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Abstract

Vegetation modeling is an advanced tool that helps to understand the current
forest ecosystem dynamics and provides a peek into future possibilities. In the era
of climate change, projecting and monitoring different ecosystem elements and
biodiversity are critical in supporting the management and conservation of forest
ecosystems. Quantitative models are often used to understand and project the
“impact of climate change” and the associated disturbances in forest ecology.
Here we present a review of different ecosystem modeling approaches, exploring
their potential applications to understand changing forest dynamics and climate
change adaptation options in forest ecosystems. This comprehensive and com-
parative study helps us to get insights into the advantages and limitations of the
various modeling-based approaches, providing a guideline for systematic execu-
tion of policy assessment according to a defined criteria (e.g., uncertainty man-
agement, data required, spatial and temporal dynamics, adaptation measures
integration, and level of complexity). Further, we present an overview of ecosys-
tem modeling and its usability for global policy planning in the forest sector.
Finally, we suggest ways to use these advanced tools to help policy planning for
conservation, restoration, and climate change adaptation in forest ecosystems.
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24.1 Introduction

Greenhouse gas build-up in the atmosphere and rising temperatures have already
caused widespread losses and damages to nature, ecosystems, and people (IPCC
2022). Observed climate change has caused substantial damages, and irreversible
losses, to many of the terrestrial ecosystems across the world including the forest
ecosystems. These changes include increase in burned area by wildfires, shifting of
species poleward and to higher elevations, among other examples. Global
temperatures have so far risen by only 1.1 °C, even this small change in global
temperatures has already caused irreversible losses and damages in forest
ecosystems across the world. Under different climate change scenarios, global
temperatures are expected to rise to 2.5–4 °C range (IPCC 2021), even in India.
Chaturvedi et al. (2012) suggest that under business-as-usual scenario, the
temperatures are likely to rise to 3.3–4.8 °C by 2080s. It is important to understand
as to how the projected climate change may affect forest ecosystems in different
future warning scenarios. IPCC AR4, WG2 report concluded that one of the most
advanced tools to assess the impact of climate change on vegetation dynamics/
terrestrial ecosystems is dynamic global vegetation models (DGVMs) (Fischlin
et al. 2007). Vegetation modeling, an emerging sophisticated tool, is being devel-
oped to understand ecosystem dynamics and predict future scenarios. The ecosystem
model is defined as “a model that explains the interconnection between at least two
ecosystem components, where the interactions are true ecological processes”
(Tylianakis et al. 2008). Recently, unregulated anthropogenic emissions of warming
gases and consequent climate change have been posing severe threats to the
protected areas of the environment (IPCC 2022). Moreover, the rising population
and demand for resources amplify agricultural expansion and extensive land-use
changes, thereby destroying habitats and leading to species extinction (Newbold
et al. 2014). Vegetation modeling will help the scientific community to monitor and
understand complex environmental dynamics and develop long-term policy
measures for effective management (Pasetto et al. 2018). Moreover, modeling
biodiversity and ecology would further support the implementation of sustainable
development whereby an understanding of resource utilization is obtained through
this process (Niesenbaum 2019).

The concept of ecological modeling and its evolution began a century ago (Lotka
1925; Volterra 1926), but technological advancement, as seen within the past
decade, has brought significant development in using these models (Chatzinikolaou
2013). The forest ecosystem is also uncertain due to the potential impacts of the
changing climate (Keenan 2015; Nunes et al. 2021). Several forest simulation
models predict that the forest composition and comprehensive coverage will cease
in the future due to unpredictable consequences of climate change (Kirilenko and
Sedjo 2007; d’Annunzio et al. 2015). Forest vegetation models have been coded to
perform on various scales such as the leaf, stand, ecosystem, and regional and global
levels incorporating various processes (such as photosynthesis, stomatal exchange,
and evapotranspiration) (Hui et al. 2017). Farquhar’s photosynthesis model
estimates carbon budget and plant growth at leaf and canopy level, approximating



the plant canopy to be a big leaf (Chen et al. 1999; Wang et al. 2017). On the regional
and global scale, various ecosystem models have evolved; for instance, Schaefer
et al. (2008) applied the Carnegie-Ames-Stanford Approach (CASA) model to
estimate terrestrial biomass and carbon fluxes. They created a hybrid model by
integrating the Simple Biosphere (SiB 2.5) model that provides biophysical and
photosynthesis with the CASA model, which was able to project long-term carbon
sources and singles that the individual models could not have. The terrestrial
ecosystem carbon model (TECM) is another process-based model that explains the
carbon dynamics of soils and plants within the terrestrial ecosystem (Wang et al.
2011). TECM mainly utilizes information on spatially explicit parameters in terres-
trial ecosystems to calculate the estimates of carbon pool sizes and carbon fluxes.
Schaphoff et al. (2018) provide an extensive overview of the latest version of
LPJmL4, a process-based dynamic global vegetation model (DGVM) project,
which is the consequence of climate and land use changes on the agriculture,
terrestrial biosphere, and hydrological and carbon cycle. Joint U.K. Land Environ-
ment Simulator (JULES) is an improved model based on MOSES and TRIFFID
DGVM, which includes a multitude of options for photosynthesis scaling from leaf
to canopy, with the utmost intricate modeling of light interception profile through the
vegetation (Clark et al. 2011).

24 Forest Ecosystem Modeling for Policy Planning: A Review 441

Modeling helps policymakers anticipate the impacts of ecosystem degradation on
human actions and projects future scenarios based on direct and indirect factors.
Simulation of interaction between humans and the environment is essential for
summiting the pathways to Sustainable Development Goals 2030. Despite all
advancements in Vegetation modeling, it is evident that the research community
has used a few models for management and decision-making processes, given the
complexity of understanding mathematical models (DeAngelis et al. 2021). In this
study, we attempt to review different Vegetation modeling approaches and explore
their potential to understand forest dynamics and their applications in climate change
adaptations.

24.2 Vegetation Modelling: From Correlative to Process-Based
Approaches

Models are valuable tools for summarizing, arranging, and combining information
or data into formats that enable the creation of probabilistic, quantitative, or Bayes-
ian statements regarding the potential or future condition of the modeled entity
(Duarte et al. 2003). Based on the complexity and degree of formalization, the
Vegetation modeling can be sub-segmented into correlative, process-based, and
expert-based models (Ferrier et al. 2016). Traditionally, the most common method
of management was based on information provided by experts (Sutherland 2006).
The term “expert” can be defined as one who attained a highly precise skill set in a
specific field through learning experience (Kuhnert et al. 2010). An expert-based
method generally comprises the following steps as described: deciding on how the
information is to be used, what to bring out from it, designing the elicitation process,



actual conducting the elicitation, and finally converting the output into quantitative
statements that can be applied to a modeling approach (Martin et al. 2012). This
approach has a time advantage over other models when the final decision is to be
made exceptionally quickly with minimal data.
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Correlative models use statistical techniques to develop the direct connection
between biodiversity data (species abundance, richness, distribution) and environ-
mental variables (Morin and Lechowicz 2008; Li et al. 2020). Based on actual
observation data, correlative models generate information on biodiversity trends
and their responses to the controlling factors, but they do not make an attempt to
describe the mechanisms behind such patterns and reactions. They are usually used
to forecast the future impact of environmental changes, the effects on biodiversity by
human intervention, to help human production activities (increasing agricultural
production), and to understand the ecological requirements for different species
(Rahbek et al. 2007; Elith and Franklin 2013; Cobos et al. 2019). Since these models
are designed based on data from the past state of the system, rapid decisions based on
statistical relationship is feasible (Cuddington et al. 2013). However, under the
current climate change conditions, models based on the previous data of a system
are not suitable for future simulations (Williams et al. 2007). For example, many
studies have predicted changes in species range based on climatic conditions in
India. Models such as MaxEnt and SMCE use climatic data and species occurrence
data of a particular location to develop a correlation and predict the future species
range under climate change (Nimasow et al. 2016; Yadav et al. 2022). However,
they deny including relevant ecological processes such as interspecific interactions
and demographic relationships, which can also limit the species range, and their
effect may not be included in future predictions.

Process-based models that work based on understanding critical ecological pro-
cesses from a theoretical perspective give a suitable framework for including specific
responses to changing environmental conditions (Cuddington et al. 2013). These are
often more challenging to design than correlative models, because they need consid-
erable information on factors that drive biodiversity patterns (Ferrier et al. 2016).
There are many types of process models, for example, gap models, biogeochemical
models, and DGVMs. Gap models are applied to investigate changes in vegetation
and species interactions at significantly higher spatial resolution (plots the size of a
single canopy gap or individual trees) across daily to yearly time steps. However,
simulation of dynamics over several stands and cells is achievable. Biogeochemical
models project carbon, water, and mineral (nutrient) cycles in terrestrial ecosystems
such as forests. In climate change research, these models are widely applied to
predict ecosystem net primary production, carbon flow, and storage. DGVMs project
changes in vegetation attributes (such as leaf area and phenology) across annual to
decadal time steps at vast geographical scales (Kerns and Peterson 2014) (more
details on DGVMs are available in Sect. 24.3.2). However, Hybrid models are a
combination of empirical and mechanistic components. There are two kinds of
hybrid models: the first one integrates process-based empirical models by creating
signal-transfer environment productivity functions, and the second one includes a



causal structure with both empirical and mechanistic components (Luxmoore et al.
2002; Pretzsch 2009).
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24.3 Vegetation Modeling at Leaf, Individual, Plot, Regional,
and Global Levels

Vegetation models are designed at various scales, ranging from the leaf to the plant
canopy and at the plot, regional, and global levels. These models mainly project
phenomena such as photosynthesis and respiration, carbon distribution between
plant organs, nitrogen uptake and mineralization, litter production, and Soil Organic
Carbon (SOC), and these processes are used to understand the carbon fluxes between
the atmosphere, soil, and plants (Hanson et al. 2004).

24.3.1 Leaf and Stand Models

At the leaf level, Farquhar, von Caemmerer, and Berry (FvCB) is the most
commonly used model for projecting photosynthesis and leaf-level carbon and
water fluxes (Rogers et al. 2017). The photosynthesis module predicts leaf-level
carbon uptake based on biochemical or physiological characteristics, as well as the
abiotic environment (intercellular CO2 concentration and temperature). Similarly,
stomatal modules connect the intercellular leaf space to the canopy air space and
biophysically constrain carbon and water fluxes from the perspective of gas diffusion
(Xu and Trugman 2021). Individual tree growth models such as BWIN, Prognaus,
Silva, and Moses are widely used for predicting the influence of climate change on
tree development, yield predictions, and ecosystem fluxes (Vospernik 2017). Most
growth models are designed based on the mass balance method and consider organic
matter decomposition, ecosystem fluxes (forest), and water balance. Hence, these
models can evaluate above- and below-ground biomass production and assess
carbon dynamics for a particular location (Hui et al. 2017). Table 24.1 represents
some of the widely used individual and strand-level models (the table is classified
based on type, spatial structure, and temporal structure).

Climate change affects specific physiological processes in plant species, such as
photosynthesis, respiration, and growth, and can be investigated by different models.
While certain models focus on the impact of elevated CO2 concentration on the
ecosystem, others, especially biogeochemical models, simulate the consequences of
various climatic factors on the forest ecosystem carbon cycle. The physiological
principles predicting growth (3-PG) model was developed to connect the traditional,
mensuration-based growth and yield with process-based carbon balance models.
Gross primary production (GPP) in forest ecosystems is mostly estimated using
3-PG process-based model at the stand level. By combining remote sensing and GIS
techniques, the upgraded version of 3-PGS (physiological principles in predicting
growth with satellite) estimates biophysical variables, including LAI (leaf area
index), CWC (canopy water content), and FAPAR (fraction of absorbed



Model name Type Reference

photosynthetically active radiation), which can be used to simulate forest biomass
and productivity at regional level (Gupta and Sharma 2019).
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Table 24.1 The leaf and stand-level Vegetation models and classification based on temporal and
spatial structure

Sl.
no.

Spatial
structure

Temporal
structure

1 3-PG Process-
based

Stand or
cohort

Monthly Almeida et al.
(2004)

2 PNET (-C.N.,
-DAY)

Process-
based

Stand Monthly/
daily

Aber et al. (1997)

3 BWIN PRO Empirical
model

Individual 5 year Albrecht et al.
(2011)

4 SIMWAL Process-
based

Individual Hour Balandier et al.
(2000)

5 EMILIION Process-
based

Individual 1/50 day Bosc (2000)

6 Hybrid Process-
based

Individual Daily Friend et al. (1997)

7 BALANCE Process-
based

Individual Daily Rötzer et al. (2010)

8 FORECAST Hybrid
model

Individual Yearly Kimmins et al.
(1990)

9 TREE-BGC Process-
based

Individual Daily Korol et al. (1995)

10 FORGEM Process-
based

Individual Daily Kramer et al.
(2008)

11 TREEMIG Process-
based

Cohort Yearly Lischke et al.
(2006)

12 CO2FIX V.2 Empirical
model

Cohort Yearly Masera et al. (2003)

13 WOODPAM Process-
based

Stand Monthly Peringer et al.
(2013)

14 BIOME-BGC Process-
based

Stand Daily Pietsch et al. (2003)

15 SILVA Hybrid
model

Individual 5 year Pretzsch et al.
(2002)

16 YIELD-SAFE Process-
based

Individual Daily Van der Werf et al.
(2007)

Similarly, Yan et al. (2011) applied the PnET-CN model to describe the carbon
sequestration potential using biogeochemical cycles of carbon (C) and nitrogen (N);
they also validated the output using the data from coniferous forests in south China.
EMILION model can be used to project the carbon budget of current branches based
on their age and position within the crown, considering parameters such as distribu-
tion of light and interception, respiration, photosynthesis, transpiration, stomatal
conductance, phenology, water transfer, and intra-annual growth by utilizing an
object-oriented approach (Bosc 2000). FORECAST Climate model operates through



a hybrid simulation approach, representing moisture and temperature availability on
tree growth and survival and nutrient cycling, litter decomposition, and also
representing the impact of growing CO2 on water use efficiency (Seely et al. 2015).
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24.3.2 Regional and Global Ecosystem Models

Understanding the ecosystem response to climate change on a global scale is
essential both as a scientific question and for making policy decisions. The accuracy
of regional models depends on how effectively the field data used for model
development represents the region of interest (ROI), how accurate the environmental
model driving variables (vegetation type, climate) represent the ROI, and the
accuracy of the model prediction and observe data for the region (Olson et al.
2001). In this section, we will explain different DGVMs, which are mainly used
globally and in India.

DGVM is a computational-based model that simulates terrestrial vegetation and
the phenomenon and processes related to it; broadly speaking, the biogeochemical or
hydrological cycles and the influence climatic parameters have on them. It is
powerful enough to capture the transition in the forest ecosystem due to the influence
of one or more input parameters from climatic variables to soil parameters (Kumar
et al. 2018). Fischlin et al. (2007) suggested that one of the most advanced tools to
assess the impact of climate change on vegetation dynamics/terrestrial ecosystems is
dynamic global vegetation models (DGVMs). Prentice (1989) put forward the first
outline for DGVMs (Fig. 24.1). In DGVMs, time series datasets are fed to replicate
the ecological processes and the way they influence the establishment of dominant
forest vegetation. DGVMs were needed because static vegetation was incapable of
including the plant life cycle, and various cyclic processes such as carbon cycle and
nitrogen cycle were not integrated, nor were considered the various anthropogenic
and natural disturbances and climatic extremes (Quillet et al. 2010). The important
processes represented in DGVMS are (1) terrestrial or surface processes, including
energy flow and water budget; (2) carbon flux and plant growth as part of the carbon
cycle; (3) plant establishment, completion, and mortality as vegetation dynamics;
and (4) natural and anthropogenic disturbances such as a forest fire, overgrazing,
land-use change, and storms (Korappath and Bilyaminu 2022). Table 24.2 represents
a few DGVMs and required input parameters and outputs.

Although a PFT (plant functional types)-based approach is employed in most of
the DGVMs rather than an individual species-based approach, much information
about species type is suppressed on the regional scale rather than on the global scale,
to the point where the dominant species may be excluded. The necessity to input
high-resolution land use datasets for accurate energy and water cycle measures in
coupled model systems such as RCM-DGVM improved model performance and
accurate projections. It also requires modifying the parameters for their applicability
at a regional scale (Myoung et al. 2011). In India, several studies are available where
DGVMs have been applied to assess the impact of climate change on forest



ecosystems (Chaturvedi et al. 2011, 2012; Gopalakrishnan et al. 2011; Kumar et al.
2018).
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Fig. 24.1 The general framework and mechanisms of a DGVM and its time scale (adapted from
Cramer et al. 2001)

24.4 Modeling and Policy-Making

The first National Forest Policy in India lead back to 1894, the British era. The policy
was formulated to benefit the British Empire, restricting local people from utilizing
forest resources and large-scale commercial deforestation by the East India Com-
pany. After independence, the National Forest Policy, 1952 was India’s first forest
policy; it was formulated with the concern about the need for efficient forest
management and to prevent forest exploitation after the havoc of mindless defores-
tation during the colonial era. It incorporated every aspect that the world is
concerned about today, such as protection measures, community interactions and
administrative measures by the government, the scope for research, and annual
budget allotment, which are mentioned and have evolved. It is also argued that to
increase the forest cover to about one-third of the total land area today, we need even
more robust and reliant policies to not only manage and protect the forest cover
today but also the future and revive the already ailing forest regions. Making
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Table 24.2 Major DGVMs that are broadly used in India and globally; we also represent the
required inputs, outputs, and plant functional type (adapted from Aaheim et al. 2011, Kumar et al.
2018)

Model Required input PFTs Output Description

IBIS 1. Longitude and
latitude (m)
2. Monthly mean
temp. (°C)
3. Monthly mean
temp. range (°C)
4. Minimum temp.
ever recorded minus
avg. temp. of the
coldest month (°C)
at that location
5. Mean “wet” days
per month (days)
6. Monthly mean
precipitation rate
(mm/day)
7. Monthly mean
relative humidity
(%)
8. Monthly mean
cloudiness (%)
9. Percentage of
sand (%)
10. Percentage of
clay (%)

Temperate
broad-leaf
evergreen
Tropical
broad-leaf
evergreen
Tropical
broad-leaf
drought-
deciduous
Temperate
broad-leaf
cold-
deciduous
Boreal
conifer
evergreen
Boreal
broad-leaf
cold-
deciduous
Temperate
conifer
evergreen
Boreal
conifer
evergreen
Boreal
broad-leaf
cold-
deciduous
Boreal
conifer cold-
deciduous
Evergreen
shrub
Cold-
deciduous
shrub

Average
evapotranspiration
Soil temperature
Fractional cover of
canopies
Height of
vegetation
canopies
Leaf area index
NPP
Total soil carbon
and nitrogen
Average sensible
heat flux
Vegetation types
(IBIS
classification)
Total carbon from
the exchange of
CO2

IBIS is recognized as
the first model of its
kind. It guides the
researchers to
develop improved
global dynamic
models with a better
understanding to
simulate the impacts
of climate change on
forests and their
ecological processes.
IBIS is a framework
that combines land
surface, vegetation
dynamics,
biogeochemical
cycles, and
hydrological
processes. IBIS
allows for the
simulation of both
short-term
physiological
processes and long-
term ecosystem
dynamics, which can
be effectively
included in
atmospheric models.
(Foley et al. 1996;
Kucharik et al. 2000)

JULES 1. Longitude of the
region
2. Temperature (°C)
3. Daily mean
precipitation
4. Frequency of wet
days
5. Incoming short-
and long-wave

Broad-leaf
trees
Needle leaf
trees
C3
(temperate)
grasses
C4 (tropical)

Soil temperature
Soil moisture
Surface runoff
Plant respiration
Soil evaporation
Gross primary
productivity
NPP
Soil respiration

The Hadley Centre
climate model
includes the Joint
U.K. Land
Environment
Simulator (JULES)
to represent the land
surface. It
parameterizes the

(continued)



radiation (W m-2)
6. Diurnal temp.
range (K)
7. Specific humidity
8. Wind speed

grasses
Shrubs

Surface fluxes of
heat
Surface fluxes of
carbon

(continued)
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Table 24.2 (continued)

Model Required input PFTs Output Description

hourly flows of
energy, water, and
CO2 from the ground
to the atmosphere. By
developing seasonal
stores of energy,
water, and carbon
budget, it can
simulate changes in
vegetation from
decade to century
(https://jules.jchmr.
org/)

Biome-
BGC

1. Altitude
2. Mean monthly
values of
precipitation (mm)
3. Temperature (°C)
4. Cloud cover (%)
5. Available water
capacity of the
topsoil
6. AWC of the
subsoil

Tropical
evergreen
Temperate
broad-leaved
evergreen
Summer
green
Tropical rain
green
Temperate
evergreen
conifer
Boreal
evergreen
Temperate
boreal
deciduous
Temperate
grass
Tropical/
warm-
temperate
grass

1. Annual total
precipitation
(mm/yr)
2. Annual average
air temperature (°
C)
3. The annual
maximum value of
the projected leaf
area index
4. Annual total
evapotranspiration
(mm/yr)
5. Annual total
outflow (mm/yr)
6. Annual total
NPP
7. Annual total net
biome production

Biome-BGC is a
model that estimates
the fluxes and storage
of energy, water,
carbon, and nitrogen
for the plant and soil
components of
terrestrial
ecosystems. Because
its algorithms depict
physical and
biological processes
that influence energy
and mass flows, it is a
process model

LPJ 1. Daily air
temperature (°C)
2. Precipitation
(mm)
3. Solar radiation
(W m-2)
4. CO2

concentration (ppm)
5. Soil texture (%)
6. Temperature (°C)
7. Soil water content

Tropical
broad-leaved
rain green
Temperature
needle-
leaved
evergreen
Tropical
broad-leaved
evergreen
Temperate
broad-leaved
evergreen
Temperate

Vegetation
structure
PFTs
Biomass carbon

Lund-Potsdam-Jena
(LPJ) is a powerful
model for studying
the impacts of
climate change on
global vegetation
(Sitch et al. 2003)

https://jules.jchmr.org/
https://jules.jchmr.org/


broad-leaved
summer
green
Boreal
needle-
leaved
evergreen
Boreal
needle-
leaved
summer
green

decisions that will have its impact, even after centuries, is not easy and needs
scientific insights to formulate, thus compelling us to use the Vegetation model to
get insights into the future.
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Table 24.2 (continued)

Model Required input PFTs Output Description

LPJmL 1. Temperature (°C)
2. Precipitation
(mm)
3. Rainy days
4. Cloud cover (%)
5. Atmospheric CO2

6. Soil texture (%)
7. Potential
evapotranspiration
8. Soil temperature
PFTs

Temperate
needle-
leaved
evergreen
Temperate
broad-leaved
evergreen
Tropical
broad-leaved
evergreen
Temperate
broad-leaved
summer
green
Tropical
broad-leaved
rain green
Boreal
summer
green
Boreal
needle-
leaved
evergreen
C3
herbaceous
C4
herbaceous

GPP
NPP
Net ecosystem
exchange (NEE)
Autotrophic and
heterotrophic
respiration
Vegetation carbon
Soil carbon

LPJmL is a dynamic
global vegetation,
hydrology, and crop
model that
incorporates the
carbon, water, and
nitrogen cycles at the
plant and soil levels.
It is based on an
extended Farquhar
photosynthesis
scheme, stomatal
conductance
mechanics, and
functional and
allometric principles,
and it can represent
managed and natural
ecosystems and the
biogeochemical
fluxes between them

Over the years, Vegetation models have become increasingly dynamic and are
increasingly accepted to support computer-based forest policy-making by creating
scenarios and projections representing the future of plant growth, forest productivity,
carbon sink estimation, and other parameters. Ecology-based models are necessary



for environmental arbitrament support and pro-environment policy formulation
because they allow the effects of alternative management to be explored spatiotem-
porally and empirically. However, because environmental issues are so important,
further evaluation of the model quality and applicability is essential, particularly if
vegetation models are used to support decisions that impact the real world for the
sustainability of the ecosystem. Modeling and policy-making interact in specific
policy processes, but the relationship is less explored (Rykiel Jr 1996). We will try to
discuss how Vegetation models support or might support the process of political
decision-making processes. First, we go through the model evaluation process,
which includes six steps, as identified by Jacqueline Augusiak and the team in
2014. The primary six elements of the evaluation process are (1) “data evaluation,”
scrutinizing the data used for model formulation and testing; (2) “conceptual model
evaluation,” understanding model complexity, design, and assumptions; (3) “imple-
mentation validation,” testing the execution of equations used and the computer
programs run; (4) “model output validation,” comparisons of model output with the
patterns that shape the model built and the calibrations made; (5) “model analysis”
estimating model’s sensitivity to parameter alteration; and (6) “model output cor-
roboration,” comparability of the model output with other datasets or different model
output for the developmental purpose (Thacker et al. 2004). The multidimensional
complexity of environmental concerns is addressed with the help of mathematical
and statistical concepts and computer-based models; we need systematic checking of
various building blocks of a model throughout its lifecycle and evolution to a
guaranteed reduction in uncertainties and easy to use so that meaningful insights
can be drawn, which will act as a basis for policy developmental plans.
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The policy cycle can be summed up in four steps (Fig. 24.2): (1) “agenda or target
setting,” for achieving ecological sustainability; (2) “policy formulation and adapta-
tion,” by the governing bodies, guided by forest ecology experts; (3) “policy imple-
mentation,” with the help of experts and computer-based modeling for predicting the
future impacts of the agendas; and (4) “policy evaluation,” analysis of the
implemented policy and expanding the scope (Jordan 2001). The models act as an
input for policymakers, or the policymakers’ decision has to impact the modelers and
sips into the models. For example, the t33% of forest cover India had been presenting
as a goal to be met is a decision made by policymakers in 1952 and is still practically
the basis of target fixing for all modelers working over the Indian region, thus
influencing the model as well. So, it is essential to understand and realize how and
when Vegetation models influence policy-making and how and when policymakers
influence a model’s built or structural design. The basic interaction between policy-
making, society, forest ecosystem, and modeling is briefly described in Fig. 24.3.

24.4.1 Policy-Making: Ecological Sustainability and Conservation

The government of India has used outcomes of static and dynamic vegetation models
to report to UNFCCC (United Nations Framework Convention on Climate Change)
about the vulnerability of its forest ecosystem, as part of its various national



communications to the global body. For example, India’s initial national communi-
cation to UNFCCC (MoEF 2004) used BIOME-3 vegetation response model to
simulate the impact of climate change on Indian forests and to identify vulnerable
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Fig. 24.2 The policy cycle and the possible use of models at various stages (adapted from Süsser
et al. 2020)

Fig. 24.3 Management concept for forest ecosystems. A system is converted from a starting state
to a target state. Society’s normative valuation and scientific knowledge contribute to the growth
and accomplishment of the desired state (adapted from Süsser et al. 2021)



grids in Indian forests. This analyses further reported projected shifts in Indian forest
boundaries, changes in forest types, shifts in NPP, potential forest die-back, and
possible loss or change in biodiversity under changing climate scenarios. Similarly,
in 2012, as part of its second national communication, India used a dynamic
vegetation model, namely “IBIS” (MoEFCC 2012). Similarly, the latest report to
UNFCCC from China shows that according to the results of the multimodel ensem-
ble analyses, the forest area exposed by decreasing NPP will reduce during low
greenhouse gas (GHG) concentration scenarios. In contrast, it is also projected that at
a high GHG concentration scenario, the forest area affected by decreasing NPP will
increase after 2050, from 5.4% (2021–2050) to 27.6% (2071–2099) of the total
forest area.
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Let us look into some of the adaptive measures by making changes in policies
related to ecological sustainability and conservation taken by various countries
around the globe. The following discussed statistics of various countries are
documented in the report “The Global Forest Goals Report, 2021” published by
the Department of Economics and Social Affairs of the UN. Countries such as China
and Liberia made clear guidelines to train and support research on tree breeding and
seedling production for silviculture and afforestation. A forest carbon offset scheme
has been initiated in the Republic of Korea, and New Zealand has further increased
economic incentives for afforestation to strengthen its emission trading scheme.
Ecuador formulated REDD+ action plans to reduce CO2 emissions by 20% by
2025 through policy measures to reduce deforestation. Japan reported new financing
methods such as forest environment tax, Nigeria launched green bonds, and
Suriname raised the concession fee, and many other nations reported similar steps
to promote sustainable forest management or forest growth. Canada, China, Serbia,
Suriname, Lesotho, the Slovak Republic, and the United States of America have
been vocal about the increasing interdependency of the forest ecosystem for employ-
ment. In China, the number of persons generating revenue from the forest increased
from 52.47 million in 2015 to 60 million in 2020. Aside from providing roughly
196,000 employments in 2017 and 2018, the United States Forestry Service (USFS)
employed about 955,400 individuals nationwide in the forest products sector.
During 2017–2019, Uzbekistan restored more than 500,000 ha of an area prone to
soil and water erosion. Vietnam protected fragile mangrove forests by getting shrimp
farmers’ help from UN-REDD and formulated an organic farming model. In
Mongolia, UN-REDD helped people create a national policy for protecting forests
and addressing climate change that focuses on sustainable forest management. India
added 20,000 ha of forest and tree cover every year, and India led the world in
official employment in the forest industry (6.23 million people employed).

24.5 Conclusion

In this review, we compare the various ecosystem modeling approaches that are
being used to predict ecosystem dynamics to understand the forest change dynamics
and climate change adaptation in forest ecosystems and assess their application in



forest policy and planning. It is evident that different modeling approaches are
undergoing fast evolution due to advancements in technology. These models are
practical tools to evaluate various hypotheses and future climatic scenarios for
effective decision-making and assess how policy decisions may impact the ecosys-
tem. The future projections from these models can be used for formulating policy-
making and sustainable environment plans. However, there is no model that can
represent all the aspects of the ecosystem. Accepting the fact that “All the models
have limitations, but they are useful,” it is a big challenge for policymakers whose
decisions may affect people’s lives.
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