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Distribution, and Niche Occupancy:
Western Ghats as a Model
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Abstract

Machine learning enables computers to learn similarly to humans. In recent years,
the use of machine learning in ecology has skyrocketed. Advances in computer
science have allowed us to better combine the ever-increasing volumes of data we
acquire with our knowledge of how natural systems function. These
enhancements in process comprehension are essential for accurate ecological
predictions. The MaxEnt software implements the maximum-entropy approach,
a spatial distribution modelling (SDM) tool for biological entities. MaxEnt uses
machine learning to produce accurate predictions about whether a particular
species will be found in a particular place based solely on the locations in
which it has previously been observed. These locations along with various
environmental variables preferable by the targeted species can produce predictive
distribution models. Variables like climate, topography, land use, vegetation,
human impacts, etc. are commonly used. These variables are available as open
sources and can be downloaded from multiple open-access database online.
These future climate variables for various Representative Concentration
Pathways (RCP) are available and are popularly used in these models for climate
change predictions. The present research discusses the output of various studies
conducted in Western Ghats (WG) using these models and points out benefits of
using ML-based models for lesser-known species conservation.
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3.1 Introduction

Machine learning is a fascinating computer science technology that allows
computers to work without being explicitly programmed (Mitchell 2006). Machine
learning, as the name suggests, allows computers to learn in the same way that
humans do, and it is widely used in all aspects of life. This field of artificial
intelligence learns like a person and improves its accuracy over time using data
and algorithms. The three categories of machine learning methodologies are
supervised, semi-supervised, and unsupervised (Grira et al. 2004). Models are
used in machine learning technologies to create precise predictions (Liakos et al.
2018). In supervised machine learning, as input data is entered into the model, the
weights are adjusted until the model is adequately fitted (Choi et al. 2018). This is
done as part of the cross-validation procedure to avoid over fitting or under fitting the
model. In supervised learning, neural networks, naive Bayes, linear regression,
logistic regression, and random forest are just a few of the approaches used. The
purpose of supervised learning, also known as supervised machine learning, is to
efficiently classify data or predict outcomes. As input data is entered into the model,
the weights are adjusted until the model is adequately fitted. This is done as part of
the cross-validation procedure to avoid over fitting or under fitting the model.

Machine learning is used to assess and cluster unlabelled data sets using a method
known as unsupervised machine learning (Chegini et al. 2019). These algorithms
can detect patterns or groups of data without requiring human input. For camera trap
data and conflict analysis, such techniques are employed in picture and pattern
recognition. Unsupervised learning techniques include neural networks, k-means
clustering, and probabilistic clustering. Semi-supervised learning falls between
supervised and unsupervised learning. During training, a smaller, labelled data set
guides classification and feature extraction from an unlabelled data set. Semi-
supervised learning can be used to overcome the lack of labelled data (or the inability
to afford to label enough data) (Chapelle et al. 2009).

It is now easier than ever to produce precise and unbiased predictions regarding
the state of the environment. Three events occurred simultaneously to cause this: To
begin with, previously lacking information about ecosystems is now easily accessi-
ble. Ecology is swiftly transitioning from a period of scarce data to one awash in
information as a result of the advent of big data. There has been a major cultural shift
in the scientific community in recent years toward making ecological data accessible
to the public (Shameer et al. 2021a). These recent methodological discoveries have
also enabled us to better combine the ever-increasing volumes of data we are
collecting with our understanding of how natural systems work. These
improvements in process understanding are critical for good ecological forecasting,



as we face a future with no analogue conditions. Finally, the increasing availability
of high-performance infrastructure for scientific computing and an increase in
processing capacity in general serve as the technological foundation for both of
the aforementioned tendencies. The quick uptake of machine learning in ecology can
be attributed to these three novelties. While machine learning methods were not
widely used (Olden et al. 2008) until recently, the popularity has skyrocketed in the
past several years. Given its limited application thus far, deep learning in ecology has
only been put to a few select uses.
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Soberón (2010) argues that accurate distribution mapping in a sustainable habitat
can be achieved by the integration of environmental data with species occurrence
data. SDM, also known as ecological niche modelling (ENM) (Peterson 2006), helps
in the conservation of less well-known species by resolving range assessment and
optimal habitat prediction (Whittaker et al. 2005; Warren and Seifert 2011; Fourcade
et al. 2014). With the help of presence data, MaxEnt (Phillips et al. 2006) can mimic
the ecological niche of a wide variety of taxa, including flora and fauna (Raman et al.
2020a, b). With insufficient information, the MaxEnt machine language has proven
capable of estimating the range, preferred environment, and niche suitability of
species (Phillips et al. 2006; Elith et al. 2011). Distribution models will give us
detailed information about the habitat, which will help us learn more about the needs
and less important parts of the ecosystem that affect a species with a high manage-
ment plan score. This article aims to provide an overview of prediction models,
providing numerous examples of how they are used to anticipate the habitat of
lesser-known species and how climate change affects species distribution.

3.2 MaxEnt Modelling

The MaxEnt software implements the maximum-entropy method, a technique for
modelling the spatial distribution of biological organisms (Phillips et al. 2006).
MaxEnt uses machine learning to make accurate predictions about whether a certain
species will be found in a certain area based only on where that species has been seen
before. This method of prediction is gaining popularity since it outperforms similar
algorithms in terms of precision. Using environmental factors as backdrop points,
the software may be used to determine the greatest entropy in a geographical data set
of target species. This is comparable to the concept of increasing the log likelihood
of species presence data and removing it from the penalty term, which is akin to the
concept of AIC. Each of the used environment variables is assigned a weight based
on the amount of complexity it adds. In addition, an empirically derived regulariza-
tion parameter will be integrated into the weighting. The total of these weights
defines how a penalty should be given to the probability to prevent over fitting. The
MaxEnt’s regularization parameters are derived from a study conducted by Phillips
and Dudik (2008); however, users have the ability to adjust this value, which is
advised in the default circumstance.

The best model is the one with the highest entropy under particular conditions.
MaxEnt is the model of choice when it comes to extrapolating species distributions



with remarkable exactness (Bosso et al. 2018; Soucy et al. 2018; Zhang et al. 2018).
Assuming a uniform distribution, the software begins to operate and runs continuous
iterations, increasing the chances of finding an appropriate spot (Merow et al. 2013).
Logistic output is often used. This is the probability of a species’ binary argument
given the environmental variables (Merow et al. 2013). Using logical output, we can
discern between appropriateness of different sites. The settings of the regularization
multiplier (rm) can be modified to change the models. To change the model’s
complexity, several feature types can be utilized, such as linear (L), product (P),
quadratic (Q), and hinge (H). A bias grid can also be created by computing the
Gaussian kernel density of sample localities while taking into account the possibility
of bias in the data. Using a subsampling technique with a number of repeats, a “N”
number of iterations can be used to train the models, and a “100-N” number of
iterations may be used to test them. The jackknife method can be used to assess the
significance of all environmental variables.
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3.3 The Climatic Variables

Any properly assigned variable can be used in MaxEnt habitat suitability modelling.
Bioclim variables are a collection of 19 climatic variables from data sets offered by
the WorldClim database (worldclim.org). Combining monthly temperature and
precipitation values yielded these bioclimatic variables. Bioclimatic factors are
frequently employed in species distribution prediction models. The bioclimatic
variables are given annual temperature, annual precipitation, or climatic extremes.
Table 3.1 provides information about bioclimatic factors. The variables 1 to 4 (BIO1
to BIO4) reflect the annual temperature, while the variable 12 (BIO12) represents the
annual precipitation. The climatic variables 5 to 11 (BIO5 to BIO11) display the
varying quarterly or monthly temperature extremes. Quarters are a group of 3 months
in a year, with four quarters such as cold, warm, wet, and dry. BIO13 and BIO14
provide the precipitation data for 2 severe months, while BIO15 is the coefficient of
variance for this data (precipitation seasonality). Precipitation data for the four
quarters is represented by the numbers 16 to 19 (BIO16, BIO17, BIO18, and
BIO19).

3.4 Climate Change and Habitat Suitability

Numerous websites provide future climate statistics based on the three Representa-
tive Concentration Pathways (RCP). WorldClim, CHELSA, CliMond, ecoClimate,
ENVIREM, and MERRAclim are the most important data-supply databases. RCP
describes the possible future climate based on the Intergovernmental Panel on
Climate Change’s (IPCC) greenhouse gas emission scenarios. For the prediction
and analysis of climate change, four basic paths are frequently used. They had RCP
values of 2.6, 4.5, 6, and 8.5. In RCP 2.6, it is assumed that greenhouse gas
emissions will begin to decline by 2020, with carbon dioxide emissions reaching

http://worldclim.org


zero by the same year. In RCP 4.5, greenhouse gas emissions peak in 2040 and then
fall, whereas in RCP 6, emissions peak in 2080 and then decline. Under RCP 8.5,
greenhouse gas emissions will continue throughout the twenty-first century (Sharma
et al. 2017). Using these notions, it is possible to model the habitat appropriateness
of different species under different RCP scenarios. This will aid comprehension of
the alternating distribution ranges of several species. The aforementioned databases
can be used to find bioclimatic factors that can be used to make predictions about the
distribution of species.
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Table 3.1 Bioclimatic variables used for modelling (See Bioclimatic variables—WorldClim
1 documentation for more details)

BIO1 Annual mean temperature

BIO2 Mean diurnal range (mean of monthly (max temp—min temp))

BIO3 Isothermality (BIO2/BIO7) (×100)

BIO4 Temperature seasonality (standard deviation ×100)

BIO5 Max temperature of warmest month

BIO6 Min temperature of coldest month

BIO7 Temperature annual range (BIO5–BIO6)

BIO8 Mean temperature of wettest quarter

BIO9 Mean temperature of driest quarter

BIO10 Mean temperature of warmest quarter

BIO11 Mean temperature of coldest quarter

BIO12 Annual precipitation

BIO13 Precipitation of wettest month

BIO14 Precipitation of driest month

BIO15 Precipitation seasonality (coefficient of variation)

BIO16 Precipitation of wettest quarter

BIO17 Precipitation of driest quarter

BIO18 Precipitation of warmest quarter

BIO19 Precipitation of coldest quarter

3.5 Model Appraisal

Area under the receiver operating characteristic curve (AUC) and actual skill
statistics are two metrics that can be used to assess models (TSS). AUC is a
threshold-independent metric used to evaluate model performance by measuring
the model’s ability to distinguish between random and background data. Not all
models with a high AUC score have great predictive value (Phillips et al. 2006), and
evaluations based only on the AUC score are not accurate. The TSS formula is
sensitivity plus specificity equals one, where sensitivity and specificity are evaluated
relative to the probability threshold at which they are greatest (Allouche et al. 2006).
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3.6 The Western Ghats and Climate Change

From Gujarat to Goa, Kerala, through Karnataka and Tamil Nadu in India, there is a
1600-kilometer range of mountain chains known as the Western Ghats (WG). The
faulted ridges of an elevated plateau make up the WG, which is not a mountain in the
traditional sense (Bhat 2017). During the continental drift, when the Indian subcon-
tinent moved close to Reunion Island 120–130 million years ago, the mountain chain
was built by volcanic eruptions. Volcanic eruptions contributed to the extinction of
many reptiles, including the dinosaurs, during this period. The SouthernWG’s 2000-
million-year-old rocks provide evidence of domal uplift, which raised the WG. The
fauna and geography of Peninsular India were altered by the Eocene alterations
(40–45 million years ago) in the region (Karanth 2006). The high rates of uplift
resulted in high heights, slopes, and gorges, which served as the cradle of speciation,
resulting in the current amount of endemism. This hilly, rolling area with a wide
range of landscapes and plants has a big effect on the climate of Peninsular India
(Gunnell 1997).

The WG is a delicately diverse environment that hosts a wide range of rare and
endangered species, making it a biodiversity hotspot (Cincotta et al. 2000; Myers
et al. 2000; Shameer et al. 2019). The mountain ranges on the west coast of
Peninsular India are unique due to a variety of topography, varied altitudes, different
climates, and a variety of habitats. There are humid tropical conditions at lower
elevations and a temperate environment with an annual average temperature of 150 °
C at higher elevations. Many instances of parapatric and allopatric species have been
found in high altitudes where frigid climates are prevalent (Vijayakumar et al. 2016).
Deforestation, forest encroachment, infrastructural developments, agricultural
expansion, hydroelectric projects, mining, timber logging, and the extraction of
forest products are some of the human-induced stresses that the WG faces today
(Menon and Bawa 1997; Priti et al. 2016; Sen et al. 2016; Raman et al. 2020a, b;
Shameer et al. 2021a). Tropical montane ecosystems, like WG, are undergoing fast
change, but the exact rate and pattern of this change remain a mystery. Variations in
the pattern of land use and land cover have a significant impact on the fragile
ecosystem’s biodiversity (Sukumar et al. 1995; Menon and Bawa 1997). Many
species have already gone extinct due to habitat fragmentation, tourism schemes
that are not based on facts, and the expansion of exotic/invasive species. Changing
the landscape by removing shola-grasslands and replacing them with exotics has
unpredictable consequences.

Animal metabolism and development are directly influenced by changes in CO2

concentration, temperature, or precipitation (Hughes 2000). Due to temperature
changes, the reproductive requirements, habitat selection, and feeding strategies of
species may also have differential effects, which may represent an extra risk for their
survival. According to the Intergovernmental Panel on Climate Change (IPCC), if
global temperatures rise by 2–3 degrees Celsius, 20–30% of species will become
extinct (Stocker et al. 2013; Warren et al. 2013). Climate change is causing WG’s
delicate biological equilibrium to be upended, resulting in an increase in dependent
fauna and changes in floral composition (Shukla et al. 2003). According to the



vulnerability index (Gopalakrishnan et al. 2011), the WG is more vulnerable to
climate change than the northeastern forests. Local variety may suffer as a result of
climate change’s negative influence on water supplies (Wagner and Weitzman
2015). Changes in the trophic structure have been observed in locations that are
particularly vulnerable to climate change. Because of the altered climate, non-native
and invasive organisms have an advantage over their native counterparts (Hellmann
et al. 2008). Because of the rising impact of humans and the introduction of invasive
species, tropical montane ecosystems like WG host many threatened taxa with a
restricted distribution that are vulnerable to local extinction (Arasumani et al. 2019).
Invasive species (flora and fauna) can spread rapidly in a changing environment
because they are able to take advantage of new niches. The successful invaders are
projected to be species that are phenologically flexible and occupy the temporal
niche of the indigenous species (Moran and Alexander 2014). An alien flora has the
same features as native flora and disperses in the same manner. External variables
like climate change play a significant role in reshaping the trophic system. Sukumar
et al. (1995) found that fragile mountain ecosystems are especially at risk from
climate change because of their complicated topography and biogeographic history.
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3.7 Habitat Suitability Model of an Endemic Mammal

We were able to model the ideal habitat for the Western Ghats’ endemic brown palm
civet using the MaxEnt (Shameer et al. 2021b). Prediction models are important for
reviewing or creating data for a less-known species since they understand the target
species’ core niche. The brown palm civet, an endemic species, is difficult to monitor
because of its nocturnal habits and elusive nature (Mudappa 2006; Patou et al. 2010).
A thorough understanding of a species’ natural habitat helps researchers and
conservationists plan suitable actions and undertake extensive monitoring. It has
been suggested that the brown palm civet lives at elevations ranging from 500 to
1300 m above sea level (Rajamani et al. 2002). The Western Ghats’ brown palm
civet has only been studied in terms of its occurrence, diet, pelage variation, and
taxonomy (Pocock 1933; Hutton 1949; Schreiber 1989; Ramachandran 1990;
Ashraf et al. 1993; Ganesh 1997; Rajamani et al. 2002; Mudappa et al. 2010). It is
not enough to know about a species’ natural history and biology to devise an
effective conservation plan. An in-depth understanding of the species’ range and
ideal habitat is even more important (Papeş and Gaubert 2007). Please refer to
Fig. 3.1 (adapted from Shameer et al. 2021b) for a visual representation of the
predicted habitat areas. According to our research, the brown palm civet was
previously widespread in the Western Ghats but is now confined to just four isolated
blocks. The brown palm civet’s habitat was broken up by the destruction of dense
rainforest, which was caused by a lot of human activity.
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3.8 Consequences of Climate Change on Endemic Animals

Many species’ distributions, abundances, and life cycles are directly impacted by
climate change as a result of global warming (Thuiller et al. 2006). In order to protect
biodiversity for the future, planners and politicians must pay direct attention to the
impact of climate change around the globe (Pacifici et al. 2017). Climate change is
expected to have a considerable impact on species’ geographic ranges, resulting in a
decrease in their abundance (Warren et al. 2013). An ecological process in which
climatic variables influence species niches at the spatiotemporal scale is of interest in
a long-term study (MacFadyen et al. 2018). As a result, climate variables that
influence species abundance and distribution can be predicted based on their
response to current climatic conditions. Climate change has been implicated in
numerous studies around the world, which have found that species’ geographic
ranges are shrinking as a result (Walther et al. 2002; Hickling et al. 2006; Priti
et al. 2016; Bhattacharyya et al. 2019). Because of their diverse ecological patterns
and processes, high-altitude ecosystems, also known as “sky islands,” are particu-
larly vulnerable to climate change (Raman et al. 2020b).

An essential role in the study of lesser-known species and the geographical
simulation of the prospective effects of future environmental circumstances on
various species has been played by ecological niche modelling (ENM) (Guisan
and Zimmermann 2000). It is a very climatic-dependent species with a special
geographic affinity for sky islands; it is a data-deficient high-altitude species. Two
endangered species, the brown mongoose and Salim Ali’s fruit bat, were modelled to
examine the effects of various levels of greenhouse gas emissions. Brown mongoose
and other related species would experience considerable shifts in range due to
climate change. The brown mongoose’s estimated range map is provided in
Fig. 3.2 (adopted from Raman et al. 2020b), as is Salim Ali’s fruit bat’s expected
range map in Fig. 3.3 (adopted from Raman et al. 2020a). The brown mongoose’s
range will be significantly affected by climate change in the changing climatic
circumstances, according to the findings. The expected shift in Salim Ali’s fruit
bat’s trophic composition indicates that the WG’s floral composition is shifting, and
this shift is reflected in the change predicted for this species. Because of this, we
expect the floral and faunal composition of WGmay change as a result of the shifting
climatic condition.

3.9 Paleoclimatic Model and Allopatric Speciation

The shifts in endemic species’ geographic distribution that have led to the current
patterns can be traced back to the quaternary climate change (Hewitt 2000; Hewitt
and Griggs 2004; Bose 2016; Ray et al. 2018). Climate change has resulted in a
shrinking of existing ranges, culminating in the creation of new species from isolated
meta-populations (Hewitt and Griggs 2004; Provan and Bennett 2008; Stewart et al.
2010; Bose 2016). During the Eocene, the Indian plate was migrating, and this is
when the Dravidogecko evolved and became a distinct species (Chaitanya et al.
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Fig. 3.2 Predicted habitat change of endemic brown mongoose in Western Ghats

Fig. 3.3 Predicted habitat change of endemic Salim Ali’s fruit bat in Western Ghats



2018). Many species arrived in the WG in the late Miocene to early Quaternary
period when the paleoclimate was suitable, according to Gupta (2010). Insights
gained from phylogeography and paleoniche modelling studies (Robin et al. 2010;
Ray et al. 2018) shed light on life during and after the ice age, and the WG’s constant
precipitation made these locations ideal for human settlement and expansion. Based
on paleoclimate theory, the dry glacial epoch may have led to species diversification.
WG species diversification and its causes have been hypothesized using data col-
lected from mountain ranges (Robin et al. 2015). During the glacial and interglacial
periods, temperature changes affected forests and grasslands in the high mountains.
Species may grow during the ice age and shrink during the interglacial period, with
the former being more likely. By simulating historical, present-day, and future
climate scenarios on the distribution patterns of old endemic reptile genera like
Dravidogecko (Fig. 3.4), we were able to test this notion. The Nilgiris (Western
Ghats) were the focus of our 1-year survey, which covered 58 diverse sites. For the
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Fig. 3.4 Species distribution model of Dravidogecko in Western Ghats. (a) SDM under Pleisto-
cene climate, (b) SDM under current climate, (c) occurrence points on the elevation map of the WG,
(d) SDM under RCP 4.5, (e) SDM under RCP 6, and (f) SDM under RCP 8.5



distribution model, we employed environmental variables such as diurnal range,
isothermality, and altitude. Modelling of past climate suggests that species currently
found in the Southern Western Ghats will have existed throughout the WG during
Pleistocene times. Foreseeing a new species from the Western Ghats, we combined
our findings with DNA analysis (Fig. 3.5).
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Fig. 3.5 Connecting speciation and SDM and phylogeny

3.10 Limitations of Research

Species distribution models are superior machine learning techniques for predicting
and mapping species’ possible habitats in space and time. Consequently, these
methods are now acknowledged as sustainable biodiversity management
instruments (Qazi et al. 2022). However, they are not always appropriate and, if
their limitations are not acknowledged by decision-makers, can lead to ineffective
and costly mitigation and compensation (Carneiro et al. 2016). Robust models that
account for species detectability, such as occupancy (MacKenzie et al. 2006)
models, require recurrent presence and absence records. MaxEnt solely employs



presence data, which has been criticized as a significant restriction. This can be
circumvented by giving accurate sample data. In much of the research, the modelling
relies on incorrect secondary data, posing the greatest problem and leading to
inaccurate predictions. Obtaining presence-absence records for lesser-known,
uncommon, or elusive species is frequently difficult for researchers. If this is the
case, MaxEnt outperforms occupancy models and generates a valid species distribu-
tion map using only presence data. It is important to sample correctly if you want to
make accurate predictions about where less-known species live.
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3.11 Future Prospects

Modelling the spread of different species can be greatly assisted by the recent and
future breakthroughs in machine learning and artificial intelligence. Species distri-
bution modelling could benefit from including recent developments in ecological
theory. Using algorithms that take into account how prey and predators interact, how
competition works, and how niches change over time makes species modelling more
effective.

3.12 Conclusion

The addition of environmental data to the occurrence data of species aids in the
precise mapping of their distribution in a plausible habitat. Ecological niche
modelling (ENM) is a technique that aids in the conservation of lesser-known
species by resolving range assessment and preferred habitat prediction. Based on
the presence data, MaxEnt predicts the ecological niche of a variety of species,
including both plants and animals. MaxEnt’s machine language has demonstrated
the ability to estimate the geographic distribution, preferred habitat, and niche
compatibility of species with minimal data. Hence this method can be used to
identify the potential habitats of lesser-known species and develop long-term con-
servation plans for these species.
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