bl = amk1 ∗ bnk2 = e ∗ e = e. 

Therefore, ord(a ∗ b) is finite (Lemma 5.5.5) and divides l (Lemma 5.5.6). If 
gcd(m, n) = 1, then l = mn, thus ord(a ∗ b) divides mn, and ord(a ∗ b) ≤ mn. 
We only need to show that mn ≤ ord(a ∗ b). Assume that ord(a ∗ b) = k. As  a, b 
commute, Lemma 5.4.5 (2) implies that 

akn = akn ∗ e = akn ∗ bkn = (
ak ∗ bk

)n = (
(a ∗ b)k

)n = en = e 

and 

bkm = e ∗ bkm = akm ∗ bkm = (
ak ∗ bk

)m = (
(a ∗ b)k

)m = em = e 

which implies that m|kn and n|km. Since gcd(m, n) = 1, it follows by Corollary 
2.5.7 (2) that m|k and n|k. By Corollary 2.5.7 (3), mn divides k. Hence, mn ≤ k, 
and the result follows. ∎

The following example shows that the condition gcd(ord(a), ord(b)) = 1, in  
Proposition 5.5.11, is essential and cannot be omitted. 

Example 5.5.12 Let G = Z10 be the additive group module 10. In (Z10, ⊕10),
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• ord([1]) = 10, ord([5]) = 2, gcd(10, 2) = 2, ord([1] ⊕10 [5]) = ord([6]) = 
5 /= 20 = ord([1])ord([5]). 

• ord([2]) = 5, ord([5]) = 2, gcd(5, 2) = 1, and ord([2] ⊕10 [5]) = ord([7]) = 
10 = ord([2])ord([5]). 

The following proposition shows that for an abelian group G, subsets such as

{
a1 : a ∈ G

} = G,
{
a2 : a ∈ G

}
,
{
a3 : a ∈ G

}
, . . . ,

{
a−1 : a ∈ G

} = G, . . . ,
{
a−18 : a ∈ G

}
, . . .  etc, 

and subsets such as

{
a ∈ G : a1 = e

}
,
{
a ∈ G : a2 = e

}
,
{
a ∈ G : a3 = e

}
, . . . ,

{
a ∈ G : a−1 = e

}
,

{
a ∈ G : a−100 = e

}
, . . . ,

{
a ∈ G : a−25 = e

}
, . . .  etc. 

form groups. 

Proposition 5.5.13 Let G be an abelian group. For each m ∈ Z, the  sets  

mG = {
am : a ∈ G

}
and G[m] = {

a ∈ G : am = e
}

form groups. 

Proof Since G is an abelian group, both sets are closed under the group operation 
(Check!). Therefore, both sets inherit the associativity from G. As  em = e for each 
m, both mG and G[m] contain an identity element. Since both mG and G[m] are 
subset of G, then every element in these sets is invertible, and we only need to verify 
the closure of these sets under taking the inverse. 

• For each element am ∈ mG, its inverse (am)−1 = (
a−1

)m ∈ mG. 
• For an element a ∈ G[m], we have  am = e, and

(
a−1

)m = (am)−1 = e. Thus, 
a−1 belongs to G[m].

∎

Example 5.5.14 

1. In the additive group (Z, +), 

2Z = {
a2 : a ∈ Z

} = {2a : a ∈ Z}, Z[2] = {0}. 

In general, for any m ∈ Z, 

mZ = {ma : a ∈ Z}, Z[m] = {0}. 

2. In the additive group (Z8, ⊕8), 

14Z8 = {[0], [6], [4], [2]}, Z8[14] = {[0], [4]}.



5.5 The Order of an Element in a Group 169

3. Consider the multiplicative group G = ({−1, 1}, ·). It is straightforward to verify 
that 2G = {1} and 5G = {−1, 1}. In general, 

mG =
{ {1} if m is even 

{−1, 1} if m is odd 

4. In the multiplicative group (R∗, ·), mR
∗ = {rm : r ∈ R∗}, R

∗[m] = 
{r ∈ R∗ : rm = 1}. 

In particular, 

2R∗ = {
r2 : r ∈ R∗} = (0, ∞), R∗[2] = {

r ∈ R∗ : r2 = 1
} = {−1, 1}, 

3R∗ = {
r3 : r ∈ R∗} = R∗, R∗[3] = {

r ∈ R∗ : r3 = 1
} = {1}. 

5. In the multiplicative group (Q∗, ·), for any integer m, 

mQ
∗ = {

rm : r ∈ Q∗} = {
pm /qm : p, q ∈ Z∗}, and 

Q
∗[m] = {

r ∈ Q∗ : rm = 1
} = {

p/q : p, q ∈ Z∗ ∧ pm = qm
}
. 

In particular, 

2Q∗ = {
p2 /q2 : p, q ∈ Z∗}, Q∗[2] = {

p/q : p, q ∈ Z∗ ∧ p2 = q2
} = {−1, 1}, 

3Q∗ = {
p3 /q3 : p, q ∈ Z∗}, Q∗[3] = {

p/q : p, q ∈ Z∗ ∧ p3 = q3
} = {1}. 

6. Consider the dihedral group D6 =
{
R0, R 2π 

3 
, R 4π 

3 
, lo, l π 

3 
, l 2π 

3

}
(Example 5.1.4 

(7)). Computing 3D6 and D6[3], we obtain 

3D6 =
{
R0, lo, l π 

3 
, l 2π 

3

}
, D6[3] =

{
R0, R 2π 

3 
, R 4π 

3

}
. 

Note that 3D6 is not a group as it is not closed under the composition (Check!), 
which shows that the assumption for G to be abelian in Proposition 5.5.13 is 
essential. Note that D6[3] in this example forms a group. Example 6.4.6 in Chap. 6 
provides an example where both sets, mG and G[m] are not groups. 

Note that if G1, G2 are two groups and m is a positive integer, then mG1 = mG2 

does not imply that G1 = G2. We shall provide examples supporting this remark in 
Chap. 7; see Example 7.3.22. We end this section by defining a property of group G, 
called the exponent of G. 

Definition 5.5.15 Let G be a group. If there exists an integer m ∈ N such that 
mG = {e}, then the exponent of G is defined to be the smallest positive integer m 
satisfies that mG = {e}. We denote the exponent of G by Exp(G).
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It can be easily verified that if k is a positive integer such that kG = {e}, then 
Exp(G) divides k, as the exponent of a group G is the smallest positive integer m 
such that am = e for all a ∈ G, provided that m exists. 

Example 5.5.16 

1. The exponent of any group G equals 1 if and only if G = {e}. 
2. The exponent of Klein group is 2. 
3. The groups (Q, +), (Z, +), (R, +),(C, +) do not have exponents since for 

all positive integer m, and a nonzero element a in the group, we have am = 
a + a +  · · ·  +  a︸ ︷︷ ︸

m times

/= 0. 

4. If X in Example 5.1.5 is an infinite set, then (G,∆) is an example of an infinite 
group whose exponent is 2. 

5. For each n ∈ N, the exponent of the additive group (Zn, ⊕n) equals n. For each 
[a] ∈ Zn , [a]n = [a] ⊕n [a] ⊕n · · ·  ⊕n [a]︸ ︷︷ ︸

n times 

= [na] = [0], and thus, Exp(Zn) ≤ n. 

Moreover, for each positive integer k < n, 

[1]k = [1] ⊕n [1] ⊕n · · ·  ⊕n [1]︸ ︷︷ ︸
k times 

= [k] /= [0] 

and therefore, Exp(Zn) = n. 
6. The group in Example 5.2.4, is a nonabelian group whose exponent is 4. 

Proposition 5.5.17 Let G be a finite group. The exponent of G exists and is equal 
to the least common multiple of the orders of its elements. 

Proof If G = {a1, a2, . . . ,  an} is a finite group, then the order of each element 
in G is finite (Corollary 5.5.8 (1)). For each 1 ≤ i ≤ n, let  ki = ord(ai ) and 
k = lcm(ki , k2, . . . ,  kn). For each 1 ≤ i ≤ n, ki divides k, and ak i = e (Lemma 
5.5.6). Thus, kG = {e}, and the exponent of G exists. If m is a positive integer such 
that mG = {e}, then am i = e for each ai in G. Lemma 5.5.6 implies that m is a 
multiple of ord(ai ), 1 ≤ i ≤ n. As  k is the least common multiple of ord(ai ), then 
k ≤ m. i.e., k = Exp(G). ∎

5.6 Direct Product of Groups 

In this section, we present a method to construct a new group from existing ones. 
Starting with two groups (G1, ∗) and (G2, ·), one can construct a new group whose 
underlying set is the Cartesian product of G1 and G2, and whose binary operation 
is defined using ∗ and ·. We refer the reader to Definition 1.1.19 of the Cartesian 
product of two sets.
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Definition 5.6.1 Let (G1, ∗) and (G2, ·) be two groups. The direct product of G1 

and G2 is the set G1 × G2 endowed with the operation · defined as 

(a1, b1) · (a2, b2) = (a1 ∗ a2, b1 · b2) 

for any a1, a2 ∈ G1 and b1, b2 ∈ G2. 

Theorem 5.6.2 The direct product of two groups is a group. 

Proof Let (G1, ∗) and (G2, ·) be two groups, clearly · is a binary operation on 
G1 × G2. To show that · is associative, let (a1, b1), (a2, b2), (a3, b3) be elements in 
G1 × G2, then 

((a1, b1) · (a2, b2)) · (a3, b3) = (a1 ∗ a2, b1 · b2) · (a3, b3) 
= ((a1 ∗ a2) ∗ a3, (b1 · b2) · b3) 
= (a1 ∗ (a2 ∗ a3), b1 · (b2 · b3)) 
= (a1, b1) · (a2 ∗ a3, b2 · b3) 
= (a1, b1) · ((a2, b2) · (a3, b3)). 

For the identity element, let e = (e1, e2) ∈ G1 × G2 where e1, e2 are the identity 
elements in G1, G2 respectively. It is straightforward to show that 

(a, b) · (e1, e2) = (a, b) = (e1, e2) · (a, b) 

for each (a, b) ∈ G1 × G2. Finally, let (a, b) be any element in G1 × G2. Since 
G1, G2 are groups, then 

(a, b) ∈ G1 × G2 ⇒ a ∈ G1 ∧ b ∈ G2 

⇒ a−1 ∈ G1 ∧ b−1 ∈ G2 

⇒ (
a−1 , b−1

) ∈ G1 × G2 

. 

Thus, there exists an element in G1 × G2 such that 

(a, b) · (
a−1 , b−1

) = (
a−1 , b−1

) · (a, b) = (e1, e2) 

i.e., (a, b) is an invertible element in G1 × G2. ∎

Note that 

• The direct product of abelian groups is abelian. In fact, (G1 × G2, ·) is an abelian 
group if and only if (G1, ∗) and (G2, ·) are both abelian (Check!). 

• By definition, ord(G1 × G2) = ord(G1)ord(G2). 
• If (a, b) ∈ G1 × G2 such that ord(a), ord(b) < ∞, then 

ord((a, b)) < ∞ and ord((a, b)) = lcm(ord(a), ord(b)) 

(Exercise 5.32)
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• If G1 and G2 are two groups having exponents, then 

exp(G1 × G2) = lcm(exp(G1), exp(G2)) (Exercise 5.15). 

Definition 5.6.1 can be easily generalized to the direct product of n groups, and 
one can show that the direct product of n groups is a group. 

Example 5.6.3 

1. Let G1 = G2 = (R, +). The direct product G1 × G2 consists of the set 
{(a, b) : a, b ∈ R} endowed with the operation · defined by (a1, b1) · (a2, b2) = 
(a1 + a2, b1 + b2). i.e., the direct product G1 × G2 is the plane R2 endowed with 
the sum on R2. This product has an infinite order and no exponent. 

2. The direct product of the three groups (Z2, ⊕2), (Z6, ⊕6), and (Z11, ⊕11) has its 
underlying set Z2 × Z6 × Z11 with the following operation 

([a1],[b1], [c1]) · ([a2], [b2], [c2]) = ([a1] ⊕2 [a2], [b1] ⊕6 [b2], [c1] ⊕11 [c2]) 

for each ([a1],[b1], [c1]) and ([a2], [b2], [c2]) in Z2 × Z6 × Z11. This group is 
finite whose order is 132. Using the results in Example 5.5.16 (5) and Exercise 
5.15, one can obtain 

Exp (Z2 × Z6 × Z11) = lcm(2, 6, 11) = 66. 

3. The groups Zn and Zn × Zn have the same exponent n. 
4. The infinite product of the additive groups Z3 is an example of an infinite group, 

where the order of any element is finite. The exponent of the group of infinite 
product of Z3 equals 3. 

If (G1, ∗) and (G2, ·) are two groups, then the direct product of G1 and G2 is 
not the only group whose underlying set is G1 × G2. The groups in the following 
examples have G1 × G2 as underlying set, but are not the direct product of G1 and 
G2. 

Example 5.6.4 Consider the two groups (Z, +) and ({−1, 1}, ·), where +, and· 
represent the addition and multiplication of integers, respectively. Let G = Z × 
{−1, 1} and define ∗ on G by 

(m, α) ∗ (n, β) = (m + α n, αβ) ∀ m, n ∈ Z, ∀ α, β ∈ {−1, 1}. 

The set G endowed with ∗ forms a group. However, it is not the direct product 
for the two groups (Z, +) and ({−1, 1}, ·). We verify that G is a group as follows: 

If (m, α), (n, β) are arbitrary elements in G, then m, n ∈ Z and α, β ∈ {−1, 1}. 
Therefore, m + α n ∈ Z, αβ ∈ {−1, 1}, and (m + α n, αβ) ∈ G. That is, ∗ is a 
binary operation on G. To show that ∗ is associative, let (m, α), (n, β), (r, γ  ) ∈ G, 
then
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(m, α) ∗ ((n, β) ∗ (r, γ  )) = (m, α) ∗ (n + βr, βγ  ) 
= (m + α(n + βr), α(βγ )) 
= (m + (α n + α(βr)), (αβ)γ ) 
= ((m + α n) + (αβ)r, (αβ)γ ) 
= (m + α n, αβ) ∗ (r, γ  ) 
= ((m, α)  ∗ (n, β)) ∗ (r, γ  ). 

To find the identity element in G, assume that (e1, e2) is an element in G such 
that 

(m, α) ∗ (e1, e2) = (m + e2e1, α  e2) = (m, α). 

Solving the equations m + e2e1 = m, α  e2 = α yields e2 = 1 ∧ e1 = 0. One  
can easily check that (1, 0) is an element in G and satisfies that (m, α) ∗ (0, 1) = 
(0, 1) ∗ (m, α) = (m, α) for all (m, α) in G, i.e., (0, 1) is the identity element in G. 
Finally, let (m, α) ∈ G. To find its inverse, assume that (n, β) is an element in G 
such that 

(m, α) ∗ (n, β) = (n, β) ∗ (m, α) = (0, 1). 

This result implies that m + α n = 0 ∧ αβ = 1. i.e., n = −m/α = −m α, β = 
1/α = α. Clearly, (−m α, α) is the inverse of (m, α) (verify!). Hence, (G, ∗) is a 
group. 

The direct product of (Z, +) and ({−1, 1}, ·) has the same underlying set of G, 
but the operation is different. The operation in the direct product is defined by 

(m, α) · (n, β) = (m + n, αβ) ∀ m, n ∈ Z, ∀ α, β ∈ {−1, 1}. 

Under this operation, the inverse of (m, α) is (−m, α) which is different than the 
inverse of (m, α) under ∗ defined above. 

Example 5.6.5 Let G1 = G2 = (R∗, ·), G3 = (R, +) and G = 
{(a, b, c) : a, b, c ∈ R ∧ a, b /= 0}. Define the operation ∗ on G by 

(a1, b1, c1) ∗ (a2, b2, c2) = (a1a2, b1b2, a1c2 + c1b2) 

(G, ∗) is an example of a group formed by three groups, but it is not the direct product 
of them. Note that the identity element in G is e = (1, 1, 0) and the inverse of any 
element (a, b, c) in G is of the form (1/a, 1/b, −c/ab) which is an element in G. 

Exercises 

Solved Exercises 

5.1 Let X be a nonempty set and G = P(X ).
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a. On the elements of G, define ∗ as the intersection. i.e., A ∗ B = A ∩ B for 
A, B ∈ G. Is  (G, ∗) a group? Is it abelian? 

b. If ∗ was the union of sets, i.e., A ∗ B = A ∪ B for A, B ∈ G, does the 
answer for (a) change? Explain. 

Solution: 

a. Verifying that ∗ is a commutative and associative binary operation on G is 
easy and left to the reader. For any A ∈ G, A ∩ X = X ∩ A = A. Hence, 
X is the identity element in G. However, ∅ ∈  G satisfies ∅ ∩  B = ∅ /= X 
for all B ∈ G, so  ∅ has no inverse in G. Thus, (G, ∩) is not a group. 

b. If ∗ in (a) is replaced by the union of sets, then ∗ is a commutative 
and associative binary operation on G. For any A ∈ G, A ∪ ∅  =  
∅ ∪  A = A. Hence, ∅ is the identity element in G. However, for the 
set X, X is an element in G, and 

X ∪ B = X /= ∅  for all B ∈ G, 

thus, X has no inverse in G, and (G, ∪) is not a group. 

5.2 On R, define ∗ by 

x ∗ y = 5 + 5x + 5y + 4xy  for all x, y ∈ R. 

Show that (R, ∗) is a commutative monoid. Is (R, ∗) a group? If (R, ∗) is 
not a group, find the invertible elements in (R, ∗). 

Solution: 

For all x, y ∈ R, the element x ∗ y defines a unique element in R. i.e., the 
operation ∗ is a binary operation on R. The operation is associative as 

(x ∗ y) ∗ z = 5 + 5(5 + 5x + 5y + 4xy) + 5z + 4(5 + 5x + 5y + 4xy)z 
= 30 + 25(x + y + z) + 20(xy  + xz  + yz) + 16xyz  

and 

x ∗ (y ∗ z) = 5 + 5x + 5(5 + 5y + 5z + 4yz) + 4x(5 + 5y + 5z + 4yz) 
= 30 + 25(x + y + z) + 20(xy  + xz  + yz) + 16xyz. 

Thus, (R, ∗) is a semigroup. The semigroup (R, ∗) is commutative since 
x ∗ y = y ∗ x for all x, y ∈ R. To find a candidate identity, we need to solve 
the following equation for e 

x = e ∗ x = 5 + 5e + 5x + 4ex for all x ∈ R.
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This expression is equivalent to (1 + e)(4x + 5) = 0 for all x ∈ R. As  
4x + 5 = 0 does not hold for all x ∈ R, 1 + e must be zero, i.e., e = −1. 
Substituting in the definition of the operation ∗, yields 

x ∗ (−1) = (−1) ∗ x = x for all x ∈ R. 

Thus, −1 serves as an identity element in (R, ∗). To check the invertible 
elements in (R, ∗), consider an arbitrary element x in R. If  x is invertible, then 
there exists y ∈ R such that 

x ∗ y = y ∗ x = −1. 

As the operation is commutative, it is enough to search for y such that 
x ∗ y = −1. Finding such y is equivalent to solving 5+ 5x + 5y + 4xy  = −1 
for y. Now  

5 + 5x + 5y + 4xy  = −1 ⇔ (5 + 4x)y = −5x − 6 ⇔ y = (−6 − 5x)/(5 + 4x) 

which undefined when x = −5/4. Thus, −5/4 is not an invertible element in 
(R, ∗). For all other values of x , the  inverse of  x is (−6 − 5x)/(5 + 4x) ∈ R. 
Therefore, Inv((R, ∗)) = R\{−5/4}, and (R, ∗) is not a group. 

5.3 Consider the subset of real numbers Q
[√

5
]

=
{
a + b 

√
5 : a, b ∈ Q

}

endowed with the usual multiplication of real numbers, i.e.,

(
a + b 

√
5
)

·
(
c + d 

√
5
)

= (ac + 5bd) + (ad + bc) 
√
5. 

Show that
(
Q

[√
5
]
, ·

)
is a commutative monoid but is not a group. 

Determine the invertible element in
(
Q

[√
5
]
, ·

)
. 

Solution: 

Note first that (R, ·) is a commutative monoid (Example 4.2.5 (3)). Let a+b 
√
5 

and c + d 
√
5 be two elements in Q

[√
5
]
. Since 

(a + b 
√
5) · (c + d 

√
5) = (ac + 5bd) + (ad + bc) 

√
5 ∈ Q[ √5] 

then Q
[√

5
]
is a closed under the operation of (R, ·), The subset Q

[√
5
]

inherits associativity from R, and the integer 1 = 1 + 0 
√
5 is the identity 

element in Q
[√

5
]
. Thus, Q

[√
5
]
is a monoid with identity 1. The monoid

(
Q

[√
5
]
, ·

)
is commutative as the multiplication is commutative. For any 

element a + b 
√
5 in Q

[√
5
]
,
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(
a + b 

√
5
)

·
(
0 + 0 

√
5
)

= 0 + 0 
√
5 = 0 /= 1, 

and thus, the zero is not invertible in Q
[√

5
]
, and

(
Q

[√
5
]
, ·

)
is not a group. 

To determine the invertible elements in
(
Q

[√
5
]
, ·

)
, let  a + b 

√
5 /= 0 be an 

element in
(
Q

[√
5
]
, ·

)
. The element a +b 

√
5 is invertible if and only if there 

exists c + d 
√
5 belongs to Q

[√
5
]
such that

(
a + b 

√
5
)(

c + d 
√
5
)

= 1. 

This holds if and only if 

(ac + 5bd) + (bc + ad) 
√
5 = 1 

i.e., 

ac + 5bd = 1 ∧ bc + ad = 0 

i.e., if and only if 

c = 
−a 

5b2 − a2 
, d = b 

5b2 − a2 
. 

For c, d to be elements in Q, 5b2 − a2 must not be zero. Since
√
5 is irrational, 

for a, b ∈ Q, the equality 5b2 − a2 = 0 holds if and only if a = b = 0. 
Thus, every nonzero element in Q

[√
5
]
is invertible, and Inv

(
Q

[√
5
])

= 

Q

[√
5
]
\{0}. 

5.4 Consider the subset of real numbers 

Z

[√
5
]

=
{
a + b 

√
5 : a, b ∈ Z

}

endowed with the usual multiplication of real numbers. Show that
(
Z

[√
5
]
, ·

)

is a monoid. Is
(
Z

[√
5
]
, ·

)
a group? Determine the invertible element in

(
Z

[√
5
]
, ·

)
.
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Solution: 

One can show that
(
Z

[√
5
]
, ·

)
is a commutative monoid following the steps 

used in the solution of Exercise 5.3. To determine the invertible elements 
in

(
Z

[√
5
]
, ·

)
, let  a + b 

√
5 be an arbitrary element in

(
Z

[√
5
]
, ·

)
. The  

element a + b 
√
5 is invertible if and only if there exists c + d 

√
5 in Z

[√
5
]

such that
(
a + b 

√
5
)(

c + d 
√
5
)

= 1. That is, if and only if (ac + 5bd) + 
(bc + ad) 

√
5 = 1. i.e., ac + 5bd = 1 ∧ bc + ad = 0. 

That is, if and only if 

c = 
−a 

5b2 − a2 
, d = b 

5b2 − a2 
. 

For c, d to be elements in Z, the expression 5b2 − a2 must not be zero and 
divides both a and b. i.e., a /= 0, b /= 0 ∧ (

5b2 − a2
)
divides gcd(a, b). 

Therefore, 

Inv
(
Z

[√
5
])

=
{
a + b 

√
5 : a /= 0, b /= 0 ∧ (

5b2 − a2
)| gcd(a, b)

}
. 

5.5 Let n ∈ N. Show that U (C), the set of all upper matrices in Mn(C) (Definition 
1.6.3) forms a noncommutative monoid under matrix multiplication, but not a 
group. 

Solution: 

Let A = (
ai j

)
, B = (

bi j
)
be two arbitrary matrices in U (C). The coefficients 

ai j  and bi j  satisfy ai j  = bi j  = 0 ∀ i > j . If  i > j, the entry of their product 
ci j  is 

ci j  = 
nΣ

k=1 

aikbk j =︸︷︷︸
aik=0 for all i>k 

nΣ

k=i 

aikbk j =︸︷︷︸
bkj=0 for all k> jk>i > j 

0. 

That is A· B = (
ci j

)
with ci j  = 0 for each i > j , and U (C) is a closed under 

the operation of (Mn(C), ·). The associativity is inherited from the semigroup 
(Mn(C), ·). Therefore, (U (C), ·) is a semigroup. This semigroup is a monoid 
since In is an upper triangular matrix and is the identity element in U (C). As 
both 

A1 = 

⎛ 

⎜⎜⎜ 
⎝ 

1 0  
0 0  

· · ·  0 
· · ·  0 

... 
... 

0 0  
· · ·  

... 
· · ·  0 

⎞ 

⎟⎟⎟ 
⎠ 

and A2 = 

⎛ 

⎜⎜⎜ 
⎝ 

0 0  
0 0  

· · ·  1 
· · ·  1 

... 
... 

0 0  
· · ·  

... 
· · ·  1 

⎞ 

⎟⎟⎟ 
⎠
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Table 5.7 Operation on S
∆ a b c 

a c a a 

b a c b 

c a b c 

are elements in U (C) for each n, and 

A1 · A2 = 

⎛ 

⎜⎜⎜ 
⎝ 

0 0  
0 0  

· · ·  1 
· · ·  0 

... 
... 

0 0  
· · ·  

... 
· · ·  0 

⎞ 

⎟⎟⎟ 
⎠

/= 

⎛ 

⎜⎜⎜ 
⎝ 

0 0  
0 0  

· · ·  0 
· · ·  0 

... 
... 

0 0  
· · ·  

... 
· · ·  0 

⎞ 

⎟⎟⎟ 
⎠ 

= A2 · A1, 

then (U (C), ·) is not commutative. The zero matrix is an upper triangular 
matrix that has no multiplicative inverse, and thus (U (C), ·) is not a group. 

5.6 Consider the set S = {a, b, c} and the operation ∆ defined in Table 5.7 

1. Is (S,∆) a monoid? If yes, what is the identity element? Is∆ commutative? 
2. Find the inverse of each element if it exists. 

Solution: 

1. One can easily check, using the table, that the operation ∆ is binary, asso-
ciative, and commutative. Therefore, (S,∆) is a commutative semigroup. 
Clearly, c is an identity element of S with respect to ∆. 

2. As 

a∆a = b∆b = c∆c = c, 

then 

a = a−1 , b = b−1 , c = c−1 . 

5.7 Let n ≥ 3 be an integer. Consider the additive group Zn and let 

G = {([a], [b], [c]) : [a], [b], [c] ∈ Zn}. 

On G define the operation ∗ as follows 

([a], [b], [c]) ∗ ([
a'],

[
b'],

[
c']) = ([

a + a'],
[
b + b'],

[
c + c' − ba']). 

Show that G is a nonabelian group.
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Solution: 

Let [a], [b], [c] be arbitrary elements in Zn . Since
[
a + a'],

[
b + b'] and[

c + c' − ba'] are elements in Zn , then ([a], [b], [c]) ∗
([
a'],

[
b'],

[
c']) is 

an element in G. To verify the well-defined property of the operation ∗, 
let ([a], [b], [c]),

([
a'],

[
b'],

[
c']), ([e], [ f ], [g]), and

([
e'],

[
f '],

[
g']) be 

elements in G such that 

([a], [b], [c]) = ([e], [ f ], [g]) and
([
a'],

[
b'],

[
c']) = ([

e'],
[
f '],

[
g']). 

Since ⊕n and ⊗n are well-defined operations on Zn , then

[
a + a'] =

[
e + e']

,
[
b + b'] =

[
f + f ']

and
[
c + c' − ba'] = [

g + g' − f e']. 

Therefore,

([
a + a'], [b + b'], [c + c' − ba']) = ([

e + e'], [ f + f '], [g + g' − f e'])

which means that 

([a], [b], [c]) ∗ ([
a'],

[
b'],

[
c']) = ([e], [ f ], [g]) ∗ ([

e'],
[
f '],

[
g'])

and ∗ is a binary operation on G. It is straightforward to show that ∗ is asso-
ciative (left to the reader). The element ([0], [0], [0]) is the identity element 
in G, as  

([a], [b], [c]) ∗ ([0], [0], [0]) = ([a], [b], [c]) = ([0], [0], [0]) ∗ ([a], [b], [c]), 

for all ([a], [b], [c]) in G. 
Let ([a], [b], [c]) be arbitrary element in G, the triple 

([n − a], [n − b], [n − c − ba]) is an element in G that satisfies 

([a], [b], [c]) ∗ ([n − a], [n − b], [n − c − ba]) = ([n], [n], [n(1 − b)]) 
= ([0], [0], [0]). 

and 

([n − a], [n − b], [n − c − ba]) ∗ ([a], [b], [c]) = ([0], [0], [0]). 

Therefore, ([a], [b], [c]) is invertible and G is a group. The group G is not 
abelian as 

([1], [1], [0]) ∗ ([0], [1], [1]) = ([1], [2], [1])
/= ([1], [2], [0]) = ([0], [1], [1]) ∗ ([1], [1], [0]).
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The group (G, ∗) is an example of a group whose underlying set is the 
Cartesian product Zn × Zn × Zn , but it is not the direct product of the additive 
groups (Zn, ⊕n). 

5.8 Let G be a group and a, b ∈ G such that a ∗b ∈ C(G). Show that a∗b = b∗a. 
i.e., if a ∗ b is in the center, then a, b commute. 

Solution: 

If a, b are elements in G such that a ∗ b ∈ C(G), then 

b ∗ a = (a−1 ∗ a) ∗ (b ∗ a) = a−1 ∗ (a ∗ b) ∗ a 
= a−1 ∗ a ∗ (a ∗ b) = e ∗ (a ∗ b) = a ∗ b. 

5.9 Let (G, ∗) be a group. Show that for any a, b in G and n ∈ Z, 

(a−1 ∗ b ∗ a)n = a−1 ∗ bn ∗ a. 

Solution: 

The proof is done by induction on n ≥ 0, as follows 
Base step: The statement is true for n = 0 since 

(a−1 ∗ b ∗ a)0 = e = a−1 ∗ a = a−1 ∗ b0 ∗ a. 

Inductive step: Assume that the statement is true for n, i.e., 

(a−1 ∗ b ∗ a)n = a−1 ∗ bn ∗ a. 

For n + 1, 

(a−1 ∗ b ∗ a)n+1 = (a−1 ∗ b ∗ a)n ∗ (
a−1 ∗ b ∗ a

)

= (
a−1 ∗ bn ∗ a

) ∗ (
a−1 ∗ b ∗ a

) = a−1 ∗ bn ∗ (
a ∗ a−1

) ∗ b ∗ a 
= a−1 ∗ bn ∗ b ∗ a = a−1 ∗ bn+1 ∗ a. 

Thus, by induction, the statement is true for n ≥ 0. For a negative integer 
n, the integer −n is positive, and thus,

(
a−1 ∗ b ∗ a

)n =
((
a−1 ∗ b ∗ a

)−1
)−n = (a−1 ∗ b−1 ∗ a)−n 

= a−1 ∗ (b−1 )−n ∗ a = a−1 ∗ bn ∗ a. 

5.10 Let G be any group. On G, define the relation ∼ by 

a ∼ b if and only if ∃ x ∈ G ∍ a = x ∗ b ∗ x−1 .
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Show that ∼ is an equivalence relation of G, and describe its equivalence 
classes. 

Solution: 

1. The relation ∼ is reflexive: Let a be an arbitrary element in G. As  e ∈ G 
and a = e ∗ a ∗ e−1, then a ∼ a. 

2. The relation ∼ is symmetric: Let a, b be elements in G such that a ∼ b. 
By the definition of ∼, there exists x ∈ G, such that a = x ∗ b ∗ x−1. Let  
y = x−1 ∈ G, y satisfies b = y ∗ a ∗ y−1. Therefore, b ∼ a. 

3. The relation ∼ is transitive: Let a, b, c be arbitrary elements in G. If  a ∼ b 
and b ∼ c, then there exist x, y in G such that 

a = x ∗ b ∗ x−1 and b = y ∗ c ∗ y−1 . 

As G is a group, x ∗ y is an element in G. One can easily check that 

a = (x ∗ y) ∗ c ∗ (x ∗ y)−1 

Thus, a ∼ c. 

Therefore, the relation ∼ is an equivalence relation on G. The equivalence 
classes of such relations divide G into disjoint subsets, each of the in the form 
[a] = {

x ∗ a ∗ x−1 : x ∈ G
}
where a ∈ G. 

5.11 Let (G, ∗) be a group. For any a, b in G, prove the following statements: 

1. ord(a ∗ b) is finite if and only if ord(b ∗ a) is finite. 
2. ord(a ∗ b) = ord(b ∗ a). 
3. ord

(
a ∗ b ∗ a−1

) = ord(b). 

Solution: 

1. Assume that ord(a ∗ b) = n. Using the result of Exercise 5.9, we obtain 

(b ∗ a)n = (a−1 ∗ (a ∗ b) ∗ a)n = a−1 ∗ (a ∗ b)n ∗ a = e. 

Lemma 5.5.5 implies that b ∗ a has a finite order. Similarly, one can 
show that the other direction holds. 

2. If ord(a ∗ b) is infinite, then by (1), ord(b ∗ a) is also infinite, and the 
equality holds in this case. Assume that ord(a ∗ b) = n < ∞, then 
ord(b ∗ a) = m < ∞. Using the argument as in (1), we obtain (b∗a)n = e. 
Lemma 5.5.6 implies that m divides n. Similarly, one can show that 
(a ∗ b)m = e and n divides m. Therefore, by Proposition 2.2.5 (3), 

n = |n| = |m| = m.
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3. Let x = a ∗ b and y = a−1. By the identity in (2), ord(x ∗ y) = ord(y ∗ x), 
which implies that 

ord
(
a ∗ b ∗ a−1

) = ord(x ∗ y) = ord(y ∗ x) 
= ord

(
a−1∗a ∗ b

) = ord(b). 

5.12 Let G be a group and a, b be elements in G that commute. If ord(a) = 144 
and ord(b) = 7, what is the order of a ∗ b? 

Solution: 

Since gcd(ord(a), ord(b)) = gcd(144, 7) = 1, by Proposition 5.5.11, 

ord(a ∗ b) = ord(a)ord(b) = 144 × 7 = 1008. 

5.13 Let (G, ∗) be a group and k be an integer such that k > 2, show that the group 
G cannot contain exactly one element of order k. 

Solution: 

Let a ∈ G and ord(a) = k > 2. The  inverse of  a is an element in G, where 

ord
(
a−1

) = ord(a) = k. 

Since a ∗ ak−1 = ak = e, then a−1 = ak−1 /= a is another element in G 
whose order is k. 

5.14 Let G be a group and b ∈ G. If  b is the only element of order 2, then b must 
be in the center of G. 

Solution: 

Let b ∈ G such that b is the only element of order 2. Since the order b is 2, 
then b /= e. For any a ∈ G,

(
a ∗ b ∗ a−1

)2 = a ∗ b2 ∗ a−1 = e. As  b /= e, then 
a ∗ b ∗ a−1 /= e and ord

(
a ∗ b ∗ a−1

) = 2. However, as b is the only element 
in G of order 2, then a ∗ b ∗ a−1 = b, which implies that result. 

5.15 Let G1 and G2 be two groups. Show that if both G1 and G2 have exponents, 
then 

Exp(G1 × G2) = lcm(Exp(G1), Exp(G2)). 

Solution: 

Let m = Exp(G1 × G2) and k = lcm(Exp(G1), Exp(G2)). If  (a1, a2) is an 
arbitrary element in G1 × G2, then 

(a1, a2)k =
(
ak 1 , a

k 
2

) = (e1, e2)
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which implies that m ≤ k. On the other hand, as 

(a1, a2)m =
(
am 1 , a

m 
2

) = (e1, e2) for each (a1, a2) in G1 × G2. 

then am 1 = e1 for each a1 in G1 and am 2 = e2 for each a2 in G2, which implies 
that m is a multiple of Exp(G1) and Exp(G2). Since k is the least common 
multiple of Exp(G1) and Exp(G2), then k ≤ m. Therefore, k = m. 

Unsolved Exercises 

5.16 Consider the open interval of real numbers (−1, 1). Let  G = ((−1, 1), ∗) 
where ∗ is defined as a ∗ b = (a + b)/(1 + ab). Show that G forms a group 
under ∗. 

5.17 On the set of integers, define the operation ∗ by a ∗ b = 0 for all a, b ∈ Z. 
Does (Z, ∗) form a group? Explain. 

5.18 Consider the subset of real numbers Z
[
− 

√
5
]

=
{
a − b 

√
5 : a, b ∈ Z

}
with 

the usual multiplication of real numbers. Does
(
Z

[
− 

√
5
]
, ∗

)
form a group? 

Explain your answer. 
5.19 Let i = 

√−1. Consider the subset of real numbers Q[i] = {a + ib  : a, b ∈ Q} 
endowed with the usual multiplication of complex numbers. Show that (Q[i], ·) 
is a monoid. Explain why (Q[i], ·) is not a group and determine the set of 
invertible elements in (Q[i], ·). 

5.20 Let n ∈ N. Show that U (n) = {A ∈ Mn(C) : A∗ A = AA∗ = In} forms a 
group under matrix multiplication, where A∗ is the Hermitian conjugate of A 
(Definition 1.6.16). The group U(n) is called the unitary group of order n. 

5.21 Let (G, ∗) be a group, A be any set, and f : A → G be a bijection. Define 
on A by a.b = f −1( f (a) ∗ f (b)). Show that (A, ·) is a group with identity 
eA = f −1(eG ) and a−1 = f −1

(
f (a)−1

)
. If  G = (R∗, ·), A = R\{−1/2}, and 

f : A → G is given by f (a) = 4a + 2. Show that the operation on A is given 
by a · b = 4ab + 2a + 2b + 1 2 , and compute the identity and inverse of any 
element in A. 

5.22 Write Cayley’s table for each of the additive groups (Z5, ⊕5) and (Z8, ⊕8). 
5.23 Find the invertible elements and their inverses in the following monoids: 

(Z9, ⊗9) and (Z13, ⊗13). 

5.24 Let (G, ∗) be a group. Show that the following statements are equivalent 

1. (a ∗ b)n = an ∗ bn ∀ a, b ∈ G, ∀ n ∈ N. 
2. (a ∗ b)2 = a2 ∗ b2 ∀ a, b ∈ G. 

5.25 Let (G, ∗) be a group, and m ∈ N. The elements a1, a2, . . . ,  am of G are said 
to pairwise commute if ai , a j commute for all 1 ≤ i, j ≤ m. Show that if 
a1, a2, . . . ,  am pairwise commute elements in G, then (a1 ∗ a2 ∗  · · ·  ∗  am)n = 
an 1 ∗ an 2 ∗  · · ·  ∗  an m for all positive integer n.
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5.26 Let G be a group and a ∈ G such that ord(a) = p for some prime p. Show 
that ord

(
ak

) = p for each 1 ≤ k < p. 
5.27 Let G be a group and a ∈ G, show that if ord(a) = k < ∞, then the elements 

of the set
{
e, a, a2, . . . ,  ak−1

}
are all distinct. 

5.28 Give an example (different than that in Example 5.5.16 (4)) for an infinite 
group that has an exponent. 

5.29 Let G be any group. For any integers m1, m2, show that m1|m2 ⇒ G[m1] = 
G[m2] where G[m] = {a ∈ G : am = e}. 

5.30 Find the direct product of the following groups: 

a. (Z9, ⊕9) and (Z∗
13, ⊗13). 

b. (Z3, ⊕3) and (Z5, ⊕5). 
c. (Z∗ 

5, ⊗5) and (Z∗
7, ⊗7). 

d. (R∗, ·) and (R, +). 
e. (Z, +) and (R, +). 

5.31 Let G1, G2 be groups. Show that if (a, b) ∈ G1×G2 such that ord(a), ord(b) < 
∞, then ord((a, b)) < ∞ and ord((a, b)) = lcm(ord(a), ord(b)). 

Reference 
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Chapter 6 
The Symmetric Group “An Example 
of Finite Nonabelian Group” 

This chapter discusses the group Sn (Corollary 5.1.11), the symmetric group on 
n elements, which is one of the most important examples of finite groups and is 
widely used in applications to geometry and physics (Carter, 2009). The importance 
of symmetry groups in abstract algebra is due to the fact that for any finite group G, 
there is a symmetric group Sn that contains a copy of G. For each n ∈ N, the group 
Sn consists of all the bijective maps of {1, 2, . . . ,  n} to itself, called permutations of 
{1, 2, . . . ,  n}. These permutations are usually denoted by symbols such as φ and ψ . 
The identity permutation that corresponds to the identity map of {1, 2, . . . ,  n} is 
denoted by e. In this chapter, Sect. 6.1 provides a representation of the elements of 
Sn as matrices and specifies the order of Sn in terms of the integer n. Additionally, 
the notion of pairwise disjoint permutations is discussed, and their commutativity is 
verified. In Sect. 6.2, cycles, a special case of permutations, are defined and studied. 
The main result of this section is Proposition 6.2.9, which states that any permutation 
can be written as a finite product of disjoint cycles. The proof of this proposition 
requires a study of orbits of a permutation which discussed in Sect. 6.3 and followed 
by the proof of Proposition 6.2.9. The last two sections of this chapter discuss methods 
for determining the order of permutations and classifying permutations as odd and 
even. 

6.1 Matrix Representation of Permutations 

Let n ∈ N. Each permutation φ of {1, 2, . . . ,  n} can be represented using a 2 × n 
matrix. The first row of the matrix lists elements of the domain of the permutation. 
The images are represented in the second row with the image φ(i ) placed directly 
under i , for each 1 ≤ i ≤ n. i.e., the matrix representation of a permutation φ is 

φ =
(

1 2 3  · · ·  n 
φ(1) φ(2) φ(3) · · ·  φ(n)

)
.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
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For example, if n = 4, the permutation φ =
(
1 2  3 4  
3 1 4 2

)
is the map determined by 

φ(1) = 3, φ(2) = 1, φ(3) = 4, and φ(4) = 2. 

The matrix representation of the identity permutation e is

(
1 2  3  · · ·  n 
1 2  3  · · ·  n

)
. 

Remark 6.1.1 The elements in the first row in the matrix representation of φ can be 
written in any order; however, the images of the elements must be carefully arranged 
in the second row, ensuring that the image of any element i must be exactly below i . 
For example, all of the following matrices represent the same permutation:

(
2 1 4 3  
1 3 2 4

)
,

(
1 3 2  4  
3 4  1 2

)
,

(
1 4 2  3  
3 2  1 4

)
,

(
2 1  3 4  
1 3 4 2

)

(
3 2  4 1  
4 1 2 3

)
,

(
3 1 4 2  
4 3 2  1

)
,

(
4 2 1 3  
2 1  3  4

)
. 

When a matrix representation is used, the composition of two permutations (two 
bijective maps) φ and ψ is determined by the equation ψ ◦ φ(k) = ψ(φ(k)). For  
example, 

if φ =
(
1 2  3 4  
3 1 4 2

)
and ψ =

(
1 2 3 4  
4 3 1 2

)
, then ψ ◦ φ =

(
1 2  3 4  
1 4 2 3

)
. 

The computations can be sketched as follows: 

1 
φ −→ 3 ψ −→ 1 gives 1 ψ◦φ −−→ 1, 

2 
φ −→ 1 ψ −→ 4 gives 2 ψ◦φ −−→ 4, 

3 
φ −→ 4 ψ −→ 2 gives 3 ψ◦φ −−→ 2, and 

4 
φ −→ 2 ψ −→ 3 gives 4 ψ◦φ −−→ 3 (Fig. 6.1).

The matrix representation of φ−1 can be obtained by exchanging the two rows in 
the matrix φ. One can check that the composition of φ and φ−1 yields the identity 
map on {1, 2, . . . ,  n}. For example, 

if φ =
(
1 2 3 4  
4 3 1 2

)
, then φ−1 =

(
4 3 1  2  
1 2 3 4

)
=

(
1 2  3 4  
3 4 2 1

)

and the composition of φ and φ−1 yields the identity permutation e.
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Fig. 6.1 A composition of 
two permutations

Example 6.1.2 Let φ =
(
1 2  3  
3 5 2  

4 5  
1 4

)
and ψ =

(
1 2 3  4  5  
2 5 3  4  1

)
be two permutations 

on {1, 2, . . . ,  5}. One can easily check that 
1. φ(3) = 2, φ(5) = 4, ψ(2) = 5, and ψ(4) = 4. 

2. φ2 = φ ◦ φ =
(
1 2 3  
2 4 5  

4 5  
3 1

)
. 

3. φ ◦ ψ =
(
1 2  3  
5 4 2  

4 5  
1 3

)
and ψ ◦ φ =

(
1 2 3  
3 1 5  

4 5  
2 4

)
. 

4. φ−1 =
(
1 2  3  
4 3 1  

4 5  
5 2

)
and ψ−1 =

(
1 2 3  
5 1 3  

4 5  
4 2

)
. 

5. φ−1 ◦ ψ ◦ φ =
(
1 2  3  
1 4 2  

4 5  
3 5

)
. 

The nonequality φ ◦ ψ /= ψ ◦ φ shows that S5 is not abelian. 

Proposition 6.1.3 The group Sn is not abelian for each n ≥ 3. 

Proof Assume that n ≥ 3. Consider the permutations 

φ =
(
1 2 3  4  5  . . .  .  . .  n − 1 n 
2 1 3  4  5  . . .  .  . .  n − 1 n

)
, ψ  =

(
1 2 3 4 5  . . .  .  . .  n − 1 n 
3 2 1 4 5  . . .  .  . .  n − 1 n

)
. 

Both permutations are elements in Sn . Since φ ◦ ψ(1) = 3 /= 2 = ψ ◦φ(1), thus 
Sn is not abelian. ∎

Example 6.1.4 The following statements describe the elements of S1, S2, S3, and 
S4. 

1. There exists only one bijection of the set {1}. Thus, S1 contains only the identity 
map
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φ =
(
1 
1

)
= e. 

2. For φ ∈ S2, a bijective map of {1, 2}, there are two choices for the image of 
number 1 under φ, namely 1 or 2. After choosing the image of 1, only one choice 
is left for the image of 2. Therefore, either φ(1) = 1 and φ(2) = 2, yielding 
the identity map on {1, 2}, or  φ(1) = 2 and φ(2) = 1. These values are all the 
possibilities for φ. Hence, 

S2 =
{(

1 2  
1 2

)
,

(
1 2  
2 1

)}
. 

Note that |S2| = 2 × 1 = 2!. 
3. In the case of S3, the choices are branched. For a bijective map φ on {1, 2, 3}, there 

are three choices for φ(1). On choosing the image for number 1, two choices are 
left for φ(2), and having chosen one of these, only one choice remains for φ(3). 
By the multiplication rule (De Temple & Webb, 2014), there are 3 × 2 × 1 = 3! 
ways to form φ. Figure 6.2. illustrates the choices for determining an element 
of S3. 

S3 =
{(

1 2 3  
1 2 3

)
,

(
1 2  3  
1 3 2

)
,

(
1 2 3  
2 1  3

)
,

(
1 2 3  
2 3  1

)
,

(
1 2  3  
3 1 2

)
,

(
1 2 3  
3 2 1

)}

4. For the group S4, one can use a tree similar to that shown in (3) to find all possible 
permutations. Table 6.1 lists all possible choices for φ(i), 1 ≤ i ≤ 4.

Each column, from the second on, represents an element of S4. For  
example, the second column represents the identity permutation, and the third 

column represents the permutation

(
1 2  
1 2  

3 4  
4 3

)
. Clearly, there exist 24 = 4! 

permutations in S4. 

The same method used to solve this example can be used to prove the following 
theorem. 

Theorem 6.1.5 Let n ∈ N. There exist n! permutations in Sn . 

Proof The number of elements in Sn is equal to the number of all possibilities 
of φ. To construct φ, the process is initiated by choosing an element for φ(1) from 
{1, 2, . . . ,  n}. There are n choices for φ(1). Once φ(1) is chosen, n−1 choices remain 
for φ(2), namely {1, 2, . . . ,  n}\{φ(1)}. After  φ(1) and φ(2) have been selected, n−2 
choices remain for φ(3), and so on. Continuing such selections, eventually, only one 
choice remains for φ(n). By the multiplication rule, the number of ways to form φ is 

n × (n − 1) × (n − 2) ×  · · ·  ×  2 × 1 = n!. 

Therefore, there are n! possibilities for φ. ∎
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Fig. 6.2 Elements of S3

Table 6.1 Elements of S4 

φ(1) 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 

φ(2) 2 2 3 3 4 4 1 1 3 3 4 4 1 1 2 2 4 4 1 1 2 2 3 3 

φ(3) 3 4 2 4 2 3 3 4 1 4 1 3 2 4 1 4 1 2 2 3 1 3 1 2 

φ(4) 4 3 4 2 3 2 4 3 4 1 3 1 4 2 4 1 2 1 3 2 3 1 2 1

Definition 6.1.6 Let n ∈ N, φ be a permutation on {1, 2, . . . ,  n}, and k be an element 
of {1, 2, . . . ,  n}. We say  φ fixes k if φ(k) = k; otherwise, we say φ moves k. The  
subset of all elements in {1, 2, . . . ,  n} that are moved by φ is denoted by Move(φ). 
The subset of all permutations in Sn that fix k is denoted by (Sn)k . i.e., 

Move(φ) = {k : φ(k) /= k} and (Sn)k = {φ ∈ Sn : φ(k) = k}. 

For example, in S3, 

Move

((
1 2  3  
1 3 2

))
= {2, 3}, Move

((
1 2  3  
1 2  3

))
= ∅, 

(S3)2 =
{(

1 2  3  
1 2  3

)
,

(
1 2 3  
3 2 1

)}
, (S3)1 =

{(
1 2 3  
1 2 3

)
,

(
1 2  3  
1 3 2

)}
.
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Remark 6.1.7 The element k ∈ Move(φ) if and only if φ(k) ∈ Move(φ). This result 
follows directly by the injectivity of φ. 

Definition 6.1.8 Let n ∈ N and φ, ψ be two distinct permutations on {1, 2, . . . ,  n}. 
The permutations φ and ψ are said to be disjoint if Move(φ) ∩ Move(ψ) = ∅. Let  
φ1, . . . , φm be distinct permutations on {1, 2, . . . ,  n}. The permutations φ1, . . . , φm 

are called pairwise disjoint if φi , φ  j are disjoint for all i /= j, where 1 ≤ i, j ≤ m. 

Having two disjoint permutations on {1, 2, . . . ,  n} means that if one of them moves 
an element k then the other one fixes k. For any integer n, the identity permutation on 
{1, 2, . . . ,  n} does not move any element. Therefore, Move(e) = ∅, and it is disjoint 
from other permutations. 

Example 6.1.9 The permutations 

φ1 =
(
1 2  3  
1 5 3  

4 5  
2 4

)
, φ2 =

(
1 2  3  
3 2  1  

4 5  
4 5

)

are disjoint permutations in S5. Similarly, 

φ1 =
(
1 2 3  
3 2 1  

4 5 6  
4 5 6

)
, φ2 =

(
1 2  3  
1 5 3  

4 5 6  
4 2 6

)
and 

φ3 =
(
1 2 3  
1 2 3  

4 5 6  
6 5 4

)

are pairwise disjoint permutations in S6. The permutations 

φ1 =
(
1 2  3  
3 1 2

)
, φ2 =

(
1 2 3  
2 1 3

)

are in S3 and are not disjoint as Move(φ1) ∩ Move(φ2) = {1, 2} /= ∅. 
Proposition 6.1.10 Let n ∈ N, and let φ, ψ be permutations on {1, 2, . . . ,  n}. If 
φ, ψ are disjoint, then φ ◦ ψ = ψ ◦ φ (any two disjoint permutations commute). 

Proof Assume that φ, ψ are disjoint. Let k be an element in {1, 2, . . . ,  n}. Since 
Move(φ) ∩ Move(ψ) = ∅, only one of the following three cases holds: 
1. k ∈ Mov(φ) ∧ k /∈ Mov(ψ). 
2. k ∈ Mov(ψ) ∧ k /∈ Mov(φ). 
3. k /∈ Mov(φ) ∪ Mov(ψ). 

If the first case holds, then Remark 6.1.7 implies that φ(k) ∈ Mov(φ). Thus, 
φ(k) /∈ Mov(ψ) and 

φ ◦ ψ(k) = φ(ψ(k)) = φ(k) = ψ(φ(k)) = ψ ◦ φ(k).
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Similarly, the second case follows by exchanging the role of φ and ψ . For the last 
case, φ(k) = k = ψ(k), which implies that 

φ ◦ ψ(k) = φ(ψ(k)) = φ(k) = k = ψ(k) = ψ(φ(k)).

∎

According to Lemma 5.4.5 (2), 

Corollary 6.1.11 Let n ∈ N. If φ and ψ are two disjoint permutations on 
{1, 2, . . . ,  n}, then 

(φψ)k = φk ψk for all k ∈ N. 

Using Exercises 5.25 and 6.2.7, one can easily show the following corollary. 

Corollary 6.1.12 Let m ∈ N and φ1, φ2, . . . , φm be a set of pairwise disjoint 
permutations. If (φ1φ2 . . . φm)k = e for some k ∈ N, then φk 

i = e for each 
1 ≤ i ≤ m. 

The following example shows that the converse of Proposition 6.1.10 is not true. 

Example 6.1.13 On {1, 2, 3, 4}, consider the permutations 

φ =
(
1 2 3 4  
2 1  3  4

)
and ψ =

(
1 2 3 4  
2 1 4 3

)
. 

As φ ◦ ψ =
(
1 2  3 4  
1 2 4 3

)
= ψ ◦ φ, the two permutations commute, but they are not 

disjoint since Move(φ) ∩ Move(ψ) = {1, 2} /= ∅. In general, for any permutation 
φ not equal to the identity, φ commutes with itself, but Move(φ) ∩ Move(φ) = 
Move(φ) /= ∅, and thus, φ and φ are not disjoint. 

6.2 Cycles on {1, 2, . . . ,  n} 

Although the matrix representation gives a complete description of a permutation, 
there are other representations that are often useful. One such representation based 
on the notion of cycles. 

Definition 6.2.1 Let n, k ∈ N and i1, i2, . . . ,  ik be distinct elements in {1, 2, . . . ,  n}. 
A cycle (or a cyclic permutation) ψ = (i1i2 . . .  ik) on {1, 2, . . . ,  n} means the function 
defined on {1, 2, . . . ,  n} by
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ψ( j ) = 

⎧⎨ 

⎩ 

is+1 j = is ∧ 1 ≤ s < k 
i1 j = ik 
j j  /∈ {i1, . . . ,  ik} 

for any j ∈ {1, 2, . . . ,  n}. The number k is called the length of the cycle. A cycle of 
length k is called a k-cycle, and a 2-cycle is called a transposition. The trivial cycle 
is a cycle of length 1. Let  a be an element in {1, 2, . . . ,  n}. We say that a appears in 
the cycle (i1i2 . . .  ik), denoted by a ∈ (i1i2 . . .  ik), if  a = is for some 1 ≤ s ≤ k. 

Intuitively, a cycle (i1i2 . . .  ik) is the function on {1, 2, . . . ,  n} that takes is to the 
following element in the line, takes the last element to the first element, and fixes all 

elements that do not appear in the cycle, i.e., (i1i2 . . .  ik)(is) =
{
is+1 1 ≤ s < k 
i1 s = k 

. 

For example, the cycle (3 2  6 4) on {1, 2, 3, 4, 5, 6} is the function that takes 3 → 
2, 2 → 6, 6 → 4, 4 → 3 and fixes all other elements in {1, 2, 3, 4, 5, 6}. The 
length of (3 2  6 4) is 4. The cycle (1 4) is the function on {1, 2, 3, 4, 5, 6} that takes 
1 → 4, 4 → 1 and fixes all other elements in {1, 2, 3, 4, 5, 6}. The length of (1 4) 
is 2. The cycle (1 4) represents a transposition. The map Rs,t in Example 1.5.17 is 
the transposition (s t) on {1, 2, . . . ,  n}. Using Definition 6.2.1, one can easily verify 
that for any k such that 1 ≤ k ≤ n, 

(i2 . . .  iki1) = (i1i2 . . .  ik) = (iki1i2 . . .  ik−1) 

as all of these cycles represent the following function 

i1 → i2, i2 → i3, . . . ,  ik−1 → ik, ik → i1 ∧ j → j ∀ j /∈ {i1, . . . ,  ik}. 

For example, on {1, 2, . . . ,  8}, the cycles 

(3 1 5 2), (2  3 1 5), (5 2  3 1), and (1 5 2 3) 

represent the same cycle of length 4. The transposition (3 5) exchanges 5 and 3. The  
cycles (3 1 5 2) and (3 5) are visualized as in Fig. 6.3. 

Definition 6.2.2 (Product of cycles) Let  n, k, r ∈ N, and let (i1i2 . . .  ik) and 
( j1 j2 . . .  jr ) be two cycles on {1, 2, . . . ,  n}. The product of (i1i2 . . .  ik) and

Fig. 6.3 Cycles (3 1 5 2) 
and (3 5) 
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( j1 j2 . . .  jr ) is defined as their composition (i1i2 . . .  ik) ◦ ( j1 j2 . . .  jr ), obtained by 
applying ( j1 j2 . . .  jr ) then (i1i2 . . .  ik). i.e., 

(i1i2 . . .  ik) ◦ ( j1 j2 . . .  jr )( j ) = (i1i2 . . .  ik)(( j1 j2 . . .  jr )( j)). 

The product of (i1i2 . . .  ik) and ( j1 j2 . . .  jr ) is denoted by (i1i2 . . .  ik) ( j1 j2 . . .  jr ). 

Remark 6.2.3 Let n ∈ N. 

1. For each i ∈ {1, 2, . . . ,  n}, the trivial cycle (i ) on {1, 2, . . . ,  n} maps i to itself 
and fixes all other elements. Hence, 

(1) = (2) =  · · ·  =  (i ) =  · · ·  =  (n) 

all of which represent the identity function on {1, 2, . . . ,  n}. 
2. For i, j ∈ {1, 2, . . . ,  n} such that i /= j , (i j  )2 = (i j)(i j  ) = e. 
3. No representation exists for the identity function as a transposition. 

Example 6.2.4 

1. On {1, 2, 3, 4, 5}, consider the two cycles (2 4 1) and (3 5 4). The product of the 
two cycles can computed as (2 4 1)(3 5 4) = (3 5 1 2  4) or (3 5 4)(2 4 1) = 
(2 3  5 4 1). Cleary that the product of cycles need not be commutative. 

2. Consider the set {1, 2, 3, 4, . . .  ,  8}. If  ρ = (1 4 3 8)(2 6  3)(4 2) (a product of 
three cycles), then 

ρ(1) = 4, ρ(2) = 3, ρ(3) = 2, ρ(4) = 6, 
ρ(5) = 5, ρ(6) = 8, ρ(7) = 7, ρ(8) = 1. 

The product ρ can be written as a product of the two cycles (1 4 6 8)(2 3). 
However, ρ has no representation as one cycle. 

3. On {1, 2, 3, 4, . . .  ,  10}, consider σ = (2 5)(2 7)(2 4)(2 1). This permutation 
can be written as one cycle σ = (2 1  4 7  5). 

4. On {1, 2, 3, 4, . . .  ,  9}, (2 3  6 7  9)(3) = (2 3 6  7  9)(8) = (2 3  6 7  9)(7) = 
(2 3  6 7  9). 

5. On {1, 2, 3, 4, . . .  ,  8}, (2 5  6 1  7)(4 5 3 2 6 1) = (4 6 7 2 1)(5 3) 

(2 7 4 3)(4 6 3)(5 2) = (2 5  7 4 6) 
(2 7  4 3)(4 6 3)(5 1) = (1 5)(2 7  4 6). 

6. The product of two cycles is not necessarily a cycle. For 
example, on {1, 2, 3, 4, . . .  ,  11}, consider (2 5 6  1  7)(4 5 3 2 6 1) and 
(2 7  4 3)(4 6 3)(5 1). Both products are product of cycles but cannot be 
written as one cycle. 

The following lemma is needed later and can be easily proved using Definition 
6.2.1 and induction on r .
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Lemma 6.2.5 Let n ∈ N, and let (i1i2 . . .  ik) be a cycle on {1, 2, . . . ,  n}. For any 
positive integer r and any 1 ≤ s ≤ k, 

((i1i2 · · ·  ik))r (is) = i f (s,r) 

where f (s, r) =
{
r + s mod k if r + s /= qk  for all q ∈ N 
k if r + s = qk  for some q ∈ N 

. 

As the product (composition) of the two cycles (i1i2 . . .  ik) and (ikik−1 . . .  i1) is 
the identity, both cycles are bijective maps on {1, 2, . . . ,  n}. This result is stated in 
the following proposition. 

Proposition 6.2.6 Let n, k ∈ N, and let i1, i2, . . . ,  ik be distinct elements in 
{1, 2, . . . ,  n}. The cycle (i1i2 . . .  ik) is a permutation on {1, 2, . . . ,  n}, whose inverse 
is the cycle (ikik−1 . . .  i1). 

As an example for applying Proposition 6.2.6, consider the group S7 and the 
permutation φ = (2  3 1 4 7 5). The inverse permutation is φ−1 = (5 7 4 1 3 2). 
The reader should notice that although the inverse of a cycle is a cycle, the set of all 
cycles in Sn is not closed under the product of cycles (composition in Sn), as shown 
in items (2) and (6) in Example 6.2.4. Hence, the subset of all cycles in Sn does not 
form a group under the composition (the product of cycles). 

If (i1i2 . . .  ik) is a cycle on {1, 2, . . . ,  n}, then by renaming the elements in 
{1, 2, . . . ,  n}\{i1, i2, . . . ,  ik} to be ik+1, ik+2, . . . ,  in , the following corollary can be 
easily proved: 

Corollary 6.2.7 Let n, k ∈ N such that k ≤ n. Any cycle (i1i2 . . .  ik) on {1, 2, . . . ,  n} 
has a matrix representation as

(
i1 i2 . . .  ik−1 ik ik+1 ik+2 . . .  in 
i2 i3 . . .  ik i1 ik+1 ik+2 . . .  in

)
. 

Example 6.2.8 

1. The cycle (2  3 1 5) on {1, 2, 3, 4, 5} can be represented as
(
1 2  3 4 5  
5 3 1 4 2

)
. 

2. Let 

φ =
(
1 2 3  
4 2 1  

4 5 6  
7 5 3  

7 8 9  
6 8 9

)
. 

The permutation φ is the matrix representation for the cycle (1 4 7 6 3). 
3. Let 

φ =
(
1 2 3  
3 2 1  

4 5 6  
4 5 6

)
.
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The permutation φ is a matrix representation for the transposition (1 3). 
4. Let 

ψ =
(
1 2 3  
4 5 1  

4 5 6  
7 9 3  

7 8 9  
6 8 2

)
. 

The permutation ψ cannot be written as a cycle on {1, 2, 3, . . .  ,  9}. However, 
it can be written as a product of cycles as: (1 4 7 6 3)(2 5 9). 

5. Let 

ψ =
(
1 2 3  
6 3 5  

4 5 6  
1 2 4

)
. 

The permutation ψ cannot be written as a cycle on {1, 2, 3, . . .  ,  6}. However, 
it can be written as a product of cycles as: (1 6 4)(2 3 5). 

6. Consider the group S7. If  φ = (2 3 1)(4 7 5), then 

φ−1 = ((2 3 1)(4 7 5))−1 = (4 7 5)−1 (2 3 1)−1 = (5 7 4)(1 3 2). 

As seen in the above example that certain permutations cannot be written as 
cycles but can be written as a product of two or more cycles. In general, we have the 
following proposition. 

Proposition 6.2.9 Let n ∈ N. Any permutation on {1, 2, . . . ,  n} can be written as a 
finite product of disjoint cycles. 

The importance of the decomposition in Proposition 6.2.9 is due to the fact that 
disjoint cycles commute (Proposition 6.1.10). Therefore, one can write any permu-
tation as a product of commuting cycles. We postpone the proof of the proposition 
to the subsequent sections. We end this section by recalling the notion of disjoint 
cycles and presenting several observations. As any cycle is a permutation (Proposi-
tion 6.2.6), thus all definitions and universal results for permutations apply to cycles. 
For example, Definition 6.1.8 still holds for cycles. Proposition 6.1.10 implies that 
any disjoint cycles on {1, 2, . . . ,  n} commute, and if φ and ψ are two disjoint cycles 
on {1, 2, . . . ,  n}, then by Corollary 6.1.11, 

(φψ)k = φk ψk for all k ∈ N. 

Lemma 6.2.10 Let n ∈ N. If (i1i2 . . .  ik) is a cycle on {1, 2, . . . ,  n}, then 

Move((i1i2, . . . ,  ik)) = {i1, i2, . . . ,  ik}. 

Proof Assume that φ = (i1i2 . . .  ik). As  i1 
φ −→ i2, i2 

φ −→ i3, . . . ,  ik−1 
φ −→ ik, ik 

φ −→ i1 
and all is s are distinct, then φ(is) /= is for each 1 ≤ s ≤ k. Hence, {i1, i2, . . . ,  ik} ⊆ 
Move(φ). For the other inclusion, if j /∈ Move(φ), then by definition of a cycle, 
φ( j ) = j, which implies that j /∈ {i1, i2, . . . ,  ik}. ∎
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The above lemma and Definition 6.1.8 imply the following results: 

Corollary 6.2.11 Let n, k, r ∈ N. The cycles (i1i2 . . .  ik) and ( j1 j2 . . .  jr ) on 
{1, 2, . . . ,  n} are disjoint if and only if is /= jt for all s, t such that 1 ≤ s ≤ k, 
1 ≤ t ≤ r . 

This corollary can be used to decide if two cycles are disjoint. For example, one 
can directly say that the cycles (1 5) and (2 7  4 6) on {1, 2, 3, 4, 5, 6, 7} are disjoint 
while (2 7 4 3) and (4 6 3) are not. 

6.3 Orbits of a Permutation 

In this section, we use the elements of Sn to define equivalence relations on the 
set {1, 2, . . . ,  n} where n ∈ N. Each φ ∈ Sn defines an equivalence relation on 
{1, 2, . . . ,  n}, dividing the set {1, 2, . . . ,  n} into disjoint sets (equivalence classes) 
called orbits of φ. More information regarding equivalence relations can be found in 
Sect. 1.4. 

Definition 6.3.1 Let n ∈ N and φ ∈ Sn . On  {1, 2, . . . ,  n} define the relation ∼=φ by 

i ∼=φ j ⇔ ∃  m ∈ Z ∍ j = φm (i ), where i, j ∈ {1, 2, . . . ,  n}. 

Lemma 6.3.2 Let n ∈ N and φ ∈ Sn . The relation ∼=φ in Definition 6.3.1 is an 
equivalence relation. 

Proof For each i ∈ {1, 2, . . . ,  n}, i = φ0(i), thus i ∼=φ i and ∼=φ is reflexive. Assume 
that i ∼=φ j . i.e., there exists m ∈ Z ∍ j = φm(i). Applying the function φ−m on both 
sides yields i = φ−m( j ). Therefore, ∃ l = −m ∈ Z such that i = φl ( j ), i.e., j ∼=φ i , 
and ∼=φ is symmetric. Finally, let i ∼=φ j and j ∼=φ k. According to the definition of ∼=φ, there exist m, l ∈ Z such that j = φm(i ) and k = φl ( j ). Set s = l + m ∈ Z, 
then 

φs (i) = φl+m (i) = φl
(
φm (i)

) = φl ( j ) = k. 

i.e., i ∼=φ k and ∼=φ is transitive. By Definition 1.4.1, the relation ∼=φ is an equivalence 
relation. ∎

The equivalence classes generated by the relation ∼=φ form a partition of the set 
{1, 2, . . . ,  n} (Theorem 1.4.10). These equivalence classes are called the orbits of φ. 

Definition 6.3.3 Let n ∈ N and φ ∈ Sn . For each 0 ≤ i ≤ n, the equivalence class 
of ∼=φ that contains i , denoted by Orφ(i ), is called the orbit of i under φ. The  sets  
Orφ(i), i ∈ {1, 2, . . . ,  n} are called the orbits of φ.
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Any two orbits of φ ∈ Sn (by their construction) are either identical or disjoint, 
and the union of the orbits of φ is the set {1, 2, . . . ,  n}. One also has that for each 
i ∈ {1, 2, . . . ,  n}, 

Orφ(i) = {
j ∈ {1, 2, . . . ,  n} : i ∼=φ j

} = {
j ∈ {1, 2, . . . ,  n} : ∃  m ∈ Z ∍ j = φm (i )

}
= {

φm (i ) : m ∈ Z
}
. 

Proposition 6.3.4 Let n ∈ N, φ ∈ Sn , and i ∈ {1, 2, . . . ,  n}. The orbit of i under 
φ is a nonempty finite set given by 

Orφ(i ) = {
i, φ(i ), φ2 (i ), . . . , φk−1 (i )

}

where k is the smallest nonnegative integer satisfying φk(i ) = i . 

Proof Let i ∈ {1, 2, . . . ,  n}. As  i = φ0(i ) ∈ {φm(i ) : m ∈ Z} = Orφ(i ) ⊆ 
{1, 2, . . . ,  n}, then Orφ(i ) is a nonempty finite set. Hence, there exist m1, m2 ∈ Z 
such that 

m1 < m2 and φ
m1 (i ) = φm2 (i). 

Applying the function φ−m1 on both sides yields φm2−m1 (i) = i ; i.e., there exists 
a nonnegative integer s = m2 − m1 such that φs(i ) = i . Let  k be the smallest 
nonnegative integer satisfying φk(i ) = i and B = {

i, φ(i), φ2(i ), . . . , φk−1(i )
}
, we  

show that B = Orφ(i ). Since 

B = {
i, φ(i ), φ2 (i ), . . . , φk−1 (i )

} ⊆ {
φm (i) : m ∈ Z

} = Orφ(i ), 

then B ⊆ Orφ(i ). For the other inclusion, let φm(i ) be any element of Orφ(i ) where 
m ∈ Z. Applying the Euclidean Algorithm 2.4.1 on m, k, gives that there exist two 
integers q, r ∈ Z such that 

m = qk  + r, 0 ≤ r < k. 

That is, 

φm (i ) = φr+qk  (i) = φr
(
φqk  (i )

) = φr
((

φk
)q 

(i )
)

= 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

φr 

⎛ 

⎜⎝φk ◦ φk ◦  · · ·  ◦  φk︸ ︷︷ ︸
q times 

(i) 

⎞ 

⎟⎠ = φr (i ) q ≥ 0 

φr 

⎛ 

⎜⎝φ−k ◦ φ−k ◦  · · ·  ◦  φ−k︸ ︷︷ ︸
−q times 

(i ) 

⎞ 

⎟⎠ = φr (i ) q < 0
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i.e., φm(i ) = φr (i) ∈ B, which implies that Orφ(i ) ⊆ B. ∎

The last proposition provides a practical method for determining the orbits of a 
permutation φ in Sn , as follows: 

• Begin by choosing an integer i ∈ {1, 2, . . . ,  n}, and compute φ(i ), φ2(i ), . . .  until 
i is reached. 

• The set
{
φ(i), φ2(i), . . . ,  i

}
forms Orφ(i ), the first orbit. 

• Choose an integer from the set {1, 2, . . . ,  n}\Orφ(i) and compute its orbit in the 
same way as the first orbit. 

• Repeat the same process until the obtained orbits contains all the elements in 
{1, 2, . . . ,  n}. 

Example 6.3.5 Let 

φ =
(
1 2 3  4  5 6 7 8 9 10  11  
9 6 8 10  2  5 7 1 3  4  11

)

be a permutation on {1, 2, . . . ,  11}. The orbits of φ can be obtained as follows: 

• By choosing a number in {1, 2, . . . ,  11}, say  i = 2, one can compute 

φ(2) = 6, φ2 (2) = φ(6) = 5, φ3 (2) = φ(5) = 2 

to obtain Orφ(2) = {2, 5, 6}. 
• Select a number in the set {1, 2, . . . ,  11}\{2, 5, 6}, say  i = 1. Compute 

φ(1) = 9, φ(9) = 3, φ(3) = 8, φ(8) = 1 

to obtain Orφ(1) = {1, 3, 8, 9}. 
• Choose a number in {1, 2, . . . ,  11}\{2, 5, 6, 1, 3, 8, 9}, say  i = 4. Compute 

φ(4) = 10, φ(10) = 4 to obtain Orφ(4) = {4, 10}. 
• Choose a number in {1, 2, . . . ,  11}\{2, 5, 6, 1, 3, 8, 9, 4, 10}, say  i = 7. Compute 

φ(7) = 7 to obtain Orφ(7) = {7}. 
• Only one element remains in the set {1, 2, . . . ,  11}\{2, 5, 6, 1, 3, 8, 9, 4, 10, 7}, 

which is 11. Compute φ(11) = 11, which yieldsOrφ(11) = {11}. 
• Terminate the process as there are no elements remain in {1, 2, . . . ,  11}. 

Thus, all the distinct orbits of φ are {2, 6, 5}, {1, 9, 3, 8}, {4, 10}, {7}, {11}. Note  
that since the orbits of a permutation are equivalence classes (either identical or 
disjoint), then Orφ(5) = Orφ(6) = {2, 5, 6}, Orφ(9) = Orφ(3) = Orφ(8) = 
{1, 3, 8, 9}, and Orφ(10) = {4, 10}. 

The following definition restates Definition 1.5.3 using the notation of this chapter. 
We remind the reader that any permutation φ ∈ Sn is a bijective function from 
{1, 2, . . . ,  n} to itself.
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Definition 6.3.6 Let n ∈ N, φ ∈ Sn , and A ⊆ {1, 2, . . . ,  n}. The restriction of φ on 
the subset A, denoted by φ|A is the function on A that satisfies φ|A (x) = φ(x) ∀ x ∈ 
A. 

The next proposition shows that the restriction of a permutation on one of its 
orbits is a cycle that is formed by the elements of such an orbit. 

Proposition 6.3.7 Let n ∈ N, φ ∈ Sn , and i ∈ {1, 2, . . . ,  n}. The restriction of φ 
on Orφ(i) is the cycle

(
i φ(i ) φ2(i ) . . . φk−1(i )

)
on {1, 2, . . . ,  n}. i.e., 

φ|Orφ (i) =
(
i φ(i) φ2 (i) . . . φk−1 (i )

)

where kis the smallest nonnegative integer satisfying φk(i ) = i . 

Proof Assume that i ∈ {1, 2, . . . ,  n}. We show that 

φ|Orφ (i) ( j ) =
(
i φ(i) φ2 (i ) . . . φk−1 (i )

)
( j ) ∀ j ∈ Orφ(i ). 

Let j ∈ Orφ(i). Since Orφ(i) = {
i, φ(i ), φ2(i), . . . , φk−1(i )

}
, there exists an 

integer s such that 0 ≤ s ≤ k − 1 and j = φs(i). Using Definition 6.2.1, we obtain

(
i φ(i ) φ2 (i ) . . . φk−1 (i )

)
( j ) = (

i φ(i)φ2 (i) . . . φk−1 (i )
)(

φs (i)
)

=
{

φs+1(i ) 0 ≤ s < k − 1 
i s  = k − 1 

=
{

φs+1(i ) 0 ≤ s < k − 1 
φk(i ) s = k − 1 

= φs+1 (i ) = φ
(
φs (i)

) = φ( j ) = φ|Orφ (i ) ( j).

∎

Intuitively, the pervious proposition indicates that if φ is a permutation on 
{1, 2, . . . ,  n}, then for each i ∈ {1, 2, . . . ,  n}, the restriction φ|Orφ (i) is the cycle 
obtained by inserting i as the first element in the cycle and continuously applying φ 
on the element to obtain the next one. This process is repeated until all the elements 
in the orbit have been considered. 

Example 6.3.8 

1. Let φ =
(
1 2 3  4  5 6 7 8 9 10  11  
9 6 8 10 2 5 7 1 3 4 11

)
. 

The orbits of φ are 

{1, 3, 8, 9}, {2, 5, 6}, {4, 10}, {7}, {11} (Example 6.3.5). 

Therefore, according to the results of the last proposition,
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φ|{1,3,8,9} = (1 9 3 8), φ|{7} = (7), φ|{2,5,6} = (2 6  5), φ|{4,10} = (4 10), φ|{11} = (11). 

2. The orbits of φ =
(
1 2  3  4  
3 1  2  4

)
as a permutation in S4 are 

Orφ(1) = {1, 2, 3} = Orφ(2) = Orφ(3), Orφ(4) = {4}. 

The permutation φ has only one orbit that contains more than one element. 
Therefore, φ is a cycle. 

Corollary 6.3.9 Let n ∈ N, and φ ∈ Sn . For each i ∈ {1, . . . ,  n} not fixed by φ, 

Move
(
φ|Orφ (i)

)
= Orφ(i ). 

Proof Let i ∈ {1, 2, . . . ,  n}. The results of Lemma 6.2.10, Propositions 6.3.4, and 
6.3.7 can be used to obtain 

Move
(
φ|Orφ (i)

)
= Move

((
i φ(i )φ2 (i ) . . . φk−1 (i )

))
= {

i, φ(i ), φ2 (i), . . . , φk−1 (i )
} = Orφ(i ).

∎

As the orbits of φ (by construction) are disjoint, the following direct result can be 
obtained. 

Corollary 6.3.10 Let n ∈ N, φ ∈ Sn , and i ∈ {1, 2, . . . ,  n}. The cycles obtained by 
the restriction of φ on its orbits are disjoint cycles. 

Next, we prove Proposition 6.2.9 by showing that any permutation φ is a product 
of the cycles obtained by the restrictions of φ on its orbits. 

Proof of Proposition 6.2.9 
Let n ∈ N, φ ∈ Sn , and A1, . . . ,  Am be the distinct orbits of φ. For each 1 ≤ j ≤ m, 
let ψ j be the cycle obtained by the restriction of φ on A j . We show that 

φ(i ) = ψm ◦ ψm−1 ◦  · · ·  ◦  ψ2 ◦ ψ1(i ) for each i ∈ {1, 2, . . . ,  n}. 

Assume i ∈ {1, 2, . . . ,  n}. As the orbits of φ form a partition for {1, 2, . . . ,  n}, 
there exists l, 1 ≤ l ≤ m such that i ∈ Al and i /∈ A j for all j /= l. Therefore, 
i ∈ Move(ψl ) and i /∈ Move

(
ψ j

)
for all j /= l (Corollary 6.3.9). Therefore, 

• ψ j (i ) = i for each 1 ≤ j < l 
• ψl (i ) = φ(i ) (Proposition 6.3.7) 
• ψ j (φ(i)) = φ(i ) for each l < j ≤ m
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where the last line follows by Remark 6.1.7. That is, 

ψl−1 ◦  · · ·  ◦  ψ1(i) = i, ψl (i ) = φ(i ), ψm ◦  · · ·  ◦  ψl+1(φ(i)) = φ(i) 

which implies 

ψm ◦  · · ·  ◦  ψ1(i ) = ψm ◦  · · ·  ◦  ψl+1(ψl (ψl−1 ◦  · · ·  ◦  ψ1(i ))) = φ(i ). 

According to Corollary 6.3.10, the cycles ψ j are disjoint. ∎

Example 6.3.11 

1. Let φ =
(
1 2 3  4  5 6 7 8 9 10  11  
9 6 8 10  2  5 7 1 3  4  11

)
be a permutation in S11. The distinct 

orbits of φ are {1, 9, 3, 8}, {2, 6, 5}, {4, 10}, {7}, {11}, and the corresponding 
cycles are 

(1 9 3 8), (2 6 5), (4 10), (7), (11). 

Hence, φ can be written as the following product of disjoint cycles 

φ = (1 9 3 8)(2 6  5)(4 10)(7)(11) = (1 9 3 8)(2 6  5)(4 10). 

2. Let φ =
(
1 2  
3 5  

3 4  
1 6  

5 6 7  
2 7 4

)
be a permutation in S7. Similar to (1), the 

permutation φ can be written as a product of disjoint cycles as follows: 

φ = (1 3)(2 5)(4 6 7). 

The reader may notice that 

• For a permutation φ ∈ Sn , the number of disjoint cycles (with a length greater 
than one) form φ is less than n/2. This occurs because of the simple fact that if 
the set {1, 2, . . . ,  n} was divided into disjoint subsets where each subset contains 
at least two elements, then the number of such subsets must be less than or equal 
to half of the original set. 

• The set of distinct orbits (equivalence classes) of the permutation φ is unique 
(Corollary 1.4.14). Therefore, if all the cycles (length one included) are considered 
in writing the permutation as a product of disjoint cycles, this product will be 
unique up to cycle rearrangements. 

Proposition 6.3.12 Let n ∈ N. If all cycles of length one are considered, then any 
permutation on {1, 2, . . . ,  n} can be uniquely (up to rearrangement) written as a 
finite product of disjoint cycles.
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Example 6.3.13 Using the results of Example 6.1.4, one can easily verify that the 
group S1 consists of only 1-cycle (identity permutation). For n = 2, the symmetric 
group S2 = {(1), (12)} consists of two cycles: 1-cycle and 2-cycle (a transposition). 
The group S3 consists of six cycles: one 1-cycle, two 2-cycles, and three 3-cycles. 
The group S4 contains cycles and permutations that cannot be written as one cycle. 
The elements of S4 consist of one 1-cycle, six 2-cycles, eight 3-cycles, six 4-cycles, 
and three permutations written as a product of two cycles. Similarly, one can continue 
to analyze the structure of Sn using the multiplication rule, as in Example 6.1.4. 

6.4 Order of a Permutation 

For any n ∈ N, the orders of the permutations in Sn can be investigated. We start 
with an example of which computing φk for different permutation φ in Sn for some 
chosen k and n. 

Example 6.4.1 

1. In (S5, ◦), if  φ = (1 2  3 4), then 

φ2 = (1 2 3 4)2 = (1 2  3 4)(1 2 3 4) = (13)(24) 
φ3 = (1 2 3 4)3 = (1 2  3 4)(13)(24) = (1 4 3 2) 
φ4 = φ2 φ2 = (13)(24)(13)(24) = (13)(13)(24)(24) = (1)(2) = e. 

2. In (S3, ◦), if  φ = (1 2), then 

φ2 = (1 2)2 = (1) = e. 
φ3 = (1 2)3 = (1 2)(1 2)2 = (1 2)e = (1 2). 

In general, φ2k+1 = (1 2), and φ2k = e for any integer k. 
3. In (S7, ◦), if  φ = (1 2  3)(2 7 1  6), then φ = (1 6 3)(2 7) and 

φ2 = ((1 6 3)(2 7))2 = (1 6 3)(2 7)(1 6 3)(2 7) 
= (1 6 3)(1 6 3)(2 7)(2 7) = ((1 6 3))2 = (1 3 6) 

φ3 = φ2 φ = (1 3 6)(1 6 3)(2 7) = (2 7) 
φ4 = φ3 φ = (2 7)(1 6 3)(2 7) = (2 7)(2 7)(1 6 3) = (1 6 3) 
φ5 = φ4 φ = (1 6 3)(1 6 3)(2 7) = (1 3 6)(2 7) 
φ6 = φ5 φ = (1 3 6)(2 7)(1 6 3)(2 7) = (1 3 6)(1 6 3)(2 7)(2 7) = e. 

4. In (S6, ◦), if  φ = (2 5  4)(6 3 1)(4 3), then
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φ = (1 6 3 2 5 4) 
φ2 = (1 3 5)(2 4 6) 
φ3 = φ2 φ = (1 2)(3 4  )(5 6) 
φ4 = φ2 φ2 = (1 5 3)(2 6 4) 
φ5 = φ4 φ = (1 4 5 2 3 6) 
φ6 = φ5 φ = (1 4 5 2  3 6)(1 6 3 2  5 4) = e. 

The reader may note that computing φk becomes increasingly complicated as k 
and n become bigger, and some of the above computations were cumbersome. The 
computations of the exponent can be simplified using Propositions 6.2.9, and 6.2.6 
and the results presented in this section. The following lemma computes the order 
of a cycle. Recall the order of an element in a group defined in Sect. 5.5. 

Lemma 6.4.2 Let n ∈ N. The order of a cycle in Sn is equal to its length, i.e., 

ord((i1i2 . . .  ik)) = k 

where i1, i2, . . . ,  ik are elements in {1, 2, . . . ,  n}. In particular, the order of a 
transposition is 2. 

Proof We show that k is the smallest positive integer such that (i1i2 . . .  ik)k = e. Let  
1 ≤ s ≤ k. By Lemma 6.2.5, 

(i1i2 . . .  ik)k (is) = i f (s,k) 

where 

f (s, k) =
{
k + s mod k if k + s /= qk  for all q ∈ N 
k if k + s = qk  for some q ∈ N 

=
{
s mod k if k + s /= qk  for all q ∈ N 
k if k + s = qk  for some q ∈ N 

Since 1 ≤ s ≤ k, then k + 1 ≤ s + k ≤ 2k, which implies that the only possibility 
for s + k to be a multiple of k is 2k, i.e., 

f (s, k) =
{
s mod k k  + s /= 2k 
k k  + s = 2k 

=
{
s mod k s /= k 
k s  = k 

= s. 

i.e., (i1i2 . . .  ik)k (is) = is for each 1 ≤ s ≤ k, and (i1i2 . . .  ik)k = e. Let  r be a 
positive integer such that r < k. We compute (i1i2 . . .  ik)r (i1) as follows:
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(i1i2 . . .  ik)r (i1) = i f (1,r ) 

where 

f (1, r ) =
{
r + 1 mod  k if r + 1 /= qk  for all q ∈ N 
k if r + 1 = qk  for some q ∈ N. 

Since r < k, we have r +1 < k + 1 ≤ 2k, which implies that the only possibility 
for r + 1 to be a multiple of k is k. i.e., 

f (1, r) =
{
r + 1 mod  k if r + 1 /= k 
k if r + 1 = k. 

In both cases f (1, r ) = r + 1 /= 1. i.e., (i1i2 . . .  ik)r (i1) /= i1. Therefore 
((i1i2 . . .  ik))r /= e. ∎

Since every permutation in Sn is a finite product of disjoint commuting cycles, 
one can calculate the order of a permutation using the orders (lengths) of its factor 
cycles using the following lemma. 

Proposition 6.4.3 Let n ∈ N. The order of a permutation is the least common 
multiple of the orders of its factor disjoint cycles. i.e., if ψ1, ψ2, . . . , ψs are a set of 
pairwise disjoint cycles such that length ψi equals ki , where 1 ≤ i ≤ s, then 

ord(ψ1ψ2 · · ·  ψs) = lcm(k1, k2, . . . ,  ks). 

Proof Let l = lcm(k1, k2, . . . ,  ks). For each 1 ≤ i ≤ s, there exists an integer mi 

such that l = ki mi . As  ψ1, ψ2, . . . , ψs are pairwise disjoint cycles, they commute, 
which implies that 

(ψ1ψ2 · · · ψs)
l = (ψ1)

l (ψ2)
l · · · (ψs)

l = (ψ1)
k1m1 (ψ2)

k2m2 · · ·  (ψs)
ksms 

= e · e · · · e = e. 

By Lemma 5.5.6, ord(ψ1ψ2 · · ·  ψs) divides l. On another hand, since 

(ψ1ψ2 . . . ψs)
ord(ψ1ψ2...ψs ) = e 

and the cycles ψ1, ψ2, . . . , ψs are disjoint, by Corollary 6.1.12, ψ
ord(ψ1ψ2...ψs ) 
i = 

e for each 1 ≤ i ≤ s, which implies that ki divides ord(ψ1ψ2 . . . ψs) for each 
1 ≤ i ≤ s. Therefore, the least common multiple l = lcm(k1, k2, . . . ,  ks) divides 
ord(ψ1ψ2 . . . ψs). Proposition 2.2.5 (3) implies the result. ∎

Considering the above results, we compute some of the permutations in Example 
6.4.1, leaving the others as an exercise: 

• In (S5, ◦), if  φ = (1 2 3 4), then ord(φ) = 4, and
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φ2 = (1 2  3 4)2 = (1 2 3 4)(1 2  3 4) = (1 3)(2 4) 
φ3 = (1 2  3 4)3 = (1 2 3 4)(1 3)(2 4) = (1 4 3 2) 
φ4 = ((1 2  3 4))4 = e. 

• In (S7, ◦), let  φ = (1 2  3)(2 7 1  6). The permutation φ is not a cycle but can 
be written as a product of disjoint cycles φ = (1 6 3)(2 7). Thus, ord(φ) = 
lcm(3, 2) = 6, and 

φ2 = ((1 6 3)(2 7))2 = ((1 6 3))2 = (1 3 6) 
φ3 = φ2 φ = (1 3 6)(1 6 3)(2 7) = e(2 7) = (2 7) 
φ4 = ((1 3 6))2 = (1 6 3) 
φ5 = φ4 φ = (1 6 3)(1 6 3)(2 7) = (1 3 6)(2 7) 
φ6 = e. 

• In (S6, ◦), let  φ = (2 5  4)(6 3 1)(4 3). This permutation is a product of cycles 
that are not disjoint. By rewriting φ as a product of disjoint cycles, we obtain 
φ = (1 6 3 2 5 4), a 1-cycle of length 6. Therefore, ord(φ) = 6. 

Example 6.4.4 Consider the permutation φ = (2 4)(1 3 6) in S7. To find φ100, 
one first computes the order of φ. As  φ is a product of disjoint cycles, ord(φ) = 
lcm(2, 3) = 6. i.e., φ6 = e. Applying the division algorithm on 6 and 100 yields 
100 = 16 × 6 + 4. Thus, 

φ100 = φ4+16×6 = φ4
(
φ6

)16 
= φ4 (e)16 = φ4 . 

The cycles (2 4) and (1 3 6) are disjoint, and thus, they commute. Consequently, 

φ4 = ((2 4)(1 3 6))4 = (2 4)4 (1 3 6)4 . 

Since (2 4)4 = (
(2 4)2

)2 = e2 = e and (1 3 6)4 = (1 3 6)3 (1 3 6)1 = 
e(1 3 6) = (1 3 6), then φ4 = (1 3 6). 

The next example shows that both conditions a ∗ b = b ∗ a and 
gcd(ord(a), ord(b)) = 1 in Proposition 5.5.11 cannot be eliminated. 

Example 6.4.5 The cycles (1 2), (1 3), and (3 4) are elements in the group S4. Each 
of these cycles is a cycle of order 2, and 

ord((1 2)(1 3)) = Ord((1 3 2)) = 3 /= 4 = ord((1 2)) · ord((1 3)) 
ord((1 2)(1 3 4)) = Ord((1 3 4 2)) = 4 /= 6 = ord((1 2)) · ord((1 3 4)) 
ord((1 2)(3 4)) = 2 /= 4 = ord((1 2)) · ord((3 4)).
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The next example shows that the assumption for a group G to be abelian in 
Proposition 5.5.13 is essential. Recall that for any m ∈ Z, mG = {am : a ∈ G} and 
G[m] = {a ∈ G : am = e}. 
Example 6.4.6 Consider the symmetric group S4. As shown in Example 6.3.13, the  
group S4 consists of one 1-cycle, six 2-cycles, eight 3-cycles, six 4-cycles, and three 
products of 2-cycles. Each of these permutations, except the 3-cycles, has an order 
that divides 4. Therefore, 

1. The set 4S4 contains only the identity and the 3-cycles. Since (1 2 3)(1 2 4) = 
(1 3)(2 4) is not an element in 4S4, the  set  4S4 is not closed under the product 
of cycles, so it is not a group. 

2. The set S4[4] contains all the permutations, except the 3-cycles. Since 
(1 2)(2 4) = (1 2 4) is not an element of S4[4], the  set  S4[4] is not closed 
under the product of cycles, so it is not a group. 

6.5 Odd and Even Permutations 

In this section, each permutation in Sn for n ∈ N is classified as an even or odd 
permutation. For n > 1, this determination is based on expressing a permutation φ 
as a finite product of transpositions. Expressing φ as a product of transpositions can 
be performed by expressing the permutation as a product of cycles, then writing each 
cycle as a product of transpositions. In the case where n = 1, the group S1 has only 
one cycle of length 1. Hence, no transposition in S1. Recall that a cycle (i1i2 . . .  ik) 
in Sn , where 2 ≤ k ≤ n, is  

(i1i2 . . .  ik)(is) =
{
is+1 1 ≤ s < k 
i1 s = k 

for 1 ≤ s ≤ k. 

Proposition 6.5.1 Let n ∈ N such that n > 1. Any cycle in Sn can be written as a 
product of transpositions. Namely, e = (i1i2)(i1i2) for any i1 /= i2 and 

(i1i2 . . .  ik) = (i1ik)(i1ik−1) . . .  (i1i3)(i1i2) for any 2 ≤ k ≤ n. 

Proof The statement for the identity element is clear. Let n ≥ 2 and assume 
that (i1i2 . . .  ik) is a cycle in Sn . It suffices to show that (i1i2 . . .  ik)(is) = 
(i1ik)(i1ik−1) . . .  (i1i3)(i1i2)(is) for any 1 ≤ s ≤ k. 

• If s = 1, then applying the product (i1ik)(i1ik−1) . . .  (i1i3)(i1i2) on i1 is given by 
the steps 

i1 
(i1i2)−−→ i2 

(i1i3)−−→ i2 · · · i2 (i1ik−1) −−−→ i2 
(i1ik )−−→ i2 

and yields i2, which is (i1i2 . . .  ik)(i1).
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• If 1 < s < k, then applying the product (i1ik)(i1ik−1) . . .  (i1i3)(i1i2) on is is given 
by the steps 

is 
(i1i2)−−→ is 

(i1i3)−−→ is · · ·  (i1is−1) −−−→ is 
(i1is )−−→ i1 

(i1is+1) −−−→ is+1 
(i1is+2) −−−→ is+1 · · ·  is+1 

(i1ik )−−→ is+1 

Thus, is+1 = (i1i2 . . .  ik)(is). 
• If s = k, then applying the product (i1ik)(i1ik−1) . . .  (i1i3)(i1i2) to ik is given by 

the steps 

ik 
(i1i2)−−→ ik 

(i1i3)−−→ ik · · · ik (i1ik−1) −−−→ ik 
(i1ik )−−→ i1 

and yields i1 = (i1i2 . . .  ik)(ik). 
Hence, the equality is satisfied for all 1 ≤ s ≤ k. ∎

Remark 6.5.2 

1. According to the previous proposition, any cycle of length k, where k > 1, can 
be written as a product of k − 1 transpositions. 

2. For any n ∈ N, and for any i, j ∈ {1, 2, . . . ,  n} such that i /= j , the transposition 
(i j  ) can be written as (i j  ) = (aj  )(ai )(aj  ), where a ∈ {1, 2, . . . ,  n}\{i, j}. 

Corollary 6.5.3 Let n ∈ N such that n > 1. 

1. Any permutation in Sn can be written as a product of a finite number of 
transpositions. 

2. Any permutation in Sn can be written as a product of a finite number 
of transpositions of the form (aki ) for fixed a ∈ {1, 2, . . . ,  n} with ki ∈ 
{1, 2, . . . ,  n}\{a}. 

Example 6.5.4 Consider the group (S9, ◦) 

e = (5 8)(5 8), e = (1 2  3)(3 2  1) = (1 3)(1 2)(3 1)(3 2), 
= (1 3)(1 2)(1 3)(1 3)(1 2)(1 3). 

φ = (3 6 4 2)(5 8 7) = (3 2)(3 4)(3 6)(5 7)(5 8) 
= (3 2)(3 4)(3 6)(3 7)(3 5)(3 7)(3 8)(3 5)(3 8). 

ψ = (4 3 5 1) = (4 1)(4 5)(4 3). 

Using Corollary 6.5.3, one can classify the permutations into odd and even 
permutations, as follows 

Definition 6.5.5 Let n ∈ N such that n > 1, and φ ∈ Sn . We say that φ is an odd 
permutation if it can be written as a product of an odd number of transpositions. We 
say that φ is an even permutation if φ can be written as a product of an even number 
of transpositions. 

Example 6.5.6
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1. The identity permutation is an even permutation. 
2. Let 

φ =
(
1 2  3  4  5 6 7 8 9 10  11  
9 6 8 10  2  5 7 1 3  4  11

)
. 

As φ = (1 9 3 8)(2 6  5)(4 10) = (1 8)(1 3)(1 9)(2 5)(2 6)(4 10), then φ 
is even. 

3. Let 

φ =
(

1 2  
3 4  

3 4  
5 6  

5 6  
2 1  

7 8  
7 8

)
. 

The permutation φ = (1 3 5 2 4 6) is a cycle of length 6, and thus, it is an 
odd permutation. 

Writing a permutation as a product of transpositions is not unique. For example, 
if φ = τm . . . τ2τ1, where τ1, τ2, . . . , τm are transpositions, then 

τm . . . τ2τ1(1 3)(1 2)(3 1)(3 2) and τm . . . τ2τ1(5 8)(5 8) 

are equal to φ. However, if φ is represented as a product of an odd (resp. even) number 
of transpositions, then the number of transpositions in any other such representation 
of φ must be odd (resp. even). In the remainder of this section, we prove that any 
permutation φ cannot be simultaneously even and odd. We show the result for the 
identity permutation, and then for the general case. The following technical lemmas 
are needed. 

Lemma 6.5.7 Let n ∈ N such that n > 1. If σ and (i j) are different transpositions 
in Sn , then there exists a transposition τ in Sn and l ∈ {1, 2, . . . ,  n} such that i /∈ τ 
and σ (i j  ) = (il)τ . 

Proof If σ and (i j  ) are disjoint cycles, they commute, and the result follows by 
putting τ = σ and l = j . If  σ and (i j  ) are not disjoint, then σ = (is) or σ = (s j  ) 
for some s ∈ {1, 2, . . . ,  n}\{i, j}. 
• If σ = (is), then 

σ (i j) = (is)(i j  ) = (i js) = ( jsi  ) = ( j i  )( js) = (i j  )( js). 

and the result follows by putting τ = ( js) and l = j . 
• If σ = (s j  ), then 

σ (i j) = (s j  )(i j  ) = ( j is) = (s ji  ) = (si  )(s j) = (is)( js) 

and the result follows by putting τ = ( js) and l = s. ∎
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Lemma 6.5.8 Let n ∈ N, n > 1, and φ ∈ Sn . Let φ = τkτk−1 · · ·  τ1, k ≥ 2 be 
a representation of φ as a product of transpositions. Let s ∈ τ1 for some s ∈ 
{1, 2, . . . ,  n}. If φ cannot be expressed as a product of k − 2 transpositions, then 
for each i such that 1 ≤ i ≤ k, there is a representation of φ as a product of 
transpositions 

αkαk−1 · · · αi · · ·  α1 

such that αi is the first transposition that moves s. 

Proof The proof is done by induction on i . Assume that φ cannot be written as a 
product of k − 2 transpositions. 

• If i = 1, let  αt = τt for all 1 ≤ t ≤ k, then αkαk−1 · · ·  α1 is a representation of φ 
as a product of transpositions such that α1 is the first transposition that moves s; 
i.e., the statement is true at i = 1. 

• Assume that the statement is true for i . That is, there exists σkσk−1 · · ·  σ1, a repre-
sentation of φ as a product of transpositions such that σi is the first transposition 
that moves s. 

• To prove the statement for i +1, we need to find a representation of φ as a product 
of transpositions αkαk−1 · · ·  α1, such that the first transposition that moves s is 
αi+1. 

By the induction hypothesis φ = σkσk−1 · · ·  σ1 such that σi is the first transposi-
tion that moves s. If  σi+1 = σi , then σi+1σi = e, and φ can be written as a product 
of k − 2 transpositions, which contradicts the assumption. Thus, σi+1 /= σi . By  
Lemma 6.5.7, there exists a transposition τ and l ∈ {1, 2, . . . ,  n}, such that s /∈ τ 
and σi+1σi = (sl)τ . By defining the following set of transpositions 

α j = 

⎧⎨ 

⎩ 

(sl) j = i + 1 
τ j = i 
σ j j /∈ {i, i + 1} 

the product 

αkαk−1 · · ·  αi+2αi+1αi αi−1 · · ·  α1 = σkσk−1 · · ·  σi+2(sl)τσi−1 · · ·  σ1 

= σkσk−1 · · ·  σi+2σi+1σi σi−1 · · · σ1 = φ 

is an expression for φ as a product of transpositions such that αi+1 is the first 
transposition that moves s. Thus, by induction, the statement is true for all i 
where 1 ≤ i ≤ k. ∎

Lemma 6.5.9 Let n ∈ N, n > 1, and e ∈ Sn . If e is written as a product of k 
transpositions, then it can be written as a product of k − 2 transpositions. 

Proof Assume that e = τkτk−1 · · ·  τ1 for some k ≥ 2 and s ∈ τ1 where 
s ∈ {1, 2, . . . ,  n}. If  e cannot be written as a product of k − 2 transpositions, then
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by Lemma 6.5.8, there exists an expression for e as a product of transpositions 
αkαk−1 · · · α1, where αk is the first transposition that moves s. Hence, αk(s) /= s. 
However, s = e(s) = αkαk−1 · · ·  α1(s) = αk(s), which is a contradiction. ∎

The identity permutation is an even permutation as e = (i j  )(i j  ) for any i /= j . 
The following result shows that e cannot be odd. 

Corollary 6.5.10 Let n ∈ N. The identity permutation e ∈ Sn is not an odd 
permutation. 

Proof Assume that e can be written as a product of k transpositions where k is odd, 
i.e., k = 2q + 1 for some integer q. Repeatedly applying Lemma 6.5.9, e can be 
written as a product of k − 2 transpositions then as k − 4 transpositions, and finally 
after q repetitions, e can be written as a product of k − 2q transpositions. Since 
k − 2q = 1, then e is a transposition, which contradicts that e is the identity map. ∎

Corollary 6.5.11 Let n ∈ N, n > 1, and φ ∈ Sn . The permutation φ is either even 
or odd and cannot be both. 

Proof Let φ = τk · · ·  τ1 and φ = αs · · ·  α1 be two expressions for φ as product of 
transpositions. Using the second expression, we obtain φ−1 = α−1 

1 α−1 
2 · · ·  α−1 

s which 
implies that 

e = φ−1 φ = α−1 
1 α−1 

2 · · ·  α−1 
s · τk · · · τ1 = α1 · · ·αs · τk · · ·  τ1 

Thus, e is a product of k + s transpositions. As e cannot be an odd permutation, 
then k + s must be an even integer. Therefore, k and s must be either both even, or 
both odd. ∎

Using the last corollary and Remark 6.5.2 (1), one obtains the following result. 

Corollary 6.5.12 Let n, k ∈ N, n > 1, k ≤ n, and φ is a cycle of length k. The 
cycle φ is an odd permutation if and only if k is even, and vice versa. 

For each n ∈ N, the set of even permutations in Sn is denoted by An , while Bn 

denotes the set of all odd permutation of Sn . Since e is an even permutation, An is 
never empty. The last corollary shows that the two sets do not intersect. 

An = {φ ∈ Sn : φ is even}, Bn = {φ ∈ Sn : φ is odd}. 

If n = 1, then S1 = A1 = {e} and B1 = ∅. 
If n = 2, then S2 = {e, (1 2)}, A2 = {e}, and B2 = {(1 2)}. 

Example 6.5.13 To list all the elements in A3 and B3, list all the elements of S3 

S3 = {e, (1 2 3), (1 3 2), (1 3), (1 2), (2 3)}.
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As all the permutations S3 are cycles, by using Corollary 6.5.12, we obtain 

A3 = {(1 2)(1 2), (1 3)(1 2), (1 2)(1 3)}, B3 = {(1 3), (1 2), (2 3)}. 

Another way to determine if a permutation is odd or even is by defining a function 
on Sn, called the sign function. 

Definition 6.5.14 Let n ∈ N, and φ in Sn . The sign of φ, denoted by sgn(φ), is  
defined as (−1)k , where k is the number of transpositions in any expression for φ as 
a product of transpositions. 

Corollary 6.5.15 Let n ∈ N. The map sgn : Sn → {−1, 1} satisfies 

sgn(φ) =
{
1 if  φ is even 
−1 if  φ is odd 

for any φ ∈ Sn . 

The following proposition provides a computationally convenient way to deter-
mine the sign of a permutation without the need of writing it as a product of 
transpositions. 

Proposition 6.5.16 Let n ∈ N, and φ in Sn . The sign of φ is computed using the 
following equation 

sgn(φ) =
⊓

1≤i< j≤n 

φ( j ) − φ(i ) 
j − i 

. 

Example 6.5.17: Let φ = (1 2) ∈ S3. As the permutation φ is odd, then sgn(φ) is 
−1. Using the formula in Proposition 6.5.16, 

sgn(φ) = 
φ(3) − φ(2) 

3 − 2 
φ(3) − φ(1) 

3 − 1 
φ(2) − φ(1) 

2 − 1 

= 
3 − 1 
1 

· 3 − 2 
2 

· 1 − 2 
1 

= (2)
(
1 

2

)
(−1) = −1, 

as expected. 

Our next goal is to show that An is always a group, and Bn is not a group for any 
n. We begin with the following proposition. 

Proposition 6.5.18 Let n ∈ N, and φ, ψ ∈ Sn . 

1. If φ, ψ have the same parity, then φ ◦ ψ is even. 
2. If φ, ψ have opposite parity, then φ ◦ ψ is odd. 
3. The product of two even (odd) permutations is an even permutation.
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4. The product of a finite number of even permutations is an even permutation. 
5. φ−1 is even (odd) if and only if φ is even (odd). 
6. The cycle (i1 . . .  ik) is even (odd) if and only if k is odd (even). 

Proof Let φ = τk · · ·  τ1 and ψ = βs · · · β1 be expressions of φ, ψ as products of 
transpositions. The composition φ ◦ ψ = τk · · ·  τ1 · βs · · ·  β1 is a product of k + s 
transpositions. 

1. If k and s have the same parity (either both even or both odd), then k + s is even, 
and φ ◦ ψ is even. 

2. If k and s have the opposite parity (one is even and the other is odd), then k + s 
is odd, so φ ◦ ψ is odd. 

3. The statement (3) follows form (1). 
4. The statement of (4) follows from (3) by induction on the number of permutations. 
5. The result of (5) follows as φ−1 = τ −1 

1 · · ·  τ −1 
k = τ1 · · ·  τk can be expressed using 

the same number of transpositions forming φ. 
6. The result in (6) follows by Remark 6.5.2 which states that any cycle of length 

k where k > 1, can be written as a product of k − 1 transpositions. ∎
Note that since the product of two odd permutations is even, Bn is never closed 

and thus is never a group under the composition of maps. 

Corollary 6.5.19 Let n ∈ N, n > 1. The set An of all even permutations on 
{1, 2, . . . ,  n} forms a group under composition. 
Proof As e ∈ An , the  set  An is a nonempty subset of Sn . As the composition of 
two even permutations is even, An is closed under composition, which implies that 
◦ forms a binary operation on An (Proposition 4.1.6). The associativity property 
is inherited from Sn , and e serves as an identity element in An . As the inverse of 
an even permutation is even (Proposition 6.5.18 (5)), An is closed undertaking the 
inverse, and thus, it is a group. ∎
Definition 6.5.20 Let n ∈ N, n > 1. The group An is called the alternating group 
of degree n. 

Figure 6.4 summarized the main results about permutation that are shown in this 
chapter. 

Fig. 6.4 Summary



6.5 Odd and Even Permutations 213

Exercises 

Solved Exercises 

6.1 Consider the following permutations. 

α = (2 5 6)(3 4) ∈ S7 

β = (2 5 3)(8 9 1 1)(7 1 4) ∈ S11 

γ =
(
1 2 3 4 5 6 7  
5 2 3 1 6 4 7

)
∈ S7 

δ =
(
1 2 3  4  5 6 7 8 9 10  
5 2  3 10  6  4 7 9 8  1

)
∈ S10. 

(a) Write the matrix representation of the permutations α and β. 
(b) Write the permutations γ and δ as a product of disjoint cycles. 
(c) Find the order of all the above permutations. 
(d) For each of the permutations determine whether it is odd or even. 
(e) Find Move(α), Move(γ ). 
(f) Find γ 39 and δ121. 
(g) Are the permutations α and γ disjoint? Explain. 

Solution: 

(a) Using the result in Corollary 6.2.7, we have  

α =
(
1 2 3 4 5 6 7  
1 5 4 3 6 2 7

)

β =
(
1 2  3 4 5 6 7 8  9  10 11  
4 5 2 7 3 6 1 9 11 10 8

)
. 

(b) Applying the method in the proof of Proposition 6.2.9 yields 

γ = (1 5 6 4) and δ = (1 5 6 4 10)(8 9). 

(c) By Proposition 6.4.3, 

ord(α) = lcm(3, 2) = 6, and ord(β) = lcm(3, 3, 3) = 3. 

As γ = (1 5 6 4) is a cycle of length 4, then ord(γ ) = 4. Finally, 
ord(δ) = lcm(5, 2) = 10. 

(d) Using the results in Proposition 6.5.18, one can obtain
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• α = (2 5  6)(3 4) is a product of an even cycle and an odd cycle, and 
thus an odd permutation. 

• β = (2 5 3)(8 9 11)(7 1 4) is a product of three even cycles, and 
thus, it is an even permutation. 

• γ = (1 5 6 4) is a 4-cycle, and thus, it is an odd permutation. 
• δ = (1 5 6 4 10)(8 9) is a product of even and odd permutations, and 

thus, it is an odd permutation. 

(e) Using Definition 6.1.6, we obtain 

Move(α) = {2, 3, 4, 5, 6} and Move(γ ) = {1, 4, 5, 6}. 

(f) Several methods can be used to compute γ 39, we present two methods 
both of which use the fact that ord(γ ) = 4. The first method applies the 
quotient-remainder theorem on 39 and 4 to obtain 

γ 39 = γ 9×4+3 = (
γ 4

)9 
γ 3 = γ 3 = (4 6 5 1). 

An alternative method that uses fewer computations starts by noting 
that γ γ 39 = γ 40 = (γ 4)10 = e, thus γ 39 = γ −1 = (1 5 6 4)−1 = 
(4 6 5 1). 

The two methods are applied to compute δ121 using the fact that 
ord(δ) = 10, as follows: 

δ121 = δ12×10+1 = (δ10 )12 δ = eδ = δ. 

and 

δ−1 δ121 = δ120 = (δ10 )12 = e, which implies that δ120 = δ. 

(g) No. The permutations α and γ are not disjoint since Move(α) ∩ 
Move(γ ) /= ∅. 

6.2. Let α =
(
1 2  3 4  
1 2  4 3

)
, and β =

(
1 2 3 4  
2 1  3  4

)
. Do  α and β commute? Find (αβ)4 . 

Solution: 

Expressing α and β as a product of cycles yields 

α = (3 4) and β = (1 2). 

Since α and β are disjoint, by Proposition 6.1.10, αβ = βα. Using  the  
result of Corollary 6.1.11, we obtain 

(αβ)4 = α4 β4 = (
(34)2

)2(
(12)2

)2 = e.
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6.3. Let α = (2 5 6)(3 2 4 1) ∈ S7. Find  α−1(2) and α(5). 

Solution: 
Since α takes 5 to 6 then α(5) = 6. To compute α−1(2), we must compute 

α−1 using one of the following methods: 

• α = (256)(3241) = (135624), which implies that α−1 = (426531). 
• α−1 = (3241)−1(256)−1 = (1423)(652). 

In both cases, α−1(2) = 6. 
6.4. Let A be any nonempty set. Consider the symmetric group of A (Corollary 

5.1.11). For each element f in SA, define the relation ∼= f on A as follows: 

i ∼= f j ⇔ ∃  m ∈ Z ∍ j = f m (i ). 

The relation ∼= f is an equivalence relation on the set A (Check!). The 
equivalence classes of such relation are called the orbits of f and given for 
each i ∈ A as 

Or f (i ) =
{
f k (i ) : k ∈ Z

}
. 

Consider the additive group (Z, +). Let  f : Z → Z be the map defined 
by f (n) = n + 2. As  f is a bijective map on Z, then f belongs to SZ, the  
symmetric group on Z. Find all the distinct orbits of f . 

Solution: 

Let i ∈ Z be an arbitrary element. 

Or f (i ) =
{
f k (i ) : k ∈ Z

}
. 

One can show by induction on k that f k(i ) = i + 2k. Therefore, for any 
i ∈ Z 

Or f (i ) = {i + 2k : k ∈ Z} = i + 2Z. 

By applying the quotient-remainder theorem (Theorem 2.1.2) on  i and 2, 
one obtain that there exist q, r ∈ Z such that i = 2q + r , where 0 ≤ r < 2, 
i.e., 

Or f (i ) = i + 2Z = r + 2q + 2Z = r + 2Z, where r = 0, 1. 

Hence, only two orbits of f exist, namely 2Z (at r = 0) and 1 + 2Z at 
(r = 1). 

6.5. Consider the symmetric group S9. Find two elements α, β in S9 such that 

ord(α) = ord(β) = 5 and ord(αβ) = 9.
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Solution: 

Let α = (1 2 3 4 5), β  = (1 6 7 8 9) ∈ S9. As the order of any cycle is 
equal to its length, then ord(α) = 5 = ord(β). The product 

αβ = (1 2  3 4 5)(1 6 7 8 9) = (1 6 7 8 9 2  3 4 5). 

Therefore, ord(αβ) = 9. 
6.6. Prove that α = (4 5 7 2 1 8) ∈ S8 is not a product of 3-cycles. 

Solution: 
Assume that α is a product of only 3-cycles. As any 3-cycle is an even 

permutation, thus by Proposition 6.5.18 (4), α is an even permutation, which 
contradicts the fact that 

α = (4 8)(4 1)(4 2)(4 7)(4 5) 

is a product of five transpositions. Therefore, α cannot be a product of only 
3-cycles. 

6.7. Let n ∈ N such that n > 1. Prove that in Sn , the number of even permutations 
equals the number of odd permutations. Namely, 

|An| = |Bn| = 
n! 
2 

. 

Solution: 

Since n > 1, then (1 2) ∈ Sn . Define 

f : An → Bn 

φ |→ (12)φ. 

The permutation (1 2) is an odd permutation. Therefore, by Proposition 
6.5.18 (2), the permutation (1 2)φ is odd for each φ ∈ An . Hence, f defines 
a function from An to Bn . The  map  f is injective since 

f (φ1) = f (φ2) ⇒ (1 2)φ1 = (1 2)φ2 

⇒ (1 2)(1 2)φ1 = (1 2)(1 2)φ2 

⇒ φ1 = φ2. 

Since for any ψ ∈ Bn, the permutation (1 2)ψ ∈ An and satisfies 
f ((1 2)ψ) = ψ , then f is also surjective. Thus, f is a bijective map, 
and |An| = |Bn|. Since {An, Bn} form a partition of the set Sn , then 
n! =  |Sn| = |An| + |Bn| = 2|An|, which implies the result. 

6.8. Let n ∈ N. Show that An = Sn if and only if n = 1.
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Solution: 
If n = 1, then S1 = {e}. Since A1 is a group, it cannot be empty, and 

A1 is a nonempty subset of {e}. Thus, S1 = A1. For the other direction, 
assume that n > 1, then α = (1 2) belongs to Sn . As the permutation α is 
odd permutation then α does not belong to An . Therefore, Sn /= An . 

6.9. Let n ∈ N and α be a cycle in Sn . Show that 

ord(α) is odd if and only if α is an even permutation. 

Solution: 
Assume that α = (i1i2 . . .  ik) is a cycle in Sn . According to Lemma 6.4.2, 

we obtain ord(α) = k. Proposition 6.5.18 (6) now implies the result. 
6.10. Let n ∈ N, where n ≥ 3. Show that no nontrivial cycle belongs to the center 

of Sn . i.e., C(Sn) = {e} for all n ≥ 3. 

Solution: 

Let α = (i1i2 . . .  ik) be any cycle in Sn such that k ≥ 2. 

• If k = 2, then α = (i1i2). By choosing i3 ∈ {1, 2, . . . ,  n}\{i1, i2} (n ≥ k), 
and direct computations yield, 

α(i1i3) = (i1i3i2) /= (i1i2i3) = (i1i3)α, 

and α is not in the center. 
• If k > 2, then (i1i2 . . .  ik)(i1ik)(ik) = i2 /= ik = (i1ik)(i1i2 . . .  ik)(ik). i.e., 

α(i1ik)(ik) /= (i1ik)α(ik) 

and α is not in the center. 

Unsolved Exercises 

6.11. Let φ =
(
1 2 3 4 5  
3 4 1 5 2

)
and ψ =

(
1 2 3 4 5  
2 3 1  4  5

)
be permutations in S6. 

Express both φ and ψ as a product of disjoint cycles. Find φ ◦ ψ and ψ ◦φ. 
6.12. In S4, find α6431, where α = (1 2 3 4). 
6.13. Consider the group S6 and the permutations 

φ =
(
1 2  3 4 5 6  
3 5 2 1 6 4

)
, ψ  =

(
1 2 3 4 5 6  
2  4  5 3 1 6

)
, ϕ  =

(
1 2 3 4 5 6  
2  4  5 6 5 4

)

Find the order of these permutations. Find the permutation ψ ◦ φ ◦ ϕ and 
its inverse. 

6.14. Find the order of the given permutations:
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α = (2 4 1 7)(3 5 6) as an element in S7 

β = (1 4 2)(8 6)(3 5 6 7) as an element in S8 

6.15. Consider the group S7. Write the following permutations as a product of 
transpositions. 

• (1 2  3)(4 3 6 5). 
• (1 2  3 4 5). 
• (5 7)(3 2 4)(1 6). 
• (1 2  3)(4 5 6). 
• (3 4 2  6)(3 4 2 6). 

6.16. Consider the group S8. Let  φ =
(
1 2 3 4 5 6 7 8  
5 4 6 2 3 8 1 7

)
, and ψ = (1 5 3 4) 

i. Find the permutations 

φ3 ψ−2 φ, ψ2 φψ, φ2 ψ2 , φψφ, ψφ,  φψ, ψ−1 , φ−1 . 

ii. Find the parity of φ, ψ , and all permutations in (i). 
iii. Find ord(φ), ord(ψ), ord

(
φ2

)
, and ord

(
ψ4

)
. 

iv. Find the orbits of φ and ψ and the orbits of all permutations in (i). 
v. Compute φ7, ψ6, φ22. 

6.17. Consider the permutations φ = (1 3 5)(1 2) and ψ =
(
1 2  3 4 5 6 7  
5 2  1 7 3 6 4

)
as 

elements in S7. Determine if these permutations are even or odd. 

6.18. Let α =
(
1 2 3 4  
2 4 3  1

)
and β =

(
1 2 3 4  
2 3  1  4

)
be elements in S4. 

a. Express α, β as products of transpositions. 
b. Determine if α, β are even or odd permutations. 
c. Find α ◦ β and β ◦ α and determine their parity. 
d. Find the orders of α ◦ β, β ◦ α, β, α. 
e. Does α(2) ∈ Move(α)? Find  Move(α) ∩ Move(β). 
f. Find all the distinct orbits of α and β.

6.19. Repeat all the questions in Exercise 6.18 given that β = (2 4 3 5) and α = 
(1 2 3 6) as elements in S6. 

6.20. Consider the permutations φ =
(
1 2  3 4  
1 3 2 4

)
and ψ =

(
1 2  3 4  
4 3 2 1

)
as elements 

in S4. Find  (ψφ)5 and its order as an element of S4. 
6.21. Give an example of n ∈ N, and elements α and β in Sn such that ord(α) = 

ord(β)and ord(αβ) = 4. 
6.22. Give an example of n ∈ N, and elements α and β in Sn such that ord(α) = 3, 

ord(β) = 4. and ord(αβ) /= lcm(3, 4) 
6.23. List all possible orders of an element of A6.
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Table 6.2 Table of the group (A, ∗) 
* x y z g h k 

x x y z g h k 

y y x k h g z 

z z h x k y g 

g g k h x z y 

h h z g y k x 

k k g y z x h 

6.24. Show that C(Sn) = {e}, for each n ≥ 3. 
6.25. How many cycles of order 3 are in S5? How many cycles of order 3 are in 

S6? 
6.26. How many permutations in S5 are of the form of a product of two 

transpositions? 
6.27. Let n ∈ N, and consider the group Sn . Let  φ and ψ be two disjoint 

permutations in Sn . Show that if φψ = e, then φ = ψ = e. 
6.28. Let G = (S3, ◦), A = {x, y, z, g, h, k}, and f : A → G be the bijective 

map given by f (x) = e, f (y) = (1 2), f (z) = (1 3), f (g) = (2 3), f (h) = 
(1 2 3), f (k) = (1 3 2). Let  (A, ∗) be the group defined in Exercise 5.21. 
Show that the group structure on A is given by Table 6.2. 
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Chapter 7 
Subgroups 

The present chapter focuses on subgroups, which are subsets of a group G that form 
groups under the operation inherited from G. For any group, the subset that contains 
only the identity element forms a subgroup, known as the trivial subgroup. Another 
subgroup of a group G is the whole set G. A subgroup that is not the trivial or not the 
whole group is called a proper subgroup. The first section of this chapter presents 
the definitions and basic examples of subgroups needed for the following sections. 
Section 7.2 examines the operation on subgroups such as intersection, union, and 
product of subgroups. Section 7.3 focuses on the study of the subgroups generated 
by subsets and presents important results regrading them. The most content heavy 
section in this chapter is Sect. 7.4, which introduces the notion of the cosets of 
a subgroup and presents the statement and proof of Lagrange’s theorem. Normal 
subgroups are defined and studied in Sect. 7.5. In Sect. 7.6, the internal direct product 
of subgroups is described. We shall see in Chap 8 that the internal direct product of 
two subgroups can be identified with their direct product defined in Sect. 5.6 (Exercise 
8.6). We end the chapter with an important notion in group theory known as quotient 
groups. 

7.1 Definitions and Basic Examples 

In this section, we present the basic definitions needed to study subgroups, and many 
examples to illustrate the associated notions. 

Definition 7.1.1 Let (G, ∗) be a group, and H be a nonempty subset of G. If  H is 
a group under the operation ∗, then H is said to be a subgroup of G and denoted by 
H < G.
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Example 7.1.2 

1. For a group G, the subsets H = {e} and H = G are always subgroups of G. The  
subgroup H = {e} is called the trivial subgroup of G. A proper subgroup of G 
is any nontrivial subgroup that is not equal to G. 

2. The groups (Z, +), (Q, +), and (R, +) are subgroups of (C, +). 
3. The group

(
R

+, ·) is subgroup of the multiplicative group (R∗, ·). 
4. For each n ∈ N, the  set  An consisting of all even permutations on {1, 2, . . . ,  n} 

forms a group under composition (Corollary 6.5.19), therefore An is a subgroup 
of Sn . 

5. Let n ∈ N, n ≥ 3. As the product of two cycles of Sn is not necessarily a cycle, 
the subset of Sn that consists of all cycles on {1, 2, . . . ,  n} is not a subgroup. 

6. For each n ∈ N, the group O(n), the orthogonal group of order n (Example 
5.1.9), forms a subgroup of the general linear group GLn(R). 

According to the uniqueness of the identity and inverse element (Corollaries 4.1.16 
and 4.3.4), we obtain the following result. 

Lemma 7.1.3 Let G be a group and H be a subgroup of G. The identity elements 
in H and G coincide. For each h ∈ H, the inverse of h in H coincides with the 
inverse of h as an element in G. 

Note that the above lemma is not necessarily true in case of G is not a group. For 
example, let G = R3 endowed with the operation∗, where (x1, x2, x3)∗(y1, y2, y3) = 
(x1y1, x2 y2, x3 y3). Let  H = {(x1, x2, 0) : x1, x2 ∈ R∗}. It is easy to verify that G is 
a monoid with identity eG = (1, 1, 1), and G is not a group since (0, 0, 0) is not 
invertible in G. However, the subset H of G is a group under ∗ with an identity 
eH = (1, 1, 0) (Check!). 

According to Definition 7.1.1, to show that a nonempty subset H is a subgroup of 
G, one must verify that H is closed under the operation ∗ and satisfies the three condi-
tions that follow Definition 5.1.1. The following proposition shortens the processes 
used to verify that H is a subgroup of G. 

Proposition 7.1.4 Let (G, ∗) be a group and H be a nonempty subset of G. The 
following statements are equivalent: 

1. H is a subgroup of G. 
2. H is closed under the operation ∗ and under taking the inverse, i.e., 

a ∗ b ∈ H ∀ a, b ∈ H ∧ a−1 ∈ H ∀ a ∈ H. 

3. a ∗ b−1 ∈ H for each a, b ∈ H . 

Proof We show that 1 ⇒ 2 ⇒ 3 ⇒ 1, as follows.
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If (1) holds, then H is a group under the operation ∗. Hence, H is closed under ∗ 
and by Lemma 7.1.3, it is close under taking the inverse. If (2) holds, let a, b be any 
arbitrary elements in H . Since b ∈ H, then by assumption b−1 is also an element 
of H . Since H is also closed under ∗, then a ∗ b−1 ∈ H , as required. Assume that 
(3) holds. As H is a nonempty set, there exists a in H such that a ∗ a−1 ∈ H . Thus, 
e ∈ H , and H contains the identity element of G. If  a ∈ H , then a−1 = e∗a−1 ∈ H . 
Thus, H contains the inverses of its elements. For any a, b ∈ H , as  b−1 ∈ H, then 
a ∗ b = a ∗ (b−1

)−1 ∈ H . That is, H is closed under the operation ∗. Finally, H 
inherits the associativity property of ∗ as H is a subset of G. Consequently, H is a 
subgroup of G. ∎

Example 7.1.5 

1. The set of even integers, 2Z = {2q : q ∈ Z} forms a subgroup of (Z, +), while 
the odd integers do not. Note that the zero element belongs to 2Z, and thus, 2Z 
is a nonempty subset of Z that satisfies 2q1 − 2q2 = 2(q1 − q2) ∈ 2Z for all 
q1, q2 ∈ Z. By Proposition 7.1.4, 2Z is a subgroup of (Z, +). The set of odd 
integers does not contain an identity element with respect to +. Moreover, it 
is not closed under the addition operation since the sum of two odd integers is 
always even. 

2. Similar to 2Z, one can show that 

nZ = {nq : q ∈ Z} is a subgroup of (Z, +) for any n ∈ N. 

In fact, nZ, n ∈ N are the only nontrivial subgroups of (Z, +) (Exercise 7.23). 

3. Let G be an abelian group. For each integer m, the  sets  

mG = {am : a ∈ G
}
and G[m] = {a ∈ G : am = e

}

form subgroups of G (Proposition 5.5.13). For example, if G is the additive group 
Z30 then 

5Z30 = {[0], [5], [10], [15], [20], [25]} and Z30[5] = {[0], [6], [12], [18], [24]} 

are examples of subgroups of Z30. If  G is not an abelian group, then the sets mG 
and G[m] are not necessarily subgroups of G. For example, consider the symmetric 
group S3. The subset 

3S3 = {e, (12), (13), (23)} = S3[2] 

is not a subgroup of S3 (Check!). See also Example 6.4.6.
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If H is a finite subset of a given group G, then the required conditions for H 
to be a subgroup can be weakened from those in Proposition 7.1.4. The following 
proposition demonstrates that one needs only to show that ∗ is a binary operation on 
H . 

Proposition 7.1.6 Let (G, ∗) be a group and H be a finite nonempty subset of G. 
The subset H is a subgroup of G if and only if H is closed under the operation ∗, 
i.e., 

H < G ⇔ a ∗ b ∈ H ∀ a, b ∈ H 

Proof Assume that H is a finite nonempty subset of G. If  H is a subgroup of G, 
then (H, ∗) is a group, and therefore, H is closed under ∗. For the other direction, 
assume that H is closed under ∗. It suffices to show that the inverse of any element 
of H belongs to H (Proposition 7.1.4 (2)). Let a be any element of H . Since H 
is closed under ∗, then for each n ∈ N, an = a ∗  · · ·  ∗  a︸ ︷︷ ︸

n times 

belongs to H . Therefore,

{
a, a2, a3, . . .

} ⊆ H. Since H is finite, there exist m, n ∈ N such that am = an . 
Without loss of generality, assume m > n, multiplying both sides of the equality by 
a−n yields 

am = an ⇒ am ∗ a−n = an ∗ a−n ⇒ am−n = e 
⇒ a ∗ am−n−1 = am−n−1 ∗ a = e. 

Since m > n ≥ 1, then m − n ≥ 1, and thus, 

a−1 = am−n−1 ∈ H.

∎
Note that if [a] is an arbitrary element in Zn, for any q ∈ Z, 

[aq] = [a] ⊕n [a] ⊕n · · ·  ⊕n [a]︸ ︷︷ ︸
q times 

∈ Zn. 

i.e., the set [a]Z = {[aq] : q ∈ Z} forms a subset of Zn . The next example shows 
that [a]Z is a subgroup of the additive group (Zn, ⊕n) for any a ∈ Z. 

Example 7.1.7 Let n ∈ N and consider the additive group (Zn, ⊕n). For each [a] ∈ 
Zn , the subset [a]Z = {[aq] : q ∈ Z} is nonempty as the zero element [0] = [a0] ∈ 
[a]Z. If  [aq1], [aq2] ∈ [a]Z for some q1, q2 ∈ Z, then 

[aq1] ⊕n [−aq2] = [a(q1 − q2)] ∈ [a]Z, where q1 − q2 ∈ Z. 

By Proposition 7.1.6, [a]Z is a subgroup of Zn . In fact, these subgroups are the 
only subgroups of Zn (Exercise 7.24).
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For instance, if n = 12, then [1]Z = {[q] : q ∈ Z} = Z12, [2]Z = 
{[0], [2], [4], [6], [8], [10]}, [3]Z = {[0], [3], [6], [9]}, [4]Z = {[0], [4], [8]}, 
[5]Z = Z12, [6]Z = {[0], [6]}, [7]Z = Z12, [8]Z = {[0], [8], [4]}, [9]Z = 
{[0], [9], [6], [3]}, [10]Z = {[0], [10], [8], [6], [4], [2]}, and [11]Z = Z12 are all 
subgroups of Z12. 

Example 7.1.8 

1. Consider the group (C∗, ·), where · is the multiplication of complex numbers. 
Let H(4) = {z ∈ C∗ : z4 = 1

} = {±1, ±i}. The subset H (4) is a subgroup of 
(C∗, ·). In general, for each n ∈ N, one can show that 

H(n) = {z ∈ C∗ : zn = 1
}

is a subgroup of (C∗, ·) using Proposition 7.1.4 (3), as follows: Assume that n ∈ N, 
since 1 ∈ H (n), then H (n) is a nonempty subset of C∗. If  z1, z2 are two elements in 
H (n), then

(
z1z

−1 
2

)n = (z1)n
(
z−1 
2

)n = (z1)n
(
zn 2
)−1 = 1 

i.e., z1z
−1 
2 ∈ H(n). The subgroup H (n) is called the group of the nth roots of unity. 

With basic knowledge of complex analysis (Exercise 7.1), one can see that the 
subgroup H(n) is finite. Namely, 

H (n) =
{
e 

2π ik  
n : 0 ≤ k < n

}

where eiθ = cos θ + i sin θ . 

2. Consider the group (C∗, ·), where · is the multiplication on complex numbers. 
Let T be the unit circle, i.e., T = {z ∈ C∗ : |z| = 1}. The unit circle T is a 
nonempty subset of C∗ that forms a subgroup of (C∗, ·) (Check!). Note that the 
circle {z ∈ C∗ : |z| = 4}, whose center is at (0, 0) and whose radius is 2, is a  
nonempty subset of C∗ that is not a subgroup of (C∗, ·) since it is not closed 
under multiplication. 

Example 7.1.9 

1. Consider the group (Sn, ◦) where n ≥ 3, and let H = {e, (123), (132)}. The  
set H is a nonempty subset of Sn that is closed under composition and taking 
the inverse since (1 2 3) and (1 3 2) are inverse of each other. Therefore, H is 
a subgroup of the symmetric group (Sn, ◦). If  n = 3, then H = A3, which we 
have already shown to be a subgroup of (S3, ◦) (Corollary 6.5.19). Similarly, 
one can prove that Ak < Sn for all n ≥ k. 

2. Consider the group (S7, ◦). Let  A be the subset of S7 that consists of all permu-
tations that permute only {2, 3, 5} and fix any other elements in {1, 2, . . . ,  7}.
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The subset A contains the identity and the product of two permutations of A is an 
element in A. Thus, A is a nonempty finite subset of S7 that is closed under the 
product of permutations. Therefore, A is a subgroup of S7 (Proposition 7.1.6). 
Note that A consists of permutations that only permute three elements, so A can 
be considered as a permutation group on three elements. 

3. We generalize the above example as follows. Let n ∈ N. Consider the group 
(Sn, ◦), choose k such that 1 < k ≤ n, and let Fk be a subset of k element of 
{1, 2, . . . ,  n}. Let A be the subset of Sn that consists of all permutations that 
permute the elements of Fk and fix all other elements in {1, 2, . . . ,  n}. As the  
product of two permutations of A is an element in A, then A is a nonempty finite 
subset of Sn that is closed under the product of permutations. Therefore, A is a 
subgroup of Sn (Proposition 7.1.6). Since A consists of permutations that only 
permute k elements, then A is considered as a permutation group on k elements. 

Example 7.1.10 The center of any group G is a subgroup of G. This result directly 
follows by Proposition 5.4.8. For example, consider GL2(R), the group of invertible 
2 × 2 matrices with real coefficients under the matrix multiplication. The subset{(

a 0 
0 a

)
: a ∈ R∗

)
is a subgroup of GL2(R) since it is the center of GL2(R) 

(Example 5.4.9 (3)). 

Proposition 7.1.11 Let (G, ∗) be an abelian group and T = {a ∈ G : ord(a) < ∞}. 
The subset T forms a subgroup of G. The subgroup T is called the torsion subgroup 
of G. 

Proof Since ord(e) = 1, then T is a nonempty subset of G. Let  x, y be any elements 
in T such that ord(x) = n < ∞, ord(y) = m < ∞. Since G is abelian, it follows 
by Lemma 5.4.5 (2) that

(
x ∗ y−1

)nm = xnm ∗ (y−1
)nm 

. 

Hence,

(
x ∗ y−1)nm = xnm ∗ (y−1)nm = (xn)m ∗ (ym)−n = e 

i.e., By Lemma 5.5.5, ord
(
x ∗ y−1

) ≤ nm < ∞, and T is a subgroup of G. ∎
The requirement in the last proposition that G is abelian is necessary. For example, 

in the group (GL2(R), ·), the elements A =
(
1 0  
1 −1

)
, B =
(
1 0  
0 −1

)
have finite 

orders (ord(A) = ord(B) = 2). However, one can show by induction that (AB)n =(
1 0  
n 1

)
/= I2 for each positive integer n. Therefore, T is not a subgroup of GL2(R). 

Let G be a group. According to Corollary 5.1.11, the set of all bijective maps on 
G, denoted by SG , forms a group under the composition of maps. Our next goal is 
to present examples of subgroups of the group SG , the subgroup of left and right 
multiplications. We begin with the following definition.
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Definition 7.1.12 Let (G, ∗) be a group. For a ∈ G, the  map  fa : G → G defined 
by x |→ a ∗ x for all x ∈ G, is called the left multiplication by a. 

Proposition 7.1.13 Let G be a group. For a ∈ G, the left multiplication by a is a 
bijective map on G and f −1 

a = fa−1 . 

Proof The injectivity of the map fa follows by cancelation law. To show that fa 
is surjective, let y be an arbitrary element in G. As  G is a group, x = a−1y is an 
element in G and satisfies fa(x) = y. Since 

fa−1 fa(x) = a−1 ∗ (a ∗ x) = x, and 

fa fa−1 (x) = a ∗ (a−1 ∗ x) = x, 

then f −1 
a = fa−1 . ∎

The set of all left multiplication maps of G is denoted by Lm(G). Similarly, one 
can define the right multiplication on G. The set of all right multiplication maps of 
G is denoted by Rm(G). 

Proposition 7.1.14 Let G be a group. The set Lm(G) forms a subgroup of SG, 
such that fa ◦ fb = fa∗b for all a, b ∈ G. 

Proof By Proposition 7.1.13, Lm(G) is a subset of SG . This subset is nonempty, as 
fe ∈ Lm(G). For each fa, fb ∈ Lm(G), 

fa f 
−1 
b (x) = a ∗ (b−1 ∗ x

) = (a ∗ b−1
) ∗ x = fa∗b−1 (x) for all x ∈ G 

i.e., fa f 
−1 
b = fa∗b−1 ∈ Lm(G). Therefore, Lm(G) is a subgroup of SG . 

For each a, b ∈ G, 

fa ◦ fb(x) = a ∗ (b ∗ x) = (a ∗ b) ∗ x = fa∗b(x) for all x ∈ G.

∎

7.2 Operations on Subgroups 

In this section, we study set’s operations on subgroups, such as intersections and 
union of subgroups. We also define the product of subgroups. We defer the study 
of the quotient of groups to Sect. 7.7, as several results must be developed before 
the quotient can be defined. 

Proposition 7.2.1 Let (G, ∗) be a group. The intersection of any family of subgroups 
of G is a subgroup of G. i.e., if {Hi : i ∈ I ⊆ N} is a set of subgroups of G, then∩

i∈I Hi < G.
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Proof Since e ∈ Hi ⊆ G for each i ∈ I, then e ∈∩i∈I Hi ⊆ G, and thus,
∩

i∈I Hi 

is a nonempty subset of G. Let  a, b be elements in
∩

i∈I Hi . Both elements a, b ∈ Hi 

for each i ∈ I . Since Hi is a subgroup of G, then a ∗ b−1 ∈ Hi for each i ∈ I . 
Therefore a ∗ b−1 ∈∩i∈I Hi . Proposition 7.1.4 (3) implies the result. ∎

Example 7.2.2 Consider the additive group (Z, +) and its subgroups H = 2Z, K = 
5Z. According to Proposition 7.2.1, the intersection H ∩ K = 10Z is a subgroup of 
Z. However, their union is not closed under the addition operation +, since 2 ∈ H 
and 5 ∈ K , but  2 + 5 = 7 /∈ H ∪ K . 

This example shows that the union of subgroups of G does not need to form a 
subgroup of G. The following proposition determines the conditions on H and K 
under which the union H ∪ K forms a subgroup of G. 

Proposition 7.2.3 Let G be a group. If H, K are subgroups of G, then 

H ∪ K < G ⇔ H ⊆ K ∨ K ⊆ H. 

Proof If H ⊆ K ∨ K ⊆ H, then H ∪ K = K ∨ H ∪ K = H . In both cases, 
H ∪ K is a subgroup of G. For the other direction, assume that H, K , and H ∪ K 
are subgroups of G. If  H ⊈ K , we show that K ⊆ H, as follows. Let y be an 
arbitrary element of K . Since H ⊈ K , there exists x0 ∈ H such that x0 /∈ K . Both  
elements x0 and y belong to H ∪ K Since H ∪ K is a subgroup of G, we have that 
x0 ∗ y−1 ∈ H ∪ K . If  x0 ∗ y−1 ∈ K , then x0 = x0 ∗ y−1 ∗ y ∈ K , which leads to a 
contradiction. Hence, x0 ∗ y−1 must be an element of H . Since H is a group, we get 

y−1 = x−1 
0 ∗ x0 ∗ y−1 ∈ H. 

Thus, y ∈ H . Consequently, K ⊆ H . If  K ⊈ H by similar argument we can 
show that H ⊆ K . ∎

Definition 7.2.4 Let (G, ∗) be a group and let H, K be subsets of G. The product 
of H and K is defined as the subset. 

HK  = {h ∗ k : h ∈ H, k ∈ K }. 

If H has only one element h, we write hK  for HK  . Similarly, we write Hk  for 
HK  if K contains only one element k. It is easy to show that if H, K and F are 
subgroups of a group G, then their product satisfies the following: 

• (HK  )F = H(K F). 
• H ⊆ HK  and H ⊆ K H. 
• If the operation ∗ is abelian, then HK  = K H. 
• If H ⊆ K , then both HK  and K H  are equal to K . In particular, 

{e}H = H, H{e} = H, and GH  = G, HG  = G.
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Definition 7.2.4 can be generalized to a product of n subgroups of G, as follows: 

Definition 7.2.5 Let (G, ∗) be a group, and let H1, . . . ,  Hn be subgroups of G. The  
subset 

{h1 ∗ h2 ∗  · · ·  ∗  hn : hi ∈ Hi , 1 ≤ i ≤ n} 

is called the product of the subgroups H1, . . . ,  Hn and denoted by H1 H2 · · ·  Hn. 

Example 7.2.6 

1. Consider the additive group (Z, +). Let  H = 5Z and K = 8Z. Both  H and K 
are subgroups of (Z, +). The product of H and K is 

5Z + 8Z = {5n + 8m : m, n ∈ Z} 

Note that 

5Z + 8Z = {5n + 8m : m, n ∈ Z} = {5(n + m) + 3m : m, n ∈ Z} 
= {5k + 3m : m, k ∈ Z} = {2k + 3k + 3m : m, k ∈ Z} 
= {2k + 3(k + m) : m, k ∈ Z} = {2k + 3s : s, k ∈ Z} 
= {2k + 2s + s : s, k ∈ Z} = {2(k + s) + s : s, k ∈ Z} 
= {2t + s : s, t ∈ Z} = {z : z ∈ Z} = Z. 

This equality can be obtained in one step using Exercise 7.12. 

2. Consider the additive group (Z12, ⊕12) and the subgroups 

H[2] = [2]Z = {[0], [2], [4], [6], [8], [10]}, H[3] = [3]Z = {[0], [3], [6], [9]}, and 
H[4] = [4]Z = {[0], [4], [8]}. 
The product of H[2] and H[4] is 

H[2] H[4] = H[2] ⊕12 H[4] = {[0], [4], [8], [2], [6], [10]} = H[2]. 

The product of H[2] and H[3] is 

H[2] H[3] = H[2] ⊕12 H[3] 

= {[0], [3], [6], [9], [2], [5], [8], [11], [4], [7], [10], [1]} = Z12. 

The product of H[3] and H[4] is 

H[3] ⊕12 H[4] = {[0], [4], [8], [3], [7], [11], [6], [10], [2], [9], [1], [5]} = Z12. 

The product of H[2], H[3], and H[4] is
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H[2] H[3] H[4] = H[2] ⊕12 H[3] ⊕12 H[4] 

= Z12 ⊕12 H[4] = Z12. 

3. Consider the group (C∗, ·) defined in Example 7.1.8 and its subgroups 

H (n) = {z ∈ C∗ : zn = 1
}
. 

To compute the product of H(2) and H (5), we list all the elements of both 
subgroups and multiply them, as follows: 

H (2) = {ei0 , eπ i
} = {1, −1} 

H(5) =
{
ei0 , e 

2π i 
5 , e 

4π i 
5 , e 

6π i 
5 , e 

8π i 
5

}
. 

Therefore, 

H (2)H (5) = {z1z2 ∈ C∗ : z2 1 = 1 ∧ z5 2 = 1
}

=
{
ei0 , e 

2π i 
5 , e 

4π i 
5 , e 

6π i 
5 , e 

8π i 
5 , −ei0 , −e 

2π i 
5 , −e 

4π i 
5 , −e 

6π i 
5 , −e 

8π i 
5

}
. 

Example 7.2.7 Let G = S3 endowed with composition of functions, H = {e, (1 2)} 
and K = {e, (1 3)}. The  sets  H and K are subgroups of G (verify!), and their product 
HK  is 

HK  = {e, (1 3), (1 2), (1 2)(1 3)} 
= {e, (1 2), (1 3), (1 3 2)} 

and 

K H  = {e, (1 2), (1 3), (1 3)(1 2)} 
= {e, (1 2), (1 3), (1 2 3)} /= HK  . 

Since (1 3)(1 2) = (1 2 3) /∈ HK  and (1 2)(1 3) = (1 3 2) /∈ K H, neither HK  
nor K H  is a group. This result shows that when both H and K are subgroups of 
G, their product HK  is not necessarily a subgroup of G. The following proposition 
determines the conditions needed to guarantee that HK  becomes a group. 

Proposition 7.2.8 If (G, ∗) is a group and H, K are subgroups of G, then 

HK  < G ⇔ HK  = K H. 

Proof Assume that HK  is a subgroup of G. We show that K H  ⊆ HK  and HK  ⊆ 
K H  as follows. If y ∈ K H, there exist h ∈ H, k ∈ K ∍ y = k ∗ h. As  H and K are 
groups, h−1 ∈ H and k−1 ∈ K , and h−1 ∗ k−1 ∈ HK  . Since HK  is a group,
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y = k ∗ h = (h−1 ∗ k−1
)−1 ∈ HK  

i.e., K H  ⊆ HK . For the other inclusion, if y ∈ HK , then there exist h ∈ H, k ∈ 
K ∍ y = h ∗ k. Since HK  is a subgroup, then y−1 = (h ∗ k)−1 ∈ HK  , i.e., 
(h ∗ k)−1 = h1 ∗ k1 for some h1 ∈ H and k1 ∈ K . Consequently, y = h ∗ k = 
(h1 ∗ k1)−1 = k−1 

1 ∗ h−1 
1 ∈ K H  and HK  ⊆ K H . To show the other direction of 

the biconditional statement, assume that HK  = K H . Since e = e ∗ e ∈ HK  , then 
HK  is a nonempty subset of G. Let  x, y be any elements in HK  , then there exist 
h1, h2 ∈ H and k1, k2 ∈ K such that x = h1 ∗ k1, y = h2 ∗ k2. Hence, 

x ∗ y−1 = h1 ∗ k1 ∗ (h2 ∗ k2)−1 = h1 ∗ k1 ∗ k−1 
2 ∗ h−1 

2 = h1 ∗ k3 ∗ h−1 
2 

where k3 ∈ K . Since k3 ∗ h−1 
2 is an element in K H , and HK  = K H, then there exist 

h ∈ H, k ∈ K such that k3 ∗ h−1 
2 = h ∗ k. Therefore, x ∗ y−1 = h1 ∗ h ∗ k ∈ HK  . 

According to Proposition 7.1.4 (3), HK  forms a subgroup of G. ∎

According to Proposition 7.2.8, all the product groups in Example 7.2.6 are groups. 

Corollary 7.2.9 Let G be an abelian group. If H and K are subgroups of G, then 
HK  is a subgroup of G. 

Note that HK  = K H  does not mean that any pair of elements in H and K 
commute. For example, in the symmetric group S3, if H = {e, (1 2 3), (1 3 2)} and 
K = {e, (1 2)}, then HK  = K H  = S3, but  (1 2)(1 2 3) /= (1 2 3)(1 2). The reader 
should note that if G is a finite group and H, K are subgroups of G, then HK  and 
K H  can be easily obtained using tables. For example, the elements of HK  and K H  
in Example 7.2.7 are in Tables 7.1 and 7.2. 

Proposition 7.2.10 Let G be a group and let H, K be subgroups of G such that 
H ∩ K = {e}. Every element in the product H K  can be written in a unique form of 
h ∗ k, where h ∈ H and k ∈ K . 

Proof Assume that h1 ∗ k1 = h2 ∗ k2 are two representations of an element in HK  , 
then 

k1 ∗ k−1 
2 = h−1 

1 ∗ (h1 ∗ k1) ∗ k−1 
2 = h−1 

1 ∗ (h2 ∗ k2) ∗ k−1 
2 = h−1 

1 ∗ h2.

Table 7.1 HK  in Example 
7.2.7 

◦ e (1 3) 
e e (1 3) 
(1 2) (1 2) (1 3 2) 

Table 7.2 K H  in Example 
7.2.7 

◦ e (1 2) 
e e (1 2) 
(1 3) (1 3) (1 2 3) 
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Hence, k1 ∗ k−1 
2 = h−1 

1 ∗ h2 belongs to both H and K , so to their intersection {e}. 
That is, k1 ∗ k−1 

2 = e = h−1 
1 ∗ h2, which implies that h1 = h2, k1 = k2. ∎

The generalization of Proposition 7.2.10 to n subgroups is not possible unless we 
introduce certain conditions for the subgroups. These conditions are introduced after 
studying normal subgroups in Sect. 7.5 (Proposition 7.5.16). 

7.3 Subgroups Generated by a Set and Finitely Generated 
Subgroups 

Let G be a group and S be a subset of G. Let  Hi , i ∈ I ⊆ N be all subgroups of 
G that contain S. According to Proposition 7.2.1, the intersection of the subgroups 
Hi , i ∈ I, forms a subgroup of the whole group G. This subgroup still contains the 
subset S and is called the subgroup generated by S. 

Definition 7.3.1 Let G be a group and S be a subset of G. The subgroup of G 
generated by S, denoted by 〈S〉, is the intersection of all subgroups of G that contain 
S. i.e.,

〈S〉 = ∩{Hi : S ⊆ Hi , Hi < G}. 

It follows directly from the definition of 〈S〉 that if H is a subgroup containing S, 
it will contain 〈S〉. If S = {a1, a2, . . . ,  an} is a finite set, then 〈S〉 is said to be finitely 
generated, and the notation 〈a1, a2, . . . ,  an〉 is used instead of 〈{a1, a2, . . . ,  an}〉. 
Definition 7.3.2 Let G be a group and S ⊆ G. If  G = 〈S〉, then G is said to be 
generated by S (or S generates G). If S is a finite set, then G is said to be a finitely 
generated group. 

Lemma 7.3.3 Let G be a group and S be a subset of G. The subgroup generated 
by S is the smallest subgroup of G that contains S. 

Proof Since 〈S〉 is an intersection of subgroups of G, then by Proposition 7.2.1,
〈S〉 is a subgroup of G that contains S. Assume that H is a subgroup of G that 
contains S. The subgroup H belongs to the set {Hi : S ⊆ Hi , Hi < G}. i.e., 〈S〉 = 
∩{Hi : S ⊆ Hi , Hi < G} ⊆ H . Therefore, 〈S〉 is the smallest subgroup of G that 
contains S. ∎

Corollary 7.3.4 Let (G, ∗) be a group and T , S be subsets of G. If  T ⊆ S, then
〈T 〉 ⊆ 〈S〉. In particular, if x ∈ S, then 〈x〉 ⊆ 〈S〉. 
Proof Assume that T , S are subsets of G such that T ⊆ S. Since T ⊆ S ⊆ 〈S〉, 
then 〈S〉 is a subgroup of G that contains T . Therefore, 〈S〉 contains the intersection 
of all subgroups of G that contain T , i.e., 〈S〉 contains 〈T 〉. If  x ∈ S, then {x} ⊆ S, 
which implies that 〈x〉 = 〈{x}〉 ⊆ 〈S〉. ∎



7.3 Subgroups Generated by a Set and Finitely Generated Subgroups 233

The empty set ∅ is a subset of the trivial subgroup {e}, and the only subgroup of 
G that contains G is G itself, which implies that

〈∅〉 = 〈e〉 = {e} and 〈G〉 = G. 

For a subset S different from ∅, {e}, and G, one must have practical tools to compute
〈S〉 since it is not always possible to find all the subgroups containing a given subset 
S. To obtain a useable formula to compute 〈S〉, we provide several necessary lemmas 
and propositions. 

Lemma 7.3.5 Let (G, ∗) be a group and S be a nonempty subset of G. The subset 

H = {ar1 1 ∗ ar2 2 ∗  · · ·  ∗  arn n : ai ∈ S, ri ∈ Z, 1 ≤ i ≤ n, n ∈ N
}

is a subgroup of G that contains S. 

Proof Since S is not empty, and for each a ∈ S, a = a1 ∈ H, thus H is a nonempty 
subset of G that contains S. Let  x, y ∈ H . According to the definition of H , 

x = ar1 1 ∗ ar2 2 ∗ · · · ∗  arn n , and y = bt1 1 ∗ bt2 2 ∗ · · · ∗  btm m for some n, m ∈ Z, ai , b j ∈ S, 
and ri , t j ∈ Z. 

where 1 ≤ i ≤ n, 1 ≤ j ≤ m. Hence, 

x ∗ y−1 = (ar1 1 ∗ ar2 2 ∗  · · ·  ∗  arn n

) ∗ (bt1 1 ∗ bt2 2 ∗  · · ·  ∗  btm m

)−1 

= ar1 1 ∗ ar2 2 ∗  · · ·  ∗  arn n ∗ b−tm 
m ∗  · · ·  ∗  b−t2 

2 ∗ b−t1 
1 ∈ H 

i.e., H < G (Proposition 7.1.4). ∎
Proposition 7.3.6 Let G be a group and ∅ /= S ⊆ G. The subgroup generated by S 
can be expressed as

〈S〉 = {ar1 1 ∗ ar2 2 ∗  · · ·  ∗  arn n : ai ∈ S, ri ∈ Z, 1 ≤ i ≤ n, n ∈ N
}
. 

If S consists of one element a, then 〈a〉 = 〈{a}〉 = {an : n ∈ Z}. 
Proof Let H = {ar1 1 ∗ ar2 2 ∗  · · ·  ∗  arn n : ai ∈ S, ri ∈ Z, 1 ≤ i ≤ n, n ∈ N

}
. By  

Lemma 7.3.5, H is a subgroup of G that contains S. Hence, 〈S〉 ⊆ 〈H〉 = H (Corol-
lary 7.3.4). For the other direction, if x ∈ H, then x = ar1 1 ∗ ar2 2 ∗  · · ·  ∗  arn n for some 
ri ∈ Z, where 1 ≤ i ≤ n and a1, a2, . . . ,  an ∈ S. Therefore, a1, a2, . . . ,  an ∈ 〈S〉. 
Since 〈S〉 is a subgroup of G, then x = ar1 1 ∗ ar2 2 ∗  · · ·  ∗  arn n ∈ 〈S〉. Consequently, 
H ⊆ 〈S〉. ∎

Note that the elements ai ∈ S in the expression ar1 1 ∗ ar2 2 ∗  · · ·  ∗  arn n may not be 
different. For example, if a1 and a2 are elements in S, then 

a1 ∗ a3 2 ∗ a2 1 ∗ a2 ∗ a1 ∗ a11 2 

is an element in 〈S〉.
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Corollary 7.3.7 If G is a group, and a is an element in G, then 〈a〉 = 〈a−1
〉
. 

Example 7.3.8 In (Z, +), one can easily check that 

1. 〈−1〉 = 〈1〉 = {k, k ∈ Z} = Z, 〈−2〉 = 〈2〉 = {2k, k ∈ Z} = 2Z. 

In general, for any a ∈ Z, the subgroup generated by a is

〈a〉 = {ak : k ∈ Z} = aZ, 

where ka is the additive notation of ak . 

2. For any a, b ∈ Z, b|a if and only if there exists q ∈ Z such that a = qb, this is  
if and only if 〈a〉 ⊆ 〈b〉, i.e.,

〈a〉 ⊆ 〈b〉 if any only if b|a. 

3. To compute 〈{2, 3}〉, the situation is slightly more complicated than the examples 
in (1). Using the additive term notation, we obtain

〈{2, 3}〉 = {2n + 3m : n, m ∈ Z} 
= {2n : n ∈ Z} + {3m : m ∈ Z} 
= 2Z + 3Z. 

4. Similarly, one can check that in (Z, +), the subgroup generated by 
{a1, a2, . . . ,  ar } is 

a1Z + a2Z +  · · ·  +  ar Z. 

Example 7.3.9 

1. Consider the additive (Zn, ⊕n). It can be easily observed that

〈[1]〉 = {[1]n , n ∈ Z
} = {n[1], n ∈ Z} = {[0], [1], . . . ,  [n − 1]} = Zn. 

Since [n − 1] is the additive inverse of [1] in (Zn, ⊕n), then 〈[n − 1]〉 = Zn . 

2. Consider the group (Z12, ⊕12) and its subgroup H = 〈[3]〉. By examining the 
order of [3], we obtain ord([3]) = 4, and 

H = {[3]k : k ∈ Z
} = {[3]0 , [3]1 , [3]2 , [3]3} = {[0], [3], [6], [9]}.
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Note that [3]k = [3] ⊕12 [3] ⊕12 · · ·  ⊕12 [3]︸ ︷︷ ︸
k times 

. We compute all generated subgroups 

of H , as follows: 
The subgroups of H generated by one element are 〈[0]〉 = {[0]}, 〈[6]〉 = 

{[0], [6]}, and 〈[3]〉 = 〈[9]〉 = H. 
The subgroups of H generated by two elements are 〈[0], [3]〉 = 〈[0], [9]〉 =

〈[3], [9]〉 = 〈[3], [6]〉 = 〈[6], [9]〉 = H , and 〈[0], [6]〉 = {[0], [6]} = 〈[6]〉. There 
is only one subgroup of H generated by three elements which is 〈[0], [3], [6]〉 =
〈[0], [3], [9]〉 = 〈[0], [6], [9]〉 = 〈[3], [6], [9]〉 = H . Finally, there is one subgroup 
of H generated by four element which H itself, as 〈H〉 = H. Thus, all distinct 
generated subgroups of H are {[0]}, {[0], [6]}, and H itself. All of these subgroups 
are generated by one element. 

Examples 7.3.8 and 7.3.9 show that a generating set of a subgroup is not unique. 
In particular, if a subgroup H is generated by {a1, a2, . . . ,  an, . . .}, then H is also 
generated by

{
a−1 
1 , a−1 

2 , . . . ,  a−1 
n , . . .
}
. 

Example 7.3.10 Consider the symmetric group (S5, ◦). The following are finitely 
generated subgroups of S5. 

1. H = 〈(1 2)〉 = {e, (1 2)}. 
2. K = 〈(1 5 3)〉 = {e, (1 5 3), (1 3 5)}. 
3. S = 〈(2 4 5 3)5

〉 = 〈(2  3 5 4)〉 = {e, (2 4 5 3), (2 5)(3 4), (2 3 5 4)}. 
4. V = 〈(1 3)(2 5)〉 = {e, (1 3)(2 5)}. 
5. W = 〈(1 3), (2 5)〉 = {e, (1 3), (2 5), (1 3)(2 5)}. 
6. R = 〈(1 3), (2 5 3)〉. 

It is difficult to use the definition to list all elements in the subgroup R as 

R = {ar1 1 ∗  · · ·  ∗  ark k : ai ∈ {(2 5  3), (1 3)}, ri ∈ Z, k ∈ N
}
. 

Since no permutation in R moves 4, any permutation in R must be a permutation 
on {1, 2, 3, 5}. Let  H be the subgroup of S5 that permutes {1, 2, 3, 5} (Example 
7.1.9 (3)). We show that R = H . Clearly, R ⊆ H . For the other inclusion, let φ be a 
permutation on {1, 2, 3, 5}. According to Corollary 6.5.3 (2), the permutation φ can 
be written as a finite product of transpositions of the forms (1 j ), where j ∈ {2, 3, 5}. 
Since (1 3) ∈ R, (1 5) = (2 5 3)2 (1 3)(2 5  3) ∈ R, and (1 2) = (253)(13)(2 3 5) ∈ 
R, then R contains all the transpositions (1 j ), where j ∈ {2, 3, 5}, and hence 
contains any product of them, in particular, φ ∈ R. Therefore, H ⊆ R. Note that the 
case with the subgroup W in (5) is easier since the cycles (13) and (25) commute. 
These cycles can be rearranged to ease the problem, which cannot be realized in the 
case of the subgroup R. 

Example 7.3.11 Let n ∈ N such that n ≥ 3. Consider the dihedral group (D2n, ◦) that 
consists of all symmetries for the regular n-polygon. The group D2n is an example of a 

finitely generated group that is generated by two elements. Namely, D2n =
〈
R 2π 

n 
, lo
〉
. 

To show this equality, the equations in Proposition 1.7.7 can be used to obtain
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ord
(
R 2π 

n

)
= n, ord(lo) = 2, and

(
R 2π 

n 
lo
)2 =
(
lo R 2π 

n

)2 = R0. 

Therefore, by Exercise 7.30, lo
(
R 2π 

n

)k =
(
R 2π 

n

)n−k 
lo for any 0 ≤ k ≤ n − 1, 

and
〈
R 2π 

n 
, lo
〉
=
{
R0, R 2π 

n 
, R 4π 

n 
, . . . ,  R 2(n−1)π 

n 
, lo, l π 

n 
, . . . ,  l (n−1)π 

n

}
= D2n. 

Moreover, 

• The subgroup of D2n that is generated by R0 is 〈R0〉 = R0. 
• The subgroup of D2n that is generated by R 2π 

n 
is

〈
R 2π 

n

〉
=
{(

R 2π 
n

)k : 0 ≤ k ≤ n − 1
)

=
{
R0, R 2π 

n 
, . . . .,  R 2(n−1)π 

n

}

which is the subgroup of all rotations of the regular n-polygon. 

• For any 0 ≤ k ≤ n − 1, the subgroup generated by l kπ 
n 
is
〈
l kπ 

n

〉
=
{
R0, l kπ 

n

}

(Check!). 

Example 7.3.12 Consider the two matrices 

r =
(
0 −1 
1 0

)
and s =

(
1 0  
0 −1

)

Both matrices are elements of the group O(2), the orthogonal group of order 2 
(Example 5.1.9). One can easily verify that ord(r ) = 4, ord(s) = 2 and (rs)2 = 
(sr)2 = I2. Hence, by Exercise 7.30, srk = r4−ks, 1 ≤ k ≤ 3, and the subgroup of 
O(2) generated by {r, s} is

〈r, s〉 = {rn sm : 0 ≤ n < 4, 0 ≤ m < 2
} = {e, r, r2 , r3 , s, rs, r2 s, r3 s}. 

Table 7.3 shows Cayley’s table of 〈r, s〉. The reader may verify, using the table, 
that the following are subgroups of 〈r, s〉.
• 〈r〉 = 〈r3〉 = {e, r, r2, r3}. 
• 〈r2〉 = {e, r2}. 
• 〈r i s〉 = {e, r i s}, ∀ 0 ≤ i ≤ 3. 

Note that if one considers a square with the center at the origin and vertices at 
(1, 0), (0, 1), (−1, 0) and (0, −1) (Fig. 7.1), then the matrices r and s represent 
the rotation of the square by π 

2 around (0, 0), and the reflection around the x-axis 
(Propositions 1.7.3 and 1.7.6). Therefore, the subgroup 〈r, s〉 can be identified with



7.3 Subgroups Generated by a Set and Finitely Generated Subgroups 237

Table 7.3 Cayley’s table of 〈r, s〉
· e r r2 r3 s rs r2s r3s 

e e r r2 r3 s rs r2s r3s 

r r r2 r3 e rs r2s r3s s 

r2 r2 r3 e r r2s r3s s rs  

r3 r3 e r r2 r3s s rs r2s 

s s r3s r2s rs e r3 r2 r 

rs rs s r3s r2s r e r3 r2 

r2s r2s rs s r3s r2 r e r3 

r3s r3s r2s rs s r3 r2 r e

the group D8, which is the group of the symmetries of the square. The reader may 
compare Table 7.3 with that obtained in Example 1.7.9. 

Example 7.3.13 Consider the group S4 and its two elements, the permutation α = 
(1 2 3 4) and transposition τ = (2 4). It is straightforward to check that ord(α) = 
4, ord(τ ) = 2, and (ατ )2 = (τα)2 = e. According to the result in Exercise 7.30, 
ταk = α4−kτ for each 1 ≤ k ≤ 3. Let  K be the subgroup of S4 that is generated by 
{α, τ }, the elements of K can be listed as follows: 

K = 〈α, τ 〉 = {τ s αk : 0 ≤ s ≤ 1, 0 ≤ k ≤ 3
} = {e, α, α2 , α3 , τ, τ  α,  τ  α2 , τ  α3

}
. 

Note that if one considers a square centered at the origin and with vertices 
numbered from 1 to 4 (Fig. 7.2), then the rotation of the square by π 

2 permutes 
the vertices and can be represented by the permutation α = (1 2  3 4). The reflec-
tion around the x-axis is achieved by permutating the vertices 2 and 4 and fixing all

Fig. 7.1 Regular 4-polygon
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Fig. 7.2 A square centered 
at the origin and with vertices 
numbered from 1 to 4

other elements. This permutation can be represented by the transposition τ = (24). 
Therefore, the subgroup 〈α, τ 〉 can be identified with the group D8, the group of all 
symmetries of the square. 

The generalizations of Examples 7.3.12 and 7.3.13 for an arbitrary positive integer 
n ≥ 3 can be obtained following the same steps as in the above examples (Exercises 
7.5 and 7.6). For now, the reader should compare the last two examples with Example 
7.3.11 for the case of n = 4. 

Example 7.3.14 Let n ∈ N such that n ≥ 3. The group Sn is generated by two 
elements, namely 

Sn = 〈(1 2), (2 3  4  . . .  n)〉

To show this, one shows the following expression by induction on s: 

(2 3  4  . . .  n)s (1 2)(2 3 4  . . .  n)−s = (1(2 + s)) for each 0 ≤ s ≤ n − 2 

which implies that 〈(1 2), (2 3  4  . . .  n)〉 contains all the transpositions of the form 
(1 k) for 2 ≤ k ≤ n. The result follows by Exercise 7.3. 

Next, we investigate the subgroups generated by the intersection and the union of 
two subgroups. Let G be a group and H, K be subgroups of G. As the intersection 
of any subgroups is a group, 〈H ∩ K 〉 = H ∩ K . However, this is not the case for 
the union as H ∪ K is not always group (verify!). According to Proposition 3.7.6,

〈H ∪ K 〉 = {ar1 1 ∗ ar2 2 ∗  · · ·  ∗  arn n : ai ∈ H ∪ K , ri ∈ Z, 1 ≤ i ≤ n, n ∈ N
}
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which is not easy to describe. The following proposition states that if HK  = K H , 
then 〈H ∪ K 〉 can be easily described. 
Proposition 7.3.15 Let G be a group. If H, K are subgroups of G, then 

K H  = HK  ⇔ 〈H ∪ K 〉 = HK  . 

In particular, if G is abelian, then 〈H ∪ K 〉 = HK  . 

Proof According to Proposition 7.2.8, K H  = HK  if and only if HK  is a subgroup 
of G. Therefore, we demonstrate this result by showing that K H  < G ⇔ 〈H ∪ K 〉 = 
HK  . If 〈H ∪ K 〉 = HK  , then HK  is a group and one direction trivially follows. For 
the other direction, assume that HK  is a subgroup of G. We show that 〈H ∪ K 〉 = 
HK  , as follows. As HK  contains both H and K , then H ∪ K ⊆ HK  , which yields 
that 〈H ∪ K 〉 ⊆ 〈HK 〉 = HK  . On the other hand, let h, k be arbitrary elements in 
H and K , respectively. As h, k ∈ H ∪ K ⊆ 〈H ∪ K 〉 and 〈H ∪ K 〉 is a group, then 
hk = h ∗ k ∈ 〈H ∪ K 〉, which implies that HK  ⊆ 〈H ∪ K 〉. ∎

Proposition 7.3.16 Let G be a group and let H1, . . . ,  Hn be subgroups of G. For  
each 1 ≤ j ≤ n, 

if K =
/∐n 

i=1 
i /= j 

Hi

\
, then
〈
Hj ∪ K

〉 =
〈∐n 

i=1 
Hi

〉
. 

Proof Assume that K =
/
∪n 

i=1 
i /= j 

Hi

\
. Since

∪n 
i=1 Hi = Hj ∪

(
∪n 

i=1 
i /= j 

Hi

)
is 

contained in Hj ∪ K , then
〈∪n 

i=1 Hi
〉 ⊆ 〈Hj ∪ K

〉
(Corollary 7.3.4). For the other 

direction, since
∪n 

i=1 
i /= j 

Hi ⊆ ∪n 
i=1 Hi , then by Corollary 7.3.4, K =

/
∪n 

i=1 
i /= j 

Hi

\
⊆

〈∪n 
i=1 Hi
〉
. As
〈∪n 

i=1 Hi
〉
contains Hj , it contains Hj ∪ K , and hence the smallest 

subgroup generated by Hj ∪ K . i.e.,
〈
Hj ∪ K

〉 ⊆ 〈∪n 
i=1 Hi
〉
. ∎

We will focus on groups generated by one element. Such groups are said to be 
cyclic and are discussed in Sect. 9.1. The following results pertain to subgroups 
generated by one element. 

Proposition 7.3.17 Let G be a group. For any a ∈ G, if  ord(a) = n < ∞, then

〈a〉 = {e, a, a2 , . . . ,  an−1
}
. 

If a has an infinite order, then 〈a〉 has an infinitely many elements. 
Proof Let x ∈ 〈a〉. By Proposition 7.3.6, x = am for some m ∈ Z. Applying 
the quotient-remainder theorem (Theorem 2.1.2) to  m and n yields that there exist 
q, r ∈ Z such that m = qn + r , 0 ≤ r < n. Therefore, 

x = aqn+r = aqn ar = ear = ar , 0 ≤ r < n.
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i.e., x ∈ {e, a, a2, . . . ,  an−1
}
and 〈a〉 ⊆ {e, a, a2, . . . ,  an−1

}
. The other inclusion is 

trivial. The last statement follows by definition of ord(a). ∎

Corollary 7.3.18 Let G be a group and a ∈ G. The order of the subgroup generated 
by a is equal to ord(a), i.e., ord(a) = |〈a〉|. 
Proposition 7.3.19 Let G be a group and a ∈ G such that ord(a) = n < ∞. For  
each k ∈ N,

〈
ak
〉 = 〈agcd(k,n)

〉
. 

Moreover,
||〈ak
〉|| = n 

gcd(k,n) . 

Proof Let k ∈ N. Since gcd(k, n)|k, there exists q ∈ Z such that k = q · gcd(k, n), 
which implies that 

ak = aq gcd(k,n) = (agcd(k,n)
)q ∈ 〈agcd(k,n)

〉
. 

Therefore, by Corollary 7.3.4,
〈
ak
〉 ⊆ 〈agcd(k,n)

〉
. For the other direction, using 

Bézout’s lemma (Theorem 2.5.1), there exist x, y ∈ Z such that gcd(k, n) = xk+yn. 
Therefore, 

agcd(k,n) = axk+yn = axk  ayn =
ayn=(an )y=ey=e 

axk  = (ak)x ∈ 〈ak 〉. 

The result in Corollary 7.3.4 implies that
〈
agcd(k,n)

〉 ⊆ 〈ak 〉. 
i.e.,〈
ak
〉 = 〈agcd(k,n)

〉
. 

By Proposition 5.5.9, one obtains
||〈ak
〉|| = ord

(
ak
) = ord(a) 

gcd(k,n) . ∎

Example 7.3.20 Let n ∈ N. Consider the additive group (Zn, ⊕n). For each k ∈ Z, 
we have 〈[k]〉 = Zn if and only if gcd(k, n) = 1. To show this result, note the additive 
group Zn = 〈[1]〉 (Example 7.3.9), which implies that ord([1]) = n. Therefore, by 
Proposition 7.3.19, for each k ∈ Z, 

|〈[k]〉| = ||〈[1]k 〉|| = n 

gcd(k, n) 
= n ⇔ gcd(k, n) = 1. 

The result follows as 〈[k]〉 is a subgroup of Zn and the order of Zn is n. 
Example 7.3.20 provides a list of elements such that 〈[k]〉 = Zn , which is 

{[k] ∈ Zn : gcd(k, n) = 1}. 

This set, denoted by Inv(Zn), contains all the generators of the additive group Zn . 
Note that this set forms a multiplicative group under the operation ⊗n (Lemma 5.3.3 
and Corollary 5.3.5). The following proposition shows that if p is a prime number,
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then there is [a] ∈ Inv
(
Z p
)
such that [a] generates this group. However, finding the 

number [a] is a problem in number theory and is thus beyond the scope of this book. 
For reference, see (Burton, 2007). If p = 7 for example, then one can easily check 
that [3] is a generator of the multiplicative group Inv(Z7). 

Proposition 7.3.21 Let p be a prime number and consider the group
(
Inv
(
Z p
)
, ⊗p
)
. 

There exists an element [a] ∈ Inv
(
Z p
)
such that 〈[a]〉 = Inv

(
Z p
)
. 

We end the section with the following example that will be needed in Chap 9. For  
the definition of mG, see Proposition 5.5.13. 

Example 7.3.22 

1. Let G = Z9 × Z3 and a = ([1], [0]). The subgroup generated by a is

〈a〉 = 〈([1], [0])〉 = {([1], [0])k : k ∈ Z
} = {([k], [0]) : k ∈ Z} = Z9 × {[0]}. 

The reader must note that although 3G = {[0], [3], [6]}×{[0]} =  3(Z9 × {[0]}) = 
3〈a〉, the group G is not equal to 〈a〉. 
2. Consider the group S7 and let H = {e, (1 2 3), (1 3 2)} and K = 

{e, (4 5 6), (4 6 5)}. Clearly, H and K are subgroups of S7 that satisfy 3H = 
{e} = 3K , but H /= K . 

7.4 Cosets of Subgroups and Lagrange’s Theorem 

Let G be a group and H be a subgroup of G. For an element a ∈ G, one can form 
new subsets of G using H by considering the product of a and H, i.e., 

aH  = {a ∗ h : h ∈ H} and Ha  = {h ∗ a : h ∈ H}. 

Such subsets are not necessarily subgroups of G. For example, in the symmetric 
group S3, the  set  H = {e, (12)} is a subgroup of S3, but  (13)H = {(13), (13)(12)} 
is not. In fact, for any a /∈ H , the  set  aH  does not contain the identity element, 
hence, in not a group. The subsets aH, a ∈ G are called cosets of H . 

Definition 7.4.1 Let G be a group and H be a subgroup of G. A left coset of H is a 
subset of G of the form aH  = {a ∗ h : h ∈ H}, where a ∈ G. A right coset of H is 
Ha  = {h ∗ a : h ∈ H}, where a ∈ G. 

If G is an abelian group, then a left coset of H is also a right coset of H . In this  
case, a coset of H means either cosets. Clearly, eH  = H = He, which means that 
H is a left and a right coset of itself. Hence, the set of all cosets of a given subgroup 
H is never empty. If the left and right cosets of H are equal, we denote the set of all 
cosets of H by G/H .
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Example 7.4.2 Consider the group (Z, +) and its subgroup 5Z. The left cosets of 
5Z are of the form m + 5Z, where m ∈ Z. According to the quotient-remainder 
theorem (Theorem 2.1.2), there exist q, r ∈ Z such that m = 5q + r and 0 ≤ r < 5. 
Hence, 

m + 5Z = (5q + r ) + 5Z = r + 5Z such that 0 ≤ r < 5. 

Consequently, there exist only five different left cosets of 5Z, which are 

5Z, 1 + 5Z, 2 + 5Z, 3 + 5Z, 4 + 5Z. 

As (Z, +) is an abelian group, the left cosets are also right cosets, i.e., 

Z/5Z = {5Z, 1 + 5Z, 2 + 5Z, 3 + 5Z, 4 + 5Z}. 

A generalization of the preceding example shows that the list of all cosets of nZ 
in (Z, +) is 

Z/nZ = {r + nZ : 0 ≤ r < n} = {nZ, 1 + nZ, . . . ,  (n − 1) + nZ}. 

Example 7.4.3 Consider the group (S3, ◦) and its subgroup H = 〈e, (2 3)〉 = 
{e, (2 3)}. The left cosets of H are 

H = (2 3)H = {e, (2 3)} 
(1 2)H = (1 2  3)H = {(1 2), (1 2  3)} 
(1 3)H = (1 3 2)H = {(1 3), (1 3 2)} 

Thus, the set {H, (1 2)H, (1 3)H} constitutes all the left cosets of H . The group 
S3 is not abelian, and thus, we cannot directly deduce the right cosets. Computing 
the right cosets of H , one finds 

H = H (2 3) = {e, (2 3)} 
H (1 2) = H (1 3 2) = {(1 2), (1 3 2)} 
H (1 3) = H (1 2  3) = {(1 3), (1 2 3)} 

The set of the right cosets is {H, H (1 2), H (1 3)}, which are different from the 
left cosets. 

Note that any point (u, w) in the plane R2 can be represented as a vector ui +w j 
in the plane with u, w  ∈ R and i , j are the unit vectors in the direction of x-axis and 
y-axis respectively. The following example uses the definition of vectors and sum of 
vectors in linear algebra. For reference see (Boyd & Vandenberghe, 2018). 

Example 7.4.4 Let G = {ui + w j : u, w  ∈ R}, the set of all vectors in the plane R2. 
The set G forms a group under the sum of vectors +, where the zero vector serves
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Fig. 7.3 Set of all parallel 
lines to H 

as an identity element, and the inverse of any vector v is −v. Let  H be a line passing 
the origin in  R2. As  v1− v2 ∈ H for any v1, v2 ∈ H, then H is a subgroup of (G, +). 
For v = ui + w j ∈ G, the left coset v H is a line parallel to H and passes the point 
v = (u, w). As the sum of the vectors is abelian, then v H = Hv is also a right coset 
of H , i.e., 

G/H = {v H : v ∈ G} 

is the set of all parallel lines to H (Fig. 7.3). 

Proposition 7.4.5 Let G be a group and H be a subgroup of G. For all a ∈ G, the 
following statements hold: 

1. a ∈ aH  and a ∈ Ha. 
2. Ha  = H ⇔ a ∈ H ⇔ aH  = H . 
3. |Ha| = |H | = |aH |. 
Proof 

1. If H is a subgroup of G, then a = a ∗ e ∈ aH  and a = e ∗ a ∈ Ha. 
2. We only show Ha  = H ⇔ a ∈ H as the other equivalence is similar. 

If Ha  = H, then a = e ∗ a ∈ Ha  = H ⇒ a ∈ H. For the other direction, 
assume that a ∈ H . We show that Ha  = H, as follows: 

• For each h ∈ H , h ∗ a ∈ H , and thus, Ha  = {h ∗ a : h ∈ H} ⊆ H . 
• For each h ∈ H , h ∗ a−1 ∈ H, which implies that
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h = h ∗ e = h ∗ (a−1 ∗ a
) = (h ∗ a−1

) ∗ a = h1 ∗ a ∈ Ha  ⇒ H ⊆ Ha. 

3. Define the maps f : H → Ha  and g : H → aH  such that f (h) = h ∗ a and 
g(h) = a ∗ h. The result in (3) follows as f and g are bijective maps. ∎

Proposition 7.4.6 Let G be a group, H be a subgroup of G, and a, b be elements 
in G. The following statements are equivalent 

1. Ha  = Hb. 
2. b ∈ Ha. 
3. a ∈ Hb. 
4. a ∗ b−1 ∈ H. 

Proof We show that 1 ⇒ 2 ⇒ 3 ⇒ 4 ⇒ 1. 
(1 ⇒ 2) Ha  = Hb  ⇒ b = e ∗ b ∈ Hb  = Ha  ⇒ b ∈ Ha. 
(2 ⇒ 3) b ∈ Ha  ⇒ ∃  h ∈ H ∍ b = h∗a ⇒ ∃ h ∈ H ∍ a = h−1∗b ⇒ a ∈ Hb. 
(3 ⇒ 4) a ∈ Hb  ⇒ ∃  h ∈ H ∍ a = h ∗ b ⇒ ∃  h ∈ H ∍ h = a ∗ b−1 ⇒ 

a ∗ b−1 ∈ H . 
(4 ⇒ 1) Assume that a ∗ b−1 ∈ H . As  H is a group, 

∀ h ∈ H, h ∗ a = h ∗ a ∗ (b−1 ∗ b
)

= h ∗ (a ∗ b−1
) ∗ b ∈ Hb  ⇒ Ha  = {h ∗ a, h ∈ H} ⊆ Hb  

and 

∀ h ∈ H, h ∗ b = h ∗ b ∗ (a−1 ∗ a
)

= h ∗ (a ∗ b−1
)−1 ∗ a ∈ Ha  ⇒ Hb  = {h ∗ b, h ∈ H} ⊆ Ha, 

i.e., Ha  = Hb. ∎

Note that Proposition 7.4.6 shows that the representation of a right coset of H in 
the form Ha  is not unique, in the sense that Ha  might equal to Hb  without a being 
equal to b. One can prove similar statements for the left cosets of H . 

Proposition 7.4.7 Let G be a group, H be a subgroup of G, and a, b be elements 
in G. The following statements are equivalent 

1. aH  = bH. 
2. b ∈ aH. 
3. a ∈ bH. 
4. b−1 ∗ a ∈ H. 

The next proposition shows that a certain flexibility exists in dealing with the 
cosets of a given subgroup. The results in the proposition guarantee a translation by 
an element’s inverse (free movement between the two sides of the equation through 
multiplication by the inverse of the element).
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Proposition 7.4.8 Let G be a group, H be a subgroup of G, and a, b be elements 
in G. The following statements hold: 

1. Ha  = Hb  ⇔ H = H
(
b ∗ a−1

)⇔ H = H
(
a ∗ b−1

)
. 

2. aH  = bH  ⇔ H = (b−1 ∗ a
)
H ⇔ H = (a−1 ∗ b

)
H. 

3. aH  = Hb  ⇔ H = a−1 Hb  ⇔ H = aHb−1. 

Proof We only prove that aH  = Hb  ⇔ H = aHb−1. The proofs of other 
statements are similar and left as easy exercises. If aH  = Hb, then 

aHb−1 = {a ∗ h ∗ b−1 : h ∈ H
} = {x ∗ b−1 : x ∈ aH

}

= {x ∗ b−1 : x ∈ Hb
} = {h1 ∗ b ∗ b−1 : h1 ∈ H

} = H. 

For the other direction, assume that H = aHb−1 = {a ∗ h ∗ b−1 : h ∈ H
}
, then 

Hb  = {h ∗ b : h ∈ H} = {(a ∗ h1 ∗ b−1
) ∗ b : h1 ∈ H

}

= {a ∗ h1 : h1 ∈ H} = aH.

∎
The relations in the previous proposition hold if one replaces the equality sign by 

inclusion with a small modification. We leave it to the reader to verify the statement 
of the following proposition. 

Proposition 7.4.9 Let G be a group, H be a subgroup of G, and a, b be elements 
in G. The following statements hold: 

1. Ha  ⊆ Hb  ⇔ H ⊆ H
(
b ∗ a−1

)⇔ H
(
a ∗ b−1

) ⊆ H. 
2. aH  ⊆ bH  ⇔ H ⊆ (a−1 ∗ b

)
H ⇔ (b−1 ∗ a

)
H ⊆ H. 

3. aH  ⊆ Hb  ⇔ H ⊆ a−1 Hb  ⇔ aHb−1 ⊆ H. 

Proposition 7.4.10 Let G be a group and H be a subgroup of G. The numbers of 
left and right cosets of H are equal. 

Proof Let T andℛ be the left and right cosets of H, respectively. Define f : T → ℛ
as the map that takes aH  to Ha−1 for all aH  ∈ T. To verify that f is well-defined, 
assume that aH, bH  are two left cosets of H such that aH  = bH. By Proposition 
7.4.7, b−1 ∗ (a−1

)−1 = b−1 ∗ a ∈ H . Thus, by Proposition 7.4.6, f (bH  ) = Hb−1 = 
Ha−1 = f (aH  ). The  map  f is injective, since if 

Ha−1 = f (aH  ) = f (bH  ) = Hb−1 for some a, b ∈ G, 

then by Proposition 7.4.6,
(
a−1 ∗ b

) ∈ H . Therefore, b−1 ∗ a = (a−1 ∗ b
)−1 ∈ H , 

which implies that aH  = bH  (Proposition 7.4.7). To show that f is surjective, 
assume that Ha  is an element in ℛ. Clearly a−1 H is an element in T that satisfies 

f
(
a−1 H
) = H
(
a−1
)−1 = Ha.
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The map f is bijective, and therefore |T| = |ℛ|. ∎

Definition 7.4.11 Let G be a group and H be a subgroup of G. The number of the 
left (right) cosets of H is called the index of H and denoted by [G : H ]. 

Clearly, if G is finite, then the index of any subgroup of G is finite. However, if 
G is infinite, then the index of a subgroup of G could be either finite or infinite; see 
Examples 7.4.2 and 7.4.4. For any group G, we have  [G : {e}] = |G|. 
Example 7.4.12 

1. Consider the additive (Z, +). Using the results of Example 7.4.2, the index of 
the subgroup nZ is [Z, nZ] = n. 

2. In the group (Inv(Z7), ⊗7), let  H = 〈[2]〉 = {[1], [2], [4]}. To compute the index 
of H , we compute the right cosets of H, as follows. 

Since [1] is the identity element of the group, H = H ⊗7 [1] = {[1], [2], [4]}. 
Using Proposition 7.4.6, we obtain 

H ⊗7 [1] = H ⊗7 [2] = H ⊗7 [4]. 

Next, we compute H ⊗7 [3] = {[5], [6], [3]}. By Proposition 7.4.6, we have  

H ⊗7 [3] = H ⊗7 [5] = H ⊗7 [6]. 

Therefore, the different right cosets of H are only H and H ⊗7 [3], and 
[Inv(Z7) : H ] = 2. 

Next, we state and prove Lagrange’s theorem. To this end, several lemmas are 
needed. For now, using a fixed subgroup H of a group G, we define an equivalence 
relation on G whose equivalence classes are the left (right) cosets of H . 

Lemma 7.4.13 Let G be a group and H be a subgroup of G. Define the following 
relation on G, 

for a, b ∈ G, a ∼= b ⇔ (a−1 ∗ b
) ∈ H. 

The relation ∼= is an equivalence relation on G, with the equivalence class of 
a ∈ G being aH . 

Proof For any a ∈ G, a−1∗a = e ∈ H, which implies that a ∼= a, and ∼= is reflexive. 
If a ∼= b, then a−1 ∗ b ∈ H . Since H is a group, b−1 ∗ a = (a−1 ∗ b

)−1 ∈ H, which 
implies that b ∼= a. Therefore, ∼= is symmetric. To show that ∼= is transitive, assume 
that a ∼= b and b ∼= c. According to the definition of ∼=, a−1 ∗ b ∈ H ∧ b−1 ∗ c ∈ H . 
Therefore, 

a−1 ∗ c = a−1 ∗ (b ∗ b−1) ∗ c = (a−1 ∗ b
) ∗ (b−1 ∗ c

) ∈ H
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i.e., a ∼= c. The relation ∼= is reflexive, symmetric, and transitive, and is thus, an 
equivalence relation (Definition 1.4.1). For any a ∈ G, the equivalence class of a is 

[a] = {b ∈ G : a ∼= b} = {b ∈ G : (a−1 ∗ b
) ∈ H
}

= {b ∈ G : ∃  h ∈ H ∍ h = a−1 ∗ b
}

= {b ∈ G : ∃  h ∈ H ∍ b = a ∗ h} = aH.

∎

Similarly, one can show that a ∼= b ⇔ (a ∗ b−1
) ∈ H defines an equivalence 

relation on G such that the equivalence class of any element a ∈ G is Ha. As the  set  
of equivalence classes forms a partition of the set under consideration, the following 
corollary follows. 

Corollary 7.4.14 Let G be a group and H be a subgroup of G. There exist two 
partitions of the group G obtained from the left and right cosets of H . Namely, the 
sets {aH, a ∈ G} and {Ha  : a ∈ G} satisfy the following statements: 
1. Ha /= Hb  ⇒ Ha  ∩ Hb  = ∅  ∧ aH /= bH  ⇒ aH  ∩ bH  = ∅. 
2.
∪

a∈G Ha  = G =∪a∈G aH  . 

Since aH  is an equivalence class, by Proposition 1.4.9 (2), it can be represented 
by any element in aH . By Proposition 7.4.5, |aH | = |H |, which implies that there 
exist |H | representatives of aH . As  b ∈ aH  ⇔ bH  = aH  (Proposition 7.4.6), then 
one can define a representative of the coset of a given subgroup, as follows. 

Definition 7.4.15 Let G be a group, a ∈ G, and H be a subgroup of G. A  
representative of aH  is any element b ∈ G such that aH  = bH . 

Lemma 7.4.16 Let G be a group. If H, K are subgroups of G such that K ⊆ H, 
then 

[G : K ] = [G : H ][H : K ]. 

If any two of the three indices are infinite, the third index is also infinite. 

Proof Let {ai H : i ∈ I } be all distinct left cosets of H , and let
{
b j K : j ∈ J

}
be all 

distinct left cosets of K as a subgroup of H . Thus, |I | = [G : H ] and |J | = [H : K ]. 
According to Corollary 7.4.14, 

G =
∐

i∈I ai H and H =
∐

j∈J b j K . 

Therefore, 

G =
∐

i∈I ai
(∐

j∈J b j K
)
=
∐

(i, j)∈I×J 
(ai ∗ b j )K



248 7 Subgroups

i.e., the set
{(
ai ∗ b j
)
K : i ∈ I, j ∈ J

}
contains all the left cosets of K in G. To  

show that these cosets are distinct, assume that
(
ai ∗ b j
)
K = (ar ∗ bs)K for some 

i, r ∈ I and j, s ∈ J . Proposition 7.4.7 implies that ai ∗ b j ∈ (ar ∗ bs)K , i.e., 
ai ∗ b j = ar ∗ bs ∗ k for some k ∈ K . Hence, 

ai H =
b j∈H 

ai ∗ b j H = (ar ∗ bs ∗ k)H =
bs ,k∈H 

ar H. 

As the cosets ai H are mutually disjoint, i = r and b j = bs ∗ k. Thus, 

b j K = (bs ∗ k)K =
k∈K bs K . 

As the cosets b j K are mutually disjoint, j = s. Therefore, i = r and j = s. That 
is, the set

{(
ai ∗ b j
)
K : i ∈ I, j ∈ J

}
is the set of all distinct left cosets of K in G. 

Therefore, 

[G : K ] = ||{(ai ∗ b j
)
K : i ∈ I, j ∈ J

}|| = |I × J | = |I | × |J | 
= [G : H ] × [H : K ]. 

The last statement is clear. ∎
Applying Lemma 7.4.16 with K = {e}, we obtain the following important theorem 

in algebra. 

Theorem 7.4.17 (Lagrange’s Theorem) 
Let G be a group. If H is a subgroup of G, then 

|G| = [G : H ] · |H |. 

In particular, if G is finite, then |H | divides |G|. 
Exercise 7.10 provides an alternative proof of Lagrange’s theorem for the case 

where G is finite. The following example shows that not all possible divisors of the 
order of a group are orders of some subgroups. The group A4 has 12 elements, and 
6 divides 12, while A4 has no subgroup of order 6. 

Example 7.4.18 The group A4 has no subgroup of order 6. To show this result, 
assume that A4 has a subgroup H of order 6. By Lagrange’s theorem, there are only 
two cosets of H in A4. As the group A4 contains eight 3-cycles and H has only six 
elements, there exists a 3-cycle, say ψ , which is not in H . Since ψ2 = ψ−1 and ψ−1 

is not in H, then ψ2 is also not in H . As there exist only two cosets of H , we have  

ψ2 H = ψ H = A4\H. 

Multiplying both sides by ψ−1 yields ψ H = H, which contradicts that ψ is not 
in H . Therefore, A4 has no subgroup H of order 6.
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The following corollary follows by Lagrange’s theorem, Corollary 7.3.18, 
Proposition 5.5.17, and Exercise 2.24. 

Corollary 7.4.19 Let G be a finite group. 

1. For any a ∈ G, ord(a) divides the order of G and a|G| = e. 
2. The exponent of G divides |G|. 

Using that a|G| = e for any a in G, yields the special case; for any element 
[a] ∈ Z∗

p, and any prime p,
[
a p−1
] = [a]p−1 = [a]|Z∗

p| = [1], which implies that 
a p−1 ∼= 1 mod p. 

Another corollary of Lagrange’s theorem is the following: 

Corollary 7.4.20 Let G be a group and let H, K be finite subgroups of G. If  
gcd(|H |, |K |) = 1, then H ∩ K = {e}. In particular, any two subgroups of distinct 
prime orders have a trivial intersection. 

Proof As H ∩ K is a subgroup of both H and K , then by Lagrange’s theorem, 
|H ∩ K | divides both |H | and |K |, and thus their greatest common divisor (Corollary 
2.5.7). As the only positive divisor of 1 is 1 itself, then |H ∩ K | = 1 and H∩K = {e}. 
If H and K are two distinct subgroups of prime orders, then gcd(|H |, |K |) = 1, and 
the second statement follows. ∎

Note that the second statement in the above corollary can be generalized to include 
distinct subgroups with prime orders as follows: any two distinct subgroups of prime 
orders have a trivial intersection (Exercise 7.42). 

Proposition 7.4.21 Let G be a group and let a ∈ G such that ord(a) < ∞. For any 
m, r divisors of ord(a),

〈
ar
〉 ⊆ 〈am 〉⇔ m|r. 

Proof Let ord(a) = n, and let m, r be divisors of n. If 〈ar 〉 ⊆ 〈am〉, then by 
Lagrange’s theorem and Proposition 5.5.9,

||〈ar
〉|| = n/r divides

||〈am
〉|| = n/m. 

Rearranging this statement, we get that m divides r (Check!). On the other hand, 
if m|r, then r = ms for some s ∈ Z, and 

ar = (am)s ∈ 〈am 〉. 

By Corollary 7.3.4, 〈ar 〉 ⊆ 〈am〉. ∎

Corollary 7.4.22 Let G be a group and a ∈ G such that ord(a) = n < ∞. For  
each m, r ∈ N,

〈
ar
〉 = 〈am 〉⇔ gcd(r, n) = gcd(m, n).
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Proof Assume that 〈ar 〉 = 〈am〉. By Propositions 7.3.19, we have
〈
agcd(r,n)

〉 =〈
agcd(m,n)

〉
Since both exponents are divisors of n, it follows from Proposition 7.4.21 

that gcd(r, n)| gcd(m, n) and gcd(r, m)| gcd(r, n), the equality follows from Propo-
sition 2.2.5 (3). For the other direction, assume gcd(r, n) = gcd(m, n), by Proposition 
7.3.19,

〈
ar
〉 = 〈agcd(r,n)

〉 = 〈agcd(m,n)
〉 = 〈am 〉.

∎

Next, we consider a group G having two subgroups H and K . We investigate the 
relation of the cosets of the intersection H ∩ K with the cosets of both H and K . 
The following proposition states that a coset of the intersection of two groups is the 
intersection of their cosets containing the same representative. The representative of 
the coset of a subgroup in defined in Definition 7.4.15. 

Proposition 7.4.23 Let (G, ∗) be a group and let H, K be subgroups of G. For each 
a ∈ G, 

1. a(H ∩ K ) = (aH  ) ∩ (aK  ). 
2. (H ∩ K )a = (Ha) ∩ (Ka). 

Proof Let a be any element in G. If  y ∈ a(H ∩ K ), then y = a ∗ b for some 
b ∈ H ∩ K , i.e., 

y = a ∗ b ∈ aH  and y = a ∗ b ∈ aK . 

Therefore, y ∈ (aH  ) ∩ (aK  ), and a(H ∩ K ) ⊆ (aH  ) ∩ (aK  ). For the other 
inclusion, if y ∈ (aH  ) ∩ (aK  ), then y = a ∗ h for some h ∈ H , and y = a ∗ k 
for some k ∈ K . As the element a is invertible, and a ∗ h = y = a ∗ k, then 
h = k ∈ H ∩ K . Therefore, y ∈ a(H ∩ K ), and (aH) ∩ (aK  ) ⊆ a(H ∩ K ). The  
proof of the second statement is similar. ∎

The following lemma generalizes the last proposition to the case involving cosets 
of two subgroups with different representatives. 

Lemma 7.4.24 Let G be a group and H, K be subgroups of G. For each a, b ∈ G, 

1. (aH  ) ∩ (bK ) = ∅  or ∃ c ∈ G ∍ (aH  ) ∩ (aK  ) = c(H ∩ K ). 
2. (Ha) ∩ (Kb) = ∅  or ∃ c ∈ G ∍ (Ha) ∩ (Kb) = (H ∩ K )c. 

Proof If (aH  ) ∩ (bK ) /= ∅, then there exists c ∈ G such that 

c = a ∗ h, h ∈ H and c = b ∗ k, k ∈ K . 

Since h ∈ H and k ∈ K , then 

c H  = (a ∗ h)H = a ∗ (hH  ) = aH
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and 

c K  = (b ∗ k)K = b ∗ (kK  ) = bK . 

By Proposition 7.4.23, 

(aH  ) ∩ (bK ) = (cH) ∩ (cK ) = c(H ∩ K ). 

The second statement is similar. ∎
Corollary 7.4.26 demonstrates the relation between the index of the intersection 

of subgroups and the indices of the subgroups. The following lemma is required to 
prove Corollary 7.4.26. 

Lemma 7.4.25 Let G be a group. If H and K are subgroups of G, then 

[H : H ∩ K ] ≤ [G : K ]. 

If [G : K ] is finite, then [H : H ∩ K ] = [G : K ] if and only if G = HK  . 

Proof Define 

f : {h(H ∩ K ) : h ∈ H} → {aK  : a ∈ G} 

h(H ∩ K ) |→ hK  . 

We show that f is a well-defined injective map as follows: 
If h1(H ∩ K ) = h2(H ∩ K ), then h−1 

1 ∗h2 ∈ H ∩ K ⊆ K , thus h1K = h2K . i.e., 
f is well-defined. The map f is injective, for if f (h1(H ∩ K )) = f (h2(H ∩ K )), 
then h1K = h2K , which implies that h−1 

1 ∗ h2 ∈ K . As  h1, h2 ∈ H, then h−1 
1 ∗ h2 ∈ 

H ∩ K , and h1(H ∩ K ) = h2(H ∩ K ). Therefore, 

[H : H ∩ K ] = |{h(H ∩ K ) : h ∈ H}| ≤ |{aK  : a ∈ G}| = [G : K ]. 

For the second statement, assume that [G : K ] is finite. We show that 

[H : H ∩ K ] = [G : K ] ⇐⇒ f is surjective ⇐⇒ G = HK  

as follows. 
If [H : H ∩ K ] = [G : K ], then f is an injective map of finite sets of equal 

cardinalities which implies that f is surjective (Exercise 1.6). Clearly, if f is surjec-
tive, then [H : H ∩ K ] = [G : K ]. i.e., the first equivalence is true. For the second 
equivalence, assume that f is surjective and a ∈ G is an arbitrary element. Since f 
is surjective, there exists h ∈ H such that 

aK  = f (h(H ∩ K )) = hK  ,
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which implies that h−1 ∗ a ∈ K . i.e., h−1 ∗ a = k for some k ∈ K . Therefore, 
a = h ∗ k ∈ HK  and G ⊆ HK  . As  HK  is a subset of G, then G = HK  . For  the  
other direction, let G = HK  , and let aK  be an arbitrary element in {aK  : a ∈ G}. As  
a ∈ G = HK  then a = h∗k for some h ∈ H and k ∈ K . Therefore, a∗k−1 = h ∈ H 
and 

f (h(H ∩ K )) = f
((
a ∗ k−1

)
(H ∩ K )

) = (a ∗ k−1
)
K = aK  . 

Therefore, f is subjective. ∎
Using the lemma above, Lemma 7.4.16, and the inclusion H ∩ K ⊆ H ⊆ G, the  

following corollary can be obtained. 

Corollary 7.4.26 Let G be a group and let H, K be subgroups of G. If the indices 
of H and K are finite, then 

1. [G : H ∩ K ] ≤ [G : H ] · [G : K ]. 
2. [G : H ∩ K ] = [G : H ] · [G : K ] if and only if G = HK  . 

7.5 Normal Subgroups of a Group 

In Sect. 7.2, we defined and studied operations on subgroups, including the intersec-
tion, union, and product of two groups. In this section, we introduce a notion that 
enables us to define a group structure on the set of cosets, called quotient group. 
We will introduce the notion of normal subgroups, which will be used to define the 
quotient of groups in Sect. 7.7. Recall that for a subgroup H of G, the coset aH  is 
not always equal to Ha. 

Definition 7.5.1 Let G be a group and H be a subgroup of G. The subgroup H is 
said to be normal, denoted by H ⊴ G, if  aH  = Ha  ∀ a ∈ G. 

If G is a group, then for any a ∈ G, 

a{e} = {a} = {e}a and aG = G = Ga. 

Therefore, both {e} and G are always normal subgroups of G. Note that for a 
normal subgroup, the left and the right cosets are identical. 

Proposition 7.5.2 Let G be a group and H be a subgroup of G. The following 
statements are equivalent: 

1. H is a normal subgroup of G. 
2. aHa−1 = H for all a ∈ G. 
3. aHa−1 ⊆ H for all a ∈ G. 
4. aH  ⊆ Ha  for all a ∈ G.
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Proof We prove the equivalence by showing that 1 ⇒ 2 ⇒ 3 ⇒ 4 ⇒ 1. 

• Assume that H is a normal subgroup of G. By the definition of normality, aH  = 
Ha  for each a in G. By Proposition 7.4.8 (3), aHa−1 = H for all a ∈ G. 

• If (2) holds, then the statement in (3) is automatically satisfied. 
• Assuming (3), Proposition 7.4.9 (3) directly implies (4). 
• Assume (4) holds. Let a be an arbitrary element in G, since a−1 ∈ G, then 

a−1 H ⊆ Ha−1. By applying Proposition 7.4.9 (3) twice, we obtain 

a
(
a−1 H
)
a ⊆ a
(
Ha−1
)
a 

which implies that Ha  ⊆ aH , and hence, Ha  = aH. ∎

Note that 

1. Any subgroup of an abelian group is normal (Check!). 
2. Having the equivalence 1 ⇔ 4 in the proposition above reduces the work required 

to show that a subgroup is normal. By this equivalence, it is sufficient to show 
that for each a ∈ G, and for each h ∈ H , a ∗ h ∈ Ha. 

3. The equivalence 1 ⇔ 3 also drastically reduces the computations. Using this 
equivalence, it suffices to show that for each h ∈ H and for all a ∈ G, a∗h∗a−1 ∈ 
H . 

4. Notably, H being a normal subgroup of G does not mean that the elements of 
H commute with the elements of G. The statement aH  = Ha  only means that 
for any h ∈ H , there exists k ∈ H such that a ∗ h = k ∗ a. However, normal 
subgroups provide a certain mobility. For example, if H1, H2, and H3 are three 
normal subgroups of G, then for any a ∈ G, 

a ∗ h1 ∗ h2 ∗ h3 = k1 ∗ a ∗ h2 ∗ h3 = k1 ∗ k2 ∗ a ∗ h3 = k1 ∗ k2 ∗ k3 ∗ a 

where hi , ki ∈ Hi . Therefore, although the elements do not commute, the elements 
of a group G can be moved among those of the normal subgroup. In general, the 
following proposition can be proved by induction. 

Proposition 7.5.3 Let G be a group and let H1, . . . ,  Hn be normal subgroups of G. 
Let hi ∈ Hi , 1 ≤ i ≤ n. For any a ∈ G and 1 ≤ i < n, there exist elements ks ∈ Hs , 
1 ≤ s ≤ i such that 

a ∗ h1 ∗ h2 ∗  · · ·  ∗  hi ∗ hi+1 ∗  · · ·  ∗  hn = k1 ∗ k2 ∗  · · ·  ki ∗ a ∗ hi+1 · · ·  ∗  hn 

and there exist ks ∈ Hs , 1 ≤ s ≤ n such that 

a ∗ h1 ∗ h2 ∗  · · ·  ∗  · · ·  ∗  hn = k1 ∗ k2 ∗  · · · kn ∗ a.
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The direct examples of normal subgroups are subgroups of abelian groups. For 
example, nZ is a normal subgroup of (Z, +) for all n ∈ N, the circle is a normal 
subgroup of (C∗, ·), and all the subgroups in Example 7.1.8 are normal subgroups 
of (C∗, ·). The following example is for a normal subgroup of nonabelian group. 

Example 7.5.4 Let n ∈ N. The  set  SLn(R), of all n × n invertible matrices whose 
determinant is 1 (Notation 1.6.25), forms a normal subgroup of the group of n × n 
invertible matrices on the real numbers. i.e., 

SLn(R) ⊴ GLn(R) for all n ∈ N. 

As det(In) = 1, then SLn(R) is a nonempty subset of GLn(R). Using the results 
of Proposition 1.6.23 and Exercise 1.9, for any A, B ∈ SLn(R), 

det
(
AB−1
) = det(A)det

(
B−1
) = det(A) 

1 

det(B) 
= 1 · 1 = 1. 

Hence, AB−1 ∈ SLn(R) for all A, B ∈ SLn(R). Therefore, SLn(R) is a subgroup 
of GLn(R) (Proposition 7.1.4 (3)). Moreover, if A ∈ GLn(R) and B ∈ SLn(R), 
then 

det
(
AB  A−1

) = det( A)det(B)det
(
A−1
) = det(A) · 1 · 1 

det(A) 
= 1 

i.e., AB  A−1 ∈ SLn(R). Therefore, SLn(R) is a normal subgroup of GLn(R) 
(Proposition 7.5.2 (3)). 

Example 7.5.5 

1. Let n ∈ N, such that n ≥ 3. Consider the nonabelian group (Sn, ◦) and its 
subgroup An . One can use the results from Proposition 6.5.18 to show that for 
any φ ∈ Sn and ψ ∈ An, the product ϕ ψ  φ−1 is always an even permutation. 
Therefore, An is a normal subgroup. 

2. The subgroup 〈(12)〉 = {e, (12)} is an example of a non-normal subgroup of 
(Sn, ◦), n ≥ 3, as  

(13)(12)(13)−1 = (13)(12)(13) = (23) /∈ 〈(12)〉. 

The result in Example 7.5.5 (1) can be deduced as a corollary of more general 
results, as follows: 

Proposition 7.5.6 Let G be a group and H be a subgroup of H . If  [G : H ] = 2, 
then H is a normal subgroup of G. 

Proof Assume that a ∈ G is an arbitrary element. Since [G : H ] = 2, then there 
exist only two right and two left cosets of H .
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• If a ∈ H, then by Proposition 7.4.5 (2), we have Ha  = H = aH . 
• If a /∈ H , then H /= Ha. As H and Ha  are the only right cosets of H, then the 

set {H, Ha} forms a partition of G. i.e., Ha  = G\H . Similarly, using the left 
cosets of H , one shows that aH  = G\H . Hence, Ha  = aH . 

As a is an arbitrary element in G, the subgroup H is normal. ∎
For any n ∈ N, where n ≥ 2, the group An contains half the elements of Sn . 

Hence, one directly obtains [Sn : An] = 2 and the following corollary. 

Corollary 7.5.7 An ⊴ Sn for all n ∈ N. 
Let G be any group. Recall that the center of G is C(G) = 

{g ∈ G : g ∗ a = a ∗ g ∀ a ∈ G}. 
Proposition 7.5.8 The center of a group is a normal subgroup. 

Proof Let G be a group. According to Proposition 5.4.8, the center C(G) is a 
subgroup of G. For all a ∈ G and all c ∈ C(G), 

a ∗ c ∗ a−1 = c ∗ a ∗ a−1 = c ∈ C(G). 

Hence, a C(G) a−1 ⊆ C(G). Proposition 7.5.2 (3) implies that C(G) is 
normal. ∎

For the remainder of this section, we consider a group G and discuss the notion of 
normality in the presence of several subgroups of G. We begin with the next result 
that automatically follows. 

Proposition 7.5.9 Let G be a group and H be a normal subgroup of G. The 
normality of H in G implies its normality in any other subgroup of G containing 
H . i.e., if H < K < G, then 

H ⊴ G ⇒ H ⊴ K . 

Note that 

• The converse of the proposition above is not always true. If H < K < G and H 
is normal in K , the group H is not necessarily normal in G. For example, let 

H = 〈(1 2)(3 4)〉 = {e, (1 2)(3 4)} and K = {e, (1 2)(3 4), (1 3)(2 4), (2 3)(1 4)}. 

Both H and K are subgroups of S4 (Check!). The group K is an abelian subgroup 
(Klein group) that contains H .Therefore, H is a normal subgroup of K , but  H is 
not normal in S4 as (2 3)H /= H (2 3). 

• The normality is not a transitive relation. i.e., 

H ⊴ K , K ⊴ G ⇏ H ⊴ G.



256 7 Subgroups

This result can be shown using the above example, as H = 〈(1 2)(3 4) 〉⊴ K and 
K = {e, (1 2)(3 4), (1 3)(2 4), (2 3)(1 4)} ⊴ S4 (Check!), but H is not normal 
in S4. 

The following results explain the relation of normal subgroups with the normality 
of their intersection. 

Proposition 7.5.10 Let G be a group. If H1, H2, K1, and K2 are subgroups of G, 
then 

H1 ⊴ K1, H2 ⊴ K2 =⇒ H1 ∩ H2 ⊴ K1 ∩ K2. 

Proof Assume that H1 ⊴ K1 and H2 ⊴ K2. As  K1 ∩ K2 contains H1 ∩ H2 and 
the intersection of two subgroups of G is a subgroup of G, then both H1 ∩ H2 and 
K1 ∩ K2 are subgroups of G, and 

H1 ∩ H2 < K1 ∩ K2. 

If k ∈ K1 ∩ K2 and h ∈ H1 ∩ H2, then. 

• k ∈ K1, h ∈ H1 and H1 ⊴ K1 implies that k ∗ h ∗ k−1 ∈ H1 
• k ∈ K2, h ∈ H2 and H2 ⊴ K2, implies that k ∗ h ∗ k−1 ∈ H2 

The two statements imply that k ∗ h ∗ k−1 ∈ H1 ∩ H2. By Proposition 7.5.2(3), 
H1 ∩ H2 is a normal subgroup of K1 ∩ K2. ∎
Corollary 7.5.11 Let G be a group. Let H, K be subgroups of G such that H ⊴ G. 

1. The intersection of H with any subgroup K of G is a normal subgroup of K , 
i.e., 

H ⊴ G ∧ K < G =⇒ H ∩ K ⊴ K . 

2. If K is a normal subgroup of G, then H ∩ K is a normal subgroup of G, i.e., 

if H ⊴ G and K ⊴ G, then H ∩ K ⊴ G. 

Proof Since any group is a normal subgroup of itself, then Proposition 7.5.10 can 
be applied with H1 = H, K1 = G, and H2 = K2 = K , to directly obtain the first 
statement. The second statement can be also obtained by applying Proposition 7.5.10 
with H1 = H, H2 = K , K1 = K2 = G. ∎

Note that if H is a normal subgroup of G, then the intersection of H with any 
subgroup K of G is not necessarily normal in H , i.e., H ⊴G ∧ K < G ⇏ H∩K ⊴ H . 
For example, consider any non-normal subgroup K of G, and let H = G. In this  
case, H is a normal subgroup of G, but H ∩ K = K is not normal in H . 

Next, we examine the product of a normal subgroup with any other subgroup. 
One of the nice properties of a normal subgroup is that its product with any other 
subgroup will be always a group, as shown in the following proposition.
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Proposition 7.5.12 Let G be a group and H, K be subgroups of G. 

1. If H is a normal subgroup of G, then HK  is a subgroup of G. Namely, H K  =
〈H ∪ K 〉. Moreover, H ⊴ HK  . 

2. If both H and K are normal subgroups of G, then HK  is a normal of G, i.e., 

if H ⊴ G and K ⊴ G, then HK ⊴ G. 

Proof Assume that H ⊴ G. For any h ∈ H, k ∈ K , 

h ∗ k = k ∗ k−1 ∗ h ∗ k = k ∗ (k−1 ∗ h ∗ k
) ∈ K H  

which implies that HK  ⊆ K H . Note that k−1 ∗ h ∗ k ∈ H, by the normality of H . 
Similarly, 

k ∗ h = k ∗ h ∗ k−1 ∗ k = (k ∗ h ∗ k−1
) ∗ k ∈ HK  

i.e., K H  ⊆ HK  . Therefore, HK  = K H , and Proposition 7.2.8 implies that HK  
is a subgroup of G. According to Proposition 7.3.15, HK  = 〈H ∪ K 〉. Since H < 
HK  < G and H ⊴ G, then H ⊴ HK  (Proposition 7.5.9). For the second statement, 
assume that both H and K are normal. Let g ∈ G, and let h ∗ k ∈ HK  be arbitrary 
elements. Since 

g ∗ h ∗ g−1 ∈ H, g ∗ k ∗ g−1 ∈ K , 

then 

g ∗ (h ∗ k) ∗ g−1 = g ∗ (h ∗ (g−1 ∗ g
) ∗ k
) ∗ g−1 

= (g ∗ h ∗ g−1
) ∗ (g ∗ k ∗ g−1

) ∈ HK . 

Since g, h, k are arbitrary, then by Proposition 7.5.2 (3), HK ⊴ G. ∎

To generalize these results to n subgroups, we recall the definition of the product 
of n subgroups (Definition 7.2.5). 

Proposition 7.5.13 Let G be a group, n ∈ N, and let H1, . . . ,  Hn be normal 
subgroups of G. The product H1 · · ·  Hn is the subgroup of G generated by

∪n 
i=1 Hi 

and it is a normal subgroup of G. i.e.,

〈∐n 

i=1 
Hi

〉
= H1 · · ·  Hn ⊴ G. 

Proof The proof is performed by induction on n, as follows: 

• If n = 1, then the statement is true, as H1 = 〈H1〉 and H1 is a normal subgroup 
of G.
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• Assume that the statement is true at n. i.e., H1 H2 · · ·  Hn = 〈∪n 
i=1 Hi
〉
and 

H1 · · ·  Hn is a normal subgroup of G. 
• At n+1, let  H1, . . . ,  Hn, Hn+1 be normal subgroups of G and K = H1 · · ·  Hn . By  

Proposition 7.5.12 (2) and the induction hypothesis, one obtains that K Hn+1 =
〈K ∪ Hn+1〉, and K Hn+1 is a normal subgroup of G. By Proposition 7.3.16,

〈K ∪ Hn+1〉 =
〈∐n+1 

i=1 
Hi

〉
. 

By the steps above and the principle of mathematical induction, the statement is 
true for any n ∈ N. ∎

As H1 ∪ H2 ∪  · · ·  ∪  Hn = Hα(1) ∪ Hα(2) ∪  · · ·  ∪  Hα(n) for any permutation α on 
{1, 2, 3, . . .  .,  n}, the last proposition implies the following corollary. 

Corollary 7.5.14 Let G be a group, n ∈ N, and let H1, . . . ,  Hn be normal subgroups 
of G. For any α ∈ Sn, 

H1 H2 · · ·  Hn = Hα(1) Hα(2) · · ·  Hα(n). 

We end the section by proving several results that are needed for Chap 9.We begin  
with the following lemma, which states that the elements of two normal subgroups 
with trivial intersection commute. 

Lemma 7.5.15 Let G be a group and H, K be normal subgroups of G. If H ∩ K = 
{e}, then any h ∈ H and k ∈ K commute. i.e., h ∗ k = k ∗ h for each h ∈ H and 
k ∈ K . 

Proof Assume that H, K are normal subgroups of G and H ∩ K = {e}. Let  h ∈ H 
and k ∈ K be arbitrary elements. By Proposition 7.5.2, 

k ∗ h−1 ∗ k−1 ∈ H and h ∗ k ∗ h−1 ∈ K 

which implies that h ∗ (k ∗ h−1 ∗ k−1
) ∈ H and

(
h ∗ k ∗ h−1

) ∗ k−1 ∈ K . Thus, the 
element h ∗ k ∗ h−1 ∗ k−1 ∈ H ∩ K = {e}. Therefore, h ∗ k = k ∗ h. ∎

Proposition 7.5.16 Let G be a group and let H1, . . . ,  Hn be normal subgroups of 

G such that for each 1 ≤ i ≤ n, Hi ∩
〈∪

j /=i H j

〉
= {e}. 

1. For each 1 ≤ i ≤ n, 

if h ∈ Hi and k ∈
〈∐

j /=i 
H j

〉
, then h ∗ k = k ∗ h. 

2. Every element in H1 · · ·  Hn can be uniquely written in the form h1 ∗ h2 ∗ · · · ∗hn, 
where hi ∈ Hi .
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Proof 

1. Let K =
〈∪

j /=i H j

〉
. According to Proposition 7.5.13, K is a normal subgroup 

of G. As  Hi is also a normal subgroup and K ∩ Hi = {e}, then the result follows 
by Lemma 7.5.15. 

2. By induction on n: If  n = 2, then this is the statement of Proposition 7.2.10. 
Assume that the result is true for n. For  n + 1, let  H1, . . . ,  Hn+1 be normal 
subgroups. Assume that 

h1 ∗ h2 ∗  · · ·  ∗  hn ∗ hn+1 and k1 ∗ k2 ∗  · · ·  ∗  kn ∗ kn+1 

are two representations of an element in H1 · · ·  Hn+1. i.e., 

h1 ∗ h2 ∗  · · ·  ∗  hn ∗ hn+1 = k1 ∗ k2 ∗  · · ·  ∗  kn ∗ kn+1. 

As H1, . . . ,  Hn are normal subgroups, by Proposition 7.5.13, the product 
H1 · · ·  Hn =

〈∪n 
i=1 Hi
〉
forms a subgroup of G. Therefore, 

(h1 ∗ h2 ∗  · · ·  ∗  hn) ∗ hn+1 and (k1 ∗ k2 ∗  · · ·  ∗  kn) ∗ kn+1 

are two representations of the same element in the product
〈∪n 

i=1 Hi
〉
Hn+1. By  

applying Proposition 7.2.10 to the subgroups
〈∪n 

i=1 Hi
〉
and Hn+1, we get 

h1 ∗ h2 ∗  · · ·  ∗  hn = k1 ∗ k2 ∗  · · ·  ∗  kn and hn+1 = kn+1. 

By the induction hypothesis, we obtain that h1 = k1, h2 = k2, . . . ,  hn = kn . 

Therefore h1 = k1, h2 = k2, . . . ,  hn = kn, hn+1 = kn+1 and the representations 
are equal. 

By the principle of mathematical induction, the statement is true for all n ∈ N. ∎

Remark 7.5.17 The statement in Proposition 7.5.16 (2) does not require Hi to be 
normal if n = 2 (Proposition 7.2.10); however, this requirement cannot be omitted 
for n > 2, as it is required for the proof to show that the product H1 · · ·  Hn forms a 
subgroup. 

Proposition 7.5.18 Let G be a group. If H1, . . . ,  Hn are normal subgroups of G, 
then the following statements are equivalent. 

1. Hi ∩
〈∪

j /=i H j

〉
= {e} for all 1 ≤ i ≤ n. 

2. For each hi ∈ Hi , 1 ≤ i ≤ n 

h1 ∗  · · ·  ∗  hn = e ⇒ h1 = h2 =  · · ·  =  hn = e. 

Proof Assume that (1) holds. We show by induction on n that
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h1 ∗  · · ·  ∗  hn = e ⇒ h1 = h2 =  · · ·  =  hn = e. 

The result is trivial for n = 1. If  n = 2, the result easily follows (Exercise 
7.8). Assume that the result is true for n, and h1∗· · ·∗hn+1 = e. Let  k = h1∗· · ·∗hn . 
The element k ∈

〈∪
j /=n+1 Hj

〉
, and k ∗ hn+1 = e. By the case of n = 2, we obtain 

k = e = hn+1. Using the induction hypothesis, as k = h1 ∗  · · ·  ∗  hn, one also gets 
h1 =  · · ·  =  hn = e. 

For the other direction, assume that (2) holds. Let h ∈ Hi ∩
〈∪

j /=i H j

〉
. Since

〈∪
j /=i H j

〉
= H1 · · ·  Hi−1 Hi+1 · · ·  Hn (Proposition 7.5.13), then h = h1∗· · ·∗hi−1∗ 

hi+1 ∗  · · ·  ∗  hn, where h j ∈ Hj , 1 ≤ j ≤ n, j /= i. i.e., 

h−1 ∗ h1 ∗  · · ·  ∗  hi−1 ∗ hi+1 ∗  · · ·  ∗  hn = e. 

By Proposition 7.5.3, 

k1 ∗  · · ·  ∗  ki−1 ∗ h−1 ∗ hi+1 ∗  · · ·  ∗  hn = e 

where kt ∈ Ht , 1 ≤ t ≤ i − 1. Since h ∈ Hi , then by the hypothesis assumption 

k1 =  · · ·  =  ki−1 = h−1 = hi+1 = hn = e. 

As h−1 = e, then h = e, and Hi ∩
〈∪

j /=i H j

〉
is trivial. ∎

The requirement of Hi to be normal in Proposition 7.5.18 can be omitted if n = 2 
(Exercise 7.8). 

Proposition 7.5.19 Let G be a group, and let H1, . . . ,  Hn be normal subgroups of 

G such that Hi ∩
〈∪

j /=i H j

〉
= {e} for all 1 ≤ i ≤ n. Let m ∈ N, where m ≤ n, for  

each hi , ki ∈ Hi , 1 ≤ i ≤ m. 

(h1 ∗ h2 ∗  · · ·  ∗  hm) ∗ (k1 ∗ k2 ∗  · · ·  ∗  km) = (h1 ∗ k1) ∗ (h2 ∗ k2) ∗  · · ·  ∗  (hm ∗ km). 

Proof We show the statement by induction on m, where 1 ≤ m ≤ n. 

• If m = 1, then (h1) ∗ (k1) = (h1 ∗ k1), and thus, the statement is true. 
• Assume that the statement is true for m. 
• For m + 1, one must show that 

(h1 ∗  · · ·  ∗  hm+1) ∗ (k1 ∗  · · ·  ∗  km+1) = (h1 ∗ k1) ∗  · · ·  ∗  (hm+1 ∗ km+1) 

where hi , ki ∈ Hi . 

– As k1 ∈ H1, h2 ∗ h3 ∗  · · ·  ∗  hm+1 ∈
〈∪m+1 

j=2 Hj

〉
, and H1 ∩

〈∪m+1 
j=2 Hj

〉
= {e}, 

then by Lemma 7.5.15,
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(h2 ∗  · · ·  ∗  hm+1) ∗ k1 = k1 ∗ (h2 ∗  · · ·  ∗  hm+1) 

– By the induction hypothesis, 

(h2 ∗  · · ·  ∗  hm+1) ∗ (k2 ∗  · · ·  ∗  km+1) = (h2 ∗ k2) ∗  · · ·  ∗  (hm+1 ∗ km+1) 

Thus, 

(h1 ∗ h2 ∗  · · ·  ∗  hm+1) ∗ (k1 ∗ k2 ∗  · · ·  ∗  km+1) = h1 ∗ (h2 ∗  · · ·  ∗  hm+1 ∗ k1) ∗ k2 ∗  · · ·  ∗  km+1 

= h1 ∗ (k1 ∗ h2 ∗  · · ·  ∗  hm+1) ∗ k2 ∗  · · ·  ∗  km+1 

= (h1 ∗ k1) ∗ (h2 ∗  · · ·  ∗  hm+1) ∗ (k2 · · ·  km+1) 
= (h1 ∗ k1) ∗ (h2 ∗ k2) ∗  · · ·  ∗  (hm+1 ∗ km+1).

∎

7.6 Internal Direct Product of Subgroups 

In this section, we examine what it means for a group G to be the internal direct 
product of subgroup. We begin by defining the notion using only two subgroups, and 
then extend the definition to n subgroups. The nomenclature internal is justified in 
Exercise 8.6. Recall that if G is a group and H, K are two normal subgroups of G, 
then their product HK  = {h ∗ k : h ∈ H, k ∈ K } is a subgroup of G. 

Definition 7.6.1 Let G be a group and let H, K be normal subgroups of G. The  
group G is called the internal direct product of H and K if the following conditions 
are satisfied: 

H ∩ K = {e} and G = HK  . 

The condition H ∩ K = {e} has a key role in defining the notion of internal direct 
product. The condition ensures that every element in the product HK  is written in a 
unique form of h ∗ k (Proposition 7.2.10). 

Example 7.6.2 

1. Consider the additive group (Z6, ⊕6). Let  

H = 〈[2]〉 = {[0], [2], [4]} and K = 〈[3]〉 = {[0], [3]}. 

It is straightforward to check that the conditions in Definition 7.6.1 are satisfied. 
Therefore, Z6 is the internal direct product of 〈[2]〉 and 〈[3]〉.
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Fig. 7.4 The subgroup 
H and K 

2. Consider the abelian group (Z × Z, +). Let  H = {(x, 0) : x ∈ Z} and K = 
{(0, y) : y ∈ Z}. Both subsets H and K are normal subgroups of Z × Z, where 
H + K = Z × Z (verify!). The intersection of H and K is {(0, 0)}, which is the 
identity element in Z × Z. Therefore, Z × Z is the internal direct product of H 
and K . 

3. The groups H = {(a, a) : a ∈ R} and K = {(b, 0) : b ∈ R} are subgroups of 
(R × R, +) (Fig. 7.4). It can be easily verified that (R × R, +) is the internal 
direct product of H and K . 

4. Consider the additive group (Z, +). Let  H = 2Z and K = 4Z. The product of 
H and K is 2Z + 4Z = 2Z /= Z. Therefore, Z is not an internal direct product 
of H and K . 

5. Consider the additive group (Z, +). Let  H = 2Z and K = 3Z. The product of 
H and K is 2Z + 3Z = Z. However, 2Z ∩ 3Z = 6Z /= {0}. Therefore, Z is not 
an internal direct product of H and K . 

Example 7.6.3 Let G = {([x1], [x2], [x3]) ∈ Z3 × Z3 × Z3 : x1 + x2 + x3 ≡ 0 mod  3}. 
Define ⊕ on the elements of G by 

([x1], [x2], [x3]) ⊕ ([y1], [y2], [y3]) = ([x1] ⊕3 [y1], [x2] ⊕3 [y2], [x3] ⊕3 [y3]) 

for any ([x1], [x2], [x3]), ([y1], [y2], [y3]) in G. It is straightforward to show that G is 
an abelian group (verify!). In fact, G is a subgroup of the additive group Z3×Z3×Z3. 

Let 

H = {([x1], [x2], [x3]) ∈ G : x1 + x2 + x3 ≡ 0 mod  3, x2 ≡ 0 mod  3} 
and K = {([x1], [x2], [x3]) ∈ G : x1 + x2 + x3 ≡ 0 mod  3, x1 ≡ 0 mod  3}. 

As both H and K are closed under the addition and taking the additive inverse, so 
H and K are subgroups of G. We show that G is the internal direct product of H and 
K . Both subgroups H, K are normal, as G is abelian. Any element ([x1], [x2], [x3])
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in H ∩ K must satisfy 

x1 + x2 + x3 ≡ 0 mod  3, x1 ≡ 0 mod  3, and x2 ≡ 0 mod  3. 

Hence, 

x3 ≡ 0 + 0 + x3 ≡ x1 + x2 + x3 ≡ 0 mod  3  

which yields ([x1], [x2], [x3]) = ([0], [0], [0]). Thus, H ∩ K = {0G}. 
According to Definition 7.6.1, we need to show that G = HK  . As the group G 

contains both H and K , it contains their product HK  = 〈H ∪ K 〉. To check the 
other inclusion, let ([x1], [x2], [x3]) be an arbitrary element in G. By the definition 
of G, 

x3 ≡ −x1 − x2 mod 3. 

Therefore, ([x1], [x2], [x3]) = ([x1], [x2], −[x1] − [x2]). Hence, 

([x1], [x2], [x3]) = ([x1], [0], [−x1]) ⊕ ([0], [x2], [−x2]) ∈ HK  . 

Example 7.6.4 Consider the group G consisting of R3 endowed with the vector 
addition. Let 

H1 = {(x1, x2, x3) ∈ G : x1 + x2 + x3 = 0} and H2 = {(x, x, x) ∈ G : x ∈ R}. 

It can be easily checked that H1 and H2 are subgroups of G. Both subgroups 
are normal, as G is abelian. Any element in H1 ∩ H2 has the form (x, x, x), where 
x + x + x = 0, which implies that x = 0, i.e., H1 ∩ H2 = {(0, 0, 0)}. Any element 
(x1, x2, x3) ∈ G can be expressed as 

(x1, x2, x3) = (x1 − z, x2 − z, x3 − z) + (z, z, z) ∈ H1 + H2 

where z = (x1 + x2 + x3)/3. Therefore, H1 + H2 = G is the internal direct product 
of H1 and H2. 

Next, we generalize the notion of the internal direct product to arbitrary finite 
number of subgroups. 

Definition 7.6.5 Let G be a group and let H1, . . . ,  Hn be normal subgroups of G. If  

1. Hi ∩
〈∪

j /=i H j

〉
= {e} for all 1 ≤ i ≤ n. 

2. G = H1 · · ·  Hn. 

then G is called the internal direct product of the subgroups H1, . . . ,  Hn . 

Note that Hi ∩
〈∪

i /= j H j

〉
= {e} implies that Hi ∩ Hj = {e} for each i /= j , but  

the converse is not true (Exercise 7.6).
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Example 7.6.6 Let G be the additive group Z4 = Z × Z × Z × Z, and 

H1 = {(x, 0, 0, x) : x ∈ Z}, H2 = {(0, x, 0, 3x) : x ∈ Z}, 
H3 = {(0, 0, x, −x) : x ∈ Z}, H4 = {(0, 0, 0, x) : x ∈ Z}. 

The group G is abelian, and thus, all the subgroups Hi are normal subgroups. We 
show that G is the internal direct product of H1, . . . ,  H4. 

• Any element in 〈H2 ∪ H3 ∪ H4〉 has 0 in the first coordinate. Therefore, any 
element in H1 ∩ 〈H2 ∪ H3 ∪ H4〉 has 0 in the first coordinate and must be of the 
form (x, 0, 0, x), which implies that this element must be (0, 0, 0, 0). 

• Any element in 〈H1 ∪ H3 ∪ H4〉 has 0 in the second coordinate. Therefore, any 
element in H2 ∩ 〈H1 ∪ H3 ∪ H4〉 has 0 in the second coordinate and must be of 
the form (0, x, 0, 3x), which implies that this element must be (0, 0, 0, 0). 

• Similarly, one can show that H3 ∩ 〈H1 ∪ H2 ∪ H4〉 contains only (0, 0, 0, 0). 
• Since the group Z4 is abelian, any element in 〈H1 ∪ H2 ∪ H3〉 has the form 

(x1, x2, x3, x1 + 3x2 − x3), where x1, x2, x3 ∈ Z. For this elements to be in 
H4, the first three elements must be zeros. Therefore, the only element in 
H4 ∩ 〈H1 ∪ H2 ∪ H3〉 is (0, 0, 0, 0). 
Hence the subgroups H1, H2, H3, and H4 satisfy Hj ∩

〈∪
i /= j Hi

〉
= {e} for all 

1 ≤ j ≤ 4. Since H1, H2, H3, H4 are normal subgroups of G, then by Proposition 
7.5.13, their product H1 H2 H3 H4 forms a subgroup of G. To show that G is contained 
in H1 H2 H3 H4, assume that (x1, x2, x3, x4) is an arbitrary element in G. As  

(x1, x2, x3, x4) = (x1, 0, 0, x1) + (0, x2, 0, 3x2) + (0, 0, x3, −x3) 
+(0, 0, 0, −x1 − 3x2 + x3 + x4) 

belongs toH1 H2 H3 H4, then G = H1 H2 H3 H4, i.e., G is the internal direct product 
of H1, . . . ,  H4. 

Example 7.6.7 Consider the additive group (Z × Z, +). Let  

H1 = Z × {0}, H2 = {0} × Z, and H3 = {(n, n) : n ∈ Z}. 

The subgroups Hi , with i = 1, 2, 3, are normal subgroups of Z × Z. As  H3 ∩
〈H1 ∪ H2〉 = H3 /= {(0, 0)}, then Z × Z is not an internal direct product of H1, H2, 
and H3. 

7.7 The Quotient Groups 

Let G be a group and H be a subgroup of G. If  H is a normal subgroup of G, then 
the right and left cosets of H coincide, and G/H will denote the set of all cosets of H 
without distinguishing between the right and left cosets, i.e., G/H = {aH  : a ∈ G}.



7.7 The Quotient Groups 265

In what follows, we define an operation ·G/H on the set G/H . This operation is 
well-defined if and only if H is a normal subgroup, in which case, G/H forms a 
group known as the quotient group of G by H . 

Definition 7.7.1 Let G be a group and H be a subgroup of G. Define the operation 
·G/H on G/H as 

(aH  ) ·G/H (bH  ) = (a ∗ b)H ∀a, b ∈ G. 

Lemma 7.7.2 Let (G, ∗) be a group and H be a subgroup of G. The group H is a 
normal subgroup of G if and only if ·G/H is well-defined, i.e., if and only if for all 
a, b, a', b' ∈ G, 

aH  = a'H ∧ bH  = b'H ⇒ (a ∗ b)H = (a' ∗ b')H 

Proof Assume that H is a normal subgroup of G, and let a, b, a', and b' be elements 
in G such that aH  = a'H and bH  = b'H . To show that (a ∗ b)H = (a' ∗ b')H , 
it suffices (by Proposition 7.4.7) to show that (a ∗ b) ∈ (a' ∗ b')H by the following 
steps: 

• Here, b ∈ bH  = b'H ⇒ ∃  h1 ∈ H ∍ b = b'∗h1 ⇒ ∃  h1 ∈ H ∍ a∗b = a∗b'∗h1. 
• Since H is a normal subgroup of G, then b'H = Hb'. Hence, there exists h2 ∈ H 

such that b' ∗ h1 = h2 ∗ b', i.e., ∃ h2 ∈ H ∍ a ∗ b = a ∗ h2 ∗ b'. 
• As aH  = a'H, there exists h3 ∈ H such that a ∗ h2 = a' ∗ h3. Hence, ∃ h3 ∈ H ∍

a ∗ b = a' ∗ h3 ∗ b'. 
• Again, as H is a normal subgroup of G, then Hb' = b'H , and there exists h4 ∈ H 

such that h3 ∗ b' = b' ∗ h4. i.e., ∃ h4 ∈ H ∍ a ∗ b = a' ∗ b' ∗ h4. 

One can summarize these steps as follows: 

a ∗ b =
bH=b'H 

a ∗ b' ∗ h1 =
b'H=Hb'

a ∗ h2 ∗ b' =
aH=a'H 

a' ∗ h3 ∗ b' =
b'H=Hb'

a' ∗ b' ∗ h4. 

Therefore, (a ∗ b) ∈ (a' ∗ b')H . 
For the other direction, assume that 

aH  = a'H ∧ bH  = b'H ⇒ (a ∗ b)H = (a' ∗ b')H 

holds for any a, b, a', b' ∈ G. Let  g ∈ G and h ∈ H . As  eH  = hH  and gH  = gH, 
then by the assumption, 

gH  = (e ∗ g)H = (h ∗ g)H. 

Hence, Proposition 7.4.7 implies that (h ∗ g) ∈ gH . As this is true for all h ∈ H, 
then Hg  ⊆ gH  and H is normal (Proposition 7.5.2). ∎
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Proposition 7.7.3 Let (G, ∗) be a group and H be a normal subgroup of G. The 
operation ·G/H defined on G/H by 

(aH  ) ·G/H (bH) = (a ∗ b)H ∀ a, b ∈ G 

is a binary operation on G/H that turns it into a group. 

Proof For any aH, bH  ∈ G/H , the coset (a ∗ b)H is an element in G/H , i.e., G/H 
is closed under ·G/H . Since H is normal, Lemma 7.7.2 implies that the operation ·G/H 

is a well- defined binary operation on G/H . To show the associative property of ·G/H , 
let aH, bH, and cH  be arbitrary elements in G/H, then
(
(aH) ·G/H (bH  )

) ·G/H (cH) = ((a ∗ b)H ) ·G/H (cH) = ((a ∗ b) ∗ c)H 
= (a ∗ (b ∗ c))H = (aH  ) ·G/H ((b ∗ c)H ) 
= (aH  ) ·G/H

(
(bH  ) ·G/H (cH  )

)
. 

As H = eH  ∈ G/H and satisfies (eH  ) ·G/H (aH) = aH  = (aH  ) ·G/H (eH  ) 
for each a ∈ G, then H is an identity element of G/H with respect to the operation 
·G/H . Finally, if aH  is an element in G/H, then a−1 H is also an element in G/H 
satisfying 

(aH  ) ·G/H
(
a−1 H
) = H = (a−1 H

) ·G/H (aH  ) 

i.e., aH  is invertible in G/H, where (aH  )−1 = a−1 H . ∎

Definition 7.7.4 (Quotient group) Let G be a group and H be a normal subgroup of 
G. The group

(
G/H, ·G/H

)
defined in Proposition 7.7.3 is called the quotient group 

of G by H . 

For an abelian group G, since any subgroup of G is normal, the quotient group 
G/H is always defined for any subgroup H of G. The following example pertain to 
a quotient group constructed from a nonabelian group. 

Example 7.7.5 Consider the nonabelian group S4 and its subgroup. 

H = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}. 

There are [S4 : H ] = 6 left (right) cosets of H that can be directly computed to 
obtain

eH  = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} = He  

(1 2)H = {(1 2), (3 4), (1 3 2  4), (1 4 2  3)} = H (1 2) 
(1 3)H = {(1 3), (1 2 3 4), (2 4), (1 4 3 2)} = H (1 3) 
(2 3)H = {(2 3), (1 3 4 2), (1 2 4 3), (1 4)} = H (2 3)
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Table 7.4 Cayley’s table of
(
S4/H, ·S4/H

)

·S4/H H (1 2)H (1 3)H (2 3)H (1 2 3)H (1 3 2)H 

H H (1 2)H (1 3)H (2 3)H (1 2 3)H (1 3 2)H 

(1 2)H (1 2)H H (1 3 2)H (1 2  3)H (2 3)H (1 3)H 

(1 3)H (1 3)H (1 2  3)H H (1 3 2)H (1 2)H (2 3)H 

(2 3)H (2 3)H (1 3 2)H (1 2  3)H H (1 3)H (1 2)H 

(1 2  3)H (1 2 3)H (1 3)H (2 3)H (1 2)H (1 3 2)H H 

(1 3 2)H (1 3 2)H (2 3)H (1 2)H (1 3)H H (1 2  3)H 

(1 2 3)H = {(1 2  3), (1 3 4), (2 4 3), (1 4 2)} = H(1 2  3) 
(1 3 2)H = {(1 3 2), (2 3  4), (1 2 4), (1 4 3)} = H (1 3 2)

As these six cosets are different, then these are all the left (right) cosets of H . 
The subgroup H is normal as φ H = H φ for all φ in S4. Therefore, S4/H forms a 
group under the operation ·S4/H . To obtain Cayley’s table for

(
S4/H, ·S4/H

)
(Table 

7.4), consider 

S4/H = {H, (1 2)H, (1 3)H, (2 3)H, (1 2 3)H, (1 3 2)H}. 

Therefore, 
Recall that the elements of G/H are equivalent classes of an equivalence relation 

(Lemma 7.4.13). Each class can be represented by any element in that class. For 
example, 

(1 3)H = {(1 3), (1 2 3 4), (2 4), (1 4 3 2)} 

is equal to (1 2  3 4)H, (2 4)H, and (1 4 3 2)H . All these subsets are representations 
of the same coset of H (Proposition 7.4.7). These different representations for aH  
lead to different but equivalent representations of G/H , for example 

S4/H = {H, (1 2)H, (1 3)H, (2 3)H, (1 2  3)H, (1 3 2)H} 
= {H, (1 2)H, (1 2  3 4)H, (2 3)H, (1 4 2)H, (1 3 2)H} 
= {H, (1 2)H, (2 4)H, (2 3)H, (1 3 4)H, (1 3 2)H}. 

All of sets are equivalent representations for S4/H, in the last example (Check!). 
Therefore, the following fact must be considered: 

If {eH, a1 H, . . . ,  am H} represents G/H , then in computing (ai H ) ·G/H
(
a j H
) =(

ai ∗ a j
)
H , the element ai ∗ a j may not belong to the set {e, a1, . . . ,  am}, but there 

must be an element ak ∈ G such that
(
ai ∗ a j
)
H = ak H . For example, if one chooses 

the representation 

S4/H = {H, (1 3 2  4)H, (1 3)H, (2 3)H, (1 2  3)H, (1 3 2)H}
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then in finding the product 

(1 3 2 4)H ·S4/H (1 3)H = (1 3 2  4)(1 3)H = (1 2 4)H, 

the coset (1 2 4)H does not appear in the representation of S4/H , Nevertheless, 
(1 2  4)H = (1 3 2)H, which belongs to the current representation of S4/H. 

Let G be a group and H, K be normal subgroups of G. If  H is normal and 
contained in K , then it is straightforward to show that K /H forms a subgroup of 
G/H . The next proposition shows that any subgroup of G/H must be in the form 
of a quotient group. 

Proposition 7.7.6 Let G be a group and H be a normal subgroup of G. Any subgroup 
of G/H is of the form K /H, where K is a subgroup of G containing H. 

Proof Let K be a subgroup of G/H . Let  K = {a ∈ G : aH  ∈ K}. We show that K 
is a subgroup of G containing H and that K = K /H, as follows: 

K is a nonempty subgroup of G, as eH  = H ∈ K. Thus, e ∈ K . If a, b are any 
elements in K , then aH  and bH  are elements in K. Since K is a subgroup of G/H,

(
a ∗ b−1

)
H = aH  ·G/H b

−1 H = aH  ·G/H (bH  )−1 ∈ K. 

Therefore, a∗b−1 ∈ K . According to Proposition 7.1.4 (3), K is a subgroup of G. 
Let h be an arbitrary element in H, then hH  = H ∈ K, which implies that h ∈ K . 
Hence, H ⊆ K . As  H is a normal subgroup of the whole group G, then it is normal 
in the subgroup K . Finally 

K /H = {aH  : a ∈ K } = {aH  : a ∈ G ∧ aH  ∈ K} = {aH  : aH  ∈ K} = K.

∎
Proposition 7.7.6 has another proof that uses the notion of homomorphism studied 

in Chap 8. The other proof is given in Exercise 8.7. 

Proposition 7.7.7 Let G be a group and H be a normal subgroup of G. If  G is 
abelian, then G/H is abelian. If G is finite, then G/H is finite. 

Proof Assume that G is an abelian group. The quotient group G/H is abelian as. 

(aH  ) ·G/H (bH  ) = (a ∗ b)H = (b ∗ a)H = (bH  ) ·G/H (aH  ) 

for all elements aH, bH  ∈ G/H . If  G is finite, then H is also finite. By Lagrange’s 
theorem 7.4.17, 

|G/H | = [G : H ] = 
|G| 
|H | 

i.e., G/H is also finite. ∎
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Remark 7.7.8 The converse of the two statements in Proposition 7.7.7, is not always 
true. For example, the group Sn is not abelian, while its quotient Sn/An , which only 
has two elements, is an abelian group. For the converse of the second statement, if 
G/H is finite, then G is finite if and only if H is finite. If G is an infinite group, 
then G/H can be either finite or infinite as shown in the following example. 

Example 7.7.9 

1. Consider the abelian group (Z, +). For each n ∈ N, nZ is a normal subgroup of 
Z. The  set  Z/nZ consists of all elements of the form a + nZ, where a ∈ Z. By  
Example 7.4.2, 

Z/nZ = {r + nZ : 0 ≤ r < n} = {nZ, 1 + nZ, . . . ,  (n − 1) + nZ}. 

The operation 

(a + Z) +Z/nZ (b + Z) = (a + b) + Z 

turns Z/nZ into a group, i.e., Z/nZ is an example of a finite quotient group 
formed by infinite groups. 

2. Let n ∈ N such that n ≥ 2. Consider the group Sn and its subgroup An . By  
Corollary 7.5.7, the group An is a normal subgroup of Sn . As  [Sn : An] = 2, 
then (Sn/An, ◦Sn /An ) is a finite group formed by a quotient of two finite groups. 
As (12) is a permutation that belongs to Sn for all n ≥ 2, but not to An , then for 
any n ≥ 2, (1 2)An /= An , i.e., 

Sn/An = {An, (1 2)An}. 

The following Cayley’s table (Table 7.5) pertains to the quotient group Sn/An . 

3. Consider the group (C, +). The group (R, +) is a normal subgroup of (C, +), 
as (C, +) is abelian. The quotient C/R can be described as 

C/R = {z + R : z ∈ C} 
= {(x + iy) + R : x, y ∈ R} 
= {(iy  + x) + R : x, y ∈ R} 
= {iy  + R : y ∈ R}. 

C/R is an example of an infinite quotient group under the operation

Table 7.5 Cayley’s table of
(
Sn/An, ◦Sn /An

) ◦Sn /n An (1 2)An 

An An (1 2)An 

(1 2)An (1 2)An An 
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(iy1 + R) +C/R (iy2 + R) = i (y1 + y2) + R. 

C/R is a quotient group of two infinite groups. 

We end the section with the proof of an important theorem in group theory called 
Cauchy’s theorem. We provide the proof for the abelian case. A generalization to the 
nonabelian case also exists; see Theorem 5.2 in (Hungerford, 2003). The proof for 
the nonabelian case requires subjects that are beyond the scope of this book. 

Lemma 7.7.10 Let (G, ∗) be a group, H be a normal subgroup of G, and a ∈ G. 
If ord(a) is finite, then ord(a ∗ H) is finite and divides ord(a). 

Proof Let k = ord(a). As  

(aH  )k = (aH  ) ∗ (aH  ) ∗  · · ·  ∗  (aH  )︸ ︷︷ ︸
k times  

= ak H = H = eG/H 

then by Lemma 5.5.6, ord(aH  ) divides k. ∎

Proposition 7.7.11 (Cauchy’s theorem, the abelian case) 
Let G be a finite abelian group, and p be a prime number. If p divides |G|, then 

there exists an element a ∈ G such that ord(a) = |〈a〉| = p. 

Proof We show the result by strong induction on |G|. As  p divides |G|, then |G| ≥ 
p > 1. Therefore, we begin the base step at p. 

Base step: If |G| = p > 1, then there exists a ∈ G\{e}. Consider the subgroup 
of G generated by the element a. By Lagrange’s theorem (Theorem 7.4.17), |〈a〉| 
divides p. As  a /= e, then |〈a〉| > 1 and ord(a) = |〈a〉| = p. 

Inductive step: Assume that |G| > p and the statement is true for all groups 
whose orders are less than |G|. Select a ∈ G such that a ∈ G\{e}. Since G is an 
abelian group, then 〈a〉 is a normal subgroup of G, which implies that G/〈a〉 is a 
group whose order is less than |G|. 
• If p||〈a〉|, then |〈a〉| = kp  for some k ∈ N. By Corollary 5.5.7,

||〈ak
〉|| = p and ak 

is the required element in G. 
• Assume that p \ |〈a〉|. As  p divides |G| = |G/〈a〉| · |〈a〉| and p \ |〈a〉|, then 

p divides |G/〈a〉|. By the induction hypothesis, there exists an element g〈a〉 ∈ 
G/〈a〉 such that ord(g〈a〉) = p. According to Lemma 7.7.10, ord(g〈a〉) divides 
ord(g), which implies that ord(g) = kp  for some k ∈ N. By Corollary 5.5.7, 
ord
(
gk
) = p, and gk is the required element in G. ∎

Theorem 7.7.12 (Cauchy’s theorem) Let G be a finite group, and p be a prime  
number. If p divides |G|, then there exists an element a ∈ G such that |〈a〉| = p. 

Note that Cauchy’s theorem provides a converse of Lagrange’s theorem in the 
case in which G is finite and the divisor is prime. Using both results, the following 
corollary can be established.
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Corollary 7.7.13 Let G be a finite group. A prime p divides |G| if and only if there 
exists a subgroup H of G such that |H | = p. 

Example 7.4.18 shows that Corollary 7.7.13 is not true if p is not prime. 

Exercises 

Solved Exercises 

7.1 Any complex number z ∈ C can be written as z = |z|eiθ , where eiθ = 
cos θ + i sin θ for some angle θ . Show that if n ∈ N, then the distinct complex 
solutions for the equation zn = 1 are 

e 
2π ik  
n , where k = 0, 1, . . . ,  n − 1. 

Solution: As
(
e 

2π ik  
n

)n = e2π ik  = cos 2πk + i sin 2πk = 1, for any integer k, 

the complex number e 
2π ik  
n is a solution for the equation zn = 1. Clearly, e 2π ik  n 

gives different solution for k = 0, 1, . . .  ,  n − 1, which implies that these are 
all of the possible solutions. Note that an equation in C of degree n has at most 
n solutions. 

7.2 Let n ∈ N, and let U (C) be the upper triangular matrices in Mn(C) (Definition 
1.6.3). i.e., 

U (C) = {(ai j
) ∈ Mn(C) : ai j  = 0 ∀ i > j

}
. 

Show that U (C) forms an abelian subgroup of (Mn(C), +). 
Solution: 
As the zero matrix is an upper triangular matrix, U (C) is a nonempty subset 

of (Mn(C), +). Let  A = (ai j
)
, B = (bi j

)
be two arbitrary matrices in U (C). 

i.e., the coefficients ai j  and bi j  satisfy ai j  = bi j  = 0 ∀ i > j . Since 

A + (−B) = (ai j  − bi j
)

where ai j  − bi j  = 0 ∀ i > j, then A − B = A + (−B) belongs to subset 
U (C). By Proposition 7.1.4 (3), (U (C), +) is a subgroup of (Mn(C), +). The  
commutativity is inherited from the group Mn(C). 

7.3 Let n ∈ N and a ∈ {1, 2, . . . ,  n}. Prove that the only subgroup of Sn that 
contains all the transpositions (a k) for all 1 ≤ k ≤ n, k /= a is Sn . In  
particular, the only subgroup of Sn that contains the transpositions (1 k) for 
all 2 ≤ k ≤ n is Sn. 

Solution: 
Let A be a subgroup of Sn such that A contains all the transpositions 

(a k) for all 1 ≤ k ≤ n, k /= a. According to Remark 6.5.2 (2), for any 
i, j ∈ {1, 2, . . . ,  n} such that i /= j , 

• if i = a, then (i j  ) = (a j) ∈ A,
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• if j = a, then (i j  ) = (i a) = (a i) ∈ A. 
• if i /= a, and j /= a, then (i j  ) = (a j)(a i)(a j  ) ∈ A. 

Therefore, A contains all transpositions (i j  ). Since any permutation in Sn is 
a finite product of transpositions (Corollary 6.5.3 (1)) and A is closed under 
composition, then any permutation in Sn lies in A, which implies the results. 

7.4 Consider the additive group (Z12, ⊕12) and its subgroups H1 = {[0], [6]}, 
H2 = {[0], [4], [8]}, and H3 = {[0], [3], [6], [9]}. For which collection 
of subgroups Hi does the union of Hi form a subgroup of Z12? 

Solution: 
One way to solve the question is to compute the unions of each two of the 

subgroups, and the union of all the subgroup to obtain four subsets of Z12. 
Next, examine every subset obtained for being a subgroup. The alternative 
and faster way to solve the question is to use Proposition 7.2.3, as follows: 

• As H1⊊H2 and H2⊊H1, then H1 ∪ H2 is not a subgroup of Z12. 
• As H1 ⊆ H3, then H1 ∪ H3 is a subgroup of Z12. 
• As H2⊊H3 and H3⊊H2, then H2 ∪ H3 is not a subgroup of Z12. 
• For the union of the three subgroups, we apply Proposition 7.2.3 to the 

subgroups H1 ∪ H3 and H2. As none of the subgroups is contained within 
the other, then their union H1 ∪ H2 ∪ H3 is not a subgroup. 

Therefore, only the union of H1 and H3 forms a subgroup of Z12. 
7.5 Let n ∈ N such that n ≥ 3. Consider the two matrices 

r =
(
cos 2π 

n − sin 2π 
n 

sin 2π 
n cos 2π 

n

)
and s =

(
1 0  
0 −1

)
. 

Show that the matrices r and s belong to O(2) (the group of orthogonal matrices 
of order 2). Show that rn = s2 = e, (sr)2 = (rs)2 = e, and find the subgroup 
of O(2) generated by r and s. 

Solution: 
Using matrix multiplication, it can be verified that 

r r  T = r T r = I2 and s sT = sT s = I2. 

Therefore, both matrices are elements of the group O(2). The matrices r and s 
represent the rotation around the origin with the angle 2π 

n and the reflection 
over the x-axis, respectively (Sect. 1.7). Clearly ord(s) = 2, and by Proposition 
1.7.7, one can easily show that ord(r ) = n and (sr )2 = (rs)2 = e. By Exercise  
7.30, srk = rn−ks for each 0 ≤ k ≤ n − 1 and

〈r, s〉 = {rk sm : 0 ≤ k < n, 0 ≤ m < 2
}

= {e, r, r2 , . . . ,  rn−1 , s, rs, r2 s, . . . ,  rn−1 s
}
.
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7.6 Let n ∈ N such that n ≥ 3. Consider Sn , the group of all permutations on 
{1, 2, . . . ,  n}. Let  K = 〈α, τ 〉 be the subgroup generated by {α, τ } where 
α = (1 2  · · · n) and 

τ = (2 n)(3 n − 1)(4 n − 2) . . .  (k n  − k + 2) . . .
([n 

2

]
n −
[n 
2

]
+ 2
)

here f (x) = [x] is the ceiling function defined by [x] = min{k ∈ Z : k ≥ x}. 
(e.g., in S4, α = (1 2  3 4) and τ = (2 4). In  S5, α = (1 2 3 4 5) and 

τ = (2 5)(3 4) and so on). Show that ord(α) = n, ord(τ ) = 2, and the 
permutations α, τ satisfy (τα)2 = e and ταk = αn−kτ for each 0 ≤ k ≤ n−1. 
Therefore, 

K = 〈α, τ 〉 = {αk τ s : 0 ≤ s ≤ 1, 0 ≤ k ≤ n − 1
}
. 

Solution: 
The permutation α is a cycle of length n, and thus, by Lemma 6.4.2, 

ord(α) = n. The permutation τ is a product of disjoint (commuting) trans-
positions, each of which is of order 2. Therefore, the result in Exercise 5.25 
implies that ord(τ ) = 2. To show that (τα)2 = e, it suffices to show that 
τατ  (k) = α−1(k) for all k ∈ {1, 2, . . . ,  n} as follows: 
i If k = 1, then τατ  (1) = τα(1) = τ (2) = n = α−1(1). 
ii If k = 2, then τατ  (2) = τα(n) = τ (1) = 1 = α−1(2). 
iii For k such that 2 < k ≤ n, we have  2 < n − k + 2 < n, and 

τατ  (k) = τα(n − k + 2) = τ (n − k + 3) = k − 1 = α−1 (k). 

Therefore, τατ  (k) = α−1(k) for all k ∈ {1, 2, . . . ,  n}. i.e., τατ  = α−1 and 
(τα)2 = e. By Exercise 7.30, ταk = αn−kτ for all 1 ≤ k ≤ n and 

K = 〈α, τ 〉 = {αk τ s : s, k ∈ Z
}

= {αk τ s : 0 ≤ s ≤ 1, 0 ≤ k ≤ n − 1
}
. 

= {α, α2 , . . . , αn−1 , τ, ατ,  α2 τ, . . . , αn−1 τ
}
. 

7.7 Let G be a group and Hi , 1 ≤ i ≤ n be subgroups of G. Show that Hi ∩〈∪
i /= j H j

〉
= {e} implies that Hi ∩ Hj = {e} for all 1 ≤ i /= j ≤ n, but  the  

converse is not true. 
Solution: 
Assume that Hi ∩

〈∪
i /= j H j

〉
= {e}. For any i, j ∈ {1, 2, . . . ,  n} such that 

i /= j , we have  

Hi ∩ Hj ⊆ Hi ∩
〈∐

i /= j 
H j

〉
= {e}.
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Therefore, Hi ∩ Hj = {e}. To show that the converse is not true, consider 
the additive group (Z × Z, +). Let  H1 = Z × {0}, H2 = {0} × Z, and H3 = 
{(n, n) : n ∈ Z}. 

For each i /= j , the intersection Hi ∩ Hj = {(0, 0)} but H3 ∩ 〈H1 ∪ H2〉 = 
H3 /= {(0, 0)}. 

7.8 Let G be a group and H, K be subgroups of G. Show that 

H ∩ K = {e} ⇔ for each h ∈ H and k ∈ K , h ∗ k = e ⇒ h = k = e. 

Solution 
Assume that H ∩ K = {e} and let h ∈ H , k ∈ K be arbitrary elements 

such that h ∗ k = e. As  K is a group, then h = (h ∗ k) ∗ k−1 = e ∗ k−1 ∈ K , 
which implies that h ∈ H ∩ K . Therefore, h = e and k = e ∗ k = h ∗ k = e. 
For the other direction, assume that for each h ∈ H and k ∈ K , h ∗ k = e ⇒ 
h = k = e, and let d be an arbitrary element in H ∩ K . As  d ∈ K and K 
is a group, d−1 ∈ K . As  d ∈ H , and d ∗ d−1 = e, thus by the assumption, 
d = d−1 = e. 

Remark To generalize the result in this exercise, the subgroups under 
consideration must be normal subgroups, and this condition cannot be 
omitted (Proposition 7.5.18). A more general form of Proposition 7.5.18 is 
demonstrated in Exercise 7.9. 

7.9 Let G be a group, and H1, . . . ,  Hn be normal subgroups of G. The following 
statements are equivalent: 

1. Hi ∩
〈∪

j /=i H j

〉
= {e} for all 1 ≤ i ≤ n. 

2. For all m ∈ N, where m ≤ n and hi ∈ Hi , 1 ≤ i ≤ m, 

h1 ∗  · · ·  ∗  hm = e ⇒ h1 = h2 =  · · ·  =  hm = e. 

Solution: 
Assume that Hi ∩

〈∪
j /=i H j

〉
= {e} for all 1 ≤ i ≤ n. If  h1 ∗ · · · ∗  hm = e, 

then 

e = h1 ∗  · · ·  ∗  hm ∗ e ∗ e ∗  · · ·  ∗  e = h1 ∗  · · ·  ∗  hm ∗ hm+1 ∗  · · ·  ∗  hn 

where hm+1 =  · · ·  =  hn = e. By Proposition 7.5.18, 

h1 = h2 =  · · ·  =  hm = hm+1 =  · · ·  =  hn = e. 

Thus equalities h1 = h2 =  · · ·  =  hm = e holds. For the other direction, 

h1 ∗  · · ·  ∗  hm = e ⇒ h1 = h2 =  · · ·  =  hm = e 

holds for all m ≤ n, in particular, for m = n. Hence, by Preposition 7.5.18,
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Hi ∩
〈∐

j /=i 
H j

〉
= {e} for all 1 ≤ i ≤ n. 

7.10 Let G be a finite group and H be a subgroup of G. Without using Lagrange’s 
theorem, show that 

|H | divides |G| and [G : H ] = |G|/|H |. 

Solution: 
Let a1 H, a2 H, . . . ,  ak H be all distinct left cosets of H . According to 

Proposition 7.4.5, 

|ai H | = |H |, ∀ 1 ≤ i ≤ k. 

By this and Corollary 7.4.14, 

|G| = 
k∑

i=1 

|ai H | = 
k∑

i=1 

|H | = k|H |, 

where k is the number of left (right) cosets of H . Consequently, 

|H | divides |G| and [G : H ] = |G|/|H |. 

7.11 Let (G, ∗) be a group and a, b be elements of G whose orders are finite. Show 
that if 

a ∗ b = b ∗ a and 〈a〉 ∩ 〈b〉 = {e}, then ord(a ∗ b) = lcm(ord(a), ord(b)). 

Solution: 
Let a, b be elements in G such that a∗b = b ∗a. Since the orders of a and b 

are finite, ord(a ∗ b) is finite (Proposition 5.5.11). Let l = lcm(ord(a), ord(b)). 
According to Lemma 5.4.5 (2), (a ∗ b)l = al ∗bl = e. Therefore, Lemma 5.5.6 
implies that ord(a ∗ b) divides l, i.e., ord(a ∗ b) ≤ l. On the other hand, let 
k = ord(a ∗ b), by Lemma 5.4.5 (2), 

(a ∗ b)k = ak ∗ bk = e, 

which implies that ak = b−k ∈ 〈b〉. As  ak ∈ 〈a〉, then ak ∈ 〈a〉 ∩ 〈b〉 = {e} 
and ak = e which implies that ord(a) divides k (Lemma 5.5.6). Similarly, one 
can show that ord(b) divides k, i.e., k is a positive multiple of both ord(a) and 
ord(b). As  l is the least common multiple, then l ≤ k. Therefore, k = l. 

7.12 Consider the additive group (Z, +). Show that for any a, b ∈ Z such that 
a /= 0 or b /= 0, the following identities hold: 

• 〈a〉〈b〉 = 〈gcd(a, b)〉 (〈a〉〈b〉 is also denoted by 〈a〉 + 〈b〉)
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• 〈a〉 ∩ 〈b〉 = 〈lcm(a, b)〉
Solution: 

• Since gcd(a, b) divides both a and b, then as shown Example 7.3.8 (2),
〈a〉 ⊆ 〈gcd(a, b)〉 and 〈b〉 ⊆ 〈gcd(a, b)〉. Therefore, 〈a〉〈b〉 ⊆ 〈gcd(a, b)〉. 
On the other hand, by Bézout’s lemma, there exist x, y ∈ Z such that 
gcd(a, b) = xa  + yb. Therefore, 

gcd(a, b) = xa  + yb ∈ 〈a〉〈b〉. 

As 〈a〉〈b〉 is a group (Proposition 7.2.8), then by Corollary 7.3.4,
〈gcd(a, b)〉 ⊆ 〈a〉〈b〉. 

• As lcm(a, b) ∈ 〈a〉 ∩ 〈b〉, and 〈a〉 ∩ 〈b〉 is a group, then 〈lcm(a, b)〉 ⊆
〈a〉∩〈b〉. On the other hand, any element x in 〈a〉∩〈b〉 is a multiple of a and b. 
By Exercise 2.24, lcm(a, b) divides x, which implies that x ∈ 〈lcm(a, b)〉. 
i.e., 〈a〉 ∩ 〈b〉 ⊆ 〈lcm(a, b)〉. 

7.13 Let G be a group. For each a ∈ G, let  Ca = {x ∈ G : x ∗ a = a ∗ x}. Show 
that 

i Ca is a subgroup of G that is equal to G if and only if a ∈ C(G). 
ii [G : Ca] = |[a]|, where [a] is the equivalence class of a for the conjugacy 

relation defined on G in Exercise 5.10. 
iii If G is a finite group, then 

|G| = |C(G)| +
∑

Ca /=G 

[G : Ca]. 

Solution: 

i Let a be an arbitrary element in G. As  e ∈ Ca, then Ca is a nonempty 
subset of G. Let  x, y ∈ Ca . As y−1 ∗ a = y−1 ∗ a, then it can be easily 
verified that

(
x ∗ y−1

) ∗ a = a ∗ (x ∗ y−1
)

which implies that x ∗ y−1 ∈ Ca, and Ca is a subgroup of G. Any element 
a ∈ C(G) if and only if a ∗ x = x ∗ a for all x ∈ G. This is, if and only if 
Ca = G. 

ii Let a be an arbitrary element in G, and let {xCa : x ∈ G} be the left cosets 
of Ca . Define 

f :{xCa : x ∈ G} → [a] 
xCa |→ x ∗ a ∗ x−1 .
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The result follows by showing that f is a bijective map. To show that 
f is well-defined, let xCa, yCa be any elements in {xCa : x ∈ G} such 
that xCa = yCa , then by Proposition 7.4.7, y−1 ∗ x ∈ Ca, which yields 
x = y ∗ c for some c ∈ Ca . Therefore, 

x ∗ a ∗ x−1 = y ∗ c ∗ a ∗ (y ∗ c)−1 = y ∗ c ∗ a ∗ c−1 ∗ y−1 

= y ∗ a ∗ c ∗ c−1 ∗ y−1 = y ∗ a ∗ y−1 . 

To show that f is injective, let xCa, yCa be two elements in {xCa : x ∈ G}. 

f (xCa) = f (yCa) ⇒ x ∗ a ∗ x−1 = y ∗ a ∗ y−1 

⇒ y−1 ∗ x ∗ a = a ∗ y−1 ∗ x 
⇒ y−1 ∗ x ∈ Ca ⇒ xCa = yCa . 

Finally, assume that b ∈ [a], i.e., b = x ∗ a ∗ x−1 for some x ∈ G, then 
f (xCa) = x ∗ a ∗ x−1 = b, and f is surjective. 

iii Assume that G is a finite group. Let [a1], [a2], . . . ,  [ak] be all distinct 
equivalence classes of the conjugacy equivalence relation ∼ defined on 
G, as in Exercise 5.10. As the equivalence classes of ∼ form a partition 
of G, 

|G| =
∑

ai∈G 
|[ai ]|. 

By (ii), 

|G| =
∑

ai∈G

[
G : Cai

]
. 

Since for any a ∈ G, a ∈ C(G) if and only if [G : Ca] = 1 (Ca = G), 

|G| = 1 + 1 +  · · ·  +  1︸ ︷︷ ︸
|C(G)| times 

+
∑

Ca /=G

[
G : Cai

]

= |C(G)| +
∑

Ca /=G

[
G : Cai

]
. 

This equation is a well-known important equation in group theory, known 
as the conjugacy class equation. 

7.14 Let (G, ∗) be a group and H be a subgroup of G. Show that for any a ∈ G, 
a−1 ∗ H ∗ a is a subgroup of G. 

Solution: 
Let a be an arbitrary element in G. As  e = a−1 ∗ e ∗ a ∈ a−1 ∗ H ∗ a, thus 

a−1 ∗ H ∗ a is a nonempty subset of G. If  x, y are two elements in a−1 ∗ H ∗ a,
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then x = a−1 ∗ h1 ∗ a and y = a−1 ∗ h2 ∗ a for some h1, h2 ∈ H . Therefore, 

x ∗ y−1 = a−1 ∗ h1 ∗ a ∗ (a−1 ∗ h2 ∗ a
)−1 = a−1 ∗ h1 ∗ a ∗ a−1 ∗ h−1 

2 ∗ a 
= a−1 ∗ h1 ∗ h−1 

2 ∗ a = a−1 ∗ h ∗ a ∈ a−1 ∗ H ∗ a 

where h = h1 ∗ h−1 
2 ∈ H. By Proposition 7.1.4 (3), a−1 ∗ H ∗ a is a subgroup 

of G. 
7.15 Let G be a group. Show that any normal subgroup of G that consists of two 

elements must be in the center of G, i.e., H ⊴ G, |H | = 2 ⇒ H ⊆ C(G). 
Solution: 
Assume that H is a subgroup of G, where H = {e, h} and h /= e. As  

e ∈ C(G), we only need to show that h belongs to C(G). As  H is a normal 
subgroup of G, then by Proposition 7.5.2, for each a ∈ G, a∗h∗a−1 ∈ H . i.e., 
a ∗ h ∗ a−1 is either equal to e or h. If  a ∗ h ∗ a−1 = e, then h = e contradicting 
that H has two elements. Therefore, a ∗ h ∗ a−1 = h, i.e., a ∗ h = h ∗ a for 
all a ∈ G, and h is at the center of G. 

7.16 Let G be a finite group and H be a normal subgroup of G. Show that for each 
element aH  ∈ G/H, where ord(a) < ∞, there exists an element b ∈ G such 
that ord(b) = ord(aH  ). 

Solution: 
Let aH  be an arbitrary element in G/H . According to Lemma 7.7.10, 

ord(aH  ) divides ord(a). Therefore, there exists k ∈ Z such that ord(a) = 
k ord(aH  ). Let  b = ak ∈ G. By Proposition 5.5.9, we obtain 

ord(b) = ord
(
ak
) = ord(a) 

gcd(k, ord(a)) 
= ord(a) 

gcd(k, k ord(aH)) 
= 

ord(a) 
k 

= ord(aH). 

7.17 Let G be a group, H be a finite normal subgroup of G, and a ∈ G. Show that 
if ord(aH  ) is finite, then ord(a) is finite. 

Solution: 
Since H is a normal subgroup of G, then aH  is an element in the group 

G/H . Let  k be equal to ord(aH  ). As  H = (aH)k = ak H , by Proposition 
7.4.5 (2), ak ∈ H . As  H is finite, Corollary 5.5.8 implies that ord

(
ak
)
is finite; 

i.e., there exists m ∈ N such that
(
ak
)m = e. Lemma 5.5.5 implies that ord(a) 

is finite. 
7.18 Let (G, ∗) be a group, H be a normal subgroup of G, and a ∈ G. If  ord(aH  ) = 

7 and |H | = 3, find all possible orders of a.
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Solution: 
As (a ∗ H )7 = a7 ∗ H = H , then a7 ∈ H . Hence, there exists h ∈ H such 

that a7 = h. Since e = h3 = a21, the order a is finite. By Lemma 5.5.6, ord(a) 
divides 21. Since ord(a ∗ H ) must divide ord(a) (Lemma 7.7.10), ord(a) must 
be a multiple of 7. Therefore, the possible orders of a are only 7 and 21. 

Unsolved Exercises 

7.19 Let V4 be the set

{(
1 2  3  
1 2  3  

4 
4

)
,

(
1 2 3  
2 1  4  

4 
3

)
,

(
1 2 3  
3 4 1  

4 
2

)
,

(
1 2  3  
4 3 2  

4 
1

))

Show that V4 is an abelian subgroup of S4 under the composition. 
7.20 Let n ∈ N, and let L(C) be the lower triangular matrices in Mn(C). i.e., 

L(C) = {(ai j
) ∈ Mn(C) : ai j  = 0 ∀ j > i, 1 ≤ i, j ≤ n

}
. 

Show that L(C) forms a subgroup of Mn(C) under the matrix addition. 
7.21 Determine if the following statements are true or false. Explain your answer. 

i. Z is a subgroup of (Q, +). 
ii. Q

∗ is a subgroup of (C∗, ·). 
iii. Z[i] is a subgroup of (R, +). 

7.22 Let G be an abelian group and k ∈ Z. Show that H (k) = {a ∈ G : ak = a
}

is a subgroup of G. 
7.23 Show that any subgroup of the additive group (Z, +) is of the form nZ for 

some n ∈ Z. 
7.24 Let n ∈ N. Show that any subgroup of the additive group (Zn, ⊕n) is of the 

form [k]Z for some k ∈ {0, 1, . . . ,  n − 1}. 
7.25 Give an example (different than Example 7.2.7) of a group G that has 

subgroups H, K , for which the product HK  is not a subgroup of G. 
7.26 Consider the additive group (Z, +), and let H = 2Z and K = 6Z. Find  HK  

and H ∩ K . 
7.27 Consider the additive group (Z, +). Without using the result of Exercise 7.12, 

show that for any a, b ∈ Z

〈a〉〈b〉 = Z ⇔ gcd(a, b) = 1. 

7.28 Let G be a group, H be a subgroup of G, and a ∈ G be an element of finite 
order. Show that 

ak ∈ H ∧ gcd(ord(a), k) = 1 ⇒ a ∈ H. 

7.29 Find the following subgroups:
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a. 〈{3, 12}〉 as a subgroup of (Z, +). 
b. 〈−1〉 as a subgroup of (Z, +). 
c.
〈
(3 4 2)7

〉
as a subgroup of (S6, ◦). 

d. 〈(2 4 5  1)〉 as a subgroup of (S6, ◦). 
7.30 Let G be a group and a, b be two elements of G such that ord(a) = n, 

ord(b) = 2. Show that if (a ∗ b)2 = e, then b ∗ ak = an−k ∗ b for all 
k ∈ {0, 1, 2, . . .  ,  n − 1} and

〈a, b〉 = {e, a, a2 , . . . ,  an−1 , b, a ∗ b, a2 ∗ b, . . . ,  an−1 ∗ b
}
. 

7.31 Let G be a group and H, K be subgroups of G. If  |H | = 13 and |K | = 44, 
find the order of H ∩ K . 

7.32 Find all the left and right cosets of 5Z as a subgroup of (Z, +). 
7.33 Find all the normal subgroups of S3. 
7.34 Let G1, G2 be groups and let H1, H2 be subgroups of G1 and G2, respectively. 

Show that H1 × H2 is a subgroup of G1 × G2. Show that if H1, H2 are normal 
subgroups, then H1× H2 is a normal subgroup of G1× G2. In particular, show 
that G1×

{
eG2

}
and
{
eG1

}× G1 are normal subgroups of the product G1× G2. 
7.35 Let G1 and G2 be groups. Give an example of a subgroup of G1 × G2 such 

that it is not a product of a subgroup of G1 × G2. (Hint: take G /= {e} and 
H = {(a, a) : a ∈ G} is a subgroup of G × G but is not a direct product of 
subgroups of G). 

7.36 Let G be a finite group and H be a normal subgroup of G. Show that 

gcd(|H |, [G : H ]) = 1 ⇒ H = {a ∈ G : a|H | = e
}
. 

7.37 Let G be a finite group. Show that if there exists an integer m such that 

(a ∗ b)m = am ∗ bm for all a, b ∈ G 

then 

mG = {am : a ∈ G
}
and G[m] = {a ∈ G : am = e

}

form normal subgroups of G such that |mG| = [G : G[m]]. 

Remark If m = 1, then G is abelian, mG = G and G[m] = {e} are normal 
subgroups of G, and |mG| = |G| = [G : {e}] = [G : G[m]]. 

7.38 Let G be a group and let H1, . . . ,  Hn be normal subgroups of G. Show that 
the group G is the internal direct product of the subgroup H1, . . . ,  Hn if and 
only if the following conditions hold: 

i G = H1 H2 · · ·  Hn . 
ii h1 ∗ h2 ∗  · · ·  ∗  hn = e ⇒ hi = e for all hi ∈ Hi , 1 ≤ i ≤ n.
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7.39 Let G be a group, H be a normal subgroup of G, and a ∈ G. Assuming that 
ord(aH  ) = 8 and |H | = 5, find all possible orders of a. 

7.40 Consider the additive group (Z8, ⊕8) and its subgroup H = {[0], [4]}. List all  
cosets of H , and find Cayley’s table for

(
Z8/H, ⊕Z8/H

)
. 

7.41 Give an example of an infinite group G that has no element of finite order and 
a normal subgroup H such that G/H contains an element of finite order. 

7.42 Let G be a group. Show that any two distinct subgroups of G of prime orders 
have a trivial intersection. 
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Chapter 8 
Group Homomorphisms and Isomorphic 
Groups 

In this chapter, maps between two groups called homomorphisms are presented 
and discussed. The bijective versions of these maps, isomorphisms, are studied. 
Isomorphisms respect all group structures, such as the cardinality of the group, order 
of the group elements, commutativity, and structures of all its subgroups. We begin 
by studying homomorphisms, stating their definition and proving some basic results 
in Sect. 8.1. Section 8.2 discusses isomorphisms by introducing the notions of the 
kernel and image of homomorphisms. In Sect. 8.3, we define what it means for the 
two groups to be isomorphic and state Cayley’s theorem, an important theorem in 
group theory that enables us to see any group G as a subgroup of its symmetric 
group SG . Section 8.4 presents and discusses the three fundamental theorems of 
homomorphisms. The chapter ends with Sect. 8.5, by defining the group action and 
explaining the relationship between group actions and group homomorphisms. 

8.1 Group Homomorphisms, Definitions, and Basic 
Examples 

The present section introduces group homomorphisms which are maps between 
two groups that preserve the group operation (i.e., the image of the product of two 
elements in the domain is equal to the product of their images in the codomain group). 

Definition 8.1.1 Let (G1, ∗) and (G2, ·) be two groups. The map f : G1 → G2 is 
said to be a group homomorphism (or simply, homomorphism) if 

f (a ∗ b) = f (a) · f (b) ∀ a, b ∈ G1. 

A group homomorphism f is said to be 

• a monomorphism if f is injective (one-to-one). 
• an epimorphism if f is surjective (onto).
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• an isomorphism if f is bijective. 

The set of all group homomorphisms from G1 to G2 is denoted by Hom(G1, G2). 
We use Hom(G) to denote Hom(G, G). An isomorphism from G to itself is called an 
automorphism, and the set of all automorphisms of G is denoted Aut(G). We post-
pone the detailed study of isomorphisms and automorphisms to subsequent sections. 
This section is devoted to presenting the main definitions, examples, and basic results. 
For more information, refer to (Adkins & Weintraub, 1992). 

Proposition 8.1.2 The composition of two group homomorphisms (isomorphism) is 
a group homomorphism (isomorphism). 

Proof Let (G1, ∗), (G2, ·) and (G3, •) be groups. Let f : G1 → G2, and g : G2 → 
G3 be group homomorphisms. The composition g ◦ f : G1 → G3 satisfies that 

g ◦ f (a ∗ b) = g( f (a ∗ b)) = g( f (a) · f (b)) 
= g( f (a)) • g( f (b)) 
= g ◦ f (a) • g ◦ f (b) for all a, b ∈ G1. 

Therefore, g ◦ f is a homomorphism. If both functions f and G are bijections, 
then g ◦ f is a bijection (Exercise 1.21). ∎

Example 8.1.3 

1. For two groups (G1, ∗) and (G2, ·), the function 

f :G1 → G2 

a |→ e2 for all a ∈ G1 

is a group homomorphism as 

f (a ∗ b) = e2 = e2 · e2 = f (a) · f (b) for all a, b ∈ G1. 

This homomorphism is called the trivial homomorphism from G1 into G2. 

2. For any group (G, ∗), 

a. If H is a subgroup of G, then the inclusion map ι : H → G defined by 
ι(h) = h is a monomorphism. The map ι is a one to one map that satisfies 

ι(h ∗ k) = h ∗ k = ι(h) ∗ ι(k) ∀ h, k ∈ H. 

If H = G, then the identity map ι : G → G is an automorphism.
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b. If G is abelian, then the map f : G → G defined by f (a) = a−1 is an 
automorphism. For if a, b ∈ G, then 

f (a ∗ b) = (a ∗ b)−1 = b−1 ∗ a−1 = a−1 ∗ b−1 = f (a) ∗ f (b). 

The map f is one to one as f (a) = f (b) ⇒ a−1 = b−1 ⇒ a = b. The  
map f is onto as for each b ∈ G, there exist a = b−1 ∈ G and 

f (a) = f
(
b−1

) = (b−1 )−1 = b. 

c. Let H be a normal subgroup of G. Define 

π : G → G/H 

a |→ aH. 

The map π is an onto, as for each aH ∈ G/H , there exists a ∈ G such 
that π (a) = aH . Moreover, π satisfies 

π (a)π (b) = (aH )(bH ) = (ab)H = π (ab), 

and thus, π is an epimorphism. The map π is known as the quotient map of 
G into G/H . 
d. For a ∈ G, the left multiplication by a, 

fa : G → G defined by x |→ a ∗ x ∀ x ∈ G 
is not a homomorphism for a /= e. (Check!). In fact, 
The map fa is a homomorphism 

if and only if fa(x ∗ y) = fa(x) ∗ fa(y) for all x, y ∈ G 

if and only if a ∗ x ∗ y = a ∗ x ∗ a ∗ y for all x, y ∈ G 

if and only if a = e. i.e., fa is the identity map on G 

3. Consider the additive group (Z, +). Define the map f : Z → Z by f (a) = 3a. 
The map f is a group homomorphism as 

f (m + n) = 3(m + n) = 3m + 3n = f (m) + f (n) for all m, n ∈ Z. 

The map f is a one to one map, but it is not onto since f (Z) = 3Z /= Z. 
Therefore, f is not an isomorphism. 

4. Let m be any nonzero integer. It is straightforward to show that the map 
g : Z → mZ given by g(a) = ma is an isomorphism. 

5. Consider the groups (Z, +) and (Zn, ⊕n). Define 

f : Z → Zn by f (a) = [a], for all a ∈ Z.
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For all a, b ∈ Z, f (a + b) = [a + b] = [a] ⊕n [b] = f (a) ⊕n f (b). 
Hence, the map f is a homomorphism. However, The map f is not an isomor-

phism since it is not one to one, for example f (n) = [n] = [0] = f (0) but n /= 0. 
One can easily show that f is an epimorphism. 

6. Consider the two groups (Z12, ⊕12) and (Z30, ⊕30). Let  

f : Z12 → Z30 

[x]12 |→ [5x]30 

where [x]k denotes the equivalence class of x in Zk . According to Example 
3.2.4, the  map  f is well-defined. The map f is a homomorphism as 

f
(
[x]12 ⊕12 [y]12

) = f
(
[x + y]12

) = [5(x + y)]30 
= [5x]30 ⊕30 [5y]30 = f ([x]12) ⊕30 f

(
[y]12

)

for each [x]12, [y]12 in Z12. Since Z12 and Z30 have different cardinalities, no 
bijective maps exist between the two sets, so f is not an isomorphism. 

7. Consider the groups (R, +) and
(
R

+, ·). Define f : R → R
+ by f (x) = 

ex ∀ x ∈ R, where e is Euler number (e ≃ 2.7). The  map  f is an isomorphism. 
To show that f is a homomorphism, assume x, y ∈ R, then 

f (x + y) = ex+y = ex ey = f (x) · f (y). 

The map f is a one to one function as 

f (x) = f (y) ⇒ ex = ey ⇒ ln
(
ex

) = ln
(
ey

) ⇒ x = y. 

The map f is onto, for if y ∈ R+, then by putting x = ln y, 

f (x) = f (ln(y)) = eln(y) = y. 

Note that the map f : (R, +) → (R∗, ·) defined by f (x) = ex ∀ x ∈ R is 
still a homomorphism, but it is not an isomorphism as it is not surjective (Check!). 

8. Let n ∈ N. On  Sn, consider the map sgn given in Corollary 6.5.15, i.e., 

sgn : Sn → {1, −1}, where sgn(φ) =
{

1 if φ even 
−1 if φ odd 

for all φ ∈ Sn. 

The set {1, −1} forms a group under the multiplication (Check!). The map 
sgn is a homomorphism. Assume that φ, ψ are in Sn . 

• If φ, ψ have the same parity, then by Proposition 6.4.15, φ ◦ ψ is even and 
sgn(φ ◦ ψ) = 1 = sgn(φ)sgn(ψ) 

• If φ, ψ have opposite parities, then by Proposition 6.4.15, φ ◦ ψ is odd and 

sgn(φ ◦ ψ) = −1 = sgn(φ)sgn(ψ).
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In both cases, 
sgn(φ ◦ ψ) = sgn(φ)sgn(ψ). 
Therefore, sgn is a homomorphism. Since sgn(e) = 1, sgn((12)) = −1, the  

map sgn is surjective for each n > 1. Therefore, the map sgn is an epimorphism 
for any n > 1 

9. Consider the group (Q∗). Define f : Q∗ → Q∗ by f (x) = 3x . Then 

f (x · y) = 3(x · y) = 3xy, 

f (x) · f (y) = 3x · 3y = 9xy. 

Hence, f is not a homomorphism. 

Next, we state and prove several basic results of homomorphisms. 

Proposition 8.1.4 Let (G1, ∗) and (G2, ·) be two groups. Let e1, e2 be the groups’ 
identities in G1 and G2, respectively, and f : G1 → G2 be a group homomorphism. 
The following statements hold: 

1. f (e1) = e2(any homomorphism takes the identity to the identity). 
2. f

(
a−1

) = f (a)−1 for all a ∈ G1 (any homomorphism takes the inverse of any 
element to the inverse of its image). 

3. f (an) = ( f (a))n for all a ∈ G1 and n ∈ Z. 

Proof 

1. The image f (e1) defines an element in G2 that satisfies the following equation 

e2 = f (e1)
−1 · f (e1) = f (e1)

−1 · f (e1 ∗ e1) = f (e1)
−1 · f (e1) · f (e1) = f (e1). 

2. For all a ∈ G1, 

f (a) · f
(
a−1) = f

(
a ∗ a−1) = f (e1) = e2, 

f
(
a−1

) · f (a) = f
(
a−1 ∗ a

) = f (e1) = e2. 

Thus, f
(
a−1

)
is the inverse of f (a). 

3. If n is an integer such that n ≥ 0, we show the result by induction on n as follows: 
For n = 0, 
f
(
an) = f (a0

) = f (e1) = e2 = f (a)0 = f (a)n for all a ∈ G1. ∎

Assume that the statement is true for n, i.e., f (an) = f (a)n for all a ∈ G1. 
For n + 1, using the hypothesis, one obtains. 
f
(
an+1

) = f (an ∗ a) = f (an) · f (a) = f (a)n · f (a) = f (a)n+1 for all a ∈ G1. 
Hence, by induction, the statement is true for all integers n ≥ 0. For the case in 

which n < 0, set  n = −k where k > 0. This yields the following equalities 
f (an) = f

((
ak

)−1
)

= f
(
ak

)−1 =
k≥0

(
f (a)k

)−1 = f (a)n for all a ∈ G1.
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Proposition 8.1.5 Let (G1, ∗) and (G2, ·) be two groups, and G1 = 〈S〉 for some 
S ⊆ G1. Let f : G1 → G2 be a group homomorphism. The map f is determined by 
its values on the generating set S. 

Proof Let a ∈ G1 be an arbitrary element. According to Proposition 7.3.6, there 
exists n ∈ N, ri ∈ Z, and ai ∈ S, 1 ≤ i ≤ n such that a = ar1 

1 ∗ ar2 
2 ∗  · · ·  ∗  arn 

n . As  f 
is a homomorphism, 

f (a) = f
(
ar1 
1 ∗ ar2 

2 ∗  · · ·  ∗  arn 
n

) = f (a1)
r1 · f (a2)

r2 · · ·  f (an)
rn . 

Therefore, f (a) is totally determined by its values on the elements of S. ∎

Example 8.1.6 Let f : (Z, +) → (R∗, ·) be a homomorphism that takes 1 |→ 3. 
The map f takes any a ∈ Z to 3a . To show this, let a ∈ Z. 

• If a ≥ 0, and since f is a homomorphism, 

f (a) = f ( 1 + 1 + · · · +  1︸ ︷︷ ︸
a times 

) = f (1) · f (1) · · ·  f (1)︸ ︷︷ ︸
a times 

= 3 · 3 · · · ·3︸ ︷︷ ︸
a times 

= 3a . 

• If a < 0, then 

f (a) = f ( −1 + (−1) + · · · +  (−1)︸ ︷︷ ︸
−a times 

) = f (−1) · f (−1) · · ·  f (−1)︸ ︷︷ ︸
−a times 

= f (1)−1 · f (1)−1 · · ·  f (1)−1

︸ ︷︷ ︸
−a times 

= 3−1 · 3−1 · · ·  3−1
︸ ︷︷ ︸

−a times 

= 3a . 

Using Proposition 8.1.5, to show that two homomorphisms are equal, it is enough 
to check their values on a generating set, as shown in the following corollary. 

Corollary 8.1.7 Let (G1, ∗) and (G2, ·) be groups, G1 = 〈S〉 for some S ⊆ G1, 
and f, g : G1 → G2 be group homomorphisms. The maps f and g are equal on G1 

if and only if f (a) = g(a) for all a ∈ S. 

The next proposition examines the image and inverse image of subgroups under 
a group homomorphism. 

Proposition 8.1.8 Let (G1, ∗), (G2, ·) be groups and H, K be subgroups of G1, G2, 
respectively. If f : G1 → G2 is a group homomorphism, then 

1. f (H ) is a subgroup of G2. 
2. f −1(K ) is a subgroup of G1. 
3. If K is a normal subgroup of G2, then f −1(K ) is a normal subgroup of G1.
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4. If H is a normal subgroup of G1 and f is surjective, then f (H ) is a normal 
subgroup of G2. 

Proof 

1. According to Proposition 8.1.4, e2 = f (e1) ∈ f (H), which implies that f (H ) 
is a nonempty subset of G2. Let  b1, b2 ∈ f (H ). According to the definition of 
f (H ) = { f (a) : a ∈ H}, there exist a1, a2 ∈ H such that 

b1 = f (a1), b2 = f (a2). 

As H is a subgroup, a1 ∗ a−1 
2 ∈ H . Hence, 

b1 · b−1 
2 = f (a1) · ( f (a2))

−1 = f
(
a1 ∗ a−1 

2

) ∈ f (H ). 
The result follows by Proposition 7.1.4. 

2. The identity e2 ∈ K , then e1 ∈ f −1(e2) ⊆ f −1(K ), so  f −1(K ) is a nonempty 
subset of G1. For  a1, a2 ∈ f −1(K ), the images f (a1), f (a2) belong to K . Hence, 

f
(
a1 ∗ a−1 

2

) = f (a1) · f
(
a−1 
2

) = f (a1) · ( f (a2))
−1 ∈ K 

i.e., a1 · a−1 
2 ∈ f −1(K ). By Proposition 7.1.4, f −1(K ) is a subgroup of G1. 

3. Assume that K is a normal subgroup of G2. By (2),  f −1(K ) is subgroup of G1. 

For all a ∈ G1 and all h ∈ f −1(K ), 

f
(
a ∗ h ∗ a−1) = f (a) · f (h) · f

(
a−1) = f (a) · f (h) · f (a)−1 . 

As f (h) ∈ K , f (a) ∈ G2, and K is a normal subgroup, by Proposition 7.5.2, 

f
(
a ∗ h ∗ a−1

) ∈ K . 

i.e., 

a ∗ h ∗ a−1 ∈ f −1 (K ) 

for all a ∈ G1, and h ∈ f −1(K ). By Proposition 7.5.2, f −1(K ) is a normal subgroup 
of G1. 

4. According to (1), f (H) is a subgroup of G2. We must show that f (H ) is normal. 
Let f (h) ∈ f (H ), and b ∈ G2 for arbitrary elements h and b. As  f is surjective, 
there exists a ∈ G1 such that b = f (a). Therefore,



290 8 Group Homomorphisms and Isomorphic Groups

b · f (h) · b−1 = f (a) · f (h) · ( f (a))−1 = f (a) · f (h) · f
(
a−1

) = f
(
a ∗ h ∗ a−1

)
. 

Since H is a normal subgroup of G1, then a ∗ h ∗ a−1 ∈ H, which implies that 
b · f (h) · b−1 = f

(
a ∗ h ∗ a−1

) ∈ f (H ). 
By Proposition 7.5.2, f (H ) is a normal subgroup of G2. ∎
The following example shows that the requirement in Proposition 8.1.8 (4), for f 

to be a surjective map, cannot be omitted. 

Example 8.1.9 Consider the symmetric groups S2 =
{
eS2 , (12)

}
and S3. Define 

f : S2 → S3 such that f
(
eS2

) = eS3 and f ((12)) = (12) ∈ S3. Let  H = S2, 
it is a normal subgroup of S2. The image of H under f is f (H) = {

eS3 , (12)
}
. 

However, 

(13) f (H) = {(13), (123)} /= {(13), (132)} = f (H )(13) 

i.e., f (H ) is not a normal subgroup of S3. 

8.2 The Kernel and Image of Homomorphism 

Let G1, G2 be two groups. With any homomorphism f : G1 → G2 we associate 
two special subgroups of G1 and G2. These subgroups are built using the group G1 

and the identity element of G2. Namely, they are f (G1) and f −1({e2}), respectively. 
The importance of these subgroups is due to the information that they provide about 
the homomorphism. These subgroups are formally defined as follows. 

Definition 8.2.1 Let G1, G2 be groups and f : G1 → G2 be group homomorphism. 
The image of f is defined to be the whole range of the map f and denoted by I m( f ). 
The preimage of {e2} under the map f, where e2 is the identity element of G2, is  
called the kernel of f and denoted by ker( f ). i.e., 

I m( f ) = f (G1) = { f (a) : a ∈ G1} 
ker( f ) = f −1 ({e2}) = {a ∈ G1 : f (a) = e2}. 

Recall that {e2} is a normal subgroup of G2. The following result is a corollary of 
Proposition 8.1.8. 

Corollary 8.2.2 Let G1, G2 be groups and f : G1 → G2 be a group homomor-
phism. The image of f is a subgroup of G2. The kernel of f is a normal subgroup 
of G1, i.e., 

I m( f ) < G2 ∧ ker( f ) ⊴ G1.
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The subgroups defined above allow to “reconstruct” the homomorphism f. Observe 
that they provide an easy method to determine the injectivity and surjectivity of the 
map f . 

Proposition 8.2.3 Let (G1, ∗), (G2, ·) be groups. If f : G1 → G2 is a group 
homomorphism, then 

1. f is an epimorphism if and only if I m( f ) = G2. 
2. f is a monomorphism if and only if ker( f ) = {e1}. 
Proof The first statement follows by the definition of surjective maps, as the map f 
is onto if and only if f (G1) = G2. To show the second statement, assume that f is 
a one to one function. For each a in G1, 

a ∈ ker( f ) ⇒ f (a) = e2 = f (e1) ⇒
f is one to one 

a = e1. 

In the other direction, if ker( f ) = {e1}, then 

f (a) = f (b) ⇒ f (a) · ( f (b))−1 = e2 ⇒ f
(
a ∗ b−1

) = e2 ⇒ a ∗ b−1 ∈ ker( f ) 

Hence, a ∗ b−1 = e1 and a = b. Therefore, f is one to one. ∎
Next, we list several examples for computing the kernel and image of several 

homomorphisms. 

Example 8.2.4 

1. Consider the additive group (Z, +). Let  f : (Z, +) → (Z, +) be the homomor-
phism defined in Example 8.1.3 (3), i.e., f (a) = 3a for all a ∈ Z. The kernel 
and image of f are 

ker( f ) = {0} and I m( f ) = 3Z. 

Therefore, f is a monomorphism, and it is not surjective. 

2. Consider the additive groups (Z, +) and (Zn, ⊕n). Let  f be the homomorphism 
defined in Example 8.1.3 (5). i.e., 

f : Z → Zn, where a |→ [a] 

for all a ∈ Z, where [a] denotes the equivalence class of a in Zn . The  map  f is 
an epimorphism as 

I m( f ) = { f (a) : a ∈ Z} = {[a] : a ∈ Z} = Zn. 

However, the map f is not a monomorphism as 

ker( f ) = {a ∈ Z : f (a) = [0]} = {a ∈ Z : [a] = [0]} = {a ∈ Z : n|a} = nZ.
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3. Consider the additive groups (Z6, ⊕6) and (Z9, ⊕9). Define 

f : (Z6, ⊕6) → (Z9, ⊕9) 
[a]6 |→ [3a]9. 

Since 9|(3 · 6), by the result in Example 3.2.4, f is a well-defined map. This 
map is a homomorphism with ker( f ) = {[0]6, [3]6}, I m( f ) = {[0]9, [3]9, [6]9} 
(Check!). 

By Proposition 8.2.3, the  map  f is neither surjective nor injective. 

4. Consider the groups (Z12, ⊕12) and (Z30, ⊕30). Let  f be the homomorphism 
defined in Example 8.1.3 (6), i.e., 

f : Z12 → Z30 

[x]12 |→ [5x]30 

where [x]k denotes the equivalence class of x in Zk . The  map  f is a well-defined 
homomorphism (Check!). The kernel of f and its image are 

ker( f ) = {[x]12 ∈ Z12 : f ([x]12) = [0]30} = {[x]12 ∈ Z12 : [5x]30 = [0]30} 
= {[x]12 ∈ Z12 : 30|5x} = {[0]12, [6]12}. 

I m( f ) = { f ([x]12) ∈ Z30 : [x]12 ∈ Z12} = {[5x]30 : [x]12 ∈ Z12} 
= {[0]30, [5]30, [10]30, [15]30, [20]30, [25]30}. 

According to Proposition 8.2.3, the  map  f is neither surjective nor injective. 
Table 8.1 is Cayley’s table of the subgroup ( f (Z12), ⊕30). 

Note that no isomorphism exists between (Zm, ⊕m) and (Zn, ⊕n) for different m 
and n, as the orders of both groups are different. 

5. Consider the additive group (Z2, ⊕2) and the multiplicative group ({−1, 1}, ·). 
Clearly, the map f : Z2 → {−1, 1} defined as

Table 8.1 Cayley’s tables of ( f (Z12), ⊕30) 

⊕30 [0]30 [5]30 [10]30 [15]30 [20]30 [25]30 
[0]30 [0]30 [5]30 [10]30 [15]30 [20]30 [25]30 
[5]30 [5]30 [10]30 [15]30 [20]30 [25]30 [0]30 
[10]30 [10]30 [15]30 [20]30 [25]30 [0]30 [5]30 
15]30 15]30 [20]30 [25]30 [0]30 [5]30 [10]30 
[20]30 [20]30 [25]30 [0]30 [5]30 [10]30 [15]30 
[25]30 [25]30 [0]30 [5]30 [10]30 [15]30 [20]30 
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f ([x]) =
{

1 [x] = [0] 
−1 [x] = [1] 

is an isomorphism. 

6. Consider the two groups (Z4, ⊕4) and (Inv(Z5), ⊗5). Note that 

Inv(Z5) = {[1]5, [2]5, [3]5, [4]5} = 〈[3]5〉 and 34 ∼= 1 mod  5. 

Define 

f : (Z4, ⊕4) → (Inv(Z5), ⊗5) by f ([x]4) =
[
3x

]
5. 

The relation f is a well-defined map as 

[x]4 = [y]4 ⇒ x − y = 4q for some q in Z 
⇒ 3x = 3y 34q ⇒ 3x ∼= 3y mod 5 ⇒ [

3x
]
5 =

[
3y

]
5. 

This map is a homomorphism as 

f
(
[x]4 ⊕4 [y]4

) = [
3x+y

]
5 =

[
3x 3y

]
5 =

[
3x

]
5 ⊗5

[
3y

]
5 = f ([x]4) ⊗5 f

(
[y]4

)
. 

To show that f is bijective, it is enough to show its injectivity (the two groups are 
finite with the same cardinality). The map f is injective as 

ker( f ) = {[x]4 ∈ Z4 : f ([x]4) = [1]5} =
{
[x]4 ∈ Z4 :

[
3x

]
5 = [1]5

}

= {
[x]4 ∈ Z4 : 3x ∼= 1 mod  5

}
. 

The quotient-remainder theorem can be applied to x and 4 to obtain that there 
exist q, r ∈ Z such that 

x = 4 q + r and 0 ≤ r < 4. 

• If r = 0, then 3x = 34q ∼= 1q = 1 mod  5, and thus, [x]4 ∈ ker( f ). 
• If r = 1, then 3x = 34q+1 ∼= 3 ≇ 1 mod  5, and thus, [x]4 /∈ ker( f ). 
• Similarly, for the cases r = 2, r = 3, 3x

≇ 1 mod  5  and [x]4 /∈ ker( f ). 

Therefore, only the case where x = 4q, we have  [x]4 ∈ ker( f ), i.e., 

ker( f ) = {
[4q]4, q ∈ Z

} = {[0]4}. 

The reader should check that g : (Z4, ⊕) → (Inv(Z5), ⊗5), where g([x]4) = 
[4x ]5 is a well-defined homomorphism, that is not injective (Check!).
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7. For any prime p and any generator [a] of Inv
(
Z p

) = Z∗
p, the  map  

g : (
Z p−1, ⊕p−1

) → (
Z

∗
p, ⊗p

)
, where g

(
[x]p−1

) = [ax ]p is an isomorphism 
(Exercise 8.28). Note that since

||Z∗
p

|| = p − 1, then a p−1 ∼= 1 mod  p. 

Example 8.2.5 

1. Consider the group homomorphism f : (R, +) → (R∗, ·) defined by f (x) = ex 

for all x ∈ R. 

ker( f ) = {x ∈ R : ex = 1} = {0} and Im( f ) = {ex : x ∈ R} = R+. 
The map f is an example of a monomorphism that is not an epimorphism. 

Compare this monomorphism with the isomorphism described in Example 8.1.3 
(7). 

2. Consider the groups (R, +) and (C∗, ·). Let  f : (R, +) → (C∗, ·) defined by 
f (x) = eix  for all x ∈ R. The  map  f is a homomorphism as 

f (x + y) = ei(x+y) = eix  eiy  = f (x) f (y). 

The kernel of f is 

ker( f ) = {x ∈ R : f (x) = 1} = {
x ∈ R : eix  = 1

}

= {x ∈ R : cos x + i sin x = 1} = {x ∈ R : cos x = 1 ∧ sin x = 0} 
= {x ∈ R : x = 2πk, k ∈ Z} = {2πk, k ∈ Z} = 2π Z, 

and 

Im( f ) = { f (x) ∈ C : x ∈ R} = {
eix  ∈ C : x ∈ R

}

= {
z ∈ C : z = eix  , x ∈ R

} = {z ∈ C : |z| = 1} (the unit circle in C). 

Therefore, f is an not isomorphism. 

3. Consider the multiplicative group (R∗, ·). Define f : (R∗, ·) → (R∗, ·) by 

f (x) = |x |. 

The map f is a homomorphism with ker( f ) = {1, −1} and Im( f ) = (0, ∞). 
Clearly, f is not an isomorphism. 

4. Consider the groups (GLn(R), ·) and (R∗, ·). Let  det : GLn(R) → R∗ be the 
map defined by taking any matrix A to its determinant det(A) (Definition 1.6.20). 
The map det is a homomorphism as
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det(AB) = det(A) · det(B). 

This map is surjective. For if λ ∈ R∗ = R\{0}, let  Aλ be the diagonal matrix in 
GLn(R), whose first element a11 = λ and all other diagonal elements are 1. The  
matrix Aλ is an invertible matrix with det(Aλ) = λ. The  map  det has a nontrivial 
kernel since 

ker(det) = {A ∈ GLn(R) : det(A) = 1} = SLn(R). 

Therefore, the homomorphism det : GLn(R) → R∗ is not an isomorphism. 
The next proposition demonstrates the strong relation between normal subgroups 

and homomorphisms. The proposition explains that not only is the kernel of a homo-
morphism a normal subgroup of the domain group G, but any normal subgroup of 
G is a kernel for some homomorphism. Moreover, it shows that a homomorphism 
provides a new method to obtain normal subgroups. 

Proposition 8.2.6 Let (G, ∗) be a group. Any normal subgroup of G is a kernel of 
a homomorphism on G . i.e., 

H ⊴ G ⇐⇒ ∃ a homomorphism f : G → G/H ∍ H = ker( f ). 

Proof Assume that H is a normal subgroup of G and define f : G → G/H to be 
the map that takes a to aH for all a ∈ G. The  map  f is a homomorphism as 

f (a ∗ b) = (a ∗ b)H = aH ·G/H bH = f (a) ·G/H f (b) for all a, b ∈ G 

and 

ker( f ) = {a ∈ G : f (a) = H} = {a ∈ G : aH = H} = {a ∈ G : a ∈ H} = H. 

The equivalence statement follows since the kernel of any homomorphism of G 
is normal subgroup of G (Corollary 8.2.2). ∎

Example 8.2.7 

1. Let n ∈ N. Consider the symmetric group Sn and its normal subgroup An 

(Corollary 7.5.7). The map 

f : Sn → Sn/An 

σ |→ σ An
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is a homomorphism such that Ker( f ) = An. 

2. Consider the group (Z12, ⊕12) and its normal subgroup K = 〈[6]〉 =  {[0], [6]}. 
To find the homomorphism f such that ker( f ) = K , one constructs the quotient 
group Z12/K , where the operation Z12/K is defined by 

([a]K ) +Z12/K ([b]K ) = [a + b]K . 

Let f : Z12 → Z12/K be defined by taking [a] to [a]K , then f is a well-defined 
homomorphism with ker( f ) = K . 

8.3 Group Isomorphisms and Cayley’s Theorem 

Group isomorphisms (Definition 8.1.1) are maps that preserve all group structures. 
This section is devoted to study isomorphisms. 

Definition 8.3.1 Let (G1, ∗) and (G2, ·) be two groups. The groups G1 and G2 are 
called isomorphic if there exists an isomorphism f : G1 → G2. 

As any bijective map f has a bijective inverse, any isomorphism is invertible. 
The following proposition shows that the inverse map of an isomorphism is also an 
isomorphism. 

Proposition 8.3.2 Let (G1, ∗) and (G2, ·) be groups. If f : G1 → G2 is a group 
isomorphism, then f −1 : G2 → G1 is an isomorphism. 

Proof The map f −1 is bijective (Exercise 1.21). To show that f −1 is a homomor-
phism, let b1, b2 ∈ G2, a1 = f −1(b1), and a2 = f −1(b2). Since f is bijective 
homomorphism, 

f −1(b1) ∗ f −1(b2) = a1 ∗ a2 = f −1( f (a1 ∗ a2)) = f −1( f (a1) · f (a2)) = f −1(b1 · b2).

∎

On the class of all groups, define the following relation. 
G1 

∼= G2 if and only if there exists an isomorphism f : G1 → G2. 
This relation is an equivalence relation (Exercise 8.5). The groups in Examples 

8.2.4 (5–7) and Example 8.1.3 (7) are examples of isomorphic groups. More examples 
are presented in the remainder of this section. ∎

Example 8.3.3
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1. Let m ∈ Z such that m /= 0. The map GG in Example 8.1.3 (4) is an isomor-
phism, which implies that the additive groups Z and mZ are isomorphic, 
i.e., 

Z ∼= mZ for all m /= 0. 

In this example, a proper subgroup is isomorphic to the whole group. According 
to the transitivity of the isomorphic relation (Exercise 8.5), mZ ∼= nZ, for all nonzero 
integers m, n. 

2. The groups Z/nZ and Zn are isomorphic for each n ∈ N. The isomorphism 
is given by the function f : Z/nZ → Zn that takes a + nZ into [a], where 
0 ≤ a ≤ n − 1. It is a well-defined bijection map such that 

f
(
(a + nZ) +Z/nZ (b + nZ)

) = f (a + nZ) + f (b + nZ). 

Note that Z/nZ is a finite group that has n elements (Example 7.7.9 (1)). 

3. For each n ∈ N, the group Sn−1 is isomorphic to a subgroup of Sn . Specifically, 
Sn−1 is isomorphic to the subgroup of Sn that fixes one element of the set 
{1, 2, . . . ,  n}. The inclusion map provides the required monomorphism. 

Example 8.3.4 Let n ∈ N such that n ≥ 3. Let 〈r, s〉 be the subgroup of O(2) 
generated by. 

r =
(
cos 2π 

n − sin 2π 
n 

sin 2π 
n cos 2π 

n

)
and s =

(
1 0  
0 −1

)

Exercise 7.5 shows that the subgroup 〈r, s〉 is finite and can be listed as follows:

〈r, s〉 = {
e, r, r2 , . . . ,  rn−1 , s, rs, r2 s, . . . ,  rn−1 s

}
. 

The dihedral group in Example 7.3.11 satisfies that 

D2n =
⟨
R 2π 

n 
, lo

⟩
=

{
R0, R 2π 

n 
, R 4π 

n 
, . . . ,  R 2(n−1)π 

n 
, lo, l π 

n 
, . . . ,  l (n−1)π 

n

}
. 

Define the map 

f : D2n → 〈r, s〉
(R 2π 

n 
)k l t 

o |→ rk st 

for each 0 ≤ k ≤ n − 1 and for each 0 ≤ t ≤ 1. The  map  f is an isomorphism 
(Exercise 8.28). Using this isomorphism, we identify the dihedral group with the 
subgroup 〈r, s〉.
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Corollary 8.3.5 Let n ∈ N where n ≥ 3. 

D2n = 〈r, s〉 = {
e, r, r2 , . . . ,  rn−1 , s, rs, r2 s, . . . ,  rn−1 s

}

where r, s satisfy the relations 

ord(r ) = n, ord(s) = 2, and (rs)2 = e. 

For example, the group D12 of all symmetries of the regular 6-polygon, consists of 
the 12 elements 

D12 =
{
e, r, r2 , r3 , r4 , r5 , s, rs, r2 s, r3 s, r4 s, r5 s

}

that are controlled by the relations r6 = s2 = e, (sr)2 = e. It is left to the reader to 
write Cayley’s table for the group (D12, ·). The reader may need to do the following 
computations 

r4 r5 = r9 = r3 , r5 r3 s = r8 s = r2 s, 
r3 sr5 = r3 r6−5 s = r4 s, r3 sr2 s = r3 r6−2 s2 = r. 

Example 8.3.6 Let n ∈ N such that n ≥ 3. Consider the two groups: K = 〈α, τ 〉
(Exercise 7.6) and the subgroup 〈r, s〉 of O(2) (Example 8.3.4). Define the map. 

f : 〈r, s〉 → K 

rk st |→ αk τ t 

for all 0 ≤ k ≤ n − 1 and t ∈ {0, 1} 
Clearly, that f is a bijective map (Check!). To show that f is a homomorphism, let 

x, y ∈ 〈r, s〉 be an arbitrary element. i.e., x = rk1st1 , y = rk2st2 for some k1, k2, t1, t2 
where 0 ≤ k1, k2 ≤ n − 1 and t1, t2 ∈ {0, 1}. 

f (x · y) = f
(
rk1 st1 rk2 st2

) = f
(
rk1 r−k2 st1 st2

) = f
(
rk1−k2 st1+t2

)

= αk1−k2 τ t1+t2 = αk1 α−k2 τ t1 τ t2 = αk1 τ t1 αk2 τ t2 

= f
(
rk1 st1

) ◦ f
(
rk2 st2

) = f (x) ◦ f (y). 

Therefore, 〈r, s〉 and K are isomorphic groups. By the transitivity of the isomor-
phic relation (Exercise 8.5), all three groups in Examples 8.3.4 and 8.3.6 are 
isomorphic and can be identified. 

As we mentioned in the beginning of this section, an isomorphism of two groups 
preserves all group structures of the domain and codomain groups, such as the
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commutativity, cardinality of the groups, orders of the elements, and normality of 
subgroups. The commutativity is preserved by any homomorphism. It is left to the 
reader to check that if G1 is abelian and f : G1 → G2 is a homomorphism, then 
f (G1) is abelian. To preserve the normality of subgroups, at least an epimorphism 
is needed (Proposition 8.1.8). Therefore, if f : G1 → G2 is an isomorphism, then 
for any normal subgroup H of G1, the image f (H ) will be a normal subgroup of 
G2. The cardinality of the two groups is preserved as any isomorphism must be a 
bijective map. For the orders of group elements, we have the following proposition. 

Proposition 8.3.7 Let (G1, ∗) and (G2, ·) be groups and f : G1 → G2 be a group 
isomorphism. For any a ∈ G1, ord( f (a)) = ord(a). 

Proof Assume that a ∈ G1 is an arbitrary element. If a has infinite order, then the 
order of f (a) is infinite (exercise). Let  ord(a) = k, Proposition 8.1.4 implies that 
( f (a))k = e2. We show that k is the smallest positive integer such that ( f (a))k = 
e2. Let r be any positive integer such that ( f (a))r = e2. Since f is a homomorphism, 

f
(
ar

) = e2. 

As f is a bijective map, f −1 is bijective (Theorem 1.5.20), and 

ar = f −1
(

f
(
ar

)) = f −1 (e2) = e1. 

As k = ord(a), then k ≤ r . ∎
The reader should note that the previous corollary is not true if one replaces the 

word isomorphism with homomorphism. For example, the map f : (Z, +) → (Z, +) 
defined by f (n) = 0 for all n ∈ Z is a homomorphism (Example 8.1.3 (1)). For any 
n /= 0, ord(n) is not finite, but ord( f (n)) = ord(0) = 1. 

Corollary 8.3.8 Let n ∈ N. Any two isomorphic groups have the same number of 
elements whose order is n. 

Let p be a prime number. The following proposition states that all groups with 
order p are isomorphic. The reader must be aware that this statement is not true for 
any number n. For example, the groups (Z6, ⊕6) and (S3, ◦) both have 6 elements 
but are not isomorphic ((Z6, ⊕6) is an abelian group, whereas (S3, ◦) is not). The 
groups (Z4, ⊕4) and ({[1], [3], [5], [7]}, ⊗8) are examples of abelian groups that 
have the same number of elements but are not isomorphic. There are three elements 
of order 2 in ({[1], [3], [5], [7]}, ⊗8), while (Z4, ⊕4) has only one element of order 
2. 

Proposition 8.3.9 Any group whose order is the prime number p is isomorphic to 
Z p.
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Proof LetG be a group such that |G| = p for some prime p.As  p > 1, there exists an 
element a in G such that a /= e. According to Lagrange’s theorem (Theorem 7.4.17), 
the order of the subgroup 〈a〉 divides p. Therefore, ord(〈a〉) is either 1 or p. As a /= e, 
there exists only one possibility for ord(〈a〉), which is p. Hence, 〈a〉 is a subgroup 
of G that has the same order of G, i.e., 

G = 〈a〉 = {
e, a, a2 , . . . ,  a p−1

}
. 

The map f : Z p → G that takes [k] to ak is the required isomorphism 
(Check!). ∎

The next goal is to determine the conditions in which the additive groups Zmn and 
Zn × Zm are isomorphic. We begin with the following lemma. 

Lemma 8.3.10 Let n, m ∈ N. If gcd(m, n) = 1, then the additive groups Znm and 
Zn × Zm are isomorphic. 

Proof Assume that gcd(m, n) = 1, and define 

f : Zmn → Zn × Zm such that [x]mn |→ ([x]n, [x]m) 

where [x]k denotes the equivalence class of x in Zk . The  map  f is a well-defined, 
for if [x]mn = [y]mn, then mn divides x − y. Therefore, m|(x − y) and n|(x − y), 
which implies that [x]m = [y]m and [x]n = [y]n . Consequently, ([x]n, [x]m) =(
[y]n, [y]m

)
. To show that f is a homomorphism, let [x]mn, [y]mn be any elements 

in Zmn . By the definition of f, 

f
(
[x]mn ⊕mn [y]mn

) = f
(
[x + y]mn

) = (
[x + y]n, [x + y]m

)

= (
[x]n ⊕n [y]n, [x]m ⊕m [y]m

) = ([x]n, [x]m) + (
[y]n, [y]m

)

= f ([x]mn) + f
(
[y]mn

)
. 

We still need to show that f is one to one and onto. As the domain and codomain 
are finite sets with same cardinalities, it suffices to show only one of these cases 
(Exercise 1.6). To show that f is injective, assume that [x]mn be an arbitrary element in 
ker( f ). i.e., f ([x]mn

] = ([0]n, [0]m). By definition of relations mod n and mod m, 
we obtain that n|x and m|x . Since gcd(m, n) = 1, then nm|x , and thus, [x]mn = 
[0]mn . Therefore ker( f ) = {[0]mn} and f is injective. ∎

Lemma 8.3.11 For any n, m ∈ N, if the additive groups Znm and Zn × Zm are 
isomorphic, then 

gcd(m, n) = 1. 

Proof If Znm and Zn × Zm are isomorphic groups, then there exists an isomorphism 
f : Zn × Zm → Znm . Since [1]nm ∈ Znm and f is onto, then there exists

(
[y]n, [z]m

)

in Zn × Zm such that
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f
(
[y]n, [z]m

) = [1]nm 

Let l = lcm(m, n). Multiplying this equation by l, yields 

l · f
(
[y]n, [z]m

) = l · [1]nm 

which implies 

f
(
[ly]n, [lz]m

) = f
(
l · [y]n, l · [z]m

) = [l]nm 

As l is a multiple of both n and m, then [ly]n = [0]n, [lz]m = [0]m . Therefore, 

[0]nm = f ([0]n, [0]m) = f
(
[ly]n, [lz]m

) = [l]nm 

i.e., [0]nm = [l]nm and nm|l, which implies that mn ≤ l. Since l ≤ mn, then l = mn, 
which gives 

gcd(m, n) = 
mn 

lcm(m, n) 
= 1

∎

Corollary 8.3.12 Let n, m ∈ N and consider the additive groups Zm, Zn and Zmn. 
The groups Zmn and Zn × Zm are isomorphic if and only if gcd(m, n) = 1. 

According to the corollary above, even though the additive groups Z2 × Z4 and 
Z8 have the same number of elements, they are not isomorphic. For the same reason, 
the groups Z2 × Z2 and Z4 are not isomorphic. The following example shows that 
Z2 × Z2 is isomorphic to the Klein group (Example 5.2.2), which implies that the 
Klein group is not isomorphic to Z4. In fact, each nonidentity element in the Klein 
group has order 2, a property that does not hold for Z4. 

Example 8.3.13 Consider the Klein group (V , ∗) and the additive group Z2 × Z2. 
Define the map f : V → Z2 × Z2 that takes 

e → (0, 0), a → (0, 1), b → (1, 0), and c → (1, 1). 

Checking all the elements in V indicates that the map f is a homomorphism. 
Clearly, this map is bijective (by definition). Therefore, Klein group (V , ∗) is isomor-
phic to Z2 × Z2. If Klein group (V, ∗) is isomorphic to Z4, then by the transitivity 
of the isomorphism relation, we would have Z2 × Z2 is isomorphic to Z4, which 
contradicts Corollary 8.3.12, as  gcd(2, 2) = 2 /= 1. 

Next, we state and present a proof for Cayley’s theorem, one of the important 
theorems in group theory, named in honor of Arthur Cayley. The theorem states that 
every group is isomorphic to a subgroup of some symmetric group, rendering the 
study of symmetric groups a key to understanding the structure of any group. The
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theorem shows that any group G is isomorphic to Lm(G) < SG , where Lm(G) is 
the subgroup of all left multiplications on G (Proposition 7.1.14). 

Theorem 8.3.14 (Cayley’s theorem) Any group G is isomorphic to a subgroup of 
its symmetric group SG. 

Proof Define φ : G → Lm(G) by φ(a) = fa ∀ a ∈ G. Using Proposition 7.1.14, 
we obtain 

φ(a ∗ b) = fa∗b = fa ◦ fb = φ(a) ◦ φ(b) 

i.e., the map φ is a homomorphism. This map is injective as 

φ(a) = φ(b) ⇒ fa = fb ⇒ fa(x) = fb(x)∀ x ∈ G 

⇒ a ∗ x = b ∗ x ∀ x ∈ G 

⇒ a = a ∗ e = b ∗ e = b ⇒ a = b. 

Finally, the map φ is surjective since for each y ∈ Lm(G) = { fa : a ∈ G}, there 
exists a ∈ G such that φ(a) = fa = y. ∎

The following example explains the method used to obtain the subgroup of SG 

that is isomorphic to a given group G. 

Example 8.3.15 Consider the group (Inv(Z7), ⊗7). According to Cayley’s theorem, 
the group Inv(Z7) is isomorphic to Lm(Inv(Z7)), where Lm(Inv(Z7)) ={

f[1], f[2], f[3], f[4], f[5], f[6]
}
. As  

f[a] : Inv(Z7) → Inv(Z7) 

[x] |→ [ax] where[x] ∈ Inv(Z7). 

i.e., 

f[1] =
(
[1] [2] [3] [4] [5] [6] 
[1] [2] [3] [4] [5] [6]

)
= e 

f[2] =
(
[1] [2] [3] [4] [5] [6] 
[2] [4] [6] [1] [3] [5]

)
= ([1][2][4])([3][6][5]) 

f[3] =
(
[1] [2] [3] [4] [5] [6] 
[3] [6] [2] [5] [1] [4]

)
= ([1][3][2][6][4][5]) 

f[4] =
(
[1] [2] [3] [4] [5] [6] 
[4] [1] [5] [2] [6] [3]

)
= ([1][4][2])([3][5][6])
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f[5] =
(
[1] [2] [3] [4] [5] [6] 
[5] [3] [1] [6] [4] [2]

)
= ([1][5][4][6][2][3]) 

f[6] =
(
[1] [2] [3] [4] [5] [6] 
[6] [5] [4] [3] [2] [1]

)
= ([1][6])([2][5])([3][4]) 

Therefore, 

Inv(Z7) ∼={e, ([1][3][2][6][4][5]), ([1][5][4][6][2][3]), ([1][2][4])([3][6][5]), 
([1][5][4][6][2][3]), ([1][6])([2][5])([3][4])}. 

We end the section by studying isomorphisms on G (automorphisms). We shall 
prove that Aut(G), the set of all automorphisms on G, forms a group. Moreover, we 
provide an example of a normal subgroup of Aut(G). 

Proposition 8.3.16 Let (G, ∗) be a group. The set Aut(G) of all automorphisms on 
G forms a group under the composition of maps. 

Proof The composition of two automorphisms on G is an automorphism (Proposi-
tion 8.1.2). Therefore, the composition is a binary operation on Aut(G). The associa-
tivity of the composition on Aut(G) follows from the associativity of the composition 
of maps. The identity map ι : G → G defined by ι(x) = x ∀x ∈ G is an auto-
morphism that serves as an identity element in Aut(G). Let  f be an automorphism. 
According to Proposition 8.3.2, the inverse map f −1 is also an automorphism and 
satisfies f ◦ f −1 = f −1 ◦ f = ι. Therefore, Aut(G) is a group. ∎

An important example of automorphism is an inner automorphism defined in the 
following example. 

Example 8.3.17 Let (G, ∗) be a group. For a ∈ G, define the map. 

φa : G → G 

x |→ a ∗ x ∗ a−1 . 

The map φa is an automorphism. For if x, y are elements in G, then 

φa(x) ∗ φa(y) = (
a ∗ x ∗ a−1

) ∗ (
a ∗ y ∗ a−1

)

= a ∗ x ∗ (
a−1 ∗ a

) ∗ y ∗ a−1 = a ∗ x ∗ y ∗ a−1 

= φa(x ∗ y). 

Therefore, φa is a homomorphism. It is invertible as. 

φa(φa−1 (x)) = φa−1 (φa(x)) = x for all x ∈ G.
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Hence, φa−1 φa = φaφa−1 = ι(G), which implies that φa is one to one and onto. 
Therefore, φa is an element of Aut(G). It is straightforward to show that for anya, b ∈ 
G, φaφb = φa∗b. 

Definition 8.3.18 Let (G, ∗) be a group, and a ∈ G. The  map  φa defined in the 
example above is called a conjugation by a or inner automorphism. The set of all 
inner automorphisms on G is denoted by Inn(G). 

Proposition 8.3.19 The set of all inner automorphisms on (G, ∗) forms a normal 
subgroup of (Aut(G), ◦). 

Proof According to the result of Example 8.3.17, Inn(G) is a subset of Aut(G). As  
φe (the identity map on G) is an inner automorphism, then Inn(G) is a nonempty set. 
It is a subgroup as 

φa(φb)
−1 = φaφb−1 = φa∗b−1 ∈ Inn(G) for all φa, φb−1 ∈ Inn(G). 

To show that Inn(G) is normal, let f be any automorphism on G and φa be an 
element in Inn(G) for some a ∈ G. 

f φa f 
−1 (x) = f

(
a f −1 (x)a−1) = f (a)x f  (a)−1 for all x ∈ G. 

Therefore, f φa f −1 = φ f (a) ∈ Inn(G). ∎

8.4 The Fundamental Theorems of Homomorphisms 

There are three fundamental theorems that are related to homomorphisms. This 
section studies the three theorems and provide several examples. Recall the result 
of Corollary 8.2.2, in which for a group homomorphism f : G1 → G2, the kernel 
of f is a normal subgroup of G1. This result enables us to build a quotient group 
G1/ ker( f ). This quotient group is isomorphic to the subgroup of all images of f . 

Theorem 8.4.1 (First fundamental theorem of group homomorphisms ) Let (G1, ∗) 
and (G2, ·) be two groups. If f : G1 → G2 is a group homomorphism, then 

G1/ ker( f ) ∼= Im( f ). 

Proof Since ker( f ) is a normal subgroup of G1, then by Proposition 7.7.3, 
G1/ ker( f ) forms a group. Define f ∗ : G1/ ker( f ) → G2. 

a ker( f ) |→ f (a) ∀ a ∈ G1.
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The map f ∗ is well-defined. For if a1 ker( f ), a2 ker( f ) are arbitrary elements 
in G1/ker( f ) such that a1 ker( f ) = a2 ker( f ), then by Proposition 7.4.7, a1 ∈ 
a2 ker( f ), i.e., ∃ k ∈ ker( f ) ∍ a1 = a2 ∗ k. Therefore, 

f (a1) = f (a2 ∗ k) = f (a2) · f (k) = f (a2) · e2 = f (a2). 

To show that f ∗ is a homomorphism, we assume that a1 ker( f ), a2 ker( f ) are 
arbitrary elements in G1/ ker( f ). Hence, 

f ∗
(
(a1 ker( f )) ·G1/ ker( f ) (a2 ker( f ))

) = f ∗((a1 ∗ a2) ker( f )) 
= f (a1 ∗ a2) = f (a1) · f (a2) 
= f ∗(a1 ker( f )) · f ∗(a2 ker( f )). 

Finally, a ker( f ) ∈ ker( f ∗) ⇐⇒ f (a) = f ∗(a ker( f )) = e2 ⇐⇒ a ∈ 
ker( f ) ⇐⇒ a ker( f ) = ker( f ) i.e., ker( f ∗) = {ker( f )} which is the identity 
element of G1/ker( f ). Therefore, by Proposition 8.2.3, the  map  f ∗ is one to one. 
Consequently, 

G1/ ker( f ) ∼= f ∗(G1/ ker( f )) = f (G1) = I m( f ). ∎
Note that in this proof, the original homomorphism f can be reconstructed as a 

composition of the homomorphism f ∗ and quotient map of G1 into G1/ ker( f ), i.e., 

f = f ∗ ◦ π 

where π is the map defined for any a ∈ G1 by π (a) = a ker( f ). 

Example 8.4.2 

1. Consider the group homomorphism f : (R, +) → (C∗, ·) defined by f (x) = 
eix . In Example 8.2.5 (2), we showed that ker( f ) = 2π Z and I m( f ) = 
{z ∈ C∗ : |z| = 1}. Applying the result of the first fundamental theorem, we 
obtain 

R
⟨
2π Z ∼= {z ∈ C : |z| = 1} 

i.e., the unit circle is isomorphic to the quotient group R
⟨
2π Z. 

2. Consider the groups (Z12, ⊕12) and (Z30, ⊕30) and the homomorphism 

f : Z12 → Z30 

[x]12 |→ [5x]30
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Table 8.2 Images of the map f 

[x]12 [0]12 [1]12 [2]12 [3]12 [4]12 [5]12 [6]12 [7]12 [8]12 [9]12 [10]12 [11]12 

f ([x]12) [0]30 [5]30 [10]30 [15]30 [20]30 [25]30 [0]30 [5]30 [10]30 [15]30 [20]30 [25]30 

where [x]k denotes the equivalence class of x in Zk . Table 8.2 contains the images 
of f 

Using the table below, we obtain 
ker( f ) = {[0]12, [6]12} and I m( f ) = {[0]30, [5]30, [10]30, [15]30, [20]30, [25]30}. 
Therefore, Z12/ ker( f ) is equal to the set {[a]12 ker( f ) : [a]12 ∈ Z12} which is 

{{[0]12, [6]12}, {[1]12, [7]12}, {[2]12, [8]12}, {[3]12, [9]12}, {[4]12, [10]12}, {[5]12, [11]12}}. 

Note that the map that takes 
{[0]12, [6]12} |→ [0]30, {[1]12, [7]12} |→ [5]30, {[2]12, [8]12} |→ [10]30, 
{[3]12, [9]12} |→ [15]30, {[4]12, [10]12} |→ [20]30, {[5]12, [11]12} |→ [25]30. 
is the isomorphism f ∗ between the two groups Z12/ ker( f ) and I m( f ) defined 

in the proof of Theorem 8.4.1. 

3. Although Exercise 7.36 can be solved without using the information in this 
chapter, the solution is considerably easier to obtain by using Theorem 8.4.1. 
The condition (a ∗ b)m = am ∗ bm for all a, b ∈ G shows that the map 
f : G → G defined by f (a) = am is a homomorphism with ker( f ) = G[m] 
and Im( f ) = mG (Check!). Therefore, all the results of Exercise 7.36 follow 
except the normality of Im( f ). We must separately show that Im( f ) is normal. 

If G1, G2 are two finite groups and f : G1 → G2 is a homomorphism, then 
Corollary 8.2.2 and Lagrange’s theorem guarantee that |I m( f )| divides ord(G2). 
The following corollary states that |I m( f )| also divides ord(G1). Therefore, |I m( f )| 
divides gcd(|G1|, |G2|). 
Corollary 8.4.3 Let G1, G2 be groups, and f : G1 → G2 be a homomorphism. If 
G1 is a finite group, then |I m( f )| divides ord(G1). 

Proof According to Corollary 8.2.2, ker( f ) is a normal subgroup of G. As  G1 is 
finite, then by Lagrange’s theorem (Theorem 7.4.17), both ker( f ) and G1/ ker( f ) 
are finite and 

|G1/ ker( f )| = 
|G1| 

|ker( f )| . 

According to the first fundamental theorem,|G1/ ker( f )| = |I m( f )|, and thus, 

|G1| = |G1/ ker( f )| · |ker( f )| = |I m( f )| · |ker( f )|. 

The result now follows. ∎



8.4 The Fundamental Theorems of Homomorphisms 307

Note that if the map f in the above result is an epimorphism, then I m( f ) = G2 

and |G2| divides |G1|. 
Corollary 8.4.4 Let G1, G2 be groups and f : G1 → G2 be a group homomor-
phism. If the two groups are finite, then |I m( f )| divides gcd(|G1|, |G2|). 
Proposition 8.4.5 Let G1, G2 be finite groups. If |G1| and |G2| are relatively prime, 
then the trivial homomorphism is the only homomorphism between G1 and G2. 

Proof Assume that f : G1 → G2 is an arbitrary group homomorphism. By Corol-
lary 8.4.4, |I m( f )| divides gcd(|G1|, |G2|) = 1. As the only positive divisor of 1 is 
1, then I m( f ) = {e2} and f must be trivial. ∎

Using the first fundamental theorem of homomorphisms, one can generalize 
Corollary 8.3.12 to obtain the following proposition. Recall that m1, . . . ,  mk are 
relatively primes if gcd

(
mi , m j

) = 1 for all i /= j. 

Proposition 8.4.6 Let m1, . . . ,  mk be relatively primes. The additive group Zm1m2···mk 

is isomorphic to Zm1 × Zm2 ×  · · ·  ×  Zmk . 

Proof Define the map. 

f : Z → Zm1 × Zm2 ×  · · ·  ×  Zmk 

f (x) |→ (
[x]m1 

, . . . ,  [x]mk

)
. 

The map f is a group homomorphism. For all x, y ∈ Z, 

f (x + y) =(
[x + y]m1 

, . . . ,  [x + y]mk

) = (
[x]m1 

⊕m1 [y]m1 
, . . . ,  [x]mk 

⊕mk [x]mk

)

=(
[x]m1 

, . . . ,  [x]mk

) ⊕m1···mk

(
[y]m1 

, . . . ,  [y]mk

) = f (x) ⊕m1···mk f (y). 

We show that ker( f ) = m1 · · · mk Z, as follows: 
If x ∈ ker( f ), then x ∈ Z and f (x) = (

[0]m1 
, . . . ,  [0]mk

)
. i.e.,

(
[x]m1 

, . . . ,  [x]mk

) = (
[0]m1 

, . . . ,  [0]mk

)

implying that [x]mi 
= [0]mi 

for all 1 ≤ i ≤ k. Hence, x is divisible by all 
m1, . . . ,  mk . Since m1, . . . ,  mk are relatively prime, x is divisible by their product 
m1m2 · · · mk (Corollary 2.5.7 (3)). Therefore, x is a multiple of m1m2 · · · mk and 
ker( f ) ⊆ m1 · · · mk Z. The other inclusion is clear as any element in m1 · · · mk Z is 
in Ker( f ) (Check!), i.e., 

ker( f ) = m1 · · · mk Z. 

According to the first fundamental theorem of homomorphisms, Z/ ker( f ) is 
isomorphic to f (Z). To show that f is surjective, let

(
[u1]m1 

, . . . ,  [uk]mk

)
be any 

element in Zm1 × Zm2 ×· · ·×  Zmk . For each 1 ≤ i ≤ k, gcd(mi , si ) = 1 where si =
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m1 · · · mi−1 mi+1 · · · mk , and thus, by Theorem 2.5.1, there exist ai , bi ∈ Z such that 
1 = ai mi + bi si . i.e., 

bi si ≡ 1 modmi . 

Moreover, bi si ≡ 0 modm j for each j /= i . Let  

x = 
kΣ

i=1 

ui bi si . 

Then, x is an integer that satisfies x ≡ ui mod mi for each 1 ≤ i ≤ k, i.e., 

f (x) = (
[u1]m1 

, . . . ,  [uk]mk

)

Therefore, f is surjective. By the first fundamental theorem, 

Zm1m2···mk = Z/(m1 · · · mk Z) ∼= f (Z) = Zm1 × Zm2 ×  · · ·  ×  Zmk .

∎
Next, we study the second and third fundamental theorems of homomorphisms. 

As mentioned in the beginning of the section, both theorems concern subgroups of 
a given group G. These theorems provide a way to create a quotient subgroup of 
a quotient group. In this section, both theorems are stated and proved. In addition, 
several examples are provided. 

Theorem 8.4.7 (Second Fundamental Theorem of group homomorphisms) Let G 
be a group and H, K be subgroups of G. If H is a normal subgroup of G, then 
H K  is a subgroup of G, H ∩ K is a normal subgroup of K , and 

K /(H ∩ K ) ∼= H K  /H. 

Proof As H ⊴ G, then by Proposition 7.5.12, H K  is a group and H is normal 
in H K  = 〈H ∪ K 〉. Let  f be the composition of the inclusion map ι : K → H K  
and the quotient map π : H K  → H K  /H , i.e., 

f : K 
ι→ H K  

π→ H K/H. 

As f is a composition of two homomorphisms, it is a homomorphism. This map 
is surjective since H K  = K H, and then any element of H K  /H is of the form 
kh H = k H  = π (ι(k)) = f (k). 

The kernel of f is 

ker( f ) = {a ∈ K : πι(a) = H} = {a ∈ K : aH = H} = {a ∈ K : a ∈ H} = H ∩ K .
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By Corollary 8.2.2, H ∩K is a normal subgroup of K , and by the first fundamental 
theorem of homomorphism, 

K /(H ∩ K ) ∼= f (K ) = H K/H

∎

Example 8.4.8 In the additive group (Z, +), let  H = 4Z and K = 5Z. The subsets 
H and K are normal subgroups of Z and H ∩K = 20 Z. As  H K  = H +K = Z, then 
the second fundamental theorem of group homomorphism yields 5Z/20 Z ∼= Z/4Z. 

Corollary 8.4.9 Let G be a finite group and H, K be subgroups of G. If H is a 
normal subgroup of G, then 

|H K | = 
|H ||K | 
|H ∩ K | . 

Proof As the group G is finite, all its subgroups are also finite. According 
to the second fundamental theorem of group homeomorphisms, |H K  /H | = 
|K /(H ∩ K )|. Lagrange’s theorem implies that 

|H K | 
|H | = 

|K | 
|H ∩ K | . 

. 

The result now follows. ∎

Example 8.4.10 Consider the group S4. Let H = 
{e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} and K = {e, (1 2), (3 4), (1 2)(3 4)}. Both  
H and K are subgroups of S4. As  H is a normal subgroup (Example 7.7.5), the 
premises of Corollary 8.4.9 are satisfied, and thus, 

|H K | = 
|H ||K | 
|H ∩ K | = 

4 × 4 
2

= 8. 

It can be easily to show that 

H K  = {h ∗ k : h ∈ H, k ∈ K } 
= {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1 2), (3 4), (1 4 2 3), (1 3 2  4)}. 

The following theorem is another theorem that involves relations between a group 
G and its normal subgroups. 

Theorem 8.4.11 (The third fundamental theorem of group homomorphisms) Let G 
be a group and H, K be normal subgroups of G. If  K ⊆ H, then
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H/K ⊴ G/K and (G/K )/(H/K ) ∼= G/H. 

Proof As both H and K are normal subgroups of G, then by Propositions 7.5.9 
and 7.7.3, we have

(
G/K , +G/K

)
,
(
G/H, +G/H

)
and

(
H/K , +H/K

)
form groups. 

Define the map 

f : G/K → G/H 

aK |→ aH for all a ∈ G. 

It can be easily verified that f is a surjective homomorphism. The kernel of f is 

ker( f ) = {aK ∈ G/K : aH = H} 
= {aK ∈ G/K : a ∈ H} = H/K . 

The result follows by the first fundamental theorem. ∎

Example 8.4.12 Consider the additive group (Z, +). For each m, n ∈ Z, the  
subgroups nZ and mZ are normal subgroups of Z satisfying mZ ⊆ nZ if n|m 
(Check!). Therefore, if n|m, then by the third fundamental theorem of homomor-
phisms, nZ/mZ is a normal subgroup of Z/mZ and (Z/mZ)/(nZ/mZ) ∼= Z/nZ. 
This isomorphism is expressed by the map 

f : (Z/mZ)/(nZ/mZ) → Z/nZ 

where f ((a + mZ) + (nZ/mZ)) = a + nZ. 

8.5 Group Actions and Group Homomorphisms 

In this section left (right) group action on a set is defined and briefly studied. We 
begin by defining the opposite group and show that a left action of a group induced 
a right action of the opposite group. Since any group is isomorphic to its opposite 
group, we only consider the left action of a group. One of the main results in this 
section relates the group action on a set A to the group of all symmetries on A. We  
end the section by examining two sets related to the action of a group on the set A, 
namely the orbit and the stabilizer of an element in A. 

Definition 8.5.1 Let (G, ∗) be a group. The opposite group of G, usually denoted 
by Gop, is the group whose underlying set is G and its binary operation defined as 
follows:
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Table 8.3 Cayley’s tables of the group (G = {1, −1, i, −i, j, − j, k, −k}, .op) 
.op 1 −1 i −i j − j k −k 

1 1 −1 i −i j − j k −k 

−1 −1 1 −i i − j j −k k 

i i i −1 1 −k k j − j 

−i −i −i 1 −1 k −k − j j 

j j − j k −k −1 1 −i −i 

− j − j j −k k 1 −1 i i 

k k −k − j j i −i −1 1 

−k −k k j − j −i i 1 −1 

a ∗op b = b ∗ a. 

It is straightforward to verify that (Gop, ∗op) is a group. 

Example 8.5.2 

1. Cleary, for an abelian group G, the operation on G coincides with that of the 
opposite group, making the group G and its opposite identical. 

2. Consider the group (G = {1, −1, i, −i, j, − j, k, −k}, •), defined in Example 
5.2.4. The operation on the opposite group of G is given by Table 8.3 

Lemma 8.5.3 Any group G is isomorphic to its opposite group. 

Proof The map f : (G, ∗) → (Gop, ∗op) defined by f (g) = g−1 is a bijective map 
satisfying that 

f (g1 ∗ g2) = (g1 ∗ g2)−1 = g−1 
2 ∗ g−1 

1 = g−1 
1 ∗op g−1 

2 = f (g1) ∗op f (g2). 

Thus, f is an isomorphism. ∎

Definition 8.5.4 Let (G, ∗) be a group and A be any set. A left group action of G 
on A is a function μ : G × A → A satisfies 

1. μ(e, a) = a for all a ∈ A, and 
2. μ(g ∗ h, a) = μ(g, μ(h, a)) for all g, h ∈ G, and a ∈ A. 

If a function μ exists, we say that G acts on A. The  set  A is called a left G-set. 
If the action is clear from context, the expression μ(g, a) will be shortened to g · a, 
and items (1) and (2) in the definition can be rewritten as 

1. e · a = a for all a ∈ A, and 
2. (g ∗ h) · a = g · (h · a) for all g, h ∈ G, and a ∈ A. 

Similarly, the group right action is defined as follows:
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Definition 8.5.5 Let (G, ∗) be a group and A be any set. A right group action of G 
on A is a function μ : A × G → A satisfies 

1. μ(a, e) = a for all a ∈ A, and 
2. μ(a, g ∗ h) = μ(μ(a, g), h) for all g, h ∈ G, and a ∈ A. 

If a function μ exists, we say that G acts on A, and the set A is called a right 
G-set. If the action is clear from context, the expression μ(a, g) will be shortened 
to a · g, and items (1) and (2) in the definition can be rewritten as 

1. a · e = a for all a ∈ A, and 
2. a · (g ∗ h) = (a · g) · h for all g, h ∈ G, and a ∈ A. 

It is left to the reader to verify that the left action of a group (G, ∗) on a set A 
yields a right group action of (Gop, ∗op) on the same set A. In this section, we only 
consider the left action of a group. 

Example 8.5.6 

1. Let (G, ∗) be a group and A be any set. The map 

pleae delete this box 

· :  G × A → A 

(g, a) |→ g · a = a 

forms a left action of G on A. This action is called the trivial action of G. 
2. Let (G, ∗) be a group. 

(a) The map 

· :  G × G → G 

(g, h) |→ g · h = g ∗ h 

forms a left action of G on itself. This action is called the left 
multiplication of G. 

Similarly, the action g · h = h ∗ g defines a right action of G on itself, 
called the right multiplication of G 

(b) The map 

· :  G × G → G 

(g, a) |→ g · a = g ∗ a ∗ g−1 

forms a left action of G on itself. This action is called the action of G by 
conjugation.
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3. Let A be a set and consider (SA, ◦), the group of all symmetries on A (Corollary 
5.1.11). The map 

· :  SA × A → A 

(φ, a) |→ φ · a = φ(a) 

defined a left action of SA on the set A. To verify that · is a left action of SA 

on A, one must verify the conditions in Definition 8.5.4 as follows: 

(a) IA · a = IA(a) = a for all a ∈ A 
(b) (φ ◦ ψ) · a = (φ ◦ ψ)(a) = φ(ψ(a)) = φ(ψ · a) = φ · (ψ · a) for all 

φ, ψ ∈ SA and all a ∈ A. 

In particular, for each n ∈ N, the group Sn acts on {1, 2, 3, . . .  ,  n}. 
4. Consider the additive group (R, +). Let A = R2 and define the action of R on 

A given by 

t · (a, b) = (
et a + tet b, et b

)
. 

Clearly 0 · (a, b) = (a, b), and by direct computations, we have 
t1 · (t2 · (a, b)) = t1 ·

(
et2 a + t2et2 b, et2 b

)

= (
et1

(
et2 a + t2et2 b

) + t1et1 et2 b, et1 et2 b
)

= (
et1+t2 a + (t1 + t2)et1+t2 b, et1+t2 b

)

= (t1 + t2) · (a, b). 

. 

The proof of the following lemma is left an exercise. 

Lemma 8.5.7 Let (G, ∗) be a group and A be a left G -set. For each g ∈ G, the 
map 

fg : A → A 

a |→ g · a 

is a permutation on A. i.e., fg ∈ SA. 
The following two proposition reveal the relationship between action of a group 

and homomorphisms. 

Proposition 8.5.8 Let (G, ∗) be a group and A be a left  G -set. The group action 
of G on A induces a group homomorphism from G to the group of all symmetries 
on A. 

Proof Define the map
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f : G → SA 

g |→ fg : A → A 

a |→ g · a 

i.e., f (g) is the permutation that takes any element a to the action of G on a. For all 
g, h ∈ G and all a ∈ A 

f (g ∗ h)(a) = (g ∗ h) · a = g · (h · a) = f (g)(h · a) = f (g) ◦ f (h)(a) 

i.e., f (g ∗ h) = f (g) ◦ f (h), and thus, f is a homomorphism. ∎

Proposition 8.5.9 Let A be any set and (G, ∗) be a group. Any group homomorphism 
f : G → SA induces a left action of G on the set A. 

Proof Define the action of G on the set A by g · a = f (g)(a). We verify that this is 
indeed a left action on A as follows: 

• For each a ∈ A, e · a = f (e)(a) = IA(a) = a. 
• For each g, h ∈ G, and for each a ∈ A, 

(g ∗ h) · a = f (g ∗ h)(a) = f (g) ◦ f (h)(a) = f (g)( f (h)(a)) = g.(h · a). ∎

In the following, for any element a in a G-set, two subsets can be related. These 
subsets are the orbit of a and its stabilizer. We begin with the following lemma whose 
proof is left as an easy exercise. 

Lemma 8.5.10 Let G be a group, A be a nonempty left G -set. The group action 
of G on A defines an equivalence relation on A given by a ∼= b if and only if there 
exists g ∈ G such that b = g · a. 

Definition 8.5.11 Let G be a group, A be a nonempty G-set, and ∼= as in Lemma 
8.5.10. For any element a ∈ A, the equivalence class of a is called the G-orbit of a. 
For g ∈ G, we say G fixes a if g · a = a. The subset of all elements of G that fix a 
is called stabilizer of a. 

For each a∈A, the  G-orbit of a is denoted by O(a), and the stabilizer of a is 
denoted by Ga . i.e., 

O(a) = {g · a : g ∈ G}, Ga = {g ∈ G : g · a = a}. 

Note that both sets the G-orbit of a and its stabilizer are nonempty subsets of A and 
G, respectively. In fact, the stabilizer of a is a subgroup of G for any a ∈ A(Exercise 
8.31). 

Proposition 8.5.12 Let G be a group, and A be a G -set. For each a ∈ A,
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|O(a)| = [G : Ga] 

where [G : Ga] is the index of the subgroup Ga . 

Proof Let a∈A. Define the map f : O(a) → G/Ga as f (g · a) = g Ga , where 
g Ga is the left coset of Ga . Let  g1 · a and g2 · a be arbitrary elements in O(a). Since 

g1 · a = g2 · a ⇔ g−1 
2 · (g1 · a) = g−1 

2 · (g2 · a) 
⇔ (

g−1 
2 ∗ g1

) · a = (
g−1 
2 ∗ g2

) · a 

⇔ (
g−1 
2 ∗ g1

) · a = a 

⇔ g−1 
2 · g1 ∈ Ga 

⇔ g2 Ga = g1 Ga (Proposition 7.4.8(2)) 

then f is a well-defined injective map. For any g Ga ∈ G/Ga, g · a is an element 
of O(a) satisfies that f (g · a) = g Ga . i.e., f is surjective. Therefore, |O(a)| = 
|G/Ga| = [G : Ga]. ∎

Corollary 8.5.13 Let G be a finite group with |G| = p, and let A be a left  G -set. 
For each a ∈ A, |O(a)| is either p or 1. 

For a finite group G, the conjugacy class equation is the following is 

|G| = |C(G)| +
Σ

Ca /=G 

[G : Ca] 

where C(G) is the center of G, and Ca = {x ∈ G : x ∗ a = a ∗ x}. It was stated and 
proved in Exercise 7.13. This equation can be easily proved using the action of G on 
itself by conjugation (Exercise 8.32). 

Exercises 

Solved Exercises 

8.1 Let (G, ∗) be an abelian finite group that has an odd order. Show that the map 
f : G → G defined by a |→ a2 for all a ∈ G is an automorphism. 
Solution 
Clearly, f is a function on G. Using the result of Lemma 5.4.5(2), for all 

a, b ∈ G, 

f (a ∗ b) = (a ∗ b)2 = a2 ∗ b2 = f (a) f (b). 

Hence, f is a homomorphism. To show that f is bijective, it is enough to 
show that f is surjective (or injective) as G is finite (Exercise 1.6). To show
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that f is surjective, let b be an arbitrary element in G. As  |G| is odd, then 
gcd(|G|, 2) = 1. According to Bézout’s lemma (Theorem 2.5.1) there exist 
x, y ∈ Z such that 2x + |G|y = 1. Therefore, 

b = b1 = b2x+|G|y = b2x ∗ b|G|y = b2x ∗ e = b2x = (
bx

)2 
. 

Let a = bx ∈ G, then f (a) = a2 = (bx )2 = b, and thus, f is bijective. 
i.e., f is an automorphism. 

8.2 Let G1, G2 be groups and f : G1 → G2 be a group isomorphism. Show that 

– The group G1 is abelian if and only if G2 is abelian. 
– G1 = 〈a〉 for some a ∈ G if and only if G2 = 〈 f (a)〉. 
Solution 

– Assume that G1 is an abelian group. As f is a surjective map, then for all 
a, b ∈ G2 there exist c, d ∈ G1 such that a = f (c), b = f (d). Hence, 

a ∗ b = f (c) ∗ f (d) = f (c ∗ d) = f (d ∗ c) = f (d) ∗ f (c) = b ∗ a. 

Therefore, G2 is abelian. For the other direction, assume that G2 is an 
abelian group. As f −1 : G2 → G1 is also an isomorphism, then G1 is 
abelian. 

– If G1 = 〈a〉 for some a ∈ G, then

〈 f (a)〉 = {
( f (a))k : k ∈ Z

} = {
f
(
ak

) : k ∈ Z
} = f (〈a〉) = f (G1) = G2. 

Conversely, if G2 = 〈b〉 for some b = f (a) and a ∈ G1, then

〈a〉 = 〈
f −1 (b)

〈 =
{(

f −1 (b)
)k : k ∈ Z

}
= {

f −1
(
bk

) : k ∈ Z
}

= f −1 (G2) = G1. 

8.3 Let G1, G2 be groups, and f : G1 → G2 be a group homomorphism. Show 
that for each n ∈ N and a ∈ G1, if the equation xn = a has a solution in G1, 
then the equation xn = f (a) has a solution in G2. 

Solution: 
Let n ∈ N be an arbitrary element. Any b ∈ G1 is a solution for xn = a 

if and only if bn = a. By applying the homomorphism f to both sides of the 
equation, we obtain the equivalent equation 

( f (b))n = f
(
bn

) = f (a). 

This occurs if and only if f (b) ∈ G2 is a solution of xn = f (a).
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8.4 Consider the two groups (R3, +) and
(
R

2, +)
. Define θ : (R3, +) → (

R
2, +)

to be the map that takes (x, y, z) to (x, z). Show that θ is an epimorphism and 
find its kernel. 

Solution: 
Let (x, y, z) and

(
x

'
, y '

, z ')
be arbitrary elements in R3. As  

θ
(
(x, y, z) + (

x ', y', z')) = θ
(
x + x ', y + y', z + z')

= (
x + x ', z + z') = (x, z) + (

x ', z')

= θ (x, y, z) + θ
(
x ', y', z'). 

then θ is a homomorphism. To show that θ is surjective, let (x, z) be an 
arbitrary element in R2. Pick the triple (x, 1, z) ∈ R

3. The corresponding 
image under θ is θ (x, 1, z) = (x, z), which implies that θ is a surjective map, 
and I m(θ ) = R2. One can compute the kernel of θ as follows: 

ker(θ ) = {
(x, y, z) ∈ R3 : (x, z) = (0, 0)

} = {
(0, y, 0) ∈ R3

}

= {(0, y, 0) : y ∈ R} ∼= R. 

Note that {(0, y, 0) : y ∈ R} represents the y-axis in R3, and ker(θ ) is 
isomorphic to the additive group (R, +) via the isomorphism that takes 
(0, y, 0) to y. 

8.5 Let G be the class of all groups. On G, define the relation ∼= by. 

G1 
∼= G2 if and only if the two groups are isomorphic. 

Show that the relation ∼= is a reflexive, symmetric and transitive relation. 
Therefore, ∼= is an equivalence relation on G. 

Solution: 
For any group G, the identity map ι : G → G defined by ι(a) = a for 

all a ∈ G is an isomorphism, and thus, G ∼= G. If  G1 
∼= G2, then there 

exists an isomorphism f : G1 → G2. By Proposition 8.3.2, the inverse map 
f −1 : G2 → G1 is an isomorphism. Hence, G2 

∼= G1. Finally, if G1 
∼= G2 

and G2 
∼= G3, then there exist two isomorphisms 

f1 : G1 → G2, f2 : G2 → G3. 

According to Proposition 8.1.2, the composition f2 ◦ f1 : G1 → G3 is 
an isomorphism. Therefore, G1 

∼= G3. According to Definition 1.4.1, ∼= is an 
equivalence relation. 

8.6 Let G be a group and H, K be normal subgroups of G such that G is the 
internal direct product of H and K . Consider the direct product H × K . Show 
that the internal direct product G = H K  is isomorphic to the direct product 
H ×K . State the generalization of the result in the case of n normal subgroups. 

Solution:
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Define f : H × K → H K  to be the map f (h, k) = h ∗ k. As  G is the 
internal direct product of H and K , then H ∩ K = {e}, which implies that the 
elements of H and K commute (Lemma 7.5.15), and thus, 

f ((h1, k1) • (h2, k2)) = f (h1 ∗ h2, k1 ∗ k2) = (h1 ∗ h2) ∗ (k1 ∗ k2) 
= (h1 ∗ k1) ∗ (h2 ∗ k2) = f (h1, k1) ∗ f (h2, k2). 

Therefore, f is a homomorphism. The operation • denotes the binary oper-
ation defined on the product of the groups H and K . The  map  f is surjective, 
as for any h ∗ k ∈ H K  , the pair (h, k) ∈ H × K and f (h, k) = h ∗ k. To show  
that f is an injective map, one can check the kernel of f as follows: 

If (h, k) ∈ ker( f ), then h ∗ k = e. By Exercise  7.8, h = k = e. i.e., the 
kernel of f is contained in {(e, e)}. Since (e, e) is in the kernel of f, then 
ker( f ) = {(e, e)} and f is an isomorphism. 

A generalization of this result, which can be shown by induction, is 
presented as follows: 

“ Let  n ∈ N. Let  G be a group and H1, H2, . . . ,  Hn be normal subgroups 
of G. If  G is the internal direct product of H1, H2, . . . ,  and Hn, then G is 
isomorphic to the direct product H1 × H2 × · · · ×  Hn”. 

8.7 Let G be a group and H be a normal subgroup of G. Show that any subgroup 
of G/H is of the form K /H, where K is a subgroup of G containing H. 

(Note that the solution below is another proof of Proposition 7.7.6). 
Solution: 
Assume that K is a subgroup of G/H . Let  K = π −1(K), where π is the 

quotient map (epimorphism) π : G → G/H, defined by taking any element 
a in G to aH (Example 8.1.3(2c)). By Proposition 8.1.8 (2), K is a subgroup 
of G. Let  h ∈ H be an arbitrary element, as π (h) = h H  = H ∈ K, then 
h ∈ π −1(K) = K . i.e., H is contained in K . Since H is normal in G, then it 
is normal in K . Finally, as π is surjective, using the result of Exercise 1.24, 
we obtain 

K = π (K ) = {aH : a ∈ K } = K/H. 

8.8 Consider the group (R, +) and its normal subgroup Z. Show that 

R/Z ∼= {z ∈ C : |z| = 1}. 

Solution 
Consider the group (C∗, ·). Define the map f : (R, +) → (C∗, ·) by 

f (r ) = e2π ir for each real number r . Since 

f (r + s) = e2π i(r+s) = e2π ir · e2π is  = f (r) · f (s),
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then the map f is a homomorphism. By computing the kernel and image of 
f , we obtain 

ker( f ) = {
r ∈ R : e2π ir = 1

} = {r ∈ R : cos2πr + isin2πr = 1} 
= {r ∈ R : cos2πr = 1 ∧ sin2πr = 0} 
= {r ∈ R : r ∈ Z} = Z, 

and 

I m( f ) = { f (r) ∈ C : r ∈ R} = {
e2π ir ∈ C : r ∈ R

} = {z ∈ C : |z| = 1}. 

Therefore, applying the first fundamental theorem of group homomor-
phisms yields 

R/Z ∼= {z ∈ C : |z| = 1}. 

8.9 Let G1, G2 be any groups, f : G1 → G2 be a group homomorphism, and K 
be a subgroup of G2. Show that.

- ker( f ) is a normal subgroup of f −1(K ).
- If f is a surjective map, then

(
f −1(K )/ ker( f )

) ∼= K . 

Solution: 

1. By Corollary 8.2.2, ker( f ) is a normal subgroup of G1, and thus, we only 
need to show that ker( f ) is contained in f −1(K ) for any subgroup K of 
G2. Let  K be an arbitrary subgroup of G2 and x be any element in ker( f ). 
As e2 ∈ K , then x ∈ ker( f ) ⇒ f (x) = e2 ∈ K ⇒ x ∈ f −1(K ). 
Therefore, ker( f ) ⊴ f −1(K ). 

2. Assume that f is surjective and K is a subgroup of G2. Define 

g : f −1 (K ) → G2 

a |→ f (a) for each a ∈ f −1 (K ) 

i.e., G is the restriction of f on the subgroup f −1(K ). By Exercise 8.16, the 
map g is a homomorphism. Therefore, by the first fundamental theorem,

(
f −1 (K )/ ker(g)

) ∼= I m(g). 

One can easily check that ker(g) = ker( f ). For the image of g, 

I m(g) = {
g(a) : a ∈ f −1 (K )

} = g
(

f −1 (K )
) = f

(
f −1 (K )

)

where the last equality holds as g = f on f −1(K ). Since f is surjective, 
then
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f
(

f −1 (K )
) = K . 

Therefore,

(
f −1 (K )/ ker( f )

) ∼= K . 

8.10 Consider the additive group
(
R

2, +)
. Show that every line V passing through 

the origin in  R2 is a normal subgroup of R2 that is isomorphic to R. Describe 
R

2/V . 
Solution: 
Any line V passing through the origin in R2 is either the y-axis, or it has 

the form y = mx for some m ∈ R. i.e., 

V = {(0, y) : y ∈ R} or V = {(x, mx) : x ∈ R}. 

Both are nonempty subsets of R2, as  (0, 0) ∈ V . 

1. If V = {(0, y) : y ∈ R} and (0, y1), (0, y2) are arbitrary elements in V , 
then 

(0, y1) + (0, y2)−1 = (0, y1) + (0, −y2) = (0, y1 − y2) ∈ V 

By Proposition 7.1.4(3), V is a subgroup of R2 that is isomorphic to 
(R, +) via the map 

f : (V, +) → (R, +) 
(0, y) |→ y. 

2. If V = {(x, mx) : x ∈ R} and (x, mx), (y, my) are arbitrary elements 
in V , then (x, mx) + (y, my)−1 = (x, mx) + (−y, −my) = 
(x − y, m(x − y)) ∈ V . 

By Proposition 7.1.4.(3), V is a subgroup of R2 that is isomorphic to 
(R, +) via the map 

f : (V, +) → (R, +) 
(x, mx) |→ x . 

Therefore, in both cases, V ∼= R. Clearly, V is normal since the operation + 
is a commutative operation. For describing the quotient, we have 

1. If V = {(0, y) : y ∈ R}, then the map 

g : R2 → R 
(x, y) |→ x



8.5 Group Actions and Group Homomorphisms 321

is an epimorphism with ker(g) = V. Therefore, R
2/V ∼= R. 

Geometrically, any element in R2/V is of the form 

(a, b)V = {(a, b) + (0, y) : y ∈ R} = {(a, y + b) : y ∈ R} 

where (a, b) belongs to R2. This relation represents a line in R2 with 
x-coordinates fixed at a and y- coordinates varying freely. Specifically, 
(a, b)V is represented by a line in R2 parallel to V , expressed as x = a. 

2. If V = {(x, mx) : x ∈ R}, then the map 

g : R2 → R 
(x, y) |→ mx − y 

is an epimorphism with ker(g) = V. Therefore, R
2/V ∼= R. 

Geometrically, any element in R2/V is of the form 

(a, b)V = {(a, b) + (x, mx) : x ∈ R} = {(x + a, mx + b) : x ∈ R} 

where (a, b) belongs to R2. To simplify the notation, let x1 = x + a ∈ R, 
then 

(a, b)V = {(x1, m(x1 − a) + b) : x1 ∈ R}. 

This relation represents a line in R2 expressed as y = m(x − a) + b, 
which is a line in R2 parallel to V and meets the y-axis at (0, b − ma). 

The reader may note the similarity of this result and that of Example 7.4.4, 
where the elements of R2 are represented as vectors. In fact, both quotient 
groups are isomorphic via the map (a, b)V |→ (ai + bj)H. 

8.11 Let G be a finite group and A be a left  G-set. Show that for each a ∈ A, |O(a)| 
is a divisor of |G|. 

Solution: 
Let a be an arbitrary element in A. According to Proposition 8.5.12, 

|O(a)| = [G : Ga]. Using Lagrange theorem, we obtain 

|G| = [G : Ga]|Ga| = |O(a)||Ga|. 

and thus, |O(a)| is a divisor of divides |G|. 
Unsolved Exercises 

8.12 Let G be a group. Show that G is abelian if and only if the map 

f : G → G 

x |→ x−1
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is a homomorphism. 
8.13 Let G1, G2 be two abelian groups and φ : G1 → G2 be a homomorphism. 

Show that for any integer m, φ(mG1) is a subgroup of mG2. Show that if φ is 
an isomorphism then φ(mG1) = mG2. See Proposition 5.5.3 for the definition 
of mG. 

8.14 Let G be a group and f : G → G be the map defined on G by f (a) = a2. 
Determine the conditions on G that make f a homomorphism. 

8.15 Let G and H be finite groups such that |G| /= |H |. Show that there are no 
isomorphisms from G to H . 

8.16 Let G1, G2 be groups and f : G1 → G2 be a group homomorphism 
(monomorphism). Show that the restriction of f (Definition 1.5.3) in any  
subgroup of G1 is a group homomorphism (monomorphism). Provide an 
example of a group epimorphism such that its restriction to a subgroup of 
the domain group is not surjective. 

8.17 Consider the additive group (Z, +). Define the map f : Z → Z by f (a) = na, 
where n is a nonzero integer. Show that the map f is a monomorphism that is 
not surjective for any n /= 1, −1. What is the kernel and image of f ? 

8.18 Consider the additive group (Z, +). Let  

f : (
Z/nZ, +Z/nZ

) → (
Z/mZ, +Z/mZ

)

a + nZ |→ a + mZ. 

– Show that f is well-defined if and only if m, n are positive integers such 
that m|n. 

– Show that when f is well defined, it is a homomorphism. Compute its 
kernel and its image. 

(Compare the result of this question with the result of Example 3.2.4) 

8.19 Consider the additive groups (R3, +),
(
R

2, +)
and the map f : (R3, +) →(

R
2, +)

defined by f (x, y, z) = (x + z, y − x). Show that f is a homomor-
phism and find its kernel and image. 

8.20 Prove the generalization stated in Exercise 8.6. 
8.21 Consider the additive group (Z, +). Show that 6Z/18Z ∼= 3Z/9Z. 
8.22 Consider the additive groups (Z24, ⊕24) and (Z12, ⊕12). Show that 

{[0]24, [12]24} is a normal subgroup of Z24 and 

Z24/{[0]24, [12]24} ∼= Z12. 

8.23 Let n ∈ N such that n ≥ 3. Show that the three groups 

Sn/An, Z2, and ({±1}), 

are isomorphic groups.
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8.24 Let G1, G2 be two groups, f : G1 → G2 be a surjective group homomor-
phism, and K be a normal subgroup of G2. Show that 

G1/ f −1 (K ) ∼= G2/K . 

where f −1(K ) = {a ∈ G1 : f (a) ∈ K }. 
8.25 Let G be a finite group and H, K be normal subgroups of G. Show that 

|G| < |K ||H | ⇒ |H ∩ K | > 1. 

8.26 Let G1, G2 be two groups. Show that G1 × {e2} is isomorphic to G1. 
8.27 Let G1, G2 be two groups and H, K be normal subgroups of G1 and G2, 

respectively. Show that H × K is a normal subgroup of G1 × G2, and 

(G1 × G2)/(H × K ) ∼= (G1/H) × (G2/K). 

In particular, 

(G1 × G2)/(G1 × {e2}) ∼= G2. 

8.28 Show that 

i. the map f in Example 8.2.4 (7) is an isomorphism. 
ii. the map f in Example 8.3.4 is an isomorphism. 

8.29 Provide an example for a group G and two normal subgroups H, K of G such 
that H ∼= K , but G/H is not isomorphic to G/K . 

8.30 Let G =
{(

1+t2 

2t 
t2−1 
2t 

t2−1 
2t 

1+t2 

2t

)

: t ∈ R∗
}

. 

i. Show that G, endowed with matrix multiplication, forms a group. 
ii. Show that the group G, endowed with matrix multiplication, is isomor-

phic to the group (R∗, ·) where · is the multiplication defined on the real 
numbers. 

iii. Show that G contains a subgroup that is isomorphic to
(
R

+, ·). 
8.31 Let G be a group and A is a left G-set. Show that 

– the set {O(a) : a∈A} is a partition of A. 
– the stabilizer of any a ∈ A is a subgroup of G. 

8.32 Solve Exercise 7.13 using the information provided in Sect. 8.5.
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Chapter 9 
Classification of Finite Abelian Groups 

In this chapter, we study the finite abelian groups. According to Definition 5.4.2, 
a group is called abelian if the binary operation defined on G is commutative. We 
show that any finite abelian group is isomorphic to the product of additive groups 
Zn1 × Zn2 × . . .  × Znk for some positive integers n1, n2, . . . ,  nk . The first section is 
devoted to study cyclic groups (finite and infinite). The cyclic groups form examples 
of abelian groups that are described in Chap 7. We shall see that, up to isomorphism, 
there is only one infinite cyclic group (Z, +), and for each n ∈ N, the additive group 
(Zn, ⊕n) is the only cyclic group of order n. In Sect. 9.2, we define and study primary 
groups, and in Sect. 9.3, we study independent and spanning subsets of an abelian 
group. The primary groups, the independent subset, and spanning subset in abelian 
groups are required to prove the fundamental theorem of finite abelian groups in 
Sect. 9.4. 

9.1 Cyclic Groups 

A cyclic group is a group that is generated by a single element. We show that any 
cyclic group is abelian, and the cyclic group, whose order is a power of prime, 
forms the building block for any abelian group. We begin by reminding the reader 
of Definition 7.3.2 in Chap 7. 

Definition 9.1.1 Let G be a group and S ⊆ G. The group G is said to be generated 
by S if G = 〈S〉. If  S = {a1, a2 . . . ,  an} is a finite set, then G = 〈a1, a2, . . . ,  an〉 is 
finitely generated. 

Definition 9.1.2 The group G is said to be cyclic if there exists a ∈ G such that 
G = 〈a〉. In this case, we say that a generates the group G. 

A cyclic group G has the form G = 〈a〉 = {ak : k ∈ Z
}
(Proposition 7.3.6). If G 

is a finite group of order n, then G = {e, a, a2, . . . ,  an−1
}
.
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Proposition 9.1.3 Any cyclic group is abelian. 

Proof Let G be any cyclic group, then G = 〈a〉 = {ak : k ∈ Z
}
for some a ∈ G. If  

x, y are arbitrary elements in G, then x = an, y = am for some m, n ∈ Z. Hence 

x∗y = an∗am = an+m = am+n = am∗an = y∗x 

i.e., G is abelian. ∎
The converse of the proposition above is not true. For example, although Klein 

group is an abelian group, it contains no element of order 4. Therefore, Klein group 
is not cyclic. 

Proposition 9.1.4 A group G is abelian if and only if the quotient of the group by 
its center is cyclic, i.e., 

A group G is abelian ⇐⇒ G/C(G) is cyclic. 

Proof If G is abelian, then C(G) = G, and G/C(G) = 〈e〉 is a cyclic group. For 
the other direction, assume that G/C(G) is a cyclic group, then there exists d in G 
such that G/C(G) = 〈d C(G)〉. If  g is an element in G, then there exists k ∈ Z such 
that 

g C(G) = (d C(G))k = dk C(G). 

According to Proposition 7.4.7,
(
dk
)−1 ∗ g ∈ C(G). Therefore, for any g ∈ G, 

there exists k ∈ Z and c ∈ C(G) such that g = dk ∗ c. Let  a, b be any elements in G, 
then there exist k1, k2 ∈ Z and c1, c2 ∈ C(G) such that a = dk1 ∗ c1, b = dk2 ∗ c2. 
Therefore, 

a ∗ b = (dk1 ∗ c1
) ∗ (dk2 ∗ c2

) = dk1 ∗ (dk2 ∗ c1
) ∗ c2 

= dk1+k2 ∗ c2 ∗ c1 = dk2+k1 ∗ c2 ∗ c1 = dk2 ∗ (dk1 ∗ c2
) ∗ c1 

= (dk2 ∗ c2
) ∗ (dk1 ∗ c1

) = b ∗ a. 

i.e., G is abelian. ∎
Note that the quotient group in this proposition is a quotient of G by its center. 

If the center is replaced by an arbitrary normal subgroup, then the result is not true. 
Exercise 9.5 shows an example for a cyclic group G/H in which G is not abelian. 

Example 9.1.5 

1. The additive groups (Z, +) and (Zn, ⊕n) are examples of cyclic groups, as Z = 1 
and Zn = 〈[1]〉 (Examples 7.3.8, and 7.3.9). 

2. The additive group (Q, +) is an example of an abelian noncyclic group. To show 
this result, assume that (Q, +) is cyclic. In this case, there exists a nonzero 
number a ∈ Q such that
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Q = 〈a〉 = {na : n ∈ Z}. 

As a/2 is an element in Q, there exists n ∈ Z such that na = a/2, which implies 
that n = 1/2, contradicting that n is an integer. Similarly, one can show that the 
additive group (R, +) is an abelian noncyclic group. 

3. The multiplicative group (Q∗, ·) is an example of an abelian noncyclic group. 
If (Q∗, ·) was cyclic, then there exists a number a ∈ Q∗ such that Q∗ = 〈a〉. 
The element a can be written as r/s, where gcd(r, s) = 1, r /= 0, and s > 0. 
Therefore, 

Q
∗ = 〈r/s〉 = {(r/s)k : r, s, k ∈ Z ∧ r /= 0, s > 0}. 

As 1/(s + 1) is an element in Q∗, then there exists k ∈ Z such that 1/(s + 1) = 
(r/s)k . 

– If k = 0, then 1/(s + 1) equals 1, which implies that s = 0, contradicting the 
assumption s > 0. 

– If k > 0, then the equation 1/(s + 1) = (r/s)k implies that rk(s + 1) = sk . 
Therefore, (s + 1)|sk contradicts that gcd(s, s + 1) = 1 (Exercise 2.19). 

– If k < 0, then the equation 1/(s + 1) = (r/s)k implies that 1/(s + 1) = (s/r )m 
where m = −k > 0. i.e., sm(s + 1) = rm . Therefore, as s|(sm(s + 1)), then 
s|rm, which contradicts that gcd(r, s) = 1 (Exercise 2.19). 

Therefore, the group (Q∗, ·) cannot be cyclic. 
4. The dihedral group D2n and the symmetric group Sn are both nonabelian groups 

for all n ≥ 3. Therefore, these groups are both noncyclic for n ≥ 3. 
5. Let n ∈ N. Consider the dihedral group D2n (Example 5.1.4(6)). The subgroup 

of D2n that consists of all rotations by angles 2πk/n where 0 ≤ k ≤ n − 1, 
forms a finite cyclic group that is generated by rotation by 2π/n. 

6. For any prime p, the group
(
Inv
(
Z p
)
, ⊗p
)
is a cyclic group (Proposition 7.3.21). 

7. Any group of order 2 is cyclic (Check!). 
8. Let p be a prime number. Any group of order p is cyclic. For if |G| = p > 1, 

then there exists a /= e in G. Let  H = 〈a〉 be the subgroup of G generated by 
a. By Lagrange’s theorem, |H | divides |G| = p. Since |H | /= 1 (a /= e), then 
|H | = p, and H = G is cyclic. 

Proposition 9.1.6 All subgroups and quotient groups of cyclic groups are cyclic. 

Proof Let G = 〈a〉 be a cyclic group, and H be a subgroup of G.



328 9 Classification of Finite Abelian Groups

– If H = {e}, then H = 〈e〉 is cyclic. If H /= {e}, then there exists k ∈ Z∗ such 
that ak ∈ H . Without loss of generality, assume that k > 0 (if k < 0, then 
m = −k > 0 and a−k ∈ H ). Choose k0 to be the smallest positive integer such 
that ak0 ∈ H. The goal is to show that H = 〈ak0 〉. Since ak0 ∈ H and

〈
ak0
〉
is the 

smallest subgroup of G containing ak0 (Proposition 7.3.3), then
〈
ak0
〉 ⊆ H . For  

the other direction, let h = an ∈ H for some integer n. By Theorem 2.1.2, applied 
to k0 and n, ∃q, r ∈ Z ∍ n = qk0 + r, 0 ≤ r < k0. Thus, ar = an−qk0 = ana−qk0 . 
Since both an and a−qk0 belong to H , then ar = ana−qk0 ∈ H . However, k0 is the 
smallest positive integer such that ak0 ∈ H , and thus, r = 0 and n = qk0. i.e., 
h = an = aqk0 = (ak0)q ∈ 〈ak0 〉. Since h is an arbitrary element, then H ⊆ 〈ak0 〉. 
Therefore, H = 〈ak0 〉 is cyclic. 

– For the quotient group G/H , note that H is normal (G is cyclic, and thus, abelian), 
which means that the quotient group is defined and is a group. We show that 
G/H = 〈aH〉, as follows:

〈aH〉 = {(aH)k : k ∈ Z
} = {ak H : k ∈ Z

} ⊆ {bH  : b ∈ G} = G/H. 

Since ak H = (aH  )k ∈ 〈aH〉, then G/H ⊆ 〈aH〉. ∎

Note that the converse of Proposition 9.1.8 is not true. For example, for all n ≥ 3, 
the subgroup H = 〈(1 2)〉 is a cyclic subgroup of Sn , and the quotient group Sn/An 

is a cyclic group for any n, but  Sn is not cyclic. Also, the abelian group (R∗, ·) is not 
cyclic since its subgroup (Q∗, ·) is not cyclic. The following corollary is concluded 
from the proof of Proposition 9.1.6. 

Corollary 9.1.7 Let G be a cyclic group such that G = 〈a〉. Any subgroup of G is 
of the form of

〈
ak
〉
for some integer k. 

Corollary 9.1.8 

1. The intersection of cyclic subgroups is cyclic. 
2. The product of a finite number of subgroups of a cyclic group is cyclic. 

Proof 

1. As the intersection of any groups is a subgroup of each of them, (1) follows by 
Proposition 9.1.6. 

2. Assume that H1, H2, . . . ,  Hn are subgroups of a cyclic group G. Since G is 
abelian, then by Proposition 7.5.13, the product H1 H2 . . .  Hn is a subgroup of G. 
Therefore, the result in (2) follows by Proposition 9.1.6. ∎

Example 9.1.9 Any subgroup of the additive (Z, +) has the form 〈1n〉 = 〈n〉 = nZ 
for some n ∈ Z. Any subgroup of the additive (Zn, ⊕n) has the form 〈[1]n〉 = 〈n〉 = 
[n]Z for some n ∈ Z. 

The following proposition is a stronger version of Lagrange’s theorem in the case 
of finite cyclic groups.
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Theorem 9.1.10 Let G be a finite cyclic group of order n. For each m ∈ N, 

∃ !  H < G ∍ |H | = m ⇔ m|n. 

Proof Assume that G is a cyclic finite group, and G = 〈a〉 for some a ∈ G. If there 
exists H < G such that |H | = m, then by Lagrange’s theorem (Theorem 7.4.17), 
the integer m divides n. For the other direction, assume that m is an integer dividing 
n. Let  H = 〈an/m〉, thus H is a subgroup of G and 

|H | = ord
(
an/m
) = 

n 

(n/m) 
= m (Proposition 5.5.9). 

To show that this H is unique, assume that there exists a subgroup K of G such 
that |K | = m. Let  at be any element in K , then we have

(
at
)m = e, which yields 

that n|mt . i.e., t = s(n/m) for some integer s. Therefore, at = (an/m
)s ∈ H , and K 

is a subset of H, where |K | = |H |. Hence, K = H, and H is the only subgroup of 
order m. ∎

According to Theorem 9.1.10, the number of different subgroups of a finite cyclic 
group equals the number of different positive divisors of the order of G. In fact, as  
shown in the proof, any subgroup of G = 〈a〉 is of the form ak, where k = n/m is a 
divisor of n. Note that if m is a repeated divisor of the order of G, then there is only 
one subgroup of the form

〈
a|G|/m 〉 that is corresponding to all repeated m. 

Example 9.1.11 

1. Consider the cyclic group (Z18, ⊕18). The divisors of 18 are 1, 2, 3, 6, 9, 18. 
According to Theorem 9.1.10, there are only six different subgroups of the addi-
tive group (Z18, ⊕18). Since Z18 = 〈[1]〉, then these subgroups can be listed as 
follows:

〈[1]18〉 =〈[18]〉 = 〈[0]〉 = {[0]}, 〈[1]9〉 = 〈[9]〉 = {[0], [9]},

〈[1]6〉 =〈[6]〉 = {[0], [6], [12]}, 〈[1]3〉 = 〈[3]〉 = {[0], [3], [6], [9], [12], [15]},

〈[1]2〉 =〈[2]〉 = {[0], [2], [4], [6], [8], [10], [12], [14], [16]}

〈[1]1〉 =〈[1]〉 = Z18. 

2. Similarly, one shows that there are only three different subgroups of (Z9, ⊕9) 
expressed as follows:

〈[1]9〉 = 〈[9]〉 = {[0]}, 〈[1]3〉 = 〈[3]〉 = {[0], [3], [6]}, 〈[1]1〉 =  Z9.
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In general, the subgroups of the additive group (Zn, ⊕n) are{〈[1] n m 〉 :  m ∈ N, m|n}. 
3. Consider the multiplicative group

(
Z

∗
11, ⊗11

)
. The group

(
Z

∗
11, ⊗11

)
is a finite 

cyclic group that is generated by [2] (Check!). There exist 10 elements in Z∗
11. 

The divisors of 10 are 1, 2, 5, 10. Therefore, there are four different subgroups 
of Z∗

11:

〈[2]10〉 = 〈[1]〉 = {1}, 〈[2]5〉 = 〈[10]〉 = {[1], [10]}

〈[2]2〉 = 〈[4]〉 = {[1], [4], [5], [9], [3]}, 〈[2]1〉 =  Z∗ 
11. 

Similarly, since Z∗
7 = 〈[3]〉 and ord(Z∗

7

) = 6, then there exist 4 subgroups of(
Z

∗
7, ⊗7

)
:

〈[3]1〉 =  Z∗ 
7, 〈[3]2〉 =  {[1], [2], [4]}, 〈[3]3〉 =  {[1], [6]}, 〈[3]6〉 =  {[1]}. 

4. Consider the multiplicative group (C∗, ·), where C∗ denotes the set of all nonzero 
complex numbers. Let 

H =
{
1 ± i 

√
3 

2 
, 
−1 ± i 

√
3 

2 
, ±1

}

. 

The set H is a cyclic subgroup of C∗ as 

H = 

⎧ 
⎨ 

⎩

(
1 + i 

√
3 

2

)k 
: k = 1, 2, 3, . . .  ,  6 

⎫ 
⎬ 

⎭ . 

The subgroups of H are in one to one correspondence with the set of divisors of 
6 which are 1, 2, 3, and 6. Hence, there are 4 subgroups of H . Namely,

〈
h6
〉 = 〈1〉 = {1},

〈
h3
〉 = 〈−1〉 = {1, −1},

〈
h2
〉 =
{

1, 
−1 + i 

√
3 

2 
, 
1 − i 

√
3 

2

}

,

〈
h1
〉 = H. 

where h =
(
1 + i 

√
3
)
/2.
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Remark 9.1.12 The direct product of cyclic groups is not necessarily cyclic. For 
example, even though the additive group Z2 = 〈[1]〉 is cyclic, the direct product 
Z2 × Z2 is not cyclic, as Z2 × Z2 contains no element of order 4 (Check!). In fact, 
if m, n ∈ N such that gcd(m, n) /= 1, then their least common multiple l is less than 
mn, which implies that for any element ([a], [b]) in Zm × Zn , 

([a], [b])l = ([la], [lb]) = ([0], [0]). 

Thus, ord(([a], [b])) ≤ l < mn, and Zm × Zn has no element of order mn. 
The following proposition shows that an isomorphism preserves the cyclic prop-

erty of groups and sends the generator of the domain group to a generator of the 
codomain group. For example, in the isomorphic groups (Z, +) and (mZ, +) the 
isomorphism sends 1 to m (Example 8.1.3(4)). 

Proposition 9.1.13 Let G1, G2 be groups and f : G1 → G2 be a group isomor-
phism. The group G1 is cyclic if and only if G2 is also cyclic. An element a generates 
G1 if and only if f (a) generates G2. 

Example 9.1.14 

1. The groups (Z, +) and (Q, +) are not isomorphic. As (Z, +) is cyclic and (Q, +) 
is not cyclic, no isomorphism can exist between the two groups. 

2. The groups (Z4, ⊕4) and ({[1], [3], [7], [9]}, ⊗10) are cyclic isomorphic groups 
(Check!). 

3. The groups (Z4, ⊕4) and ({[1], [5], [7], [11]}, ⊗12) are not isomorphic as 
(Z4, ⊕4) is cyclic and ({[1], [5], [7], [11]}, ⊗12) is not cyclic. Similarly, the 
groups (Z2, ⊕2) and (Inv(Z6), ⊗6) are not isomorphic. 

4. The groups
(
Z p−1, ⊕p−1

)
and
(
Inv
(
Z p
)
, ⊗p
)
are two isomorphic cyclic groups 

for any prime p (Exercise 9.7). 
5. The group H in Example 9.1.11 (4) is isomorphic to the additive group (Z6, ⊕6). 

The isomorphism is given by the map : Z6 → H that takes k |→ hk . 

A cyclic group may have more than one generator. If a is a generator of G then

〈
a−1
〉 =
{(
a−1
)k : k ∈ Z

}
= {as : s = −k ∈ Z

} = 〈a〉 = G 

i.e., a−1 is also a generator of G. For example, the additive group (Z, +) is generated 
by both 1 and −1. The additive group (Zn, ⊕n), where n ≥ 3, is generated by 
any element [k] ∈ Zn such that gcd(k, n) = 1 (Example 7.3.20). The following 
proposition is a corollary of Proposition 7.3.1 or Corollary 7.4.22. 

Proposition 9.1.15 Let G be a finite cyclic group of order n that is generated by an 
element a. For any m ∈ N, am ∈ G is a generator of G if and only if gcd(m, n) = 1. 

To use Proposition 9.1.15 for finding all the generators for a given cyclic group, 
one must know at least one generator to begin with.
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Example 9.1.16 Since the additive group Z8 = 〈[1]〉, the different generators of Z8 

are

{
[1]m : m ∈ N, gcd(m, 8) = 1

} = {[1], [3], [5], [7]}. 

To determine only the number of generators of a finite group, rather than the 
generators themselves, Euler totient function can be used (Definition 5.3.8). Since 
for each n ∈ N\{1}, ϕ(n) = |{[m] ∈ Zn : gcd(m, n) = 1}|, then Corollary 5.3.9 
implies the following results. 

Corollary 9.1.17 Let G be a finite cyclic group of order n. The number of generators 
of G is 

φ(n) = n ·
(
1 − 

1 

p1

)(
1 − 

1 

p2

)
· · ·
(
1 − 

1 

pk

)

where n = pr1 1 p
r2 
2 . . .  prk k is the prim factorization on n. 

Example 9.1.18 Since |Z12| = 12 = 2231, and 

φ(12) = 12
(
1 − 

1 

2

)(
1 − 

1 

3

)
= 4 

then there exist 4 generators of Z12. 
Our next goal is to classify all cyclic groups. The following theorem shows that, 

up to isomorphism, the only infinite cyclic group is the additive infinite group Z, and 
the additive group Zn is the only cyclic group of order n. 

Theorem 9.1.19 Let (G, ∗) be a cyclic group. The group G is either isomorphic to 
the additive group (Zn, ⊕n) or isomorphic to the additive group (Z, +). 

Proof Assume that G is cyclic group and G = 〈a〉 for some a ∈ G. 

– If G is finite with |G| = n, then G = {e, a, a2, . . . ,  an−1
}
. Define the map 

f : G → Zn 

ar |→ [r ]. 

We show that f is an isomorphism as follows: for 0 ≤ r, s ≤ n − 1 

f
(
ar ∗ as

) = f
(
ar+s
) = [r + s] = [r]⊕n[s] =  f

(
ar
)⊕n f

(
as
)
. 

Therefore, f is a homomorphism. As 

[r] = [s] ⇔ ∃  q ∈ Z ∍ r − s = qn
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⇔ ar−s = aqn = e ⇔ ar = as . 

then f is a well-defined injective map. As the domain and codomain are finite 
sets of the same cardinality, f is bijective (Exercise 1.6). Therefore, G ∼= Zn . 

– If G is infinite, then G = {an : n ∈ Z}, where an /= am for all m /= n (otherwise, 
an−m = e, and a has a finite order that implies that G will be finite). The map 
f : G → Z taking ar to r is the required isomorphism (Check!). ∎

Corollary 9.1.20 All cyclic groups with the same order are isomorphic. In particular, 
if p is a prime number, then up to isomorphism, the additive group

(
Z p, ⊕p

)
is the 

only group of order p. 

Proof According to Theorem 9.1.19, any cyclic group of order n is isomorphic to the 
additive group Zn . Therefore, by the transitive property of the isomorphism relation, 
all cyclic groups of the same order n are isomorphic, and the first statement follows. 
For the second statement, as any group of order p is cyclic (Example 9.1.5 (8)) and 
all cyclic groups of the same order are isomorphic, then all groups of order p are 
isomorphic and there exists only one group of order p. ∎

9.2 Primary Groups 

In this section, we study a class of groups where the order of any element is a power 
of a given prime p. These groups are called primary groups. To emphasize that a 
primary group is linked to a prime p, these groups are also called p-primary groups, 
or simply, p-groups. Not every p-group is an abelian group, nor any abelian group 
is a p-group; however, the p-groups form a basic tool in proving the fundamental 
result of finite abelian groups, provided in Sect. 9.4. 

Definition 9.2.1 Let p be a prime number. A p-primary group, or simply, a p-group, 
is a group in which the order of any element is a power of p. A group G is called 
a primary if it is p-primary for some prime p. A subgroup of a p-group is called a 
p-subgroup. 

It follows directly from this definition that the order of any element in a p-group 
must be finite. This does not mean that the order of the group itself is finite. In fact, 
many examples for infinite p-groups exist, see Example 9.2.3 (9,10). 

Proposition 9.2.2 Let p be any prime. 

1. A group G is a p-group if and only if for each a in G, there exists a nonnegative 
integer k such that a p

k = e. 
2. A finite group G is a p-group if and only if |G| = pk for some nonnegative 

integer k.
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3. Any finite cyclic p-group is isomorphic to the additive group Z pk for some 
nonnegative integer k, i.e., 

G is a finite cyclic p-group ⇐⇒ G = Z pk for some nonnegative 
integer k. 

Proof 

1. If G is a p-group, then for any a ∈ G, the order of a is a power of p, i.e., 
ord(a) = pk and a pk = e for some nonnegative integer k. For the other direction, 
assume that for each a in G, there exists an integer k such that a pk = e. Lemma 
5.5.5 implies that ord(a) is finite, and Lemma 5.5.6, shows that ord(a) divides 
pk . Therefore, ord(a) is a power of p. 

2. Assume that G is a finite p-group. If G = {e}, then |G| = p0. Otherwise, let q be 
any prime divisor of |G|. According to Cauchy’s theorem (Proposition 7.7.11), 
the group G must contain an element of order q. As every element in G has 
order ps for some positive s, then q = ps . However, q is a prime, which implies 
that q = p. Therefore, p is the only prime divisor of |G|, and the order of G is 
pk for some integer k. For the other direction, assume that the order of G is pk 

for some integer k, and let a be an arbitrary element in G. By Corollary 7.4.19, 
a p

k = a|G| = e. By the first statement, G is a p-group. 
3. This statement directly follows by Theorem 9.1.19 and item (2). ∎

Example 9.2.3 

1. The trivial group G = {e} is a p-group for any prime p, as  |G| = p0 for any p. 
2. The Klein group is an example of a 2-group that is a finite group of order 22. 

Note that the order of any nonidentity element is 21. 
3. The group (Z, +) is not a p-group for any prime number p, as  ord(1) = ∞ /= pk 

for any prime p and any positive integer k. 
4. The additive group (Z4, ⊕4) is a 2-group that is a finite group of order 22. Note 

that 

ord([0]) = 20 , ord([1]) = ord([3]) = 22 , and ord([2]) = 21 . 

One can also check that the additive group (Z7, ⊕7) is a 7-group as it is a group 
of order 71. The additive group (Z6, ⊕6) is not a p-group for any p. The group Z6 is 
finite with an order 6 that is not pk for any prime p and any positive integer k. 

5. Let p be any prime. The additive group Z p is a p-group for which the order of 
every nonidentity element is p. In general, the additive group Z pk is a p-group for 
any nonnegative integer k. For example, the additive groups Z3, Z9, Z27, Z81, . . .  
are all 3-groups. 

6. The multiplicative group (Inv(Z12), ⊗12) has an order equal to 22. Therefore, 
(Inv(Z12), ⊗12) is a 2-group. One can easily show that the order of any element 
other than [1] is 2.
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7. The multiplicative group (Inv(Z18), ⊗18) has an order 6. Since 6 is not equal to 
pk for any prime p and any positive integer k, then Inv(Z18) is not a p-group for 
any prime p. 

8. The multiplicative group (Inv(Z5), ⊗5) is a 2-group since it is a finite group of 
order 22. Note that 

ord([1]) = 20 , ord([2]) = ord([3]) = 22 , and ord([4]) = 21 . 

The multiplicative group (Inv(Z11), ⊗11) is not a p-group for any p, since the 
order of Inv(Z11) is 10 /= pk for any prime p and any positive integer k. 

9. Consider the additive group (G, ⊕), where G = Z7 × Z7 ×· · ·×  Z7 ×· · ··  (G is 
the infinite direct product of the groups Z7), and ⊕ is the operation defined on the 
infinite direct product using ⊕7. Any element in a ∈ G is an infinite sequence of 
elements of Z7. i.e., a = [a1], [a2], [a3], . . . ,  where [ai ] ∈  Z7. Since 

a7 = 7[a1], 7[a2], 7[a3], · · ·  =  [0], [0], [0], · · ·  =  eG 

the order of any element a in G is either 1 or 7. Therefore, (G, ⊕) is an example 
of an infinite 7-group. 

10. Consider the additive group (Q, +). Let  p be a prime and Ap ={
m/pk : k, m ∈ Z, k ≥ 0

}
. The  set  Ap is a subgroup of Q that contains the 

integers Z (Verify!). The subgroup Ap is not a primary group, as it contains 
1/ pk , an element of infinite order. The quotient group 

Ap/Z = {(m/pk
)+ Z : k, m ∈ Z, k > 0

}

is a p-group. For each element
(
m/pk

)+ Z in
(
Ap/Z, ⊕Ap/Z

)
, we have

((
m/pk

)+ Z
)pk = m + Z = Z = eAp/Z. 

Therefore,
(
Ap/Z, ⊕Ap /Z

)
is an example of an infinite p-group. 

11. Let p be a prime and 

G = 

⎧ 
⎨ 

⎩ 

⎛ 

⎝ 
1 
0 
0 

a 
1 
0 

b 
c 
1 

⎞ 

⎠ : a, b, c ∈ Z p 

⎫ 
⎬ 

⎭ .
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The set G is a group under matrix multiplication (Check!). It can be easily verified 
that the order of G equals p3. Therefore, the group G is a p- group, and the center 
of G is 

C(G) = 

⎧ 
⎨ 

⎩ 

⎛ 

⎝ 
1 
0 
0 

0 
1 
0 

b 
0 
1 

⎞ 

⎠ : b ∈ Z p 

⎫ 
⎬ 

⎭ 

which is a subgroup of order p. Therefore, C(G) /= G and G is not abelian. The group 
G is an example of a p-group that is not abelian. For more examples of nonabelian 
p-groups, see Exercises 9.21 and 9.22. 

The proof of the following proposition is straightforward and left as an easy 
exercise. 

Proposition 9.2.4 Let p be prime. Any subgroup of a p-group is a p-group. Any 
quotient group of a p-group is a p-group. 

Proposition 9.2.5 Let G be a group, and p be a prime number. 

1. If pkG = {e} for some nonnegative integer k, then G is a p-group. 
2. If G is abelian, then G[p] is a p-subgroup of G. 

Proof 

1. If pkG = {e} for some nonnegative integer k, then for any a ∈ G, a p
k = e for 

some nonnegative integer k. Proposition 9.2.2 (1) implies the result. 
2. Assume that G is abelian. By Proposition 5.5.13, G[p] is a group. Let b be any 

element in G[p], then bp = e. According to Lemma 5.5.6, ord(b)|p, which 
implies that ord(b) is either 1 or p. As  b is arbitrary, then G[p] is a p- group. ∎

For the definition of mG and G[m], see Proposition 5.5.13. 

Corollary 9.2.6 Let p be a prime number and G be a finite group. The group G is 
a p-group if and only if the exponent of G is of the form pk for some nonnegative 
integer k, i.e., for a finite group G, 

G is a p - group ⇐⇒ Exp(G) = pk for k ∈ N ∪ {0}. 

Proof Assume that G is a finite p-group. Since G is finite, then the exponent of 
G exists and is equal to the least common multiple of the orders of all its elements 
(Proposition 5.5.17). Since the order of any element in G is a power of p, then 
the least common multiple of such orders is also a power of p, i.e., there exists a 
nonnegative integer k such that the exponent of G equals pk . For the other direction, 
let a ∈ G be an arbitrary element in G. If the exponent of G is pk, then ord(a) 
divides pk , i.e., ord(a) = ps for some s ≤ k. Therefore, G is a p-group. ∎

The next two results explain the relationship between p-groups and cyclic groups 
in the finite case. Before discussing these results, let us point out the following:
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– Not all primary groups are cyclic. The Klein group is an example of a 2-group 
that is not cyclic. 

– Not all cyclic groups are primary groups. The additive group Z6 is a cyclic group 
that is not a p-group for any prime p. 

– For any prime p and any k ∈ N, the group Z pk is a cyclic p-group, and any finite 
cyclic primary group is isomorphic to Z pk for some prime p and nonnegative 
integer k (Proposition 9.2.2 (3)). 

Lemma 9.2.7 Let n ∈ N. The additive group Zn is isomorphic to a direct product 
of cyclic pi -groups. Namely, 

Zn 
∼= Z p k1 1 

× Z p k2 2 
×  · · ·  ×  Z pks s 

where pk1 1 p
k2 
2 · · ·  pks s is the prime factorization of n. 

Proof If n = 1, then Z1 = {e} ∼= Z p0 is a p-group for any prime p. If  n > 1, let  
n = pk1 1 p

k2 
2 · · ·  pks s be the prime factorization of n (Theorem 2.8.8, and Definition 

2.8.10). As p1, p2, . . . ,  ps are all distinct, then pk1 1 , p
k2 
2 , . . . ,  pks s are relatively prime. 

By Proposition 8.4.6, 

Z p k1 1 
× Z p k2 2 

×  · · ·  ×  Z pks s 
∼= Z p k1 1 ×p 

k2 
2 ×···×pks s 

= Zn 

as required. ∎

As any finite cyclic group G ∼= Zn for some positive integer n (Theorem 9.1.19), 
the following corollary follows. 

Corollary 9.2.8 Any finite cyclic group is isomorphic to a direct product of cyclic 
pi -groups, i.e., if G is a finite cyclic group, then 

G ∼= Z p k1 1 
× Z p k2 2 

×  · · ·  ×  Z pks s 

where pk1 1 p
k2 
2 · · ·  pks s is the prime factorization of |G|. 

We devote the remainder of this section to prove Corollary 9.2.17, the analog for 
the above corollary. It is a generalization of Corollary 9.2.8 to the case of abelian 
groups. Corollary 9.2.17 is called the primary decomposition of finite abelian groups. 
We begin with the following lemma. 

Lemma 9.2.9 Let G be a finite abelian group. For each p, a prime divisor of |G|, 
the subset 

G p =
{
a ∈ G : a ps = e for  some  s ∈ N

}

is a normal p-subgroup of G that contains G[p].



338 9 Classification of Finite Abelian Groups

Proof Assume that G is a finite abelian group and p is any divisor of |G|. According 
to Cauchy’s theorem (Proposition 7.7.11), the subset Gp is not empty. Let a, b ∈ Gp, 
then we have a p

s = e and bpr = e for some s, r ∈ N. Since G is abelian, then 
(a ∗ b)ps+r = (a)p

s+r ∗ (b)ps+r = e. i.e., a ∗ b ∈ Gp. By Proposition 7.1.6, Gp is a 
subgroup of G. For any a in Gp, a p

s = e for some s ∈ N, and thus, Gp is a p-group 
(Proposition 9.2.2 (1)) which is normal as G is abelian. Clearly, 

G[p] = {a ∈ G : a p = e
} ⊆ G p.

∎

Definition 9.2.10 Let G be a finite abelian group and p be a prime divisor of |G|. 
The subgroup G p is called the p-component of G. A primary component of G is a 
p-component of G for some prime divisor of |G|. 
Example 9.2.11 In the following we compute the p-component for a given abelian 
group G and prime divisor of the order of G. 

1. Consider the additive group (Z4, ⊕4). The order of Z4 is 4, and it has only 
one prime divisor, namely 2. Therefore, Z4 has only one prime component, the 
2-component of Z4 is

{
[a] : ⎡2s a⏋ = [0] for some s ∈ N

} = {[0[, [1], [2], [3]} = Z4. 

Note that
⎡
22a
⏋ = [0] for all [a] ∈ Z4. 

2. Consider the additive group (Z6, ⊕6). The order of Z6 is 6, which has two prime 
divisors. Therefore, there exist two prime components of Z6, namely, the 2-
component and the 3-component of Z6. Similar to (1), one can easily show that 
the 2-component of Z6 is {[0], [3]} and the 3-component of Z6 is {[0], [2], [4]}. 
Note that the intersection of the two components of Z6 is {[0]}, and their product 
is Z6. 

3. Any finite p-group G has only one component (Exercise 9.26). 

Proposition 9.2.12 Let G be a finite abelian group and p be any prime divisor of 
|G|. The order of the p-component of G is equal to pk for a positive integer k, where 
gcd
(
p, |G|/pk) = 1. 

Proof Since G p is a p-group, then by Proposition 9.2.2,
||G p
|| = pk for some 

nonnegative integer k. Since p||G|, then by Cauchy’s theorem (Proposition 7.7.11), 
G must contain an element of order p, which implies that G p contains a nonidentity 
element. Therefore,

||G p
|| > 1, and k must be positive. If gcd

(
p, |G|/pk) /= 1, then 

p|(|G|/pk). Since |G|/ pk is the order of the quotient group G/G p, then by Cauchy’s 
theorem (Proposition 7.7.11), there exists an element aG p /= G p that belongs to the 
group G/G p such that ord

(
aG p
) = p. Therefore, a pG p =

(
aG p
)p = G p, which
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implies that a p ∈ G p, i.e., there exists an s ∈ N, such that (a p)p
s = e. Consequently, 

a ∈ G p. By Proposition 7.4.5, aG p = G p, which contradicts that ord
(
aG p
) = p. 

Therefore, gcd
(
p, |G|/pk) = 1. ∎

Since the integer k in Proposition 9.2.12 must be positive, any p-component 
cannot be a trivial subgroup, and no primary components exist for the trivial group 
G = {e}. 
Corollary 9.2.13 Let G be a finite abelian group. If p1, . . . ,  pn are all distinct prime 
divisors of |G|, then 

|G| = pk1 1 · · ·  pkn n 

where pki i is the order of the pi -component of G. 

Proof Since p1, . . . ,  pn are all distinct prime divisors of |G|, then |G| = ps1 1 . . .  psn n 
for some positive integers s1, . . . ,  sn . For each 1 ≤ i ≤ n, let G pi be the pi -
component of G. According to Proposition 9.2.12,

||G pi
|| = pki i for some posi-

tive integer ki , where gcd
(
pi , |G|/pki i

)
= 1. Since G pi is a subgroup of G, and 

p1, . . . ,  pn are all distinct, then pki i |psi i and ki ≤ si . As  gcd
(
pi , |G|/pki i

)
= 1, the  

prime pi does not divide |G|/pki i . However, 

|G|/ pki i = ps1 1 · · ·  psi−1 
i−1 p

si−ki 
i psi+1 

i+1 · · ·  psn n 

which implies that si − ki = 0. Therefore, si = ki and |G| = pk1 1 · · ·  pkn n . ∎

Our next goal is to show that every finite abelian group is an internal direct product 
of its pi -components. The internal direct product of subgroups is defined in Definition 
7.6.5. We begin with the following lemma. 

Lemma 9.2.14 Let G be a finite abelian group. If p1, . . . ,  pn are all distinct prime 
divisors of |G|, then G = G p1 G p2 · · ·G pn , where G pi is the pi -component of G. 

Proof Since G pi = {a ∈ G : a ps i = e for  some  s ∈ N
}
is a normal subgroup of G 

for each 1 ≤ i ≤ n, then the product G p1 G p2 · · ·  G pn forms a subgroup of G (Proposi-
tion 7.5.13). Therefore, it remains only to show that G is a subset of G p1 G p2 · · ·  G pn . 
Let a ∈ G be an arbitrary element. By Proposition 9.2.12, for each 1 ≤ i ≤ n, there 
exists a positive integer ki such that

||G pi
|| = pki i . Let  mi = |G|/pki i = ∏ j /=i p 

k j 
j , 

(Corollary 9.2.13). By Exercise 2.12, we have  gcd(m1, . . . ,  mn) = 1. Hence, there 
exist li ∈ Z, 1 ≤ i ≤ n such that

∑n 
i=1 li mi = 1 (Exercise 2. 9). For each 1 ≤ i ≤ n, 

let ai = ali mi then we have 

a pi ki i = (ali mi
)pi ki = ali mi p 

ki 
i = ali |G| = (a|G|)li = e 

which implies that ai ∈ G pi and
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a = a1 = a 
n∑

i=1 
li mi = al1m1 ∗ al2m2 ∗  · · ·  ∗  alnmn 

= a1 ∗ a2 ∗  · · ·  ∗  an ∈ G p1 G p2 · · ·G pn . 

Therefore, G = G p1 G p2 · · ·  G pn . ∎

Lemma 9.2.15 Let G be a finite abelian group, p1, . . . ,  pn be all the distinct prime 
divisors of |G|, and G pi , 1 ≤ i ≤ n be the pi -components of G. For all 1 ≤ i ≤ n, 

G pi ∩
〈∪ j /=i G p j

〉 = {e}. 

Proof Using Proposition 7.5.18, it suffices to show that for each ai ∈ G pi , 1 ≤ i ≤ n 

a1 ∗ a2 ∗  · · ·  ∗  an = e =⇒ a1 =  · · ·  =  an = e. 

Assume that a1 ∗ a2 ∗  · · ·  ∗  an = e, where ai ∈ G pi , 1 ≤ i ≤ n. By Corollary 
9.2.13, 

|G| = pk1 1 · · ·  pkn n 

where pki i = ||G pi
||. Let  mi = |G|/pki i = ∏

j /=i p 
k j 
j . By Exercise  2.12, 

gcd(m1, . . . ,  mn) = 1. Therefore, there exists li ∈ Z, 1 ≤ i ≤ n such that∑n 
i=1 li mi = 1 (Exercise 2.9). For each ai ∈ G pi , ord(ai )|pki i . Since for all j /= i , 

pki i |m j , then ord(ai )|m j , and a m j i = e for all i /= j . Therefore, if a1∗a2∗· · ·∗an = e, 
then for each 1 ≤ i ≤ n, 

e = el j m j = (a1 ∗ a2 ∗  · · ·  ∗  an)l j m j 

= a l j m j 1 ∗ a l j m j 2 ∗  · · ·  ∗  a l j m j n = ali mi 
i 

Hence, 

ai = a1 i = a 

n∑

j=1 
l j m j 

i = al1m1 
i ∗ al2m2 

i ∗  · · ·  ∗  aln mn 
i = 

a 
m j 
i =e if i /= j 

e ∗ e ∗  · · ·  e ∗ ali mi 
i ∗ e · · ·  ∗  e = ali mi 

i = e.

∎The following theorem is a direct corollary of the above two lemmas. 

Theorem 9.2.16 Every nontrivial finite abelian group is an internal direct product 
of its primary components. 

The result in Exercise 8.20 shows the following: 

Corollary 9.2.17 (Primary decomposition of finite abelian groups) Every nontrivial 
finite abelian group is isomorphic to the direct product of its primary components. 
Namely, if G /= {e} is a finite abelian group, and p1, . . . ,  pn are all distinct prime 
divisors of |G|, then



9.3 Independent Subsets, Spanning Subsets, and Bases of a Group 341

G ∼= 
n∏

i=1 

G pi = G p1 × G p2 ×  · · ·  ×  G pn 

where G pi is the pi -component of G. 

The next goal is to show that each primary component G p in the decomposition 

above is isomorphic to a direct product of cyclic p-groups, i.e., G p ∼= ∏
ki 

Z pki for 

some ki . However, this task is challenging, and we defer its proof to Sect. 9.4, until 
all necessary definitions and results have been introduced. 

9.3 Independent Subsets, Spanning Subsets, and Bases 
of a Group 

The current section contains the basic definitions and results that are required to 
prove the fundamental theorem of finite abelian groups in the next section. 

Definition 9.3.1 ( Independent subset of a group) Let  G be an abelian group and 
a1, a2, . . . ,  an be distinct elements in G such that ai /= e for each 1 ≤ i ≤ n. The  set  
{a1, a2, . . . ,  an} is called independent if whenever there are integers k1, k2, . . . ,  kn 
such that ak1 1 ∗ ak2 2 ∗  · · ·  ∗  akn n = e, then aki i = e for all 1 ≤ i ≤ n. An independent 
set {a1, a2, . . . ,  an} is called maximal independent if it is not contained in any other 
independent subset of G. 

According to this definition, none of the elements a1, a2, . . . ,  an is an identity 
element in G. Therefore, by definition, any subset of G that contains e is not 
independent. In particular, the set {e} is not independent. 
Example 9.3.2 

1. As the empty set ∅ contains no elements, the conditional statement in the 
definition is satisfied, and ∅ is an independent set. 

2. Any subset consisting of one nonidentity element satisfies the condition of the 
independence. Therefore, it is an independent set. In particular, the subsets 
{1}, {2}, {−1}, {z} for any nonzero z in Z are examples of independent subsets 
of (Z, +). 

3. The subset {2, 3} is not independent in (Z, +) as 

23 ∗ 3−2 = 2 + 2 + 2 + (−3) + (−3) = 0, but  23 = 2 + 2 + 2 /= 0. 

4. In general, any subset of (Z, +) that has more than one element is not independent. 
If S = {k1, k2, . . . ,  kn}, n ≥ 2, is any subset of nonzero elements in Z, then 

kk2 1 + k−k1 
2 + k0 3 +  · · ·  +  k0 n = 0, but  kk2 1 /= 0 and k−k1 

2 /= 0. 
5. Since any subset of (Z, +) that has more than one element is not independent, 

any set that consists of only a nonzero element of Z is a maximal independent 
set.
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6. Consider the additive group Z4× Z4. The  set  {([1], [2]), ([3], [3])} is an indepen-
dent set. If k1, k2 are any integers such that ([1], [2])k1 ⊕4 ([3], [3])k2 = ([0], [0]), 
then 

([k1], [2k1]) ⊕4 ([3k2], [3k2]) = ([0], [0]). 

This result implies that [k1 + 3k2]=[0] and [2k1 + 3k2]=[0], i.e., 
[k1] = −[3k2] = [k2] and [2k1] = −[3k2] = [k2]. Solving these two equations 

gives that [k1] = [k2] = [0], which implies that 

([1], [2])k1 = ([k1], [2k1]) = ([0], [0]), 

and 

([3], [3])k2 = ([3k2], [3k2]) = ([0], [0]). 

The reader may easily check that the subset {([0], [2]), ([3], [0])} is also an 
independent set (Check!). 

7. Consider the additive group (Z × Z, +). For any nonzero elements x, y in Z, the  
subset {(x, 0), (0, y)} is an independent set. For if k1, k2 are any integers such 
that 

(x, 0)k1 + (0, y)k2 = (0, 0), then (k1x, 0) + (0, k2 y) = (0, 0) 

which implies that k1x = k2 y = 0, i.e., 

(x, 0)k1 = (k1x, 0) = (0, 0) and (0, y)k2 = (0, k2 y) = (0, 0). 

The set {(x, 0), (0, y)} is maximal independent in Z ×Z. For any (a, b), a nonzero 
element in Z × Z, the  set  {(x, 0), (0, y), (a, b)} is not independent. For if k1 = 
ay, k2 = bx, k3 = −xy, then 

(x, 0)k1 + (0, y)k2 + (a, b)k3 = (0, 0), but  (a, b)k3 /= (0, 0) (Check!). 

8. Consider the additive group (R × R, +). Similar to the case for Z × Z, the  
subset {(x, 0), (0, y)} is an independent set for any nonzero elements x, y in R. 
However, {(x, 0), (0, y)} is not maximal independent in R × R. It can be easily 
verified that the sets

{
(x, 0), (0, y),

(
x 
√
2, 0
)}

and
{
(x, 0), (0, y),

(
0, 5

√
7y
)}

are also independent sets in R × R.
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9. Consider the group (M3×2(Z), +). The subset {E11, E12, E21, E22, E31, E32} is 
an independent set in M3×2(Z). For if the sum 

Ek11 
11 + Ek12 

12 + Ek21 
21 + Ek22 

22 + Ek31 
31 + Ek32 

32 = 03×2 

then 

k11 E11 + k12 E12 + k21 E21 + k22 E22 + k31 E31 + k32 E32 = 03×2. 

According to which 

⎛ 

⎝ 
k11 k21 
k21 k22 
k31 k32 

⎞ 

⎠ = 

⎛ 

⎝ 
0 0  
0 0  
0 0  

⎞ 

⎠ 

Thus, each ki j  = 0, and each E ki j  i j  = ki j  Ei j  = 03×2 for each1 ≤ i ≤ 2, 1 ≤ j ≤ 3. 
The set {E11, E12, E21, E22, E31, E32} is an example of a maximal independent subset 
of M3×2(Z) (Check!). The subset {E12, E21, E22, E32} is also independent, but it 
is not maximal independent as it is contained in {E11, E12, E21, E22, E31, E32}. In  
general, one can show that the set

{
Ei j  : 1 ≤ i ≤ m ∧ 1 ≤ j ≤ n

}
is a maximal 

independent subset in Mm×n(Z). 
The proof of the following lemma is straightforward and left to the reader. 

Lemma 9.3.3 Let G be an abelian group. The set {a1, a2, . . . ,  an} is an independent 
subset of G if and only if it is independent in every subgroup of G containing 
a1, a2, . . . ,  an . 

Lemma 9.3.4 Let G be an abelian group and c1, c2, . . . ,  cn be any integers. If 
{a1, a2, . . . ,  an} is an independent subset of G and aci i /= e for 1 ≤ i ≤ n, then the 
set
{
ac1 1 , a

c2 
2 , . . . ,  acn n

}
is independent. 

Proof Assume that there exist integers k1, k2, . . . ,  kn such that

(
ac1 1

)k1 ∗ (ac2 2

)k2 ∗  · · ·  ∗ (acn n

)kn = e, 

and aci i /= e for each 1 ≤ i ≤ n. By Proposition 5.5.2, 

ac1k1 1 ∗ ac2k2 2 ∗  · · ·  ∗  acnkn n = e. 

Since {a1, a2, . . . ,  an} is independent, then
(
aci i
)ki = aci ki i = e for each 1 ≤ i ≤ n, 

as required. ∎

Example 9.3.5 Consider the additive group Z2 × Z3. Let a1 = ([1], [1]) and a2 = 
([0], [1]). The  set  {a1, a2} is not independent (Check with k1 = 2 and k2 = −2). 
However,
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a3 1 = ([1], [1])3 = ([1], [0]) and a1 2 = ([0], [1]). 

Therefore, the set {a3 1 , a1 2} is independent. 
The above example shows that the converse of the result in Lemma 9.3.4 is 

not always true. However, in several special cases, such as those of p-groups, the 
following statement holds: 

Proposition 9.3.6 Let p be a prime, G a finite abelian p-group, and {a1, a2, . . . ,  an} 
any subset of G such that for all 1 ≤ i ≤ n, a p i /= e. The set

{
a p 1 , a 

p 
2 , . . . ,  a p n

}
is 

independent if and only if {a1, a2, . . . ,  an} is independent. 
Proof Assume that

{
a p 1 , a 

p 
2 , . . . ,  a p n

}
is independent. For each 1 ≤ i ≤ n, a p i /= e, 

which implies that ai /= e for each 1 ≤ i ≤ n. Let k1, k2, . . . ,  kn be integers such 
that 

ak1 1 ∗ ak2 2 ∗  · · ·  ∗  akn n = e. 

We show that aki i = e for each 1 ≤ i ≤ n, as follows: 
The group G is abelian. Therefore, the equality ak1 1 ∗ ak2 2 ∗  · · ·  ∗  akn n = e implies 

that

(
a p 1
)k1 ∗ (a p 2

)k2 ∗  · · ·  ∗ (a p n
)kn =

(
ak1 1 ∗ ak2 2 ∗  · · ·  ∗  akn n

)p = e. 

As
{
a p 1 , a 

p 
2 , . . . ,  a p n

}
is an independent set, then

(
a p i
)ki = e for all 1 ≤ i ≤ n. By 

Lemma 5.5.6, ord
(
a p i
)|ki for each 1 ≤ i ≤ n. Since a p i /= e and G is a p-group, 

then ord
(
a p i
) = psi for some integer si ≥ 1. Therefore, p|ki . For each 1 ≤ i ≤ n, 

let ki = pmi for some mi ∈ Z. Hence, 

e = ak1 1 ∗ ak2 2 ∗  · · ·  ∗  akn n = (a p 1
)m1 ∗ (a p 2

)m2 ∗ . . .  ∗ (a p n
)mn 

. 

Since
{
a p 1 , a 

p 
2 , . . . ,  a p n

}
is independent, then by Lemma 9.3.4,{(

a p 1
)m1 

,
(
a p 2
)m2 

, . . . ,
(
a p n
)mn
}
is independent, and thus, aki i = (a p i

)mi = e, as 
required. The other direction directly follows by Lemma 9.3.4. ∎

Definition 9.3.7 Let G be a group, and a1, a2, . . . ,  an be distinct elements in G. The  
set {a1, a2, . . . ,  an} is called a spanning set of G if G = 〈a1, a2, . . . ,  an〉. In this case, 
we say that {a1, a2, . . . ,  an} spans G. 

Example 9.3.8 

1. A cyclic group generated by an element a has a spanning set {a}. For example, 
each of the sets {1}, {−1}, and {−1, 1} are spanning sets of (Z, +). 

2. Let n ∈ N. Consider the regular n-polygon with the center at the origin and one 
of its vertices at (1, 0). The set that consists of the rotation of such a polygon in 
the plane around the origin with angle 2π 

n and reflection around the x-axis forms 
a spanning set for all symmetries of the polygon.
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3. Example 7.3.14 shows that {(1 2), (2 3 4  · · ·  ·  n)} is a spanning set of Sn . 
4. Let G be a group and a1, a2, . . . ,  an be generators of G (Definition 7.3.2). The 

set {a1, a2, . . . ,  an} is a spanning set of G. 

Definition 9.3.9 Let G be an abelian group and a1, a2, . . . ,  an be distinct elements in 
G. The  set  {a1, a2, . . . ,  an} is called a basis of G if {a1, a2, . . . ,  an} is an independent 
subset of G that spans the whole group G. If such a subset exists, we say that G 
admits a basis. 

Remark 9.3.10 

1. If G is an abelian group, then by Proposition 7.3.6 the set {a1, a2, . . . ,  an} spans 
G if and only if for each a ∈ G, a = ak1 1 ∗ ak2 2 ∗  · · ·  ∗  akn n for some integers 
k1, k2, . . . ,  kn . 

2. The empty set∅ is a basis for the trivial group G = {e}. The  set∅ is an independent 
set, and as 〈∅〉 = {e} (Sect. 7.3), ∅ is a spanning set of {e}. 

3. If G is a cyclic group generated by a nonidentity element a, then {a} forms a 
basis for G. 

4. A basis for an abelian group G may not be unique. For example, both {1} and 
{−1} are bases for (Z, +). Note that the set {1, −1} generates (Z, +), but it does 
not form a basis for (Z, +) since it is not an independent set (Check!). 

5. A basis for an abelian group G is a maximal independent subset (Exercise 9.33). 

Example 9.3.11 Let q be a prime and G = Zq2 × Zq2 . Let  a1 = ([1], [q]), a2 = 
([q], [q]). The  set  {a1, a2} is independent and maximal independent but not a 
spanning set of G. 

– Note that none of the elements ai is an identity of G. To show that {a1, a2} is 
independent, let ak1 1 ⊕q2 ak2 2 = ([0], [0]) for some integers k1, k2, then we have 

([1], [q])k1 ⊕q2 ([q], [q])k2 = ([k1], [k1q]) ⊕q2 ([k2q], [k2q])
)

= ([k1 + k2q], [k1q + k2q]) = ([0], [0]) 

which implies that 

k1 + k2q ≡ 0 mod  q2 and k1q + k2q ≡ 0 mod  q2 . 

By subtracting these equations, we obtain k1 − k1q ≡ 0 mod  q2, i.e., 
q2|k1(1 − q). As  gcd

(
q2, 1 − q

) = 1 (Exercise 2.11), then q2 divides k1, which 
yields that ak1 1 = ([k1], [k1q]) = ([0], [0]) in Zq2 × Zq2 implying that 

ak2 2 = ([0], [0]) ⊕q2 ak2 2 = ak1 1 ⊕q2 ak2 2 = ([0], [0]). 

Therefore, {a1, a2} is an independent set.



346 9 Classification of Finite Abelian Groups

– To show that {a1, a2} is maximal independent, assume that y = ([b], [c]) is a 
nonzero element in G. We show that the set {a1, a2, y} cannot be independent as 
follows: Let k3 =

{
1 if  q|b and q|c 
q if q\b or q\c 

. The integer k3 ∈ Z, and yk3 /= ([0], [0]) 

(Verify!). However, both components of yk3 = k3([b], [c]) are divisible by q, 
i.e., yk3 = ([qm], [qn]) for some m, n ∈ Z. By putting k1 = −q(m − n) and 
k2 = −n, one gets 

yk3 ∗ ak2 2 ∗ ak1 1 = ([qm], [qn]) − ([nq], [nq]) − ([q(m − n)], ⎡q2 (m − n)
⏋) = ([0], [0]). 

Since yk3 /= ([0], [0]), the set {a1, a2, y} is not independent. 
– The set {a1, a2} is not a spanning set of G since ([1], [1]) ∈ G, and ([1], [1]) 

cannot be generated by {a1, a2}. If  ([1], [1]) = ak1 1 ⊕q2 ak2 2 = k1a1 ⊕q2 k2a2 for 
some integers k1, k2, then 

([1], [1]) = ([k1 + k2q], [k1q + k2q]). 

That is, (k1 + k2)q = k1q + k2q ≡ 1 mod  q2, which implies that q|1 (Exercise 
3.3) contradicting q > 1. 

If a1, a2, . . . ,  an are elements in an abelian group G, then the subgroups 〈ai 〉
are normal for each 1 ≤ i ≤ n. The following proposition follows directly from 
Proposition 7.5.18, where 〈ai 〉 is replacing the subgroup Hi . 

Proposition 9.3.12 Let G be a finite abelian group, and a1, a2, . . . ,  an be elements 
in G such that ai /= e for each 1 ≤ i ≤ n. The set {a1, a2, . . . ,  an} is an independent 
subset in G if and only if

〈ai 〉 ∩ 〈∪ j /=i
〈
a j
〉〉 = {e} for each 1 ≤ i ≤ n. 

Corollary 9.3.13 Let G be a finite abelian group. The group G is an internal direct 
product of cyclic subgroups if and only if G admits a basis. 

Proof Assume that {a1, a2, . . . ,  an} forms a basis of G. Since G = 〈a1, a2, . . . ,  an〉, 
and each 〈ai 〉 is normal subgroup of G, then by Proposition 7.5.13, 

G = 〈a1, a2, . . . ,  an〉 = 〈a1〉〈a2〉〈a3〉 · · · 〈an〉. 

Since {a1, a2, . . . ,  an} is independent, then by Proposition 9.3.12, 〈ai 〉 ∩〈∪ j /=i
{
a j
}〉 = {e}. Therefore, G is an internal direct product of cyclic subgroups 

(Definition 7.6.5). For the other direction, assume that G is an internal direct product 
of Hi = 〈ai 〉 for some a1, a2, . . . ,  an in G. Consider the set of generators of Hi , i.e.,



9.4 The Fundamental Theorem of Finite Abelian Groups 347

a1, a2, . . . ,  an 1 ≤ i ≤ n. We show that {a1, a2, . . . ,  an} forms a basis for G. Since 
G is an internal direct product of Hi , and

U
i Hi ⊆ 〈a1, a2, . . . ,  an〉, then 

G = H1 H2 · · ·  Hn = 〈∪i Hi 〉 ⊆ 〈a1, a2, . . . ,  an〉

i.e., {a1, a2, . . . ,  an} spans G. To show the independence, assume that 
ak1 1 ∗ak2 2 ∗ . . .  ∗akn n = e for some integers k1, k2, . . . ,  kn . Since G is abelian, then 
for each ai ∈ {a1, a2, . . . ,  an}, 

aki i = a−k1 
1 ∗ a−k2 

2 ∗  · · ·  ∗  a−ki−1 
i−1 ∗ a−ki+1 

i+1 ∗  · · ·  ∗  a−kn 
n ∈ 〈∪ j /=i H j

〉
. 

Moreover aki i ∈ Hi , and thus, a
ki 
i ∈ Hi ∩ 〈∪ j /=i Hi 〉 =  {e}. Consequently, aki i = 

e. ∎

The following corollary follows by Exercise 8.6 and the fact that any subgroup 
of a p-group is also a p-group. 

Corollary 9.3.14 Let p be prime and G a finite abelian p-group. 

1. The group G is an internal direct product of cyclic p-subgroups if and only if G 
admits a basis. 

2. If G admits a basis, then G is isomorphic to a direct product of cyclic p-groups. 

i.e., G ∼=∏
ki 

Z pki for some nonnegative integers ki . 

Example 9.3.15 The Klein group (Example 5.2.2) is an example of a finite abelian 
2-group that is isomorphic to Z2 × Z2, which is a direct product of cyclic 2-groups. 
One can easily check that the subset of two nonidentity elements in the Klein group 
forms a basis for it. 

9.4 The Fundamental Theorem of Finite Abelian Groups 

The goal of this section is to prove that any finite abelian group is isomorphic to 
a direct product of primary cyclic groups. This result is known as the fundamental 
theorem of finite abelian groups, referred to by “The Basis Theorem”(Rotman, 1995). 

Theorem 9.4.1 (Fundamental theorem of finite abelian groups) Every finite abelian 
group is isomorphic to a direct product of primary cyclic groups. i.e., if G is 
a nontrivial finite abelian group, then there exists a positive integer n, primes  
p1, p2, . . . ,  pn (not necessarily distinct) and positive integers k1, k2, . . . ,  kn such 
that 

G ∼= 
n∏

i=1 

Z p ki i 
.
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By Corollary 9.2.17, any nontrivial finite abelian group is isomorphic to the direct 
product of its primary components. Therefore, to prove Theorem 9.4.1, we show that 
any p- component of a nontrivial finite abelian group is isomorphic to a direct product 
of cyclic p-groups. In fact, we will prove that any finite abelian p-group is isomorphic 
to a direct product of cyclic p-groups. For this, using the result in Corollary 9.3.14 
(2), it suffices to show that any finite abelian p-group admits a basis. This will be 
the goal for this section and will be realized by proving the following statements 
regarding any prime p. 

– Any finite abelian group G such that pG = {e} admits a basis. 
– If G is a finite abelian p-group, then any basis of pG can be extended to a basis 

for G. 
– Every finite abelian p-group admits a basis. 

We begin by proving several necessary results regarding p-groups. Recall that if 
G is abelian, then mG = {am : a ∈ G} is a subgroup of G for any integer m, and the 
exponent of G is the smallest positive integer m such that mG = {e}. 
Lemma 9.4.2 Let p be a prime and G be a finite abelian group such that pG = {e}. 
1. The order of any nonidentity element in G equals p. Therefore, 

pG = {e} ⇐⇒  G = {e} or Exp(G) = p. 

2. For any a ∈ G and n ∈ Z such that p\n, there exists s ∈ Z such that asn = a. 

Proof 

1. Let a ∈ G such that a /= e. As  pG = {e}, then a p = e, and thus, by Lemma 
5.5.6, ord(a) divides p, which implies that ord(a) is either 1 or p. Since a /= e, 
then ord(a) = p. Therefore, if G /= {e}, then p is the smallest positive integer 
such that pG = {e}, i.e., Exp(G) = p. The other direction is straightforward. 

2. Assume that n ∈ Z is an arbitrary element. If p does not divide n, then 
gcd(p, n) = 1. By Bézout’s lemma (Theorem 2.5.1), there exist r, s ∈ Z such 
that rp  + sn = 1, and thus, 

a = a1 = arp+sn = arp∗asn = e∗asn = asn ∎

Proposition 9.4.3 Let p be a prime and G be a finite abelian group such that 
pG = {e}. Any maximal independent subset of G spans G. Therefore, any maximal 
independent subset of G forms a basis of G. 

Proof Assume that {a1, a2, . . . ,  an} is a maximal independent subset of G. To  
prove the proposition, it suffices to show that G ⊆ 〈a1, a2, . . . ,  an〉. The other 
inclusion follows since G is a group. Let y ∈ G be an arbitrary element. As 
{a1, a2, . . . ,  an, y} is not independent, then there exist k1, . . . ,  kn, kn+1 ∈ Z such 
that ak1 1 ∗ ak2 2 ∗  · · ·  ∗  akn n ∗ ykn+1 = e, where at least one of ak1 1 , a

k2 
2 , . . . ,  akn n , ykn+1 is 

not the identity e. In particular, ykn+1 /= e (if ykn+1 = e, then by the independence
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of the set {a1, a2, . . . ,  an}, all  ak1 1 , a
k2 
2 , . . . ,  akn n are equal to e). Therefore, p \ kn+1. 

According to Lemma 9.4.2, there exists c ∈ Z such that y = yc kn+1 . Therefore, 

y =
(
ykn+1

)c =
(
a
−k1 
1 ∗ a−k2 

2 ∗ · · ·  ∗  a−kn 
n

)c = a−ck1 
1 ∗ a−ck2 

2 ∗ · · ·  ∗  a−ckn 
n ∈ 〈a1, a2, . . . ,  an〉

and {a1, a2, . . . ,  an} spans G. ∎

Remark 9.4.4 

– Proposition 9.4.3 is not true if one does not require that pG = {e} for some prime 
p. Example 9.3.11 is an example of a maximal set that does not form a basis (not 
a spanning set). Note that the additive group Zq2 × Zq2 is a q- group, but it does 
not satisfy pG = {e} for any prime p. 

– Let p be a prime and G be a finite abelian group. As any basis of G forms a 
maximal independent set (Exercise 9.33), if pG = {e}, then any subset of G 
forms a basis if and only if it is a maximal independent subset of G. 

Corollary 9.4.5 Let p be a prime and G be a finite abelian group such that pG = 
{e}. Any independent subset of G can be completed to a basis. i.e., if {a1, a2, . . . ,  ar } 
is an independent subset in G, then there exist ar+1, ar+2, . . . ,  an elements in G, such 
that {a1, a2, . . . ,  ar , ar+1, ar+2, . . . ,  an} forms a basis for G. 

Proof Assume that B0 = {a1, . . . ,  ar } is an independent set in G. If  B0 is 
a maximal independent, then it forms a basis (Proposition 9.4.3); otherwise, 
G /= 〈a1, a2, . . . ,  ar 〉, and thus, select ar+1 ∈ G\〈a1, a2, . . . ,  ar 〉 and let B1 = 
{a1, . . . ,  ar , ar+1}. The subset B1 is independent (Exercise 9.13). If B1 is a maximal 
independent, then B1 forms a basis; otherwise, G /= 〈a1, a2, . . . ,  ar+1〉. Pick  
ar+2 ∈ G\〈a1, a2, . . . ,  ar+1〉, and let B2 = {a1, . . . ,  ar+1, ar+2}. The subset B2 

is independent (Check!). If B2 is maximal independent, then it forms a basis; other-
wise, the same process is continued. If Bk is not maximal independent, we form the 
independent set Bk+1 such that Bk ⊆ Bk+1. Since G is finite, the process will be 
terminated, and the last independent set that we obtain is maximal. ∎

As the empty set is an independent subset of any group G and under the conditions 
of the last corollary, the above construction can be initiated with an empty set B0 that 
can be made into a basis. Hence, the following corollary is easily obtained. 

Corollary 9.4.6 Let p be a prime. Any finite abelian group G such that pG = {e} 
admits a basis. 

Lemma 9.4.7 Let p be a prime and G a finite abelian p-group. If {a1, . . . ,  an} is 
a basis for pG, then there exists a basis {b1, . . . ,  bn, v1, . . . , vm} for G such that 
ai = bp 

i , 1 ≤ i ≤ n. 

Proof Let H = pG = {bp : b ∈ G} and {a1, . . . ,  an} be a basis for H . According 
to the definition of H , for each 1 ≤ i ≤ n, there exists bi ∈ G such that ai = bp 

i . By  
Proposition 9.3.6, the  set  {b1, . . . ,  bn} is an independent set. On other hand,
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p〈b1, . . . ,  bn〉 = 〈bp 
1 , . . . ,  bp 

n

〉 = 〈a1, . . . ,  an〉 = H = pG. 

These equations do not imply that 〈b1, . . . ,  bn〉 = G (Example 7.3.22) because 
several elements in G can be eliminated by p and will not appear in pG = H . 
Such elements are G[p] = {b ∈ G : bp = e}. To form a basis for G, we use  the set  
{b1, . . . ,  bn} and add to it the elements of a basis of G[p]. However, after adding these 
elements to {b1, . . . ,  bn}, the new set may not be independent. To avoid this problem, 
we only add the basis elements from G[p] that ensure that the new obtained set is 
independent. To do this, the following steps are used: Consider the set {b1, . . . ,  bn}. 
As {b1, . . . ,  bn} is a subset of the p-group G and bp 

i = ai /= e, then for each 
1 ≤ i ≤ n, ord(bi ) = psi for some si > 1. Let  wi = bpsi −1 

i . Clearly, that wi /= e, 
and wi ∈ G[p]. As  {b1, . . . ,  bn} is an independent set, then by Lemma 9.3.4, the  set  
{w1, . . . , wn} is also independent in G. According to Lemma 9.3.3, {w1, . . . , wn} is 
an independent subset of G[p]. As  pG[p] = {e}, then by Corollary 9.4.5, the  set  
{w1, . . . , wn} can be extended to a basis for G[p]. Let  {w1, . . . , wn, v1, . . . , vm} be a 
basis for G[p]. By adding the elements v1, . . . , vm to the set {b1, . . . ,  bn}, we obtain 
the required basis for G. Namely, we show that {b1, . . . ,  bn, v1, . . . , vm} forms a 
basis for G, as follows: 

– To show that {b1, . . . ,  bn, v1, . . . , vm} is independent, assume 

bk1 1 ∗ bk2 2 ∗  · · ·  ∗  bkn n ∗ vl1 1 ∗ vl2 2 ∗  · · ·  ∗  vlm m = e. (∗) 

for some integers k1, k2, . . .  kn, l1, l2, . . . ,  lm . As  v j ∈ G[p], the equation in (∗) 
implies that 

e =
(
bk1 1 ∗ bk2 2 ∗  · · ·  ∗  bkn n ∗ vl1 1 ∗ vl2 2 ∗  · · ·  ∗  vkm 

m

)p 

= bpk1 
1 ∗ bpk2 

2 ∗  · · ·  ∗  bpkn 
n ∗ e ∗ e ∗  · · ·  ∗  e = bpk1 

1 ∗ bpk2 
2 ∗  · · ·  ∗  bpkn 

n . 

As {b1, . . . ,  bn} is independent, then so is
{
bp 
1 , . . . ,  bp 

n
}
, which implies that bpki 

i = 
e for each 1 ≤ i ≤ n. Hence, ord(bi ) = psi divides pki . i.e., ki = ti psi−1. Substituting 

ki in Equation (∗), where wi = bpsi −1 

i yields 

e = bt1 p
s1−1 

1 ∗ bt2 p
s2−1 

2 ∗  · · ·  ∗  btn psn−1 

n ∗ vl1 1 ∗ vl2 2 ∗  · · ·  ∗  vlm m 

= wt1 
1 ∗ wt2 

2 ∗  · · ·  ∗  wtn 
n ∗ vl1 1 ∗ vl2 2 ∗  · · ·  ∗  vlm m . 

As {w1, · · ·  , wn, v1, · · ·  , vm} are independent, then wti 
i = e for all 1 ≤ i ≤ n, 

and v l j j = e for all 1 ≤ j ≤ m. Therefore, bki i = bti p
si −1. 

i = wti 
i = e and v l j j = e 

for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. Therefore, the set {b1, . . . ,  bn, v1, . . . , vm} is an 
independent subset of G.
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– To show that {b1, . . . ,  bn, v1, . . . , vm} spans G, assume that a ∈ G. Since a p ∈ 
pG and 

pG = H = 〈a1, . . . ,  an〉, there exist k1, k2, . . . ,  kn such that 

a p = ak1 1 ∗  · · ·  ∗  akn n = bpk1 
1 ∗  · · ·  ∗  bpkn 

n . 

Therefore, a p∗b−pk1 
1 ∗· · ·∗b−pkn 

n = e, which yields
(
a ∗ b−k1 

1 ∗  · · ·  ∗  b−kn 
n

)p = e, 
and thus, a ∗ b−k1 

1 ∗ · · · ∗  b−kn 
n ∈ G[p]. As  {w1, . . . , wn, v1, . . . , vm} is a basis for 

G[p], then there exist integers l1, l2, . . . ,  ln, t1, t2, . . . ,  tm such that 

a ∗ b−k1 
1 ∗  · · ·  ∗  b−kn 

n = wl1 
1 ∗  · · ·  ∗  wln 

n ∗ vt1 
1 ∗  · · ·  ∗  vtm 

m 

= bl1 p
s1−1 

1 ∗  · · ·  ∗  bln psn−1 

n ∗ vt1 
1 ∗  · · ·  ∗  vtm 

m 

i.e., 

a = bk1+l1 ps1−1 

1 ∗  · · ·  ∗  bkn+ln psn−1 

n ∗ vt1 
1 ∗  · · ·  ∗  vtm 

m ∈ 〈b1, . . . ,  bn, v1, . . . , vm〉. 

Therefore, {b1, . . . ,  bn, v1, . . . , vm} forms a basis for G. ∎

Recall that for a finite group, an exponent always exists, and for a finite p-group, 
the exponent is of the form pk, where k is a nonnegative integer. 

Theorem 9.4.8 Let p be a prime. Every finite abelian p-group admits a basis. 

Proof Let p be a prime and G be a finite abelian p-group. By Corollary 9.2.6, 
Exp(G) = pk for some integer k ≥ 0. We show the result by induction on k as 
follows: If pG = {e} (k = 0, or k = 1), then the result is given in Corollary 9.4.6. 
For the inductive step, assume that k ≥ 1 and the statement is true for k, i.e., any 
finite abelian group of exponent pk admits a basis. Let G be a finite abelian group 
whose exponent is pk+1 and let H = pG. Since pk H = pk+1G, then H has the 
exponent pk . By the induction hypothesis, H admits a basis, which means that pG 
admits a basis. Therefore, Lemma 9.4.7 implies that the group G admits a basis, and 
the result is satisfied. ∎

By Theorem 9.4.8 and Corollary 9.3.14 (2), the following corollary is obtained. 

Corollary 9.4.9 Let p be prime. Every finite abelian p-group is isomorphic to a 
direct product of cyclic p-groups. 

By Proposition 9.2.2, any finite abelian cyclic p-group is Z pk for some nonnegative 
integer k. Therefore, if G is a finite abelian p-group, then there exist k1, k2, . . . ,  ks 
such that G ∼= 

s∏

i=1 
Z pki . Since any p-component of an abelian group is a nontrivial 

p-group (Proposition 9.2.12), the following result is obtained.
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Corollary 9.4.10 Let G be a nontrivial finite abelian group, p be a prime divisor of 
|G|, and G p be the p-component of G. There exist positive integers k1, k2, . . . ,  ks 
such that G p ∼= 

s∏

j=1 
Z pk j . 

Proof of Theorem 9.4.1 Assume that G is a finite abelian group. If G = {e}, then 
G = {e} ∼= Z1 is a direct product of one primary cyclic group. Assume that G /= {e} 
and let p1, . . . ,  pm be all distinct prime divisors of |G|. According to Corollary 
9.2.17, 

G ∼= 
m∏

i=1 

G pi = G p1 × G p2 ×  · · ·  ×  G pm 

where G pi is the pi -component of G. Since every component of G pi is isomorphic 

to 
si∏

j=1 
Z 

p 
k j 
i 
for some positive integers k1, k2, . . . ,  ksi (Corollary 9.4.10), then 

G ∼= 
s1∏

j=1 

Z 
p 
k j 
1 

× 
s2∏

j=1 

Z 
p 
k j 
2 

×  · · · · · ·  ×  
sm∏

j=1 

Z 
p 
k j 
m 

. 

If one does not require that p1, . . . ,  pm are distinct, the result follows. ∎

Example 9.4.12 Let G be a finite abelian group of order 270. As  270 = 2 × 33 × 5, 
then there are three primary components of G, which are G2, G3, and G5. According 
to Corollary 9.2.13, |G2| = 2, |G3| = 33, and |G5| = 5. By Corollary 9.1.20, as  
both G2, G3 have a prime order, then 

G2 
∼= Z2 and G5 

∼= Z5. 

We must find all the isomorphic groups to G3. By Corollary 9.4.10, G3 
∼= 

s∏

i=1 
Z3ki 

for some s and ki . Since the order of G3 equals 27, all possible nonisomorphic forms 
of G3 are 

Z3 × Z3 × Z3, Z9 × Z3, and Z27. 

Therefore, G is isomorphic to one of the following groups: 

Z2 × Z3 × Z3 × Z3 × Z5 

Z2 × Z9 × Z3 × Z5 

Z2 × Z27 × Z5



9.4 The Fundamental Theorem of Finite Abelian Groups 353

Exercises 

Solved Exercises 

9.1 Let G be an abelian group such that |G| = pq, where p and q distinct prime 
numbers. Show that G is cyclic. 

Solution 

As p and q divide ord(G), then by Cauchy’s theorem (Theorem 7.7.12), there exist 
two nonidentity elements a, b ∈ G such that |〈a〉| = p and |〈b〉| = q. As 〈b〉 ∩ 〈a〉
is a subgroup of both 〈a〉 and 〈b〉, then by Lagrange’s theorem, |〈b〉 ∩ 〈a〉| divides 
both |〈a〉| and |〈b〉|, which implies that |〈b〉 ∩ 〈a〉| = 1 and 〈b〉 ∩ 〈a〉 = {e}. As  G is 
abelian, then by Exercise 7.11, |〈a ∗ b〉| = lcm(ord(a), ord(b)) = lcm( p, q) = pq. 
That is, 〈a ∗ b〉 = G and G is cyclic. 

9.2 Let G be a finite group. Show that if |G| = pq, where p and q are primes, not 
necessarily distinct, then every proper subgroup of G is cyclic. 

Solution 

Let H be a proper subgroup of G. By Lagrange’s theorem (Theorem 7.4.17), |H | 
divides |G|. Since H is a proper subgroup of G, then all possibilities of |H | are 1, p 
or q. If  |H | = 1, then |H | = {e} is cyclic. If |H | = p or |H | = q, then H is cyclic 
(Example 9.1.5 (8)). 

9.3 Let G be a group and a be an element in G. Show that for any m, n ∈ N, the  
subgroup

〈am〉 ∩ 〈an〉 is a cyclic subgroup of 〈a〉, and 〈am〉 ∩ 〈an〉 = 〈alcm(m,n)
〉
. 

Solution 

Since both 〈am〉 and 〈ak 〉 are subgroups of 〈a〉 (Check!), their intersection 〈am〉∩〈an〉
is a subgroup of 〈a〉. By Corollary 9.1.8 (1), this subgroup is a cyclic group. To find 
the corresponding generator, note that since lcm(m, n) = rm  = sn for some integers 
r, s, then 

alcm(m,n) = arm  ∈ 〈am 〉 and alcm(m,n) = asn ∈ 〈an 〉

which implies that
〈
alcm(m,n)

〉 ⊆ 〈am〉 ∩ 〈an〉. On the other hand, if ak ∈ 〈am〉 ∩ 〈an〉
for some integer k, then k = rm  = sn for some integers r, s. i.e., m|k and n|k. By  
Exercise 2.24, lcm(m, n) divides k. i.e., k = t lcm(m, n) for some integer t . Hence, 
ak = at lcm(m,n) ∈ 〈alcm(m,n)

〉
and 〈am〉 ∩ 〈an〉 ⊆ 〈alcm(m,n)

〉
. 

9.4 Let G be an infinite cyclic group. Show that the identity element is the only 
element whose order is finite.
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Solution 1 

As G is a cyclic infinite group, then by Theorem 9.1.19, G ∼= (Z, +). Since 0 is the 
only element in Z whose order is finite, then Proposition 8.3.7 implies the results. 

Solution 2 

Since G is an infinite cyclic group, then G = 〈a〉 for some a ∈ G, where a has an 
infinite order. Assume that there exists b /= e in G such that ord(b) = m. As  b ∈ 〈a〉, 
then b = ak for some nonzero integer k. Therefore, e = bm = (ak)m = akm, which 
implies that ord(a) is finite (Lemma 5.5.5). 

9.5 Give an example for a group G and a subgroup H of G such that G/H is cyclic 
and G is not abelian. (Compare the result of this question with the result of 
Proposition 9.1.4). 

Solution 

Let n ∈ N where n ≥ 4. Consider the symmetric group Sn and its subgroup of 
all even permutations An . Since the quotient group Sn/An has only two elements 
(Proposition 7.7.9), then it is cyclic (Example 9.1.5 (8)). However, neither Sn nor 
An is abelian. 

9.6 Let G be any group. Show that if K is a subgroup of G contained in the center 
of G and G/K is cyclic, then G is abelian. 

Solution 

Note first that every subgroup contained in the center of G is normal subgroup of G 
(verify!). Therefore, both K and C(G) are normal subgroup of G. Applying the third 
fundamental theorem of group homomorphisms (Theorem 8.4.11) with H = C(G), 
we obtain. 

G/C(G) ∼= (G/K )/(C(G)/K ). 

Since G/K is cyclic then 

G/C(G) 

is isomorphic to a quotient group of cyclic group, hence it is cyclic (Proposition 
9.1.6). By Proposition 9.1.4, G is abelian. 

9.7 Let p be a prime number. Show that the two groups
(
Z p−1, ⊕p−1

)
and 

(Inv(Z p), ⊗p) are isomorphic. 

Solution 

A nice solution for this question can be easily given using Proposition 7.3.21, 
Theorem 9.1.19, and Lemma 5.3.3 (exercise). Alternatively, Let a be any generator 
of the group Inv(Z p) (Proposition 7.3.21). Define
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f : (Z p−1, ⊕p−1
)→ (Inv(Z p

)
, ⊗p
)

[x]p−1 |→ ⎡ax
⏋
p 
. 

We show that f is an isomorphism, as follows. 

– To show that f is well-defined, let [x]p−1, [y]p−1 be elements in Z p−1 such that 

[x]p−1 = [y]p−1. This implies that x − y = (p − 1)q for some q ∈ Z. Therefore, 

ax = ay a( p−1)q ≡ ay · 1 mod  p 

i.e., ax = ay mod p, and [ax ]p = [ay]p. Note that since
||Inv(Z p)

|| = p − 1, then 
a p−1 ≡ 1 mod p. 

– The map f is a homomorphism since 

f
([x]p−1 ⊕p−1 [y]p−1

) = f
([x + y]p−1

) = ⎡ax+y
⏋
p 

= ⎡ax ay
⏋
p =
⎡
ax
⏋
p ⊗p

⎡
ay
⏋
p 

= f
([x]p−1

)⊗p f
([y]p−1

)
. 

– To show that f is a bijective map, it is enough to show the injectivity of f (Exercise 
1.6). As 

Ker  ( f ) =
{
[x]p−1 ∈ Z p−1 :

⎡
ax
⏋
p = [1]p

}

= {[x]p−1 ∈ Z p−1 : p |
(
ax − 1

) ∧ 1 ≤ ax < p
}

= {[x]p−1 ∈ Z p−1 : p |
(
ax − 1

) ∧ 0 ≤ ax − 1 < p − 1
}

= {[0]p−1
}

then f is an injective map. Note that proving that f is surjective is easier than 
proving its injectivity (Check!). 

9.8 The prime numbers 3, 5, 17, 257, 65537, 4294967297, . . .  .,  which are known 
as Fermat numbers (Burton, 2007), are of the form of 22

k + 1 for some k ∈ N. 
Show that if p is a prime number such that p /= 2, then 

Inv
(
Z p
)
is a primary group ⇐⇒ p is a Fermat number. 

In this case, Inv
(
Z p
)
will be a 2-group.
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Solution 

For any prime p, the multiplicative group Inv
(
Z p
) = Z∗

p is a group of order p − 1. 

– If p = 2, then Inv(Z2) = {[1]}, which is a q-group for any prime q as 1 = q0. 
– If p /= 2, then Inv

(
Z p
)
is a primary group if and only if p − 1 = qm for some 

prime q and a positive integer m, and 

• Since p > 2, then qm = p − 1 is an even number, i.e., q must be 2, 
• Since p = qm + 1, the integer m must be power of 2, i.e., m = 2k (Check that 

if m is not power of 2, then qm + 1 is not prime). 

Therefore, Inv
(
Z p
)
is a primary group if and only if p − 1 = 22k as required, and 

Inv(Z2), Inv(Z3), Inv(Z5), Inv(Z17), Inv(Z257), . . . .  

are all 2-groups. For a prime p such that p /= 2 and p not being a Fermat number, 
the group Inv

(
Z p
)
is not a primary group. 

9.9 Show that the direct product of p-groups is a p-group. 

Solution 

Let (G1, ∗) and (G2, ·) be p-groups and (a, b) ∈ G1 × G2 be an arbitrary element. 
Since both G1, G2 are p-groups and a ∈ G1, b ∈ G2, by definition of p-groups, 

|ord(a)| =  pk and |ord(b)| =  ps 

for some nonnegative integers k, s. Let  m = lcm(k, s), then both pk and ps divide 
pm(Check!). Therefore, 

(a, b)pm = (a ∗ a ∗ · · ∗a︸ ︷︷ ︸
pm times 

, b · b · · · b︸ ︷︷ ︸
pm times 

) = (a pm , bpm
) = (e1, e2). 

By Lemma 5.5.6, ord((a, b)) divides pm, which implies that ord((a, b)) is a 
power of p. As  (a, b) is arbitrary, then G1 × G2 is a p-group. Note that in case of 
both groups are finite, Proposition 9.2.2 (2) can be used to provide a one line proof 
(exercise). 

9.10 Let p be a prime. Show that any finite nontrivial p-group has a nontrivial 
center. 

Solution 

Let G be a finite p-group. For each a ∈ G, let  Ca = {x ∈ G : x ∗ a = a ∗ x}. By  
Exercise 7.13, Ca is a subgroup of G, and 

|C(G)| = |G| −
∑

Ca /=G 

[G : Ca] (∗)
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We check the orders of each term in Equation (∗). 

– As G is a nontrivial p-group, then |G| = pk for a positive integer k (Proposition 
9.2.2). 

– For each a ∈ G, Ca is also a p-group (Proposition 9.2.4), which implies that 
|Ca| = ps for some nonnegative integer s. Therefore, for all a ∈ G, such that 
Ca /= G, we have  1 < [G : Ca] = |G|/|Ca| = pk−s . Therefore, p divides all 
terms in the right side of Equation (∗). 

– Since p divides every term in the right side of the equation, it also divides the left 
side. i.e., |C(G)| ≥ p, and C(G) is nontrivial. 

9.11 Let p be a prime and G be a nonabelian group of order p3. Show that |C(G)| = 
p. 

Solution 

Since |G| = p3, then G is a p-group (Proposition 9.2.2), which implies that the 
center of G is not trivial (Exercise 9.10). As G is not abelian, then C(G) /= G. 
Therefore, C(G) is a subgroup of G such that 1 < |C(G)| < p3. By Lagrange’s 
theorem, |C(G)| divides p3. Therefore, |C(G)| is either p2 or p. If |C(G)| = p2, then 
|G/C(G)| = p which implies that G/C(G) is cyclic (Example 9.1.5 (8)). Therefore, 
G is abelian (Proposition 9.1.4), which contradicts the assumption. Therefore, there 
exists only one possibility of |C(G)|, which is p. 
9.12 Let p be a prime and G be a finite abelian nontrivial p-group. Show that G is 

cyclic if and only if G has exactly one subgroup of order p. 

Solution 

As G is a nontrivial p-group, then |G| = pn > 1 for some n ≥ 1. Assume that G is 
cyclic. Since p||G|, then by Theorem 9.1.10, G contains a unique subgroup of order 
p. To show the other direction, assume that G has exactly one subgroup of order p, 
and hence, nontrivial. As any finite abelian p-group is isomorphic to a direct product 
of cyclic groups (Corollary 9.4.9), then 

G ∼= 〈a1〉 × 〈a2〉 ×  · · ·  × 〈al〉 for some ai in G. 

Since 〈ai 〉 is a p-group, then |〈ai 〉| = pki > 1, where 1 ≤ i ≤ l. If  l > 1, let  

x =
(
a p

k1−1 

1 , . . . ,  e, e
)
and y =

(
e, a p

k2−1 

2 , . . . ,  e, e
)

then 〈x〉 ∩ 〈y〉 = {(e, e, e, e . . . .,  e)} and |〈x〉| = p = |〈y〉|, which implies that G 
has two subgroups of order p. Therefore, l = 1 and G is cyclic. 

9.13 Let p be any prime, G be a finite abelian group such that pG = {e}, and let 
{a1, a2, . . . ,  ar } be an independent subset in G. Show that if {a1, a2, . . . ,  ar }
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is not maximal independent, then there exists ar+1 ∈ G\〈a1, a2, . . . ,  ar 〉 such 
that {a1, a2, . . . ,  ar , ar+1} is an independent subset in G. 

Solution 

Assume that {a1, a2, . . . ,  ar } is not maximal independent. Let {a1, a2, . . . ,  ar } be 
independent subset of G. By Corollary 9.4.5, there exist ar+1, ar+2, . . . ,  an in G ∍
{a1, a2, . . . ,  an} is a basis. Hence, a maximal independent (Exercise 9.33). 
Since {a1, a2, . . . ,  ar } is not independent, then n ≥ r +1 and {a1, a2, . . . ,  ar , ar+1} is 
independent. The result follows as ar+1 /∈ 〈a1, a2, . . . ,  ar 〉. 
Unsolved Exercises 

9.14 Find all the generators of Z22. 
9.15 Let G be a cyclic group generated by a, and m, n ∈ Z. Show that

〈
agcd(m,n)

〉
is 

the smallest subgroup of G that contains am and an . 
9.16 Show that any abelian group of order 22 is cyclic. 
9.17 Let G be a group such that |G| = 33. Show that every proper subgroup of G 

is cyclic. 
9.18 Give an example of a group G and normal subgroup H of G such that both 

G/H and H are abelian groups, and G is not abelian. 
9.19 Let G be a group and H, K be cyclic subgroups of G. Is the product HK  a 

subgroup? Is HK  cyclic? Explain your answer. 
9.20 Show that any group of order p or p2 is an abelian group. 
9.21 Let p be a prime. Consider the additive group

(
Z p, ⊕p

)
. Let  G = Z p×Z p×Z p. 

On G define the operation ∗ by 

([a], [b], [c]) ∗ (⎡a'⏋,
⎡
b'⏋,
⎡
c'
⏋) = ([a] ⊕p

⎡
a'⏋, [b] ⊕p

⎡
b'⏋, [c] ⊕p

⎡
c'
⏋⊕p

⎡−ba'⏋). 

Show that (G, ∗) is a nonabelian p-group of order p3. 

9.22 Let p be a prime. Let G = Z p × Z p2 and define the operation ∗ on G by 

([a], [b]) ∗ (⎡a'⏋,
⎡
b'⏋) = ([a] ⊕p

⎡
a'⏋, [b] ⊕p2

⎡
b'⏋⊕p2

⎡
ba' p
⏋)

. 

Show that G is a nonabelian p-group of order p3. 

9.23 Let p /= 2 be a prime number. Show that the group G in Exercise 9.21 satisfies 

([a], [b], [c])p = ([0], [0], [0]) for all ([a], [b], [c]) in G. 

Is this statement true if p = 2 ? 

9.24 Let p /= 2 be a prime number. Does the group G in Exercise 9.22 satisfy
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([a], [b])p = ([0], [0]) for all ([a], [b]) in G? 

Explain your answer and compare it with the answer for Exercise 9.21. 

9.25 Compute all p-components of the additive groups Z12, Z15, Z16, and Z60. 
9.26 Show that any p-group has only one component. 
9.27 Give an example (different than that in Example 9.3.5) for which the converse 

of the result in Lemma 9.3.4 is not true. 
9.28 Let G be a finite abelian group and |G| = 22. Determine all groups that are 

isomorphic to G. 
9.29 Let G be a finite abelian group. Let b be an element in G such that 

ord(b) = max{ord(a) : a ∈ G}. 

Show that ord(a) divides ord(b) for all a ∈ G. 

9.30 Show that Exp
(
Z

∗
p, ⊗p

) = p − 1. 
9.31 Let G1, G2 be groups and f : G1 → G2 be a group isomorphism. Show that if 

the set {a1, a2, . . . ,  an} forms a basis for G1, then { f (a1), f (a2), . . . ,  f (an)} 
forms a basis for G2. 

9.32 Show that two bases for an abelian group G may not have the same number 
of elements. 

Hint: Show that the group Z p × Zq , where gcd(p, q) = 1, has two bases with 
two different numbers of elements. 

9.33 Show that any basis of abelian group G is a maximal independent set in G. 
9.34 Give an example of a prime p and two p-groups with the same order that are 

not isomorphic. 
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Chapter 10 
Group Theory and Sage 

At present, almost no mathematician works without using software. Software such as 
MATLAB and MATHEMATICA are among the best tools for engineers and mathe-
maticians. Moreover, there are computer software as Sage (SageMath) and CoCalc 
(SageMathCloud) that can help explore, compute, solve a variety of algebraic prob-
lems, and address group theory problems. Sage and CoCalc were founded by William 
Stein and were hosted by Sage. CoCalc is an online version that uses Sage, Latex, 
and Jupyter. In this chapter, we learn how to use Sage (which can be downloaded and 
works offline) to solve problems (typically complicated problems) in group theory. 
For further information regarding Sage, we refer the reader to (Zimmermann et al., 
2018). 

10.1 What Is Sage? 

The expanded form of the term Sage is “System for Algebra and Geometry 
Experimentation”, which explains the role of this software. Sage is a mathemat-
ical open-source software that uses syntax and helps solve problems in Mathematics 
and Engineering. Problems in algebra, combinatorics, graph theory, and many other 
fields can be easily solved using Sage. For example, in the context of group theory, 
Sage contains enormous numbers of cods (commands) that are related to aspects 
of algebra. These commands can manipulate numbers to solve complicated linear 
equations. The commands can be used to identify whether a given group is cyclic, 
normal, or abelian. Several commands are available to compute Cayley’s table for 
the additive and multiplicative groups of integers modulo n and find the generators 
of a group, among other applications. 

Sage can be downloaded using the link “https://www.sagemath.org/”. Note that 
many versions of Sage are available, these versions are regularly updated. To check 
the version of your software, type the command “version ()”, as shown below. In this 
chapter, we use “SageMath version 9.2”,

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
B. Al Subaiei and M. Al Nuwairan, A Gentle Introduction to Group Theory, 
https://doi.org/10.1007/978-981-99-0147-0_10 
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10.2 Examples for Using Sage in Group Theory 

In this section, several questions that already have been solved in Chaps.1–9 will be 
repeated using Sage. By applying Sage’s commands, many problems can be solved 
in an efficient manner. We begin by considering basic operations on sets and learn 
several commands and then move to deeper problems pertaining to group theory. We 
explain the usage and template for each adopted command. All the images of the 
commands in this chapter have been extracted from Sage sessions of the Sage official 
software (SageMath, 2021). The reader may refer to (Zimmermann et al., 2018) and 
(Anastassiou & Mezei, 2015) to try other Sage commands. 

10.2.1 Commands Related to Sets and Basic Operations 

To begin working with Sage, we must define (inform the software about) the objects 
that we intend to deal with. The objects can be defined by typing the elements of such 
object in a list with two square brackets. In this manner, Sage stores the values of 
the objects and uses them if needed. For example, typing A = [1, 2, 3, 4, 5, 6] stores 
A as the list of elements 1, 2, 3, 4, 5, 6 in the same given order. The list A remains 
stored and is not viewed unless a command asks Sage to do so. Many commands in 
Sage can be used to view the output. For example, if A = [1, 2, 3, 4, 5, 6] is encoded 
in Sage, then any time a user types “A” or “A.list()” and presses ENTER, the stored 
value of A will be presented. 

The command “set()” in Sage is used to store an object as a set. After applying 
this command, the input is considered a set and remains as a set unless its format 
is changed by another command. For example, typing A = [1, 2, 3, 4, 5, 6] drives 
Sage to consider A to be the list 1, 2, 3, 4, 5, 6. To consider A as a set, the command 
“A = set(A)” is used. See the following example.



10.2 Examples for Using Sage in Group Theory 363

It is possible to merge two lists that are previously encoded using the symbol 
“+”. For example, in the following display box, the command “+” joins the two lists 
A and B and the elements of the two lists in the same order without deleting any 
common elements. 

If one deals with the lists only as sets, then the best way is to store these lists 
directly as sets, specifically by implanting the elements between curly brackets “{}”, 
as shows below.
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The commands “difference()”, “intersection()”, and “union()” in the above 
display box are used to compute the difference, intersection, union, and symmetric 
difference of two sets. To use such commands, one must ensure that the inputs 
are defined as sets by using the command “set()” or curly brackets; otherwise, the 
commands will not work. Other shorter commands are available too. For example, 
the union, intersection, difference, and symmetric difference can be computed using 
the symbols “|”, “&”, “−”, and “∧∧”, respectively. All these symbols deal with the 
inputs as sets. 

The types of elements in any set vary, and they may be numbers, characters, or 
names. If the elements of a set are not numbers, then they must be identified between 
two quotation marks, as shown in the following display box. To check whether any 
element belongs to a certain set, the command “in” should be used. The answer of 
such command is either “true” or “false”. Two commands can be implemented in the 
same line by using a comma “,” or semicolon “;”.



10.2 Examples for Using Sage in Group Theory 365

The command “cartesian_product([,])” is used by Sage to find the Carte-
sian product of two sets defined in the system. For example, the command 
“cartesian_product([A, B])” stores the Cartesian product of the sets A and B in 
the program. Sage does not present the output unless a suitable command is applied, 
as shown in the following display box. Note that to view the elements of the Cartesian 
product, one must apply the command “set()”. 

If A and B are encoded using the square brackets, their Cartesian product can be 
calculated using the same command. However, to view the elements of their product, 
the command “list()” is used. To list the elements as a set, one needs to apply the 
command “set()”. See the operations explained below.
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The command “matrix()” is used to define a matrix in Sage. The entries of a 
matrix are entered row by row within square brackets. Operations on matrices such 
as determinant, trace, inverse, and transpose are implemented using the commands 
“det (A)”, “A.trace()”, “A∧(−1)”, and “A.transpose()”, respectively. For example, 
the matrix in Example 1.6.22 (1) is encoded as shown in the following display box, 
and all its matrix operations are computed. 

Sage can also be considered a calculator. Basic operations on integers, reals, 
and complex numbers can be conducted. The signs “+, −, ∗, /” are used for sum, 
difference, multiplication, and division, respectively. For the exponents, the signs 
“∗∗” or “∧” are used. The square root and nth root are calculated using the commands 
“sqrt()” and “∧(1/n)”, respectively. 

The last quotient in the output above yields a fractional answer. To obtain the value 
in decimal, either replace “67” by “67.0”, or use the command “numerical_approx()”, 
as follows:
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The constant numbers π and e are defined in Sage as “pi” and “e”, respectively. 
The imaginary number i is also defined as “i” or “I ”. The exponent function is 
implemented using “exp()”. The logarithm function with base 10 and base a can be 
calculated using the commands “log()” and “log( , a)”, respectively. 

The absolute value of a number can be calculated using the command “abs()”, as 
shown below.
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Next, we review commands related to the quotient-remainder theorem (Sect. 2.1). 
In Sage, when dividing a by b, the remainder can be computed by typing “a%b”. 
The quotient is obtained by using the symbol “//”. Several commands can be 
used to find the quotient and reminder simultaneously, such as “a.quo_rem(b)” and 
“divmod(a, b)”.
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The greatest common divisor is obtained using the commands “gcd(a, b)” or  
“a.gcd(b)” for the integers a and b. The coefficients specified by Bézout’s lemma to 
write the greatest common divisor as a linear combination of the two integers can be 
computed in seconds by using the commands “xgcd(a, b)” or “a.xgcd(b)”. 

The output of the commands “xgcd(a, b)” or “a.xgcd(b)” is a triple consisting of 
the greatest common divisor of the first component and the coefficients of the linear 
combination in other two components. Hence, the output of such commands in the 
display box above means 

52 = (26 × 47840) + (−119 × 10452). 

The command “lcm(, )” is used to compute the least common multiple.
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To compute the prime divisors of a given number, the command 
“prime_divisors()” is used in Sage. The command “factor()” is used for finding 
the prime factorization. 

The following shows the solution of Example 2.9.9 by using Sage. 

To check whether a number is a prime, the command “is_prime()” can be used.
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Sage solves equations using the command “solve()”. To solve any equation in one 
variable, write the equation followed by a comma with a variable inside the brackets of 
the command “solve()”. The double equality symbol “==” in the following display 
box means the equal sign. 

In cases involving more than one variable, Sage must be informed about the 
variables before using the command “solve()”. The definition can be performed 
using “var()”. 

To define any number “x” as an integer, rational number, real number, or complex 
number in Sage, the commands “ZZ(x))”, “QQ(x))”, “RR(x)”, or “CC(x)” are used, 
respectively.
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In the above display box, the statements mean 5 ∈ Z, 6 ∈ Q, 5 ∈ R, and 6 ∈ C. 

10.2.2 Commands Related to Integers Modulo n 

This subsection discusses Sage commands related to the integers modulo n. These 
commands can help solve the problems discussed in Chapter 3. For example, the 
command “mod(a, n)” is used to find the integer congruent to a modulo n. Example 
3.5.1 is resolved below.
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The residue classes module n are obtained using one of the two commands 
“Integers(n)” or “IntegerModRing (n)”. Both commands can be used to generate 
the additive group module n. . Like most other commands in Sage, these commands 
create the additive group and store it in the system. Sage does not display the group 
unless a display command is applied. Several items in (Example 3.3.4) are resolved 
in the display box below. 

To find the tables for the addition and multiplication on Zn , Sage 
uses the commands “R.multiplication_table(names =‘elements’)” and 
“R.addition_table(names =‘elements’ )”, respectively. Note that “R” refers to 
the name assigned to Zn .
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To add or multiply specific elements in Zn , the elements must be selected using 
the name assigned to Zn, as shown in resolving Example 3.3.4 (1).
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Example 3.3.4 (2) can also be solved using Sage, as follows: 

Example 3.3.10 is resolved using Sage, as shown in the following box:
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The operation on Zn can be simultaneously performed for more than two elements 
simultaneously, as shown in the following display box. 

Equations on Zn can also be solved in Sage. To solve an equation on Zn , a template 
involving “for”, “in”, and “if” is used. Example 3.6.4 (1) is resolved below, and the 
reader may see that there exists only one solution in Z8 for each defined equation.
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The results in the display boxes below show that the equation in Example 3.6.4 
(2) has no solution in Z9, and the equation in Example 3.6.4 (4) has three solutions 
in Z15.
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10.2.3 Commands Related to Groups 

This subsection discusses commands related to groups that can be used to solve 
problems in Chaps. 4–6. In particular, Sage can be used to solve problems such 
as determining if a given group is abelian or cyclic, computing the order of group 
elements, or obtaining information about the group. The command “axioms()” is  
used to demonstrate the characteristics of categories such as groups and monoids, as 
shown below. 

To find the inverse of any element in an additive group (such as 
(Z, +), (Q, +), (R, +), (C, +), or (Zn, ⊕n)) the sign (command) “−” is used. 
Similarly, for finding the inverse of an element in a multiplicative group (such as 
(Q∗, ·), (R∗, ·), (C∗, ·) or (Inv(Zn), ⊕n) the command “∧−1” is used in Sage. Recall 
that to inform Sage about an element a in Q, one must write “QQ(a)”. Therefore, 
the command for the inverse of a in the group (Q, +) will be “−QQ(a)”, while the 
inverse of a in the group (Q∗, ·) is encoded as “QQ(a)∧ − 1”.
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The command “H.order()” is used to compute the order of a given group or set 
H . The commands in the display box below list the elements of the additive group 
Z3, provide its Caley’s table, compute its order, and find the inverse elements of [1] 
and [2].
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The additive group Zn can be created in Sage using the command 
“AdditiveAbelianGroup ([n])”, and the elements of Zn can explicitly be seen as 
equivalence classes. 

As shown above, Sage can check whether a given group is cyclic, by applying the 
command “is_cyclic()”. 

The multiplicative group of integers modulo n can be determined using Sage. 
The command “list_of_elements_of_multiplicative_group()” stores the elements of
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(Inv(Zn), ⊗n). To obtain this group, one must create Zn and then apply the above 
command to find the invertible elements in Zn . 

In the box above, the line “R = list_of_elements_of_multiplicative_group; R” 
contains two commands: to create the group Inv(Zn) and to view it. Note that writing 
the command “R = list_of_elements_of_multiplicative_group ” stores  R as a list 
of invertible elements in the additive group, and it is not considered as a group. 
Therefore, to check if the multiplicative group is cyclic, one must use L and not 
R via the command “L.multiplicative_group_is_cyclic()”. For the same reason, to 
find the inverse of an element in Inv(Zn), the symbol “∧ − 1” is used with  Zn, as 
mentioned earlier. 

An error message will appear if one tries to find the multiplicative inverse of a 
noninvertible element. For example, the use of the following commands 

“L = I nteger(4)” 
“L(2)∧ − 1L(2)^−1” 
will generate an error message. 
To find a generator of the additive group Zn , the command “gen()” is used. The 

command “multiplicative_generator()” is used to obtain the multiplicative group 
Inv(Zn).
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The commands in the display box below create the invertible elements in Z7 and 
find a generator of Inv(Z7). 

The command “list_of_elements_of_multiplicative_group()” creates the multi-
plicative cyclic group Inv(Zn), which is not of order n. The command “AbelianGroup 
([n])” creates a multiplicative cyclic group of order n for a given n. Note that the 
output is given in terms of a generator f .
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The command “euler_phi (n)” is used to find the Euler function that yields the 
order of the multiplicative group Inv(Zn) (Corollary 5.3.9). 

The command “SymmetricGroup (n)” creates the symmetric group Sn and stores 
it in the software. Permutations can be defined in Sage using two methods. The first 
method uses rounded brackets to implement a permutation as a finite product of 
cycles. For example, to represent 

ρ =
(
1 2  
3 4  

3 4 5  
5 2  1

)
∈ S5 

in Sage, one must type ''(1, 3, 5)(2, 4)''. The second method uses square brackets with 
the numbers between the square brackets representing the value for their position. 
For example, to represent the permutation ρ using square brackets, one must type
''[3, 4, 5, 2, 1]''. The identity permutation is implemented in Sage using the command 
“()”. Other commands are also available, as shown in the following display boxes: 

– “is_abelian()”, which verifies whether any group is abelian. 
– “center() ”, which computes the center of any given group.
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– “order().list”, which computes the center of the given group and lists its elements.
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The following display box shows an example for the symmetric group of order 
n = 84. 

In the display box below, the center of the group is computed first, and then the 
command “list” lists all the elements of the center of the group.
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The composition of two maps in mathematics is conducted from right to left. 
However, in Sage, the composition of permutations are applied from left to right. 
Therefore, the multiplication (composition) of two permutations in Sage is reversed. 
For example, to find the product (2 4 1)(3 5 4) as an element in Sn , Sage uses the 
command 

Sn("(3, 5, 4)") ∗ Sn("(2, 4, 1)") or Sn
('(3, 5, 4)'

) ∗ Sn
('(2, 4, 1)'

)
. 

To find the sign and order of a permutation, the commands “sign()” and “order()” 
are used, respectively.
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The inverse of any element m in a symmetric group can be computed using the 
command “m.inverse()”, where m is the permutation. See the list of examples below.
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To find Cayley’s table for the symmetric group Sn , the command “Sn . 
cayley_table()” is used, after defining Sn in Sage. This command generates Cayley’ 
table for Sn in terms of letters “a, b, c, . . .”. To view the table in terms of Sn 

permutations, the command “names =‘elememts’” is used. 

The dihedral group can be defined in Sage by using the command 
“DihedralGroup()”.
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The commands “2∗ Z Z”, “3∗ Z Z” , · · ·  ,“m∗ Z Z” are used for 2Z, 3Z, · · ·  , mZ, 
respectively, as shown below. 

10.2.4 Commands Related to Subgroups 

In this subsection, we consider the commands related to subgroups and their prop-
erties such as the generating of subgroups, normality of subgroups, and cosets. 
To create cyclic subgroups of a given group G, the command “subgroups()” is  
used. In the following display box, all cyclic subgroups of the symmetric group 
S3 are computed in Sage. There exist six different subgroups of S3. The command 
“[F.order() for F in t]” is implemented to find the orders of all subgroups, where t 
denotes the set of all cyclic subgroups.
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After creating the set of all subgroups of Sn , any of these subgroups can be 
selected, and their algebraic properties can be examined. The following example 
creates the set t of all subgroups of S3, selects the first one, list its elements, and 
computes its order. Note that the command “k = t [n]” selects the (n − 1)th subgroup 
of the list t . 

The following two examples redo the example above, with selecting the fourth 
and third subgroups of S3, respectively.
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All cyclic subgroups of the dihedral group D4 can be computed, as shown in the 
following example.
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To create the subgroup generated by the subset {a, b, c, . . .} of a given group 
G, the command “G.subgroup ([a, b, c, . . .])” is used. The command “G.subgroup 
([b])” creates the cyclic subgroup of G generated by b.
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In the following display boxes, the subgroups of the symmetric group S3 that 
are generated by (2 3) and (1 2 3) are computed. Note that the semicolon is used to 
implement the two commands simultaneously.
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To check whether group A is a subgroup of group B, the command 
“A.is_subgroup(B)” is used in Sage, as shown in the following box.



10.2 Examples for Using Sage in Group Theory 397

The alternating group An , the set of all even permutations in the nth symmetric 
group, is defined in Sage using the command “AlternatingGroup(n)”. See the 
following box for the alternating groups A1, A2, and A3. 

In the display box below, the alternating group for n = 3 is created, and many 
commands are applied to check its properties.
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The display box above contains many commands for the symmetric group S4 and 
alternating group A4. The right and left cosets are computed using the commands 

“G.cosets(H, side =‘right’)” and 
“G.cosets(H, side =‘left’)”, respectively.
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To list all the normal subgroups of a given group, the command 
“normal_subgroups()” is used in Sage. In the following example, Sage creates all 
normal subgroups of S3 and arranges them in a list. To select the i th normal group 
in the list, apply “S3norms[i−1]”, where S3norms is the given name for the normal 
subgroups of S3. Recall that the equal sign is written in Sage as a double equality
'' =='' . This sign can also be used to check the equality between two objects in 
Sage.
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The quotient group is computed in Sage using the command “G.quotient(H )”, 
where H is a normal subgroup of the group G. Note that the elements of the quotient 
group cannot be identified with the cosets. The command “G.quotient()” creates a 
group that is isomorphic to the quotient group.
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Remark: The codes which are used in this chapter are well known and inherited from 
the tutorials, reference manual, and construction of SageMath found in (SageMath, 
Welcome to Sage Tutorial!, 2019), (SageMath, Welcome to Sage Reference Manual!, 
2019), and (SageMath, Welcome to Sage Constructions!, 2019). 

Exercises 

Solved Exercises 

10.1 Let A = {4, 5, 6}, B = {7, 8}, and C = {6, 8} be sets. Using Sage, find 
A ∪ B ∪ C and A ∩ B ∩ C .
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Solution: 

10.2 Using Sage commands, find weather a is divisible by b in the following cases: 

– a = 36587, b = 143. 
– a = 34567892, b = 13. 
– a = 111293, b = 13. 

Solution: 

10.3 Let a = 1345 and b = 330. Using Sage, check whether a and b are relatively 
prime. If not, find the greatest common divisor. What are the coefficients of 
the linear combination of the greatest common divisor of a and b?
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Solution: 

10.4 Consider the additive group Z34. Using Sage, find the elements [a], [b] in Z34, 
where a = 245 and b = 12467. 

Solution: 

10.5 Consider the additive group (Z, +) and its subgroup 24Z. Using Sage, check 
if 134, and 1320 are elements in 24Z. What is the generator of 24Z?
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Solution: 

10.6 Let R be the multiplicative cyclic group of order 15, which is generated by a. 
Using Sage, answer the following questions: 

– List the elements of R. 
– Find |R|. 
– Find ord(a3). 
– Let b = a3, find b ∗ b ∗ b ∗ b. 
– Let c = a14, find c123 
– Find b354 ∗ c654 
– Find the subgroup of R generated by a5 and name it H . 
– Is H finite? Is it cyclic? 
– Find |H |. 

[To determine the generator in the cyclic group, the command “R. <  a >= 
AbelianGroup([n]) ” is used, where “n” is the order of the group, and a is the 
generator]
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Solution: 

10.7 Using Sage and a method different than that mentioned in Sect. 10.1.2.1, solve  
the following equations: 

2x2 + 63x + 145 = 23. 

y6 + 64 = 0.
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Solution: 

10.8 Consider the symmetric group S13. Using Sage, find the order of S13. Is  S13 

cyclic? If a = (
2 12

)(
4 10 11

)
and b = (

12 10
)(
7 9 11

)(
4 8

)
, find a7, 

a76, ab, and (ab)−1 . 

Solution: 

10.9 Using Sage, find a generator of Inv(Z34)?
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Solution: 

10.10 Using Sage, determine if A3 and A6 are abelian. 

Solution: 

10.11 Consider the Klein group. Using Sage, check if the Klein group is cyclic. 

Solution:
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10.12 Consider the symmetric group S7. Using Sage, find the subgroup H of S7 

generated by
(
5 4 7

)
. Is  H normal? 

Solution: 

10.13 Consider the group A16. Using Sage, find the order of A16. Is A16 abelian? 
Is it cyclic? 

– If a = (
2 7 13

)
, find the subgroup H of A16 generated by a and its order. 

– If c = (
2 7  13

)(
4 9 11  5 6

)
, find the subgroup K of generated by c and 

its order. 

Solution:
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Unsolved Exercises 

10.14 Let A = {a, b, c, d, e}, B = {a, b, l},and C = {a, l, m}. Using Sage, find 
the following sets: 

a) A ∪ B ∪ C , B ∩ C, A − C 
b) B ∩ C × A, ( A × B) − (B × C) 

10.15 Solve the following equations using Sage: 

– f (x) = x2 − 9x + 27 
– x + 3 = y − 2 

10.16 Find the quotient and remainder of the following integers using Sage. 

– a = 123, b = 21 
– a = 123, b = −21
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– a = −123, b = 21 
– a = −123, b = −21 

10.17 Let A = 

⎡ 

⎣ 
3 4 2  
0 2 1  
5 0  1  

⎤ 

⎦ ∈ M3(R). Using Sage, find the determinate, trace, and 

inverse of A. 
10.18 Write the addition and multiplication Cayley’s tables for Z11. Find the inverse 

of [5] and [126] for both operations. 
10.19 Using Sage, solve the equation [6x] ⊕12 [2] = [32] in Z14. 
10.20 Find the generators for the following groups: 

a) (Z22, ⊕23). 
b) (Inv(Z23), ⊗23). 

10.21 Consider the symmetric group S20. Using Sage, answer the following 
questions. 

a) Is S20 abelian, is it cyclic? 
b) Find the center of S20, and the order of its center. 
c) Find the sign, order, and inverse of σ = (4 7 8)(2 4 6)(5 11 6) and 

α = (4 8 2)(15 11 6 2). 
d) Find σ 214α214, and then find its order, sign and inverse. 
e) Find the subgroup of S20 generated by (4 7 12  8). 
f) Find the alternating group of S20. 

10.22 Consider the symmetric group S13 with σ = (3 7 8) and α = (4 1 2). 
Using Sage, 

a) Find the subgroup H of S13 generated by σ. 
b) Find the subgroup K of S13 generated by α. 
c) Find the subgroup N of S13 generated by σ and α. 
d) Are H , K , and N normal? 
e) Find the alternating group of S13. 

10.23 Using Sage, find all the normal subgroups of S14 and S6. 
10.24 Consider the symmetric group S11, with σ = (1 7 2), α = (4 1 2), and 

β = (11 5 2). Using Sage, answer the following questions: 

a) Find the subgroup H of S13 generated by σ , α, and β. 
b) Find the left and right cosets of H 
c) Is H a normal subgroup of S13? 

10.25 Consider the symmetric group S5. 

a) Find the subgroup H generated by σ = (1 3). 
b) Is H normal?
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