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Foreword

Origins

The field of distributional ecology revolves around the question of why a species is
where it is, and why is the species not where it is. This question may seem simple, in
the sense that ranges of species have been a central focus in biology for more than a
century. Now, for many species, it is quite easy to find a range map, or occurrence
data, or some source of information about the “where” question. So why should
answering this question be so difficult?

These challenges of obtaining high-quality distributional information for species
have been approached using myriad frameworks and tools. Early approaches cen-
tered on so-called habitat suitability modeling (e.g., Scott et al. 1996), and saw
application of several multivariate statistical approaches to the question (e.g., Austin
et al. 1990). A next generation of progress brought the many advantages (and
disadvantages) of machine learning approaches (Stockwell and Peters 1999; Phillips
et al. 2006), which had the in-hindsight-dubious quality of being able to fit more
complex response types (Elith et al. 2006).

Curiously, at least in my own humble opinion, a next (and key) major advance
was that of bringing a more rigorous conceptual underpinning to distributional
ecology. Building on the foundational work of Grinnell (Grinnell 1917a, b) and
Hutchinson (Hutchinson 1957, 1978) and a few subsequent authors (Austin 1987;
Austin et al. 1990; Austin et al. 1994; Pulliam 2000), a consortium of authors
published a first conceptual framework for the field (Peterson et al. 2011). Based
on this framework, many additional advances became possible, such as
comprehending the importance of accessible areas in fitting models (Barve et al.
2011; Machado-Stredel et al. 2021), establishing appropriate approaches for
evaluating models (Peterson et al. 2008), etc.
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vi Foreword

Key Elements in the Process

The typical niche modeling application is a multi-step process, which (to be honest)
is not laid out in any standard methodology in any one textbook or standard
reference book. Nonetheless, it is generally a process of (1) assembling point
occurrence data for the species in question, (2) assembling relevant environmental
data for the region in question, (3) choosing a region over which to fit models,
(4) actually fitting the model, and (5) post-processing and interpretation of model
outputs to respond to the questions that were originally posed. These steps have been
achieved via standard statistical tools (Guisan et al. 2017), modular sets of tools
(Cobos et al. 2019), or via standalone platforms that package many or all of the
necessary steps (Kass et al. 2018). Beyond these basics, however, a few points
remain important to emphasize, as follows.

A key emphasis is on the use of primary biodiversity data—i.e., data that
document the presence of an individual of a species at a particular place at a
particular time—as the basis for these modeling efforts. Although it is certainly
tempting to appeal to easier and more readily available sources of occurrence
information, such as range maps or atlas summaries, use of secondary sources of
biodiversity data for model inputs introduces significant noise into the results. In
essence, the primary occurrence data and the environmental data should go hand in
hand in terms of spatial grain and resolution, such that neither is too general, and
such that discords and mismatches are not pervasive in the modeling effort. The
subjectivity introduced by secondary data sources is an additional source of uncer-
tainty and confounding effects for the models, such that important features of the
distributional ecology may be lost from the analysis.

A further emphasis should be on the use of methods that are quantitative,
repeatable, scalable, and portable, at all points in the process. Although many
present-day analyses simply provide general, text-based descriptions of methodo-
logical steps, program code (e.g., in R) or full-blown workflows can now be
developed or implemented that make the methodology entirely portable, transferra-
ble, and scalable. The code can be shared as part of the publication process, which
makes the methodology repeatable, and ready for application in any other analysis
by any investigator.

Challenges

Although this methodology has now been used in thousands of analyses and
thousands of published papers, its development is not complete. That is, a number
of advances remain to be explored and documented, so that the approach is as
maximally informative and useful as is possible. The following are several such
areas that remain under exploration and development, but that can certainly be seen
as fruitful areas for future research.
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Estimate the Right Sort of Object Fundamental ecological niches are likely to be
relatively simple, convex objects in environmental space (Maguire 1973). Nonethe-
less, the methods in vogue currently in distributional ecology often estimate objects
that are quite a bit more complex, with gaps, holes, and infoldings—in this sense,
workers in this field are using inappropriate tools for the task. As such, an important
step forward will be to develop and use tools that estimate objects that “look like”
fundamental ecological niches, and are simple and convex, and that do not have
bimodal environmental responses, or any other such complexities. Some initial steps
have been taken toward such a methodology (Jiménez et al. 2019; Jiménez and
Soberón 2022), but much work remains to be done.

Use the Right Environmental Information Workers in the field of distributional
ecology have long used environmental information in the form of long-term average
values to characterize species’ occurrences in terms of the environments that are
manifested at the site of occurrence. It is well known, however, that an average can
be a poor representation of the conditions at any particular moment, and an individ-
ual or a population can be extinguished with even a short period of time spent under
unsuitable conditions. As such, recent research efforts (Ingenloff and Peterson 2020)
have explored the potential for representing environmental conditions associated
with occurrences of species as a function of latitude, longitude, and time, such that
conditions specific to an occurrence are identified more precisely.

Consider Dispersal Ecological niche models, if done well, present a view of the
area that is suitable for a species in terms of abiotic conditions (note that the next
item in this list refers to the question of suitability in biotic terms). A crucial
consideration, however, is that the ability of the species to access those suitable
sites is not generally considered. As a consequence, too often, conclusions in
ecological niche modeling studies are based on rather simple assumptions about
dispersal ability (e.g., no dispersal or universal dispersal). A few efforts have now
been made to incorporate dispersal processes more powerfully into these methods
(Engler and Guisan 2009; Machado-Stredel et al. 2021), but applications have been
relatively few—adding this component into modeling efforts and interpretations is
crucial to making this methodology and the resulting conclusions more powerful.

Incorporate Biotic Interactions A further dimension that is too often left out of
ecological niche model-based studies is that of biotic dimensions—in essence, the
set of biotic considerations that makes a site suitable or unsuitable for a species. As
has been pointed out in several conceptual treatments, consideration of the full
dynamics of the broad suite of potential biotic interactors for any given species
may prove to be impossible. Nonetheless, it is feasible to incorporate at least known
interactor species in two- or multi-species models (e.g., Anderson 2017; Ashraf et al.
2021), and network analysis approaches may be relevant to identifying such
interactor species more rigorously (Fath et al. 2007).
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This Book

This volume, entitled Ecosystem and Species Modeling for Conservation and Res-
toration: Mainstreaming Modeling Approaches in Policy Planning, comprises a set
of papers that revolve around models of ecosystems and species, and their niches and
distributions, in the context of guiding policy. Although I have not yet had the
opportunity to read each of the contributions, the list of titles, topics, and authors is
impressive—this volume will create a rich picture of the state of the field and will
illustrate many of the possible applications of this methodology. As a consequence, I
am so very pleased to have been invited to preface the volume with a few thoughts,
ideas, and comments.

University of Kansas Biodiversity Institute A. Townsend Peterson
Lawrence, KS, USA 28 October 2022

Literature Cited

Anderson RP (2017) When and how should biotic interactions be considered in
models of species niches and distributions? J Biogeogr 44:8–17

Ashraf U, Chaudhry MN, Peterson AT (2021) Ecological niche models of biotic
interactions predict increasing pest risk to olive cultivars with changing climate.
Ecosphere 12:e03714

Austin M (1987) Models for the analysis of species’ response to environmental
gradients. Vegetatio 69:35–45

Austin MP, Nicholls AO, Doherty MD, Meyers JA (1994) Determining species
response functions to an environmental gradient by means of a beta-function. J
Veg Sci 5:215–228

Austin MP, Nicholls AO, Margules CR (1990) Measurement of the realized qualita-
tive niche: environmental niches of five Eucalyptus species. Ecol Monogr 60:
161–177

Barve N, Barve V, Jimenez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT,
Soberón J, Villalobos F (2011) The crucial role of the accessible area in ecologi-
cal niche modeling and species distribution modeling. Ecol Model 222:1810–
1819

Cobos ME, Peterson AT, Barve N, Osorio-Olvera L (2019) kuenm: an R package for
detailed development of ecological niche models using Maxent. PeerJ 7:e6281

Elith J, Graham C, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ,
Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loisell BA,
Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton J, Peterson AT,
Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire E, Soberón J,
Williams S, Wisz MS, Zimmerman NE (2006) Novel methods improve predic-
tion of species’ distributions from occurrence data. Ecography 29:129–151

Engler R, Guisan A (2009) MigClim: predicting plant distribution and dispersal in a
changing climate. Divers Distrib 15:590–601



Fath BD, Scharler UM, Ulanowicz RE, Hannon B (2007) Ecological network
analysis: network construction. Ecol Model 208:49–55

Grinnell J (1917a) Field tests of theories concerning distributional control. Am Nat
51:115–128

Grinnell J (1917b) The niche-relationships of the California Thrasher. Auk 34:427–
433

Guisan A, Thuiller W, Zimmermann NE (2017) Habitat suitability and distribution
models: with applications in R. Cambridge University Press, Cambridge

Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:
415–427

Hutchinson GE (1978) An introduction to population ecology. Yale University
Press, New Haven

Ingenloff K, Peterson AT (2020) Incorporating time into the traditional correlational
distributional modeling framework: a proof-of-concept using the Wood Thrush
(Hylocichla mustelina). Methods Ecol Evol 12:311–321

Jiménez L, Soberón J (2022) Estimating the fundamental niche: accounting for the
uneven availability of existing climates in the calibration area. Ecol Model 464:
109823

Jiménez L, Soberón J, Christen JA, Soto D (2019) On the problem of modeling a
fundamental niche from occurrence data. Ecol Model 397:74–83

Kass JM, Vilela B, Aiello-Lammens ME, Muscarella R, Merow C, Anderson RP
(2018) Wallace: a flexible platform for reproducible modeling of species niches
and distributions built for community expansion. Methods Ecol Evol 9:1151–
1156

Machado-Stredel F, Cobos ME, Peterson AT (2021) A simulation-based method for
selecting calibration areas for ecological niche models and species distribution
models. Front Biogeogr 13:e48814

Maguire B (1973) Niche response structure and the analytical potentials of its
relationship to the habitat. Am Nat 107:213–246

Peterson AT, Papeş M, Soberón J (2008) Rethinking receiver operating characteris-
tic analysis applications in ecological niche modelling. Ecol Model 213:63–72

Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E,
Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions.
Princeton University Press, Princeton

Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of
species geographic distributions. Ecol Model 190:231–259

Pulliam HR (2000) On the relationship between niche and distribution. Ecol Lett 3:
349–361

Scott JM, Tear TH, Davis FW (eds) (1996) Gap analysis: a landscape approach to
biodiversity planning. American Society for Photogrammetry and Remote Sens-
ing, Bethesda, MD

Stockwell DRB, Peters DP (1999) The GARP modelling system: problems and
solutions to automated spatial prediction. Int J Geogr Inf Sci 13:143–158

Foreword ix



Acknowledgments

Without the constant assistance and contributions of numerous devoted expert
authors, reviewers, copy as well as language editors, it would not have been feasible
to compile a book on the somewhat futuristic subject on Ecosystem and Species
Modeling that is relevant in the present context and has been mainstreamed in many
international and national decisions to understand plausible future scenarios. Despite
all the challenges and limitations, we have put together this important scientific
contribution. We owe a debt of gratitude to the numerous subject matter experts,
academicians, scientists, researchers, and practitioners who agreed to contribute,
sacrificed their time away from their grueling academic obligations to write as well
as many others who facilitated a thorough review of the submitted book chapters
within constrained time frames. Many of our diligent and committed research
academics also deserve our sincere gratitude as without their prompt assistance,
our efforts to publish this book on time would not have been possible. We would also
like to especially thank Mr. Manu Thomas (CSIR-NEERI) for his assistance in
overseeing formatting and language correction to avoid significant errors, record
keeping of all email interactions prior to the book’s completion, and Ms. Radhika
Sood (CSIR-NEERI) for formatting a few chapters. Finally, we would also like to
express our gratitude to the Springer Nature production team, in particular Mrs.
Aakanksha Tyagi and Mr. Jayesh Kalleri, for helping us with our submissions and
also being kind with extending the deadline to ensure that we submit our best effort.
Despite our best efforts to ensure accuracy, it is still possible that a very small
number of mistakes possibly typographical or syntax-related may have crept in
because of the quick pace of production and the deadlines we had to adhere
to. Chapter authors and co-authors were mostly responsible for finalizing their
chapters with active guidance and review comments from editors and reviewers.
The editors have read through all of the chapters and personally reviewed them in
accordance with international standards, including publication ethics that specifi-
cally aim to reduce plagiarism and resemblance from existing publications. If readers
of this book have any helpful criticism or ideas to help us improve our future
releases, we would be eternally grateful to all of them. The editors and chapter
authors are jointly responsible for any inaccuracies that may be present in this book.
We express our gratitude to our researchers and families, especially our spouse and

xi



children in particular, for their support, understanding, and encouragement as we
continue and successfully complete this mammoth task.

xii Acknowledgments

We conclude by expressing our deep gratitude to Prof. Townsend Peterson,
University of Kansas Biodiversity Institute Lawrence, Kansas, for authoring the
foreword for this book.



Contents

1 Modelling Tools and Plausible Scenarios in Science-Policy to
Improve Evidence-Based Decision-Making for Human
Well-Being . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Shalini Dhyani and Radhika Sood

Part I Ecosystem and Species Modelling Tools and Relevance

2 Basic Introduction to Species Distribution Modelling . . . . . . . . . . . 21
Azita Farashi and Mohammad Alizadeh-Noughani

3 Machine Learning-Based Predictive Modelling Approaches for
Effective Understanding of Evolutionary History, Distribution,
and Niche Occupancy: Western Ghats as a Model . . . . . . . . . . . . . 41
Thekke Thumbath Shameer and Raveendranathanpillai Sanil

4 Mapping the Impact of Climate Change on Eco-sensitive Hotspots
Using Species Distribution Modelling (SDM): Gaps, Challenges,
and Future Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Harish Barewar, Manish Kuntal Buragohain, and Suvha Lama

5 Approaches for Modelling the Climate Change Impacts on
Ecosystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Anjaly George and Shijo Joseph

6 Developing a Bayesian Model of Climate-Induced Lake Overturn
in Talisay, Taal Lake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Damasa B. Magcale-Macandog, Arnold R. Salvacion,
Jaderick P. Pabico, Keshia N. Tingson, Marlon A. Reblora,
Jennifer D. Edrial, Felino P. Lansigan, and Macrina T. Zafaralla

7 Global Sensitivity and Uncertainty Analysis of MaxEnt Model:
Implications in Species Habitat Projections . . . . . . . . . . . . . . . . . . . 121
Rakesh Kadaverugu, Shalini Dhyani, Ashok Kadaverugu,
and Rajesh Biniwale

xiiixiii



xiv Contents

Part II Habitat Modeling for Conservation of Threatened Plants and
Restoration of Habitats

8 Tree Species Diversity and Richness Patterns Reveal High Priority
Areas for Conservation in Eswatini . . . . . . . . . . . . . . . . . . . . . . . . . 141
Wisdom M. D. Dlamini and Linda Loffler

9 Improving the Conservation Status of a Threatened Tree
(Acer sikkimensis Miq. syn. Acer hookeri Miq.) Through
Standardization of Seed Germination Protocol and Using
Ecological Niche Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Aditya Pradhan and Arun Chettri

10 Ecological Niche Modeling of the Endemic Himalayan
Near-Threatened Treeline Conifer Abies spectabilis (D.Don)
Mirb. in the Indian Central Himalaya . . . . . . . . . . . . . . . . . . . . . . . 181
Siddhartha Kaushal, Sharanjeet Kaur, Anshu Siwach, Prachi Sharma,
Prem Lal Uniyal, Rajesh Tandon, Shailendra Goel, K. S. Rao,
and Ratul Baishya

11 Modelling the Distribution of a Medicinal Plant Oroxylum indicum
(L.) Kurz for Its Conservation in Arunachal Pradesh . . . . . . . . . . . 213
Dhoni Bushi, Oyi Dai Nimasow, and Gibji Nimasow

12 Habitat Suitability and Niche Modelling for Conservation and
Restoration of Aconitum heterophyllum Wall. in Temperate
Himalayan Forest Ecosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Peerzada Ishtiyak Ahmad, T. H. Masoodi, S. A. Gangoo, P. A. Sofi,
Tahir Mushtaq, Mir Muskan Un Nisa, Mohan Reddy, Abhinav Mehta,
Shrey Rakholia, and Bipin Charles

13 Application of Species Distribution Modeling for Conservation
and Restoration of Forest Ecosystems . . . . . . . . . . . . . . . . . . . . . . . 249
Shilky, B. S. P. C. Kishore, Gajendra Kumar, Purabi Saikia,
and Amit Kumar

Part III Habitat Suitability Modeling for Protecting Animals and
Their Habitat

14 Habitat Suitability Analysis of Asiatic Elephants (Elephas maximus)
in the Tropical Moist Deciduous Forest of Assam Using Analytic
Hierarchy Process (AHP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Tanvi Hussain, Sarbeswar Kalita, and Arup Kumar Misra

15 Factors Affecting the Habitat Suitability of Eastern Swamp Deer
(Rucervus duvaucelii ranjitsinhi Groves, 1982) in Manas National
Park and Implication for Terai Grassland Restoration . . . . . . . . . . 291
Anukul Nath, Nazrul Islam, Shahid Ahmad Dar, Alolika Sinha,
Bibhuti Prasad Lahkar, and Sonali Ghosh



Contents xv

16 Evaluating Potential Habitats of Chital, Sloth Bear and Jungle
Cat in Selected Areas of Central Indian Landscape . . . . . . . . . . . . . 309
G. Areendran, Aroma Caroline John, C. S. Abhijitha, Krishna Raj,
and Kumar Ranjan

17 Habitat Suitability Modeling of Tor tor (Hamilton, 1822) in the
Indian Drainage Systems Using MaxEnt . . . . . . . . . . . . . . . . . . . . . 323
Ranjit Mahato, Gibji Nimasow, Oyi Dai Nimasow,
and Santoshkumar Abujam

Part IV Application of Modelling Tools and Approaches

18 Modelling the Influence of Marine Fishery Advisories on the
Reduction of Carbon Dioxide Emissions for Odisha Under
Varying Climate Change Scenarios Using CMIP Models:
An Evidence-Based Approach for Policymaking . . . . . . . . . . . . . . . 341
Sudip Kumar Kundu and Harini Santhanam

19 Impacts of Pollution on Tropical Montane and Temperate Forests
of South Asia: Preliminary Studies by Postgraduate Students in
India and Sri Lanka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
K. Preeti, Malsha Tejhani, Vasundhara Pandey, Vedika Dutta,
Piyali Das, Buddhika Weerakoon, Sudipto Chatterjee, Hemanthi
Ranasinghe, and Sarath Nissanka

20 Selection of Strategic Sampling Sites for River Quality
Assessments Near Mined Areas as a Policy Handle for
Low-Impact Development and Biodiversity Conservation:
A Case Study of River Godavari . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
Jahnavi Sharma and Harini Santhanam

21 Ecological Niche Modeling Predicts the Potential Area for
Cultivation of Melia dubia Cav. (Meliaceae): A Promising Tree
Species for Agroforestry in India . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
Suresh Ramanan Sundaram, A. Arunachalam, Dibyendu Adhikari,
U. K. Sahoo, and Kalidas Upadhyaya

22 Proportions of Change in the Airborne Particulate Matter
(PM10) Concentrations Across Selected States in Peninsular India:
A Study of Decadal, Pre-Pandemic Trends for Planning
Restoration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
Kiran Hungund, S. Varshini, and Harini Santhanam



xvi Contents

23 Decomposition of Sunflower Cuttings and Its Impact on Soil
Fertility of Rice Terraces (Payoh) in Banaue, Ifugao, Philippines . . . 421
Damasa B. Magcale-Macandog, Milben A. Bragais,
Marc Bryan Manlubatan, Jonson M. Javier, Marc Anthony F. Rabena,
Jennifer D. Edrial, Kristina S. Mago, Teodorico L. Marquez Jr,
Jerry Naayos, Randy Porciocula, and Sarena Grace L. Quiñones

Part V Ecosystem and Species Modelling for Evidence-Based
Decision Making

24 Forest Ecosystem Modeling for Policy Planning: A Review . . . . . . . 439
Karun Jose, Aritra Bandopadhyay, A. Arya,
and Rajiv Kumar Chaturvedi

25 Ecological Carrying Capacity Modeling and Sustainability
Assessment of the Seven Lakes of San Pablo City, Laguna,
Philippines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
Damasa B. Magcale-Macandog, John Vincent R. Pleto,
Joseph G. Campang, Canesio D. Predo, Fatima A. Natuel,
Ma. Grechelle Lyn D. Perez, Nethanel Jireh A. Larida,
Yves Christian A. Cabillon, Sarena Grace L. Quiñones, and Jeoffrey
M. Laruya

26 Assessment of the Contribution of Freshwater Ecosystem Services
to the Hydropower Sector in the Kura–Araz Basin . . . . . . . . . . . . . 519
Rovshan Abbasov and Marlon Flores

27 Eutrophication Modeling of Chilika Lagoon Using an Artificial
Neural Network Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
Prasannajit Acharya, Pradipta R. Muduli, and Mira Das



About the Editors

Editors and Contributors

Shalini Dhyani is a Senior Scientist with the Critical Zone Group of Water
Technology and Management Division of CSIR-NEERI, India. She is a seasoned
ecologist with two decades of experience. She uses observational, empirical, and
modeling approaches to investigate and understand issues related to the environ-
ment, loss of natural and urban greenspaces, and interlinkages between ecological
and social systems through sustainability science approaches. She is Asia Vice Chair
member of CEM (Commission on Ecosystems Management) and also Steering
Committee member.

Dibyendu Adhikari is a Principal Scientist at CSIR-National Botanical Research
Institute (NBRI), India. He is a seasoned researcher with over 15 years of experience
in ecology and environmental science. He is skilled in terrestrial ecosystem restora-
tion, threatened plant conservation, forest carbon assessment, ecological data analy-
sis and modeling.

Rajarshi Dasgupta is Assistant Professor at IIT Delhi. He was previously with the
Institute for Global Environmental Strategies (IGES), Kanagawa, Japan. He holds
diverse research interests in the field of landscape ecology and planning, which
include Ecosystem-based Disaster Risk Reduction (Eco-DRR), spatial quantification
of ecosystem services, land change simulation, development of socio-ecological
scenarios, participatory conservation, and social forestry.

Rakesh Kadaverugu is a Senior Scientist associated with CSIR-National Environ-
mental Engineering Research Institute. He has more than 10 years of research
experience in environmental systems modeling and his is work is focused to better
understand the socio-environmental systems at multiple spatial and temporal scales
using geospatial, soft-computing, and process-based modeling approaches.

xviixvii



Contributors

xviii Editors and Contributors

Rovshan Abbasov is the head of Khazar University’s Department of Geography
and Environment. He is a member of the IPBES’s Multidisciplinary Expert Panel
and ICOMOS National Committee and Coordinating Lead Author in the National
Ecosystem Assessments.

C. S. Abhijitha is from WWF, India, with proficiency in the research areas related
to biodiversity, conservation and geospatial applications.

Santoshkumar Abujam is currently working as a Research Associate under a
DST-funded research project in Rajiv Gandhi University, Rono Hills, Doimukh,
Arunachal Pradesh (India).

Prasannajit Acharya is a Ph.D. Scholar at the Institute of Technical Education and
Research, Department of Chemistry, Siksha ‘O’ Anusandhan (Deemed to be Uni-
versity), Bhubaneswar, Odisha, India.

Dibyendu Adhikari works as a Principal Scientist in the Plant Ecology and
Climate Change Science Division at CSIR-National Botanical Research Institute,
Lucknow.

Peerzada Ishtiyak Ahmad is Assistant Professor cum Scientist at Faculty of
Forestry, Sher-e-Kashmir University of Agricultural Sciences & Technology of
Kashmir, India.

Mohammad Alizadeh-Noughani is a graduate from Ferdowsi University of
Mashhad-Iran.

G. Areendran works at WWF, India, and is addressing conservation issues occur-
ring in various landscapes, with a high focus on tiger, elephant, and rhinoceros to
overseeing several institutional GIS-based projects.

A. Arunachalam is the Director of the ICAR-Central Agroforestry Research Insti-
tute, Jhansi. He is also Project Coordinator for the All India Coordinated Research
Project on Agroforestry, and Task Force Coordinator for the National Mission for
Sustaining Himalayan Ecosystem (NMSHE).

A. Arya is pursuing her Ph.D. in Bits Pilani G BITS, Pilani, Goa campus.

Ratul Baishya is associated with the Department of Botany, University of Delhi, as
an Associate Professor.



Editors and Contributors xix

Aritra Bandopadhyay is pursuing his Ph.D. in Climate Change and Ecology in the
Department of Humanities and Social Science in BITS-Pilani, Goa Campus.

Harish Barewar is currently working as project Associate-II in CSIR-National
Environmental Engineering and Research Institute (NEERI), Nagpur.

Rajesh Biniwale is a Senior Principal Scientist in CSIR National Environmental
Engineering Research Institute, Nagpur.

Milben A. Bragais is a Licensed Forester and Environmental Planner with a
background in hydrological modeling, watershed characterization, and vulnerability
assessment.

Manish Kuntal Buragohain is currently working as a Project Associate-I in CSIR-
National Environmental Engineering and Research Institute (NEERI), Nagpur.

Dhoni Bushi is currently pursuing a Ph.D. in the Department of Geography, Rajiv
Gandhi University, Arunachal Pradesh.

Joseph G. Campang is an Assistant Professor at the Institute of Biological
Sciences (IBS) of University of the Philippines Los Baños (UPLB) with research
specialisation on lakes.

Yves Christian L. Cabillon with a bachelor’s degree is an experienced researcher
in water quality assessment, plankton taxonomy, environmental impact assessment,
and environmental awareness.

Bipin Charles is Consultant at the Institute for Biodiversity Conservation and
Training, Bangalore, India.

Sudipto Chatterjee is an Associate Professor at TERI School of Advanced Studies.
He is the Principal Investigator of this study supported by UNU ProsperNet. He is
the Co-Lead for the South Asia Nitrogen Hub (SANH) project on the study of
impacts of pollution on biodiversity with Lichens as an indicator.

Rajiv Kumar Chaturvedi is an Assistant Professor at BITS, Pilani, Goa campus,
and is an UN expert on GHG inventory in the land-use and forestry sector.

Arun Chettri is working as an Assistant Professor at Sikkim University.

Shahid Ahmad Dar is working as a postdoctoral fellow at Zoological Survey of
India, Kolkata.



xx Editors and Contributors

Mira Das is a Professor at the Institute of Technical Education and Research,
Department of Chemistry, Siksha ‘O’ Anusandhan (Deemed to be University),
Bhubaneswar, Odisha, India.

Vedika Dutta received a Master of Science in Environmental Studies and Resource
Management at TERI School of Advanced Studies, New Delhi, India.

Shalini Dhyani is a Senior Scientist in CSIR National Environmental Engineering
Research Institute, Nagpur.

Piyali Dias has a Master of Science in Biodiversity and Taxonomy of Plants from
the University of Edinburgh, UK.

WisdomM. D. Dlamini is an environmental and geospatial scientist at the Univer-
sity of Eswatini.

Jennifer D. Edrial is a postgraduate from the University of the Philippines Los
Baños and is currently a member of the Sustainability Team of Ayala Land, Inc.

Azita Farashi is Associate professor at the Faculty of Natural Resources and
Environment, Ferdowsi University of Mashhad, Iran.

Marlon Flores leads the global sector-centered economic valuation approach
Targeted Scenario Analysis (TSA) at UNDP’s Food and Agricultural Commodity
Systems (FACS) Practice.

S. A. Gangoo is Dean at Faculty of Forestry, Sher-e-Kashmir University of Agri-
cultural Sciences & Technology of Kashmir, India.

Anjaly George is a Ph.D. scholar at the Kerala University of Fisheries and Ocean
Studies.

Sonali Ghosh is a Senior Indian Forest Service Officer with more than 25 years of
work experience at state and center and specialization in wildlife. She has also
worked at UNESCO C2C on World Natural Heritage Centre at Wildlife Institute
of India.

Shailendra Goel is Professor in the Department of Botany, University of Delhi.

Kiran Hungund is a Project Assistant working on air quality changes and their
visualization with the Energy, Environment and Climate Change Programme at
National Institute of Advanced Studies, Bangalore.

Tanvi Hussain is a Research Scholar in the Department of Environmental Science,
Gauhati University, and presently with World Agroforestry (CIFOR-ICRAF).



Editors and Contributors xxi

Nazrul Islam is pursuing his Ph.D. in Eastern Swamp Deer Ecology in Manas
National Park from Gauhati University and working as biologist with Wildlife Trust
of India in the Greater Manas landscape.

Jonson M. Javier is an Assistant Professor of Agricultural Economics and Envi-
ronmental Science at the Western Philippines University.

Aroma Caroline John has completed an M.Sc. in Geographical Information
Systems and Remote Sensing.

Karun Jose is pursuing his Ph.D. in Climate Change and Forest Phenology in the
Department of Humanities and Social Science in BITS-Pilani, Goa Campus.

Shijo Joseph is an Assistant Professor and Coordinator of the Centre for Climate
Resilience and Environment Management at the Kerala University of Fisheries and
Ocean Studies, Kochi.

Ashok Kadaverugu is Head of Civil Engineering department in a Government
Polytechnic college, Nalgonda, Telangana.

Rakesh Kadaverugu is a Senior Scientist in CSIR National Environmental Engi-
neering Research Institute, Nagpur.

Sarbeswar Kalita is the Former Head and expert of seismology, climatology, and
meteorology from the Department of Environmental Science, Gauhati University.

Sharanjeet Kaur worked as a DBT Senior Project Fellow in the Department of
Botany, University of Delhi.

Siddhartha Kaushal is associated as a Ph.D. research student with the Department
of Botany, University of Delhi.

B. S. P. C. Kishore is a Ph.D. scholar in the Department of Geoinformatics, Central
University of Jharkhand, Ranchi, India.

Amit Kumar is working as an Assistant Professor in the Department of
Geoinformatics, Central University of Jharkhand, India.

Gajendra Kumar is a Ph.D. scholar in the Department of Geoinformatics, Central
University of Jharkhand, Ranchi, India.

Sudip Kumar Kundu is a Ph.D. scholar at Manipal Academy of Higher Education
(MAHE), Bengaluru.

Bibhuti Prasad Lahkar is a Senior Scientist with Aaranyak, Assam. He has
extensively researched grassland ecosystems in the Indian state of Assam.



xxii Editors and Contributors

Suvha Lama is currently working as a Scientist in CSIR-National Environmental
Engineering and Research Institute (NEERI), Nagpur.

Felino P. Lansigan is a Professor of Statistics at the Institute of Statistics, UPLB.
He specializes in stochastic modeling and crop insurance under climate change.

Jeoffrey M. Laruya is from College of Forestry and Natural Resources, University
of the Philippines Los Baños, Laguna, Philippines.

Linda Loffler is an independent consultant with vast experience in botanical
research in Southern Africa.

Nethanel Jireh A. Larida holds a Master of Science in Botany degree from the
University of the Philippines at Baños (UPLB) and works on diversity of aquatic
macrophytes and riparian diversity in freshwater lakes.

Damasa B. Magcale-Macandog is a Professor of Plant Ecology at the Institute of
Biological Sciences, College of Arts and Sciences, University of the Philippines Los
Baños.

Kristina S. Mago was a Student Assistant at the Ecoinformatics Laboratory of the
Institute of Biological Sciences, University of the Philippines Los Baños.

Ranjit Mahato is currently pursuing a Ph.D. in the Department of Geography,
Rajiv Gandhi University, Arunachal Pradesh.

Marc Bryan Manlubatan is a Research Associate in the NRCP-Funded project
with a degree in Agricultural Engineering, University of the Philippines Los Baños.

Teodorico L. Marquez Jr is Student Assistant at the Ecoinformatics Laboratory of
the Institute of Biological Sciences at the University of the Philippines Los Baños.

T. H. Masoodi is Registrar at Sher-e-Kashmir University of Agricultural Sciences
& Technology of Kashmir, India.

Abhinav Mehta is CEO at the Geographic Information Lab (TGIS), Gujarat.

Pradipta R. Muduli is presently working as a Scientific Officer at the Wetland
Research and Training Centre (WRTC), Chilika Development Authority (CDA),
Dept. of Forest and Environment, Govt. of Odisha, India.

Tahir Mushtaq is Assistant Professor cum Scientist at Faculty of Forestry, Sher-e-
Kashmir University of Agricultural Sciences & Technology of Kashmir, India.



Editors and Contributors xxiii

Jerry Naayos is Field Guide in the research and survey experiments in Banaue.

Anukul Nath is serving at UNESCO C2C at the Wildlife Institute of India with an
extensive experience of work in the Manas landscape.

Gibji Nimasow is Professor in the Department of Geography, Rajiv Gandhi Uni-
versity, Rono Hills, Doimukh, Arunachal Pradesh (India).

Oyi Dai Nimasow is Assistant Professor in the Department of Geography, Rajiv
Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh (India).

Mir Muskan Un Nisa is a M.Sc. Forestry student at Faculty of Forestry, Sher-e-
Kashmir University of Agricultural Sciences & Technology of Kashmir, India

Sarath Nissanka is a Professor in Crop Science at the University of Peradeniya,
Govt of Sri Lanka. Sarath implements the SANH project in Sri Lanka.

Jaderick P. Pabico is a Professor of Computer Science at the Institute of Computer
Science, UPLB.

Vasundhara Pandey has a Master of Science in Environmental Studies and
Resource Management at TERI School of Advanced Studies, New Delhi, India.

Ma. Grechelle Lyn D. Perez is Master’s in Environmental Science at the Univer-
sity of the Philippines, Los Baños, Laguna, Philippines and affiliated with the
University of the Philippines Rural High School handling biology, earth science,
field study courses, and capstone research.

John Vincent R. Pleto is an Assistant Professor at the Institute of Biological
Sciences, College of Arts and Sciences, University of the Philippines Los Banos
and specializes in freshwater ecology.

Randy Porciocula is administrative staff of the NRCP-Funded project at the
University of the Philippines Los Baños.

Aditya Pradhan is currently working as an Assistant Professor at SRM University
Sikkim.

K. Preeti has a Master of Science in Environmental Studies and Resource Manage-
ment at TERI School of Advanced Studies, New Delhi, India.

Sarena Grace L. Quiñones is a Development Communication graduate from the
University of the Philippines Los Baños (UPLB).

Marc Anthony F. Rabena is an Assistant Professor at the Institute of Biological
Sciences, College of Arts and Sciences, University of the Philippines Los Baños.



xxiv Editors and Contributors

Krishna Raj is a Specialist in Geospatial Application and has done a Master’s in
Geography from Banaras Hindu University, Varanasi, India, and has been working
in various major research projects of WWF-India.

Shrey Rakholia is Consultant at the Geographic Information Lab (TGIS),
Ahmedabad, Gujarat.

Hemanthi Ranasinghe is a Senior Professor in Forestry and Environmental Sci-
ence at the University of Jayewardenepura, Govt of Sri Lanka.

Kumar Ranjan has completed his postgraduation in GIS and Remote Sensing, and
his expertise lies in varied fields of allied disciplines of geospatial analysis.

Kottapalli Sreenivasa Rao is Senior Professor and former Head, Department of
Botany, University of Delhi.

Marlon A. Reblora is the Research Associate at the University of the Philippines
Los Baños.

Mohan Reddy is Lead in Carbon & Sustainability Division at Nurture Agtech
Private Limited, Bellandur, Bengaluru-560103, India.

Uttam Kumar Sahoo is a Professor at the Department of Forestry, School of Earth
Sciences and Natural Resource Management, Mizoram University.

Purabi Saikia is working as an Assistant Professor at the Central University of
Jharkhand, Ranchi.

Arnold R. Salvacion is an Associate Professor at the Department of Community
and Environmental Resource Planning, College of Human Ecology, University of
the Philippines Los Baños.

R. Sanil is currently working as an Associate Professor at the Department of
Zoology, Government Arts College, Udhagamandalam, India.

Harini Santhanam is an Associate Professor and Head, Department of Public
Policy (DPP), Manipal Academy of Higher Education (MAHE) Manipal, Bengaluru
Campus, Bengaluru, India.

Thekke Thumbath Shameer is working as a scientist (APO projects) at the Centre
for Conservation Education Advanced Institute for Wildlife Conservation, Tamil
Nadu Forest Department.



Editors and Contributors xxv

Jahnavi Sharma is an independent researcher working on Energy and Environ-
ment policy and is based in Bangalore.

Prachi Sharma is working as a Ph.D. research student in the Department of
Botany, University of Delhi.

Shilky is a Ph.D. scholar in the Department of Environmental Sciences, Central
University of Jharkhand, Ranchi, India.

Alolika Sinha is Senior Wildlife Biologist with Aarnyak, Assam, with a Ph.D. in
endangered cervid—the hog deer.

Anshu Siwach is pursuing her Ph.D. in the Department of Botany, University of
Delhi.

P. A. Sofi is Associate Professor at the Faculty of Forestry, Sher-e-Kashmir Uni-
versity of Agricultural Sciences & Technology of Kashmir, India.

Radhika Sood is AcSIR PhD at CSIR-NEERI, Nagpur working on ecosystem
health and mapping cultural ecosystem services.

Sundaram Suresh Ramanan is a scientist at ICAR-Central Agroforestry Research
Institute, Jhansi.

Rajesh Tandon is a senior professor in the Department of Botany, University of
Delhi.

Malsha Thejani is doing her BSc at the University of Jayewardenepura, Govt of
Sri Lanka.

Keshia N. Tingson is an Assistant Professor at the College of Forestry and Natural
Resources, University of the Philippines Los Baños.

Prem Lal Uniyal is Senior Professor in the Department of Botany, University of
Delhi.

Kalidas Upadhyaya currently works at the Department of Forestry, Mizoram
University. His research interests are agroforestry, soil ecology, and restoration
ecology.



xxvi Editors and Contributors

S. Varshini is a Project Assistant with the Energy, Environment and Climate
Change Programme at National Institute of Advanced Studies (NIYAS), Bangalore.

Buddhika Weerakoon is a Ph.D. scholar at the University of Peradeniya, Govt of
Sri Lanka.

Macrina T. Zafaralla is a Professor Emeritus at the University of the Philippines
Los Baños. She specializes in freshwater ecology and phytoplankton.



Abbreviations

3-PG Physiological Processes Predicting Growth
3Rs Reduce, Reuse, Recycle
AAQMS Ambient Air Quality Monitoring Station
ABA Abscisic acid
ACF Autocorrelation Function
ADB Asian Development Bank
AEKOS Australian Ecological Knowledge and Observation System
AHP Analytic Hierarchy Process
AIC Akaike Information Criterion
ANN Artificial Neural Network
ANOVA Analysis of Variance
AOD Aerosol Optical Depth
AR4 Fourth Assessment Report
AR5 Fifth Assessment Report
AR6 Sixth Assessment Report
ArcGIS Aeronautical Reconnaissance Coverage Geographic Information

System
ASCII American Standard Code for Information Interchange
ASTER Advanced Spaceborne Thermal Emission and Reflection

Radiometer
AUC Area Under the Curve
AZN Manat (Azerbaijani currency)
BAU Business as Usual
BBA Blue to Built-up Area
BCC Basic Carrying Capacity
BCVs Bioclimatic Variables
BFAR Bureau of Fisheries and Aquatic Resources
BGM Generalized Boosting Model
Bio Bioclimatic Variables
BIOCLIM Bioclimatic Models
BNF Biological Nitrogen Fixation
BoB Bay of Bengal
BOD Biological Oxygen Demand

xxviixxvii



xxviii Abbreviations

BP Background Points
BRT Boosted Regression Trees
BSIP Birbal Sahni Institute of Palaeosciences
ca. circa (meaning around)
CAAQMS Continuous Air Quality Monitoring Stations
CART Classification and Regression Tree
CASA Carnegie-Ames-Stanford Approach
CBD Convention on Biological Diversity
CC Carrying Capacity
CCi Actual Carrying Capacity Level
CCimax Carrying Capacity Limit
CEM Climate Envelope Model
Chl-a Chlorophyll-a
CHL-A Chlorophyll-a
CI Consistency Index
CLUP Comprehensive Land Use Plan
CMFRI Central Marine Fisheries Research Institute
CMIP Coupled Model Intercomparison Project
CO2 Carbon dioxide
CPCB Central Pollution Control Board
CPT Conditional Probability Tables
CR Consistency Ratio
CR Critically Endangered
CRD Completely Randomized Design
CS Central Sector
C-SDM Correlative Species Distribution Model
CSi Carrying Capacity Level
CSI Consortium for Spatial Information
CSR Corporate Social Responsibility
CTA Classification Tree Analysis
CTI Compound Topography Index
CV Cross Validations
CWC Canopy Water Content
CWE Corrected Taxonomic Weighted Endemism
CWPE Corrected Weighted Phylogenetic Endemism
DBF Day Before Fish Kill
DEM Digital Elevation Model
DENR AO Department of Environment and Natural Resources
DGVM Dynamic Global Vegetation Model
DO Dissolved Oxygen
DOST Department of Science and Technology
DOT Department of Tourism
ECC Ecological Carrying Capacity
EcoSIS Ecological Spectral Information System
EDA Exploratory Data Analyses



Abbreviations xxix

eDNA Environmental DNA
ENFA Environmental Niche Factor Analysis
ENM Ecological Niche Model
ENM Ecological Niche Modeling
ERA European Center for Medium-Range Weather Forecasts

Re-Analysis
ES Ecosystem Services
ESD Eastern Swamp Deer
ESM Earth System Model
ESRI Environmental Systems Research Institute
FAO Food and Agriculture Organization
FAPAR Fraction of Absorbed Photosynthetically Active Radiation
FARE Food Analysis and Research
FARMC Fisheries and Aquatic Resource Management Council
FDA Flexible Discriminant Analysis
FF Favorability Function
FGD Focus Group Discussion
FHWAR Fishing, Hunting, & Wildlife-Associated Recreation
FSLF Friends of the Seven Lakes Foundation, Inc
FvCB Farquhar, von Caemmerer, and Berry
GA Gibberellic acid
GAM Generalized Additive Model
GARP Genetic Algorithm for the Rule Set Production
GBIF Global Biodiversity Information Facility
GBM Gradient Boosting Machine
GBR Green Blue Ratio
GCM Global Circulation Model
GCS WGS Geographical Coordinate System World Geodetic System
GDEM Global Digital Elevation Model
GDP Gross Domestic Product
GEF Global Environmental Facility
GEMS Global Environment Monitoring System
GHG Greenhouse Gas
GI Green Infrastructure
GIOVANNI Geospatial Interactive Online Visualization and Analysis

Infrastructure
GIS Geographic Information System
GIZ German International Cooperation
GJAM Generalized Joint Attribute Model
GLCF Global Land Cover Facility
GLM Generalized Linear Model
GLR Generalized Linear Regression
GNF Global Nature Fund
GOI Government of India



xxx Abbreviations

GPP Gross primary production
GPS Global Positioning System
GSA Global Sensitivity Analysis
GSI Geological Survey of India
H+ Hydrogen ion
HCA Hierarchical Cluster Analysis
HEC Human-Elephant Conflict
HII Human Influence Index
HL Hidden Layers
HN Hidden Network
HPP Hydropower Plant
H-SDM Hybrid Species Distribution Model
IAA Indole Acetic Acid
IAP Invasive Alien Plant
IBIS Integrated Biosphere Simulator
ICAR Indian Council of Agricultural Research
ICH Indian Central Himalaya
IHR Indian Himalayan Region
IL Input layers
INCOIS Indian National Centre for Ocean Information Services
INSAT 3D Indian National Satellite 3D
IPBES Intergovernmental Platform on Biodiversity and Ecosystem

Services
IPCC Intergovernmental Panel on Climate Change
IRMS Isotope-Ratio Mass Spectrometer
ISA Impervious Surface Area
ISRIC International Soil Reference and Information Centre
IUCN International Union for Conservation of Nature
JSDM Joint Species Distribution Model
JULES Joint U.K. Land Environment Simulator
KAP Knowledge, Attitudes, Practices
KARB Kura-Araz river basin
KfW German government-owned development bank (Reconstruction

Credit Institute)
KII Key Informant Interview
kJ m-2 day-1 kilo joules per square meters per day
km2 square kilometers
KML Key Markup Language
KMZ Keyhole Markup Language
KRC Knowledge Resource Centre
LAI Leaf Area Index
LD Land Degradation
LDN Land Degradation Neutrality
LGU Local Government Unit
LID Low Impact Development



Abbreviations xxxi

LLDA Laguna Lake Development Authority
LPI Largest Patch Index
LPJ-DGVM Lund Potsdam Jena—Dynamic Global Vegetation Model
LPJ-GUESS Lund Potsdam Jena—General Ecosystem Simulator
LPJmL Lund-Potsdam-Jena managed Land
LPX Land Surface Processes and Exchanges
LULC Land Use Land Cover
m.s.a.l meters above sea level
MARPOL The International Convention for the Prevention of Pollution from

Ships
MARS Multivariate adaptive regression splines
MaxEnt Maximum Entropy
MAXENT Maximum Entropy
MDP Master Development Plan
MDS Multi-dimensional scale
MF Mixed Forest
MFA Marine Fishery Advisories
Mg ha-1 Megagram per hectare
MINARS National Programme of Monitoring of Indian National Aquatic

Resources
MIR Model Improvement Ratio
MIROC5 Model for Interdisciplinary Research on Climate Version Five
ML Machine learning
MLP Multi-Layer Perceptron
MNP Manas National Park
MODIS Moderate Resolution Imaging Spectroradiometer
MOEFCC Ministry of Environment, Forest and Climate Change
MOSES Modular Observation Solutions for Earth Systems
MPA Marine Protected Area
MPCA Minnesota Pollution Control Agency
MRF Material Recovery Facility
M-SDM Mechanistic Species Distribution Model
MSE Mean of squared residuals
MT Metric Ton
MUSIC Model for Urban Stormwater Improvement Conceptualization
MV Market value
MVLR Multivariate linear regression
N2 Nitrogen Gas
NASA National Aeronautics and Space Administration
NAT NbS Aiding Technologies
NBM Naive Bayesian Model
NbS Nature-Based Solutions
NCAP National Clean Air Program
NCP Nature’s Contributions to People
NDVI Normalized Difference Vegetation Index



xxxii Abbreviations

NFF Nature Future Framework
NGO Non-Governmental Organization
NH3- Ammonia
NMPB National Medicinal Plants Board
NMSHE National Mission for Sustaining Himalayan Ecosystem
NOAA National Oceanic and Atmospheric Administration
NOx Nitrogen Oxide
NP National Park
NPK Nitrogen, Phosphorus and Potassium
NPP Net Primary Production
NPP Nuclear Power Plant
Nr Nitrogen
NRCP National Research Council of the Philippines
NS Northern sector
NSM Niche Suitability Models
O3 Trioxygen
OC Outer channel
OCM Ocean Color Monitor
OECD Organization for Economic Cooperation and Development
OLI Operational Land Imager
OM Organic Matter
OOB Out-of-bag
ORCHIDEE Organizing Carbon and Hydrology in Dynamic Ecosystems
p probability value
P10 10 percentile training presence
PA Presence-Absence
PAGASA Philippine Atmospheric Geophysical and Astronomical Services

Administration
PAUC Partial Area Under ROC curve
PB Presence-Background
PBL Planetary Boundary Layer
PBM Process-Based Model
PCAMRD Philippine Council for Aquatic and Marine Research and

Development
PCC Percent of Sites Correctly Classified
PCC Potential Carrying Capacity
PD Phylogenetic Diversity
PET Potential Evapotranspiration
PFT Plant Functional Type
PFZ Potential Fishing Zone
pH Potential of Hydrogen or Power of Hydrogen
PHIVOLCS Philippine Institute of Volcanology and Seismology
PK Pundasyon ng Kalikasan
PM Particulate Matter
PM10 Particulate matter having size less than 10 μm and more than 2 μm



Abbreviations xxxiii

PM2.5 Particulate matter having size less than 2 μm
PNET (C.N) Photosynthetic/Evapotranspiration model (Carbon Nitrogen)
PPM Parts Per Million
ppmv parts per million by volume
PRA Participatory Rural Appraisal
pROC partial area under the Receiver Operating Curve
PSA Philippine Statistics Authority
p-value Probability Value
QGIS Quantum Geographic Information System
R&D Research and Development
RA Republic Act
RC Rotation Coefficient
RCC Real Carrying Capacity
RCI Random Consistency Index
RCM Regional Circulation Model
RCP Representative Concentration Pathways
RET Rare Endangered Threatened (Species)
RF Random Forest
RF Regularization Factor
RMSE Root Mean Squared Error
RoA Republic of Azerbaijan
ROC Receiver Operating Characteristic
RS Remote Sensing
RSFs Resource selection functions
RTI Right to Information
SAFAR System of Air Quality and Weather Forecasting and Research
SCLWMC Seven Crater Lakes and Watershed Management Council
SCS State Committee of Statistics of Azerbaijan
SD Secchi Disk Depth
SD Standard Deviation
SDBM Simple Diagnostic Biosphere Model
SDG Sustainable Development Goals
SDGVM Sheffield Dynamic Global Vegetation Model
SDM Spatial Distribution Modeling
SDM Species Distribution Model
SDMs Species distribution models
SDVD Secchi Disk Visibility Depth Index
Se Sensitivity
SECC Socio-economic Carrying Capacity
SEDAC Socio-economic Data and Applications Centre
SEIB-DGVM Spatially Explicit Individual Based-Dynamic Global Vegetation

Model
SEM Sustainable Ecosystem Management
SES Social-ecological systems
SESAM Spatially explicit species assemblage modeling



xxxiv Abbreviations

SFSLR Step-wise Forward Selection Logistic Regression
SHPP Small Hydropower Plant
SIMWAL Simulated Walnut
SMLP Samahang Mangingisda ng Lawa ng Pandin
SOC Soil Organic Carbon
SOI Survey of India
SOx Sulfur Oxide
Sp Specificity
SPCB State Pollution Control Board
SpThin Spatial Thinning
SR Species Richness
SRE Surface Range Envelop
SRES Special Report on Emission Scenarios
SROCC Special Report on the Ocean and Cryosphere in a Changing

Climate
SRTM Shuttle Radar Topography Mission
SS Southern Sector
SSDM Stacked-SDMs
SSE Sum of Square Error
SSP Shared Socio-economic Pathway
SST Sea Surface Temperature
SVAT Surface Vegetation Atmosphere Transfer
SVM Support Vector Machine
SWM Solid Waste Management
TAR Third Assessment Report
TCC Tourism Carrying Capacity/Total Carrying Capacity
TDS Total Dissolved Solids
TECM Terrestrial Ecosystem Carbon Model
TEEB The Economics of Environment and Biodiversity
TERN Terrestrial Ecosystem Research Network
TIRS Thermal Infrared Sensor
TL Total Length
TLI Trophic Level Index
TN Total Nitrogen
TOF Trees Outside Forests
TP Total Phosphorus
TPP Thermal Power Plant
TRIFFID Top-down Representation of Interactive Foliage and Flora

Including Dynamics
TS Total Sensitivity
TSA Targeted Scenario Approach
TSPCB Telangana State Pollution Control Board
TSS Total Suspended Solid
TSS True Skill Statistic
TSS True Skill Statistics



Abbreviations xxxv

TURB Turbidity
UC ANR University of California Agriculture and Natural Resources
UNDP United Nations Development Program
UNEP United Nations Environment Program
UNFCCC United Nations Framework Convention on Climate Change
UPLB-FEWS University of the Philippines Los Baños—Fish Kill Early Warning

System
USAID United States Agency of International Development
USD United States Dollar
USDM Uncertainty Analysis for Species Distribution Models
USGS United State Geological Survey
UT Union Territory
UTM Universal Transverse Mercator
UYRDC Uttarakhand Youth Rural Development Centre
VIF Variance Inflation Factor
WB Water Body
WE Taxonomic Weighted Endemism
WECC Water Ecological Carrying Capacity
WG Western Ghats
WGS84 World Geodetic System 1984
WHO World Health Organization
WPE Weighted Phylogenetic Endemism
WQBCC Water Quality and Biodiversity Carrying Capacity
WT Water temperature
WTO World Tourism Organization
WTTC World Travel and Tourism Council
WWF World Wildlife Fund
XGB XGBoost Model



1

Modelling Tools and Plausible Scenarios
in Science-Policy to Improve
Evidence-Based Decision-Making
for Human Well-Being

1

Shalini Dhyani and Radhika Sood

Abstract

In the last few decades, there has been a tremendous interest among the global
researchers and intergovernmental panels on climate and biodiversity for using
modelling tools in science-policy assessments and evidence-based decision-
making for conservation and human well-being. There is growing relevance of
mainstreaming models and scenarios in global environmental policy planning to
improve ecosystem management, species conservation, and restoration of
degraded landscapes. Ongoing global environmental policy discussions espe-
cially for climate and biodiversity policy continue to stress upon improving and
enhancing existing modelling tools, for providing accurate and scenario
projections. It is expected that both short-term and long-term conservation efforts
will depend on the accuracy of the modelled outputs with lesser uncertainty and
more integration of the socio-ecological concerns. The present edited book
includes chapters developed from existing research knowledge and wide-ranging
experience of researchers, academicians coming from diverse fields of science,
policy, and practice to improve the knowledge base on effectively using
modelling tools and leveraging their potentials to broadly understand climate
vulnerability and the different impacts on ecosystems as well as to explore habitat
suitability. Further, the book covers and provides an overview on the state-of-the-
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art existing modelling approaches; their use for addressing the diverse concerns
related to plant, animal and habitat conservation as well as restoration; and their
relevance to the ongoing policy discussions and planning. Some of the
highlighted cases in this book also describe the status of threatened plants as
well as wild species and restoration projects of interest to the global practitioners.
Chapters spread over different sections of the book cover scientific evidence to
support evidence-based policy planning by including plausible alternative
scenarios to improve ecological, social, and economic benefits. The present
chapter provides an overview of the growing relevance of modelling tools and
key enabling and constraining concerns followed by a synopsis of the chapters.

2 S. Dhyani and R. Sood

Keywords

Modelling · Ecosystem · Species · Habitat suitability · Science-policy ·
Conservation · Restoration · Management

1.1 Introduction

What does the future have in store for the global ecosystems and the advantages that humans
derive from them?

Ecosystems closely linked to the well-being and functionality of the entire biosphere
have been impacted by the global climate change. Threats to biodiversity and
ecosystems are ubiquitous and growing worse because of global warming (Dhyani
et al. 2020). Globally, biodiversity is disappearing at previously undiscovered rates,
undermining the basic pillars of our economies, lifestyle, employment, access to
food, good health, and human well-being (IPBES 2018). Land management
practices and climate change have emerged as two of the crucial mediators of future
biodiversity change.

Broad alterations in productivity and species interactions have led to enhanced
vulnerability from biological invasions and other emergent attributes because of
adaptations by species to climate change and direct impacts of climate change on
ecosystems (Weiskopf et al. 2020). Tipping points, where ecosystem thresholds are
surpassed and lead to significant changes to the structure and functions of
ecosystems, are of particular concern (Sintayehu 2018). When combined with
other changes, climate change interacts with other stressors on ecosystems, like
degradation, defaunation, as well as fragmentation (Malhi et al. 2020). Distributions
of species have moved to higher altitudes at a median pace of 11.0 m and 16.9 km/
decade to higher latitudes as a consequence of global warming. Furthermore, the
extinction rates of 1103 species under different migration scenarios are as follows:
21–23% for unrestrained migration and 38–52% when there is no migration
(Muluneh 2021). Majority of scientists across the world irrespective of their
nationalities acknowledge that humanity is in the midst of a climate emergency
(IPBES 2018; Pettorelli et al. 2021). For natural protection and sustainable develop-
ment, it is crucial to comprehend how anthropogenic activities affect human



societies and biodiversity (Kim et al. 2018). Addressing the ecological dynamics of
these climatic impacts is crucial, as is identifying hotspots of fragility and resilience
along with the management strategies that can boost the biosphere’s ability to
climate change adaptation. Ecosystems can contribute to climate change adaptation
and mitigation too; hence it is essential to look into and analyse the mechanisms,
opportunities, and limitations of such nature-based climate solutions (Malhi et al.
2020). In order to better understand ecosystems and guide ecosystem and species
management, science has made significant advances. What does the future hold for
ecosystems around the world and what advantages do people derive from them (Kok
et al. 2017)? In a world threatened by both natural and human-induced change,
predicting ecosystem effects is vital (Caron-Lormier et al. 2009). To comprehend
and forecast ecological patterns and processes, models have emerged as helpful tools
(Fig. 1.1). Models assist decision-makers in anticipating the effects of policies on
ecosystems and people; for example, it is crucial to improve our capacities to depict
interactions between human actions and ecological systems in order to identify
methods to achieve the Sustainable Development Goals given climate, biodiversity,
and restoration targets (Weiskopf et al. 2022). They can substantially aid in decision-
making for conservation and restoration under current climate and biodiversity
change, as well as help create suitable management methods for an uncertain future
(Zurell et al. 2022).
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Fig. 1.1 Relevance of modelling tools in ecosystem and species scenario projections

Ecological models are being used to develop effective management methods,
forecast potential scenarios under multiple scenarios of global change, and expand
our understanding of how ecological systems function (Mokany et al. 2016).
Scenarios and models are convincing tools for predicting the plausible future
scenarios of different social-ecological development pathways that can help inform



existing and future policy decisions (Lundquist et al. 2021). The creation of
scenarios has been cited by the Intergovernmental Platform on Biodiversity and
Ecosystem Services (IPBES) as a crucial step in assisting decision-makers in
identifying the effects of various policy alternatives (Kok et al. 2017). An important
step toward the co-production of knowledge for use in resource management choices
is the coordinated use of multiple models (Lewis et al. 2021). Comprehensive
understanding of species distributions, drivers of loss, and their dynamics is neces-
sary for effective conservation; habitat/niche suitability models (NSM) and species
distribution models (SDMs) are frequently used to forecast these trends (Leitão and
Santos 2019).
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An ecosystem-based management strategy called “integrated ecosystem
assessments” (IEAs) aims to include humans and other ecosystem members in the
decision-making process so that managers may weigh trade-offs and decide which
management actions are most likely to achieve goals (Howell et al. 2021).

1.2 Modelling Tools

Significant changes in the provisions of ecosystem services as well as severe
declines in biodiversity worldwide have been triggered by extensive human-induced
pressures and interferences driven by the demand for agriculture intensification and
forestry products. These developments are projected to endure as long as the world
remains to flourish without giving much thought to how environment provisions
human well-being. Acquiring the skill of developing useful models and scenarios is
critical since they can be valuable tools to policymakers and decision-makers in
anticipation of the effects of their decisions (Rosa et al. 2020). In recent times, such
understanding of complex systems, particularly social and economic systems, has
been improved by agent-based modelling (Table 1.1). The objective of modelling

Table 1.1 Examples of biological levels for modelling, including compositional, structural, and
functional biodiversity variables, are chosen to represent levels of biodiversity that demand
attention in environmental monitoring and assessment programmes

Level Composition Structure Function

Individuals Genes Genetic structure Genetic processes, metabolism

Populations Presence,
abundance, cover,
biomass, density

Population
structure, range,
morphological
variability

Demography, dispersion,
phenology

Communities Species richness,
evenness and
diversity, similarity

Canopy structure,
habitat structure

Species interactions (herbivory,
predation, competition,
parasitism), decomposition

Ecosystems Habitat richness Spatial
heterogeneity,
fragmentation,
connectivity

Ecosystem processes
(hydrologic processes,
geomorphic processes),
disturbances

Source: https://ipbes.net/scenarios

https://ipbes.net/scenarios


complicated systems is to reduce the system to simple agents that follow straightfor-
ward rules. The model then shows these agents’ emergent interactions with one
another and their surroundings (Engler and Kusiak 2011). Setting and implementing
strategic initiative to prevent biodiversity loss depends on biodiversity predictions
with uncertainty projections under various climate, land-use, and policy scenarios.
An ecologically valuable objective and issue continues to be assessing and enhanc-
ing biodiversity projections to inform policy decisions. To make more accurate
prediction about biodiversity, a thorough approach to assessing and reducing the
uncertainty of model outputs versus observed data and numerous models is neces-
sary (Myers et al. 2021).
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1.3 Recognition and Acceptance of Modelling Tools
in Environmental Decision-Making

Since the turn of the century, the range of areas in which complexity science
approaches have been applied has grown more. Applications to business strategies
and public policy have multiplied together, in particular (Fig. 1.2). Agent-based
modelling has made a name for itself as a powerful instrument in science. Adoption
by policymakers is still in short supply, though. Given the vast number of outstand-
ing, effective applications of complexity science in the most diverse academic fields,
policy is prepared to develop into a real field of in-depth and beneficial applications
(Furtado et al. 2019). Since the 1970s, long-term global scenarios have served as the
foundation for analysis and research on environmental change throughout the world.

Fig. 1.2 Different mathematical model types are suitable for various analyses and
recommendations. To answer a variety of scientific research issues and to provide managerial
guidance, a spectrum of models is used. Adapted from NOAA Fisheries (https://www.fisheries.
noaa.gov/national/ecosystems/ecosystem-modeling)

https://www.fisheries.noaa.gov/national/ecosystems/ecosystem-modeling
https://www.fisheries.noaa.gov/national/ecosystems/ecosystem-modeling


In order to allow integrated research and uniform assessment to inform policy, the
community of climate change researchers has created a scenario framework during
the past 10 years that combines different futures for the climate and society. The
paradigm is mostly fulfilling urgent needs and has received widespread adoption
throughout research communities. The development and application of this para-
digm, however, must take numerous new routes due to some mixed results and a
shifting policy and research environment (O’Neill et al. 2020). The focus of multi-
lateral negotiations and conventions has transitioned to scenarios and models relat-
ing to ecosystem services and biodiversity as a result of growing global concern for
biodiversity conservation. One of the initial rounds of quick assessment activities,
the Methodological Assessment on Scenarios and Models of Biodiversity and
Ecosystem Services, was included in the Intergovernmental Science-Policy Platform
on Biodiversity and Ecosystem Services (IPBES) Work Program 2014–2018. At the
fourth IPBES Plenary, the Assessment Report and accompanying Summary for
Policymakers were accepted (Pan et al. 2018).
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The IPBES Expert Group on Scenarios and Models compared biodiversity and
ecosystem services models using harmonized scenarios to support the assessments
of the IPBES (BES-SIM). The outcomes of collaborative modelling project
supported the ongoing global assessment of IPBES, strengthened the connections
between IPBES and the scenarios and modelling methods of the Intergovernmental
Panel on Climate Change (IPCC), and offered guidance to the Convention on
Biological Diversity (CBD) on the development of its post-2020 global biodiversity
framework and conservation objectives that further influenced the formation of a
new generation of nature-centred nature-future scenarios (Kim et al. 2018).

1.4 Progress and Developments in Modelling
on the Science Front

To effectively fulfil their objectives and mandates, environmental and conservation
agencies must use science-based natural resource management. Hence, there is a
growing need for models in biodiversity assessments, but which models are suitable
for the job? However, as ecosystems experience exceptional events that put tradi-
tional management frameworks to the test, this scientific foundation needs to be
improved and developed (Spooner et al. 2021). The inherent heterogeneity and
sparseness of raw biodiversity data are overcome by the use of models and remotely
sensed covariates to inform predictions that are contiguous in space and time and
global in extent. This essential information enables the monitoring of single or
aggregate spatial or taxonomic units at scales relevant to research and decision-
making (Fig. 1.3).

When combined with ancillary environmental or species data, this fundamental
species population information directly underpins a range of biodiversity and eco-
system function indicators (Jetz et al. 2019).
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Fig. 1.3 Schematic illustration of howmodelling is integrated into a management decision-support
system (Source: Schuwirth et al. 2019)

1.4.1 Species Modelling

In order to design surveys for new populations, guide spatial prioritization choices
for management activities, and support regulatory decision-making and compliance,
species distribution models have already been utilized (Sofaer et al. 2019). The
contributions of biodiversity to ecosystem functions are frequently measured by
species richness; however, modelling interactions within species and/or evenness, in
addition to richness, can result in a deeper understanding of diversity-driven
advancements in ecosystem functions (Brophy et al. 2017). Decisions about species
management and conservation heavily rely on information of where they are found;
however this information is frequently vague or unreliable. Species distribution
models can be used to map habitats and can generate reliable, reproducible data
that can be used to support decisions. Nevertheless, because of their sensitivity to
methodological and data inputs, it is crucial to evaluate the validity and applicability
of model predictions (Sofaer et al. 2019). Advancements may make it easier to
monitor different species through time and space, ultimately assisting in the identifi-
cation of important conservation areas, determining the viability of potential
habitats, and providing early indicators of shifts in species distributions. The forma-
tion of habitat suitability patterns can be significantly influenced by bioclimatic
factors, terrain, and forest structure in general, indicating a major role for bioclimatic



variables in this process (Amini Tehrani et al. 2021). As a new approach and a better
possible model in species distribution modelling, the factors determining ecological
niche profiling along with niche modelling and incorporation of spatial threat factors
were used because Eltonian niche lacks in niche model-based predictions. This was
successfully used for the prediction of suitable locations for more accurate interpre-
tation for conservation and eco-restoration of habitats of endangered Cryptocarya
anamalayana that is endemic to Western Ghats (Amitha Bachan and Devika 2022).
In a recent study, it was found that 217 papers had an obvious management
applicability in a study based on 650 assessed publications for animal conservation
and restoration. Overall, modelling studies were shown to be skewed toward static
models in 79% of cases, species and populations in 80% of cases, and conservation
applications in 71% of cases (as opposed to restoration) (Zurell et al. 2022). In order
to represent the ecological preferences of species, SDMs, which are extensively
utilized numerical tools, depend on correlations between geo-located presences (and
sometimes absences) and environmental factors. SDMs that use deep learning and
photos from remote sensing have recently come to light and have shown to be highly
predictive. It has been demonstrated, in particular, that one of the major benefits of
these models known as deep-SDMs is their capacity to accurately represent the
spatial organization of the terrain, in contrast to earlier models (Estopinan et al.
2022). The development of spatial predictions of Essential Biodiversity Variables
(EBVs), variables to be quantified at specific points in time and space to monitor
variations in biodiversity using SDMs, is a unique approach based on diversity
metrics, such as the distribution functions of important bird habitats at a regional
scale. As a spatial “species distribution” EBV (SD EBV), the suitability computed in
accordance with the SDMs can be used to indicate the habitat quality, trends in land
use, and climatic impacts on populations of bird species (Amini Tehrani et al. 2021).
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1.4.2 Ecosystem Modelling

It takes scientific guidance to manage ecosystems sustainably because so many of
them are in danger. Only a small portion of the models used to study ecological
dynamics and reactions to disturbances are ever utilized to guide ecosystem man-
agement, despite the fact that many academics from all over the world use them
(DeAngelis et al. 2021). Constant failures from single-species management have led
to test and implement ecosystem-level management. Ecosystem management
comprises understanding complex range of interacting living beings, processes, as
well as interdisciplinary and multidisciplinary inputs. Considering interfaces, feed-
back loops, and interdependencies among ecosystem constituents is thus vital for
understanding as well as managing ecosystems (Geary et al. 2020). Dynamic models
have been a staple management tool for ecological and economic systems for a long
time, and they were heavily utilized in the early stages of resilience research. The
majority of model applications have been concerned with evaluating policies,
creating the best management plans, or analysing system stability. Modelling can
also be employed to promote participatory processes, explain system reactions that



result from intricate interconnections between system components, and examine the
effects of complicated human behavioural patterns, among many other things.
Research on social-ecological systems (SESs) has a lot of potential given the variety
of aims, forms, and applicability of models (Schlüter et al. 2019). Plant physiological
trait-based metrics, which may be directly observed in the field, are rapidly replacing
empirical parameters in ecosystem models. This has encouraged the development of
new models and helps anticipate long-term terrestrial ecosystem dynamics under
climate change. The ability to directly integrate observed plant ecophysiology with
model processes through trait-based modelling of terrestrial ecosystems increases
the potential to reduce uncertainty and enhance forecasts under unique climatic
conditions. A rigorous model design, systematic intercomparisons, and
benchmarking for model responses to both climatic extremes and long-term trends
are however necessary due to the increased model complexity (Xu and Trugman
2021).
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1.5 Enabling and Constraining

Ecosystem modelling is difficult, especially when trying to strike a balance between
the need to describe all of an ecosystem’s components and the data constraints and
modelling goal. Therefore, the main issue is explicitly taking into account various
forms of uncertainty. Existing modelling techniques typically aim to achieve one or a
combination of the following: (1) define and separate ecosystem components and
interactions; (2) predict future ecosystem conditions; and (3) provide guidance for
decision-making by contrasting alternative strategies and highlighting significant
uncertainties (Geary et al. 2020). In a world that is changing quickly, predictive
models are at the core of many scientific disciplines and are essential for informing
management decisions. Confidence in their forecasts is jeopardized by a poor grasp
of the accuracy and precision of models translated to novel situations (i.e. their
“transferability”). The combined need to expand research on the factors influencing
ecological predictability, such as species attributes and data quality, and create best
practices for transferring models, is driven by these technical and fundamental
problems. Finding a set of transferability metrics that are broadly applicable and
have the right tools for quantifying the causes and effects of prediction uncertainty in
novel circumstances is of utmost importance (Yates et al. 2018). Because modelling
approaches come from various disciplines, are based on various assumptions,
concentrate on various levels of analysis, and employ various analytical tools, they
have a wide range of goals, types, and applications that have led to a great deal of
confusion. Because of this variability, it can be challenging to decide on the best
strategy for dealing with a certain challenge. Modelling approaches can be
categorized into “modelling for social-ecological systems research” (ModSES)
along two dimensions, the degree of realism and the degree of knowledge manage-
ment, in order to account for context dependence and the intertwined nature of SESs
as systems of humans embedded in nature across multiple scales, as well as to
acknowledge different issue framings and understandings (Schlüter et al. 2019).



Modelling work frequently focuses on certain technical aspects (e.g. refining model
precision, and data processing methods, addressing data gaps) as well. From a
technical standpoint, problems that might help or impact model adoption range
across the entire modelling process, including the thematic focus of a model or
scope as well as its assumptions, resolution, and size (spatiotemporal). It is crucial to
determine whether the model is appropriate for usage in the situation where it is
utilized since model relevance is frequently more context-dependent than is com-
monly acknowledged (Weiskopf et al. 2022). Finding the model construction with
the best complexity performance is still a major challenge. Beyond the deliberate
testing of a collection of different models, there are still relatively fewer methods for
empirically quantifying structural uncertainty, despite the fact that there are numer-
ous methods for parameter uncertainty (Lewis et al. 2021). The most frequently
utilized model type is the correlative niche models. Dynamic models, the gene to
individual level, and the community to ecosystem level are under-represented, and
only 10% of the research has utilized explicit cost optimization methods (Zurell et al.
2022).
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Monitoring changes in the distribution and abundance of species has an impact on
the total biodiversity and is essential for the effective conservation of the integrity
and functions of species populations. Acquiring precise data on biodiversity at broad
spatial scales can be difficult since it is often spotty, inadequate, or even non-existent
(Amini Tehrani et al. 2021). To predict a species’ present and future distribution
patterns and ecological niche, many researchers have used species distribution
models. A study that assessed 79 publications that were published between 2010
and December 2020 found that the quantity of papers on SDM has increased
significantly over time. Asia (41%), Europe (24%), and Africa (2%), in that order,
made up the majority of these. The majority of the studies considered (38%)
concentrated on theoretical ecology, the effects of climate change, and conservation
policy and planning (22%). The majority of studies focused on transdisciplinary,
ecological, or biodiversity conservation domains. In the majority of studies (81%),
the level of uncertainty was not revealed. Future rare and endemic species SDMs
ought to express the degree of uncertainty and projections of mistakes in the
modelling procedure (Qazi et al. 2022). Utilizing the suggested standards and
principles, 400 modelling studies over the last 20 years were examined and graded
(Araújo et al. 2019). Overall, low model adequacy was established; however there
were a clear upward trend in model creation and a downward trend in biological data
and model evaluation with time. The adoption of generally accepted criteria for
models used in biodiversity assessments will encourage transparency and repeatabil-
ity and eventually result in models and inferences used in assessments being of a
higher calibre. The extension and continued development of the SDM standards and
guidelines invite broad community engagement. Even while IPBES has identified
scenario generation as a crucial step in supporting decision-makers to understand the
potential effects of various policy alternatives, the organization initially lacked a
long-term scenario strategy. IPBES deals with a wide range of local contexts and
takes into account global tele-coupling of local locales in order to capture the social-
ecological dynamics of biodiversity and ecosystem services (Kok et al. 2017). The



scenarios for biodiversity and ecosystem services currently under development have
significant flaws and limitations that limit their applicability for reversing the
dangerously falling trend of nature’s contributions to people (NCP) and human
contributions to nature. Most of the current scenarios and related analyses, particu-
larly at the global and regional levels, are restricted to evaluating the effects of
drivers on a small number of aspects of nature and NCP, frequently omitting to
account their linkages or feedbacks over multiple spatial scales, or to take into
account policy objectives pertaining to nature conservation. Additionally, they are
not always able to take into account common standards, beliefs, and policy goals
pertaining to the preservation of the environment and a high standard of living.
Instead of identifying desirable futures for nature and people along with providing
alternative pathways to reach them, current approaches frequently focus on negative
trends and drivers (Lundquist et al. 2021).
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1.6 Mainstreaming Modelling Tools in Policy Planning

Globally, the ranges and abundances of species are evolving fast. This emphasizes
the importance of trustworthy, adequate data for directing and evaluating actions and
policies intended to manage and protect the numerous functions and benefits of
species (Jetz et al. 2019). The creation of solid and thorough long-term strategies can
be facilitated by the use of powerful analytical frameworks and tools, most often
models. Models are essential for formulating long-term policies and implementing
them quickly in a manner that is consistent with a nation’s aspirations for socioeco-
nomic growth. 1 In order to integrate human well-being as a key outcome, interna-
tional science organizations are moving toward transdisciplinary and inclusive
research (Spooner et al. 2021). At the intersection of academia and public and
commercial sector policymaking, scenario planning is becoming a significant area
of study. The application, effects, and effectiveness of scenario planning in the
development of public policy have received less attention in the academic literature
than research methodologies, which are thoroughly covered (Volkery and Ribeiro
2009). The need for transformative, multiscale global scenarios as strategies to stop
the loss of biodiversity and accomplish sustainability goals has been made repeat-
edly by scientists. Researchers from the IPBES scenarios and models expert group
engaged in an adaptive, interactive approach that resulted in the creation of the
Nature Futures Framework (NFF) as a first step toward achieving this. The NFF is a
cognitive method that depicts the many, beneficial interactions between people and
nature as a triangle. It can be used as a boundary component to keep bringing in more
diverse viewpoints while generating acceptable nature scenarios as well as a work-
able framework for creating consistent nature scenarios at various scales (Pereira
et al. 2020). The most comprehensive and up-to-date evaluation of how oceans and

1https://www.wri.org/climate/expert-perspective/role-modeling-and-scenario-development-long-
term-strategies-0.

https://www.wri.org/climate/expert-perspective/role-modeling-and-scenario-development-long-term-strategies-0
https://www.wri.org/climate/expert-perspective/role-modeling-and-scenario-development-long-term-strategies-0


the cryosphere are changing, how they are projected to change, and the
consequences of those changes, as well as a variety of response options, is believed
to be using the findings of the 2019 Special Report on the Ocean and Cryosphere in
a Changing Climate (SROCC) by the Intergovernmental Panel on Climate Change
(IPCC). These discoveries are extremely important for the conservation of South
Ocean ecosystems (Cavanagh et al. 2021). There are three ways to improve the
calibration and validation of dynamic modelling approaches, develop best-practice
guidelines for using these models, and create a toolbox with a variety of easier-to-use
methods. These are the main recommendations that suggest how to increase the use
of spatially explicit models for decision support. Additionally, by combining several
modelling approaches to measure uncertainty and putting models at the centre of
adaptive management, more robust decision-making can be obtained. To secure the
best results for conservation and restoration, these initiatives must be supported by
long-term funding for modelling and monitoring as well as increased communica-
tion between research and practice (Zurell et al. 2022). In the future too, it will be
necessary to handle political and institutional environment issues with greater
caution. It takes more than just thorough analysis to make better decisions in highly
unpredictable situations. Political will, more stable institutional environments, orga-
nizational capacities to develop trust, and expertise with adaptive, flexible process
formats are all necessary (Volkery and Ribeiro 2009).
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1.7 Structure of the Book

The present book includes 26 chapters that are further distributed into 5 core
sections. Part I of this book, “Ecosystem and Species Modelling Tools and Rele-
vance”, is a gathering of six chapters. Chapter 1 presents an overview about the
growing relevance of ecosystems and species modelling, its relevance in scenario
predictions, and mainstreaming modelling tools in environmental policy planning.
Chapter 1 also reflects on the enabling and constraining conditions for improving
effectiveness of results and scenarios generated by modelling tools. In Chap. 2 Azita
Farashi provides an Introduction of species distribution modelling and discusses the
relevance of species modelling in the context of global climate change. Shameer and
Sanil (Chap. 3) present the case of machine learning-based predictive modelling
approaches for better understanding of the evolutionary history, distribution, and
niche occupancy, by sharing experiences fromWestern Ghats. Chapter 4 by Barewar
et al. offers an overview of mapping the impact of climate change on eco-sensitive
hotspots using SDMs (gaps, challenges, and future perspectives). The review
concentrates on several SDMs, its application in various ecosystems and their
management, the gaps in the models and modelling techniques, and the challenges
in their applicability. To investigate the variables utilized for modelling the future
projections of the species distribution, several SDMs are presented in this chapter.
The chapter by George and Joseph (Chap. 5) presents approaches for modelling the
climate change impacts on ecosystems. This chapter provides an overview on how
the scenarios are being created and their evolutionary changes in the last two decades



starting from the IPCC’s SRES scenario to the recent SSP scenario. Further, the
downscaling of physically based climate models to biosphere-based Earth system
models is also presented. Two approaches to Earth system modelling, i.e. process-
based dynamical global vegetation models and classical climate envelope models,
are described in detail to model the response of ecosystems to climate change in this
chapter. Chapter 6 by Macandog et al. outlines the importance of developing a
Bayesian model of climate-induced lake overturn in Talisay, Taal Lake, a freshwater
caldera lake in the province of Batangas, on the island of Luzon in the Philippines.
Kadaverugu et al. (Chap. 7) bring insights from global sensitivity and uncertainty
analysis of MaxEnt model and exploring the implications in species habitat
projections using banj oak as important species dominant in moist temperate forests
of Uttarakhand.

1 Modelling Tools and Plausible Scenarios in Science-Policy to. . . 13

Part II of the book “Habitat Modeling for Conservation of Threatened Plants and
Restoration of Habitats” includes six chapters and the section cover examples of
modelling approaches used for habitat suitability for their effective conservation and
habitat restoration in case of habitat loss. The opening chapter of the section by
Dlamini and Loffler (Chap. 8) presents a case from Eswatini, a landlocked country
from the south of Africa. The chapter highlights the tree species diversity and
richness patterns that reveal high priority areas for conservation. Chapter 9 by
Pradhan and Chettri presents overview on prioritizing suitable habitat for improving
the current status of threatened tree (Acer sikkimensis Miq. syn. Acer hookeri Miq.)
through regeneration and use of ecological niche modelling tools. Kaushal et al.
(Chap. 10) provide perspectives from ecological niche modelling of the endemic
Himalayan near-threatened treeline conifer Abies spectabilis in the Indian Central
Himalaya. In Chap. 11, Bushi et al. provide scenario projections from species
distribution modelling of an endangered medicinal plant Oroxylum indicum (L.)
Kurz in Arunachal Pradesh. Peerzada et al. (Chap. 12) present a habitat suitability
modelling effort for Aconitum heterophyllum in temperate Himalayan forest
ecosystems. Habitat of Aconitum heterophyllum is highly vulnerable to climate shifts
and anthropogenic pressure and therefore needs immediate restoration in the wild
and systematic domestication in the potential areas. The last chapter of Part II
(i.e. Chap. 13) by Shilky et al. outlines the relevance of SDM in conservation and
restoration of forest ecosystems. Conservation management to aid in the recovery of
threatened species requires an understanding of their habitat availability and prefer-
ence. Part III of the book “Habitat Suitability Modeling for Protecting Animals and
Their Habitat” comprises four chapters, with the opening chapter by Hussain et al.
(Chap. 14) highlighting the relevance of habitat suitability analysis of Asiatic
elephants (Elephas maximus) in the tropical moist deciduous forest of Assam
using analytic hierarchy process (AHP). The study analyses the habitat suitability
and also maps the corridor of Asiatic elephants in Barduar and Mayang Hill situated
on both sides of Chandubi Lake in Kamrup District. Nath et al. (Chap. 15) provide an
overview about the factors affecting the habitat suitability of eastern swamp deer
(Rucervus duvaucelii ranjitsinhi; Groves 1982) in Manas National Park and impli-
cation for Terai grassland restoration. In this chapter, an attempt has been made to



analyse the patterns of swamp deer occurrence as determined by habitat variables
using random forest algorithm models that indicate optimal habitats of swamp deer
in the large grassland patches with wet climatic conditions. These findings have
significant implications for the conservation of the threatened grassland habitat and
its obligate species in the Terai grasslands of the region. Fragmentation has now
emerged as a major global problem, with anthropogenic activities regarded as one of
the main causes, primarily for the loss of habitat suitability. Chapter 16 by Areendran
evaluates the potential habitats of chital, sloth bear, and jungle cat in selected areas of
Central Indian landscape. Significant overlaps of potential habitats have been
observed between the species mostly within the protected areas. Mahato et al.
(Chap. 17) bring instances from fisheries and present scenario projections using
habitat suitability modelling of Tor tor (Hamilton 1822) in the Indian drainage
systems using MaxEnt. Part IV of the book deals with the application of modelling
tools and approaches, comprising six chapters. Kundu and Santhanam (Chap. 18)
model the reduction of carbon dioxide through the use of Marine Fishery Advisories
under varying climate change scenarios for the Bay of Bengal using the CMIP
approach with implications for techno-policymaking. In Chap. 19, Preeti et al.
bring forth the impacts of pollution on tropical montane and temperate forests of
South Asia: preliminary studies by postgraduate students in India and Sri Lanka.
Chapter 20 by Sharma and Santhanam highlights the selection of strategic sampling
sites for river quality assessments near mined areas as a policy handle for low-impact
development and biodiversity conservation using the case of river Godavari.
Ramanan et al. in Chap. 21 use ecological niche modelling to predict the potential
area for cultivation of Melia dubia: a promising tree species for agroforestry.
Santhanam et al. (Chap. 22) provide an overview on proportions of change in the
airborne particulate matter (PM10) concentrations across selected states in Peninsu-
lar India using study of decadal, pre-pandemic trends for planning restoration. In
Chap. 23 Macandog et al. use decomposition of sunflower cuttings to study its
impact on soil fertility of payoh (rice terraces) in Banaue, Ifugao, Philippines.
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The last section of the book with Part V “Ecosystem and Species Modelling for
Evidence-Based Decision-Making” has four chapters. The opening Chap. 24 in this
section by Jose et al. discusses the relevance of forest ecosystem modelling for
policy planning to address international climate targets. Chapter 24 provides review
of different ecosystem modelling approaches, exploring their potential applications
to understand changing forest dynamics and climate change adaptation options in
forest ecosystems. It helps to get insights into the advantages and limitations of the
various modelling-based approaches, providing a guideline for systematic execution
of policy assessment according to a defined criterion (e.g. uncertainty management,
data required, spatial and temporal dynamics, adaptation measures integration, and
level of complexity). Macandog et al. (Chap. 25) provide an overview on ecological
carrying capacity modelling and sustainability assessment of the seven lakes of San
Pablo City, Laguna, Philippines. Chapter 26 by Abbasov assesses the contribution of
freshwater ecosystem services to the sustainable development in the Kura-Aras
River Basin in Azerbaijan. The study used a basic Targeted Scenario Analysis
(TSA) approach. The TSA evaluates the present value of ecosystem services under



“business as usual (BAU)” ecosystem management practices. To evaluate costs and
possible benefits (or losses) of switching from BAU to SEM, it compares sector
output indicators with potential “sustainable ecosystem management (SEM)”
outputs. The last chapter (Chap. 27) provides prediction of eutrophication in aquatic
ecosystems with hybrid neural networks: a case study from Chilika lagoon, India.
The model evidenced an acceptable level of prediction when compared with the
results of the field observations. This model’s most important determinant variables
were those having a high random forest (RF) model permutation relevance ranking,
that reduced the networks structure and led to a more accurate process. This model
that can be considered for formulation of the management and conservation action
plan of other aquatic ecosystems too in other parts of the world. Through this book
volume, the editors as well as authors expect decent response from wide-ranging
audience and stakeholders encouraging productive reviews, insightful and progres-
sive professional deliberations on the benefits and limitations of the modelling tools
to predict species and ecosystem scenarios and also identify emerging research
issues for the active execution, and greater mainstreaming of modelling results to
advance the understanding and applicability of different modelling tools and
approaches in addressing intractable sustainable development challenges. Finally,
the edited volume focuses on wider application of these modelling tools for effec-
tive conservation and restoration planning that can help countries meet Kunming-
Montreal Global Biodiversity Framework, the UN decade on restoration targets and
localization of SDGs.
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Abstract

Species distribution models (SDMs) have become the most widely used method
for wildlife management and have been applied in the fields of ecology, biogeog-
raphy, and conservation.

Species distribution modelling commonly requires two categories of data:
(1) species data and (2) environmental data. Species data can be nominal (pres-
ence/absence records), ordinal (ranked abundances), or ratio (abundance and
richness). Environmental data refers to both biotic and abiotic conditions. The
most common types of environmental data in species distribution modelling are
climatic and topographical variables since these two sets of variables represent,
respectively, the large-scale conditions relevant to species’ physiology and small-
scale conditions which affect solar energy input and availability of moisture.
There are various techniques for species distribution modelling. The choice of
modelling technique is affected by the availability of data and in turn affects
modelling outcomes. The accuracy of SDMs can be measured with respect to two
characteristics: discrimination capacity and reliability; generally, discrimination
capacity has been seen as a more crucial metric of model performance. Accuracy
is an important challenge faced by SDMs. Several factors affect the accuracy of
SDMs such as environmental data, species data, the ecology of the species,
available computational resources, the model being utilized, and spatial
resolution.
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2.1 Introduction

Species distribution models (SDMs) have become the most widely used method for
predicting the impacts of global change on species and have been applied in the
fields of ecology, biogeography, and conservation. SDMs have also found
applications in evolutionary biology and ecology, management of invasive species,
design of protected areas, and predicting the impacts of climate change (Guillera-
Arroita et al. 2015). The increased interest and attention to these approaches is a
result of increased availability of digital data, user-friendly software, and accessibil-
ity of guides and educational material (Zurell et al. 2020). Current SDMs are the
result of integrating ideas from natural history and ecology with modern innovations
in statistics and information technology. The history of this approach in ecology can
be traced to past studies which linked biological patterns with environmental
variations such as geographical gradients (e.g., Grinnell 1904). Furthermore,
works which highlighted the unique response of individual species, rather than
communities, to environmental variables motivated the development of approaches
to model individual species (Miller 2010). Correlative SDMs infer species-
environment relationships and use them to predict species distributions. That is, an
SDM infers relationships between the distributions of species (as occurrence or
abundance records) and environmental variables at those locations to provide a
picture of potential distributions at the landscape level. In the literature, these models
have also been referred to as resource selection functions (RSFs), bioclimatic
models, range maps, ecological niche models (ENMs), habitat models, climate
envelopes, and correlative models or spatial models. In this chapter, we review
studies of SDMs and aim to systematically review the available knowledge on
species distribution modelling to offer ecologically relevant insights.

2.2 The Modelling Process

The process and input of modelling are largely determined by its goals. However,
any SDM regardless of its specific goals and methodology includes three main
elements: (1) data on species, (2) environmental covariates, and (3) a modelling
algorithm. In the following sections, we review these three essential steps through
discussing (1) data preparation, (2) variable selection, (3) model construction, and
(4) model evaluation (Fig. 2.1).
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Fig. 2.1 The four major steps involved in SDMs

2.3 Data Types

Species distribution modelling commonly requires two categories of data: (1) species
data and (2) environmental data.

2.3.1 Species Data

Species data can be nominal (presence/absence records), ordinal (ranked
abundances), or ratio (abundance and richness). The type of available data partially
determines the appropriate modelling approach and therefore affects modelling
output (e.g., whether the model generates suitability values or expected abundances)
(Miller 2010). In addition to the level of measurement, the ratio between
observations and predictor variables also informs the modelling process. Vaughan
and Ormerod (2003) recommend a minimum ratio of ten observations for each
predictor, while Franklin (2010) recommends a 20:1 ratio in general and a 40:1
ratio when stepwise correlation is utilized. Miller et al. (2007) caution that these
ratios can be affected by spatial autocorrelation.

Collection of species data is often one of the expensive steps in the process of
creating SDMs. Species data often comes from past biodiversity surveys/counts and
records at natural history museums. Data collected through these methods often
represent only part of the ecological reality due to spatial, temporal, and taxonomic
biases (Rocchini et al. 2011). For instance, available data on most Neotropical
species is usually limited, and the recorded locations are inaccurate and the metadata
inappropriate. Using such biased date to construct, calibrate, or test SDMs leads to
increased error, particularly in the case of species for which few points have been
recorded (Rocchini et al. 2011; Kamino et al. 2012).

Two general solutions can reduce and counter the biases and errors in species
data. First, the reliability of records should be evaluated using automatic workflows



and robust and regular revisions to omit unreliable data while preserving outliers.
Taking into consideration the route taken by expeditions and collection dates can
assist with deducing range shifts over time as well differentiating errors from
outliers. During the preparation of species data, the expertise of the data collector
in identifying species and locations, and fieldwork in general, should also be
considered in resolving suspicious cases. The other approach to solving bias and
inaccuracy in species data is to undertake additional surveys to supplement data from
the available repositories. This solution is especially suitable for rare or under-
studied species (Kamino et al. 2012).
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Another limitation of many species occurrence records is the lack of absence data,
rendering such data unfit as input for many modelling algorithms and evaluation
approaches. One solution proposed to overcome the unavailability of absence data is
to generate “pseudo-absences” where species have not been observed. Several
studies have focused on the different methods to generate pseudo-absences and the
effects of including absence data on model performance (e.g., Lobo and Tognelli
2011; Cerasoli et al. 2017). Other issues arising from uncertainty can also impact
species data. For instance, it is possible that a species is regarded as absent despite
being present at a certain location due to low detectability. This issue is more
frequent when the organism of interest is highly mobile or hard to detect. Although
detectability is often associated with animal species, plants can also go undetected
despite being present in the seed bank or as their seasonal cryptic form (e.g., as
underground organs in winter) (Franklin 2010). Absences might also be recorded in
suitable habitat due to biotic interactions, dispersal limitations, and disturbances,
among other factors.

There is also the implicit assumption in SDMs that the locations of occurrence
records for a certain species are independent although this is not necessarily the case.
As a result, the geographical distance between occurrence points heavily affects the
disparity in the value of variables. Spatial autocorrelation (i.e., similarity between
places in close proximity) is a common feature in most spatial data (Segurado et al.
2006) and can influence geospatial analyses (Anselin et al. 2004). Spatial autocorre-
lation increases the rate of false positives (type I errors) and can affect parameter
estimation and therefore model selection (Lennon 2000). Spatial Analysis in
Macroecology (SAM; Rangel et al. 2006) calculates and graphs Moran’s
correlograms to visualize spatial autocorrelation for occurrence records according
to the distance between points. To evaluate spatial autocorrelation in occurrence
data, Farashi and Alizadeh-Noughani (2021) evaluated the significance of Moran’s I
using a randomization test with 9999 Monte Carlo permutations, adjusted for
multiple testing. When spatial autocorrelation was present in the data, the testing
and training datasets were restricted according to the following steps: first, a distance
threshold was imposed on the data based on the distance lags which showed spatial
autocorrelation (10–25 km in their study). Next, points which were closer to each
other than the threshold values were aggregated and considered to occupy the same
partition (Parolo et al. 2008).
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2.3.2 Environmental Data

Environmental data refers to both biotic and abiotic conditions. The most common
types of environmental data in species distribution modelling are climatic and
topographical variables since these two sets of variables represent, respectively,
the large-scale conditions relevant to species’ physiology (by representing tempera-
ture and moisture) and small-scale conditions which affect solar energy input and
availability of moisture. Geological and edaphic variables can also be used as
environmental input for SDMs, but these variables are usually available at relatively
low resolutions due to their categorical nature. Distance from natural or man-made
features such as sources of water and roads is sometimes used to construct models to
represent distance to relevant landscape features such resources or disturbances
(Miller 2010). Moreover, the distribution of other species can be included to
represent biotic interactions such as predation or competition, or to stratify sampling
schemes to enhance the detection of rare species (Heikkinen et al. 2007).

Remote sensing products and metrics from landscape ecology can offer data on
habitat structure, biophysical conditions, landscape patterns, and heterogeneity
(Lausch et al. 2015; Dorph et al. 2021). Satellite imagery offers a wide array of
data on variables such as land cover, soil water content, vegetation, fraction of
photosynthetically active radiation, and leaf area indices. Although the Internet has
made remotely sensed data widely available, using these products should be done
with due consideration for their resolution, accuracy, and interpretability. Remote
sensing products should only be used in species distribution modelling if the variable
and the resolution of the product can competently capture the ecological phenome-
non of interest (Kamino et al. 2012).

The hypothesis to be addressed by modelling determines which environmental
variables should be used in modelling since hypothesis entails inherent assumptions
about the variables and mechanisms affecting species distributions. Therefore, it is
essential to pay close attention to species’ ecology and the history of the study area in
order to select environmental variables which capture the salient variables for the
modelled species (Kamino et al. 2012).

Modellers should also be cautious about collinearity among variables since it can
confound the identification of the most important predictors, especially with small
sample sizes. Sadly, the exact impact of collinearity on model predictions is yet
unknown since the effects of multicollinearity have rarely been assessed in the
literature. As a solution, some studies have suggested performing principal compo-
nent analysis prior to modelling and using the results with the greatest explanatory
power as the environmental predictors (e.g., Townsend Peterson et al. 2007; Raney
and Leopold 2018). Other studies have used correlation coefficients (such as
Pearson’s r) to screen modelling inputs (e.g., Hosseini et al. 2019; Moghadam
et al. 2021; Farashi and Karimian 2021). To do so, pairwise correlation is performed
between all variables, and those with |r| > 0.7 or 0.8 are considered to be strongly
correlated and are therefore eliminated as environmental predictors.

SDMs suffer from some limitations with respect to the possible inputs because the
algorithms are not capable of understanding all factors affecting distribution as some



factors cannot be easily represented as formulae. For instance, the static nature of
SDMs means they cannot account for population dynamics or spatial dynamics such
as connectivity and fragmentation. However, SDMs can still provide some utility
even in such cases. For instance, an SDM can first predict the potential distribution
of a species, and its output can then be filtered based on the effect of connectivity or
other habitat variables at different time steps.
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2.4 Modelling Techniques

2.4.1 Single Algorithm Techniques

Table 2.1 presents a list of SDM algorithms. The choice of modelling technique is
affected by the availability of data and in turn affects modelling outcomes (Jiménez-
Valverde et al. 2008). This highlights the need for evaluating models after modelling
is performed. For instance, Farashi and Alizadeh-Noughani (2021) compared differ-
ent SDMS with respect to their performance using environmental variables that were
known to affect the distribution of species and found MaxEnt and general additive
models (GAMs) to have the best performance. However, such evaluations of
performance should not be the sole criteria for model selection since other
considerations such as model complexity and number of parameters, incorporation
of ecological mechanisms, input type, and generalizability should also be
considered.

Models are by nature incomplete representations of real conditions, but the degree
to which a model attempts to capture reality depends on whether realism, generaliz-
ability, or precision is the priority; better results in any one of these three dimensions
often come at the expense of the other two. Overall, modellers should not try to
choose models which best fit the data. Rather, the focus should be on choosing a
technique that can address the research question most accurately. In many cases, a
simpler model with sound theoretical foundations is preferable to a more complex
model that overfits the data (Kamino et al. 2012).

2.4.2 Ensemble Techniques

The availability of numerous modelling algorithms, the unique strengths and
weaknesses of each algorithm, and the fact that the choice of model can affect
predictions have led to the development of ensemble modelling techniques. Ensem-
ble modelling is founded on the notion that each model reveals some true “signal”
about real-world relationships and some noise generated due to the data and the
model’s shortcomings. Thus, ensemble modelling combines different models to
better distinguish the signal from the noise (Dormann et al. 2018). Ensemble
modelling has been applied in fields other than ecology when systems with high
degrees of complexity have to be modelled, including in meteorology, economics,
and Gregory et al. (2001). This approach is also used in machine learning to combine
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Table 2.1 Species distribution models (P presence, A absence, B background)

Type of
variable

Regression models:
A classic method to
evaluate the relationship
between species data
(presence/absence or
counts) and
environmental data

Generalized
linear models
(GLMs)

The independent
variables in GLMs can
include interaction and
polynomial terms.
GLMs are preferred for
simple nonlinear
species-environment
relationships

P/A Guisan
et al.
(2002)

Generalized
additive
models
(GAMs)

A nonparametric
extension of GLMs,
thus potentially better
able to fit some data
than GLMs. GAMs use
data-defined smoothing
functions to fit nonlinear
species-environment
relationships. GAMs are
preferred when species-
environment
relationships are more
complex and not
adequately captured by
GLMs

P/A Guisan
et al.
(2002)

Multivariate
adaptive
regression
splines
(MARS)

An extension of linear
models that
automatically models
nonlinearities and
interactions. These
models are especially
useful for datasets with
many predictors and
lower-order interaction
effects

P/A Friedman
(1991)

Classification model:
Compared with
regression models,
classification models are
much more robust
against outliers

Flexible
discriminant
analysis
(FDA)

An extension of linear
discriminant analysis.
Linear discriminant
analysis is closely
related to general linear
models. FDA is based
on mixture models

P/A Hastie
et al.
(1994)

Classification
and
regression
tree (CART)

These models
recursively partition the
data into smaller
homogenous parts.
CART models are able
to detect complex
interactions between
explanatory variables,
which might be

P/A Vayssières
et al.
(2000)



Type Name Description

overlooked by other
multivariate techniques

(continued)
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Table 2.1 (continued)

Type of
variable Reference

Complex models:
Frameworks that
contain simple models.
Complex models can
detect the hidden
features of the data.
These models are
suitable for datasets
with strongly correlated
variables or extensive
correlation structures.
However, complex
models might reproduce
minor details of training
data, leading to over
fitting and lowering
generalizability

Random
forest (RF)

These models are based
on decision trees,
implemented using
Breiman’s random
forest algorithm for
classification and
regression. RF models
are robust against
multicollinearity,
missing data, and
unbalanced datasets.
They can also be used to
detect variable
interactions

P/A Breiman
(2001)

The genetic
algorithm for
rule set
production
(GARP)

An SDM that develops
rule sets for determining
species distributions.
The rule set includes
mathematical rules to
limit environmental
(e.g., species range) and
species-environment
interactions (e.g.,
regression patterns)

P/B Stockwell
and Peters
(1999)

The
maximum
entropy
(MaxEnt)
method

A general-purpose
machine learning
algorithm that estimates
target probabilities by
finding the distribution
with maximum entropy
(i.e., closest to uniform)
under the constraints
that the expected value
of each environmental
variable be equal to its
empirical average
(average value of the
variable at a sample of
points from species
distribution)

P/B Phillips
et al.
(2006)

Artificial
neural
network
(ANN)

Nonlinear models with a
very large number of
parameters, making
them flexible enough to
represent any smooth
function. ANNs can
function as multiple

P/A Lek and
Guégan
(1999)



Type Name Description

regression for
continuous variables or
classification for
categorical variables.
The accuracy of these
algorithms is largely
determined by weight
decay of the links and
number of hidden
neurons. ANNs can
update model
parameters based on
new observations

simple modelling units into complex classifiers. Ensemble models have shown
superior performance than individual models in many cases (Seni and Elder 2010).
Ensemble modelling approaches utilize a number of methods to construct models
and have been fundamental in the development of some SDM approaches (e.g., Guo
et al. 2015; Kindt 2018; Hao et al. 2020; Kaky et al. 2020).
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Table 2.1 (continued)

Type of
variable Reference

The literature includes a variety of methods for combining models. The simplest,
and the most intuitive, is calculating the mean or median across predictions regard-
less of data type. More complex schemes assign weights to predictions by different
models based on some measure of predictive performance. The weights are often
obtained after model validation on some of the test data. Weighting improves
predictive performance of the ensemble but takes more effort to implement since
individual models need to be validated before being combined into the ensemble
(Araújo and New 2007).

2.5 Model Evaluation

The accuracy of SDMs can be measured with respect to two characteristics: discrim-
ination capacity and reliability (Pearce and Ferrier 2000); generally, discrimination
capacity has been seen as a more crucial metric of model performance (Ash and
Shwartz 1999). This metric captures the ability of the model to distinguish presence
sites from absence sites. Reliability captures the degree of consistency between
predicted and observed presence sites (Pearce and Ferrier 2000). For models
which output continuous results, both dimensions can be evaluated; however, only
discrimination capacity can be evaluated for models with binary output. Several
metrics have been proposed to assess discrimination capacity and reliability, some of
which are applicable exclusively to binary results or continuous results converted to
binary using a threshold value (threshold-dependent measures). In contrast, metrics
which can be directly applied to continuous predictions are called



a b

c d

threshold-independent measures. By applying systematic variations to threshold
values, the optimal value of a threshold-dependent metric can be obtained according
to a pre-defined definition of what constitutes optimal. Since this process utilizes
several threshold values, the obtained optimal value of the threshold-dependent
measure can be treated in same manner as threshold-independent measures (Liu
et al. 2011).
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2.5.1 Threshold-Dependent Measures

Threshold-dependent measures take advantage of a confusion matrix (Table 2.2).
Table 2.3 presents some of the threshold-dependent measures used to evaluate
SDMs. Sensitivity (Se), specificity (Sp), true skill statistic (TSS), and kappa are
based on conditional probability and are some of the most common metrics for
model performance. The Se represents the probability that presence is accurately
predicted at a site, and Sp represents the likelihood that a species is accurately
predicted as absent at a site. TSS and Youden’s index (J) are equivalent and are
widely used in dichotomous diagnostic tests in medicine. In the context of SDMs,
these measures are defined as mean net prediction success rate for presence and
absence sites. TSS and Youden’s index have gained popularity for evaluating the
performance of SDMs (e.g., Farashi and Shariati 2017; Farashi and Erfani 2018;
Makori et al. 2022). Kappa measures the extent to which agreement between
predicted and observed values is greater than what is expected from chance alone.
This metric has been developed to overcome the problem of overestimating accuracy
and has been employed for meteorological applications since the nineteenth century
(Murphy 1996), where it is referred to as Heidke skill score (Stephenson 2000).

2.5.2 Threshold-Independent Measures

Table 2.3 presents threshold-independent metrics used in model evaluation. Area
under the receiver operating characteristic curve (AUC) is one of the most com-
monly used metrics of model accuracy, including SDMs (e.g., Sobek-Swant et al.
2012; Wei et al. 2018; Soilhi et al. 2022). In species distribution modelling, AUC is
equal to the probability that a randomly selected presence site will be ranked higher
than a randomly selected absence site (Pearce and Ferrier 2000). AUC can also be

Table 2.2 The confusion matrix used to represent the accuracy of classification for binary data.
a and d represent correct predictions (true positives and negatives, respectively); b and c represent
incorrect predictions (false positives and negatives, respectively)

Observed

Present Absent

Predicted Present

Absent



calculated as the average value of Se over all possible values of Sp, or vice versa
(Jiang et al. 1996). AUC has drawn some criticism due to utilizing parts of the
prediction range which do not have practical applications, leading to an inaccurate
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Table 2.3 Metrics used to evaluate the accuracy of SDMs

Type Metric Reference

Threshold-dependent Overall accuracy Finley (1884)

True skill statistic Peirce (1884)

Kappa Cohen (1960)

Normalized mutual information Finn (1993)

Sensitivity Fielding and Bell (1997)

Specificity Fielding and Bell (1997)

Positive predictive value Fielding and Bell (1997)

Negative predictive value Fielding and Bell (1997)

Positive likelihood ratio Glas et al. (2003)

Negative likelihood ratio Glas et al. (2003)

Odds ratio Glas et al. (2003)

F measure Daskalaki et al. (2006)

Yule’s Y Kraemer (2006)

Yule’s Q Kraemer (2006)

Phi coefficient Kraemer (2006)

Extreme dependency score Stephenson et al. (2008)

Threshold-independent
accuracy index

Mean square error Brier (1950)

Point biserial correlation
coefficient

Tate (1954)

Rank biserial correlation
coefficient

Glass (1966)

Proportion of explained
deviance

Mittlböck and Schemper
(1996)

Maximum kappa Guisan et al. (1998)

Coefficient of determination Ash and Shwartz (1999)

Maximum vertical distance Lek and Guégan (1999)

Adjusted proportion of
explained deviance

Guisan and Zimmermann
(2000)

Gini index Hand (2001)

Maximum overall accuracy Stockwell and Peterson
(2002)

Area under ROC curve (AUC) Mason and Graham (2002)

Mean absolute prediction error Schemper (2003)

Root mean square error Caruana and Niculescu-
Mizil (2004)

Mean cross entropy Caruana and Niculescu-
Mizil (2004)

Partial area under ROC curve
(PAUC)

He and Escobar (2008)



evaluation of model performance (Lobo et al. 2008). In response, McClish (1989)
developed the partial AUC (PAUC).
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2.6 Application of SDMs in Paleobiogeography

SDMs have found a number of paleobiogeographical applications (see Svenning
et al. 2011), including studying the effects of climate change on the distribution of
species over time (McGuire and Davis 2013), nature and causes of extinctions (e.g.,
Meseguer et al. 2018), locations of glacial refugia (e.g., Carnaval and Moritz 2008;
Schmickl et al. 2010; Gavin et al. 2014), preservation of traits which are tied to an
organism’s niche over time (e.g., McDonald and Bryson 2010), and the impact of
historical changes in climate on modern genetics structures (Alexandrino et al.
2007). SDMs have improved our knowledge of factors affecting species’ distribution
and evolution, their response to environmental change, the impacts of extreme
climate events, and the role of glacial refugia in determining the current distribution
of species.

However, the application of SDMs in paleobiogeography faces some challenges.
For instance, similar to the challenges associated with present species data, the data
on the occurrence of species might not fully reflect the environmental conditions that
are suitable for species. Such underestimations of species’ range could lead to
predictions that underestimate historic distributions. However, this problem can be
diminished if the model utilizes the entirety of a species’ temporal and geographic
range and does not use absence data as input. In the absence of data on a species’
climatic niche, more conservative approaches and interpretations are advised.
Regardless, the application of SDMs for the past periods still faces three main issues:
the difficulty of obtaining species data (presence/absence), the difficulty of making
extended predictions, and the difficulty of validating projections (Varela et al. 2011).

2.7 Niche Theory in SDM

The idea of ecological niche forms the theoretical foundations of SDMs. Although
niche is a fundamental idea in ecology, it has been interpreted in different ways both
in general ecological literature and specifically for SDMs (Araujo and Guisan 2006;
Hirzel and Le Lay 2008; Franklin 2010). Hutchinson’s definition of niche is one of
the most widely used definitions of this concept. According to him, the niche of a
species is an “n-dimensional hypervolume” which can indefinitely support the
organism (Hutchinson 1957). This concept is further divided into the fundamental
niche (the range of potentially habitable conditions) and the realized niche (the
portion of the fundamental niche inhabited as a function of biotic interactions).
However, some challenges have been posed to Hutchinson’s definition of ecological
niche. Araujo and Guisan (2006) state that Hutchinson limited biotic interactions to
negative interactions, while positive interactions would compromise the
hypervolume definition of niche. Such interactions often occur at spatial and



temporal scales that are too small to be captured by SDMs. Also, biotic processes
such as dispersal are similarly fundamental to the distribution of species, yet a
temporally static concept of niche does not allow for such variations over time
(Araujo and Guisan 2006; Soberón 2007).
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It is crucial that the phenomena being modelled or mapped are clearly defined for
the application of SDMs; the assumptions and limitations of the data and methodol-
ogy should also be clarified in advance. Although the concept of ecological niche is
fundamental to SDMs, what SDMs are actually modelling in most cases are species’
habitats. To delineate these two concepts, Kearney (2006) places the two concepts in
a hierarchy, with niche models being the outcome of mechanistic analyses consider-
ing morphology, physiology, behavior, and species-environment interactions and
habitat models referring to the outcome of descriptive/correlative analysis often
using environmental variables. Environmental variables can be considered as the
dimensions of n-dimensional hypervolume proposed by Hutchinson and species’
responses to those variables as the determinants of their distributions. Based on this
interpretation, the exact properties of a species’ response curve for an environmental
covariate reflect some measure of species presence (abundance or occurrence) under
changes in that environmental variable. Response curves often display the minima
and maxima where a species is expected to occur (tolerances) and a mode
representing optimal conditions with respect to that environmental variable.

Another issue associated with Hutchinson’s definition of niche arises from the
distinction between fundamental and realized niche. It follows from Hutchinson’s
definition that two species which utilize, and are limited by, a common resource
cannot co-occur at the same place since the superior competitor is expected to drive
out the other species. In other words, we expect not to observe intersecting realized
niches. In the context of SDMs, the significance and applicability of this concept is
heavily affected by the interaction between the scale of the analysis (both in terms of
resolution and extent) and the type of organism being studied. While Hutchinson
mostly focused on species with small ranges and formulated his ideas at the scale of
communities, SDMs are commonly applied at much larger scales (regions of even
continents). Also, the resolution of input data in SDMs can be quite coarse
(1–50 km), meaning that competing species can occur at the same location as far
as the model is concerned but move to avoid competitors in the real world. In effect,
this means that species whose realized niches overlap can be present at the same
location. Even if fine-grained data is used, such species could still reach local
equilibrium. For instance, weakly competitive species could randomly establish at
unoccupied sites (Hutchinson’s “fugitive” species) or temporally partition their
resource use (e.g., nocturnal and diurnal species using the same resource). Thus,
species whose realized niches overlap can coexist in space and time (Araujo and
Guisan 2006).
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2.8 Challenges in SDM

SDMs have become an important tool in theoretical and applied research in bioge-
ography. However, important conceptual ambiguities must be addressed before
models can generate more reliable outputs (Rodríguez-Rey et al. 2013). Among
the major issues faced by SDMs is the implicit assumption that species inhabit their
environment at equilibrium states (Franklin 2010). However, a state of equilibrium is
relatively uncommon in nature (Gaston 2009). In fact, the need for modelling a
species distribution is more strongly felt when there is no equilibrium or the
equilibrium has been disrupted, such as the first stages of invasion (Peterson 2003;
Srivastava et al. 2019).

Accuracy is another challenge faced by SDMs. Several factors affect the accuracy
of SDMs (Allouche et al. 2008) such as environmental data (e.g., type and variance
of data; Aguirre-Gutiérrez et al. 2013), species data (e.g., geographical accuracy,
sample size, field survey limitations, or autocorrelation; Huettmann and Diamond
2006), the ecology of the species (e.g., distribution, abundance, niche; Beale et al.
2008; Saupe et al. 2012), available computational resources (very fine resolutions
can be computationally demanding), the model being utilized (e.g., presence only,
presence-absence), and spatial resolution (changes in spatial resolution can affect
spatial patterns) (Graham and Hijmans 2006; Farashi and Alizadeh-Noughani 2021).
Many researchers have evaluated the effects of these factors on the performance of
models. For example, Stockwell and Peterson (2002) reported the effects of spatial
resolution on the performance of a genetic algorithm and a logistic regression
algorithm for predicting the distribution of birds. Similarly, Hernandez et al.
(2006) studied the effect of spatial resolutions on 17 vertebrates and 1 insect in
California. Using 400,000 records of 328 species over 200 years in the Netherlands,
Aguirre-Gutiérrez et al. (2013) evaluated the effects of a number of factors on model
performance including models, environmental variables, spatial distribution, and
spatial resolution. Farashi and Alizadeh-Noughani (2021) evaluated how the outputs
of different models are affected by the spatial resolution of input data. However, no
study has comprehensively investigated the effects of input parameters on the
performance of SDMs.

Finally, the concept of realized ecological niche also poses a challenge to SDMs.
According to Hutchinson (1957), the spatial distribution of a species is shaped by its
environmental tolerances (fundamental niche) and biotic interactions (realized
niche). However, decoupling the influence of these two aspects is not easy. Often
only species-environment (climate and topography) interactions are explicitly
accounted for in modelling (Austin 2002), while biotic interactions are only implic-
itly considered (Dormann et al. 2012) despite their significant influence on species’
distributions (Wisz et al. 2013; Pollock et al. 2014). Recent techniques such as joint
species distribution models (JSDMs) have attempted to take the realized ecological
niche of species into account. Pollock et al. (2014) offer a broad description of the
JSDM used for frogs and eucalypt trees in Victoria, Australia.
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Abstract

Machine learning enables computers to learn similarly to humans. In recent years,
the use of machine learning in ecology has skyrocketed. Advances in computer
science have allowed us to better combine the ever-increasing volumes of data we
acquire with our knowledge of how natural systems function. These
enhancements in process comprehension are essential for accurate ecological
predictions. The MaxEnt software implements the maximum-entropy approach,
a spatial distribution modelling (SDM) tool for biological entities. MaxEnt uses
machine learning to produce accurate predictions about whether a particular
species will be found in a particular place based solely on the locations in
which it has previously been observed. These locations along with various
environmental variables preferable by the targeted species can produce predictive
distribution models. Variables like climate, topography, land use, vegetation,
human impacts, etc. are commonly used. These variables are available as open
sources and can be downloaded from multiple open-access database online.
These future climate variables for various Representative Concentration
Pathways (RCP) are available and are popularly used in these models for climate
change predictions. The present research discusses the output of various studies
conducted in Western Ghats (WG) using these models and points out benefits of
using ML-based models for lesser-known species conservation.
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3.1 Introduction

Machine learning is a fascinating computer science technology that allows
computers to work without being explicitly programmed (Mitchell 2006). Machine
learning, as the name suggests, allows computers to learn in the same way that
humans do, and it is widely used in all aspects of life. This field of artificial
intelligence learns like a person and improves its accuracy over time using data
and algorithms. The three categories of machine learning methodologies are
supervised, semi-supervised, and unsupervised (Grira et al. 2004). Models are
used in machine learning technologies to create precise predictions (Liakos et al.
2018). In supervised machine learning, as input data is entered into the model, the
weights are adjusted until the model is adequately fitted (Choi et al. 2018). This is
done as part of the cross-validation procedure to avoid over fitting or under fitting the
model. In supervised learning, neural networks, naive Bayes, linear regression,
logistic regression, and random forest are just a few of the approaches used. The
purpose of supervised learning, also known as supervised machine learning, is to
efficiently classify data or predict outcomes. As input data is entered into the model,
the weights are adjusted until the model is adequately fitted. This is done as part of
the cross-validation procedure to avoid over fitting or under fitting the model.

Machine learning is used to assess and cluster unlabelled data sets using a method
known as unsupervised machine learning (Chegini et al. 2019). These algorithms
can detect patterns or groups of data without requiring human input. For camera trap
data and conflict analysis, such techniques are employed in picture and pattern
recognition. Unsupervised learning techniques include neural networks, k-means
clustering, and probabilistic clustering. Semi-supervised learning falls between
supervised and unsupervised learning. During training, a smaller, labelled data set
guides classification and feature extraction from an unlabelled data set. Semi-
supervised learning can be used to overcome the lack of labelled data (or the inability
to afford to label enough data) (Chapelle et al. 2009).

It is now easier than ever to produce precise and unbiased predictions regarding
the state of the environment. Three events occurred simultaneously to cause this: To
begin with, previously lacking information about ecosystems is now easily accessi-
ble. Ecology is swiftly transitioning from a period of scarce data to one awash in
information as a result of the advent of big data. There has been a major cultural shift
in the scientific community in recent years toward making ecological data accessible
to the public (Shameer et al. 2021a). These recent methodological discoveries have
also enabled us to better combine the ever-increasing volumes of data we are
collecting with our understanding of how natural systems work. These
improvements in process understanding are critical for good ecological forecasting,



as we face a future with no analogue conditions. Finally, the increasing availability
of high-performance infrastructure for scientific computing and an increase in
processing capacity in general serve as the technological foundation for both of
the aforementioned tendencies. The quick uptake of machine learning in ecology can
be attributed to these three novelties. While machine learning methods were not
widely used (Olden et al. 2008) until recently, the popularity has skyrocketed in the
past several years. Given its limited application thus far, deep learning in ecology has
only been put to a few select uses.
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Soberón (2010) argues that accurate distribution mapping in a sustainable habitat
can be achieved by the integration of environmental data with species occurrence
data. SDM, also known as ecological niche modelling (ENM) (Peterson 2006), helps
in the conservation of less well-known species by resolving range assessment and
optimal habitat prediction (Whittaker et al. 2005; Warren and Seifert 2011; Fourcade
et al. 2014). With the help of presence data, MaxEnt (Phillips et al. 2006) can mimic
the ecological niche of a wide variety of taxa, including flora and fauna (Raman et al.
2020a, b). With insufficient information, the MaxEnt machine language has proven
capable of estimating the range, preferred environment, and niche suitability of
species (Phillips et al. 2006; Elith et al. 2011). Distribution models will give us
detailed information about the habitat, which will help us learn more about the needs
and less important parts of the ecosystem that affect a species with a high manage-
ment plan score. This article aims to provide an overview of prediction models,
providing numerous examples of how they are used to anticipate the habitat of
lesser-known species and how climate change affects species distribution.

3.2 MaxEnt Modelling

The MaxEnt software implements the maximum-entropy method, a technique for
modelling the spatial distribution of biological organisms (Phillips et al. 2006).
MaxEnt uses machine learning to make accurate predictions about whether a certain
species will be found in a certain area based only on where that species has been seen
before. This method of prediction is gaining popularity since it outperforms similar
algorithms in terms of precision. Using environmental factors as backdrop points,
the software may be used to determine the greatest entropy in a geographical data set
of target species. This is comparable to the concept of increasing the log likelihood
of species presence data and removing it from the penalty term, which is akin to the
concept of AIC. Each of the used environment variables is assigned a weight based
on the amount of complexity it adds. In addition, an empirically derived regulariza-
tion parameter will be integrated into the weighting. The total of these weights
defines how a penalty should be given to the probability to prevent over fitting. The
MaxEnt’s regularization parameters are derived from a study conducted by Phillips
and Dudik (2008); however, users have the ability to adjust this value, which is
advised in the default circumstance.

The best model is the one with the highest entropy under particular conditions.
MaxEnt is the model of choice when it comes to extrapolating species distributions



with remarkable exactness (Bosso et al. 2018; Soucy et al. 2018; Zhang et al. 2018).
Assuming a uniform distribution, the software begins to operate and runs continuous
iterations, increasing the chances of finding an appropriate spot (Merow et al. 2013).
Logistic output is often used. This is the probability of a species’ binary argument
given the environmental variables (Merow et al. 2013). Using logical output, we can
discern between appropriateness of different sites. The settings of the regularization
multiplier (rm) can be modified to change the models. To change the model’s
complexity, several feature types can be utilized, such as linear (L), product (P),
quadratic (Q), and hinge (H). A bias grid can also be created by computing the
Gaussian kernel density of sample localities while taking into account the possibility
of bias in the data. Using a subsampling technique with a number of repeats, a “N”
number of iterations can be used to train the models, and a “100-N” number of
iterations may be used to test them. The jackknife method can be used to assess the
significance of all environmental variables.
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3.3 The Climatic Variables

Any properly assigned variable can be used in MaxEnt habitat suitability modelling.
Bioclim variables are a collection of 19 climatic variables from data sets offered by
the WorldClim database (worldclim.org). Combining monthly temperature and
precipitation values yielded these bioclimatic variables. Bioclimatic factors are
frequently employed in species distribution prediction models. The bioclimatic
variables are given annual temperature, annual precipitation, or climatic extremes.
Table 3.1 provides information about bioclimatic factors. The variables 1 to 4 (BIO1
to BIO4) reflect the annual temperature, while the variable 12 (BIO12) represents the
annual precipitation. The climatic variables 5 to 11 (BIO5 to BIO11) display the
varying quarterly or monthly temperature extremes. Quarters are a group of 3 months
in a year, with four quarters such as cold, warm, wet, and dry. BIO13 and BIO14
provide the precipitation data for 2 severe months, while BIO15 is the coefficient of
variance for this data (precipitation seasonality). Precipitation data for the four
quarters is represented by the numbers 16 to 19 (BIO16, BIO17, BIO18, and
BIO19).

3.4 Climate Change and Habitat Suitability

Numerous websites provide future climate statistics based on the three Representa-
tive Concentration Pathways (RCP). WorldClim, CHELSA, CliMond, ecoClimate,
ENVIREM, and MERRAclim are the most important data-supply databases. RCP
describes the possible future climate based on the Intergovernmental Panel on
Climate Change’s (IPCC) greenhouse gas emission scenarios. For the prediction
and analysis of climate change, four basic paths are frequently used. They had RCP
values of 2.6, 4.5, 6, and 8.5. In RCP 2.6, it is assumed that greenhouse gas
emissions will begin to decline by 2020, with carbon dioxide emissions reaching

http://worldclim.org


zero by the same year. In RCP 4.5, greenhouse gas emissions peak in 2040 and then
fall, whereas in RCP 6, emissions peak in 2080 and then decline. Under RCP 8.5,
greenhouse gas emissions will continue throughout the twenty-first century (Sharma
et al. 2017). Using these notions, it is possible to model the habitat appropriateness
of different species under different RCP scenarios. This will aid comprehension of
the alternating distribution ranges of several species. The aforementioned databases
can be used to find bioclimatic factors that can be used to make predictions about the
distribution of species.

3 Machine Learning-Based Predictive Modelling Approaches for Effective. . . 45

Table 3.1 Bioclimatic variables used for modelling (See Bioclimatic variables—WorldClim
1 documentation for more details)

BIO1 Annual mean temperature

BIO2 Mean diurnal range (mean of monthly (max temp—min temp))

BIO3 Isothermality (BIO2/BIO7) (×100)

BIO4 Temperature seasonality (standard deviation ×100)

BIO5 Max temperature of warmest month

BIO6 Min temperature of coldest month

BIO7 Temperature annual range (BIO5–BIO6)

BIO8 Mean temperature of wettest quarter

BIO9 Mean temperature of driest quarter

BIO10 Mean temperature of warmest quarter

BIO11 Mean temperature of coldest quarter

BIO12 Annual precipitation

BIO13 Precipitation of wettest month

BIO14 Precipitation of driest month

BIO15 Precipitation seasonality (coefficient of variation)

BIO16 Precipitation of wettest quarter

BIO17 Precipitation of driest quarter

BIO18 Precipitation of warmest quarter

BIO19 Precipitation of coldest quarter

3.5 Model Appraisal

Area under the receiver operating characteristic curve (AUC) and actual skill
statistics are two metrics that can be used to assess models (TSS). AUC is a
threshold-independent metric used to evaluate model performance by measuring
the model’s ability to distinguish between random and background data. Not all
models with a high AUC score have great predictive value (Phillips et al. 2006), and
evaluations based only on the AUC score are not accurate. The TSS formula is
sensitivity plus specificity equals one, where sensitivity and specificity are evaluated
relative to the probability threshold at which they are greatest (Allouche et al. 2006).
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3.6 The Western Ghats and Climate Change

From Gujarat to Goa, Kerala, through Karnataka and Tamil Nadu in India, there is a
1600-kilometer range of mountain chains known as the Western Ghats (WG). The
faulted ridges of an elevated plateau make up the WG, which is not a mountain in the
traditional sense (Bhat 2017). During the continental drift, when the Indian subcon-
tinent moved close to Reunion Island 120–130 million years ago, the mountain chain
was built by volcanic eruptions. Volcanic eruptions contributed to the extinction of
many reptiles, including the dinosaurs, during this period. The SouthernWG’s 2000-
million-year-old rocks provide evidence of domal uplift, which raised the WG. The
fauna and geography of Peninsular India were altered by the Eocene alterations
(40–45 million years ago) in the region (Karanth 2006). The high rates of uplift
resulted in high heights, slopes, and gorges, which served as the cradle of speciation,
resulting in the current amount of endemism. This hilly, rolling area with a wide
range of landscapes and plants has a big effect on the climate of Peninsular India
(Gunnell 1997).

The WG is a delicately diverse environment that hosts a wide range of rare and
endangered species, making it a biodiversity hotspot (Cincotta et al. 2000; Myers
et al. 2000; Shameer et al. 2019). The mountain ranges on the west coast of
Peninsular India are unique due to a variety of topography, varied altitudes, different
climates, and a variety of habitats. There are humid tropical conditions at lower
elevations and a temperate environment with an annual average temperature of 150 °
C at higher elevations. Many instances of parapatric and allopatric species have been
found in high altitudes where frigid climates are prevalent (Vijayakumar et al. 2016).
Deforestation, forest encroachment, infrastructural developments, agricultural
expansion, hydroelectric projects, mining, timber logging, and the extraction of
forest products are some of the human-induced stresses that the WG faces today
(Menon and Bawa 1997; Priti et al. 2016; Sen et al. 2016; Raman et al. 2020a, b;
Shameer et al. 2021a). Tropical montane ecosystems, like WG, are undergoing fast
change, but the exact rate and pattern of this change remain a mystery. Variations in
the pattern of land use and land cover have a significant impact on the fragile
ecosystem’s biodiversity (Sukumar et al. 1995; Menon and Bawa 1997). Many
species have already gone extinct due to habitat fragmentation, tourism schemes
that are not based on facts, and the expansion of exotic/invasive species. Changing
the landscape by removing shola-grasslands and replacing them with exotics has
unpredictable consequences.

Animal metabolism and development are directly influenced by changes in CO2

concentration, temperature, or precipitation (Hughes 2000). Due to temperature
changes, the reproductive requirements, habitat selection, and feeding strategies of
species may also have differential effects, which may represent an extra risk for their
survival. According to the Intergovernmental Panel on Climate Change (IPCC), if
global temperatures rise by 2–3 degrees Celsius, 20–30% of species will become
extinct (Stocker et al. 2013; Warren et al. 2013). Climate change is causing WG’s
delicate biological equilibrium to be upended, resulting in an increase in dependent
fauna and changes in floral composition (Shukla et al. 2003). According to the



vulnerability index (Gopalakrishnan et al. 2011), the WG is more vulnerable to
climate change than the northeastern forests. Local variety may suffer as a result of
climate change’s negative influence on water supplies (Wagner and Weitzman
2015). Changes in the trophic structure have been observed in locations that are
particularly vulnerable to climate change. Because of the altered climate, non-native
and invasive organisms have an advantage over their native counterparts (Hellmann
et al. 2008). Because of the rising impact of humans and the introduction of invasive
species, tropical montane ecosystems like WG host many threatened taxa with a
restricted distribution that are vulnerable to local extinction (Arasumani et al. 2019).
Invasive species (flora and fauna) can spread rapidly in a changing environment
because they are able to take advantage of new niches. The successful invaders are
projected to be species that are phenologically flexible and occupy the temporal
niche of the indigenous species (Moran and Alexander 2014). An alien flora has the
same features as native flora and disperses in the same manner. External variables
like climate change play a significant role in reshaping the trophic system. Sukumar
et al. (1995) found that fragile mountain ecosystems are especially at risk from
climate change because of their complicated topography and biogeographic history.

3 Machine Learning-Based Predictive Modelling Approaches for Effective. . . 47

3.7 Habitat Suitability Model of an Endemic Mammal

We were able to model the ideal habitat for the Western Ghats’ endemic brown palm
civet using the MaxEnt (Shameer et al. 2021b). Prediction models are important for
reviewing or creating data for a less-known species since they understand the target
species’ core niche. The brown palm civet, an endemic species, is difficult to monitor
because of its nocturnal habits and elusive nature (Mudappa 2006; Patou et al. 2010).
A thorough understanding of a species’ natural habitat helps researchers and
conservationists plan suitable actions and undertake extensive monitoring. It has
been suggested that the brown palm civet lives at elevations ranging from 500 to
1300 m above sea level (Rajamani et al. 2002). The Western Ghats’ brown palm
civet has only been studied in terms of its occurrence, diet, pelage variation, and
taxonomy (Pocock 1933; Hutton 1949; Schreiber 1989; Ramachandran 1990;
Ashraf et al. 1993; Ganesh 1997; Rajamani et al. 2002; Mudappa et al. 2010). It is
not enough to know about a species’ natural history and biology to devise an
effective conservation plan. An in-depth understanding of the species’ range and
ideal habitat is even more important (Papeş and Gaubert 2007). Please refer to
Fig. 3.1 (adapted from Shameer et al. 2021b) for a visual representation of the
predicted habitat areas. According to our research, the brown palm civet was
previously widespread in the Western Ghats but is now confined to just four isolated
blocks. The brown palm civet’s habitat was broken up by the destruction of dense
rainforest, which was caused by a lot of human activity.
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3.8 Consequences of Climate Change on Endemic Animals

Many species’ distributions, abundances, and life cycles are directly impacted by
climate change as a result of global warming (Thuiller et al. 2006). In order to protect
biodiversity for the future, planners and politicians must pay direct attention to the
impact of climate change around the globe (Pacifici et al. 2017). Climate change is
expected to have a considerable impact on species’ geographic ranges, resulting in a
decrease in their abundance (Warren et al. 2013). An ecological process in which
climatic variables influence species niches at the spatiotemporal scale is of interest in
a long-term study (MacFadyen et al. 2018). As a result, climate variables that
influence species abundance and distribution can be predicted based on their
response to current climatic conditions. Climate change has been implicated in
numerous studies around the world, which have found that species’ geographic
ranges are shrinking as a result (Walther et al. 2002; Hickling et al. 2006; Priti
et al. 2016; Bhattacharyya et al. 2019). Because of their diverse ecological patterns
and processes, high-altitude ecosystems, also known as “sky islands,” are particu-
larly vulnerable to climate change (Raman et al. 2020b).

An essential role in the study of lesser-known species and the geographical
simulation of the prospective effects of future environmental circumstances on
various species has been played by ecological niche modelling (ENM) (Guisan
and Zimmermann 2000). It is a very climatic-dependent species with a special
geographic affinity for sky islands; it is a data-deficient high-altitude species. Two
endangered species, the brown mongoose and Salim Ali’s fruit bat, were modelled to
examine the effects of various levels of greenhouse gas emissions. Brown mongoose
and other related species would experience considerable shifts in range due to
climate change. The brown mongoose’s estimated range map is provided in
Fig. 3.2 (adopted from Raman et al. 2020b), as is Salim Ali’s fruit bat’s expected
range map in Fig. 3.3 (adopted from Raman et al. 2020a). The brown mongoose’s
range will be significantly affected by climate change in the changing climatic
circumstances, according to the findings. The expected shift in Salim Ali’s fruit
bat’s trophic composition indicates that the WG’s floral composition is shifting, and
this shift is reflected in the change predicted for this species. Because of this, we
expect the floral and faunal composition of WGmay change as a result of the shifting
climatic condition.

3.9 Paleoclimatic Model and Allopatric Speciation

The shifts in endemic species’ geographic distribution that have led to the current
patterns can be traced back to the quaternary climate change (Hewitt 2000; Hewitt
and Griggs 2004; Bose 2016; Ray et al. 2018). Climate change has resulted in a
shrinking of existing ranges, culminating in the creation of new species from isolated
meta-populations (Hewitt and Griggs 2004; Provan and Bennett 2008; Stewart et al.
2010; Bose 2016). During the Eocene, the Indian plate was migrating, and this is
when the Dravidogecko evolved and became a distinct species (Chaitanya et al.
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Fig. 3.2 Predicted habitat change of endemic brown mongoose in Western Ghats

Fig. 3.3 Predicted habitat change of endemic Salim Ali’s fruit bat in Western Ghats



2018). Many species arrived in the WG in the late Miocene to early Quaternary
period when the paleoclimate was suitable, according to Gupta (2010). Insights
gained from phylogeography and paleoniche modelling studies (Robin et al. 2010;
Ray et al. 2018) shed light on life during and after the ice age, and the WG’s constant
precipitation made these locations ideal for human settlement and expansion. Based
on paleoclimate theory, the dry glacial epoch may have led to species diversification.
WG species diversification and its causes have been hypothesized using data col-
lected from mountain ranges (Robin et al. 2015). During the glacial and interglacial
periods, temperature changes affected forests and grasslands in the high mountains.
Species may grow during the ice age and shrink during the interglacial period, with
the former being more likely. By simulating historical, present-day, and future
climate scenarios on the distribution patterns of old endemic reptile genera like
Dravidogecko (Fig. 3.4), we were able to test this notion. The Nilgiris (Western
Ghats) were the focus of our 1-year survey, which covered 58 diverse sites. For the
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Fig. 3.4 Species distribution model of Dravidogecko in Western Ghats. (a) SDM under Pleisto-
cene climate, (b) SDM under current climate, (c) occurrence points on the elevation map of the WG,
(d) SDM under RCP 4.5, (e) SDM under RCP 6, and (f) SDM under RCP 8.5



distribution model, we employed environmental variables such as diurnal range,
isothermality, and altitude. Modelling of past climate suggests that species currently
found in the Southern Western Ghats will have existed throughout the WG during
Pleistocene times. Foreseeing a new species from the Western Ghats, we combined
our findings with DNA analysis (Fig. 3.5).
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Fig. 3.5 Connecting speciation and SDM and phylogeny

3.10 Limitations of Research

Species distribution models are superior machine learning techniques for predicting
and mapping species’ possible habitats in space and time. Consequently, these
methods are now acknowledged as sustainable biodiversity management
instruments (Qazi et al. 2022). However, they are not always appropriate and, if
their limitations are not acknowledged by decision-makers, can lead to ineffective
and costly mitigation and compensation (Carneiro et al. 2016). Robust models that
account for species detectability, such as occupancy (MacKenzie et al. 2006)
models, require recurrent presence and absence records. MaxEnt solely employs



presence data, which has been criticized as a significant restriction. This can be
circumvented by giving accurate sample data. In much of the research, the modelling
relies on incorrect secondary data, posing the greatest problem and leading to
inaccurate predictions. Obtaining presence-absence records for lesser-known,
uncommon, or elusive species is frequently difficult for researchers. If this is the
case, MaxEnt outperforms occupancy models and generates a valid species distribu-
tion map using only presence data. It is important to sample correctly if you want to
make accurate predictions about where less-known species live.
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3.11 Future Prospects

Modelling the spread of different species can be greatly assisted by the recent and
future breakthroughs in machine learning and artificial intelligence. Species distri-
bution modelling could benefit from including recent developments in ecological
theory. Using algorithms that take into account how prey and predators interact, how
competition works, and how niches change over time makes species modelling more
effective.

3.12 Conclusion

The addition of environmental data to the occurrence data of species aids in the
precise mapping of their distribution in a plausible habitat. Ecological niche
modelling (ENM) is a technique that aids in the conservation of lesser-known
species by resolving range assessment and preferred habitat prediction. Based on
the presence data, MaxEnt predicts the ecological niche of a variety of species,
including both plants and animals. MaxEnt’s machine language has demonstrated
the ability to estimate the geographic distribution, preferred habitat, and niche
compatibility of species with minimal data. Hence this method can be used to
identify the potential habitats of lesser-known species and develop long-term con-
servation plans for these species.
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Abstract

Climate change’s impact on biodiversity is expected to be significant in the
twenty-first century. Climate change will influence ecologically sensitive areas,
and managing these changes will be critical. This chapter focuses on the utiliza-
tion of species distribution models (SDMs) in assessing climate change impacts
and its associated variables on species distribution, leading to population shift,
migration, and species vulnerability. The review concentrates on several species
distribution models (SDMs), its application in various ecosystems and their
management, the gaps in the models and modelling techniques, and the
challenges in their applicability. To investigate the variables utilized for
modelling the future projections of the species distribution, several SDMs were
explored.

relation to their data inputs. However, the applicability of this metric is also
evaluated for various ecosystems. Further, different SDMs were contrasted
regarding how their algorithms utilized the input variables. A conventional
review was conducted to examine the applicability of various SDMs in relation
to climate change. The assessment concentrates on (1) climate change impacts on
biodiversity and related ecologically sensitive hotspots, (2) various SDMs
employed for biodiversity management, (4) SDM variables used to account for
climate change, (5) the parameters and factors that influence the outcomes of
SDMs, (6) how SDMs are applied in different ecosystems, and (7) a comparative
of different SDMs currently used with the algorithms and variables they employ.
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Our research includes the discussion of gaps and challenges with the use of
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different SDM models, such as the lack of appropriate data and the noninclusion
of biotic factors. But it also discusses the future perspectives and direction of
research that needs to be conducted. Given our analysis, the use of SDMs will be
critical in comprehending the future effect of climate change on species dispersal
and distribution in the future; however there is a need to improve the robustness
of these models so accurate assessments and predictions can be made.

Keywords

Climate change · Eco-sensitive hotspots · Biodiversity · Spatial distribution ·
Species distribution model

4.1 Introduction

Since the advent of the Industrial Revolution, greenhouse gases (GHGs)
concentrations in the atmosphere have risen to extreme levels (The Royal Society
2022). As per the Global Monitoring Laboratory, Hawaii, the CO2 concentration has
risen to 416.45 ppm (September 10, 2022), the highest level seen in the last
800,000 years. According to NOAA’s 63-year record, the increase of 2.58 ppm for
2021 is the fifth highest annual increase in CO2 levels (GML-NOAA 2013; Ahmed
et al. 2022; NOAA 2022). The US Environmental Protection Agency states that this
unnatural increase in CO2 levels since the Industrial Revolution is due to anthropo-
genic activities (US EPA 2016), which is seconded by IPCC’s AR6 report. As these
emissions rise, they will warm the atmosphere, causing numerous changes in the
planet’s atmosphere, land, and oceans (US EPA 2016). With climate change leading
to frequent extreme weather events, increasing ocean levels, melting of mountain
glaciers, and warmer oceans, it poses difficult challenges for the continued survival
of flora and fauna. These challenges can lead to habitat loss and food security issues
(WWF 2022). The IPCC Assessment Report (AR4) concludes that many aspects of
biological variables are impacted by climate change, which may have a consequence
on ecosystems, the species that make up those ecosystems, the genetic diversity of
such species, and ecological interactions. As a significant threat to the world’s
biodiversity, anthropogenic climate change can potentially wipe out thousands of
species over the next century. Given that it may be challenging to preserve different
species even within forest/wildlife reserves, climate change is seen as a dangerous
hazard and threat (IPBES 2019).

Furthermore, there may be significant interactions between climate change and
other anthropogenic effects such as addition of CO2 and other greenhouse gases
(Thomas et al. 2004). Future effects of climate change have been extensively
debated in research since it has already significantly influenced species in various
ways, including range shifts in a wide range of taxa. Range borders may not be as
vulnerable to climate change as species abundances, which undergo a binary pres-
ence/absence, shift. However, the effects of climate change that have already taken



place on species abundances are far less known. Numerous environmental factors,
including habitat loss and degradation, pollution, invasive species, and exploitation,
impact population abundance and occurrence (WWF 2016; Bowler et al. 2017).
However, due to its effects like drought, floods, and wind, as well as indirectly due to
changes in the patterns of wildfires, insects, and disease outbreaks, climate change
can directly alter the distribution of species. Changes in growth, reproduction, and
death impact species distributions, and there is a growing possibility that these
changes will become more pronounced in the following decades (Iverson and
McKenzie 2014).
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Eventually, a wide range of flora and fauna population sizes and species richness
are anticipated to decrease as the climate warms, and changes in species distribution
occur. Numerous studies have found that the effects of climate change are already
being felt by a variety of species, leading to population changes, species extinctions,
phonological changes, and geographic range expansion and contraction (Parmesan
1996, 2006; Rabaiotti and Woodroffe 2019). The United Nations Framework Con-
vention on Climate Change (UNFCCC) has long advocated that alterations as far as
how nature is managed might aid in addressing the climate issue. One of the most
important scientific and political recommendations for tackling the risks posed by
climate and biodiversity conservation is the increased preservation of seascapes and
landscapes. Geographic areas, on the other hand, that are exceptionally rich in
species and ecologically distinct and/or have a high endemism species (species
that occur only in that defined geographic area and nowhere else) are widely
recognized as eco-sensitive hotspots and prioritized for conservation. Species in
biodiversity hotspots are already transforming as a result of climate change
(Kiessling et al. 2022). There are 36 hotspots around the world. Their intact habitats
cover only 2.5% of the Earth’s land surface, but they are available to more than half
of the world’s plant species.

Efficiency and effectiveness are more important than ever for area-based conser-
vation due to rising climate change, increased human land use, and unfulfilled
conservation goals (Hoffmann 2022). Although it can be challenging to predict
how biodiversity will react to various sources of change, current research employs
models and findings to inform risk assessment, management, and conservation
efforts. To analyse biodiversity, several researchers have employed species distribu-
tion models (SDMs), which they have used for habitat restoration, species translo-
cation, and projecting the impact of climate change on biodiversity (Araújo et al.
2019). The effects of climate change on many components of biodiversity and
ecosystems are shown in Fig. 4.1.

As a crucial tool for preserving biodiversity, species distribution models have
vital applications such as spatially prioritizing conservation efforts and illuminating
the connections between environmental predictors and species responses. These
models are most effective for conservation managers when they contain easily
manipulable elements (Swan et al. 2021). Therefore, the effects of climate change
on ecologically sensitive hotspots must be examined to identify components that
may be utilized for management or included in various models to assess the change
in species distribution. However, research has demonstrated that predictions from



correlative and mechanistic modelling techniques should be employed in tandem
rather than in opposition. A combination of correlative and mechanistic SDMs aids
in guiding conservation actions in the context of climate change, as well as detecting
data gaps and focusing data gathering activities. However, when compared to the
RCP 8.5 scenario, the projection result revealed the rate of climate change and its
influence on species distribution (Rougier et al. 2015). Furthermore, SDMs’
forecasting has become a strong tool for conservation practitioners and resource
managers in the face of changing climates and dwindling habitats for many species.
SDMs can forecast changes in a species’ geographic range under various climate
change scenarios. Representative concentration pathways (RCPs) are the
developments of scenario sets combining emissions, concentrations, and land use
trajectories that depict these climate change scenarios. RCPs anticipate a hypotheti-
cal future situation and allow SDMs to capture alterations in a species’ appropriate
habitat. This is an excellent tool for proactively monitoring and planning conserva-
tion activities for specialized species at risk of extinction and dwindling habitat due
to climate change (Guisan et al. 2013; Driver et al. 2020). The following section will
summarize the effects of changing climate on eco-sensitive hotspot and the use of
various species distribution models to understand these effects.
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Fig. 4.1 Impacts of climate change on biodiversity (Adapted from Sintayehu 2018)

4.2 Impact of Climate Change on Eco-sensitive Hotspots

Humanity’s biggest concern is the continual reduction of biodiversity, which
undermines ecosystems’ capacity to acclimatize to changing environmental
conditions and hinders the provision of ecosystem services (Sala et al. 2000). The



importance of forests in ecosystem conservation and management is highlighted by
the sensitivity of forest biodiversity and the dependency of the majority of terrestrial
species on forest ecosystems (Parrotta et al. 2012; Bellard et al. 2012).

4 Mapping the Impact of Climate Change on Eco-sensitive Hotspots. . . 63

Nearly 25% of terrestrial biodiversity hotspot regions have undergone drying
5.4% or wetting 19.3%, according to a study on global biodiversity hotspots, which
are both biodiversity reservoirs and severely vulnerable (Aukema et al. 2017). The
Himalaya Hotspot, Indian Western Ghats and moist forest regions in South Western
Ghats, Western Himalaya temperate forest region, African savanna region and Horn
of Africa Hotspot, Sri Lanka Hotspot, Coastal Forest Hotspot in the East Africa, and
moist forest of Sri Lanka are the priority areas for upkeep and management as these
eco-sensitive areas show the greatest change in precipitation and population (>60%)
(Aukema et al. 2017).

There is much disagreement over the scope, persistence, and implications of
climatic variability for the emergence of species that are less resilient to environ-
mental change. Compared to flora, fauna is poorly suited to endure future climatic
shifts due to climate stability throughout evolutionary periods (Malcolm et al. 2006).
Traits like restricted climatic endurance, high habitat specificity, low dispersion
capability, weak dormancy potential, small population densities, and/or low genetic
variation and diversity make them more sensitive to climate change impact (Harrison
and Noss 2017).

In the tropics, species typically inhabit substantially smaller temperature regimes
than their temperate equivalents. Elevational range size often declines with latitude.
In addition to those experiencing current stability, biodiversity hotspots that have not
had exceptionally high levels of climatic fluctuation across centuries are expected to
be particularly vulnerable to climate change (Trew and Maclean 2021). Climate
change, in particular temperature and rainfall variability, will critically impact
wildlife resources. The increase in climate-related extreme events could have an
impact on species range shift, migration, or even extinction directly or indirectly.
Extreme weather events can further combine with other anthropogenic stresses to
affect changes in the distribution and availability of animal resources leading to
changes in the species distribution (IPCC 2018).

These consequences of climate variability render biodiversity vulnerable,
necessitating risk assessment and management. By predicting habitat appropriate-
ness in regions with few or no occurrence data, the species distribution model may
be used to fill informational gaps. These models may also be used to predict how
environmental changes will affect species distribution. Given the severe threat of
invasive species, land use change, and climate change posed to the functions of
ecosystems in general, it is critical to understand the impacts of future GHG emission
scenarios and implement conservation and management strategies. Here SDMs may
play a very critical role, especially in areas where physical verification is not
possible, in helping policy-makers understand where the interventions are required.
Therefore, the next section discusses the various species distribution models cur-
rently in use.
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4.3 Types of Species Distribution Models Currently Used

Understanding species distributions is crucial for environmental management
(Robinson et al. 2017). Species distribution modelling (SDM) is based on funda-
mental ecological and biogeographical ideas concerning the interaction between
species distributions and the physical environment. SDMs are quantitative, empirical
models of the connections between species and their environments that are often
created utilizing information on species distribution and related environmental
variables. SDMs may be applied to any taxon, including marine, terrestrial, and
freshwater species, and at any granularity and extent, provided that the necessary
data is available (Elith and Franklin 2017). Because models sometimes lack a
mechanical foundation and rely on unworkable assumptions under climate change,
the accuracy of SDM projections has been questioned (Kearney et al. 2010). The
descriptions of several SDM types currently in use are listed below. The different
type of SDMs, their data requirements, evaluation and validation requirement and
final outcomes is shown in Fig. 4.2.

4.3.1 Empirical Model

Empirical models use data from the entire census or a representative sample. It
investigates how variables, recorded at various resolutions, may be used to simulate
spatial patterns (Buckland and Elston 1993). Identifying a species’ presence and/or
future habitat relies on empirical models. The empirical models, which project
variations in distribution, are also referred to as niche or habitat suitability models,
or bioclimatic envelope models. To determine the appropriateness of a habitat,
empirical models analyse correlations between species distributions and abiotic
variables (Franklin 2010).

The predictor variables are frequently chosen using an understanding of the
species’ physiology. Alternatively, they could be picked using empirical best fit
that has no direct connection or reference to physiology. As a result, the
non-incorporation of the mechanistic depiction of abiotic and biotic interactions
has been questioned in empirical models (Estes et al. 2013). According to research,
SDMs using environmental change scenarios alone are insufficient to evaluate the
danger of extinction for most species (Akçakaya et al. 2006). It has been argued that
including more realistic assumptions about the dispersion or species migration into
the empirical SDMs might help improve the estimate of climate change’s impact on
species distributions. A simple method has been to assume a constant migratory rate
for the species examined (Thuiller et al. 2008).

4.3.2 Correlative Model

Correlative species distribution models (C-SDMs) establish mathematical
correlations between environmental variables and observed species occurrence
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Fig. 4.2 Framework illustrating the different species distribution models (SDMs), their data
requirements, validation, and final outcomes



locations. Correlative species-environment relationships are frequently used to
develop hypotheses regarding the drivers of species distributions instead of testing
them. They are also frequently used to forecast species occurrence or its favourable
environmental settings and climatic conditions in locations that have not been
sampled. These models are widely utilized in ecological forecasting with climate
change scenarios (Jarnevich et al. 2015).
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Correlative models use the statistical correlation between regional environmental
data and occurrence records to identify mechanisms that impose restrictions on a
species’ range. In the past 20 years, the use of these SDM methods has increased
rapidly (Elith and Leathwick 2009). Because of their flexibility and simplicity of
their data needs, relative ease of access and application within open-source
packages, and variety of relationships that can be modelled (biotic and abiotic),
correlative SDMs have practical benefits over more mechanistic modelling
approaches. Correlative SDMs have therefore been extensively employed in
conservation-related applications (Kearney et al. 2010).

4.3.3 Mechanistic Model

The mechanistic species distribution models (M-SDMs) consider how the
surrounding environment influences the physiological performance of the species
in question. Then, a process of elimination is used to anticipate future distribution,
excluding any regions that interfere with physiological function from the final
distribution to the point that the ability to survive, develop, or reproduce is damaged
(Kearney and Porter 2009). An increasing body of research supports the advantages
of utilizing models with mechanistic variables to relate predicted climate change to
mechanisms that influence species distributions (Kearney et al. 2008).

Given their capacity to extrapolate beyond known circumstances and extract
variables that impact biogeography, mechanistic models have also been claimed to
be the best method to project environmental impact and plan management strategies
(Cuddington et al. 2013). Furthermore, mechanisms that restrict distributions are
explicitly included in mechanistic SDMs (Kearney and Porter 2009). Environmental
restrictions with physiological roots often influence species abundance and their
spatiotemporal distribution. These physiological processes are closely linked to
energy fluxes and mass as individuals of a species engage with their surrounding
environment.

The effects of climate change on biological diversity are spread to upper echelons
of the organization, such as populations, communities, and ecological systems,
through such mechanisms. To build mechanistic models of range boundaries,
which are unconstrained to species’ current range, the study of biophysical ecology
offers a platform for estimating the physiological repercussions of various environ-
mental and bioclimatic variables on a spatial scale as a function of climate, topogra-
phy, and vegetation. Physiologically based SDMs can more accurately forecast the
effects of climate change since they explicitly integrate recognized processes in the
model (Kearney and Porter 2009; Kearney et al. 2010).
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4.3.4 Hybrid Model

Hybrid species distribution models (H-SDMs) are often termed as niche population
models (Fordham et al. 2013a). In addition to interspecific interactions, individual
variability and local adaptation, dispersion or transport, or demography, H-SDMs
build on C-SDMs, which represent filtering by the abiotic environment. These
hybrid model-based studies indicated changes in range predictions with better
accuracy than those models solely based on abiotic environmental data because
they parameterized biotic processes using extra ecological knowledge (Swab et al.
2015; Singer et al. 2018).

Regarding model complexity and data needs, the H-SDM technique can be
categorized as midway between correlative and mechanistic species distribution
models. It consists of two components: the relationship between observations of a
species and its abiotic environment and biological phenomena and processes essen-
tial for the species dispersion, which include population dynamics, prey-predator
relationships, and dispersal dynamics. Incorporating all of these factors, instead of
only accounting for abiotic environmental factors, can enhance predictions of
species distributions and possible range changes (Singer et al. 2018). These hybrid
models incorporate spatially explicit mechanisms that function on both finer and
coarser spatial scales and can be used to first identify the presence and absence of a
species by taking environmental variables into consideration first, followed by
biological and ecological aspects (Singer et al. 2016; Barber-O’Malley et al. 2022).

4.4 Parameters Influencing Species Distribution Models

Over the past 20 years, over 6000 peer-reviewed scientific articles have used SDMs
for biodiversity assessment; half of these articles applied their findings to at least
1 type of biodiversity assessment, such as predicting the effects of climate change on
biodiversity, choosing locations for protected areas, habitat restoring, species migra-
tion, etc. (Araújo et al. 2005), using several parameters and datasets such as species
distribution data, meteorological data, elevation, cold-air drainage, topography, solar
irradiation, soil moisture, etc. (Morán-Ordóñez et al. 2017). These are known to be
influencing the outcomes of any SDMs. However, several factors, such as the choice
of modelling tools, assumption inadequacy, lack of biotic components, issues with
spatial and temporal scales, and inherent characteristics of the species being
modelled, pose additional challenges to the predictive potential of SDMs (Fernandes
et al. 2019; Luan et al. 2021). Apart from these, the resolution of variables and the
data representing them, the availability and quality of presence data, the applied
algorithms and their configurations, and other factors may influence the final model
(La Marca et al. 2019).
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4.4.1 Species Distribution Data

One of the essential datasets required for species distribution modelling is species
distribution data, often given as coordinates of locations or areas where the target
species occurs. Such data can be labelled into presence-background (PB) data,
presence-absence (PA) data, and occupancy detection data (DET) (Guillera-Arroita
et al. 2015), and different approaches of SDMs can be used with different species
data. The presence-background (PB) data comprises the location of areas where
individuals of the target species have been spotted but often lack information
regarding absences or places where a species has not been detected (Wang and
Stone 2019). However, it is impossible to reliably forecast the actual abundance and
geographical distribution of a species for models based purely on PB data, despite
repeated attempts (Koshkina et al. 2017).

Contrarily, presence-absence (PA) statistics reveal whether a species was found at
a group of sample sites or not. PA data offer more reliable results when the presence-
only data is sparse or ambiguous. This is so that over-prediction and extension into
unknown territory can be minimized by absence and/or pseudo-absence points
(Senay et al. 2013). Accordingly, the occupancy detection data (DET) model
shows the likelihood that a species is present but undetected at a specific location
with respect to the sampling effort that has been undertaken to account for poor
detection while calculating the likelihood of a species’ occupancy (Beery et al.
2021).

4.4.2 Bioclimatic or Environmental Data

Another parameter that influences any species distribution model and its predictabil-
ity is bioclimatic or environmental data. Some of the most commonly used biocli-
matic predictors in SDMs include annual mean temperature, precipitation
seasonality, precipitation of the driest period, temperature seasonality, isothermality,
total annual precipitation, temperature annual range, etc. (Gardner et al. 2019). These
data points are available from different sources such as WorldClim (Fick and
Hijmans 2017), TerraClimate (Abatzoglou et al. 2018), EarthEnv (Domisch et al.
2015), StreamCat (Hill et al. 2016), etc.

However, the choice of environmental variables to employ as predictors presents
a recurrent challenge in SDM. Although techniques for assisting in predictor selec-
tion have been established, there is still no agreement on the predictors that should be
used in SDMs (Bucklin et al. 2015). The impact of various climate datasets on
operational metrics, interpretation, and spatial accuracy of SDMs remains unknown
notwithstanding wider accessibility and availability of climate and environmental
datasets (Abdulwahab et al. 2022).

Selection of climatic datasets from particular sources also influences the outcome
of any SDM. Although some sources have comparable predictor variables, the extent
of spatial coverage and resolution (WorldClim, PRISM), temporal resolutions,
weather station data used in generating the coverages and ranges, and the insinuation



methods utilized in producing spatially consistent meshes of the variables can vary
between datasets from these sources (Abdulwahab et al. 2022). Additionally, while
some environmental datasets tend to cover the entire landscape with continuous
grids of consistent size (WorldClim, TerraClimate) (Fick and Hijmans 2017;
Abatzoglou et al. 2018), others generally encompass only a fraction of it, and the
coverage’s cell size might vary significantly (StreamCat, EarthEnv) (Domisch et al.
2015; Hill et al. 2016).
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Often, the use of multiple and multilevel datasets can result in the increase of
uncertainty in SDMs, which can be either model uncertainty or measurement
uncertainty (Beale and Lennon 2012), with the former resulting from model
constraints, generalizations, or assumptions when modelling extremely complicated
processes (Thibaud et al. 2014) while the latter resulting from incorporating inaccu-
rate geo-location for a species’ sightings (Fernandes et al. 2019), or climatic and
environmental datasets that were inconsistently compiled from a multitude of mete-
orological stations and time frames and interpolated during the mapping procedure
(Shabani et al. 2018), which in turn can influence the accuracy of any SDM.

4.4.3 Indicators of Good Fit (Accuracy)

SDM projection can be used to assess the viability of a habitat, the effects of climate
change, the influence of land use management, and the selection of areas for species
rehabilitation. However, all of these exercises’ success relies on how accurate the
models are (Liu et al. 2009). Hence, the determination of the accuracy of any SDM
model is crucial before being employed. Discrimination capacity and reliability are
the two key components used in evaluating model accuracy, with the former being
the model’s power to distinguish between species presence sites and absence sites
while the latter determining the connection between the proportions of observed
species presences and the projected probabilities of species presence (Shabani et al.
2018).

Several indicators, including sensitivity and specificity (Liu et al. 2009), Cohen’s
kappa (Cohen 1960), true skill statistics (TSS) (Allouche et al. 2006), and the area
under the receiver operating characteristic curve (AUC-ROC) (Fourcade et al. 2018),
among others, have been developed to evaluate SDM’s degree of accuracy. The
receiver operating characteristic’s (ROC) area under the curve (AUC), which
compares true positive rate (sensitivity) versus false positive rate (1—specificity;
commission error), is presently the most often used statistic for evaluating accuracy.
Alternative methods have also been suggested, primarily because of the well-
established drawbacks of AUC (reliance on the calibration area, disregarding geo-
graphic allocation of errors, and relying on the hierarchy of specificity/sensitivity
along all threshold values) (Fernandes et al. 2019). Cohen’s kappa and the true skill
statistics (TSS) are the most popular substitutes. Kappa corrects the aggregate
accuracy of the model’s predicted results by adjusting it for the accuracy that is
assumed to occur by coincidence, while TSS rectifies kappa’s reliance on prevalence
(Xu et al. 2021).
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Research indicates that, among other factors, sample size, habitat heterogeneity,
species body size, and range extent have an impact on the accuracy of current SDM
forecasts (M. McPherson and Jetz 2007; Pöyry et al. 2008; Kharouba et al. 2009;
Morán-Ordóñez et al. 2012). Some of these parameters may also affect the precision
of future forecasts since they affect how well the fitted model performs.

4.5 Application of Species Distribution Models in Various
Ecosystems

The majority of SDM applications are found within the broad domains of ecology
and biodiversity conservation, primarily in connection with species range and habitat
shifts and climate change analysis (Srivastava et al. 2019). Over time, SDM has
gained prominence for a wide range of applications, including monitoring climatic
change impact, detecting biological diversification through spatiotemporal patterns,
regulating invasive and exotic species, tracing the distribution of vector-borne
diseases, and selecting protected zones for preservation and species rehabilitation
in almost all ecosystems (Chapman et al. 2016; West et al. 2017; Rahman et al.
2019). Some of its applications are discussed below.

4.5.1 Application in Urban Ecosystem

Urbanization is frequently linked to excessive anthropogenic impact on the urban
ecosystem because of overpopulation, anthropogenic pollution, and forest degrada-
tion. Such effects can be experienced locally, regionally, and even globally. Given
that cities currently accommodate well over 50 per cent of the world’s population, it
is crucial to assess the effects of climate change on urban ecosystems (Kang et al.
2020).

Urban SDMs have thus facilitated comparisons of the implications of socio-
ecological variables brought on by anthropogenic activities to those resulting from
natural environmental fluctuations (Liu et al. 2019). They also facilitated investiga-
tive research on the consequences of environmental factors on urban biological
diversity (Fröhlich and Ciach 2019) to assess the impacts of the said variables on
the urban ecosystem.

Another impact of climate change on urban ecology is the development of urban
pests, which threatens the already limited urban vegetation. In contemporary urban
contexts, trees offer a range of ecosystem services. However, pest pressure on city
trees is often higher than that on trees in nearby natural settings, which puts them
under more stress (Parsons and Frank 2019). Therefore, SDMs are applied in
predicting the potential transmission and distribution of pests in urban ecosystems
by performing a climate-based pest risk assessment. This results in the detection and
identification of plausible pest species. This can direct surveillance programmes to
regions most likely to be plagued, establish a foundation for sharing containment



expenses, and promote the systematic elimination of pests between jurisdictions
(Elith and Franklin 2017).
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4.5.2 Application in Forest Ecosystem

One of the major applications of SDMs is in the conservation of species in the forest
ecosystem. Many forest species are already endangered by climate change as well as
due to anthropogenic activities. It has become crucial to identify such species and
their distribution in any forest ecosystem to employ conservation measures. To
conserve an endangered and threatened species, SDMs are applied to identify and
distinguish corridors and passageways between protected forest lands, allowing the
transfer of a species across temperature gradients. It can be used to evaluate
functional redundancy in the establishment of conservation areas, connect major
demographic indicators with global paradigm change models and prioritize critical
habitats, and plan and prepare for an increase in the frequency of extreme weather
events (Barlow et al. 2021; Qazi et al. 2022).

In a forest ecosystem, the growth and survival of a species depend on the site’s
bioclimatic, physicochemical, and ecological attributes. However, significant
changes in forest area conditions triggered by climate change increase the risk of
diminished growth species. Hence, planning and forest management are crucial to
minimizing this risk (Falk and Mellert 2011). In this context, SDMs are applied in
forest management and planning by conducting risk assessments for species to future
climate change scenarios to determine whether a species can survive in the predicted
climatic conditions. Besides SDMs characterises ecological aspects as grounds for
species selection, to substitute a species having a lesser probability of adapting to
future climatic conditions with a species having a higher probability of survival in
the long run (Booth 2018; Pecchi et al. 2019).

Some other applications of SDMs include enhancing sampling techniques and
strategies for rare, threatened, and endangered species, designating priority regions
and establishing networks of conservation areas, investigating the implications of
land use/land cover changes and anthropogenic footprints on the distribution and
dispersion of species in forest fringes, and directing contingency plan for reintro-
duction of target species in the desired forest ecosystem and ecological restoration
(Angelieri et al. 2016; Srivastava et al. 2019).

4.5.3 Application in Marine Ecosystem

The application of a multitude of SDMs in the marine ecosystem has been seen in
recent years, with a focus on climate change’s impact on marine organisms and the
marine environment. The majority of SDM applications have been seen
concentrating on developing initiatives for conservation measures, analysing climate
impacts on marine flora and fauna, tracking the spread of invading exotic species,
and comprehending the interactions between marine species and their physical and



chemical environment (Gormley et al. 2015; Cheung et al. 2016). As a strategy for
choosing priority conservation sites for marine species threatened by climate change,
SDMs have also been applied with other notable techniques, including connectivity
analysis (Robinson et al. 2017).
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One prominent application of SDM in marine ecology is the management of
marine fisheries and marine protected areas (MPAs). SDMs are employed to identify
environmental and ecological factors that potentially affect spatiotemporal patterns
of species concentrations and assemblage characteristics. Upon identification, SDMs
are used to assist in designing precise spatial conservation strategies and measures
for MPAs. These include incorporating crucial habitats in proposed MPAs and
estimating the overall population of protected marine species. This can be used to
quantify larval production rate and understand how protected populations of marine
species contribute to population restocking inside and outside of MPAs (Botsford
et al. 2014; Young and Carr 2015a, b).

4.6 Comparative of Different SDMs for Mapping of Impact
of Climate Change

Models of species distribution use relationships between environmental factors and
known species’ records of occurrence to pinpoint environmental factors that might
be conducive to the occurrence of populations. Using a geographic information
system (GIS), base data layers map occurrences using data on temperature, vegeta-
tion, rainfall, and other meteorological parameters. There are several data sources
that offer information on global climate, occurrence, and abundance. One of the most
widely used sources of climatic data is WorldClim, which contains 19 bioclimatic
variables, including annual mean temperature, mean diurnal range (mean of monthly
maximum and minimum temperatures), isothermality, seasonality of temperature,
maximum and minimum temperatures for each month, temperature annual range,
mean temperature for the wettest and driest quarters, mean temperature for the
warmest and coldest quarters, and more. The most common data sources include
annual precipitation, precipitation during the wettest and driest months, precipitation
seasonality (coefficient of variation), precipitation during the wettest and driest
quarters, precipitation during the warmest and coldest quarters, and elevation.

Given a specific climate change scenario, this data may then be used to estimate
where a species could relocate to or be able to persist. Early initiatives that were
important in the field’s development, such as BIOCLIM and DOMAIN, are
examples of commonly used SDMs. MaxEnt (maximum entropy modelling),
ENFA (environmental niche factor analysis), and BRT are modern systems that
are regarded as more reliable. However, a package like BIOMOD includes ten
algorithms, such as the artificial neural network (ANN), classification tree analysis
(CTA), flexible discriminant analysis (FDA), generalized additive model (GAM),
generalized boosting model (GBM), generalized linear model (GLM), multiple
adaptive regression splines (MARS), maximum entropy (MaxEnt), random forest
(RF), and surface range envelope (SRE), which are state-of-the-art modelling



techniques to describe and model the relationships between species and
climatic data.
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Table 4.1 shows a variety of models and modelling algorithms used with different
predictor variables to achieve particular results for the future prediction of species
distribution. These models are also used to examine species distribution while
maintaining climate change’s impact on biodiversity.

4.7 Gaps and Challenges Associated with Mapping the Impact
of Climate Change

During the last century, the biosphere has seen drastic environmental changes,
leading to the reduction of the resilience of the ecosystem. In this scenario, it
becomes crucial to assess the shift and predict the changes in the distribution of
species due to climate change (Dutra Silva et al. 2019). These change scenarios are
frequently assessed using species distribution models (SDMs). SDMs are specifi-
cally used when knowledge of species physiology is lacking; incorporating relevant
environmental variables counterbalances this deficiency (Moullec et al. 2022). These
empirical statistical models are prevalent in forecasting the distribution and dispersal
of species diversity in the past, present, and future under diverse climate scenarios.
However, when it comes to predicting future distributions under new environmental
and climatic conditions, these models have certain limitations (Elith and Leathwick
2009; Moullec et al. 2022).

One of the significant limitations faced by SDMs is that they do not consider
critical ecological processes like (1) species interactions, (2) adaptation, (3) popula-
tion dynamics, (4) dispersal capacity, and (5) species migration (Morin and
Lechowicz 2008; Elith and Leathwick 2009; Moullec et al. 2022). Generally,
SDMs rely on the absence-presence of data rather than the abundance, which
could lead to the under- or overestimation of species distribution at a given condition
(location, time, and environment). The inclusion of species interactions has been
shown to impact the performance and uncertainty of SDMs; however, how these
inclusions can alter the prediction of future distributions is yet to be investigated in
detail (Moullec et al. 2022). Further, these biotic interactions are generally consid-
ered to be static and have not been verified as of now.

Empirical or correlative SDMs don’t factor in biological parameters; on the other
hand, mechanistic SDMs (M-SDMs) or process-based models look to incorporate
these dynamics into the model (Barber-O’Malley et al. 2022). However, M-SDMs
require high computational capacities and are very data-intensive. The data required
to compute these models are not available on a large spatial scale, leading to high
uncertainty in the models in question. Current SDMs do not factor in critical
biological interactions like dispersal capacities and species migration. Harrison
(1991) and Hanski (1998) state that dispersal is a crucial aspect that drives the
range shift of organisms to climate change especially seen in aquatic ecosystems
(HARRISON 1991; Hanski 1998). Stressed populations may return to the original
spawning location (homing) and shift to a non-natal location (straying). However,
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Table 4.1 Comparative of various SDMs, their modelling algorithm, variables used

Modelling
algorithm/
packages used

Climatic
predictor/
variables

Sl.
no.

Outcome of the
modelling

1. SDM for
marine fishes

BIOMOD Ocean depth,
distance to
shore, mean
sea surface
temperature,
salinity, and
current
velocity

Predicted the
suitability of its
habitat for both
the current
climate and
several climate
change
scenarios

Zhang et al.
(2019)

2. SDM for
Cynops
orientalis

BIOMOD 19 bioclimatic
variables

The shift in
C. orientalis
optimal
environment
was predicted

Guo et al.
(2021)

3. Acoustic
species
distribution
models
(aSDMs)

Regression
models and
boundary
models

Acoustic data
is used for
calling
behaviour and
climatic data
such as
precipitation,
temperature,
etc.

The acoustic
SDM estimated
geographical
and
phonological
variations under
climate change
scenarios and
assessed the
environmental
appropriateness
for calling
behaviour

Desjonquères
et al. (2022)

4. Single species
distribution
models
(SSDMs)

Generalized
joint attribute
model
(GJAM)

Abundance
data for over
250 fish
species, depth,
temperature
(bottom and
surface), and
salinity
(bottom and
surface)

Implemented to
fit distribution
models for each
targeted species
separately to
abiotic
environmental
factors
combination to
comprehend
and forecast the
distribution and
abundance of
marine fishes

Roberts et al.
(2022)

5. Ecological
Envelope
Model

MaxEnt Abundance
data and
19 bioclimatic
variables

Planning future
conservation
and
afforestation
efforts may be
aided by having
helpful
knowledge of

Ksiksi et al.
(2019)



no. Model modelling

species, their
suitable
habitats, and
distribution.
The model is
effective in
forecasting
species
distribution
under various
climate change
scenarios
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Table 4.1 (continued)

Sl.
Modelling
algorithm/
packages used

Climatic
predictor/
variables

Outcome of the
Reference

6. SDM for
108 tree
species

BIOMOD and
an ensemble
prediction
based on these
10 algorithms

Precipitation,
temperature,
elevation, soil,
other
physiographic
variables,
species
presence/
absence,
abundance,
and basal area

Research
concludes that
SDMs may
have limitations
in their capacity
to forecast
species
distributions
outside of the
environmental
variables
utilized for
model fitting

Charney et al.
(2021)

7. Species
distribution
model (SDM)
for Portunus
trituberculatus

GAM, GLM,
GBM, RF,
classification
tree analysis
(CTA), ANN,
surface range
envelope
(SRE),
flexible
discriminant
analysis
(FDA), and
MaxEnt

Species
occurrence
point,
occurrence
records, sea
surface
temperature,
surface
salinity,
current
velocity, and
offshore
distance

To anticipate
potential
season-
appropriate
habitats for the
target species
under the
present and
future climatic
circumstances,
the study built
an ensemble
SDM for
swimming crabs

Liu et al.
(2022b)

8. SDM for
benthic species

Random forest
modelling

Occurrence
data, water
depth, wave
exposure,
salinity,
temperature,
and sediments

Climate change
predictions
were developed
to forecast the
species
distribution

Torn et al.
(2020)

9. SDM for Aloe
vera

MaxEnt Occurrence
data,

Future
predictions

(continued)



no. Model modelling

19 bioclimatic
variables

indicate the
appropriate
distribution,
area and
dispersion

this aspect is not considered in the current niche-based modelling and dispersal is
assumed to be unlimited or zero. This could be due to methodological or data-related
limitations (Barber-O’Malley et al. 2022).
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Table 4.1 (continued)

Sl.
Modelling
algorithm/
packages used

Climatic
predictor/
variables

Outcome of the
Reference

Hussein and
Workeneh
(2021)

10. SDM for Indo-
Pacific
humpback
dolphins

BIOMOD Ocean depth,
distance to
shore, mean
sea surface
temperature,
salinity, and
current
velocity

Predicts the
suitability of its
habitat for both
the current
climate and
several climate
change
scenarios

Zhang et al.
(2019)

11. SDM for
L. polyphyllum

MaxEnt
model

Elevation
above mean
sea level,
aspect and
slope,
19 bioclimatic
variables

With the use of
future scenario
predictions, the
study assists in
the
identification of
potential
conservation
areas and the
provision of
climate change
protection

Dhyani et al.
(2021)

Another critical factor to be included in SDMs would be the aspect of ‘migration’.
Generally, a static SDM would consider that the distribution of species is in
equilibrium with climate, and the species will react at the local level to climate
change. However, the inclusion of the migration capacity of various species could be
used to improve the estimations of species’ resilience to changing climate (Pecchi
et al. 2019).

Statistical SDMs are generally based on free-air, synoptic, or ambient temperature
conditions. These observations are of coarser resolution and fail to capture the
impact of local temperature (microclimate) on urban ecosystems (Lembrechts et al.
2019). Not incorporating the impact of micro-refugia could lead to overestimation in
the prediction of future distribution of species, especially on the urban scale (Lenoir
et al. 2013). These micro-refugia could help improve climate resilience; however, in
the large-scale spatial data (macroclimate) used by current SDMs, this buffering
capacity remains undetected (Lenoir et al. 2013, 2017).
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Another critical challenge that needs to be addressed while working with SDMs is
the inherent bias in prediction incorporated due to the different methodologies used
in modelling the future species distribution (Warren et al. 2021). Warren et al. (2021)
conducted a Monte Carlo analysis on different methodologies. They concluded that
input parameters like emission scenarios, climate models used, study area, and
SDMs could introduce bias on the effects of climate change on habitat suitability
and species distribution.

4.8 Future Perspectives

Though SDMs have been proven to be critical in understanding the future distribu-
tion of species facing the impact of climate change, they have certain limitations that
might introduce bias, uncertainty, or estimation errors in the prediction and
modelling process. This is especially true when handling projections at the local
scale when a static or stand-alone SDM is used (Moullec et al. 2022). Stand-alone
SDMs sometimes produce overtly optimistic climate change-induced projections
relating to species richness. This aspect was documented by Moullec et al. (2022) in
the Mediterranean Sea, where gains were overestimated and losses were
underestimated.

However, various studies have been undertaken to improve upon these
shortcomings. These studies can be categorized into two aspects: (1) focus on
species abundance rather than its presence or absence and (2) integration of empiri-
cal/statistical SDMs with mechanistic SDMs. Waldock et al. (2022) emphasize using
empirical-statistical-correlative abundance models to understand and quantify the
changes in spatial patterns in species abundance due to climate change. The use of
abundance trends also can provide an early warning of population depletion and
collapse, which cannot be adequately predicted using occurrence data (Waldock
et al. 2022).

Many researchers have pointed out the importance of integrated or ensemble
models providing more accurate and robust predictions compared to stand-alone
(Liu et al. 2022a, b). Ensemble models have been included in the Biomod2 software,
which can be used in R. Further, the use of integrated models can be termed as an
intermediate between C-SDMs and M-SDMs in terms of model complexity and data
requirement (Singer et al. 2016). Integrated models can be categorized into two
components: (1) correlation of species observation with environmental parameters
and (2) biological processes related to species distributions (Singer et al. 2018;
Barber-O’Malley et al. 2022).

The incorporation of biological processes like population dynamics, dispersal,
migration, etc. has shown to improve the estimation of species distribution and shift
of ranges in comparison to stand-alone or static SDMs (Fordham et al. 2013b; Singer
et al. 2018). Madzokere et al. (2020) also talks about integrated models called joint
SDMs (JSDMs), which utilize latent parameters, generalized linear regression
(GLR), and neural network processes to integrate biotic interactions and abiotic
environmental parameters. These integrated models, or JSDMs, have been shown to



improve the understanding of underlying processes and reduce the bias associated
with the prediction of species distribution (Madzokere et al. 2020).
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This study also underlines three methods for integrating C-SDMs and M-SDMs.
The first is comparing both the outputs from C-SDMs and M-SDMs for the same
species. The second method uses M-SDMs to generate highly proximal geographical
outputs for the basis of correlative/statistical modelling. The final method states the
linking of C-SDMs and M-SDMs using the M-SDMs to define the geographical
scope of the C-SDMs. Integrating multiple models uses climate, and land use data
reduces bias and uncertainty, makes the model more scalable, and provides robust
and realistic species distribution projections. Further, to improve the accuracy of
SDMs, especially at the urban level, a combination of high-resolution spatial data, in
situ measurements, and long-term historical data can be used (Lembrechts et al.
2019).

Incorporating new data like species abundance and using multilevel monitoring
like high-resolution spatial monitoring along with on-site/in situ monitoring can
improve the accuracy and reduce bias and uncertainty of the model being used to
predict species distribution. However, integrating different frameworks like
C-SDMs with M-SDMs can utilize the best of both worlds. Although rarely, an
integrated modelling framework is being in utilization to comprehend how climate
change affects the distribution of flora and fauna. However, these integrated models
provide very robust, realistic, and reliable predictions of the habitat changes and
the understanding of the underlying biotic and abiotic processes affecting the
distributions of the species. These outcomes can then be utilized to improve the
decision and policymaking related to the management of various ecosystems like
forests, marine ecosystems, etc.

SDMs are already being used in policymaking, allowing stakeholders to identify
any species impacted by climate change as well as any area affected by human
activity, such as deforestation and habitat destruction, that requires conservation
priorities and directs a large percentage of resources toward conservation of such
areas and the target species (Rahman et al. 2019). Although the incorporation of
SDMs in policymaking at national and international level is yet to be fully realized as
most of the SDMs are normally used for research purpose only, it can be used as an
additional tool for decision-making and designing policies that mostly deal with
activities such as deforestation, afforestation, decarbonization, etc.

However, a few examples of how SDMs are currently being used in
policymaking at the international level include the use of SDMs in forecasting and
tracing climate risk and threats as well as population dynamics of Bornean orangutan
(Pongo pygmaeus) in Kalimantan, Indonesia, and in developing policies and
improved design management techniques to support and strengthen the Indonesian
government’s conservation initiatives to stabilize orangutan populations (Abram
et al. 2015); the use of SDMs in assessing the impacts of deforestation, habitat
degradation, and fragmentation on the chimpanzee population of western Tanzania
and in the decision and policymaking for sustainable, precise, and cost-effective
surveillance and monitoring of the species and their conservation (Dickson et al.
2020); etc.
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In the Indian subcontinent, the integration of SDMs in decision and policymaking
is yet to be fully realized; however, for a country with a vast species and forest
resource, it can be a very useful tool in species and forest management and
conservation. A few examples include the use of SDMs in identifying the suitable
habitat as well as new occurrence of the critically endangered species Gymnocladus
assamicus, which is endemic to North-East India, and in policymaking to strengthen
the ongoing measures for in situ conservation of the endangered plant (Menon et al.
2010); the use of SDMs in policymaking for restoration and conservation planning
of a species of medicinal and therapeutic plant found in the lower Himalayan
foothills, Justicia adhatoda (Yang et al. 2013); etc.

Most national and international forest policies put forth to date are often focused
on conservation and preservation, lowering stress on forests, and providing biomass
to the significant population that depends on forests for its fuel and fodder needs,
thereby limiting the use of SDMs in any decision-making process. However, with
the growing issues of deforestation and requirement for reforestation or afforesta-
tion, SDMs have become necessary in policymaking for the mentioned issues
(Murthy and Kumar 2019). When it comes to phenomena such as deforestation,
afforestation, SDMs can be used to identify frequently logged tree species and their
distribution areas, the frequency of logging leading to deforestation. Therefore
SDMs can also be utilized to assist in policymaking for reforestation or afforestation
of the degraded landscape by means of providing information on potential alternate
species for restoration, alternative to slash-and-burn agriculture, adoption of sustain-
able agroforestry, sustainable logging, agro-pastoral production systems, etc.
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Abstract

Computer-based models have become important tools for examining the
responses to changes in any system. A climate model simulates every aspect of
the planet’s climate including how climate has changed in the past and how it may
change in the future. The climate models are built on scenarios, which offer a
method for assessing how plausible futures might develop. Recent global and
regional assessments that project future environments based on shifting driving
forces were built on the foundation of these modelling and scenario tools. This
chapter addresses how the scenarios are being created and their evolutionary
changes in the last two decades starting from the IPCC’s SRES scenario to the
recent SSP scenario. Further, the downscaling of physically based climate models
to biosphere-based Earth system models is also discussed. Two approaches to
Earth system modelling, i.e. process-based dynamical global vegetation models
and classical climate envelope models, are described in detail to model the
response of ecosystems to climate change. The chapter contributes to our under-
standing on various approaches to model the impact of climate change on
ecosystems, parameterization of models and responses of ecosystems to changing
environmental conditions.
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5.1 Introduction

The ecosystems experience exceptional negative disturbances in recent times
attributed to global warming, climate change, extreme weather events and anthropo-
genic pressures (Krishnaswamy et al. 2014; Cheng et al. 2018; Pan et al. 2020; Ren
et al. 2022). Unchecked population growth, modernization, industrialization and
urbanization have resulted in a sharp increase in the atmospheric concentration of
greenhouse gases (GHGs) (Mandal et al. 2021). This in turn affects the temperature
profile of the atmosphere by trapping more heat within the atmospheric blanket. The
temperature is highly linked to other physical variables of the Earth system, and the
resultant manifestations even impact biological systems. It is by now unambiguous
that climate change stresses every ecosystem throughout the world (IPCC 2021).
Climate change affects the distribution of ecosystems, species ranges, structure and
functions, seasonality, changes in productivity, forest fire regimes and many more
(Melillo 1999; IPCC 2001; Koca et al. 2006; Joseph et al. 2013; Grimm et al. 2013;
Krishnaswamy et al. 2014; George et al. 2019). Accurate projections of the effects
on ecosystems in the coming decades are urgently needed in order to design effective
mitigation and adaptation measures to maintain ecosystem services and function in
the face of evidence of accelerated climate change (MEA 2005; Sutherland 2006;
Morin and Thuiller 2009; Joseph et al. 2013; de Sassi et al. 2015; Bos et al. 2017).

The development of tools and methods for reliable climate change impact
projections of different ecosystems has been a research priority in recent times. It
is impossible to predict how the climate will change over the next century and
beyond in a deterministic, conclusive manner. The only possibility is to create
scenarios which are likely to occur in future, which include time series of emissions
and concentrations of GHGs and aerosols and chemically active gases in the
atmosphere (IPCC 1996). This in turn aligned with the forcing and underlying
agents of climate change such as energy use, land use patterns, economic activity,
technology and climate policy. The scenarios are essentially the result of creative
collaboration between experts in emission inventories, climate modelling, terrestrial
ecosystem modelling and integrated assessment modelling.

5.2 IPCC Modelling Scenarios

In order to track the changing status of Earth’s climate system, to expand our
understanding and to develop new tools and approaches for preserving and repairing
resilient biological and social systems, a range of likely possibilities known as
emission scenarios is described in the Assessment Reports (AR) of the Intergovern-
mental Panel on Climate Change (IPCC).
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5.2.1 SRES Scenarios

The SRES scenarios were based on the Special Report on Emissions Scenarios
published by IPCC in 2000. The SRES scenarios were used in the Third Assessment
Report (TAR) published in 2001 and Fourth Assessment Report (AR4) published in
2007. This report used the ‘storyline approach’ in which the future storylines were
defined based on possible socio-economic changes in the future (Pedersen et al.
2022). They included economic, demographic, social, technological and environ-
mental factors. It also describes economic and environmental and global and
regional connections. The implications for future greenhouse gas emissions for
each story would be estimated and emission scenarios were defined. The SRES
were divided into four scenario families designated with the letters A1, A2, B1 and
B2 standing for economic (A) or environmental (B) concerns and global (1) or
regional (2) development patterns, respectively.

More economic 

More global                                                  More regional

More environmental 

A2 

B2 B1 

A1 

Families A1 and A2 tend towards more economic growth and B1 and B2 tend
towards more environmental protection. The two on the left A1 and B1 describe
areas that are more globally interconnected, and the two on the right A2 and B2
describe the areas where regional connections are more important. Thus, SRES
framework was often used as a reference document for modelling the diverse
dimensions of the impact of climate change (Gaffin et al. 2004).

5.2.2 RCP Scenarios

In 2007, the IPCC developed a new set of scenarios as an updation and expansion in
scope to the existing SRES scenarios, known as Representative Concentration
Pathways (RCP), which formed the basis of the Fifth Assessment Report (AR5)
(Van Vuuren et al. 2011). In this approach, a condition is defined for Earth by the
amount of extra energy that might be added to the climate system by 2100, compared
to the pre-industrial era. After describing an endpoint condition of radiative forcing
for the year 2100, the representative way to get there is defined which is called as the
Representative Concentration Pathways. The concentration part relates to the
concentrations of GHGs in the atmosphere along the way. The names of the RCP
are based on the target amount of radiative forcing for 2100. The RCP include a



stringent mitigation scenario (RCP2.6 where the radiative forcing will lead to 2.6 W/
m2 by 2100 with an atmospheric CO2 concentration of 490 ppm), two intermediate
scenarios (RCP4.5 (i.e. 4.5 W/m2 and 650 ppm radiative forcing and atmospheric
concentration of CO2, respectively, by 2100) and RCP6.0 (approximately 850 ppm
CO2 eq)) and one scenario with very high GHG emissions (RCP8.5 (approximately
1370 ppm CO2 eq)).
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5.2.3 SSP Scenarios

After the RCP scenarios, a range of new ‘pathways’ collectively known as the
‘Shared Socioeconomic Pathways’ (SSPs) were developed as part of the Sixth
Assessment Report (AR6) to examine how global society and economics or the
socio-economic factors might change over the next century. SSPs are projections of
anticipated worldwide socio-economic trends through the year 2100. These include
elements like population, economic expansion, education, urbanization and the pace
of technological development. The SSPs indicate five illustrative SSP scenarios,
SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. These scenarios analyse a
wider series of greenhouse gas and air pollutant futures than those assessed in past
publications, and they include both new low-CO2 emission pathways as well as
high-CO2 emission pathways without climate change mitigation.

• SSP1-1.9: By keeping global warming to a maximum of 1.5 °C, this scenario
envisions a world in which CO2 emissions are reduced to zero globally by 2050.

• SSP1-2.6: With assumed net zero emissions in the second half of the century,
global warming stays below 2 °C.

• SSP2-4.5: CO2 emissions hover around current levels and do not reach net zero
by 2100. Development and income are expanding unevenly, and sustainability
progress is modest. In this case, the century’s conclusion will see a 2.7 °C
increase in temperature.

• SSP3-7.0: Temperatures and emissions both increase steadily and by 2100, CO2

emissions will have roughly doubled from current levels. The century’s conclu-
sion will see an increase in average temperatures of 3.6 °C.

• SSP5-8.5: Current CO2 emissions levels roughly double by 2050, and tempera-
ture will reach 4.4 °C by 2100.

These estimates of emissions are then fed into Global Circulation Models
(GCMs) and Regional Circulation Models (RCMs) to know how these scenarios
affect global climate change. The GCM or RCM output is then downscaled to the
finer spatial resolution that is more meaningful for analysing the impact of climate
change on the ecosystems.
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5.3 Model Downscaling

Studies of the effects of climate change on ecosystems often use climate scenarios
produced by GCMs with resolutions of a few hundred kilometres, which are coarse
compared to the scales of relevance in regional studies (Mearns et al. 2001). This is
where downscaling is required. Downscaling is a process of generating higher-
resolution data from relatively coarse-resolution GCMs. The RCM is the down-
scaled version of the GCM and has a much higher grid resolution than GCM. There
are two established methods for downscaling the GCMs to RCMs: the dynamical
and the statistical or empirical method. These techniques are complementary and
both have strengths and weaknesses. Statistical downscaling compares GCM output
for a particular period in the past with observations during the same time by
comparing model projections in actual climate data observations. A statistical
relationship is established between global and regional climate patterns. This statis-
tical relationship is then applied to predict future climate projections. Dynamical
downscaling is a method where the GCM output is simulated to smaller scales using
another high-resolution dynamical regional model. The regional model for the area
of interest is chosen such that it is large enough to capture important weather
processes in the region of interest while ensuring that this region of interest is far
enough from the boundaries of the model. Regional climate models provide more
geographic resolution and incorporate regional physiography in an effort to address
GCM’s drawbacks (McGregor 1997; Mearns et al. 2001; Koca et al. 2006). RCMs
are in the order of a few kilometres ranging from 5 kms to 25 kms, and even 50 km.
However, such scales are again coarser to model the impact at the species, habitat
and ecosystem levels, and hence further downscaling is important considering other
biophysical variables. With this, Hijmans et al. (2005) and Fick and Hijmans (2017)
made unique contributions to downscale the climate models to 1 km resolution
keeping account of weather station data with covariates including elevation, distance
to the coast and satellite-derived covariates of land surface temperature as well as
cloud cover, obtained with the MODIS (Moderate Resolution Imaging
Spectroradiometer) satellite platform using a thin-plate spline algorithm.

5.4 Earth System Models (ESMs)

The integration of biosphere interaction to the physical climate models is important
in the assessment of climate change impacts, and this is normally achieved through
the Earth system models (ESMs). ESM acts as an interface between traditional
climate science and the synergy of other sciences including life science and social
science and hence is applied to a wide range of issues related to the mitigation and
adaptation of climate change. Two approaches of ESMs include either simulating the
physiological processes of a system to externalities of climate change or placing the
system to the envelope of climate, and studying the shift in patterns. The former is a
process-based model, for example, a Dynamic Global Vegetation Model (DGVM),
and the latter is known as a climate envelope model, e.g. BIOCLIM model.
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5.4.1 Process-Based Models (PBMs)

Process-based modelling is a technique that derives a system’s behaviour from a
collection of functional components and their interactions with one another and the
surroundings of the system through gradual physical and mechanical processes
(Mäkelä et al. 2000). They are primarily based on theoretical understanding of
germane ecological processes or functions and provide a useful framework to
integrate precise responses to disturbed environmental conditions.

Dynamic Global Vegetation Models (DGVMs) are process-based models that
simulate the changes in the vegetation in response to varying environmental
conditions at a particular location. It uses sub-models for photosynthesis, plant
carbon balance and other factors (Sitch et al. 2003). DGVMs have historically
been used to model assemblages of species with related forms and functions in
ecosystems. They do not seek to focus on specific species distributions, despite
recent developments that have led to the introduction of hybrid DGVM-individual-
based models that concentrate on specific well-known dominant species, such as
LPJ-GUESS and HYBRID (Koca et al. 2006; Morin and Thuiller 2009). Table 5.1
explains the commonly used DGVMs applied in ecosystem studies to measure the
responses to climate change.

TRIFFID (Top-down Representation of Interactive Foliage and Flora Including
Dynamics) is a Dynamic Global Vegetation Model that simulates the distribution of
plants and soil carbon based on climate-sensitive CO2 fluxes (Cox et al. 2000;
Hughes et al. 2006). The plant distribution with respect to five plant function types
(PFTs), i.e. broadleaf tree, needleleaf tree, C3 grass, C4 grass and shrub, is addressed
in each grid box. The carbon fluxes for each PFT are computed every 30 min as a
function of the climate and atmospheric CO2 concentration, and every 10 days, the
cumulative fluxes are added to update the soil and vegetation carbon. Local litterfall
or widespread disturbance that causes carbon loss from the vegetation is deposited
into the soil carbon pool, where it is broken down by microorganisms that release
CO2 back into the atmosphere. For every 10 K of warming, it is predicted that the
rate of soil respiration will double. This rate also depends on the moisture level of the
soil. The land-atmosphere exchange of fluxes is also established through a feedback
loop mechanism.

LPJ (Lund-Potsdam-Jena)-DGVM simulates vegetation biogeography and bio-
geochemistry in a modular framework. It dynamically computes the composition of
transient vegetation in terms of plant functional groups, together with their related
carbon and water budgets, using climatic, soil and atmospheric data as input, while
LPJ-GUESS (General Ecosystem Simulator) was built for the purpose of modelling
the growth of an entity, typically a tree, on a number of replicate patches,
corresponding in size approximately to the maximum area of influence of one
large adult tree on its neighbours. The Land surface Processes and eXchanges
(LPX) model works on the wildfire regimes that describe how terrestrial biogeo-
chemical processes interact with the environment to govern wildfire disturbance and
the changes in vegetation (Prentice et al. 2011). Although LPX works well globally,
it has trouble simulating fire patterns and vegetation composition in savanna (Kelley



(continued)

5 Approaches for Modelling the Climate Change Impacts on Ecosystems 93

Table 5.1 The Dynamic Global Vegetation Models that are applied to measure the response of
ecosystems to climate change

Model Properties References

TRIFFID (Top-down
Representation of Interactive
Foliage and Flora Including
Dynamics)

Updates the plant distribution and
soil carbon based on climate-
sensitive CO2 fluxes at the land-
atmosphere interface

Cox (2001), Sitch et al.
(2008) and Huang
et al. (2021)

LPJ-DGVM (Lund-Potsdam-
Jena Dynamic Global
Vegetation Model)

An area-based model that
simulates the dynamics of
terrestrial vegetation by
representation of biogeochemical
processes, with different
properties prescribed for PFTs
rather than individual plants

Sitch et al. (2003)

LPJ-GUESS (General
Ecosystem Simulator)

An individual-based model in
which individuals compete for
light and soil water within the
same patch

Smith et al. (2001,
2014)

SDBM (Simple Diagnostic
Biosphere Model)

A simple light-use efficiency and
water-balance model driven by
observed precipitation,
temperature and remotely sensed
observations of FAPAR (fraction
of absorbed photosynthetically
active radiation)

Kelley et al. (2013)

LPX (Land surface Processes
and eXchanges) model

Fire intensity, spread, residence
time and carbon flux estimations
based on fuel moisture content,
seasonality and climate data on a
daily time step

Prentice et al. (2011)
and Kelley et al.
(2013)

HYBRID Simulates individual trees and
grass layers, competing for light,
moisture and nitrogen on a grid
box

Friend et al. (1997)
and Cramer et al.
(2001)

IBIS (Integrated Biosphere
Simulator) model

PFTs compete for light and
moisture within each canopy of
trees and grasses. Generates net
carbon exchange and runoff

Foley et al. (1996),
Hughes et al. (2006)
and Jinxun et al.
(2022)

SEIB-DGVM (Spatially Explicit
Individual-Based Dynamic
Global Vegetation Model)

Simulates the local interactions
among individual trees where they
compete for light and space. This
method offers the benefit of
simulating a spatially detailed
distribution of vegetation

Sato et al. (2007)

SDGVM (Sheffield Dynamic
Global Vegetation Model)

By taking into account the
biogeochemical distribution of the
planet’s main PFTs, this model
simulates daily carbon, water and
nutrient cycles at sizes ranging
from forest stands to the entire
planet

Woodward and Lomas
(2004) and Walker
et al. (2017)



et al. 2013). The HYBRID model takes into account the daily cycling of carbon,
nitrogen and water, both within the biosphere and between the biosphere and the
atmosphere to determine the net exchanges in the land-atmosphere interface. The
Integrated Biosphere Simulator (IBIS) is intended to be a comprehensive represen-
tation of the Earth’s biosphere that captures a variety of processes, such as carbon
and nitrogen cycle, soil surface physics, canopy physiology, plant morphology,
dynamics and competition. The model generates terrestrial carbon balance, surface
water balance and vegetation structure. ORCHIDEE (Organising Carbon and
Hydrology In Dynamic Ecosystems) combines dynamic biogeography to a surface-
vegetation-atmosphere transfer (SVAT) scheme and models the terrestrial carbon
cycle associated with vegetation and soil decomposition processes, as well as
changes in vegetation distributions with respect to the changes in climate systems.
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Table 5.1 (continued)

Model Properties References

ORCHIDEE (Organising
Carbon and Hydrology In
Dynamic Ecosystems)

Specifically simulates the
phenomenon of terrestrial carbon
cycle related to vegetation and soil
microbial activities

Krinner et al. (2005)

5.4.2 Climate Envelope Models (CEMs)

Climate envelope models (CEMs) are widely used to develop adaptation strategies
for the species vulnerable to climate change by forecasting the effect of climate
change on species distributions. The main strategy is to define the spectrum of
climate conditions that the species currently experiences (the climate envelope)
and to predict the future spatial distribution of the climate envelope based on
projections of various scenarios (Franklin 2009; Watling et al. 2012). ‘Bioclimate’
variables, which are mostly obtained from seasonal connections between precipita-
tion and temperature, or ‘monthly climate’ variables are used to create CEMs
(Watling et al. 2012). CEMs describe areas where climate is apt for the species or
anticipated to become suitable as it includes only climate variables. There are many
factors other than climate, such as habitat availability and fragmentation, and
competition with other species that may limit the species distributions that CEMs
do not take into account. Climate envelope modelling recognizes vital links between
predictor variables and relevant responses, thus relating species and environment
responses to climate change. Several CEMs have been developed around the world
including BIOCLIM, DOMAIN, GAM and MaxEnt (Table 5.2).

Bioclimatic envelope models, also known as ‘ecological niche models’, ‘species
distribution models’ or ‘habitat suitability models’, are associated with climate and
the probability of occurrence of species in their area of interest. Species distribution
models are used extensively in the field of conservation biogeography for supporting
conservation planning and evaluating the probable impacts of climate change (Booth



et al. 2014). The first software tool to link spatially detailed species occurrence data
with maps of environmental variables was called BIOCLIM. It compares the values
of the environmental factors at a site to the percentile distribution of the values from
other locations in order to estimate the likelihood of a species occurring there.
Species are likely to maintain viable populations under a set of parameters that the
BIOCLIM model defines (Araújo and Peterson 2012). Species distribution models
use rules or mathematical functions to describe associations between species occur-
rence and environmental conditions. The variables used in species distribution
models may include climate, land cover, topography or any other variable relevant
to the species being modelled (Watling et al. 2013).
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Table 5.2 The climate envelope models used for measuring the impact of climate change on
species and ecosystem distributions

Model name Properties References

BIOCLIM
(percentile
distributions)

This model relates species distributions to
climatic conditions as multiple one-tailed
percentile distributions. BIOCLIM model
maps the climatically fitting sites of a species
by determining the environmental settings
required by them when information on the
occurrence of the species is given

Nix (1986), Busby (1991)
and Hijmans and Graham
(2006)

DOMAIN
(distance
metric)

In the DOMAIN model, the Gower distance is
calculated to measure similarity in
environmental variables between the species
occurrence points

Carpenter et al. (1993) and
Hijmans and Graham
(2006)

GAM (general
additive
modelling)

GAMs model nonlinear trends between
predictor variables and response variables
using nonparametric functions

Lehmann et al. (2002) and
Hijmans and Graham
(2006)

MaxEnt
(maximum
entropy)

MaxEnt models the likelihood of a species
being present from the distribution of
maximum entropy subject to the constraint
that the projected value of each environmental
variable under this estimated distribution
matches its empirical average

Phillips et al. (2006) and
Hijmans and Graham
(2006)

MaxEnt modelling evaluates the possibility for a species’ occurrence on a site
based on environmental constraints (Phillips et al. 2006). MaxEnt modelling uses an
algorithm that calculates the probability of occurrence of a species relative to
background conditions in the area of interest as a function of environmental or
climatic conditions where the species occurs. It is used for modelling species
geographic distributions with presence-only data. It also avoids over fitting, a serious
concern for other niche modelling methods (Phillips and Dudík 2008). Likewise,
GAM is a model which allows the linear model to learn nonlinear relationship trends
between dependent (species presence or absence) and independent (environment)
variables. The DOMAIN model calculates the potential distribution based on a
standardized point-to-point similarity metric and provides a simple and reliable
method for modelling the potential distribution of plant and animal species.
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5.5 Conclusion

Climate change is projected to impact all the ecosystems around the world in one
way or the other. Since its inception in 1988, the IPCC has published an array of
extensive assessment reports on our climate, the potential impacts of changing
climate and options for response strategies. The emission scenarios developed by
IPCC are used as important inputs for modelling the climate change impacts on
ecosystems. The emission scenarios are integrated with the Earth system models by
way of process-based models or climate envelope models. The parameterization and
mechanisms of these models vary, and the choice of the model depends on the type
of output variables required. This chapter collated the various models that are in
practice now and elaborated further on the input variables and the mechanism
adopted in various models. Some approaches for modelling are better fitted than
others to address the problem of prediction under a set of criteria. The development
of high-quality climate predictions has become the need of the hour for understand-
ing the impacts of different greenhouse gas emission scenarios and for mitigating
and adapting to the resulting climate changes and thus to meet the climate goals of
the Paris Agreement.
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Abstract

Significant fish kills in Taal Lake in Talisay, Batangas Province, which created
major economic setbacks in the area, were mainly attributed to lake overturn. A
predictive model of climate-induced lake overturn for the lake was developed
using a combination of data exploratory analysis, correlation, autocorrelation,
logistic regression, and Bayesian causality modeling. Climatic data and reports of
fish kill events in the lake were analyzed for trends and patterns. Statistical tests of
possible relationships were done via logistic regression modeling, while stepwise
logistic regression method was applied to identify climatic variables that signifi-
cantly affected lake overturn.
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Wind speed and minimum air temperature were the two significant climatic
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variables found to have induced lake overturn. The results of the logistic proba-
bility analyses were transformed to develop the conditional probability tables
(CPT) required in the development of the model.

Keywords

Lake overturn · Bayesian model · Fish kill

6.1 Introduction

Volcanic Taal Lake, the third largest lake in the Philippines, is uniquely located
inside the Taal Caldera. It lies in the heart of Batangas Province and occupies a total
area of 260 km2. It has an average depth of 65 m and a maximum depth of 180 m.
Feeding into it are 37 river tributaries, with 1 river outlet, the Pansipit River, flowing
into Balayan Bay (Schiemer et al. 2001; ADB 2004; You et al. 2013).

Lake Taal Lake has multiple uses and benefits such as for open water fisheries,
commercial aquaculture, recreational activities, navigation routes, and water source.
Of particular interest are the immense aquaculture activities in the lake that started in
the 1980s by which tilapia (Oreochromis niloticus) and milkfish (Chanos chanos)
culture was introduced (Papa and Mamaril 2011). The proliferation of fish pens and
cages has affected the water quality of the lake. It is estimated that 64% of the
nitrogen and 81% of the phosphorus contents of fish feed are released into the lake
environment (Edwards 1993). Yambot (2000) calculated that for every 1.5 tons of
fish feed given, 16 kg of phosphorus is released into Taal Lake waters. Further, the
excess fish feeds and fish feces contribute to the increased organic material that
settles at the bottom of the lake. Decomposition of these organic matter releases
hydrogen sulfide (H2S) and other toxic gases (White et al. 2007).

Significant fish kill occurrences in Taal Lake have created major economic
setbacks in the area. One noteworthy incident was the 2011 massive fish kill that
disrupted the socio-economic activities in the lake, with recorded losses of approxi-
mately PHP 140 million. The event was attributed to an interplay of factors such as
lake overturn, water pollution, change in season (i.e., summer going to rainy season),
changes in wind stress, and intermittent rainfall (BFAR 2011).

The participants of the participatory activities conducted with the local
communities in Taal Lake expressed their local ecological knowledge on the occur-
rence of fish kill (Magcale-Macandog et al. 2014). They perceive that a combination
of climatic, volcanic, and anthropogenic factors causes localized fish kill episodes in
the lake. These factors include oxygen depletion, volcanic activities at the bottom of
the lake, strong winds, hydrothermal vents, polluted water, and aquaculture
activities.

The dynamic thermal changes of lake water and above water surface create a
condition for possible lake overturn. With cool winds coupled with heavy rainfall as
a function of the annual seasonal shift, the surface water becomes cooler and thus



denser relative to the water column below the thermocline. The surface water
subsequently sinks down, displacing the warmer hypoxic bottom layer which in
return pushes up into the surface (Rosana 2011).
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Many fish kills recorded in Taal Lake are caused by lake overturn. Increase in
wind turbulence and low atmospheric temperature cools the lake water surface layer
(epilimnion) and erodes the thermal stratification of the water column (ADB 2004;
Balistrieri et al. 2006; Caliro et al. 2008; Marti-Cardona et al. 2008). In combination
with the pressure of strong winds, mixing of water occurs. This transports the low
dissolved oxygen and reduced chemical substances such as H2S, nitrite (NO2), and
ammonia (NH3) from the lake bottom to the water surface, as well as mixing them in
localized portions of the lake. The lake then goes into a state of hypoxia
characterized by low dissolved oxygen, that is, below 2 mg/L. This undesirable
water quality subsequent to lake overturn triggers fish kills in Taal Lake.

In the seven crater lakes of San Pablo City, Philippines, sporadic fish kill events
have been recorded during the cool months from December to February due to lake
overturn resulting to the upwelling of anoxic water (Brillo 2015, 2016a, b, c, d, e;
Diana 2009; Paller et al. 2021). Another possible reason for these fish kill events is
the deterioration of water quality due to aquaculture activities characterized by
excessive use of commercial fish feeds (Orosa 2014). Domestic waste from increas-
ing human settlements also contributes to lake water quality deterioration.

Similar phenomena were observed in stratified lakes around the world. For
instance, lake overturn caused the fish kill in Lake Averno, Italy, last 2005. After
the fish kill, researchers discovered that the lake’s water was unstratified chemically
and isotopically. Increasing H2S and methane (CH4) concentrations and decreasing
sulfate (SO4) levels in the lake with depth were observed. The presence of CH4 and
sulfide (SO2) in the surface water, as well as the anoxic condition along the water
column, proved the occurrence of lake overturn. Moreover, white water was noted
and found to contain high H2S level (10–20 mg/L). These data supported the
hypothesis that lake overturn and high H2S levels were the main causes of fish kill
in Lake Averno (Caliro et al. 2008).

By the same token, Lake Valencia in Venezuela experienced a massive fish and
zooplankton mortality in 1977. It was found that the lake overturned due to a shift in
physical conditions such as minimum air temperature and maximum wind strength
during the months of December to March. Moreover, the presence of H2S dominated
in the lake as evidenced by its strong odor. Discolorations in lake water approxi-
mately 1 km or more in diameter were also observed. Fish and zooplankton mortality
was attributed to anoxic lake water (i.e., between 20 m and 30 m depth) and toxic
level of H2S in epilimnion (de Infante et al. 1979).

A Bayesian network consists of a graphical structure and a probabilistic descrip-
tion of the relationships among variables in a system. The graphical structure
explicitly represents cause-and-effect assumptions that allow a complex causal
chain linking actions to outcomes to be factored into an articulated series of
conditional relationships (Borsuk et al. 2004). Bayesian network modeling is
believed to provide the most feasible method of estimating parameters in complex
systems, such as biogeochemical cycles involving nitrate, ammonium, dissolved



organic nitrogen, phytoplankton, zooplankton, and bacteria, while including random
processes and variables to model uncertainty (Borsuk et al. 2001). Bayesian
networks provide a methodology for combining expert knowledge of causal struc-
ture and aggregate ecosystem response with condensed models that are identifiable
from available data.
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Logistic regression modeling has been widely used to model events or phenom-
ena with dichotomous response (i.e., yes or no) (Salem et al. 2004). The same
method was used by Can et al. (2005) to assess the susceptibility of shallow
earthflows triggered by heavy rainfall in three catchments in Turkey. Van Den
Eeckhaut et al. (2006) produced the landslide susceptibility map of Flemish
Ardennes in Belgium applying the same method. In Taiwan, Chang et al. (2007)
modeled landslide events based on the occurrence of rainfall and earthquakes. Hu
and Lo (2007) modeled urban growth in Atlanta, Georgia, through the use of logistic
regression. Yang et al. (2006) used logistic regression with geographic information
system (GIS) to map the distribution of matsutake mushrooms in Yunnan, southwest
China. The same methodology was employed by Ozdemir (2011) to map the
groundwater spring potential in the Sultan Mountains, Turkey. Chen developed a
model to predict financial distress by integrating logistic regression with decision
tree classification technique. Piwczynski et al. (2012) used logistic regression to
determine factors affecting lamb mortality.

This study aimed to model the occurrence of overturn in Taal Lake using logistic
regression techniques and Bayesian network modeling using weather variables (i.e.,
rainfall, maximum temperature, minimum temperature, wind speed, and wind direc-
tion) and their duration. The probabilistic predictions of the model can give
stakeholders and decision-makers a realistic appraisal of the chances of fish kills in
the future, which is critical to the decision process. The corresponding
recommendations may help advance the stakeholders’ ability to forecast fish kill
events and consequently allow the implementation of preventative measures to
reduce the frequency and magnitude of fish kills in Taal Lake and other lakes in
the country.

6.2 Materials and Methods

6.2.1 Data Collection

Secondary data on the water biophysicochemical properties and geological and
climatic attributes of Taal Lake were gathered from various agencies including the
Philippine Atmospheric, Geophysical and Astronomical Services Administration
(PAGASA), Philippine Institute of Volcanology and Seismology (PHIVOLCS),
Bureau of Fisheries and Aquatic Resources (BFAR), fish cage operators, and
UPLB-FEWS (Fish Kill Early Warning System) Program Research Team 1. Data
on occurrences of lake overturn and fish kill were lifted from reports and
announcements disseminated by BFAR to the municipalities around Taal Lake for
the period 1998–2012. Thirty-two years (1980–2012) of weather data from the



nearest agroclimatic station (Ambulong, Tanauan, Batangas) were acquired from
PAGASA.
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6.2.2 Exploratory Data Analysis

The collected secondary data were subjected to exploratory data analyses (EDA) to
discover trends, patterns, correlations, and relationships. The availability of long-
term weather data (32 years) enabled the conduct of EDA on the weather variables
(i.e., rainfall, temperature, wind direction, and wind speed). EDA on the weather
variables included construction of various graphs such as scatter plots to detect linear
relationships, conditional density plot to determine probability distribution, and time
series plots to visualize trends. Discernible patterns of duration of sustained wind
speed and minimum temperature were explored graphically. Data on fish kill events
were superimposed over the graphs of the weather variables to visualize trends and
possible relationships between fish kill events and weather variables.

Possible relationships among weather variables prior to and during lake overturn
were analyzed graphically. Correlations of lag periods of each weather variable were
also analyzed to determine if prior weather conditions (e.g., 7 days before) had some
relationships with the occurrence of lake overturn.

6.2.3 Statistical Test

After exploring possible relationships between lake overturn and weather variables
graphically, statistical test of the possible relationship was done via logistic regres-
sion modeling. Stepwise forward selection logistic regression (SFSLR) was applied
to identify which among the six weather variables (wind speed, wind direction,
minimum air temperature, maximum air temperature, mean air temperature, and
rainfall) had significant effect on lake overturn.

6.2.4 Development of Bayesian Model of Lake Overturn

R Console was used to determine the respective conditional probability relationships
between the occurrences of lake overturn and each of the weather variables found
significant by SFSLR above. The results of these logistic probability analyses were
transformed to develop the conditional probability tables (CPT) for each of the
weather variables and their combination. The CPT were used in the development
of the Bayesian network of models for lake overturn with the aid of Netica.
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6.3 Results and Discussion

6.3.1 Patterns of Wind Velocity and Wind Direction

The average weekly trends and patterns of wind velocity in Taal Lake (Fig. 6.1) are
generally higher (>1.5 mps) from the 4th week of October to the 3rd week of April.
This period coincides with the cool months. The prevailing wind direction during
this period is from the NE (Fig. 6.2). FromMay to June, the wind direction gradually
shifts from NE to SW (Fig. 6.2). From July to September, the prevailing wind is from
the SW direction, coinciding with the monsoon or rainy season in the country. On
the 4th week of April, the change in wind direction from NE to SW coincides with a
decline in wind velocity (<1.5 mps) (Fig. 6.1). Likewise, on the 3rd week of
October, the change in wind direction from SW to NE coincides with increase in
wind velocity (>1.5 mps).

6.3.2 Fish Kill Events and Wind Patterns

Data on occurrence of fish kill events were superimposed over the graphs of wind
speed and direction to assess possible relationships (Fig. 6.3). Lake overturn, sulfur
upwelling, oxygen depletion, and pollution are the common causes of fish kills in
Taal Lake. Fish kill events due to lake overturn are reported to occur mostly during
the times when the wind direction shifts from NE to SW in May and June (weeks
18–25). The average wind velocity during this period is 1.25 mps.

Fig. 6.1 Average weekly trends and patterns of wind velocity and wind direction for 30 years
(1980–2009) in Ambulong Station, Tanauan, Batangas
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Fig. 6.2 Monthly wind direction in Ambulong Station, Tanauan, Batangas, based on historical
weather data from 1980 to 2009

6.3.3 Rainfall

The average weekly pattern of the 32-year rainfall data shows that the rainy season in
the Taal Lake area occurs from June to October. The average weekly rainfall during
this season varies from 6 cm to 12 cm (Fig. 6.4). In the dry months of December to
April, the average weekly rainfall is only 1 cm.

Most of the recorded fish kill events occurred at the onset of the rainy season
particularly during intermittent light to moderate rains in the area (Fig. 6.4). In fact,
stakeholders reported some fish kills happening 7 days following consecutive
rainfall events, with a total cumulative rainfall of at least 260 mm after several
months of no rainfall event. Note the absence of rainfall event during the summer
months of March to before mid-May, with the middle of May as the onset of rainy
season.

6.3.4 Spatial Occurrence of Fish Kill in Taal Lake

Reported fish kill events from 1998 to 2011 were mapped to visualize possible
clustering of the events with respect to their location and reported cause. Lake
overturn was the major cause of fish kill in the Laurel and San Nicolas
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municipalities, while it was sulfur upwelling in Talisay and San Nicolas
municipalities (Fig. 6.5). This suggests that causes of fish kills vary spatially across
the lake.
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Fig. 6.4 Average weekly rainfall pattern (1980–2011), fish kill events (1998–2011), and
corresponding causes of fish kill events in Taal Lake

Fig. 6.5 Major causes of fish kills in various fishing and aquaculture areas in Taal Lake. (Base map
source: White et al. 2007)
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6.3.5 Fish Kill Due to Lake Overturn in Talisay

Historical data (1998–2011) show that lake overturn reportedly occurred in Talisay
during the cold month of January and at the onset of the rainy season in May
(Fig. 6.6). The major causes of fish kill in the area were lake overturn and oxygen
depletion (Fig. 6.6). Another lake overturn was observed in Talisay from January
31 to February 2, 2013, which resulted in a fish kill event.

6.3.6 Weather and Lake Overturn in Taal Lake

6.3.6.1 Correlation Analysis of Climatic Variables
Weather variables including rainfall, wind velocity, wind direction, humidity, and
minimum air temperature and the occurrence of lake overturn/fish kill in the lake
were subjected to correlation analysis to identify highly correlated variables. Results
revealed that wind velocity and minimum air temperature significantly affected lake
overturn in Taal Lake.

6.3.6.2 Autocorrelation Analysis of Wind Velocity and Minimum Air
Temperature

Autocorrelograms of wind velocity and minimum air temperature showed that for
variables, the values 1 day before were highly correlated with the current values
(Figs. 6.7 and 6.8, respectively).

As part of the EDA, conditional density plots between lake overturn and weather
variables were generated to visually evaluate possible relationships between them.
Figure 6.9 shows the sample conditional density plots between lake overturn and
minimum temperature in Taal Lake. These plots show the probability of a lake
overturn event as influenced by minimum air temperature. Based on the conditional
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density plots (g), the probability of a lake overturn is almost 100% when the
minimum temperature is below 21 °C and 0% when the minimum temperature is
above 25 °C, or 6 days prior to the event. Such information is valuable in developing
a predictive model for lake overturn event given the minimum air temperature. The
same procedure was also applied to the other weather variables (i.e., rainfall, wind
direction, and wind speed).
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Fig. 6.7 Autocorrelation of wind speed during and up to 7 days before the fish kill
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Fig. 6.8 Autocorrelation of minimum temperature data during and up to 7 days before the fish kill

6.3.6.3 Logistic Regression of Minimum Air Temperature and Lake
Overturn

Results of logistic regression show that among the weather variables, minimum air
temperature showed significant relationship with lake overturn. Minimum air tem-
perature 6 days and 4 days prior to lake overturn showed significant relationships
with lake overturn with p-values of 0.031 and 0.059, respectively (Table 6.1).
However, the two lag periods showed contrasting effects on lake overturn. The
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probability of lake overturn increases with lower minimum temperature 6 days prior
to the event but decreases with lower minimum temperature 4 days prior to the event.
Colder air temperature (1 °C decrease in minimum temperature) 6 days before
increases the chances of lake overturn by 69.6%. On the other hand, warmer air
temperature 4 days before increases the odds of lake overturn by 235%. Table 6.1
summarizes the results of the stepwise logistic regression analysis on lake overturn
and weather variables.

6 Developing a Bayesian Model of Climate-Induced Lake Overturn in Talisay,. . . 113

Table 6.1 Logistic regression coefficient of minimum temperature lags with lake overturn event as
dependent variable

Variable Coefficient p-value

(Intercept) -0.6605 0.9570

Minimum temp 4 days prior 1.2095 0.0592*

Minimum temp 4 days prior -1.1910 0.0312*

*Significant at α = 0.1

Cooler minimum air temperature 6 days before followed by warmer minimum air
temperature 4 days before tended to increase the probability of lake overturn in
Taal Lake. This result suggests that changes in minimum temperature, from colder to
warmer temperature, can significantly affect vertical changes in the density of the
lake water, leading to overturn (Caliro et al. 2008)

The lag periods (i.e., 6 days and 4 days) of the independent variable (i.e.,
minimum temperature) suggest that occurrence of overturn in Taal Lake can be
predicted 4 days to 6 days in advance provided the transition or shift in air tempera-
ture can be determined. Such information is very useful in the development of
Bayesian networks of model for predicting fish kill event.

6.3.7 Lake Overturn Due to Combined Wind Speed and Minimum
Temperature

Results showed that among the six weather variables analyzed, two significantly
affected lake overturn, i.e., wind speed and minimum air temperature.

Lake overturn may be due to the combined effects of wind speed and cool air. It is
hypothesized that the increase in wind velocity of NE winds blowing from the shores
of Talisay toward the Taal Volcano Island during the cool months of January and
February may induce lake overturn. This is because the heavy cool surface water is
being pushed and sinks downward, eventually breaking the thermal stratification of
the water column that leads to overturn (ADB 2004; Balistrieri et al. 2006; Caliro
et al. 2008; Marti-Cardona et al. 2008). Logistic regression of the combined data on
wind speed and minimum temperature with the occurrence of lake overturn
predicted the probability of lake overturn and fish kill (Table 6.2).

To find out if there were discernible wind speed and minimum temperature
patterns several days before a fish kill event from among the 16 observed and
recorded fish kill events from 1998 to 2011, the daily wind speed and daily minimum



Table 6.2 Partial results
of logistic regression
showing predicted proba-
bility of lake overturn due
to the combined effects of
wind speed and minimum
air temperature

temperature from 15 days before the event up to the day of the event were considered
and plotted, respectively, in Figs. 6.10 and 6.11.
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Fig. 6.10 Scatter plot and spread of the deviation (represented as lines) of observed daily wind
speed starting from 15 days prior to and up to the day of the fish kill event (the deviation spread was
computed as the one standard deviation from the mean)

The lines in both figures represented the spread of the scatter plot with twice the
standard deviation of the daily data. The line at the center represented the mean daily
observation.

From Fig. 6.10, a discernible pattern of constant wind speed ranging from 1 mps
to 3 mps was observed 3 days before the fish kill event. There was no discernible
wind speed pattern observed prior to these days.
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Fig. 6.12 Pattern of sustained wind speed (in days) within 15 days before fish kill events in
January through February (a) and November through December (b)

From Fig. 6.11, a discernible pattern of minimum temperature dynamics was
observed as far back as 1 week before the fish kill event, i.e., a non-varying
minimum temperature from 7 days to 6 days before the fish kill event ranging
from 22 °C to 25.5 °C. The pattern showed a slow increase that peaked until
4 DBF, with the minimum temperature ranging from 22.8 °C to 25 °C. The
minimum temperature dropped considerably 3 DBF (from 24.5 °C to 21.9 °C) but
slowly peaked again at 1 DBF (from 22.3 °C to 24.5 °C). A sudden drop in the
pattern (from 24.1 °C to 22.3 °C) occurred during the day of the fish kill event.

To find out whether there was a pattern on the duration (in days) of sustained
wind speed, the contiguous days were plotted when a given wind speed was
observed during the respective 15 days prior to the fish kill events. Figure 6.12a, b



shows these patterns for wind speeds observed in January to February and
November to December, respectively. There was a sustained wind speed of 2 m/
s ranging from 3 consecutive days up to 8 consecutive days from January through
February. From November through December, however, a sustained wind speed of
1 m/s was observed ranging from 3 consecutive days up to 10 consecutive days.
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Cold air temperature (20–23 °C) coupled with strong wind velocity (3–4 mps) for
a duration of 5 days (December 21–25, 1999), followed by a combination of cold air
temperature (22–23 °C) and strong wind velocity (3–4 mps) on January 2–3, 2000,
preceded the occurrence of lake overturn and fish kill on January 10, 2000.

Continuous strong wind velocity ranging from 3 mps to 4 mps for 7 days (January
14–20, 2013) combined with cold air temperature (19–22 °C) for 12 days (January
13–25, 2013) and followed by strong wind velocity (3 mps) on January 31–February
1, 2013, preceded the occurrence of lake overturn and fish kill on February 2, 2013.
During this period, the surface water temperature cooled from 27 °C on January
8, 2013, to 25.5 °C on January 29–30, 2013. Both events show that fish kill due to
lake overturn can be predicted 7 days before the event given a combination of
continuous cold air temperature of 19–23 °C and strong wind velocity of 304 mps
for 5–7 days.

6.3.8 Bayesian Model of Lake Overturn Due to Wind Speed
and Minimum Air Temperature

The Bayesian model of lake overturn was developed using Netica. Results of the
logistic probability analyses were transformed to develop the conditional probability
tables (CPT) for wind speed and minimum air temperature. The CPT were inputted
in the Bayesian models for fish kill due to lake overturn (Fig. 6.13).

Fig. 6.13 Bayesian model of fish kill in Taal Lake due to lake overturn using Netica
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6.4 Conclusion

This study demonstrates the use of a combination of analytical tools (exploratory
data analysis, correlation, autocorrelation, logistic regression, scatter plots, condi-
tional probability) in developing a predictive model of lake overturn in Taal Lake,
Philippines. Results of this study can provide a good starting point in the develop-
ment of a predictive model of fish kill due to overturn for Taal Lake. The logistic
regression method used in this study can be applied to other factors hypothesized to
influence fish kill event in the lake. Also, using logistic regression method minimizes
the number of factors or variables that have statistical significance on the occurrence
of lake overturn and fish kill. The analysis also provides a minimum dataset that
should be monitored to obtain early warning on lake overturn or fish kill.
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Global Sensitivity and Uncertainty Analysis
of MaxEnt Model: Implications in Species
Habitat Projections

7

Rakesh Kadaverugu, Shalini Dhyani , Ashok Kadaverugu,
and Rajesh Biniwale

Abstract

MaxEnt is a widely used species distribution model (SDM) that works on the
principle of maximizing entropy. Despite large body of species habitat research
carried out using MaxEnt, till now there is no standardized accepted modeling
procedure for obtaining reproducible research outcomes. There is a need to
understand the nuances in the selection of model parameters and resulting
uncertainties in the outcomes. We studied the global sensitivity and uncertainty
in habitat projections of the species Quercus leucotrichophora (Banj oak) over
Uttarakhand State of India in the Central Himalayas by varying the model
parameters—regularization factor (RF), background points (BP), and k-fold
cross-validations (CVs). The Sobol variance decomposition sensitivity analysis
on the model outcomes indicates that high probable habitats and potential habitats
are sensitive to RF and BP, while prediction of less probable habitats is relatively
sensitive to the number of k-fold CVs. Accuracy of the model is also highly
correlated with the RF (r=-0.75, p< 0.001), which has influenced the extent of
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potential and high probable habitat projections. We conclude that SDMs should
be supplemented with the information on sensitive model parameters and the
uncertainty associated with the model parameters for improved objectivity and
reproducibility of research findings related to species conservation planning.
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7.1 Introduction

Understanding the behavior of complex ecological systems is important to anticipate
and avoid any impending potential tipping points. Climate change is one of the mega
drivers that is accelerating the impact on sensitive ecosystems across the globe.
Dynamic simulation models that account for the behavior of the socio-ecological
system can simulate the shift in ecological states, hence providing an idea about the
system’s travel path (Pickett et al. 2005; Liu et al. 2007). The choice between
complex deterministic models or simple statistical correlative models has always
perplexed the ecosystem researchers and decision-makers. Also, the uncertainty and
sensitivity of these models play a decisive role in projecting the future states of the
ecosystem under study. This concern has led to the development of new techniques
to study model uncertainty and for its effect on model projections (Saltelli et al.
2008).

Uncertainty in a wide range of ecosystem models stems mainly from (a) errors in
input data representing the systems, (b) errors in the model parameters, and
(c) incorrect structural formulation of the models with dynamism and feedbacks
(Perz et al. 2013). Less complex models are known to have high uncertainty in the
output owing to structural limitations, whereas highly complex models tend to have
reduced uncertainty in the predictions (Snowling and Kramer 2001). As the
applications of simplified ecosystem models such as habitat suitability models are
widely used in the decision-making and in conservation planning, there is a need to
study such model’s uncertainty in habitat predictions to the variations in the
parameters.

Ecological niche models (ENMs) or species distribution models (SDMs) are
interchangeably used to represent a set of machine learning methods that fit
point process relationship between the occurrences of a species and surrounding
environmental data, and these trained models estimate the geographical extent of
potential habitats of the species (Dhyani et al. 2018, 2020). The role of ENMs in
ecological studies is ever-increasing and is incorporated into conservation planning
(Feng et al. 2019). There are several machine learning algorithms, viz., MaxEnt,
artificial neural network (ANN), random forest, support vector machines,
generalized additive model (GAM), generalized linear model (GLM), multivariate
adaptive regression splines (MARS), flexible discriminant analysis (FDA), surface
range envelope (SRE), and classification tree analysis (CTA), which have been



applied to study the association between species occurrence and environmental data
(Hallgren et al. 2019). These algorithms require either presence-only or presence and
absence/pseudo-absence species locations for training the SDMs. The validity in the
assumptions about occurrence locations is difficult to ascertain, which leads to bias
in the modeling. But the MaxEnt model (Elith et al. 2006), which is based on the
principle of maximum entropy (Jaynes 1957), relies maximally noncommittal to
what is unknown, and is based on the presence-only type of occurrence data, and is
hence prone to less bias. This is why the MaxEnt model is being widely used among
the ecological modeling community for a variety of applications not limited to
conservation planning, domestication studies, reintroduction of wild species, inva-
sion of alien species, and climate-sensitive restoration planning (Dhyani et al. 2020).
Several global assessments like IUCN, UNEP-World Conservation Monitoring
Centre, European Union, Convention on Biological Diversity, IPBES (Intergovern-
mental Science-Policy Platform on Biodiversity and Ecosystem Services), and
World Wildlife Fund have also applied MaxEnt for studying the multi-scale habitat
dynamics. Due to a user-friendly interface, the model has gained popularity among
the ecological modeling community. Further, with the availability of GBIF (Global
Biodiversity Information Facility; https://www.gbif.org) occurrence data on a vari-
ety of plants, mammals, and reptiles, the applications of SDMs have tremendously
increased. Apart from habitat modeling, MaxEnt has also been applied in other
multidisciplinary areas such as spatial prediction of groundwater contamination,
drinking water sources, and soil erosion-susceptible zones.
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The MaxEnt species habitat modeling follows a typical structure with the
sequence of steps as (1) collection of species occurrence locations from the area of
interest, (2) preparation of spatial environmental layers, usually consisting of biocli-
matic data and topographic information, (3) training the MaxEnt model with around
80% of the occurrence data and corresponding environmental data, (4) verification
of the model accuracy with AUC (area under the curve metric) or with other metrics
occasionally, (5) calculation of the model’s threshold based on the sensitivity and
specificity analysis with the remaining 20% of the occurrence data, and (6) projection
of logistic probability of occurrence of the species on each pixel of the study area
using the full-scale environmental input layers. The model-projected output raster
layer consists of logistic probability values ranging between 0 and 1 indicating the
least and strong chances of the suitability of the species habitats, respectively. The
pixels with a probability greater than the threshold value are statistically confident to
be treated as potential habitats. The potential habitats can be further classified into
high probable and less probable classes for better interpretation of the habitat
projections (Dhyani et al. 2018, 2020). We have observed that the majority of
MaxEnt studies have a recurring pattern in methodology and interpretation of
results. The input environmental data are bioclimatic raster layers obtained from
the WorldClim portal (www.worldclim.org/current) and topographic data
(containing elevation, slope, and aspect). The typical outcome of any study shows
an alarming decline in the potential habitats or range contractions of the species due
to future climate variability (e.g., Dhyani et al. 2018, 2020; Abdelaal et al. 2019;

https://www.gbif.org
http://www.worldclim.org/current


Raman et al. 2020; Purohit and Rawat 2021), while very few studies have predicted
an increase in the species habitats in the future (Yi et al. 2016).
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More than 50% of the ENM studies have not provided sufficient reference to the
choice of model parameters and settings (Feng et al. 2019). To this effect, several
studies have highlighted the inadequacies in overall documentation and understand-
ing about the SDM algorithms and found that the justification about the settings and
model configurations are largely missing in the SDM works (Convertino et al. 2014;
Hallgren et al. 2019; Feng et al. 2019). Lack of documentation and justification
about the model parameters prevents the flow of understanding and reproducibility
of the research. Further, there are a very few studies on in-depth analysis of SDM
sensitivity and uncertainty (Perz et al. 2013; Convertino et al. 2014; Hallgren et al.
2019). Although Feng et al. (2019) have highlighted the need to provide bare
minimum details about the ENM studies for increasing reproducibility and objectiv-
ity in the habitat projection studies, there is also a need to include the information on
model sensitivity and uncertainty in the results. Out of 302 research papers retrieved
from the Web of Science database that are having MaxEnt in title, only 5 (1.6%)
have reported the model sensitivity. Studies devoid of such vital information make it
difficult for reproducible and objective research. The model parameter settings, such
as weighted response weights, maximum number of interactions, threshold hinge
features, and regularization multiplier, have been studied earlier by Hallgren et al.
(2019) by using non-variance decomposition methods, in which the parameters were
varied at fixed levels.

Out of eight SDM algorithms studied by Hallgren et al. (2019), MARS, FDA,
GAM, SRE, and CTA are found to be more sensitive to the model parameter settings
and have a significant influence on habitat projections, while MaxEnt and GLM have
shown less sensitivity. Unlike other methods, the MaxEnt and GLM have fewer
settings that influence the model complexity, and these models are more based on the
ecological theory which provides greater control to the modeler with sound ecologi-
cal understanding (Hallgren et al. 2019). However, some studies have mentioned
that the regularization factor (Cao et al. 2013) and the number of background points
(Lobo and Tognelli 2011; Barbet-Massin et al. 2012; Merow et al. 2013) signifi-
cantly influence the model over-fitting or under-fitting, which is a major concern and
can lead to inadequacy in decision-making on species conservation. Anderson and
Gonzalez (2011) have found a strong influence of the regularization parameter on
MaxEnt outcome. Alsamadisi et al. (2020) and Convertino et al. (2014) have studied
the MaxEnt model’s sensitivity and uncertainty concerning the input data and have
also quantified the variations in the future habitats of a particular species, but these
studies have not mentioned the uncertainty and sensitivity due to the model
parameters. The size and spatial biases in the species occurrence data also play an
important role in habitat predictions along with the threshold values and algorithms
(Bean et al. 2012). Several earlier studies have shown that when the MaxEnt model
is applied with default settings on new areas, the model under-predicted the species
habitat ranges, due to over-fitting (Townsend Peterson et al. 2007; Anderson and
Gonzalez 2011). Merow et al. (2013) have emphasized exploring the MaxEnt model
behavior toward various parameter choices. The MaxEnt model applies by default a



regularization scheme called “L1” to control over-fitting; however, it can be
modified by user-specific input (Phillips et al. 2006). Hence in this study, we have
quantified the model sensitivity and uncertainty due to the parameters, viz., regulari-
zation factor, k-folds in cross-validation, and the number of background locations on
the model-projected potential habitats and less and high probable habitats, model
accuracy (AUC), and threshold, using a more robust method—Sobol variance
decomposition method.
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We strongly advocate that the studies on SDM should discuss the uncertainty in
the habitat projections arriving due the model settings and also the habitat
projections should be expressed along with the confidence intervals for an improved
understanding and decision-making. Sensitivity analysis (SA) is a systemic compu-
tational experiment performed on a model to identify the output behavior
corresponding to the variations in the input variables or model parameters or factors
(Saltelli et al. 2010; Girard et al. 2016). The traditional SA method one-at-a-time
(OAT), which measures output variation by varying a single variable at a time,
doesn’t adequately capture the nonadditive responses among the variables (Saltelli
and Annoni 2010; Girard et al. 2016; Jaxa-Rozen and Kwakkel 2018), whereas
global sensitive analysis (GSA) that depends on variance decomposition technique
helps in identifying the influential factors to which the model is most sensitive or the
factor that causes maximum variation in the output. See Razavi and Gupta (2016) for
a detailed review of the SA. Despite several other SA methods like Morris method
(elementary effect test), regional SA, regression-based SA, FAST (Fourier amplitude
sensitivity test), and extended FAST, the variance-based Sobol sensitivity analysis
remains robust to account for all main and interaction effects based on statistical
theory on variance decomposition (Koo et al. 2020). To date, Sobol and Morris
approaches are the most rigorous GSA methods that are based on the law of total
variance for the decomposition of output variance (Razavi and Gupta 2016). These
methods have become the standard in studying the propagation of uncertainty in the
model due to various complex interactions of the factors, and the SA analysis has
become a key step in understanding the complex environmental models (Saltelli and
Annoni 2010; Nossent et al. 2011; Pianosi and Wagener 2015). The Morris method
has a drawback in accounting for the relative importance among the multiple input
factors (Brockmann and Morgenroth 2007).

Although Sobol SA is one of the most computationally demanding methods, it
delivers precise estimates of model sensitivity and factor interactions (Girard et al.
2016). The Sobol SA provides first-order (main effects) and total effect (interactions)
indices, which quantify the fraction of model output variance contributed by an
individual factor and by the sum of individual and higher-order interactions of the
factors (Jaxa-Rozen and Kwakkel 2018), respectively. The Sobol SA has been
applied on models from various disciplines such as atmospheric dispersion modeling
(Girard et al. 2016), groundwater contamination (Kumar et al. 2020), hydrological
studies (Song et al. 2013), and pharmacological studies (Zhang et al. 2015), but very
few have studied in the realm of species habitat modeling.

Through this study, we attempted to conclude the sensitivity of the MaxEnt
model output (potential habitats, less and high probable habitats) to the model



parameter settings on the number of background points (BP) selection, k-fold cross-
validation (CV) runs, and regularization factor (RF). To achieve this we have
extended our earlier habitat modeling work on the speciesQuercus leucotrichophora
A. Camus in the Central Himalayan region of Uttarakhand State of India (Dhyani
et al. 2020) to study the model sensitivity and uncertainty. The remaining paper is
organized into three sections. Section 7.2 discusses in more detail about the study
area and describes species occurrence, MaxEnt model, and Sobol sensitivity and
uncertainty analysis. Section 7.3 provides results drawn from the study and discusses
the significance of the outcome in comparison with the other reported works in the
field of habitat projections. Conclusion and broad implications in conservation
planning are provided in the last Sect. 7.4.
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7.2 Materials and Methods

7.2.1 Study Area and Occurrence Data

The study was carried out in Quercus leucotrichophora (Banj oak) forests in the
Uttarakhand State of India (Fig. 7.1) in the Central Himalayas. The state extends
from 77.56 to 81.02 E and 28.71 to 31.47 N, covering an area of 58,483 km2. Moist
temperate mixed broad-leaved forests are dominant in the state, which forms cli-
matic climax from 1000 to 3500 m above mean sea level (MSL) exhibiting high

Fig. 7.1 The geogrpahical locations of Quercus leucotrichophora used in the MaxEnt model, in
the Uttarakhand State of India



floral and faunal diversity with Q. leucotrichophora being a keystone species
(Champion and Seth 1968). Rhododendron arboreum, Lyonia ovalifolia, Pyrus
pashia, Alnus nepalensis, Cinnamomum tamala, etc. are common associates in
these forests with rich herb and shrub diversity and significant presence of lianas
and epiphytes (Dhyani et al. 2020). Q. leucotrichophora grows luxuriantly in moist
temperate broad-leaved forests of 11 hill districts of the state and covers 5.24% of the
geographical area which is equivalent to 1284 km2 (Singh et al. 2016; Verma and
Garkoti 2019). The region has an average annual temperature varying between
13 and 23 °C and an annual average rainfall of 1550 mm and experiences snowfall
during winter months from November to February. Local inhabitants are dependent
on the rich and diverse oak forests for their subsistence requirements especially for
fuelwood, fodder, leaf litter, timber, and crop support (Dhyani et al. 2020).
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Quercus leucotrichophora has a dominant presence in Garhwal province in
comparison with Kumaon province of the state (Dhyani et al. 2020). A mixed
approach was used to collect a maximum number of occurrences of the species for
the analysis. We reviewed research papers published during 1984–2019 and col-
lected 120 occurrence points from species growing locations, out of which we have
used only 90 points to avoid any overlapping and repetition (See ESM-I of Dhyani
et al. 2020). Another 30 occurrence points were also added from the primary survey
in the study area (Dhyani et al. 2020) and 7 from GBIF portal. In total 127 occurrence
locations were used in the study (Fig. 7.1). Handheld GPS (Global Positioning
System) (make Trimble) was used in recording the exact occurrence points, and
the points were later validated from the images of Google Earth. See Dhyani et al.
(2020) for more information on methodology.

7.2.2 MaxEnt Model

The programmable version of the MaxEnt model v3.3.3 (Phillips et al. 2006) was
used through the dismo library of R (R Core Team 2017). Environmental raster
layers of bioclimatic data for the present time period simulated by CCSM4 (Com-
munity Climate System Model) model were downloaded from the WorldClim portal
(http://www.worldclim.org/current) having 30 arc second spatial resolution. Out of
19 bioclimatic variables, 6 were identified which have the least mutual correlation
(see Dhyani et al. 2018, 2020, 2021). The occurrence data were randomly divided in
the ratio of 80:20 for training and testing of the model, respectively. The model
training accuracy was determined by the area under the curve (AUC) metric. The
outputs of k-fold cross-validation runs were averaged to produce an ensemble
model. The threshold for the ensemble model was evaluated based on the theory
of maximizing sensitivity and specificity (MSS), which is widely used in combina-
tion with presence-only kind of occurrence data (e.g., Dhyani et al. 2018, 2020). The
model output is classified into three categories, in terms of potential habitats (area of
pixels with probability>threshold), less probable habitat (threshold < probabil-
ity < 0.5), and high probable habitat (0.5 < probability < 1). The threshold

http://www.worldclim.org/current
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probability was calculated according to MSS method based on the ensemble model
output layer and testing dataset.
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7.2.3 Sobol Sensitivity Analysis

The variation in the model output range is studied by completely varying the input
range (Sobol 1993; Saltelli et al. 1999). According to the law of total variance (also
known as Eve’s rule), the variance in the output Y, Var(Y), can be attributed to the
sum of variance that each variable contributes (Eq. 7.1). The decomposition of the
model variance into main effects and interaction effects is quite intuitive to under-
stand the role of individual variables from Eve’s rule (see Nossent et al. 2011). In
general terms, Eq. (7.1) is understood as the sum of explained variance (first-order/
main effect) and unexplained variance. Here, Y is the MaxEnt model output scalar
representing any one of the output variables, the area of potential habitats, high
probable habitats, and less probable habitats, in each case, and X is a vector
representing the factors RF, BL, and CV as Xi. See Saltelli and Annoni (2010),
Song et al. (2013), and Girard et al. (2016) for more details on derivations of the Si
(first-order sensitivity index or main effect; Eqs. (7.2)–(7.3)) and STi (total sensitiv-
ity index; Eq. (7.4)). Si represents the main effect of the factor itself or the fraction by
which the model output variance Var(Y) reduces by fixing a variable within its
range, while the total effect (STi) of a factor consists of its main effect and all its
interactions with the rest of the factors (Vanuytrecht et al. 2014). The number of
evaluations (N ) or rows of the matrix X equals N= 2n(k + 1), where n= sample size
and k = number of factors studied (here k = 3 and n = 300). The sequence of
N evaluations follows a quasi-random sequence to equally cover the entire input
space of the X (Saltelli 2002). The R library sensobol was used to generate the quasi-
random run sequences and calculates the first-order and total Sobol’s indices with
bootstrapped confidence intervals. The number of bootstrap resampling was fixed at
R = 100 in the analysis.

Var Yð Þ=E Var Y jXi½ �½ � þ Var E YjXi½ �½ � 7:1Þ
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The MaxEnt model was tested against the variable regularization factor (RF),
background locations (BL), and the number of cross-validations (CVs) using
quasi-random sampling and bootstrap method. The ranges of these variables have
been identified based on the reported literature on MaxEnt model. The values of
these parameters are required to be explicitly stated for reproducibility of the species



habitat modeling results. The beta multiplier to the regularization factor (RF) was
allowed to vary between 0 and 1, as earlier studies reported that beta value >1 was
only occasionally needed for optimal MaxEnt performance (Anderson and Gonzalez
2011; Cao et al. 2013). However, Merow et al. (2013) suggested exploring a range of
regularization coefficients for optimal model performance. Theoretically MaxEnt
model builds the probability distribution of the species based on the contrast between
environmental variables observed at presence locations and background points
(Phillips et al. 2006; Merow et al. 2013; Dhyani et al. 2018, 2020). The spread of
background points hence plays a significant role in building the premise of the
model, which demands sound theoretical knowledge about the species and their
spatial spread for gaining confidence in the MaxEnt results. The allowable limits for
each parameter were decided based on the physical acceptability. In this study, the
background points (BP) were varied between 2000 and 20,000, while the number of
k-fold cross-validations was varied between 2 and 20. Care should be exercised in
deciding the background and cross-validation numbers as they depend on the
percentage of the occurrence locations used in the model. The values of the
parameters were assigned based on the uniform distribution between the limits of
the respective variable. The Sobol sensitivity analysis calls the MaxEnt model with
the parameter values provided as per the quasi-random sequence. A total of 2400
runs (number of rows in the parameter matrix) each row with a different combination
of the parameter values were performed on the MaxEnt model. Sobol’s sensitivity
indices Si and STi were calculated according to the Saltelli et al. (2010) method using
bootstrap sampling.
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The model outputs, viz., potential habitat, less probable habitats, and high
probable habitats, were considered for the Sobol sensitivity and uncertainty analysis.
The relation between the model outputs and the model accuracy metric (AUC) and
probability threshold values were also studied. The mutual relationships among the
model input parameters and the outcomes were described using matrix scatter plots
and Pearson’s correlations measured at a confidence level of 95%, and the distribu-
tion of the model outcomes is tested against the normality and plotted its density.

7.3 Results and Discussion

7.3.1 Model Uncertainty

The AUC of 2400 MaxEnt model runs (N = number of total runs) varied between
0.80 and 0.95 with a mean of 0.91 ± 0.03 and is negatively skewed. This is an
indication that the model training accuracy has greatly varied due to the variations in
the model parameters. Models with AUC between 0.7 and 0.9 are considered
moderately accurate, while those with >0.9 are treated as highly accurate (Elith
et al. 2006). The AUC is greater than 0.8, which indicates that all the model runs in
the study were trained accurately enough and they are capable of making valid
projections about the species habitats. The dependency of the AUC on model
parameters and the effect of AUC on the habitat projections are discussed in the



Statistic Threshold

Sect. 7.3.2. Similarly, the threshold values for the 2400 model runs ranged between
0.16 and 0.51 with a mean of 0.35 ± 0.06. Threshold value infers the model’s
confidence in classifying a pixel as a potential habitat only when the predicted
logistic probability over the pixel is greater than the threshold value (Dhyani et al.
2020). The variation in the threshold value significantly influences the model habitat
projections (see Sect. 7.3.2).
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Table 7.1 Descriptive statistical summary of the model outcomes, model accuracy metric (AUC,
area under the curve), and model probability threshold values

Model
AUC

Potential area
(km2)

Less probable
area (km2)

High probable
area (km2)

Minimum 0.80 0.16 4543 0 1447

Maximum 0.95 0.51 24549 18165 11352

Mean 0.91 0.35 12309 7830 4479

Median 0.91 0.35 11529 7662 4171

Standard
deviation

0.03 0.06 3776 3236 2008

Kurtosis 3.26 2.33 3.06 2.49 2.29

Skewness -0.69 0.09 0.76 0.21 0.49

Fig. 7.2 Potential habitat at (a) maximum, (b) mean, and (c) minimum levels having threshold
values 0.21, 0.28, and 0.46, respectively

The potential habitat projections of the species varied between 4543 and
24,549 km2 with a mean of 12,309 ± 3776 km2 and follow a normal distribution
with positive skewness. Similarly, the less probable and high probable habitats vary
between 0–18,165 and 1447–11,352 km2, respectively, and have positive skewness
and are platykurtic (Table 7.1). The results suggest that carrying out a single MaxEnt
run with specified model parameters will not provide a complete picture of the nature
of the variability of the potential and high probable habitats. As there are no definite
rule sets for the selection of a particular combination of model parameters, we
reiterate the need to evaluate the uncertainty imparted from the choice of model
parameters. Future studies on the SDM have to make an extra effort in providing the
confidence intervals for the habitat projections based on the uncertainty analysis.
The variations in the habitat suitability predictions resulted from the model uncer-
tainty are visualized in Fig. 7.2 at maximum, mean, and minimum values of potential



habitats. The spatial variations in the predicted habitats due to the variations in the
model parameters and bias in occurrence data are not studied here.
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7.3.2 Sensitivity Analysis

The scatter plots, histograms, and the density plots (Fig. 7.3) of the model outcomes
and input parameters infer that the model parameters obviously follow a uniform
distribution, whereas the outcome variables follow a normal distribution with vari-
ous degrees of skewness and kurtosis (Table 7.1). Strong Pearson’s correlation is
observed between the pairs—RF and AUC (r = -0.75 at p < 0.001) and RF and
high probable habitat (r = 0.94 at p < 0.001); moderate level of correlation is

Fig. 7.3 Density, scatter plots, and correlations between the model parameters (BP background
points, CVs k-fold cross-validations, RF regularization factor), model outcomes (potential habitats,
less and high probable habitats), model accuracy (AUC), and probability threshold value



observed between BP and AUC (r = 0.55 at p < 0.001). Among the model
outcomes, a high degree of correlation is observed between the pairs AUC and
high probable habitat (r = -0.89 at p < 0.001) and threshold and less probable
habitat (r = -0.89 at p < 0.001) and between potential habitat and less probable
habitat (r = 0.85 at p < 0.001), whereas a moderate level of correlation among
model outcomes is observed between the pairs AUC and potential area (r=-0.53 at
p < 0.001) and threshold and potential area (r = -0.57 at p < 0.001) and between
potential area and high probable area (r = 0.52 at p < 0.001). It can be concluded
that the AUC has a significant influence in determining the model projections on
high probable habitats. Besides, the AUC is in turn negatively correlated with the RF
and positively correlated with BP. When the RF is higher, the model tries to avoid
the over-fitting; hence the AUC of the model is negatively correlated with
RF. Similarly, low accuracy models tend to overestimate the high probable habitats
and potential habitats (Fig. 7.3). The threshold is negatively correlated with the
potential and less probable habitat predictions, which is obvious that the window of
the probability of species occurrence will be higher with a lower threshold.
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Fig. 7.4 Sobol’s first-order (main effect) and total effect indices along with standard error. BP
background points, CV k-fold cross-validations, RF regularization factor

The first-order sensitivity indices rank the contribution of specific input variables
according to their share in explaining the total variance in the model output and also
help to rank the input variables according to the level of significance. The first-order
and total effect Sobol’s indices for the model outcomes are shown in Fig. 7.4. The
standard errors of Sobol’s indices are estimated using bootstrap replicate samples.
Sensitivity values greater than 0.1 are considered to be influential, whereas those less
than 0.01 are treated as insignificant (Saltelli et al. 2008; Zhan et al. 2013). Results
show that the model-projected potential habitat of the species is sensitive to RF,
followed by BP and CV, having main effect Sobol’s indices (± standard error) 0.51
(±0.21), 0.28 (±0.14), and 0.19 (±0.12), respectively. The potential area represents
the suitable habitat of the species at geographical locations having probability values
greater than the threshold probability. The number of k-fold CVs used in the model



ensemble output probability layer is relatively affecting the less probable habitats
(having pixel probability between threshold and 0.5). The factors affecting the less
probable habitats should be interpreted with caution as the standard error interval of
the main effects is wider compared with other model parameters. Categorically,
results show that the model-predicted high probable habitat area is highly sensitive
to RF, followed by BP, having Si first-order indices 0.88 (±0.08) and 0.11 (±0.02),
respectively. The simulation runs having high RF have lower model accuracy (AUC)
but greater than 0.8, and the lower model accuracy runs have overpredicted the
potential and high probable habitats (reflected in Fig. 7.3). Hence, significant care
must be exercised in choosing the values of RF; the criteria for such selection should
be explained and justified in the habitat modeling studies.
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Results show that first-order effect indices are lesser than total effect for all input
parameters and model output variables. This is in conformity with the statistical
theory that the first-order effect is already included in the total effect, and similar
conformity has been observed in other studies (Nossent et al. 2011; Kumar et al.
2020).

Although Hallgren et al. (2019) mentioned that the MaxEnt model is less
complicated to run and goes well with default parameter settings, our results
conclude that RF and BP significantly influence the habitat predictions. Specifically,
over-fitting and under-fitting of the model are governed by the RF, which inevitably
influences the AUC and modifies the high probable and potential habitat predictions.
The geographical spread of BP and their spatial biases play a crucial role, while
training the model, which is hard to account for, nevertheless, by varying the number
of background points, a priori in assuming the species occurrence locations can be
adjusted, and hence its effect can be captured on the model outcomes. In the present
study, the results show that BP is one of the main factors that influence the model
accuracy.

Model sensitivity toward sampling biases is largely unknown due to lack of
computational justification of the bias, as many species that are endangered or
threatened are justified to be sampled from a narrower spatial location than from
widespread areas. Hence proper ecological knowledge is warranted for justifying a
priori in sampling biases. Selection of background points and weight assignment to
the occurrence locations will be required for more generalized habitat predictions in
such specific scenarios. Alternatively, methods based on target group sampling are
applied (TGS; see Phillips et al. 2009; Merow et al. 2013). For projecting future
habitat scenarios, care must be taken for model transferability to the future scenarios,
especially the model assumptions like background (pseudo-absence locations),
sampling biases, and regularization factors, along with more importantly the
biological reality (response curves of the species with the environmental variables),
which have to be biologically verified and ecologically accepted to be sound.
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7.3.3 Implication on Conservation Management

Although SDM has gained respect and popularity in the last few years as an
important tool for predicting species response to climate change, still, there are
many limitations and assumptions that need to be considered. Most of the climate
models in recent times have been predicting terrible changes in the global environ-
ment with large and unforeseen impacts (Voosen 2019). Selection of occurrence
data, environmental layers, and choice of model parameters significantly introduce
bias into the model projections, and the estimated predictive performance can be
overoptimistic in comparison to the actual predictive performance. There are pieces
of evidence that projections by alternative models are so different that they lose their
importance in guiding conservation policy decisions (Araujo and New 2007).
Conservation planning and strategies are constrained due to the considerable amount
of uncertainty that is inherent in the climate projections because of the magnitude,
rate, and ecological impacts of projected climate variability (Kujala et al. 2013).
Growing concern about the uncertainties associated with selected factors is either not
appropriately incorporated or not even considered in many SDM studies (Porfirio
et al. 2014). Over or under projections of the climate impacts on the species cannot
only significantly alter the conclusions, but largely affect the conservation planning
efforts and fund allocation in the long run. This will further result in under/over
consideration and mismatched financial support for species conservation, its sustain-
able use, and restoration in natural conditions. Delay in receiving appropriate
conservation support may result in complete loss or extinction of species too,
whereas over financial and conservation support to a species may ignore many
species that are in dire need of conservation support. Hence, it is vital to appropri-
ately and accurately predict the species projections in the future.

7.4 Conclusion

The prediction of species niches and their bioclimatic requirements are vital in
planning and implementing conservation efforts. Ecological community is increas-
ingly utilizing the niche models, especially the MaxEnt model for species habitat
predictions, which relies on the presence-only kind of species occurrence data. But
the model is highly sensitive to certain key parameters such as regularization factor
(RF), the number of background points (BP), and k-fold cross-validation
(CV) replicates, which are either ignored or often not sufficiently discussed in the
modeling studies. Due to the lack of transparent modeling guidelines in species
distribution modeling as noted by several earlier studies, the results are not only
reproducible but are prone to high uncertainty. The present study quantifies the
MaxEnt model’s global sensitivity and uncertainty using the Sobol variance decom-
position method, based on the 2400 model runs by varying the sensitive parameters
under consideration. The variation in the MaxEnt model-projected habitats of the
species Quercus leucotrichophora (Banj oak) in Uttarakhand State of India in
Central Himalayan region was analyzed.
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The results indicate that the MaxEnt model-predicted high probable and potential
habitats are highly sensitive to RF followed by the BP. In turn, the model accuracy
(area under the curve, AUC) is also highly sensitive to RF, and they are negatively
correlated with the AUC, whereas the potential habitats and less probable habitats
are sensitive toward the RF and number of CV, which are also correlated with the
model threshold probability. The overall model-predicted potential habitats followed
a normal distribution due to any random combination of the input parameters
considered in the present study. Hence, we recommend to perform at least a few
combinations of the input parameters as a sample in order to assess the variance and
mean of the global distribution of potential habitats in consideration. This approach
will certainly hint about the uncertainty of the habitat projections. Further studies are
required to analyze the spatial variation in the habitat suitability predictions due to
the changes in model parameters. We conclude that the choice of model parameters
and its justification should be sufficiently discussed in SDM studies, as these results
have potential ramifications in planning the strategic global conservation policies
post-2020, and also affect the global biodiversity strategies in achieving the targets
of UN decade on restoration (2021–2030) at local, regional, and global levels.
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Abstract

The Kingdom of Eswatini (formerly Swaziland) is characterized by high plant
species richness and endemism. In this study, stacked species distribution models
derived from maximum entropy and random forest models are applied on tree
species distribution data to estimate and map taxonomic and phylogenetic diver-
sity and endemism using six indices: species richness (SR), taxonomic weighted
endemism (WE), corrected taxonomic weighted endemism (CWE), phylogenetic
diversity (PD), weighted phylogenetic endemism (WPE) and corrected weighted
phylogenetic endemism (CWPE). In addition, hotspots were identified by
mapping the 95% percentile of the values from each index. Although weakly
correlated, the hotspots overlap particularly in mountainous areas mainly in the
north-western, eastern and mid- to south-central parts of the country. A combined
hotspot measuring 1642 km2 or 9.42% of the total land area was also mapped,
showing the priority areas for conservation. Between 69% and 85% of the
identified hotspots are not protected. Conservation gaps were also mapped and
quantified by overlaying protected areas with the identified hotspots. The com-
bined hotspot of all indices indicates an overall conservation gap of 82.03%
indicating that only 14.8% is covered by existing protected areas and another
3.17% within ungazetted conservation areas. Areas of priority conservation are
highlighted.
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8.1 Introduction

The survival of human beings relies on ecosystem services such as food production,
clean water, clean air, nutrient cycling, plant pollination, carbon sequestration,
medicinal plants, climate stability and recreation, among many others that are
provided by a well-functioning ecosystem (Yessoufou and Davies 2016). The
conservation of biodiversity is, therefore, imperative and intricately linked to
human well-being. However, effective conservation of biodiversity requires,
among other things, knowledge on the geographic distribution and diversity of
species (Guisan et al. 2013). Spatially explicit information on species distribution
patterns is required to determine areas that have high concentrations of species and
have high endemism and those which have a high number of endangered species
(Mcshea 2014). It has also been observed that records of species occurrences
characteristically provide information on only a subset of areas occupied by a species
(Rondinini et al. 2006). Such records also do not provide information on areas not
surveyed (Guisan et al. 2013). In addition, evolutionary diversity and the evolution
of species have not been adequately considered in identifying important biodiversity
areas due to the biased focus long-term on the evolution of different species
(Scherson et al. 2017). Nevertheless, the interest in species’ geographic distribution
continues to grow due to the need to understand the impact of environmental change,
including climate change, and other anthropogenic pressures on ecosystems.

Despite this interest, the analysis of species’ geographic distribution patterns is
important in macroecology and conservation biology. The geographic patterns of
species are determined by both past and current biophysical factors and bio-
geographical regionalization (Kreft and Jetz 2010; Morrone 2018). In studying
both basic and applied questions on the distribution of species, these spatial patterns
provide a useful background against which to explain biogeographical research
findings. The increasing availability of large datasets on species distributions is
accompanied by the need for robust techniques for analysing biogeographical
patterns. Since existing collection localities do not necessarily represent random
samples from the existing environmental gradients, statistical procedures that con-
sider this are critical for obtaining accurate biodiversity maps. Species distribution
models (SDMs) are now predominantly used to determine distribution and diversity
patterns at large geographical scales through combining environmental predictors
with species occurrence information (Elith and Leathwick 2009; Guisan et al. 2013).
SDM-based maps have also been shown to correctly identify conservation priority
areas and gaps (Di Febbraro et al. 2018; Moradi et al. 2019). Subsequently, robust
analytical methods have been developed and applied to conservation planning using
several taxa across various biogeographic regions (Guisan et al. 2013).
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Information on species distribution that accounts for multiple dimensions of
biodiversity, including phylogeny, taxonomy and traits, is required for spatial
conservation planning (González-Orozco et al. 2016; Pollock et al. 2017). However,
some studies have shown a high correlation among these diversity indices, especially
those indices affected by species richness (Morris et al. 2014; del Valle and
Astorkiza 2018). Nonetheless, the relationships among these biodiversity
dimensions are least understood and vary depending on the diversity index used
and the analysis scale (Mazel et al. 2017; Santo-Silva et al. 2018). Conservation
policy requires knowledge of how these dimensions relate to each other and how
they can be applied in conservation planning. Recently, the biodiversity hotspot
identification has been generalized to include other aspects such as the number of
species, number of threatened species and evolutionary history, in addition to
endemic species and habitat loss (Brum et al. 2017; Rosauer et al. 2017; Daru
et al. 2019). Even though taxonomic diversity was the focus of earlier studies, recent
studies have also focused on evolutionary processes (Tucker and Cadotte 2013;
González-Orozco et al. 2014; Laity et al. 2015; Marchese 2015; Xu et al. 2019),
hence the increasing interest on phylogenies (evolutionary trees) for the identifica-
tion of areas of biodiversity importance. Phylogenetic diversity, such as is measured
through phylogenetic branch length, is sometimes preferred because it shows
relationships between current species and provides more information about long-
term evolutionary processes (Faith 1992). As a result, there is an increasing recogni-
tion of the need to link phylogeny with distribution data in spatial conservation
prioritization (Laity et al. 2015; Pollock et al. 2015; González-Orozco et al. 2016;
Daru et al. 2019). This is also based on the premise that taxonomic diversity alone
does not show complementarity and can result in the prioritization of areas with
similar species assemblages, at the cost of protecting unique assemblages (Brown
et al. 2015; Brum et al. 2017).

In Eswatini (formerly Swaziland), studies have been undertaken to look at the
broader geographic distribution of species, some of which have focused on plants.
Although the floristic composition of the country has been studied since the early
twentieth century (e.g. Compton 1976; Galpin et al. 2002; Pott 1920), there are
currently no high-resolution plant diversity maps for the country despite the robust
software and hardware that are accessible today. The existing herbarium collection
datasets generally provide the key occurrence data for such analyses. However, the
validity of such data may be questionable considering the changes that may have
occurred over the years since the specimen collections begun over a century ago. The
tree atlas by Loffler and Loffler (2005) is the most comprehensive geo-referenced
species occurrence dataset available for Eswatini and was the first to provide the
broader tree species richness patterns albeit at a coarse resolution for the size of the
country. Hence, such information could not provide detailed or landscape-scale
distribution of taxonomic and phylogenetic diversity. In this study we use the tree
atlas data to develop stacked species distribution models and phylogenetic informa-
tion in mapping the country’s phytogeographical hotspots and their protection status.
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8.2 Methodological Approach

8.2.1 Study Area

Eswatini, a country located in the southern African region, covers an area of
17,365 km2 and is characterized by a highly divergent topography largely deter-
mined by the underlying geology (Fig. 8.1). The altitudinal range from the low-lying
east to the western highlands, only 130 km from east to west, is approximately
1800 m. To the west of the country lies an escarpment area which extends from the
Drakensberg, and the Lubombo mountain range in the east separates the country’s
lowlands from the Mozambique coastal plains. This topographic heterogeneity
results in steep environmental gradients including diverse climate systems and
ecosystems. The country’s subtropical climate is typified by distinct dry cold winters
and wet warm summers. The eastern part of the country is inherently dry with
rainfall averaging 600 mm, whilst the western highlands are humid averaging at
about 1300 mm (van Waveren and Nhlengetfwa 1992). In contrast, mean annual
temperature for the 2000–2016 period varies from an average of 17 °C in the north-
west uplands increasing to 22 °C in the southeast lowlands albeit with varying
microclimates driven by localized topographic features.

The divergent landscapes and climatic systems give rise to diverse ecosystems
(Sweet and Khumalo 1994). The western part of the country is a grassy Highveld
dominated by rocky outcrops separated by narrow river valleys. Patches of

Fig. 8.1 Location of Eswatini. The main map also shows the country’s topography



Afromontane forest are also found along the mountain ranges, particularly in areas
above the mist belt. The central part of the country, called the Middleveld, is
characterized by tall grasses interspersed within forests and thickets surrounded by
rocky outcrops. The eastern lowlands, the Lowveld, are dominated by broad-leaved
savanna which merges acacia woodlands towards the eastern flatter plains. The steep
Lubombo escarpment is adjacent to the flat Lowveld and is dissected with steep
gorges that support patches of scarp and Androstachys forest. The escarpment also
harbours a Combretum Bushveld that gradually changes to a grassy plateau,
bounded by rocky outcrops and cliff faces (Loffler and Loffler 2005).

8 Tree Species Diversity and Richness Patterns Reveal High Priority. . . 145

8.2.2 Species Data

The Eswatini tree atlas data (which also includes selected shrubs) from Loffler and
Loffler (2005) was extracted from a database provided through the Eswatini National
Trust Commission flora database (http://eswatininaturereserves.com/flora/index.asp,
accessed September 2021). The data used in this study was collected by Loffler and
Loffler (2005) from sample plots derived from 2 km transects over a 6-year period
beginning in early 1999 during which efforts were made to cover flowering, fruiting
and growing seasons. Notably, the transects used to collect the field data had been
randomly located within systematic 11 × 11 km grid squares with additional data
being collected from extensive field surveys during environmental impacts
assessments and other projects. In addition, the sample sites were revisited by Loffler
and Loffler (2005) to reduce omission, and such areas included places affected by
disturbances such as floods or bush clearing. Additional sample plots were also
added whenever a different vegetation type was encountered within a transect.

Furthermore, the tree atlas database has continually been updated with more field
data over the years (L. Loffler and K. Braun, pers. comm.). The data used in this
study had been updated up to 2014. We then cleaned the dataset to ensure every data
point was geo-referenced, resulting in 26,802 geo-referenced presence points from
630 sample sites (Fig. 8.2). The data contained 659 species ranging from rare species
with a single record to common species with 264 records. All the species which had
less than five records were excluded from further analyses.

8.2.3 Environmental Predictors

We initially considered a total of 38 environmental predictors for developing the
species distribution models. These included 19 bioclimatic predictors from the
WorldClim 2.0 dataset (Fick and Hijmans 2017), which is averaged over the period
1970–2000, covering Eswatini at 30 arc-second (~880 m) resolution. Additionally,
19 other variables representing topographic, anthropogenic and geomorphological
factors were used. All the datasets were resampled to a standard 30 arc-second
resolution resulting in the whole country being covered by 39,744 grid cells.
Categorical and continuous variables were resampled using the nearest neighbour

http://eswatininaturereserves.com/flora/index.asp


and bilinear interpolation techniques, respectively. The former technique performs a
nearest neighbour assignment, whilst the latter involves a bilinear interpolation of
the grid cell values and determines the new value of a grid cell based on a weighted
distance average of the four nearest input grid cell centres.
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Fig. 8.2 Location of sampling plots for the tree atlas data overlaid over protected areas in Eswatini

Multicollinearity, however, arises when highly correlated independent variables
are included and must be estimated. Dormann et al. (2013) argue that



multicollinearity is certain when the correlation coefficient among variables is at
least 0.7 and the VIF values are above 10 (Dormann et al. 2013). The correlation
coefficient and variance inflation factor (VIF; Naimi et al. 2014) were used to verify
multicollinearity. The final set of variables included in the models was selected using
a stepwise procedure aimed at excluding highly correlated variables, using the VIF
as a measure of collinearity. Variable bias was also reviewed by visually evaluating
the outputs and finding overly dominant variables (Ng et al. 2018). Using the R
package ‘usdm’ (Naimi 2017), the VIF was calculated for all variables and in each
step excluding the variable with the highest VIF (>10). This procedure was repeated
until there were no variables with a VIF value greater than 10. In total 22 predictors
were retained and used to develop the species distribution models (Table 8.1).
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8.2.4 Species Distribution Modelling and Bias Correction

We implemented stacked SDMs (SSDMs) (D’Amen et al. 2015a) to model the
species distributions using the R package ‘ssdm’ (Schmitt et al. 2017). Ensembles
of the ‘maxent’ (ver. 3.4.1k; Phillips et al. 2019) and ‘randomforest’ algorithms
(Breiman 2001) were used to develop the SSDMs for each species. Maxent uses a
maximum entropy approach to model species distributions with presence-only data
(Phillips et al. 2006) and is a consistent best-performing algorithm, especially when
there are a limited number of records (Wisz et al. 2008). It is also least affected by
geographical errors in the species occurrences (Graham et al. 2008). The random
forest algorithm is an efficient and robust ecological modelling algorithm that
provides a better model fit even for under-sampled areas (Mi et al. 2017).

The SSDMs were then calibrated using bootstrap resampling during which 75%
of each species’ occurrence data was used as training data. Random resampling was
performed 100 times using the remaining 25% of the dataset as a test data to evaluate
model accuracy. The accuracy was evaluated using the area under the curve (AUC)
of the receiver operating characteristic (ROC) plot. We used a bias-corrected null
model (Syfert et al. 2013; Fithian et al. 2015) to evaluate the AUC value for each
SSDM developed with all occurrence records against the AUC values expected by
chance. A sampling bias grid was produced by summing the number of occurrences
found within the 30 arc-second grid cells which were aligned to the environmental
grid cell resolution. Using the approach of Calabrese et al. (2014) and Zellmer et al.
(2019), the outputs from both the random forest and Maxent models were combined
to reduce individual modelling algorithm biases.

Notably, Loffler and Loffler (2005) also minimized data collection bias through
the following:

• Using fine-scale (11 km grid square) stratified random sampling (accounting for
vegetation and land use types, i.e. focusing on tree-covered areas)

• Focusing on areas previously under-collected
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(continued)
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Table 8.1 List of variables used in the species distribution models

Variance
inflation
factor (VIF)

Slope aspect
(cardinal
directions)

Categorical Derived from digital elevation model
(Jarvis et al. 2008)

1.023059

Land cover
fragmentation
index

Continuous Derived from land cover data 1.068082

Land tenure Categorical Modified from Remmelzwaal and Vilakati
(1994)

1.211217

Protection status Categorical Derived from cadastral data and Roques
(2002)

1.295225

Lithology Categorical Vegter (1995) 1.296875

Soil type Categorical Murdoch (1968) 1.332099

Distance to water
(rivers/
reservoirs)

Continuous Derived from land cover data 1.484975

Land cover Categorical Muyambi (2016) 1.58556

Precipitation
seasonality

Continuous Fick and Hijmans (2017) 1.615047

Topographic
position index

Continuous Derived from digital elevation model
(Jarvis et al. 2008)

1.676945

Distance to
human-disturbed
land

Continuous Derived from land cover data 1.767758

Solar radiation
duration

Continuous Zomer et al. (2008) 1.999564

Slope Continuous Derived from digital elevation model
(Jarvis et al. 2008)

2.262022

Human
population
density

Continuous (Central Statistical Office 2018) 2.805749

Human
settlement
density

Continuous Calculated using data from Facebook
Connectivity Lab and Center for
International Earth Science Information
Network (CIESIN), Columbia University
(2016)

2.879977

Surface form Continuous Derived from digital elevation model 2.910769

Isothermality Fick and Hijmans (2017) 2.968866

Precipitation of
driest month

Continuous Fick and Hijmans (2017) 3.440109

Mean diurnal
range

Continuous Fick and Hijmans (2017) 4.408422

Solar radiation
total/annum

Continuous Zomer et al. (2008) 6.200382
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Table 8.1 (continued)

Variance
inflation
factor (VIF)

Mean annual
number of frost
days

Continuous Schulze et al. (2008) 7.272504

Minimum
temperature of
coldest month

Continuous Fick and Hijmans (2017) 8.365488

• Multiple visits to sampling sites
• Multi-seasonal sampling (to account for flowering, fruiting and growing seasons)
• Extensive use of regional expertise in species identification
• Use of multiple herbaria including South African herbaria
• Linking field visits to herbarium information on occurrences

8.2.5 Species Richness and Diversity Patterns

The species richness maps were computed using the probability ranking rule
(D’Amen et al. 2015a, b). This method estimates community composition by
ranking the species in decreasing order of their predicted probability up to the
species richness prediction. This rule assumes that species with the highest habitat
suitability are competitively superior (Schmitt et al. 2017). The analysis made use of
the spatially explicit species assemblage modelling (SESAM) framework (Guisan
and Rahbek 2011) which uses macroecological models to set a limit to the number of
species predicted by the stacked distribution models.

The diversity indices calculated in this study were taxonomic species richness
(SR, the number of species in an area), taxonomic weighted endemism (WE) and
corrected taxonomic weighted endemism (CWE) (Crisp and Linder 2001). The
endemism indices indicate that a species is unique to a defined geographical locality
(Crisp and Linder 2001; Moraes Mónica et al. 2014) and avoid using a threshold by
applying a continuous weighting function by assigning high weights to species with
small occurrence ranges and progressively smaller weights to those with larger
ranges (Schmitt et al. 2017).

WE=
X

t2T

rt
Rt

where t is a label (taxon) in the set of labels (taxa) T in neighbour set 1, rt is the local
(Eswatini) geographic range (the number of elements containing label t within
neighbour sets 1 and 2), and Rt is the global range of label t across the dataset.
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CWE=
X

t2T

1
rt
Rt

Since the aim was to identify local (Eswatini-specific) conservation hotspots, the
geographic range was estimated as the number of grid cells in which a species was
found within Eswatini. Phylogeny-based diversity measurement methods have been
rapidly receiving interest (Scherson et al. 2017; Millar et al. 2017) and are being used
in plant conservation (Escudero et al. 2003; Millar et al. 2017). Hence, we also
measured phylogenetic diversity (PD) which is the proportion of the total tree length
present in a grid cell (Faith 1992), weighted phylogenetic endemism (WPE) and
corrected weighted phylogenetic endemism (CWPE) (Rosauer et al. 2009) using the
Biodiverse v2.0 software (Laffan et al. 2010). The phylogenetic indices were derived
using a time-calibrated species-level supertree from TimeTree (Kumar et al. 2017)
and the Open Tree Of Life (Hinchliff et al. 2015). The outputs from the stacked
species distribution models were used as geographic range inputs in the estimation of
PD, WPE and CWPE.

PD=
X

c2C
Lc

where Lc is the length of branch c and C is the set of branches in the minimum
spanning path connecting the species.

WPE=
X

λ2ʌ
Lλ

rλ
Rλ

=L

where ʌ is the set of branches found across neighbour sets 1 and 2, Lλ is the length of
branch λ, rλ is the local range of branch λ (the number of groups in neighbour sets
1 and 2 containing it), Rλ is the global range of branch λ (the number of groups across
the entire dataset containing it), and L is the sum of all branch lengths in the trimmed
phylogenetic tree.

CWPE=
WPE
PD

PD evaluates the evolutionary diversity within each grid cell using phylogenetic
branch lengths, whilst WPE is a range-weighted index which assesses the branches
of the phylogenetic tree restricted or endemic to a given geographical location
(Rosauer et al. 2009). Hence, WPE represents the sum of weighted branch lengths,
where each branch is weighted by the fraction of its geographic range represented by
the given area. In this study, PD, WPE and CWPE were scaled to represent the
proportion of variation within the tree represented by the taxa and the total length of
the tree divided between branches according to their relative lengths. The statistical
significance of each diversity index was then evaluated using a randomization test
with the standard null model (Mishler et al. 2014).
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To assess the effect of each diversity index on the estimate of protection, we
overlaid each diversity map with the protection status map. We then conducted the
analyses using three protection levels: gazetted (by law), protected (but not gazetted)
and unprotected. This enabled us to evaluate the protection status and diversity value
of each grid cell, which we then used when calculating the percentages of hotspots
under each protection level. Even though we used the 95th percentiles as hotspot
thresholds, we also calculated protection status between the 0 and 99th percentiles in
order to explore how protection status varies with the choice of threshold.

8.3 Results

8.3.1 Diversity and Endemism Patterns

The AUC values of the SSDMs for all the species included and studied ranged from
a minimum of 0.88 to a highest value of 0.98 (mean = 0.907) indicating high
predictive performance. The derived geographic patterns of species richness
(SR) and phylogenetic diversity (PD) are not uniform but geographically similar
(Fig. 8.3). The SR and PD maps indicate that eastern and north-western Eswatini
have the highest species richness. Mountain ranges and their valleys around the
country are especially high in diversity, including most of the Lubombo Mountains

Fig. 8.3 Maps of estimated species diversity and endemism in Eswatini



(particularly Jilobi forest, Muti-muti, Mhlumeni, Mahhuku, Manzimnyama, Usuthu
Gorge and Shewula), Lufafa-Makhonjwa Mountains, Mdzimba Mountains,
Mahamba Mountains, Sinceni Mountains, Mkhondvo, Ntfungulu Mountains,
Grand Valley, Mtsambama Mountains and Gebeni-Dwaleni Mountains.
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Notably, there is a strong similarity in the geographic patterns of the WE and
WPE (r2 = 0.99, p < 0.005) and between CWE and CWPE (r2 = 0.98) (Fig. 8.4).
There is, however, a relatively weak but significant correlation of SR with both CWE
and CWPE (r2 = 0.36, p < 0.05 and r2 = 0.41, p < 0.05, respectively). Similarly,
PD was weakly correlated to both CWE (r2= 0.37, p< 0.05) and CWPE (r2= 0.41,
p < 0.05) which suggests these indices may be showing different features of
geographic diversity (Fig. 8.4).

8.3.2 Geographic Patterns of Conservation Gaps

The spatial distribution of the derived hotspots is similar, with small differences in
both size and location (Fig. 8.5). The sizes of the total combined hotspot areas
derived from the six indices range in size from 727 km2 for the WE-based hotspot to
755 km2 for the CWPE-based hotspot, representing an average of 4.26% of the total
land area. The geographic distribution of the current protected area network and the
derived hotspots in Eswatini shows clear protection gaps (Fig. 8.5 and Table 8.2).
When considering native tree species richness (SR), the area of overlap between
protected areas and hotspots is only 12.88%. Therefore, 83.70% of the taxonomic
richness-based hotspot is not covered by protected areas, whilst 3.42% is covered by
conservation areas not legally proclaimed. When using WE and CWE, 23.66% and
24.40% of the hotspots are, respectively, covered by protected areas, whilst another
6.05% and 5.60% are, respectively, covered by the ungazetted protected areas. When
PD, WPE and CWPE are used to derived hotspots, the areas under strict protection
are, respectively, 10.72%, 23.67% and 25.30%. This indicates that a relatively low
number of range-restricted species are covered by the protected area network. These
protected areas include the Mlawula and Malolotja Nature Reserves.

There is considerable spatial overlap between hotspots identified using the
weighted and corrected weighted endemism (both taxonomic and phylogenetic)
and those based on taxonomic richness. Significant portions of the Lubombo
mountain range in the east and the north-western mountain ranges are such notable
hotspots. In addition, small patches of fragmented remnants of the species-rich areas
as earlier identified also remain important when considering the WE and CWE. In all
the analyses, the coincidence with areas with no form of protection was largest,
followed by gazetted areas (Table 8.2). Protected areas such as Mlawula and
Malolotja Nature Reserves, as well as ungazetted private conservation areas, provide
notable protection especially when considering endemism. When all the hotspots
from each index are used, the combined hotspot area increases to 1642 km2 which
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equates to 9.42% of the total land area (Fig. 8.6). However, the area under protection
for the combined hotspot is still low (14.8%). Large portions of the hotspots are
predominantly in unprotected communal areas.
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Fig. 8.5 Eswatini’s hotspot maps derived from (a) tree species richness, (b) weighted endemism,
(c) corrected weighted endemism, (d) phylogenetic diversity, (e) weighted phylogenetic endemism
and (f) corrected phylogenetic endemism

Table 8.2 Percentage of derived hotspots covered under each protection category

Index Hotspot size (km2) Unprotected Protected-not gazetted Gazetted

CWE 750 70.00 5.60 24.40

WE 727 70.29 6.05 23.66

SR 730 83.70 3.42 12.88

CWPE 755 69.01 5.70 25.30

WPE 731 70.31 6.02 23.67

PD 746 85.25 4.02 10.72

Combined 1642 82.03 3.17 14.80

For each diversity index, the amount of coincidence with unprotected lands was
largest, followed by gazetted areas. Overlap with ungazetted protected areas that are
managed for biodiversity was the smallest. Within the same protection status,
however, our estimates of biodiversity hotspot protection varied in astonishing



ways. Both the diversity index and the percentile threshold used to estimate hotspots
influenced the estimates of protection, and their relationships were not consistent
among the studied levels of protection (Fig. 8.7). The overlap between the protection
levels and the hotspots identified by the different indices generally increases as the
percentile threshold decreases from the 99th to the 1st percentile. The percentages of
hotspot grid cells that were in unprotected areas were high for all percentiles
dropping sharply up to the 50th percentile for all levels of protection (Fig. 8.7).
When using a 95th percentile threshold, the estimates of protection were most
sensitive to the protection status, more so when using WPE. Other indices show
larger hotspots at the 50th percentile.

8 Tree Species Diversity and Richness Patterns Reveal High Priority. . . 155

Fig. 8.6 The combined hotspot derived from all the species diversity and endemism indices
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Fig. 8.7 Relationship
between the percentiles to be
used as the threshold for
mapping hotspots and the
hotspot size within each
protection status
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8.4 Discussion

8.4.1 Tree Species Richness and Diversity Patterns

Despite its small size, Eswatini is characterized by high species diversity resulting
from high topographic and bioclimatic diversity. Mapping the geographic patterns of
plant species diversity is critical in the conservation of biodiversity in the country.
The models used in this study produced high accuracies, although these may still
contain errors that can contribute to some errors in species diversity maps (Guisan
et al. 2013). Geographical collection bias remains one of the most common issues
associated with disparate collection effort which may lead to incomplete information
on actual species ranges (Robertson and Barker 2006; Sardà-Palomera et al. 2012).

It should be noted, though, that even high-resolution maps may include errors of
commission because both the accuracy and precision of SDMs are limited by both
the availability and resolutions of the predictor variables used (Liang et al. 2013;
McKerrow et al. 2018). The efforts to reduce omission errors from previous coarse-
resolution maps reduced the underestimation in species diversity maps and revealed
diversity hotspots in locations that the coarser maps did not identify. The resulting
phylogenetic diversity and endemism maps are new in the country. Despite varying
levels of correlations, the results show notable spatial overlaps in the distribution
patterns of Eswatini’s overall taxonomic and phylogenetic diversity and endemism.

Eswatini’s native tree species and phylogenetic diversity are weakly correlated,
and the tree diversity hotspots obtained from the analysis also have a high geo-
graphic congruence (Table 8.2, Fig. 8.5). This observed high diversity congruence is
important since these indices are most often used for planning the protection of
species and may be helpful in guiding biodiversity conservation strategies. For
instance, when the hotspots derived from each of the indices are relatively
concentrated in the same areas, species of concern can be protected to the greatest
extent possible using less resources.

The country’s tree species diversity and endemism are neither uniformly nor
randomly distributed, and the indices used exhibited an overall trend of high values
within mountain ranges, particularly the eastern and north-western mountain ranges,
and fewer species being distributed in the low-lying areas of the country. The highest
numbers of species and phylogenetic diversity are found in the Lubombo Mountains
in the east, the Mdzimba Mountain extending to the Makhonjwa-Lufafa-Bulembu
mountain range in the north-west and the south-central mountain complexes includ-
ing Ngwempisi and Sinceni mountains. Loffler and Loffler (2005) observed that
some coastal species generally restricted to the Lubombo Mountains also appear on
Sinceni Mountain in the interior of the country, resulting in similarities and
connections in the geological history of the coastal, dune, Lubombo and inland
forests. Loffler and Loffler (2005) also note that some southern African coastal
species such as Strychnos gerrardii, Ficus burtt-davyi, Deinbollia oblongifolia,
Pavetta gerstneri and Dovyalis longispina are also found in the inland mountains
on the eastern and interior mountain ranges in the country.
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The identified species diversity and endemism hotspots are notably within known
regional phytochoria that are globally significant centres of plant diversity and
endemism. The Lubombo Mountains in the eastern part of the country, for instance,
lie within the Maputaland Centre of Plant Endemism (Mittermeier et al. 2015). The
interior and north-western hotspots are part of the Barberton Centre of Plant Ende-
mism which is an extension of the Drakensberg Afromontane Regional System
(Margules and Pressey 2000). Both these hotpots support high concentrations of
endemic taxa and high tree species diversity (Mittermeier et al. 2015). It is worth
highlighting, therefore, that this study recovers these areas of regional endemism and
diversity albeit with localized details such as the mountain ‘islands’ of diversity
within the Afromontane archipelago originally described by White (1981) and
subsequently by Grimshaw (2001). The high taxonomic and phylogenetic diversity
of the Lubombo escarpment result from the diversity of habitats emanating from
both geological and evolutionary history of the area (van Wyk and Smith 2001). The
strong relationship between the country’s vegetation communities and elevation and
geology has been observed before (Dlamini 2011a).

Overall, the patterns of endemism have a high similarity with those of species
diversity largely due to habitats in areas with high endemism being fragile and
mountainous. In addition, most endemic species have a restricted range and are
susceptible to outside interference as well as being vulnerable to becoming
endangered (Myers et al. 2000; Zhao et al. 2016). As a result, the geographic patterns
of the hotspots derived from the six indices geographically overlap. However, the
endemism-based indices show localized and smaller hotspots. This may be due to
the fact that, aside from the association with species distribution itself, the distribu-
tion patterns of endemic species are closely correlated with human disturbance or
threat factors (Zhao et al. 2016). Additionally, the results not only highlight current
tree diversity hotspots but also provide insights into the biogeographical distribution
and evolutionary history of Eswatini’s flora as similarly observed by Daru et al.
(2015) for southern Africa.

Researchers have previously highlighted sampling biases in plant collection data
including taxonomic/phylogenetic, spatial and temporal biases (Meyer et al. 2016;
Daru et al. 2018). Although not explicitly and quantitatively assessed in this study,
techniques were employed during both the data collection and analyses stages to
reduce spatial bias. This was evidenced by the significant number of new records of
species, including relic species, that were recorded since the atlassing commenced
two decades ago. Nevertheless, there is a need for continuous surveys within the
hotspots especially those that have not been adequately studied before.

8.4.2 Diversity and Endemism Patterns in Relation to Protection

The study of biodiversity-rich areas and areas of endemism is important in the
assessment of protection strategies. The intersections between the derived hotspots
are very important for biodiversity protection. Using the tree data for terrestrial
biodiversity conservation targeting is primarily because trees are well studied in the



country and, in the absence of detailed data on other plant forms, such data provides
the available baseline for conservation planning. In addition, vascular plant diversity
patterns may be used as bioindicators for other taxa due to plants being the main
primary producers in terrestrial ecosystems (Brunbjerg et al. 2018). Andersen et al.
(2013) attest that plant bioindication may be a cost-effective method to estimate
general habitat quality.
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The tree diversity hotspots are important because different indices highlight
different aspects of biodiversity, such as species richness, geographic range and
phylogeny. Hence, targeting only the species-rich hotspots would protect the
greatest number of species per unit area. However, if the goal is to conserve areas
with ancient flora, phylogenetic diversity might be an appropriate consideration
(Xu et al. 2017). Focusing conservation efforts on areas with high taxonomic and
phylogenetic endemism stresses the protection of range-restricted species where
species composition similarity may be low (Xu et al. 2017). Rosauer and Jetz
(2015) observed that protecting areas with high phylogenetic endemism may address
conservation concerns on lineages of plants that are both evolutionarily distinct and
geographically restricted.

Focusing on all the identified hotspots would be a cost-efficient approach to
biodiversity conservation by concentrating efforts at those areas with the most
species of concern. There is notable spatial overlap among the hotspots defined
using the various diversity indices in Eswatini, making it relatively less intricate to
identify the boundaries of priority conservation areas. However, the size of hotspots
is reduced when using the endemism indices compared to using taxonomic richness
and phylogenetic diversity. Therefore, whilst there is need to define a clear and
agreed index when prioritizing areas for conservation, where there are significant
spatial overlaps, combining the hotspots will likely result in a greater conservation
outcome with limited resources. This is important because Eswatini has established a
few protected areas whose efficiency is not ideal because of structural weaknesses
and limited financing (Dormann et al. 2013).

The findings indicate that most of the tree diversity hotspots for Eswatini are
poorly covered by the current protected area network. The existing protected areas
cover approximately 4.2% of the country’s total land area, but the area covered is
geographically biased, especially in relation to the identified hotspots. Thus, there
are still considerable conservation gaps for the country’s flora since hotspot protec-
tion is low (<25%) when considering both taxonomic and phylogenetic diversity.
The large spatial overlap between the hotspots derived from different indices could
also be an indicator of similarities between drivers of taxonomic richness, phyloge-
netic diversity and biodiversity protection. It is important, though, to highlight that
the geographic patterns of tree species richness are determined by both the biogeo-
graphic evolution of species and land use practices, whilst the location of Eswatini’s
protected areas has also evolved over the years in response to historical
circumstances and land tenure (Hackel and Carruthers 1993). Most of the protected
areas were historically disease-infested areas and marginal lands that were consid-
ered unsuitable for productive use. These characteristics helped reduce human
presence and impact in these areas; hence those areas appear to be better protected
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and preserved. However, as most (endemic) species are found in the eastern escarp-
ment and north-western mountain ranges, very few portions of those hotspots are
within the protected area network.
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8.4.3 Priority Areas for Enhanced Conservation

This study reveals a spatial overlap in the priority areas for the taxonomic and
phylogenetic dimensions of tree species diversity in Eswatini. This is in contrast to
the observations from Daru et al. (2015) who observed spatial incongruence between
tree diversity indices in hotspots and currently protected areas, SR and PD. Their
study was, however, notable at a higher scale and lower resolution compared to this
study (50 km vs 1 km grid size). The lack of geographic overlap among diversity
hotspots could, therefore, be indicative of the small size of hotspot areas (such as
revealed by this study) compared to their grid size. Nevertheless, the geographic
distribution of the hotspots is in general agreement with those of Daru et al. (2015).
There are notable differences between the hotspot maps when considering the level
of protection, suggesting that effective conservation planning should be based on
both taxonomic and phylogenetic diversity.

The results of this study corroborate other studies that showed the percentile
threshold and diversity index used influence the estimates of protection and the
design of protected area networks (McKerrow et al. 2018). The variations in the
hotspot size as a function of the percentile can be attributed to the geographic
disparities in terms of both protection levels and the species distribution. We also
demonstrate that the diversity index used influences the hotspot maps and their
protection, which underscores the need to account for both taxonomic and phyloge-
netic diversity when designing systems of protected areas. Based on this study, we
suggest that the combined hotspot of approximately 1642 km2 (Fig. 8.6) b
prioritized for protection of the country’s biodiversity and hence be considered in
protected area expansion strategies within the short to medium term. The identified
hotspot constitutes 9.46% of the country’s total land area and its conservation would
significantly to the achievement of the country’s target of protecting at least 10% of
the land area (Swaziland Environment Authority 2016). We suggest that the effec-
tiveness of the existing protected areas, in their various forms and governance
regimes, be enhanced through revisiting areas previously demarcated and identified
as protection-worthy by Roques (2002) and Deall et al. (2000). We also propose that
for those protected parts of the hotspots which still harbour inherently threatened
species, such as those within Mlawula and Malolotja Nature Reserves in the east and
north-west, the efforts should focus on improving in situ conservation and expansion
of range size. Areas undergoing severe spatial fragmentation due to deforestation
(as identified by Dlamini 2017), especially those in the north-west of the country
such as the north-western mountain range and the central and southern parts of the
country such as the Mdzimba Mountains and the Ngwempisi-Sinceni mountain
complex stretching to Mahamba, Ngudzeni and Mkhondvo, have a high risk of
local extinction. Reducing habitat disturbance within these identified hotspots is the



preferred conservation strategy. For the highly isolated hotspots with high species
endemism, both in situ and ex situ strategies must be employed because numerous
narrow-range and threatened species are found in these areas. Most importantly, the
country needs to take active steps to protect most of the mountain ecosystems which
are evidently hotspots and are a key habitat for most of the tree species studied.
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The urgency to protect the mountain ecosystems is necessitated by the increasing
expansion of human settlements and illicit cultivation of cannabis in many of the
remote mountain valleys, riparian zones and indigenous forests (pers. obs.). Rising
human population and expanding demand of land for agriculture, human settlements
and other infrastructure have meant that large areas of forests and woodlands are lost
annually (Dlamini 2016, 2017). Numerous species are threatened with extinction
due to habitat loss in unprotected and highly disturbed low-lying and flatter areas. It
should also be noted that most areas within the hotspots are predicted to be
undergoing notable change and spatially shifted bioclimatic conditions (Dlamini
2011b). Hence, a climate-adaptive protected area network and conservation
programmes could buffer against the potential impacts of climate change. Tree
diversity has the potential to enhance ecosystem functionality, including biomass
production and carbon sequestration (Hulvey et al. 2013; Ratcliffe et al. 2016; Mori
2018).

The high-resolution maps of tree diversity, therefore, indicate areas with potential
co-benefits for both biodiversity conservation and climate change mitigation at local
levels (Soto-Navarro et al. 2020). Hence, the extent of various categories of
protected areas should also be periodically reviewed to consider not only the
taxonomic but also the phylogenetic diversity. Most areas with high diversity and
endemism are within unprotected communal areas and privately owned land parcels.
It is, therefore, necessary that conservation strategies consider this through the
adoption of innovative community-public-private conservation partnerships to
ensure maximum protection. The identified hotspots could be protected as individual
units, particularly where there is high ecosystem fragmentation, or as a continuum
linked to the existing protected area network.

Notwithstanding the high predictive performance of the models across the species
studied, it is important to highlight that SDMs are without their limitations. These
have been studied and discussed widely by other researchers (e.g. Jarnevich et al.
2015) and can be implied to apply in this study too.

8.5 Conclusion

This study produced high-resolution tree species distribution maps for the entire
country, revealing subtle patterns of species diversity and endemism in Eswatini.
The use of disparate diversity indices revealed comparable distribution patterns of
native tree richness and endemism. Three broad hotspots were identified by taxo-
nomic and phylogenetic diversity. In addition, a few areas in the central to southern
part of the country are also observed to be important tree conservation sites. All these
hotspots are predominantly in the mountainous areas not covered by the current



protected area system. The findings indicate that extensive species-rich and
phylogenetically diverse areas are unprotected. The study reveals that for effective
conservation of Eswatini’s taxonomic and phylogenetic tree diversity and ende-
mism, the country’s mountain ecosystems need to be protected. More importantly,
the areas in each of the identified hotspots should be considered with special priority
for effective conservation. In-depth surveys are required in areas with high ende-
mism and phylogenetic diversity including areas that have not been previously
surveyed.
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Improving the Conservation Status of a
Threatened Tree (Acer sikkimensis Miq. syn.
Acer hookeriMiq.) Through Standardization
of Seed Germination Protocol and Using
Ecological Niche Modeling

9

Aditya Pradhan and Arun Chettri

Abstract

Threatened plant conservation is fraught with numerous intrinsic and extrinsic
challenges, which vary across species. For example, the absence of a standardized
regeneration protocol significantly hinders the mass multiplication of seedlings,
while insufficient distribution records make it difficult to model their potential
distribution area for reintroduction. We standardized the germination protocol in
Acer sikkimensis, a threatened tree of northeast India, and modeled the potential
distribution area for its reintroduction in Sikkim, northeast India. The seeds
collected for the germination experiment were given cold treatment (5 °C) for
3 months to break dormancy. Subsequently, the seeds were soaked in different
concentrations of gibberellic acid (GA3), abscisic acid (ABA), indoleacetic acid
(IAA), and kinetin to identify the treatment that enhances germination. Control
was maintained by soaking the seeds in deionized water. The potential distribu-
tion area of the species was modeled using maximum entropy distribution
modeling (MaxEnt) software and averaged monthly normalized difference vege-
tation index (NDVI) data for the study area. The treatment with GA3 and kinetin
improved seed germination significantly compared to ABA and IAA.
The MaxEnt model performed well with less number of occurrence records.
The model predicted that only 38 km2 area in Sikkim was highly suitable for
the species where the species can be reintroduced. This study’s seed germination
protocol is less expensive than the existing micro-propagation techniques. The
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proposed germination protocol and the potential distribution area map can be
helpful for conservationists, scientists, and local nongovernmental organizations
to conserve A. sikkimensis and improve its conservation status.
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9.1 Introduction

Conservation of threatened plants has numerous challenges which range from
species-specific regeneration issues to the availability of suitable habitats. Specifi-
cally, the nonavailability of a standardized regeneration protocol hinders the mass
multiplication of seedlings, while an inadequate number of distribution records make
it difficult to summarize the species’ environmental requirements or niche, making it
difficult to model their potential distribution area/habitats. However, overcoming
such challenges through effective methods can help successfully conserve such
species.

Multiplication of plants through various asexual (e.g., cuttings, layering, grafting,
budding, and other nonconventional means such as tissue culture) and sexual means
of propagation (i.e., through seeds) is important to reinforce the dwindling popula-
tion of threatened species. Plants propagated through seed germination are expected
to be more resilient to abiotic and biotic stresses and also maintain the genetic
diversity of the species in the long term. However, the germination response of
seeds on the forest floor is governed by the surrounding environmental factors. For
example, seeds often fail to break their dormancy because of the nonavailability of
suitable environmental conditions. Therefore, it is important to understand the
optimal conditions required and also to overcome the mechanical barriers which
prevent the germination of seeds.

The availability of suitable areas is important for the success of species conserva-
tion programs. Such areas can be identified through field inspection, environmental
characterization, and matching at a local scale, while predictive modeling tools can
be used in the case of larger areas at a landscape or regional scale. In this respect,
ecological niche modeling (ENM) has emerged as an effective tool to identify such
suitable areas (Elith and Leathwick 2009). Mapping potentially suitable habitat for
threatened and endangered species is critical for monitoring and restoring their
declining native populations (Guisan and Zimmermann 2000). ENM aids in the
identification of areas for species reserves, reintroduction, and the development of
effective species conservation measures (Elith et al. 2006; Peterson 2006). Several
ENM methods are available to predict potentially suitable habitats for a species
(Guisan and Thuiller 2005). However, they are sensitive to sample size and may fail
to predict threatened species distribution accurately if the sample size is small (Wisz
et al. 2008). Moreover, there are far fewer examples of predictive models being used
for rare and endangered plant species in India (Kumar and Stohlgren 2009; Ray et al.



2011; Adhikari et al. 2012; Babar et al. 2012; Jaryan et al. 2013; Thriveni et al. 2015;
Sreekumar et al. 2016; Pradhan et al. 2020). However, the maximum entropy
(MaxEnt) model has shown a high success rate with sample sizes as small as five
(Pearson et al. 2007; Thorn et al. 2009).
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Fig. 9.1 (a) Study site, (b) predicted distribution map for A. sikkimensis

Maples belonging to the genus Acer are a crucial element of temperate forests
(Tanai 1978). However, the maple species in the Himalayan region are under threat
because of anthropogenic activities and climate change (Rana et al. 2011). There-
fore, appropriate measures are needed for the conservation of this genus. There are
approximately 114 species in the genus, distributed mainly in temperate climates.
Thirteen Acer species have been described from the Darjeeling and Sikkim Himala-
yan region (Lama et al. 2015). A. hookeriMiq.—endemic to the Sikkim Himalaya—
is listed as endangered in the Red Data Book of Indian Plants (Nayar and Sastry
1990; Adhikari et al. 2018). Since A. hookeri is currently considered a synonym of
A. sikkimensis, the correct name A. sikkimensis will be used in place of A. hookeri
hereafter in this study. The species is endemic to the state of Sikkim and the
Darjeeling district of West Bengal, India (Fig. 9.1a).

The present study had the following objectives: (1) to standardize the seed
germination protocol in A. sikkimensis and (2) to predict the distribution of suitable
habitats of A. sikkimensis in its native range.
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9.2 Materials and Method

9.2.1 Field Survey and Seed Collection

Field survey was conducted during the flowering (May–June) and fruiting (August–
September) months in the state of Sikkim and the Darjeeling district of West Bengal
(Fig. 9.1a). Seeds were collected from two mature trees, and associated ecological
parameters such as habitat status, associated species, and phenological
characteristics were noted. In addition, the fruit type, color, dispersal agent, and
various threats the species faced were also recorded. Geocoordinates of the species
were collected using a Global Positioning System (GPS) from six locations in the
Sikkim Himalayas with an accuracy of <10 m, which were used to model the
distribution of potential habitats.

9.2.2 Seed Moisture Content

The moisture content of fresh seeds was determined by the low constant temperature
oven drying method (ISTA 1996). Seeds of A. sikkimensis were placed in an oven
maintaining a temperature of 103 °C for 17 h. The moisture content as a percentage
by weight (fresh weight basis) was calculated using the formula:

%seed moisture content=
M2-M3
M2-M1

× 100

where:

M1 = weight of the container with cover in gm
M2 = weight of the container with cover and seeds before drying
M3 = weight of the container with cover and seeds after drying

9.2.3 Seed Germination

Seeds were collected in October after they had reached maturity. The seeds were
kept in a refrigerator at 5 °C for 3 months to break the dormancy (Yilmaz 2007).
Before the germination experiment, the seeds were soaked in distilled water for 72 h
until fully imbibed to remove the pericarp and thin papery testa (Phartyal et al.
2003). Germination experiments were performed in Petri dishes (9 cm diameter)
lined with two filter papers. Seeds were soaked in different concentrations of
gibberellic acid (GA3) (100 μM, 200 μM, and 500 μM), abscisic acid (ABA)
(100 μM, 200 μM, and 500 μM), indoleacetic acid (IAA) (100 μM, 200 μM, and
500 μM), and kinetin (100 μM, 200 μM, and 500 μM). Seeds soaked in deionized
(2.5–3 mL) water were used as a control. The germination experiment was carried
out at 25–30 °C. For each of these treatments, 3 replicates of 100 seeds were



maintained. Seeds with a 1-mm-long visible radicle were considered germinated and
counted three times a week. The germinated seeds were then placed in a germinating
tray before being moved to the greenhouse (Fig. 9.2).
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Fig. 9.2 (a) Natural habitat of Acer sikkimensis, (b) flowering twig, (c) stages of seed germination,
(d) germinating winged seed, (e) germinated seed transferred, (f) sapling
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9.2.4 Predictor Variables

The model was developed using the average normalized difference vegetation index
(NDVI) raster data for 12 months, i.e., January to December, obtained from GLCF
(Global Land Cover Facility) (University of Maryland, USA) and Shuttle Radar
Topography Mission (SRTM) elevation data obtained from worldclim.org. The
NDVI and elevation data had a resolution of 30 arc seconds. The 12 NDVI variables
were first subjected to correlated tests (r > 0.9) using ENM Tools 1.3 software
(Warren et al. 2010). Thus out of 12 NDVI variables, 11 were used to model the
distribution of A. sikkimensis in Sikkim Himalaya along with altitude.

9.2.5 Ecological Niche Modeling

The model was created using maximum entropy modeling (Phillips et al. 2006). We
executed five bootstrap runs for the species to derive an optimized model. All other
parameters were left at their default values as the program is already calibrated on
various species datasets (Phillips and Dudik 2008). The average, maximum, mini-
mum, median, and standard deviation were calculated for the replicated runs.

9.2.6 Model Evaluation

Model quality was evaluated based on area under the curve (AUC) value (Thuller
et al. 2005), and the model was graded as poor (AUC < 0.8), fair
(0.8< AUC< 0.9), good (0.9< AUC< 0.95), and very good (0.95< AUC< 1.0).

9.2.7 Identification of Potential Habitats

The predicted ENM distribution map was exported in KMZ format using DIVA-GIS
ver. 7.5 (www.diva-gis.org). The KMZ files were overlaid on Google Earth to
identify the habitat of A. sikkimensis in Sikkim Himalaya. Subsequently, field
surveys were undertaken in the identified areas to determine the status of the habitats
in terms of anthropogenic disturbances.

9.3 Result

The species inhabited temperate mixed deciduous forest dominated by other tree
species, viz., Exbucklandia populnea, Edgeworthia gardneri, Castanopsis indica,
Castanopsis tribuloides, Acer campbellii, Engelhardia spicata, Cryptomeria japon-
ica, and Symplocos spp.; shrubs, viz., Viburnum erubescens, Gaultheria spp., and
Rubus ellipticus; and herbaceous species, viz., Anaphalis contorta, Anaphalis

http://worldclim.org
http://www.diva-gis.org


margaritacea, Impatiens glandulifera, Impatiens stenantha, and Swertia
bimaculata.
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Fig. 9.3 Germination percentage of seeds at different concentrations (i.e., 100 μM, 200 μM,
500 μM) of GA3, ABA, IAA, and kinetin

Only six populations of A. sikkimensis were recorded in and around Senchal
Wildlife Sanctuary, Darjeeling, at an altitude ranging from 2000 to 2500 m asl and at
Rinchenpong, West Sikkim, at an altitude ranging from 1700 to 2200 m asl. Each
population consisted of 10–20 individuals, and only a few were in the flowering and
fruiting stages. The flowering occurs from May to June and the fruiting occurs
between August and September. The fruit attains reddish-brown color upon matu-
rity. However, no seedlings were observed in any of the survey locations. The
natural population of the species is under severe abiotic anthropogenic pressure
due to tree felling.

The mean seed weight of the species was 11.9 g with a standard deviation of 0.2.
The seed moisture content in percent was 2.692 ± 0.19 (without wings) and
3.68 ± 0.06 (with wings). Seed germination in the species is epigeal. Increased
GA3 and kinetin concentrations resulted in a lower percentage of seeds germinating,
while the effects of ABA and IAA on seed germination were insignificant. Treatment
with GA3 and kinetin was very effective in improving seed germination, with
germination rates of 95% and 100% of seeds treated with GA3 and kinetin at
100 μM concentrations, respectively. The germination rate, however, decreased as
the concentrations of GA3 and kinetin increased. Only 5% and 25% of seeds
germinated after being treated with ABA and IAA at 200 μM concentrations,
respectively. IAA and ABA at concentrations of 100 μM and 500 μM, respectively,
inhibited seed germination (Figs. 9.2 and 9.3). The seeds with wings had a low
germination rate after being treated with different hormones.

The predicted distribution map for A. sikkimensis is given in Fig. 9.1. The
AUCtrain and AUCtest values for A. sikkimensis were both satisfactory
(AUCtrain = 0.9923 ± 0.0042 and AUCtest = 0.9484 ± 0.0925). NDVI for the
month of April and July was the most influential of the input environmental
variables, contributing 35% and 26.9% to the MaxEnt model, respectively. The



Months

remaining layers collectively contributed 38.1% to the species’ habitat model
(Fig. 9.4 and Table 9.1). In terms of permutation importance, NDVI for the month
of April had the greatest impact on the habitat model, accounting for 40.9% of the
total, while the rest contributed 59.1% (Table 9.1). In the Sikkim Himalaya, a total
potential area of 1738 km2 was predicted to be suitable for A. sikkimensis.
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Fig. 9.4 Results of jackknife of regularized training gain for A. sikkimensis

Table 9.1 Relative contribution and permutation importance of the predictor variables to the
MaxEnt model

Predictor variables (NDVI
codes)

Percent
contribution

Permutation
importance

eu4_1_eur April 35 40.9

eu7_1_eur July 26.9 12.4

altitude – 11.1 23.4

eu10_1_eur October 9.5 10.5

eu8_1_eur August 6 5.2

eu1_1_eur January 5.1 0.1

eu2_1_eur February 3.8 6.5

eu6_1_eur June 1.5 0.3

eu11_1_eur November 0.8 0.1

eu3_1_eur March 0.2 0.5

eu5_1_eur May 0.1 0

eu12_1_eur December 0 0

The majority of the area is classified as low suitability and covers approximately
1120 km2. The area with the highest suitability was limited to about 38 km2. High
and medium suitability areas were limited to 162 km2 and 418 km2, respectively
(Table 9.2). The NDVI for the months of April and July was used to determine the



Table 9.2 Habitat suit-
ability classes of
A. sikkimensis in Sikkim
derived from the MaxEnt
model

distribution of potential habitat for A. sikkimensis in its native range in this study.
Interestingly, the NDVI for the months of April and July, which contributed the most
to the habitat model, corresponds to the species’ flowering and fruiting months,
demonstrating the importance of phenology in determining the species’ distribution.
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Habitat suitability classes Area (km2) Area (%)

Low 1120 64.44

Medium 418 24.05

High 162 9.32

Very high 38 2.18

9.4 Discussion

The study revealed that storing seeds in cold (5 °C) before germination considerably
improved A. sikkimensis performance by elevating seed germination rate. Cold
treatment was necessary because the Acer seed remains dormant (Kanazashi et al.
2014). Furthermore, due to the presence of hard seed cover in the form of wings,
seed germination was poor. As a result, removing the hard covering improved seed
germination. The seeds treated with different concentrations (i.e., 100 μM, 200 μM,
500 μM) of GA3, ABA, IAA, and kinetin showed different levels of germination.
Increased concentrations of GA3 and kinetin showed a decrease in germination
percentage. The germination percentage was almost 100% at 100 μM concentration
of GA3 and kinetin. Seeds did not germinate when treated to ABA and IAA at
concentrations of 100 μM and 500 μM, respectively. However, seed germination
was negligible when treated with 200 μM of ABA and IAA. Thus it can be
concluded that in A. sikkimensis, seeds treated with GA3 and kinetin accelerated
seed germination, while seeds treated with ABA inhibited seed germination
and development. The same has been reported for A. pseudoplatanus L. and
A. platanoides (Pinfield and Stobart 1972; Tillberg and Pinfield 1981; Pinfield and
Gwarazimba 1992).

In predicting the potentially suitable habitat for A. sikkimensis, the NDVI for
April and July was critical. Since different environmental factors such as geology,
soil, and climate have a credible impact on vegetation indices, the role of such
environmental factors in determining the species’ habitat suitability could be
explained using NDVI layers (Soleimani et al. 2008). In the present study, NDVI
for April and July contributed the most which correspond to leafing and flowering
phase of A. sikkimensis. After a prolonged winter that begins in December, new
leaves begin to appear in March and April, which is the reason April month is
contributing more. As a result, NDVI is an effective alternative variable for reflecting
the net results of multiple environmental conditions that affect the probability
distribution of A. sikkimensis.

In the Sikkim Himalaya region, just 38 km2 (or 2.18%) of the total 1738 km2

predicted to be suitable falls into the very high suitable category (Table 9.2). The



majority of the area in the West Bengal district of Darjeeling predicted to be suitable
is covered by the Senchal Wildlife Sanctuary, whereas the majority of the area in the
Sikkim state is covered by the West district. Regions like Kaluk, Rishi, Lingzo,
Dalep, and Yuksom in the West district of Sikkim fall under very high suitability
class and could serve as sites for in situ conservation. Therefore, it should be a
primary concern to attempt to reintroduce seedlings in the areas predicted by ENM.
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9.5 Conclusion

The findings presented on seed germination would aid conservationists, scientists,
and local nongovernmental organizations in the mass multiplication of seedlings and
reintroduction of species in their natural habitat. When compared to other micro-
propagation techniques, which are both expensive and time-consuming, the process
of seed germination presented here is more cost-effective. We also demonstrated
how the MaxEnt model can be successfully used to predict the suitable habitat of
threatened and endangered species, and we successfully superimposed the predicted
habitat suitability map and identified sites for reintroduction using Google Earth.
The study presented here is very promising for conservation planners and biologists
working on the conservation of this species. The potential habitat distribution map
for A. sikkimensis can aid in natural habitat planning and restoration for more
effective conservation. Such forest areas predicted to be suitable would serve as in
situ conservation sites for the species’ reintroduction and recovery.
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Abstract

Abies spectabilis (D.Don) Mirb. is an endemic Himalayan near-threatened conif-
erous species and the predominant treeline-forming species in the Indian Central
Himalaya (Uttarakhand). The impact of climate change and anthropogenic
activities is perilous to its habitat distribution. Accurate species habitat distribu-
tion is a prerequisite for efficient conservation planning. This vital information is
still missing in the Indian Himalayan region for A. spectabilis. This study models
the habitat suitability of A. spectabilis in Uttarakhand and discusses the manage-
ment implications. Species occurrence records from primary and secondary
sources were used with environment variables for habitat suitability modeling
using the MaxEnt approach. Environment variables included bioclimatic (BCVs),
topographic, edaphic, and anthropogenic variables. The BCVs from two global
bioclimatic databases CHELSA (model 1) and WorldClim (model 2) were used.
Models were validated using threshold-independent measures and further used to
build habitat suitability maps. Both models performed optimally; however, model
2 had higher average values for the area under the curve (AUC) (0.980), partial
AUC (0.977), and the AUC ratio (1.954) indicating higher predictive power. The
precipitation of the driest month (BIO14) was the most important predictor
variable under both models. The habitat suitability area for model
1 (16,324.57 km2) was five times greater than model 2 (3323.86 km2). Only
826.86 km2 area (model 2) was highly suitable for A. spectabilis. The habitat
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suitability is concentrated predominantly in a tight group in the northern region of
Uttarakhand. Chamoli (8.43%), Rudraprayag (6.20%), and Uttarkashi (0.53%)
were the top 3 districts with the highest percentage of high suitability regions
under model 2. The results from the habitat suitability distribution of
A. spectabilis suggest in situ conservation of present occurrences and monitoring
of the regeneration process. Stringent monitoring in the protected areas and the
highly suitable habitat regions modeled must be used for assisted regeneration
and plantation-based habitat enhancement of this endangered species.
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10.1 Introduction

Globally mountains cover ca. 25% of the land surface and act as a habitat for around
12% of the global population. Mountain ecosystems provide a range of services and
are important from socioeconomic and cultural perspectives. They are the predomi-
nant source of freshwater and the head source of prominent rivers around the globe
(Grabherr and Messerli 2011). Various climatic zones resulting from latitudinal
zonation are condensed within the mountains, making them unique ecosystems
supporting various climate zones and associated biodiversity. The steep slope and
elevational gradients create unique biodiversity hotspots for various life forms.
Moreover, the transition zones along the elevational gradient create ecotones,
increasing the number of endemic species in the mountains (Diaz et al. 2003).
Half of the global biodiversity hotspots are in the mountainous regions, representing
the enormity of mountain biodiversity (Rodríguez-Rodríguez and Bomhard 2011).

Globally the impact of climate change is not uniform; mountain ecosystems
especially high-elevation mountain ecosystems are acknowledged as the pioneers
in expressing climate change impacts (Becker and Bugmann 2001). In contrast with
the pre-industrialized temperature, the 1.3 °C to 1.6 °C increase in surface air
temperature over land is one of the most recognized impacts of climate change.
The elevation-dependent climatic zones on mountains undergo rapid transitions due
to steep slopes and elevational gain; moreover, the high-elevation regions are
relatively undisturbed from strong anthropogenic influence, making the mountain
ecosystems vulnerable to climate change-induced warming impacts (Beniston
2003). In this regard, mountain ecosystems are even debated as the sentinels of
climate change, especially the high-elevation treeline ecotone regions and the alpine
vegetation, though there are several biotic, abiotic, and spatial complications in this
regard (Malanson et al. 2019). Upward movement of treeline species and alpine flora
or even changes in the composition of alpine flora is a recognized impact of climate



change on mountain ecosystems; the upward movement of the species is to remain
associated with their bioclimatic preference (Zisenis and Price 2011; IPCC 2019).
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For the decade 2006–2015, in context with the pre-industrialization period, the
global mean surface (land and ocean) temperature increase was around 0.87 °C
(Allen et al. 2019). From 1901 to 2009, the annual mean temperature in India
increased by 0.56 °C (Attri and Tyagi 2010), the year 2016 in India was recorded
as the warmest year with a temperature increase of 0.71 °C, and the year 2020 was
the eighth warmest in record since the year 1901 (Attri and Chug 2021). The
Himalayan mountain ranges are experiencing a more significant impact and are
warming faster than other mountain ranges globally. The Himalayas showed a
significant increase in annual temperature along with a reduced number of cold
days and nights than the global trend, an increase in decadal temperature rise with a
positive association with elevation, temporal variation in warming, rainfall deficit,
pre-monsoon drought, early snowmelt, and extreme rainfall events (Schickhoff et al.
2016). The northwestern region of the Himalayas has warmed by almost 1.1 °C in
the past century (Bhutiyani 2015). Additionally, the rapid population boom leading
to widespread modern construction is causing increased regional warming in the
Himalayas (Pandit 2013).

The high-elevation Himalayan treeline ecotone is represented by 58 tree species
(Singh et al. 2020). The treeline taxa having a specialist niche might face extirpation
due to competition from the upward migration of lowland species, alpine shrubs, and
krummholz species (Schickhoff et al. 2015). In the Indian Himalayan region (IHR),
limited studies have investigated the impact of real-time climate change on treeline
dynamics using tree rings with chronologies. Yadava et al. (2017) reported an
average upward shift of 11–54 m decade-1 of the Himalayan pine (Pinus
wallichiana A.B. Jacks.) treeline in the western Himalaya; the winter and early
spring warming due to climate change resulted in the increased radial growth.
Similarly, Singh et al. (2018) showed elevated monthly temperature during
November and February to positively correlate with increased radial growth in
Himalayan silver fir, i.e., Abies spectabilis (D.Don) Mirb., during the past century.
Interestingly, the studies independently also attributed anthropogenic pressure as a
regulatory factor in treeline dynamics.

Conservation planning of Himalayan treeline species, therefore, becomes crucial.
Ecological niche modeling (ENM) is a requisite tool for the conservation planning
approach, not only for current distribution but also for future distribution under
various climate change scenarios (McShea 2014). Globally several studies have
incorporated the use of ENM for plant species conservation planning (Zhang et al.
2012; Nakao et al. 2013; Fajardo et al. 2014; Spiers et al. 2018). From the IHR
perspective, ENM has been used for the conservation planning of endangered plant
species (Adhikari et al. 2019; Dhyani et al. 2021), medicinal plants (Yang et al.
2013; Tariq et al. 2021), endemic species (Chitale and Behera 2019; Manish and
Pandit 2019), major tree species (Chakraborty et al. 2016), prominent shrub species
(Dhyani et al. 2018), invasive plant species (Srivastava et al. 2018), and several
others. These studies and others (Upgupta et al. 2015; Manish et al. 2016; Dhyani
et al. 2020) have also focused on the potential distribution under future climate



scenarios to provide appropriate management implications concerning climate
change. However, in terms of treeline ecotone, there are very few studies on the
IHR (Singh et al. 2012, 2021a). Those present focus primarily on broadleaf species,
viz., Betula utilis D.Don (Singh et al. 2013, 2021b; Hamid et al. 2019) and Quercus
semecarpifolia Sm. (Singh et al. 2021c).
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The dominant timberline species of the Indian Central Himalaya (ICH) which is
represented by the Uttarakhand state (Nandy et al. 2009; Negi 2022) are
Q. semecarpifolia, B. utilis, Abies pindrow (Royle ex D.Don) Royle, and
A. spectabilis (Negi et al. 2018; Rawal et al. 2018; Sharma et al. 2018; Tiwari
et al. 2018). Among these species, A. spectabilis is rated as near threatened as per the
IUCN Red List Criteria (Zhang et al. 2011). Though both A. spectabilis and
A. pindrow are treeline species, only A. spectabilis generally forms the treeline in
ICH, while A. pindrow remains a few hundred meters below (Singh et al. 2020). This
makes A. spectabilis the only coniferous timberline – treeline-dominant forest-
forming tree species in ICH. The treeline of A. spectabilis in the Tungnath region
which lies in the ICH recorded no upward shift for the past four decades (Singh et al.
2018). Kaushal et al. (2021) showed unimodal girth class distribution of
A. spectabilis in the Tungnath region, indicating long-term poor regeneration in
the region; such distribution is perilous for the future security of this endemic
Himalayan species. Poor natural regeneration of A. spectabilis in ICH was noted
by several others; the primary reasons are anthropogenic pressure, land-use change,
and winter warming trend (Rai et al. 2012a; Singh et al. 2018, 2019).

The facts mentioned above led us to choose ICH and A. spectabilis for the present
study. For efficient management and planning of conservation strategies, it is
imperative to precisely model the habitat distribution of A. spectabilis, which is
still eluded in ICH. Our study, therefore, addresses the following broad objectives:
(1) determination of an appropriate global bioclimatic database, (2) identifying the
most influential climatic and non-climatic predictor variables, (3) determining the
currently suitable area of A. spectabilis in ICH, and (4) considering necessary
management implications for conservation planning.

10.2 Materials and Methods

10.2.1 Study Area and Tree Species of Interest

The study area is the Uttarakhand state of India, which constitutes the central portion
of the Indian Himalayan region (Fig. 10.1). Uttarakhand, also known as Devbhumi
or the land of gods/goddesses, lies between 28°43′N to 31°27′N latitude and 77°34′
E to 81°02′ E longitude and has a wide elevational span from 187 m.a.s.l. to 7816 m.
a.s.l. The state is bordered internationally in the north by China and in the east by
Nepal. On the western and southern sides, it is bordered by interstate boundaries of
Himachal Pradesh and Uttar Pradesh, respectively. The state covers an area of
53,483 km2 of which 71.05% (38,000 km2) is recorded as forest area. The average
rainfall of the state for the year 2019 was 1644 mm, while the minimum and the



maximum temperatures recorded were-2.9 °C and 40.7 °C, respectively (FSI 2019;
Uttarakhand at a Glance 2020).
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Fig. 10.1 Study area map representing the location of Uttarakhand in India and an elevational
gradient map showing the distribution of Abies spectabilis occurrence records

This study focuses on an endemic Himalayan near-threatened tree species Abies
spectabilis (D.Don) Mirb. (Family: Pinaceae) (Fig. 10.2). The English vernacular
name of the species is Himalayan silver fir, while locally in Central Himalaya it is
known as Morinda or Raga. It is an evergreen tree species that attain heights of up to
45 m. The wood is of commercial value in construction and carpentry, while the
decoction of the leaves and bark is antipyretic and is used to treat respiratory
problems. The elevational range limit of this species is from 2400 m to 4000 m
and is predominantly found on the northern to northwestern slopes between 3000 m
and 4000 m. The native habitat distribution of the species ranges from Afghanistan
to the Karakoram range, Jammu and Kashmir, Himachal Pradesh, Uttarakhand,
Tibet, and Nepal (Gaur 1999; Zhang et al. 2011).

10.2.2 Species Occurrence Data

Gathering the species occurrence data for A. spectabilis is challenging since it is a
treeline coniferous species. It occurs near ridge tops or high-elevation regions with
undulating terrain, extreme climatic events, and poor accessibility. Even in the
Global Biodiversity Information Facility database (GBIF), there were only



13 records of A. spectabilis from India with geo-coordinates. Only one record
pertained to the area of interest in this study (GBIF 2022). We conducted our field
survey in the Tungnath region, which lies in the core zone of the Kedarnath Wildlife
Sanctuary in the Rudraprayag district of Uttarakhand. We recorded the
geo-coordinate data for A. spectabilis occurrence using a hand-held Global Position-
ing System (GPS) meter (Garmin® GPS72™). Additionally, we enhanced our
occurrence records with 15 occurrence points from published literature (Supplemen-
tary Table 10.1).
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Fig. 10.2 Abies spectabilis habitat. (a) A. spectabilis treeline at Tungnath, Uttarakhand. (b) Mature
A. spectabilis tree; notice the thick Rhododendron campanulatum D.Don krummholz in the
understory. (c) A twig-bearing pollen cones. (d) Mature female cones of A. spectabilis

A total of 26 occurrence records were collected using primary (11 occurrence
points) as well as secondary sources (15 occurrence points) (Supplementary
Table 10.1, Fig. 10.1). The occurrence points were converted to a shapefile and
projected to WGS84 projection using SDMtoolbox (version 2.5) (Brown et al. 2017)
in ArcGIS (version 10.5). There were spatial clusters in occurrence points
(Fig. 10.3); such clusters lead to spatial autocorrelation and biasedness in model
predictions causing inflated values for model accuracy (Veloz 2009). Occurrence
points were therefore spatially rarefied using a 1-km resolution using spatially rarefy
occurrence data tool under SDMtoolbox. A 1-km resolution was selected due to
small occurrence records. The distribution range of A. spectabilis is narrow, and the



environmental layers we selected were of 30 arc-second resolution (ca. 1 km × 1 km
resolution).
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Fig. 10.3 Spatial rarefication of occurrence records. (a) Occurrence records of A. spectabilis in
Uttarakhand. (b) One example of spatial clustering of occurrence records in the Tungnath region.
(c) Occurrence records after spatial rarefication (resolution 1 km)

10.2.3 Environmental Data for Habitat Distribution Modeling

A total of 44 environmental variables were used including climatic (19 WorldClim
bioclimatic variables +19 CHELSA bioclimatic variables +1 solar radiation vari-
able), topographic (3), edaphic (1), and anthropogenic (1) variables. For climatic
variables, we choose the bioclimatic variables (BCVs), which are the derivatives of
monthly temperature and precipitation values that determine habitat distribution and
its abundance and interactions (Noce et al. 2020). For mountainous regions having
sharp climate gradients due to their topography, capturing the environmental varia-
tion precisely requires high spatial resolution (Fick and Hijmans 2017). Furthermore,
different global bioclimatic databases use different methodologies, leading to the
poor congruence between them. Thus, using a single database could lead to biased
and unreliable predictions, especially in mountainous regions with stronger climatic
variances (Morales-Barbero and Vega-Álvarez 2019). There are several global
bioclimatic databases, among which only two, i.e., WorldClim ver. 2.1 (Fick and
Hijmans 2017) and CHELSA ver. 2.1 (Karger et al. 2017), have high spatial
resolution (30 arc-seconds) and recent averages for current BCVs. Therefore, we
choose both WorldClim and CHELSA for predicting the habitat distribution of
A. spectabilis.
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WorldClim is the most prominently used global bioclimatic database (Bobrowski
et al. 2021a). The latest version of WorldClim (ver. 2.1) is a refined version that
includes the spatially interpolated meteorological data from satellites and weather
station data. This improved the prediction accuracy for temperature variables;
however, other climate variables were only marginally affected (Fick and Hijmans
2017). Climatologies at high resolution for the earth’s land surface areas (better
known by its acronym CHELSA) offer high-resolution information on BCVs.
CHELSA uses statistical downscaling of temperature and precipitation algorithms;
additionally, for precipitation, it also incorporates orographic features, thus improv-
ing the performance in mountainous regions (Karger et al. 2017).

For climatic data, we choose the standard 19 BCVs released by CHELSA (ver.
2.1) andWorldClim (ver. 2.1). The GeoTIFF files were downloaded for the 19 BCVs
under both global bioclimatic databases in 30 arc-second resolution (ca. 1 km2),
representing the averaged current climate data for the period 1970–2000 for
WorldClim and 1979–2013 for CHELSA (Fick and Hijmans 2017). Using the
Extract by Mask (folder) tool of SDMtoolbox, the input rasters were clipped using
the Uttarakhand shapefile mask and extracted in ASCII format. The ASCII layers
were projected to WGS84 projection using the Define Projection as WGS84 (folder)
tool under SDMtoolbox in ArcGIS. The bioclimatic variables with r < ±0.90 were
retained, and highly correlating variables were omitted using the Remove Highly
Correlated Variables tool of the SDMtoolbox to avoid any autocorrelations leading
to unintentional biasedness. BCVs BIO1, BIO2, BIO3, BIO4, BIO7, BIO12, BIO14,
BIO15, BIO17, and BIO18 were the variables for WorldClim after removing
correlation, while for CHELSA, the BCVs were BIO1, BIO2, BIO3, BIO7,
BIO12, BIO13, and BIO14. Since both the databases had a different set of BCVs
so, to prevent any biasedness, we selected the common set of BCVs. Thus, for both
databases we used six BCVs (Table 10.1) for habitat distribution modeling, viz.,
BIO1, BIO2, BIO3, BIO7, BIO12, and BIO14. In addition to the bioclimatic
variables, we also used solar radiation (kJ m-2 day-1) as an additional climatic
variable. The data was obtained from WorldClim ver. 2.1 (Fick and Hijmans 2017)
at 30 arc-second resolution. The monthly GeoTIFF files were averaged using Cell
Statistics tool (Spatial Analyst toolbox).

The species of interest occurs in mountainous regions, and the BCVs also use
digital elevation models (DEM); therefore, we also used three topographical
variables, i.e., elevation, aspect, and slope. The elevation data was obtained from
WorldClim ver. 2.1 (Fick and Hijmans 2017) at 30 arc-second resolution. The
GeoTIFF elevation raster was projected in WGS84 projection and clipped using
Uttarakhand shapefile. The resulting raster was used to compute aspect and slope
under the Spatial Analyst toolbox in ArcGIS. A z-factor corresponding to 30 degrees
latitude was chosen to calculate the slope raster in degrees.

One edaphic variable, i.e., Global Soil Organic Carbon Map V1.5 released by the
Food and Agriculture Organization (FAO), was selected. Soil organic carbon (SOC)
being the predominant component of soil organic matter reflects soil quality. SOC is
associated with nutrient availability, water retention capacity of the soil, and even
structural stability (FAO and ITPS 2018). The GeoTIFF raster was downloaded in



30 arc-second resolution. It represents SOC for 0–30 cm depth on Mg ha-1 basis
(accessed on 16 April 2022 https://storage.googleapis.com/fao-maps-catalog-data/
geonetwork/gsoc/GSOCmap/GSOC map 1.5.0.tif).
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Table 10.1 Environmental variable used for A. spectabilis ENM

Model 1

BCV codes (units) Interpretation (scaling factor and offset)

CHELSA BIO1 (°C) Mean annual air temperature (0.1 and - 273.15)

CHELSA BIO2 (°C) Mean diurnal air temperature range (0.1 and 0)

CHELSA BIO3 Isothermality, i.e., BIO2/BIO7 (0.1 and 0)

CHELSA BIO7 (°C) Annual range of air temperature (0.1 and 0)

CHELSA BIO12 (kg m-2) Annual precipitation amount (0.1 and 0)

CHELSA BIO14 (kg m-2) Precipitation amount of the driest month (0.1 and 0)

Model 2

WorldClim BIO1 (°C) Annual mean temperature

WorldClim BIO2 (°C) Mean diurnal range

WorldClim BIO3 (%) Isothermality, i.e., (BIO2/BIO7) × (100)

WorldClim BIO7 (°C) Temperature annual range

WorldClim BIO12 (mm) Annual precipitation

WorldClim BIO14 (mm) Precipitation of the driest month

Variables common to both model 1 and model 2

Solar radiation (kJ m-2 day-1)

Elevation (meters)

Aspect (degrees)

Slope (degrees)

SOC (Mg ha-1)

HII

All the environmental variables are at 30 arc-second resolution. For each model there are 12 sets of
environmental variables each

For the anthropogenic variable, we choose Global Human Influence Index (HII)
version 2 (1995–2004) dataset. The raster data was downloaded at 30 arc-second
resolution and obtained from the Socioeconomic Data and Applications Centre
(SEDAC) (WCS 2005). HII uses nine datasets broadly grouped into four categories,
population density, land transformation, accessibility, and electrical power infra-
structure, which describe the human footprint. The index ranges from 0 to 72, with
higher scores indicating a higher anthropogenic footprint (Sanderson et al. 2002).

All the environmental layers were masked to the Uttarakhand shapefile, projected
in WGS84 projection, and converted to ASCII format using ArcGIS. So, there were
a set of 12 environmental variables under each of the two sets, i.e., model 1 and
model 2, as indicated in Table 10.1.

https://storage.googleapis.com/fao-maps-catalog-data/geonetwork/gsoc/GSOCmap/GSOC
https://storage.googleapis.com/fao-maps-catalog-data/geonetwork/gsoc/GSOCmap/GSOC
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10.2.4 Ecological Niche Modeling

ENM is an empirical approach that couples the species occurrences with the
environmental predictor variables to model specific environmental constraints rela-
tive to the species (species realized niche), which aids in the spatial and temporal
mapping of the species habitat distribution (Elith and Franklin 2013). Several
species distribution modeling algorithms are based on different principles, and
different methodologies exist to use the models. The models could either be stand-
alone or in a combination approach (ensemble modeling) which is gaining trend
since combining the response from various models improves the prediction accuracy
(Kaky et al. 2020). We used a single-model approach and deployed the use of
maximum entropy algorithm-based species distribution modeling software MaxEnt
(version 3.4.4) (Phillips et al. 2004, 2006, 2017). MaxEnt has been a primary choice
for the majority of ENM studies on account of its advantages, viz., it is a presence-
only model, works well with both continuous and categorical environmental
variables, its regularization parameters avoid over-fitting of the model, flexibility
in the choice of threshold selection for binary output, and easy-to-understand
distribution results as well as interpretation of environmental variables with habitat
suitability (Phillips et al. 2006). Furthermore, the ensemble method requires com-
plex computation, and with limited occurrence records, MaxEnt has proved to be
equally robust and accurate in predicting habitat suitability (Kaky et al. 2020); thus,
we used MaxEnt for the ENM.

Two sets of MaxEnt models were run, i.e., model 1 and model 2. Model
1 included CHELSA BCVs along with other environmental variables, and model
2 used WorldClim-based BCVs and other environmental variables (Table 10.1).
MaxEnt model was executed using auto-feature mode so that MaxEnt automatically
decides the best features suited to our dataset. The random test percentage was set to
30%; therefore, 70% of the occurrence records were reserved for training and 30%
for testing. We used the entire spatially rarefied occurrence dataset for the maximum
use of occurrence records for model building (Phillips et al. 2006). Other settings
included checking the check box for creating response curves and Jackknife for
testing variable importance (this allows to assign the permutation importance and
contribution of each predictor variable), output format was set to logistic threshold
for obtaining a binary output, and output file format was chosen as ASCII. Under the
Basic Settings tab, the default random seed was selected; regularization multiplier β
value was set to 1 (helps to prevent model overcomplexity); background points to
default 10,000; and 50 replicates with bootstrap run the method (bootstrap method
was chosen due to limited occurrence records). Under the Advance tab, Write Plot
Data was selected, maximum iterations were 500, convergence threshold was
0.00001, threshold rule was set to 10-percentile training presence, and under the
Experimental tab, Write Background Predictions were selected.
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10.2.5 Model Performance and Model Output

We evaluated the performance of both the SDM models, i.e., model 1 (CHELSA
BCVs and other variables) and model 2 (WorldClim BCVs and other variables)
using threshold-independent techniques since they avoid any issues regarding the
selection and influence of threshold values (Fielding and Bell 1997). We used two
methods, viz., the area under the receiver operating curve (AUC) and the partial area
under the receiver operating curve (pROC), as threshold-independent methods. The
AUC score ranges from 0 to 1, with 1 (perfect discrimination) being the greatest
predictive ability of the model and 0 showing no predictive ability. Generally, an
AUC score from 0.9 to 1.0 is considered excellent, 0.8–0.9 as good, 0.7–0.8 as fair,
0.6–0.7 as poor, and 0.5–0.6 as very poor. At a 0.5 score for presence/background
models, no discrimination exists between true and false proportions (random perfor-
mance) (Swets 1988; Kaky et al. 2020). The AUC scores were obtained from
MaxEnt average replicate runs. The pROC considers only the ROC region
associated with the data and not the entire AUC range. We also computed the
AUC ratio, i.e., the pROC value compared to the null AUC value expected at
AUC = 0.5. The AUC ratio value ranges from 0 to 2, with the value of 1 indicating
random performance (Peterson et al. 2008; Chaitanya and Meiri 2021). The pROC
was calculated using NicheToolBox, an online platform to perform processing steps
involved in ecological niche modeling (Osorio-Olvera et al. 2020). For pROC, we
used the average ASCII model output from MaxEnt, the proportion of omission was
set to 0.05, the random point percentage was set to 50%, and 100 bootstrap iterations
were used. We also performed an independent sample t-test on the 100 bootstrap
values of the AUC ratio between models 1 and 2 to evaluate the significant
difference between the models. Furthermore, the average values of the 12 predictor
variables for each of the 50 bootstrap runs were subjected to an independent sample
t-test under both models 1 and 2 to determine any significant difference ( p < 0.05)
between the variables.

For both the SDM models, i.e., model 1 and model 2, the average ASCII MaxEnt
output file (the result of 50 bootstrap replicates) was converted into raster format
using ArcGIS. The average raster suitability files are binary (since a logistic output
method was used), with habitat suitability ranging from 0 (unsuitable) to 1 (highly
suitable); the value of 1 is generally not achieved. The binary outputs were
reclassified into four habitat suitability classes, viz., unsuitable, low, medium, and
high suitability. The average 10-percentile training presence (P10) logistic threshold
was used to set the lowest limit of habitat suitability above which the suitability
classes were classified. The classification was as follows, unsuitable habitat (0–P10
logistic threshold value), low suitability (P10 logistic threshold value–0.4), medium
suitability (0.4–0.6), and high suitability (0.6–maximum logistic value). The P10
threshold is a conservative approach, and it considers the habitat suitability of
regions lower than the lowest 10% of the training locations to be unsuitable
(Di Pasquale et al. 2020). We calculated the total area under each habitat suitability
class for both models using zonal geometry as table tool under spatial analyst tools
in ArcGIS. Furthermore, to determine the percentage distribution of habitat



suitability classes, the final habitat suitability raster file was extracted by mask using
each district shapefile for both the models and analyzed for area under each class in
each district using zonal geometry as table tool in ArcGIS.
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10.3 Results

10.3.1 Spatial Autocorrelation of Occurrence Records and Model
Performance

There were 26 total occurrence records (Fig. 10.1), of which 14 records showed
spatial autocorrelation at >1-km resolution (Fig. 10.3). Therefore, after spatial
thinning net 12 occurrence records of A. spectabilis were retained, having the least
resolution of 1 km so that a grid of environmental variables has at most one
occurrence record.

Both the models performed well as per threshold-independent model evaluation
parameters AUC and pROC. Model 2 outperformed model 1 in terms of AUC score
(Fig. 10.4). Model 1 had a good AUC score; however, model 2 had an excellent
score with a very low standard deviation. The mean pROC results also showed
model 2 to be the most predictive (Table 10.2). The AUC ratio for model 2 was
significantly higher than model 1 [t (198) = 24.53, p < 0.0001] (Table 10.2,
Fig. 10.5). The difference between the means of AUC for model prediction (AUC
partial) and AUC at random was significantly different with p < 0.001 for both
model 1 and model 2, indicating that both models performed well.

Fig. 10.4 Average area under the receiver operating curves for the two models for A. spectabilis
with 50 bootstrap runs. (a) AUC for model 1 (notice the greater standard deviation) and (b) AUC for
model 2

Table 10.2 A. spectabilis model evaluation parameters indicating AUC (MaxEnt, 50 replicate
runs), AUC ratio (NicheToolBox, 100 replicate runs), and mean pROC (NicheToolBox, 100 repli-
cate runs). The values indicate the mean with a standard deviation

Model AUC AUC ratio Mean pROC

Model 1 0.877 ± 0.040 1.726 ± 0.09 0.863 ± 0.04

Model 2 0.980 ± 0.008 1.954 ± 0.02 0.977 ± 0.01
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Fig. 10.5 The pROC distribution of A. spectabilis under two separate models. (a) pROC distribu-
tion under model 1 and (b) pROC distribution under model 2. The shaded bars indicate the
frequency distribution of the AUC ratio, and the red-colored bell curve (curve at the left side)
indicates the AUC ratios for random models

10.3.2 Influence of Predictor Environmental Variables

The 12 environmental variables chosen under model 1 and model 2 (Table 10.1) had
BIO14 as the primary environment variable with the maximum percentage of
permutation importance (Fig. 10.6). On a broader overview, the CHELSA BCVs
contributed 71.91% of the total permutation importance in model 1, while the
WorldClim BCVs contributed 89.43% of the total permutation importance in
model 2. For model 1, the top 3 predictor variables based on permutation importance
were BIO14 > BIO01 > Soil organic carbon content. For model 2, the trend was
BIO14 > Solar radiation > BIO03. In terms of percentage contribution (Fig. 10.6),
also BIO14 had the highest contribution among all the environmental variables in
both the models.

The Jackknife test for determining variable importance (Fig. 10.7) for models
1 and 2 indicated BIO14 to contain the most useful information and show the highest
gain when used in isolation. BIO14 also decreased the maximum gain when omitted,
thus indicating that it has information that is not shared by other variables. The result
was similar for all three Jackknife tests, i.e., for regularized training gain, test gain,
and the AUC.
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Fig. 10.6 Percentage contribution and permutation importance of the predictor environmental
variables for A. spectabilis. (a) Predictor variable importance for model 1 and (b) predictor variable
importance for model 2

Fig. 10.7 Jackknife test for the regularized training gain for A. spectabilis. (a) Model 1 and (b)
model 2

10.3.3 Interpretation of the Response Curves

We studied the response curves generated using the particular environmental vari-
able alone to avoid any undue disproportionate impact of variable correlations.
Furthermore, we analyzed only the top 3 variables in permutation importance for
both models. For model 1, BIO14 and SOC positively influence the habitat distribu-
tion of A. spectabilis, showing a sigmoid curve, while BIO01 shows a negative
influence with an inverse J-shaped curve (Fig. 10.8). On the other hand, in model
2, only BIO14 showed a positive influence on A. spectabilis habitat suitability
(sigmoid curve), while solar radiation and BIO03 showed a negative trend (Inverse
J curve). Model 1 BIO14 ranged from around 5 to 68 kg m-2 with a habitat
suitability of >0.5 at around 29 kg m-2. BIO01, on the other hand, declined with
a suitability of>0.5 at ca. 4.35 °C. SOC showed a positive trend with values ranging
from ca. 17 to 67 t ha-1 and a suitability of >0.5 at ca. 42.5 t ha-1. Under model
2, BIO14 ranged from ca. 10 to 38 mm with a suitability of >0.5 at ca. 31 mm. Solar
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radiation declined the habitat suitability with a suitability of>0.5 at ca. 16800 kJ m-

2 day-1. BIO03 also showed a similar trend as solar radiation with a suitability of
>0.5 at ca. 38% (Fig. 10.8).
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Table 10.3 Average values of 50 replicate runs of each predictor variable for the occurrence
records

Environmental variable

BIO1 (°C)

Model 1a

3.64 ± 0.88

Model 2

6.54 ± 0.77

BIO2 (°C) 10.25 ± 0.28 9.55 ± 0.18

BIO3 (%) 36.36 ± 0.86 37.68 ± 0.65

BIO7 (°C) 28.20 ± 0.51 25.38 ± 0.51

BIO12 (mm) 2770.57 ± 165.49 1699.51 ± 60.84

Bio14 (mm) 30.56 ± 2.58 31.84 ± 1.28

Solar radiation (kJ m-2 day-1) 16758.33 ± 44.72 16782.96 ± 57.64

Elevation (meters) 3236.10 ± 89.30 3217.14 ± 108.73

Aspect (degrees) 170.23 ± 32.16 165.12 ± 34.68

Slope (degrees) 17.80 ± 2.75 18.55 ± 2.84

SOC (t ha-1) 43.16 ± 1.99 44.20 ± 2.72

HII 15.62 ± 1.57 16.49 ± 1.69
aThe values for CHELSA BCVs (model 1) are corrected for scale and offset

The values of the 12 environmental predictor variables over the species occur-
rence points were obtained from MaxEnt sample average files for each of the
50 replicates under both models 1 and 2 (Table 10.3). Only elevation, slope, and
aspect did not have any statistically significant difference between the means
(p > 0.05) as determined using an independent sample t-test, rest all the pairs
between models 1 and 2 showed statistically significant difference ( p < 0.05).

10.3.4 Current Habitat Suitability of A. spectabilis

The average P10 training presence logistic threshold values were 0.3784 and 0.2724
for models 1 and 2. These values were regarded as the threshold for suitability cutoff,
and based on this, the current habitat suitability map was drafted (Fig. 10.9). Model
1 had the highest percentage distribution for all three suitability classes compared to
model 2 (Table 10.4). Both the models showed a statistically significant strong
positive correlation in their percentage distribution of habitat suitability classes
indicating similar predictions trend (r = 0.966, n = 4, p = 0.034). A. spectabilis
habitat suitability area in the Indian Central Himalaya as per model 1 was
16,324.57 km2, while for model 2, it was 3323.86 km2.

The spread of habitat suitability of A. spectabilis is toward the northern region of
Uttarakhand, having more prominence of higher elevation (Fig. 10.1). The majority
of the unsuitable and low suitable habitat suitability regions were situated in the
southern part of the state (Fig. 10.9). The niche overlap map (Fig. 10.11) shows
model 1 to predict higher suitable regions than model 2. Moreover, the overlap also



shows that the region predicted as suitable by only model 2, excluding the overlap
areas, was smaller than model 1. Haridwar and Udham Singh Nagar were the only
two districts showing complete A. spectabilis habitat unsuitability as per model 1;
however, model 2 predicted Almora, Champawat, Dehradun, and Nainital to be
unsuitable in addition to Haridwar and Udham Singh Nagar. For model 1, the
districts with the highest suitability region were Rudraprayag (19.55%) > Chamoli
(16.72%) > Uttarkashi (8.25%), while for model 2 the trend was Chamoli
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Fig. 10.9 Current habitat suitability map of A. spectabilis in the Indian Central Himalaya under
models 1 (top) and 2 (bottom). The unsuitable class has the 10-percentile training presence average
logistic threshold value as cutoff



(8.43%)> Rudraprayag (6.20%)>Uttarkashi (0.53%). Uttarkashi (50.86%) had the
highest percentage of medium habitat suitability in model 1, while Rudraprayag
(11.35%) in model 2. Uttarkashi district also had the highest proportion of low
habitat suitable region (8.36%) in model 1 and Rudraprayag (6.32%) in model
2 among all the 13 districts of Uttarakhand (Fig. 10.10).
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Table 10.4 Current habitat suitable area (km2) of A. spectabilis under different suitability classes
in both models 1 and 2. Values in parenthesis indicate the percentage of the total land area
(53,483 km2) of Uttarakhand

Habitat suitability class Model 1 Model 2

Unsuitable 37158.43 (69.48) 50159.14 (93.79)

Low suitability 2127.15 (3.98) 1222.03 (2.28)

Medium sitability 11561.03 (21.62) 1274.97 (2.38)

High suitability 2636.39 (4.93) 826.86 (1.55)

Fig. 10.10 Habitat suitability percentage of A. spectabilis in each district of Uttarakhand state
under model 1 (left stacked column) and model 2 (right stacked column graph). Districts with 100%
region as unsuitable A. spectabilis habitat were omitted

10.4 Discussion

10.4.1 Species Occurrence Records and the Performance of Models

Occurrence records following spatial thinning (Fig. 10.3) for this study were rela-
tively low (12 points). This is because A. spectabilis occurs in high-elevation zones
in the Himalayas (Fig. 10.1) prominently in rugged and inaccessible terrains, thus
making field surveys difficult. Low occurrence points are not unusual in literature;
for instance, Kumar and Stohlgren (2009) used 11 occurrence records (the only
known occurrence) to predict the habitat distribution of a threatened and endangered
tree species Canacomyrica monticola Guillaumin. A. spectabilis is a treeline conif-
erous species (Fig. 10.2) that is endemic to the Himalayas and occurs in a narrow
elevation zone generally spanning from 3000 to 4000 m.a.s.l. (Zhang et al. 2011).
The vegetation pattern in the Indian Central Himalayas along the elevational



gradient shows fairly consistent sub-alpine vegetation with selected species that can
withstand harsh environmental conditions (Singh and Singh 1987; Sharma et al.
2018; Tiwari et al. 2018). Such species, including A. spectabilis, have a specialized
niche; modeling such species even with lower occurrence records is much easier
since the species with broader geographical distribution require a more significant
number of occurrence records for higher model accuracy. Hernandez et al. (2006)
experimentally showed that models run using occurrence points as low as
10 generated almost similar results as those run with twice the size predominantly
for the species with the specialized niche. They also supported that the MaxEnt
model performs the strongest even with low occurrence records on its regularization
parameters. Our occurrence records (26 records) were, however, lower as compared
with the records used for habitat suitability prediction of A. spectabilis in Nepal
(94 records) (Chhetri et al. 2018). We also recommend including true absence points
in the modeling of the habitat distribution of treeline species since certain environ-
mental factors limit the spread of these species beyond the treeline. Encoding these
factors in the modeling parameters will yield greater accuracy in habitat suitability
prediction, especially for future habitat modeling studies under different climate
change scenarios.
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The predictive performance of the models was tested using three parameters, viz.,
AUC, pROC, and AUC ratio (Table 10.2). This method is advantageous since error
and bias associated with selecting the threshold value are omitted; furthermore,
different models would have different threshold cutoffs making model comparison
problematic (Phillips et al. 2006). Model 2 outperformed model 1 (Table 10.2,
Figs. 10.4 and 10.5) in all three model testing parameters; however, model 1 was
only marginally lower than model 2, suggesting the successful habitat prediction
from both models. AUC was not used as the only model evaluation statistic as the
error components are weighted equally. Moreover, comparison with AUC becomes
problematic since the commission errors are calculated along with the entire range
(0–1) even though the predicted occurrence may not span that range; therefore, we
used pROC and AUC ratio (Table 10.2, Fig. 10.5) which helps overcome these
issues (Peterson et al. 2008).

Chhetri et al. (2018) reported a high AUC value (AUC = 0.89) for A. spectabilis
habitat distribution in Nepalese Himalaya. High mean AUC values were also
reported for Picrorhiza kurroa Royle ex Benth. (AUC = 0.915) (Rawat et al.
2022) and Dactylorhiza hatagirea (D.Don) Soó (AUC = 0.868) (Chandra et al.
2021); the two endangered alpine medicinal plants in Uttarakhand having similar to
higher elevational range as A. spectabilis. Q. semecarpifolia (AUC = 0.982), a
broadleaf treeline oak species in the Indian Central Himalaya, also showed excellent
AUC value (Chakraborty et al. 2016). We do not intend to compare our AUC values
with these studies but only show a near comparable range for the model prediction of
these species, which occur in the same niche space as A. spectabilis. The comparison
of AUC between different species, across different regions and using varying
modeling parameters, is not valid due to the differences in the potential distribution
area. However, AUC could be used to compare two environmental datasets
(Fig. 10.4), provided the species and area of interest remain the same (Peterson
et al. 2011).
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10.4.2 Use of Two Global Bioclimatic Databases

There are only two predominant high-resolution bioclimatic databases, i.e.,
WorldClim and CHELSA, which differ in their BCV prediction algorithm.
WorldClim uses a spatial interpolation of climate data, and this technique is consid-
ered less ideal than the statistical downscaling method used by CHELSA. The spatial
interpolation methods usually perform less optimally in regions with uneven topog-
raphy, like mountains. Furthermore, in extreme environments like treeline ecotone
or alpine regions, the environmental features have a predominant say in shaping the
habitat distribution of the species (Morales-Barbero and Vega-Álvarez 2019). All the
bioclimatic variables are based upon two primary datasets temperature and precipi-
tation. While both CHELSA and WorldClim showed congruence for temperature
predictors, the prediction accuracy for CHELA precipitation pattern is more sensi-
tive in the mountainous regions than WorldClim due to the incorporation of oro-
graphic features (Karger et al. 2017).

Furthermore, Bobrowski and Schickhoff (2017) evaluated the efficacy of global
climate datasets in modeling the habitat distribution of a principal Himalayan
treeline broadleaf species, B. utilis. They concluded CHELSA to show greater
accuracy with predictions closer to actual field observations. They also found
WorldClim to over-predicting the habitat distribution and thus cautioned against
the use of WorldClim BCVs alone in the Himalayan landscape without scrutinizing.
Therefore, we used both WorldClim- and CHELSA-based BCVs for the ENM of
A. spectabilis. In a recent critical review on ENM, Bobrowski et al. (2021b) reported
that there are only three studies in the Himalayas that used both WorldClim- and
CHELSA-based BCVs to compare the modeling performance. Therefore, our study
adds to the performance of the two global bioclimatic databases and their limited
knowledge of the Himalayan landscape.

Furthermore, our study is probably the first to use a comparative approach to the
ENM of the endemic Himalayan treeline conifer A. spectabilis. With model 2 having
outperformed model 1 on model validation parameters, we infer that in our study,
WorldClim-based BCVs (model 2) performed much better than CHELSA (model 1).
The performance of CHELSA was only marginally lower, and thus we do not
discriminate against its use. However, we recommend further improving the model
by adding more occurrence points and including true species absence points for
greater validation and accuracy.

10.4.3 Predictor Environmental Variables and their Response Curves

We focused on the permutation importance rather than percentage contribution in
deciding the importance of environmental variables since the percentage contribu-
tion depends upon the path MaxEnt chosen to build the optimal model. The
contribution would vary with each run due to the change in the modeling algorithm.
Furthermore, we also used the Jackknife test, wherein the model was run multiple
times. Each variable was first modeled alone, excluding it and including the



remaining variables to interpret the degree of gain or loss for that parameter (Phillips
2017). Interestingly, models 1 and 2 had the precipitation of the driest month
(BIO14) as the most influential predictor environmental variable having the highest
permutation importance and percentage contribution (Fig. 10.6). Even from the
Jackknife test (Fig. 10.7), BIO14 had the highest gain when used in isolation and
caused the most loss in gain when omitted under both models 1 and 2, thus
confirming it to be the most influential predictor variable of A. spectabilis in
Uttarakhand. In Uttarakhand Himalaya, BIO14 was also deemed to be the most
significant predictor variable for the habitat distribution of Himalayan endangered
medicinal herb P. kurroa (Rawat et al. 2022), critically endangered medicinal plant
Lilium polyphyllum D.Don (Dhyani et al. 2021), and multipurpose shrub species
Hippophae salicifolia D.Don (Dhyani et al. 2018). In other parts of the IHR and
similar elevational range, species like Rheum webbianum Royle, a vulnerable
medicinal herb in northwest Himalaya, had BIO14 as the most important predictor
variable (Wani et al. 2021). All the aforementioned plant species have a similar to
higher elevational range as A. spectabilis; moreover, P. kurroa, H. salicifolia, and
R. webbianum are also found in Tungnath region having A. spectabilis treeline
ecotone (Rai et al. 2012b). The trend, however, is not universal, and D. hatagirea,
a threatened medicinal orchid that also occurs in the Tungnath region along the
A. spectabilis treeline (Rai et al. 2012b), showed a mean diurnal range (BIO2) as the
most significant predictor variable with the highest permutation importance for its
ENM in Uttarakhand (Chandra et al. 2021). Thus, the species occurring in similar
habitats do not always share similar niche requirements. Chhetri et al. (2018)
critically modeled the habitat distribution of prominent treeline species in the
Nepalese Himalaya and found elevation as the strongest predictor variable for
A. spectabilis followed by isothermality (BIO3) in their model using 94 occurrence
records for A. spectabilis alone.
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Our results indicate that A. spectabilis is sensitive to dry seasons and constantly
requires a minimum moist climate for habitat suitability. Moreover, BIO14 for both
model 1 and model 2 showed a sigmoidal response curve (Fig. 10.8), indicating a
positive relationship between precipitations in the driest month with predicted
suitability. We also observed that the average value for BIO14 under the occurrence
records (Table 10.3) for both models was well within the response curve range for
BIO14 (Fig. 10.8) and since the average current value is around 30 mm for both the
models thus as per the response curve higher values will lead to more habitat
suitability for A. spectabilis. The value for the precipitation of the driest month
reflects the bare minimum amount of precipitation required for the habitat suitability
in Uttarakhand region, since November is the month that usually receives the least
annual rainfall (Climate-Data.org 2022). Therefore, the precipitation during this
month predominantly characterizes the A. spectabilis habitat suitability. Singh and
Negi (2018), in their phenological studies of Central Himalayan treeline species,
showed October–November months as the seed maturation duration for
A. spectabilis. Therefore, this period is critical since precipitation ensures the
establishment of seed set and further seed germination. Singh et al. (2018) indicated
the importance of winter temperatures, especially November and February months,



in regulating the growth (radial growth) of A. spectabilis in the Tungnath region of
Uttarakhand. Additionally, they predicted the winter warming trend to be a probable
cause for the loss of regeneration for A. spectabilis. Our results confirm this
observation since BIO1 (annual mean temperature) was the second most important
predictor variable under model 1 (Fig. 10.6), which showed an inverse J trend
(Fig. 10.8), inferring habitat loss with increasing warming. Solar radiation was the
second most important predictor variable in model 2 which also showed a negative
trend, thus indicating increasing levels of solar radiation detrimental to habitat
suitability. Globally the levels of solar radiation have been studied either as a key
factor (Bader et al. 2007) or as one of the factors (Barbeito et al. 2012) responsible
for the alpine treeline formation, regeneration, and mortality. The third environmen-
tal variable having the highest permutation importance (Fig. 10.6) for both models
1 (SOC) and 2 (BIO3) had a high standard deviation, and the permutation impor-
tance was less than 5%. An inverse J relationship of isothermality (BIO3) with
habitat suitability (Fig. 10.8) indicates that A. spectabilis has a narrow range to
tolerate the temperature oscillations between monthly temperature range and annual
temperature range, thus indicating its narrow niche requirements for its habitat
suitability. BIO3 was found to be the most important BCV for three prominent
alpine treeline species A. spectabilis, B. utilis, and P. wallichiana in the Nepal
Himalaya (Chhetri et al. 2018). The importance of SOC as a predictor variable
indicates the contribution of edaphic factors in regulating habitat suitability. Higher
SOC values are associated with increased nutrient availability in soil on account of
increased microbial and enzymatic activity in soil (Siwach et al. 2021). Moreover,
the sigmoidal response curve obtained (Fig. 10.8) infers the positive association of
increasing soil carbon stock with habitat suitability.
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However, one significant concern is regarding the selection of the environmental
variables. Since each study has either difference in study species or study region, and
even if these components are similar, there would be a difference in occurrence
records. This would cause differential autocorrelation in the BCVs, thus resulting in
a heterogeneous selection of BCVs. Furthermore, the variables omitted to reduce
spatial autocorrelation might show significant importance for the same species in
different regions. Therefore, the selected predictor variables must be used cautiously.
Similar concerns were also reflected by others (Kumar 2012; Chhetri et al. 2018;
Yoon and Lee 2021).

10.4.4 Current Habitat Suitability of A. spectabilis

The strong correlation found between the habitat suitability classes for models 1 and
2 indicates similar trend prediction by both models. The suitability area under
medium suitability (0.4–0.6) is much higher than low suitability (P10 threshold–
0.4) since the threshold value is quite large (larger than 0.2), thereby making the size
of the low suitability class smaller. The suitable area predicted by model 1 was
around five times greater than model 2 (Table 10.4). Surprisingly the average values
for the occurrence locations for all the environmental predictor variables



(Table 10.3) were only marginally different; still, the output predictions turned out to
be substantially diverse. We attribute this difference solely to the two global
bioclimatic databases used since the other environmental variables were similar
under both models. In this study, BIO14 was the most important predictor variable
under both models, and this variable is derived from annual precipitation values.
Since precipitation-related CHELSA BCVs have been deemed more accurate due to
the edge of statistical downscaling approach over spatial interpolation of WorldClim
(Karger et al. 2017) therefore, CHELSA-based model 1 might have predicted a
larger area. Bobrowski and Schickhoff (2017) highlighted a critical note about the
distribution of weather stations in the Himalayas; not only their number is scarce, but
also they are heterogeneously distributed along the Himalayan range. Moreover,
those present have an almost negligible presence in the treeline elevations due to
inaccessible terrain, poor connectivity, and harsh weather conditions. This makes the
BCV data for higher elevations more susceptible to errors. Furthermore, due to
complex topographical terrain such as slope degrees, slope aspect, windward and
leeward side, etc., local site-specific weather patterns develop that modulate the
habitat suitability of vegetation on a local scale. In our opinion, the global biocli-
matic database that captures the maximum amount of this fine variability would
yield the most accurate prediction. Though both the models performed equally well,
model 2 with WorldClim BCVs performed slightly better. Therefore, we believe that
the current habitat distribution from model 2 has greater accuracy.
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Interestingly, the districts with high habitat suitability class (0.6–maximum value)
for models 1 and 2 were the same (Fig. 10.9). This infers that A. spectabilis is chiefly
distributed in Rudraprayag, Chamoli, and Uttarkashi districts. This is also evident
from the overlay map, wherein the maximum overlay is primarily situated in these
three districts (Fig. 10.11). The primary region is confined to the eastern part of
Uttarkashi, the northern region of Tehri Garhwal, the northern part of Rudraprayag,
central to the northern fringes of Chamoli, and the western part of Pithoragarh and
northern region of Bageshwar district (Fig. 10.11). These regions have the appropri-
ate cold sub-alpine climate and appropriate mesic conditions. Our predicted regions
for A. spectabilis were similar to the model predictions for B. utilis (Singh et al.
2013) and D. hatagirea in Uttarakhand (Chandra et al. 2021). These species share
their elevational range with A. spectabilis. Overall, the highly suitable regions of the
species are distributed in a tight group toward the northern region of Uttarakhand.
The absence in the western portion of Uttarkashi district could be due to reduced
annual precipitation in the district from east to west direction; furthermore lower
suitability in the east (eastern portion of Pithoragarh) is due to reduced early winter
season precipitation (November) (Singh and Singh 1987) which is critical for
A. spectabilis as per our model predictions.

10.4.5 Implications for Conservation and Future Prospects

Being a near-threatened species, the conservation of A. spectabilis demands priority.
From our current habitat suitability map (Fig. 10.9) and the area under different



habitat suitability classes (Table 10.4), these ranges are higher than the actual
occurrence of the species. This is because the MaxEnt-based habitat suitability
model indicates the regions with environmental conditions suitable for
A. spectabilis, i.e., the fundamental niche. However, the true distribution of the
species is restricted by several factors such as geographic barriers, anthropogenic
disturbances, and even biotic pressure (Phillips et al. 2006). These factors shape the
actual distribution of the species, thus marking its realized niche. Therefore, policy
planners must be cautious in using habitat suitability predictions. The regions we
suggest as highly suitable or suitable represent the regions with environmental
conditions conducive to A. spectabilis. They may or may not show their actual
occurrence in those locations. However, being suitable, these regions could be
selected for raising assisted regeneration and plantations of A. spectabilis for conser-
vation. Furthermore, planners must have A. spectabilis as the primary choice for
plantations in these regions.
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Fig. 10.11 An overlay of model 1 and model 2 habitat suitability regions for current habitat
distribution of A. spectabilis in Uttarakhand. The poinsettia red color indicates the regions suitable
under models 1 and 2

Uttarkashi, Rudraprayag, and Chamoli are the predominant districts with high to
medium habitat suitability (Fig. 10.10). Most of the highly suitable habitat regions in
Uttarkashi district and the regions common to models 1 and 2 from the overlay map
(Fig. 10.11) lie in the Gangotri National Park region. For Rudraprayag also, the
suitable habitat falls under Kedarnath Wildlife Sanctuary. However, for Chamoli
district, the eastern region is in the protected area status under Kedarnath Wildlife



Sanctuary, while the western region falls under Nanda Devi biosphere reserve;
however, the central portion does not lie in any protected area category. Therefore,
focusing on this region is critical since, under models 1 and 2, this region has a
prominent presence of highly suitable habitat for A. spectabilis. Apart from these
districts, the upper fringe of Tehri Garhwal, Bageshwar, and the northwestern
portion of Pithoragarh also have noticeable regions with high suitability for
A. spectabilis. Such areas should be physically monitored to assess the species’
presence and its regeneration status which must be enhanced for future habitat
security.
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Those regions which are under the protected area must also not be considered
entirely conserved. For instance, in our earlier work (Kaushal et al. 2021) in the
A. spectabilis-dominant forest at Tungnath, Uttarakhand, we found the forest to
show unimodal girth class distribution with negligible occurrence in the 10–20-cm
diameter at breast height (DBH) range indicating poor regeneration. Furthermore,
the region has immense grazing pressure, especially from nomadic grazers, and
intense fuelwood demand from the local community, especially during the pilgrim
and tourist season (Rai et al. 2012a). Stringent monitoring is essential, especially in
the protected areas, though understandably, the livelihood of the local communities
is dependent upon the surrounding natural resources, and the growing tourist
pressure over the years has led to extensive utilization beyond the sustainable
capacity. Specified regions should be demarcated for grazing, and using species
with efficient regeneration for fuelwood could help reduce the anthropogenic pres-
sure on this endemic Himalayan conifer. Our observations show that many
threatened medicinal plants have similar niche requirements as A. spectabilis. There-
fore, it is a win-win strategy where the conservation of one species would also ensure
the conservation of several associated species. Thus, preserving the present habitat
and using our predictions for suitable regions for expanding the habitat using
A. spectabilis-assisted regeneration and plantation are the optimum management
requirements.

In terms of future perspectives, we suggest an extensive hyper-accurate survey for
delineating the occurrence records of A. spectabilis throughout the state. Being a
treeline species determining absence points near the treeline would also help fine-
tune the models for future climate predictions to accurately monitor the species shift
under changing climate scenarios. Presently, we omitted majority of the BCVs on
account of autocorrelation, and determination of actual predictor variables associated
with the species in the future would help increase the accuracy of predictions. We
avoided future climate modeling that can be taken after such issues are addressed to
determine the geographical regions with the most significant habitat loss.

10.5 Conclusions

The accuracy of the habitat suitability model is as good as the input parameters. The
results indicate model 2 to have greater predictive power; however, the performance
of model 1 was also not poor. This methodological dilemma can be avoided by



selecting the highly suitable regions under both models since CHELSA-based BCVs
are more accurate with precipitation-based BCVs, and for our study the most
important predictor variable was the precipitation amount in the driest month
(BIO14). The information from the most important predictor environment variables
must be associated with conservation planning approaches especially in plantations
wherein the conditions can be modulated for A. spectabilis suitability. The species
has mere 1.55% area as highly suitable (model 2) in Uttarakhand, and this region is
further tightly grouped into five northern districts, i.e., Uttarkashi, Tehri Garhwal,
Rudraprayag, Chamoli, and Pithoragarh. Though a few of these districts have
protected areas that encompass the high suitability regions, our opinion is that for
efficient management, the high-elevation sub-alpine to alpine regions for all these
northern districts must be under a common protected area status. This would help
conserve A. spectabilis along with other endangered species that have a similar
ecological niche. The regions with current occurrence reflect the realized niche space
of A. spectabilis and require proactive monitoring. The conservation in these regions
would only be possible with the complete support of the local stakeholders and their
inclusion in the conservation planning processes. This is critical since the habitat
suitability of A. spectabilis is at high-elevation regions where regular monitoring can
become problematic; in such situation making the local people aware of the conser-
vation necessity would help the situation. The present condition of A. spectabilis is
perilous, and without any conservation response, the situation can become much
worse since this species is one of the dominant forest-forming species in high-
elevation alpine timberline – treeline ecotone. Therefore, assisted regeneration,
expanding habitat by plantations in the predicted suitable regions, and conservation
of the current population are prudent.
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Modelling the Distribution of a Medicinal
Plant Oroxylum indicum (L.) Kurz for Its
Conservation in Arunachal Pradesh
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Abstract

The natural populations of Oroxylum indicum—an important medicinal plant—is
declining due to habitat loss and overexploitation. Modelling its potential distri-
bution area can help in its conservation. We used maximum entropy (MaxEnt)
model to predict the potential distribution of the species and identify the factors
determining its niche. The model performance was consistent and good with area
under curve (AUC) value of 0.827 and true skill statistic (TSS) of 0.658. The
major environmental variables determining the niche of the species were precipi-
tation of the warmest quarter (49.7%) and annual mean temperature (19.6%). The
model predicted 6.01% as highly suitable, 23.29% as moderately suitable and
70.70% as least suitable. The model predictions could be is useful in identifying
the critical habitats for conservation and restoration of important plant resources.
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11.1 Introduction

The spatial and temporal distribution of a species is an important information in
ecological studies. An understanding of the constraints in geographical distribution
based on environmental factors and available occurrence records of species is vital
for many purposes such as successful conservation of a species (Graham and
Hijmans 2006; Glor and Warren 2011). Species distribution modelling (SDM)
techniques both statistical and machine learning are gaining popularity in recent
days. SDMs are also known as climate envelope modelling, habitat modelling and
environmental or ecological niche modelling (Elith and Leathwick 2009; Guisan
et al. 2013, 2017; Hamann and Wang 2006; Jeschke and Strayer 2008). It is a
numerical tool that combines species occurrence or abundance with the environmen-
tal estimates. SDMs are used to understand the ecological and evolutionary history
and to predict distributions across landscapes, sometimes requiring extrapolation in
space and time. SDMs make predictions of where species may be present but
unrecorded or where they might be found if anthropogenic activities had not
removed them (Anderson et al. 2009) and predictions of where species may be in
the future due to changes in distribution (Parmesan and Yohe 2003). Such
predictions are useful in identifying spatial priorities for conservation (Vaughan
and Ormerod 2003; Kremen et al. 2008) and to assess risks from climate change to
particular species (Julliard et al. 2004; Huntley et al. 2008).

According to Skov (2000), the application of modelling techniques in the distri-
bution of plants are emerging as a powerful tool that combines locations from
herbarium specimens, desktop modelling softwares and geographic information
system (GIS). SDMs correlate the presence/absence species records with climatic
variables to predict current distribution and future potential distribution under
climate change scenarios (Trisurat et al. 2011). Out of several modelling algorithms,
maximum entropy (MaxEnt) is a widely used and globally accepted technique for
species distribution modelling (Graham and Hijmans 2006; Baldwin 2009; Ramírez-
Villegas and Bueno Cabrera 2009). Additionally, it requires presence-only data of
the species, uses concise mathematical algorithm and quantitative assessment of
variable contribution and generates spatially explicit habitat suitability maps
(Phillips et al. 2006; Elith et al. 2010; Yi et al. 2016).

Oroxylum indicum (L.) Kurz (family: Bignoniaceae) is an ornamental tree which
is 8–15 m tall and branched at top. The bark is light-brown and often with numerous
corky lenticels (Deka et al. 2013). The species is mainly distributed in Cambodia,
Fujian, Guangdong, Guangxi, Guizhou, Sichuan, India, Indonesia (Java, Sumatra),
Laos, Malaysia, Myanmar, Nepal, the Philippines, Taiwan, Thailand, Vietnam and
Yunnan (Lawania et al. 2010). In the Indian subcontinent, it is mostly found in the
foothills of the Himalayas, Bhutan, southern China and Sri Lanka (Theobald
et al. 1981).

The seeds are purgative and taken orally to treat throat infections and hyperten-
sion (Singh et al. 2002); fruits are stomachic, anthelmintic, effective in throat and
heart diseases, piles, bronchitis and useful in leucoderma (Chopra et al. 2002; Drury
2006; Nadkarni 1982; Khare 2007); and the leaves are prescribed for snake bite



(Nadkarni 1982; Khare 2007), enlarged spleen, headaches, ulcers, analgesic and
antimicrobial (Prakash 2005; Drury 2006). The indigeneous tribal communities of
Arunachal Pradesh like Adi, Galo, Nyishi, Monpa, Tagin and Wancho use it in the
treatment of liver diseases, stomachache, cancer, itching, inflammation, tuberculosis,
diarrhoea, rheumatism, jaundice and heart diseases (Khongsai et al. 2015; Murtem
and Chaudhry 2016; Tangjang et al. 2011; Tripathi and Limasenla 2017). The plant
materials are also used as wood, tannins and dyestuffs. Thus, O. indicum is both
economically and medicinally important plant. The natural population of the species
is under threat due to indiscriminate harvesting and habitat degradation. Therefore,
in this study we attempted a species distribution modelling of O. indicum in
Arunachal Pradesh, India, based on the occurence records and environmental
variables to assess the potential suitable areas of this important medicinal plant.
The results would be helpful in evolving appropriate strategies for conservation of
the plant.
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11.2 Materials and Methods

11.2.1 Study Area

The study was conducted in the state of Arunachal Pradesh (26.28° N–29.30° N
latitudes and 91.20° E–97.30° E longitudes) in northeast India. It shares international
border with Bhutan in the west, China in the north, Myanmar in east and state
boundaries with Assam and Nagaland (Fig. 11.1). The state is characterized by a
series of high ridges and low valleys. The major rivers are Kameng, Dibang, Siang,
Subansiri, Lohit and Tirap. The state receives an average annual rainfall of
300–500 cm and an average temperature of 15–21 °C (winter) and 22–30 °C
(summer). With a wide range of floral and faunal species, including rare and endemic
species, this region is one of the biodiversity hotspots of the world.

11.2.2 Occurrence Data

A total of 217 occurrence records of O. indicum have been collected through field
survey, online database and published literature. Out of which, 186 occurrence
points were collected using a handheld Garmin GPS-based field survey (January
2022–July 2022), 12 occurrence records from various published literature and only
1 occurrence point from the Global Biodiversity Information Facility (GBIF 2022).
We used a spatial thinning method (spThin package) in R (Hijmans et al. 1999) to
reduce spatial sampling bias, following which 76 geo-referenced points were
selected for the model building.
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Fig. 11.1 Location map of the study area

11.2.3 Environmental Layers

To generate the distribution modelling of O. indicum, a set of environmental,
topographical, land use/land cover and soil properties with 30 m resolution were
acquired from various sources like WorldClim, ESRI land cover and World Soil



Information (ISRIC). The parameters include 19 bioclimatic variables, 4 soil
variables and 1 land use/land cover. Additionally, the topographical variables like
altitude, slope, aspect and drainage proximity were derived from the Advanced
Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation
Model (ASTER GDEM) database with 30 m spatial resolution using ArcGIS 10.3.
The highly correlated variables were removed as such variables negatively affect
model performance and result in inaccurate predictions (Parolo et al. 2008; Merow
et al. 2013; Dormann et al. 2013; Manzoor et al. 2018). Ideally, the correlation
between predictor variables should be |r| > 0.7 as reported by various studies
(Dormann et al. 2013; Manzoor et al. 2018; Sony et al. 2018; Farrell et al. 2019;
Feng et al. 2019). After performing multicollinearity test using usdm package in
R (Naimi and Araújo 2016), nine predictor variables, namely, annual mean temper-
ature (BIO1), precipitation of the warmest quarter (BIO18), land use/land cover, soil
pH, clay soil, silt soil, slope, aspect and proximity to drainage, were included in the
final model (Table 11.1).
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Table 11.1 Environmental variables used in the final model

S. no. Environmental variables Code Unit

1. Annual mean temperature BIO1 °C

2. Precipitation of the warmest quarter BIO18 mm

3. Soil pH pH g/kg

4. Clay soil Clay g/kg

5. Silt soil Silt g/kg

6. Slope Clip_slope mm

7 Aspect Clip_aspect m

8. Proximity to drainage Proximity_drainage –

9. Land use/land cover LULC –

11.2.4 Model Settings and Evaluation

MaxEnt (version 3.4.1) was used for the potential niche modelling of O. indicum.
MaxEnt technique is more reliable than other methods as it provides accurate
prediction for small sample sizes (Hernandez et al. 2006; Wisz et al. 2008; Baldwin
2009) and resilient to spatial errors and sampling-biased occurrence data (Baldwin
2009; Graham et al. 2008). MaxEnt performs better than other methods of niche
modelling (Phillips et al. 2006; Peterson et al. 2008; Phillips 2008; Radosavljevic
and Anderson 2014; Nimasow et al. 2016). The model used 500 iterations, 0.00001
convergence threshold, 0.5 prevalence, 10,000 background points, 10 percentile
training presence and 5 replicate model runs with cross-validation technique to
ensure and assess the model reliability (Pearson et al. 2004). The individual
contributions and permutation importance were analysed using variable contribution
table and jackknife test (Baldwin 2009; Phillips et al. 2017a, b; Thapa et al. 2018).
The threshold-independent, area under curve (AUC), receiver operating



characteristic (ROC) curve (Hanley and McNeil 1982; Manel et al. 2001) and true
skill statistics (TSS) were used to evaluate model performance. Logistic response
option was used to represent the probability of the presence of species within a range
of 0–1 showing a range of suitability scale (Phillips 2008). The average logistic
outputs were imported into ArcMap 10.3, and the suitability ranges were determined
by employing 10 percentile training presence threshold rule showing suitable and
unsuitable areas of O. indicum. The complete methodology applied in this study is
shown in Fig. 11.2.
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Fig. 11.2 Methodology followed in the study

11.3 Results

11.3.1 Model Performance

The model used the best environmental variables which play a significant role in the
growth, development and distribution of O. indicum. The averaged model showed
high training AUC values (>0.861) throughout the models and also slightly greater
than the test AUC values. The test AUC values, which exhibit the actual model
predictive power, were higher than 0.827. The final model is reasonably good and
consistent with mean AUC of 0.827 and TSS value of 0.658. The jackknife test
revealed that the distribution of O. indicum was mostly constrained by the precipita-
tion of the warmest quarter (BIO18) which accounts for 49.7% of the explained
variation. Annual mean temperature (BIO01) with 19.6% and LULC 9.3%
accounted for the next highest variation. The mean contribution of slope, soil pH,
clay soil and proximity to drainage was greater than 3%. Other variables such as silt
soil and aspect explained minor variance with less than 2% (Fig. 11.3).

The response curves show a positive relationship ofO. indicum with precipitation
of the warmest quarter (maximal at 2000–2700 mm), annual mean temperature



(maximal at 19–27 °C), silt soil (maximal at 450–500 g/kg) and clay soil (maximal at
250–480 g/kg). On the other hand, there was a negative association with F (minimal
from 2% to 12%), soil pH (falling from 5 to 8), proximity to drainage
(2000–12,000 m) and slope (peaked towards lower values of 10–70°) as shown in
Fig. 11.4.
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Fig. 11.3 Area under curve and jackknife test of environmental variable importance

11.3.2 Species Distribution Modelling of O. indicum

The suitability model predicted the distribution of O. indicum in Arunachal Pradesh
in the range of 0–0.82 (Table 11.2 and Fig. 11.5) which was classified into three
categories, namely, least suitable (0–0.30), moderately suitable (0.30–0.60) and
highly suitable (>0.60). The results show an area of 59,205.3 km2 (70.70%) as
least suitable, followed by 19,504.1 km2 (23.23%) as moderately suitable and only
5033.61 km2 (6.29%) under highly suitable category. An examination of the final
model reveals majority of northern part of the state as unsuitable for O. indicum due
to high altitude, steep slope, low temperature and rainfall. On the other hand, the
foothill areas characterized by lower slope, high temperature and rainfall showed the
high suitable areas of O. indicum. The suitable areas have been mostly predicted the
hot and humid foothill regions of Papum Pare, Lower Dibang Valley, East Siang,
Pakke Kessang and Changlang district of Arunachal Pradesh. The river banks of
Siang, Subansiri, Kameng and their major tributaries were also predicted under
highly suitable category. In fact, the model predictions follow the current known
distribution pattern of O. indicum in the state. The predicted area under moderately
suitable (23.23%) forms the potential habitat of the species in the future which can be
explored for regeneration and restoration of the species. The model predictions of
only 6% under highly suitable category confirm the limited area of occupancy and
endangered status of the plant.
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Table 11.2 Suitable
categories of O. indicum in
Arunachal Pradesh
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Suitability class Area (km2) Percentage

Least suitable 59,205.3 70.70

Moderately suitable 19,504.1 23.29

Highly suitable 5033.61 6.01

Total 83,743.00 100.00

Fig. 11.5 Habitat suitabity map of Oroxylum indicum (L.) in Arunachal Pradesh

11.4 Discussion

The modelling results reveal that the distribution of O. indicum is highly influenced
by variations in the precipitation of the warmest quarter (Bio18), annual mean
temperature (Bio1) and land use/land cover (LULC). The slope, soil pH, clayey
texture and proximity to drainage also moderately affect the distribution of
O. indicum in the study area. The results indicate that the occurrence of
O. indicum is highly influenced by precipitation of the warmest quarter with optimal
precipitation requirement of ~1300 mm. The findings are in agreement with the
reported precipitation requirement of 850–1300 mm (Behera et al. 2019) and
~1200 mm (Kumar et al. 2021) for the growth and development of O. indicum.
We also found a positive association of O. indicum with moderate to high annual



mean temperature in conformity with the reported optimal requirement of 22–35 °C
(Kumar et al. 2021). Thus, the species has been found to grow mostly in moist and
humid areas that receives moderate to high temperature (Bennet et al. 1992; Chauhan
1999; Bumrungsri et al. 2008). The model also shows a negative relationship of
O. indicum with slope and proximity to drainage species by restricting the
predictions to the foothills and river banks in agreement with the previous studies
(Bennet et al. 1992; Chauhan 1999; Gu et al. 2006; Jayaram and Prasad 2008;
Lawania et al. 2010; Deka et al. 2013; Jagetia 2021; Rathod et al. 2022). The edaphic
factors also play a vital role in the distribution of O. indicum.
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The natural population of O. indicum is on the verge of extinction due to habitat
alteration such as deforestation, unsustainable extraction for medicine, overexploi-
tation, low regeneration rate (Yasodha et al. 2004; Mishra and Kotwal 2010; Mishra
2011), poor pollination and declining pollinators (Vikas et al. 2009). The species has
been already enlisted as endangered in some of the states of India. Therefore, there is
an urgent need of evolving conservation measures for this important endangered
medicinal plant based on the potential habitats predicted by the model.

11.5 Conclusion

In this study, MaxEnt was used to model the suitable habitat of O. indicum in
Arunachal Pradesh. We used topographic, bioclimatic, land use/land cover and
soil variables to run the model. The model performance was reasonably good and
reliable. The model predicted only 6.01% of the total area as highly suitable which
indicates its restricted area of occupancy. However, the model also predicted about
23% of the state as moderately suitable that needs to be explored for confirming the
occurrence of the species. Based on the findings, we recommend to evolve suitable
strategies to explore the potential habitats of O. indicum. Further, we also recom-
mend for lessening human activities like overexploitation, unsustainable collection
and deforestation over the suitable habitats of O. indicum.
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Abstract

Plant-based medicine has played a significant role in maintaining the human
health since the dawn of civilization. Identification of bioactive compounds
from medicinal plants has led to the discovery of a number of valuable drugs
that are being extensively used in modern and traditional practices of medicine.
The escalating commercial demand of medicinal plants has led to the overexploi-
tation of many species from the wild, which has resulted in the loss of their natural
populations. Consequently, several valuable medicinal plants including Aconitum
heterophyllum have been put under different categories of threat due to their
overexploitation and habitat degradation. Moreover, the abysmal consequences
of climate change on habitat range shifts at the ecosystem and species level have
threatening impacts on ecosystem functional traits. The Rare, Endangered,
Threatened (RET) and endemic species, which have narrow geographic distribu-
tion, undersized population and low reproductive capacity, are extremely suscep-
tible to such variations and are at higher risk of extinction. Hence, the habitat
suitability modelling of these plant species is highly significant for monitoring,
rehabilitation and conservation of their diminishing populations and natural
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habitats. Therefore, for predicting the distribution range and niche area of
Aconitum heterophyllum, the field collected data was synchronized with environ-
mental and bioclimatic variables using MaxEnt machine learning programme.
We attempted to study the role of different variables on the habitat of Aconitum
heterophyllum, modelling of the current distribution range across the Kashmir
Himalaya and evaluating the niche area using models to formulate management
strategies for its conservation and restoration. It is concluded that the habitat of
Aconitum heterophyllum is highly vulnerable to climate shifts and anthropogenic
pressure; therefore it needs immediate restoration in the wild and systematic
domestication in the potential areas.
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12.1 Introduction

Plant-based medicine has played a significant role in maintaining the human health
since the dawn of civilization. Herbal medicines were used mostly in their crude
form as infusion, tincture and decoction or applied externally as balm. However,
from the late nineteenth and early twentieth century onwards, scientists started
isolation, purification and identification of bioactive compounds from medicinal
plants, which led to the discovery of a number of valuable drugs that are being
extensively used in the modern system of medicine. The World Health Organization
(WHO) reports that 60% of the world’s population and around 80% of the develop-
ing countries’ population depend entirely on herbal medicine for their primary
healthcare needs (WHO 2002).

The global herbal medicine market size is estimated at US$71.19 billion (Hexa-
Research 2017). With an annual growth rate of 15–25%, the World Health Organi-
zation (WHO) has estimated the demand for medicinal plants to increase more than
US$5 trillion by 2050 (Muir and Simona 2018). In India, about 1178 medicinal plant
species are in trade, out of which 242 species have a demand of more than
100 metric tonnes/year (Goraya and Ved 2017). The consumption of herbal raw
drug in India has been estimated at 5, 12,000 MT (during the years 2014–2015) with
a corresponding trade value of Rs. 5500 crore. The export value has shown a record
increase from Rs. 345.80 crore in 2005–2006 to Rs. 3211 crore in 2014–2015,
registering a ninefold increase during a decade (Goraya and Ved 2017).

In spite of such a glorious history and ever-increasing market demand, herbal
medicine could not integrate fully into modern healthcare system due to increasing
concerns about the quality and sustainability of the resources. This sector has also
suffered due to lack of proper R & D on the habitat suitability, regenerating capacity
and efficacy of premature medicinal plants supplied through shady marketing
channels. Nevertheless, the prospect of advancing the research in herbal medicine
has renewed the interest in the medicinal plant sector (Peerzada et al. 2021).



Therefore, the medicinal plant sector offers an exceptional investment opportunity
for rapid and sustainable growth (Tahir et al. 2019; Peerzada et al. 2022). However,
there are certain issues with regulation, standardization and quality assurance in the
manufacturing of herbal medicine, due to complexity of their diverse secondary
metabolites, which principally depend on genetic factors, age and geographical
location of the plant species. The variability in phytochemical contents as well as
occurrences of adulteration has an abysmal impact on uniform standards of herbal
medicines.
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The escalating commercial demand of medicinal plants for their therapeutic uses
has led to the overexploitation of many species from the wild, which has resulted in
the loss of their natural populations (Pimm et al. 1995). Consequently, several
valuable medicinal plants have been put under different categories of threat due to
their overexploitation and habitat degradation. Prominent medicinal plants from
Kashmir, which are under certain categories of threat, are Aconitum heterophyllum
Wallich., Arnebia benthamiiWallich., Saussurea costus (Falc.) Lipsch. and Trillium
govanianum Wall. ex D.Don. Among which Aconitum heterophyllum, one of the
significant medicinal plants, with known antipyretic, analgesic, anti-venom and anti-
inflammatory properties, is being heavily exploited to cater the exponential demand
at local, national and international markets (Srivastava et al. 2010; Peerzada et al.
2021). Therefore, there is an immense need to rehabilitate these species in the wild
by identifying the suitable habitats. This will have an impeccable impact on the
modern medical sciences and shall help in informed decision-making in the herbal
medicine system.

12.1.1 Target Species

Aconitum is a large genus in the Ranunculaceae family with over 250 species, among
which around 33 species are found in the Himalayas, from Afghanistan in the west to
Myanmar (Burma) in the east. Aconites are also found in Europe, where they are
used in traditional systems of medicine. However, Aconitum heterophyllum, the only
non-poisonous member of the Ranunculaceae family (Wani et al. 2021b), is the most
exploited and traded aconite species in the Northwestern Himalayas (Peerzada et al.
2021).

Aconitum heterophyllumWall. ex Royle is commonly called as aconite, ativisha,
atis, patrees and monkshood. In India, the plant is generally found in Jammu and
Kashmir, Himachal Pradesh and Uttarakhand (Nagarajan et al. 2015; Balaramnavar
et al. 2021). In Jammu and Kashmir, the scattered populations of sparsely distributed
individuals of this species are confined to sub-alpine and alpine habitats between
2200 m and 4200 m altitudes (Beigh et al. 2008; Peerzada and Sofi 2017; Peerzada
et al. 2018). This species is adapted to the inflexible locations having severe site
factors and extreme climatic conditions (Beigh et al. 2008). Owing to significant
pharmacological properties, overexploitation from forests due to an increasing
market demand, this species has been categorized as a Critically Endangered
(CR) species (Wani et al. 2021b) in the Northwestern Himalayas.
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Aconitum heterophyllum is a perennial erect herb with about 30–90 cm height.
The shoot is annual, while the root is biennial. The stems are simple or branched
from base, glabrous and puberulous above, broad, ovate or orbicular or five-lobed
and toothed, above three-fid or entire. The branches are absent or rarely one or two in
number. Inflorescence is terminal but sometimes axial. The flowers are in racemes,
2.5 cm long, blue or greenish blue with purple veins and helmet shaped. The roots
are tuberous, in pairs, whitish or light grey up to 3 cm long, 0.5–1.2 cm thick with
conical ends, break easily and taste bitter. The mother and daughter tubers occur in
pairs. The seeds are obpyramidal, 3–4 mm long, blackish brown, angles acute or
more or less winged, faces smooth. Flowering occurs during July–August and
fruiting during August–October. Seeds are collected during October–November
(Kirtikar and Basu 1975). The tuberous roots (tradable part) of this species are
harvested after the second year of growth during September–October (Peerzada
et al. 2018). It contains a non-crystalline, non-toxic alkaloid called atisine. Other
alkaloids found in this species are heteratisine, histine, heterophyllisine,
heterophylline, heterophyllidine, atidine and histidine (Nagarajan et al. 2015;
Balaramnavar et al. 2021). Aconitic acid, tannic acid, palmitic, stearic glycerides
and vegetable mucilage are also present in addition to starch and sugars
(Rajakrishnan et al. 2016). The roots are used as antipyretic, analgesic, antiperiodic,
aphrodisiac, astringent, anti-venom, anti-inflammatory, anti-rheumatic and vermi-
fuge. It is also used to treat piles and digestive and reproductive disorders (Sojitra
et al. 2013; Peerzada and Sofi 2017). However, the aqueous extract of the root
induces hypertension through action on the sympathetic nervous system, and in
higher doses its use may become lethal (Kumar et al. 2016).

The per kg (dry weight) cost of Aconitum heterophyllum tuberous roots in
Kashmir ranges between Rs. 4000 and 6000/- (Peerzada et al. 2018) with an annual
demand of 200–500 MT at the national level (Goraya and Ved 2017). The ever-
increasing demand for this species has led to its overexploitation from the wild.
Owing to its increasing demand, decreasing natural populations from forests due to
anthropogenic pressures including excessive harvesting, grazing and seed dormancy
(Beigh et al. 2008; Srivastava et al. 2010), the National Medicinal Plants Board
(NMPB) has enlisted Aconitum heterophyllum as a priority species for the promotion
of cultivation outside forests with 75% subsidy (Peerzada et al. 2018). Apparently,
the commercial cultivation of this species has not been taken up by any farmer in
Kashmir due to its long gestation period (3–7 years), low seed germination, slow
growth rate and meagre survivability. Moreover, the production within forests and
natural habitats is usually preferred for high altitude medicinal plants like Aconitum
heterophyllum, as there are serious apprehensions about variations in the biochemi-
cal compounds of wild and cultivated medicinal plant species (Ramatsobane and
Anthony 2020). The climatic, edaphic, topographic and biotic factors, including the
associated biodiversity, have a distinct role in the accumulation of biochemical
compounds of plant species (Yeshi et al. 2022). Besides, various studies have
established the potential impacts of climate change on the distribution of vegetation,
particularly on grasslands and forest ecosystems (Rashid et al. 2015). The projected
increase in average annual temperate of the Kashmir Himalayan region between



3.98 °C and 6.93 °C (Romshoo et al. 2020) by the end of this century will have
devastating impacts on the vulnerable species. However, there is no specific infor-
mation available on the effects of climate change on distribution of medicinal plants,
as these plants have distinct spatial patterns and are influenced by diverse environ-
mental factors (Dad and Rashid 2022). It is therefore crucial to identify the species-
specific suitable habitats for restoration of Rare, Endangered and Threatened (RET)
species. Such strategy would help in species restoration, rehabilitation, conservation
and management of this prized natural wealth.
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12.1.2 Habitat Suitability Modelling

Biodiversity in the fragile Himalayan region is highly vulnerable to the impacts of
climate change. The abysmal consequences of climate change on habitat range shifts
at the ecosystem and species level have threatening impacts on ecosystem functional
traits (Shrestha et al. 2012; Wani et al. 2021a; Kumari et al. 2022). By the end of this
century, the suitable habitats of various high mountain plant species are predicted to
reduce significantly or disappear entirely due to increased earth temperature and
fluctuating precipitation patterns aggravated by the global warming (Van de et al.
2007; Engler et al. 2011; Peerzada et al. 2016). The Rare, Endangered and
Threatened (RET) and endemic species, which have narrow geographic distribution,
undersized population and low reproductive capacity, are extremely susceptible to
such variations and are at higher risk of extinction (Rew et al. 2020; Bobrowski et al.
2021; Megan 2021). Hence, the habitat suitability modelling of RET as well as
endemic plant species is highly significant for monitoring, rehabilitation and conser-
vation of their diminishing populations and natural habitats (Malhi et al. 2020). It
also helps in predicting the distribution range and niche area (Pecl et al. 2017) with
the help of field surveyed data in sync with the topographic and bioclimatic variables
(Guisan and Thuiller 2005; Taleshi et al. 2019). Therefore, the species distribution
models (SDMs) are an important ecological tool for forecasting the habitat suitability
(Singh et al. 2017; Rew et al. 2020), restoring the degraded habitats (Guisan and
Zimmermann 2000; Cengic et al. 2020) and re-introduction of indigenous species
(Elith and Leathwick 2009; Fois et al. 2016; Condro et al. 2021) as well as predicting
the climate change impact on species reproduction and future distributions
(Rodríguez et al. 2007; Cengic et al. 2020). The SDMs combine species occurrence
data with environmental variables (temperature, precipitation, elevation, geology
and vegetation) to create a model that represents the distribution of species with
respect to different ecological attributes (Condro et al. 2021; Kumari et al. 2022).

Although there are a number of statistical methods in practice to create a species
distribution model, we have used MaxEnt for the present study. MaxEnt is a machine
learning programme that uses a statistical technique called maximum entropy which
makes predictions from incomplete information (Engler et al. 2011; Tovar et al.
2013; Kaky et al. 2020). MaxEnt models the geographic distribution of species using
occurrence data and environmental variables on the principle of a uniform probabil-
ity distribution (Mouquet et al. 2015; Dad and Rashid 2022).
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Hence, modelling the suitable habitats and anticipated impacts of climate change
can be an important restoration tool for Aconitum heterophyllum. In this study we
attempted to study the role of different bioclimatic/environment variables on the
habitat distribution of Aconitum heterophyllum and modelling of the current distri-
bution range across the Kashmir Himalaya and evaluated the niche area using
models to formulate management strategies.

12.2 Materials and Methods

12.2.1 Study Area

Kashmir, one of the two provinces of the Jammu and Kashmir UT, is situated on the
northern periphery of India (Fig. 12.1). It extends from 33°.20′ and 34°.54′ N
latitudes and from 73°.55′ and 75°.35′ E longitudes, covering an area of
15,948 km2. About 64% area of the Kashmir is mountainous, and the valley is
encircled by Pir Panjal Mountains in South and Southwest and the Great Himalayas
in the North and East. Kashmir valley comprises of sedimentary, metamorphic and
igneous rocks ranging from Precambrian to Recent. The region has temperate,
sub-alpine and alpine climatic conditions, dominated by pine forests dispersed
with diversity of high-value medicinal and aromatic plants.

Fig. 12.1 Location map showing sample points across forest divisions of the study area J & K UT,
India
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12.2.2 Field Observation and Collection of Occurrence Data

Extensive field surveys were conducted across the 12 forest divisions of Kashmir
(Table 12.1) falling in Northwestern Himalayan range, for field observation and
collection species occurrence data. Around 12 GPS points of occurrences of
Aconitum heterophyllum were collected based on direct/indirect evidence as well
as through field observations assisted by the forest department. Accuracy of the each
occurrence data was carefully checked before usage. The reference points were taken
after spatial thinning and used for modelling the habitat distribution of Aconitum
heterophyllum. Since it is a Critically Endangered species (Wani et al. 2021b), points
were distributed far away from each other rather than clumped. In the general
practice, more occurrence points tend to give more accurate results, but that was
not possible in this case, as Aconitum heterophyllum is a rare and endangered species
and is sparsely found in rough and steep terrains.

12.2.3 Environmental Layer Selection

Environmental layers are as much necessary as bioclimatic variables, but that is
depending again on the study area as well as species habitat response over the time
period. Aconitum heterophyllum is the species which is mostly affected by few
environmental layers as per the ground observations like NDVI, landcover, slope,
aspect and elevation, so these were included to run the MaxEnt model. Landuse-
landcover (LULC) was derived from ESRI 2020 Global Landcover datasets of the
classified landcover classes with a resolution of 30 m which was later recoded to
1 arc-second resolution to match it with the spatial resolution of other bioclimatic/
environmental parameters. The predominant classes include forest cover
surrounding the Kashmir valley followed by agriculture land which is present
around urban areas of Srinagar as well (Fig. 12.2). Area statistics was performed
after the derived landcover from ESRI datasets.

Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) was
utilized to derive an elevation map. Furthermore, slope and aspect were derived from
the same DEM. Elevation range was found to be between 1031 m and 5354 m
(Figs. 12.3, 12.4 and 12.5). Slope map was derived from elevation based on Horn’s
equation available in QGIS tool. Study area has diverse slopes ranging from 0°
slopes in the valley to 76.95° in the mountain ridges. Predominantly the slope’s
direction (aspect) is found in the Eastern and North East sides especially in the
southern part of the study area, whereas the upper region of the mountain ridges
shows variation, however mostly in NW, SW and NE directions. Band 4 and Band
5 were used for generating NDVI (Fig. 12.6) as the ratio of these bands is used as per
the NDVI formula. NDVI is a dimensionless quantity which provides the values
between +1 and -1. From 0 to 1, it represents from sparse vegetation to dense
vegetation, whereas values less 0 represent the complete absence of vegetation
indicating water or ice. It is computed using Eq. (12.1) (Mehta et al. 2021):
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Fig. 12.2 Landuse-landcover (LULC) map of the study area
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Fig. 12.3 Elevation map of the study area
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Fig. 12.6 NDVI (normalized difference vegetation index) map of the study area

NDVI= Band5-Band4ð Þ= Band5þ Band4ð Þ ð12:1Þ

12.2.4 Bioclimatic Variable Selection

Bioclimatic variables were selected from the WorldClim website, as many biocli-
matic variables are correlated with each other, and we have performed Pearson’s
correlation among various bioclimatic and environmental variables using Microsoft
Excel (Table 12.2). The most popular technique for analysing numerical variables is
Pearson’s correlation approach, which assigns a value between 0 and 1, with
1 denoting total positive correlation and 0 denoting total negative correlation
(Boslaugh and Watters 2008). Variables that represent the coefficient of correlation
(r) values greater than 0.7 were shortened to a single variable. Out of the 19 biocli-
matic variables, 4 variables were applied in this study to run the MaxEnt model, viz.
(a) bio1, annual mean temperature; (b) bio4, temperature variability; (c) bio12,
annual precipitation; and (d) bio15, precipitation seasonality (coefficient of varia-
tion) obtained from WorldClim (https://www.worldclim.org), a database of global
weather and climate data (Hijmans et al. 2005) and environmental layers such as
NDVI, slope, aspect, elevation and landcover. Resampling was performed on all
layers in order to have a uniform resolution of 1 km2 to run the MaxEnt model using
the bioclimatic as well as environmental variables.

https://www.worldclim.org
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12.2.5 Species Distribution Modelling (SDM)

For the SDM, MaxEnt software was utilized which predicts the distribution based on
the principle of maximum entropy to find species range with the highest probability
uniformly combining environmental data based on occurrence data for as respective
extent (Phillips et al. 2006). Firstly, occurrence points of species were added along
with all the variables (bioclimatic and environment). Secondly, MaxEnt parameters
were set as per the model requirement with the number of iterations and occurrence
points. MaxEnt parameters with the basic, advanced and experimental mode as well
as the number of output required as graphs, plots and output file formats were
specified. The entire modelling process was performed with minimum 25 iterations
while using 75% of the data for training and 25% for testing.

12.3 Results and Discussions

The model evaluation is performed by MaxEnt inbuilt based on receiver operating
characteristic (ROC) curve which provided a mean AUC (area under curve) of 0.719
which signifies reasonable model performance. The response curves as depicted in
(Figs. 12.7, 12.8, 12.9 and 12.10) give the probability of presence with respective
values of variables given other environmental variables have average sample value.
Based on these response curves, it can be inferred that the species will have higher
presence in higher precipitation areas (mostly above 800 mm precipitation). More-
over, the probability of species presence will be higher where less precipitation

Average Sensitivity vs. 1 - Specificity for Aconitum_heterophyllum
Mean (AUC = 0.719)
Mean +/- one stddev
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Fig. 12.7 ROC (receiver operating characteristic) curve showing specificity



seasonality (<40) is found, i.e. standard deviation of monthly precipitation estimates
as percents mean of the annual mean. Furthermore, as these species will have higher
probability of occurrence in a higher degree of slope comparatively, this can be due
to alpine environment. The habitat estimation of Aconitum heterophyllum in
Kashmir Himalayas revealed that the highly suitable area is 210.08 km2 (1.28%),
moderately suitable area 6155.56 km2 (37.62%) and not suitable area 9995.32 km2

(61.09%) for the current scenario, respectively (Fig. 12.11).
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Fig. 12.8 Response curve showing predicted probability of species presence with respect to values
of the variable bio12 (annual precipitation)
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Fig. 12.9 Response curve showing predicted probability of species presence with respect to values
of the variable bio15 (precipitation seasonality)
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Response of Aconitum-heterophyllum to slope
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Fig. 12.10 Response curve showing predicted probability of species presence with respect to
values of the variable slope

Fig. 12.11 Habitat suitability map of the Aconitum heterophyllum in Kashmir Himalayas



Table 12.3 Analysis of
the different variable
contributions

12 Habitat Suitability and Niche Modelling for Conservation and. . . 243

Variable % Contribution Permutation importance

Landcover 54 21.9

bio12 34.3 37.8

Slope 6.7 26

bio15 4.9 10.6

Elevation 0.1 2.5

Aspect 0.1 0.2

bio1 0 1

NDVI 0 0

bio4 0 0

The percent contributions of the variables are shown in Table 12.3. The landcover
has the highest percent contribution (>50%) for the model followed by bio12
(annual precipitation) (>30%) and slope (>6%), whereas the annual precipitation
has the highest permutation importance, i.e. the model performance when the values
of the variables are randomly shuffled to evaluate. Furthermore, landcover and bio15
precipitation seasonality also had significant permutation importance. Response
curves for the remaining variables vary through different algorithms, indicating
that their influence in regulating the potential distribution of Aconitum
heterophyllum varied to a greater extent in case of more occurrence points.

It is reported that some variables also affect the distribution range of Aconitum
heterophyllum, surrounding the Kashmir valley due to change in the future climatic
scenario; however, two additional bioclimatic variables were utilized, viz. bio2
(mean diurnal range) and bio8 (mean temperature of the wettest quarter). Neverthe-
less, that study utilized an ensemble model focusing more on the future climatic
scenario and its effects on species distribution, and results show reduction in
suitability area of Aconitum heterophyllum in all different scenarios except high
altitude regions in Pir Panjal range which is similar to our results. However, the stark
difference between their current scenario results and our model results shows that
there is also higher suitability in forest divisions of Kamraj, Langate, Jhelum Valley,
Tangmarg, etc. (Wani et al. 2022). Under the current climatic conditions, the habitat
suitability model delineated and exhibited the predominance of the highest suitabil-
ity habitat (HSH) for the assessed species in the highlands across area elevation
ranging from 2200 m to 4200 m, whereas 4.6% of the upper study area was highly
suitable for Aconitum heterophyllum (Dad and Rashid 2022). Results of this study
finds support from Salam et al. (2020) who reported the high to very high habitat
suitable areas for Lagotis cashmeriana (Royle) RUPR from the continuous alpine
patches of Northwestern Himalayan region and medium to low habitat suitability
areas as sub-alpine slopes among evergreen forests. The ranges of habitats including
sub-alpine slopes, moist areas near ridges and exposed rocky slopes near streams as
well as ground vegetation under the Abies pindrow (Fir) forests were found to be the
most high probability areas for Aconitum heterophyllum in Kashmir. Such areas
could be used for in situ conservation and restoration of the species after careful
consideration of onsite conditions. The current study also demonstrated that biotic



variables, especially human activities, have an impact on this species’ habitats.
Therefore, both in situ and ex situ conservations of this species are urgently needed.
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12.4 Conclusion

It is concluded that the most suitable habitat for Aconitum heterophyllum is the
periphery of the Kashmir valley. The highly suitable area accounted for 210.08 km2

which was mostly higher elevation alpine forest areas surrounding the Kashmir
valley, whereas moderately suitable areas were found to be 210.08 km2, and the
remaining majority of the study area which is not suitable mostly constitute agricul-
tural land, urban build-up and permanent snow-covered patches, as indicated in the
LULC comparison. It would be wise to have maximum occurrence points for any
further investigation on this species, which can help in predicting the futuristic
scenarios over a period of time. Aconitum heterophyllum is one of the most exploited
medicinal plants from the Kashmir Himalayas due to its escalating demand in
domestic and international markets. The anthropogenic pressure on its habitat and
ruthless extraction from the wild has put the limited population of this species under
extreme stress. It is therefore high time that this species is rehabilitated and
conserved in the areas identified in this study. The species-specific targeted restora-
tion efforts and campaign will help in conservation and sustainable extraction of the
species.
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Abstract

Climate change and habitat fragmentation are responsible for creating unstable
and isolated populations of various rare, endangered, and threatened plant species
in their natural habitats. Such species face unprecedented extinction risks due to
changing climatic conditions, anomalous population growth, and their high
dependency on natural forests. The use of species distribution models (SDMs)
for forest restoration and conservation has gained a growing trend due to its
significant contribution to improving the success rates of forest restoration
projects. A critical aspect of the planning and conservation of forests is the
selection of suitable management strategies that match the needs of the RET
plant species in both the present and future climates. SDMs can help the devel-
opment of integrated conservation strategy through (1) concentrating future
survey and research efforts on areas with a high likelihood of occurrence,
(2) assisting in the selection of areas for conservation and restoration, and
(3) designing future research questions, such as those required to forecast climate
change reactions. The present chapter emphasizes the use of SDMs for the
conservation and restoration of natural forests from further degradation and to
fulfill the growing demands of forest goods and services for the sustainable
economic development of forest-dependent communities and the nation.
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13.1 Introduction

Globally, increasing habitat loss and degradation puts many of the world’s species in
jeopardy, resulting in population declines, genetic diversity loss, and even species
extinction (Foley et al. 2005). Deforestation is the current and projected primary
direct and indirect cause of species extinction. It is predicted that up to 21% of
Southeast Asian forest species will disappear by the year 2100 due to previous and
present deforestation (Sodhi et al. 2009). Furthermore, climate change can have a
significant impact on ecological and biotic elements that influence the global distri-
bution of habitats and species (Dar et al. 2019), such as a shift in the plant-pollinator
relationship through phenological changes and regeneration failure due to stress on
species or their native environments (Parmesan 2006; Reyer et al. 2013). Physiol-
ogy, demography, dispersion, interspecific interactions, adaptation, and alteration of
environmental factors are crucial processes influencing biodiversity to respond to
global change (Urban et al. 2016). Some extinctions may happen as a direct result of
habitat loss by removing all individuals, or they may happen indirectly as a result of
aiding the spread of a disease or invading species, making it easier for humans to
hunt them, or changing biophysical circumstances (Sodhi et al. 2009). Human-
caused climate change, characterized by unprecedented variations in temperature
and precipitation regimes, poses an additional threat to biodiversity and hastens
climate fluctuations on ecosystems, which significantly impact conservation goals,
resulting in the waste of vital and scarce conservation inputs (Millar et al. 2007).
Global environmental change is causing species ranges to shift, fragment, and
expand (Chen et al. 2011). Climate change is one of the primary factors influencing
species dispersal potential, which has a significant impact on ecosystem structure,
functioning, and shifts in species’ geographical distribution all over the world
because species always seek the best environment for survival (Peterson 2003;
Feeley et al. 2012). It can cause a change in the mean of variables like temperature
or precipitation and their variability (Seneviratne et al. 2012). Despite the signifi-
cance of differences in mean values, there is evidence that plant distribution,
survival, net primary productivity, and species diversity are influenced by extreme
rather than average conditions (Knapp et al. 2002; Jentsch and Beierkuhnlein 2008).
Rising temperatures may force species to migrate to higher elevations, hastening
extinction in tropical regions (Angelo and Daehler 2013).

The degradation of the ecosystem is frequently caused by a failure to recognize its
beneficial functions ranging from sustaining biodiversity; climate control; sediment
storage; flood defense and storm buffering; soil, air, and water quality maintenance;
support of food chains; and food and water to health and security, which our growing
population requires today and in the future (Crooks and Turner 1999). Deforestation



and forest degradation are probably the most well-known forms of ecosystem
degradation because it changes the structure of the habitat so quickly and dramati-
cally (Ehrlich et al. 2013). Ecosystem degradation has severe consequences for
biodiversity and climate, prompting national, regional, and global goals for ecosys-
tem restoration (Díaz et al. 2019). None of the negotiated global objectives for
preserving life on Earth and halting land and ocean degradation has been fully met
(UNEP 2021), and only 6 of the 20 Aichi Biodiversity Targets have been partially
met (CBD 2020). Therefore, the United Nations has declared the years 2021–2030
the UN Decade on Ecosystem Restoration, with the Bonn Challenge and the
New York Declaration on Forests aiming to restore 350 Mha of degraded forests
globally by 2030 (Mansourian et al. 2021). Habitat restoration is a critical strategy
for protecting and restoring ecosystems and preventing species extinction (Polak and
Saltz 2011). People’s prosperity and well-being depend on the process of preventing
and reversing degradation, which leads to better ecosystem services and restored
biodiversity through a range of strategies that are dependent on local conditions and
community choices (UNEP 2021). On the other hand, conservation is a strategy for
dealing with species extinctions, habitat loss, and ecosystem degradation caused by
increased human population and activity (Marvier 2013). Species (re)introduction is
one of the most effective ecological engineering strategies for restoring depleted
species populations, degraded habitats, and ecosystems (Polak and Saltz 2011).
Identification of high-priority conservation areas and prospective habitats for the
reintroduction of RET plant species depends on thorough analyses of the variables
that affect species rarity, proper land management, restoration techniques, and the
development of more reliable prediction models (Maschinski and Haskins 2012).
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The ecological niche is defined as a set of ecological conditions that allow species
to persist and propagate (Grinnell 1917). In contrast, the fundamental niche that a
species is compelled to fill due to interactions with other species is subdivided into
the realized niche (Hutchinson 1957). Habitat distribution modeling, also known as
ecological niche modeling (ENM), has provided new insights into the factors
influencing species distribution over time and space (Kozak et al. 2008; Kumar
et al. 2020). ENM is a strategy that uses computer algorithms to forecast species
distribution in a geographical area based on a mathematical model of the species’
ecological niche (Adhikari et al. 2012). It analyzes changes in habitat suitability over
time in a particular scenario of environmental change and the relative appropriate-
ness of habitat in regions where the species is not known to exist (Warren and Seifert
2011). When site occupancy data are insufficient and there aren’t enough resources
for more data collection, they explain habitat needs and help construct distribution
estimates, both of which are essential to fulfilling endangered species conservation
goals (Hirzel et al. 2006). The distribution of species in space and time is influenced
by a variety of variables, including their environmental surroundings, and some of
them may have a direct impact, while others may only have an indirect effect
(Westgate et al. 2014).
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13.2 Application of Species Distribution Models (SDMs)
in the Conservation and Restoration of Forest Ecosystems

According to an ideal landscape composition for biodiversity conservation, more
than 40% of the landscape should be covered in forest, with 10% of that being large
tracts of forest and the remaining 30% being smaller fragments (Arroyo-Rodríguez
et al. 2020). Existing forests must be conserved, degraded forests must be restored,
and there must be a connection between the dispersed forest patches to improve the
quantity of habitat (Watling et al. 2020). The consequences of habitat fragmentation
on biodiversity will be less apparent if there are enough forests (Arroyo-Rodríguez
et al. 2020). Additionally, forests are important for protecting water supplies,
producing food, and providing additional ecosystem services, including carbon
sequestration, mitigating climate change, restoring soil fertility, and maintaining
air quality (Melo et al. 2021). In conservation and restoration research, SDMs are
a valuable tool for predicting the habitat appropriateness of target species and are
frequently used to evaluate relationships between species occurrence and environ-
mental parameters (Lyon et al. 2019). The importance of SDMs in decision-making
for the conservation and restoration of forest ecosystems is expanding quickly (Elith
and Leathwick 2009) because SDM is a useful tool for forest management and may
be used to foresee how climate change would affect forests (Guisan et al. 2017).
Although open-access and worldwide species occurrence databases are limited and
only available for a small number of surveyed locations (Rondinini et al. 2006), they
offer the opportunity to analyze the data for developing conservation and restoration
strategies (Jetz et al. 2012). Regarding conservation management decisions, infor-
mation for unsurveyed or future colonized regions due to invasion and climate
change is required, which is not available in any databases (Giljohann et al. 2011).
This information may be obtained by anticipating species occurrences utilizing their
environmental and climatic suitability along with spatial environmental data using
various SDMs (Peterson et al. 2011). The prediction of habitat alterations using
ENM/SDM approaches is essential for aligning human-assisted efforts utilized in
banj oak recruitment and regeneration in degraded oak forest areas in the Central
Himalayas to be coordinated with applicable silviculture practices (Dhyani et al.
2020). SDMs make it possible to evaluate the risk of targeted activities based on the
possibility of under- and over-protected errors, which aids in prioritizing the imple-
mentation based on only a limited number of ideas and the cost-effectiveness of the
approach (Schwartz 2012). It may evaluate various strategies and their capacity to
preserve biodiversity under the expected climate of the present and the future (Hunt
et al. 2020). Forest management strategies may fully use the potential of SDMs for
the protection and restoration of forest ecosystems by establishing a structured
decision-making process (Di Febbraro et al. 2018; Frans et al. 2021).
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13.3 Application of SDMs in the Management of Threatened
Species

Understanding the primary forces shaping species’ geographic ranges is critical for
SDMs (Pulliam 2000). Large-scale ecological models incorporating data have
recently advanced conceptually and practically (Domisch et al. 2016; Merow et al.
2017). These models can provide the change of species distributions and abundances
over time and space and are helpful in the study of eco-biogeography, conservation
biology, evolution, dispersion and migration, species invasion, metapopulation, and
climate change (Isaac et al. 2020). Ecologists can predict future species distributions
based on the environment of existing places since the core principle behind SDMs
believes that a species’ existence in a particular area is strongly reliant on the
environment (Austin 2007). The basic idea behind SDMs aims to connect species
occurrence data with environmental factors to learn more about the target species’
ecology and evolution (Elith and Franklin 2013). Data on species’ presence and
absence are statistically related to environmental predictor factors (Guisan and
Thuiller 2005), which are crucial resources for concentrating conservation efforts
on species with insufficient distribution data (Gogol-Prokurat 2011). It can predict
the possible distribution of a species in different regions over time and space by
combining observed occurrences of species with environmental factors (Requena-
Mullor et al. 2019). It needs accurate occurrence data on the target species, which
may be found in herbarium records, published scientific publications, or web
sources, though there may be some issues with such data (Heberling et al. 2019).
Numerous mathematical models can be used to fit, select, and evaluate correlative
SDMs (Xu et al. 2015). The mathematical algorithms include (1) profile methods,
which are simple statistical techniques that use, for example, environmental distance
to known sites of occurrence, such as BIOCLIM (Nix 1986; Nix and Busby 1986)
and DOMAIN (Carpenter et al. 1993); (2) regression methods, such as forms of
generalized linear models (Nelder and Wedderburn 1972); and (3) machine learning
methods, like maximum entropy or MaxEnt model (Jaynes 1957) (Table 13.1).

SDMs can provide maps of the probabilities of a species occurring in a given area
under a set of environmental conditions. It helps in identifying suitable habitats for
conserving various economically and ecologically important plant species whose
natural populations are in decline (Jiménez-Valverde and Lobo 2007). It assesses the
effects of land-use change on the habitats of threatened and various highly exploited
economically important plant species (Rodríguez et al. 2007) and the impact of
global climate change on their distributions (Thuiller et al. 2008). The human
footprint includes a variety of human activities that have an indirect or direct
influence on natural ecosystems, and they considerably impact the habitat distribu-
tion patterns of RET species (Sun et al. 2020). SDM heavily relies on the effect of
various environmental variables, such as the human footprint (Beans et al. 2012),
along with climatic factors to estimate the distribution of endangered species (Feng
et al. 2020). Additionally, SDMs offer a robust predictive framework to identify
populations that have not yet been discovered, and they may significantly increase
the possibilities of discovering new populations by focusing their search on areas



where there is a high probability of a species occurrence (McCune 2016). For
instance, five new populations of Gymnocladus assamicus Kanjilal ex
P.C. Kanjilal, a critically endangered tree species endemic to northeastern India,
were located using SDM (Menon et al. 2010). Besides, the potential distribution of
various economically significant tree species, such as Bauhinia vahlii (Wight &
Arn.) Benth. (Thakur et al. 2022), Butea monosperma (Lam.) Kuntze (Tiwari et al.
2021), and Boswellia serrata Roxb. (Rajpoot et al. 2020), and ecologically signifi-
cant tree species, such as Pterocarpus marsupium Roxb. (Kumar et al. 2020), was
mapped in tropical forests of India using maximum entropy (MaxEnt) modeling.
Moreover, habitat expansions result in species interactions between different species
(Ancillotto et al. 2016). The bird Psittacula krameri, commonly known as rose-
ringed parakeet, was previously adapted to habitats within their native ranges where
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Table 13.1 List of algorithms used for ecological niche modeling

Species distribution models (SDMs) Sources

Correlative SDMs Climate envelope models (CEMs) Hijmans and Graham
(2006)

Bioclimatic models Jeschke and Strayer
(2008)

Mechanistic SDMs Process-based models or biophysical models Kearney and Porter
(2009)

Mathematical algorithms of ecological niche modeling (ENM)

Profile techniques BIOCLIM model Booth et al. (2014)

DOMAIN model Carpenter et al.
(1993)

Ecological niche factor analysis (ENFA) Hirzel et al. (2002)

Mahalanobis distance model Mahalanobis (1936)

Isodar analysis model Morris (1987)

Regression-based
techniques

Generalized linear model (GLM) Nelder and
Wedderburn (1972)

Maxlike model Royle et al. (2012)

Favorability function (FF) Real et al. (2006)

Generalized additive model (GAM) Murase et al. (2009)

Multivariate adaptive regression splines
(MARS)

Friedman (1991)

Machine learning
techniques

Artificial neural networks (ANN) Rosenblatt (1958)

Support vector machines (SVM) Cortes and Vapnik
(1995)

Boosted regression trees (BRT)/gradient
boosting machines (GBM)

Elith et al. (2008)

Random forest (RF) model Breiman (2001)

XGBoost (XGB) model Chen and Guestrin
(2016)

Genetic algorithm for the rule set production
(GARP)

Holland (1975))

Maximum entropy (MaxEnt) Phillips et al. (2006)



humans predominated, but due to intraspecific niche differences and differential
propagule pressure, their niche has been expanded across their original ranges where
previously they were not populated (Cardador et al. 2016). SDMs can be used to
predict the degree of habitat fragmentation for RET animal species, like the Rhinoc-
eros unicornis, which can only be found in remote protected areas (Mukherjee et al.
2020). SDMs are also used in habitat connectivity mapping of carnivorous animals
such as Panthera onca (Ramirez-Reyes et al. 2016), P. uncia (Holt et al. 2018),
P. tigris (Suttidate et al. 2021), and Melursus ursinus (Puri et al. 2015).
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13.4 Application of SDMs in the Management of Invasives

One of the primary causes of species extinction and biodiversity loss worldwide is
biological invasion, which is typically caused by invasive alien species (Mooney and
Drake 2012). The number of invasive species that successfully establish themselves
in new habitats has been growing through time and habitat, and as a result, their
effects are likely to be seen across all ecosystems, harming the native species
(Chornesky and Randall 2003). For instance, Rhinella marina, the invasive cane
toad, in northern Australia poses a serious threat to the Acanthophis praelongus, the
northern death adder, belonging to the low vulnerability group (Phillips et al. 2010).
Climate matching techniques offer the potential for identifying risk regions that are
appropriate for the establishment of invasive species since invasive species can
establish themselves outside of their natural range if the ecosystem there is remark-
ably similar to their original distributional area (Guisan et al. 2013). Early response
strategies necessitate surveying and monitoring risk regions under invasion danger
to detect infestations in the early phases of invasion (Peterson 2003). SDMs may be
utilized to create invasion risk maps by identifying anticipated danger zones based
on a species’ climate adaptation (Srivastava et al. 2019). These maps are crucial for
quick response and decision-making, early detection of invasive species, and
identifying potential areas where invasive species could proliferate, spread, or
cause damage (Jeschke and Strayer 2008). Additionally, they could assist with
decisions relating to pest control, such as those involving regional quarantines,
international trade laws, and survey design (Venette et al. 2010). Recent research
on the use of SDMs for invasion management focused on identifying potential range
shifts of species due to climate change (Padalia et al. 2015), estimating disease risk
(He et al. 2019), invasion ecology (Taucare-Ríos et al. 2016), and the results of
human activity and modifications to land use and cover (Wilson et al. 2013; Gallardo
et al. 2015) on invasive plant species distribution. Invasion behaviors with change in
elevation of Chromolaena odorata (L.) R.M. King & H. Rob., Ageratum conyzoides
L., Ageratina adenophora (Spreng.) R.M. King & H. Rob., Parthenium
hysterophorus L., and Lantana camara L. in the Himalayan region were studied
using SDMs, and the suitable areas of P. hysterophorus and A. conyzoides will
decrease by 2070, while other species will spread to newer regions (Lamsal et al.
2018). Vegetation indices had the most significant influence on the prediction of the
possible range of invasion of Prosopis juliflora (Sw.) DC., followed by soil indices,



biophysical variables, and water indices (Ahmed et al. 2021). Identification of
invasion hotspots across nations or regions and conservation planning for protected
areas are possible using the SDM techniques (Thapa et al. 2018).
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13.5 Uses of Species Distribution Modeling Approaches
in Policy Planning

SDMs are an important tool for the conservation of communities and ecosystems or
species since they focus on ensuring redundancy and robustness for sustainable
future populations (Redford et al. 2011). Accurate information about the habitat
distribution of species is a vital requirement for their effective conservation planning
and establishing appropriate, attainable conservation priorities (Liu et al. 2013). The
findings of SDM are affected by degrees of uncertainty in the applied model and
incomplete information about the species, which impacts decision-making and
conservation planning (Srivastava et al. 2019). To enhance transparency and legiti-
macy in decision-making, models must be continually improved, and the criteria
used to create and assess these models must be updated to reflect new capabilities
and innovations (Sofaer et al. 2019). Decision-makers should identify the desired
aim that is intended, and the uncertainties need to be addressed in model predictions
so that the users may grasp the significance of the various forms of mistakes reducing
the likelihood of uncertainty in SDMs (Ferraz et al. 2021). SDMs have discovered
pathways that might simply access between protected areas (PAs) despite tempera-
ture changes (Nuñez et al. 2013), determining functional consistency in the devel-
opment of PAs (Gallagher et al. 2013), key population variables that were connected
to global change models and identified vital ecosystems (Bonnot et al. 2011), and
enabled planning for extreme weather events to protect an endangered species
(Bateman et al. 2012). The use of SDMs in policy planning is a challenging task
(Addison et al. 2013) and, if not thoroughly evaluated, may impede its performance
at numerous stages, from the imprecise formulation of the modeling aims to the
improper use of the modeling outputs, via various unanticipated challenges across
different stages of modeling (Guillera-Arroita et al. 2015). Model creation
necessitates a thorough conception of decision aims and needs, as well as the
incorporation of essential constraints into the modeling framework (Schmolke
et al. 2010). Various challenges can also be overcome by the researchers working
with stakeholders and incorporating their feedback in the model-making process
(Boaz et al. 2018).

13.6 Limitations of SDMs

Multiple levels of uncertainty can exist in SDMs such as GARP or MaxEnt,
including conceptual (scale and extrapolation), methodological (data resolution,
sample design, and size, etc.), and algorithmic concerns (accuracy and model choice)
(Engler et al. 2017). When employing complicated tools like SDMs, some



uncertainty is unavoidable (Thuiller et al. 2019), and the use of SDMs has drawn
criticism for a variety of reasons, including the specific algorithms used, the under-
lying principles, and sample biases of species occurrence data (Barbet-Massin et al.
2018). A well-known general impact of the SDMs is that geographic sample bias and
geographic coordinate errors are both highly prevalent during data collection
(Cayuela et al. 2009). When employing presence-only data, pseudo-absences are
frequently used to create models that affect the outcomes of the model as a whole
(Baxter and Possingham 2011). To create actual model predictions in the gradient
between potential and realized distributions and to significantly condition the resul-
tant model in the absence of trustworthy absence data, the pseudo-absence selection
strategy is crucial (Chefaoui and Lobo 2008). There are often two sorts of mistakes
in SDM prediction: (1) suitable habitat regions are incorrectly forecasted as unsuit-
able (false negatives), and (2) unsuitable habitat regions are incorrectly predicted as
suitable (false positives). Both of these errors can have a detrimental impact on the
decision-making process (Franklin 2010). False negatives in invasion management
are more problematic because they increase the likelihood that the invasion extent
will be underestimated and lead to poor decisions, whereas false positives can waste
time and resources on surveillance in undesirable areas (Baxter and Possingham
2011). A viable alternative to threshold-based appropriate and unsuitable categori-
zation would be the direct integration of uncertainty (Beale and Lennon 2012).
Furthermore, researchers using SDMs must accept the restriction of poor forecasts,
which denotes the need for further distribution data for the targeted taxon, as poor
model outputs are generated by inadequate data rather than incorrectly designed
algorithms (Cayuela et al. 2009). Reorienting SDMs toward the collective
characteristics of biodiversity rather than specific entities, such as species
assemblages or communities, might be a more advantageous course of action
(Ferrier 2002). It may be used to identify locations where rare or vulnerable species
are most likely to coexist with specific other species, though this does not resolve the
problem (Golicher et al. 2008). The development of technology to enable the
efficient integration of expert knowledge with SDM techniques is a significant
problem for the future that warrants further study (Cayuela et al. 2009). A larger
sample size and focus on sample prevalence could enhance the predictive accuracy
of the model rather than the total number of background points because the number
of background points varies depending on the modeling approach used, and in
models like MaxEnt, the accuracy after a few hundred background points stabilizes
(Liu et al. 2019). The geographic scope of the study should be acceptable, and
sampling should take place in all possible convenient areas considering the historical
distribution knowledge of the species (Cooper and Soberón 2018; Araújo et al.
2019).
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13.7 Recommendation and Future Research Prospects

• Compared to a single model, the ensemble model’s results reduce uncertainty and
bias, enabling the generation of more justified and trustworthy forecast maps.
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• To help end users with scenario planning, studies using SDMs should pay more
attention to measuring, quantifying, and reducing uncertainty.

• To address the problems caused by the lack of data, emphasis should be placed on
the inclusion of a citizen science database, and it must be cleaned and corrected
before using this data for modeling.

• SDM studies on migratory species with high mobility should focus on seasonal
niches.

• All major factors determining species range limits including both biotic, climatic,
edaphic, and topographic must be considered in SDMs to acquire meaningful data
from modeling approaches to use in conservation planning.

13.8 Conclusions

There is no disputing the importance of SDMs in maintaining and restoring forest
ecosystems. SDMs are being used more frequently to predict the consequences of
climate change or to determine the probable habitat range of threatened plant
species. It may also be used to guide conservation decision-making for identifying
the habitats of threatened plant species, creating protected areas, and managing
species invasion, translocation, and reintroduction. Besides, it can help in conserva-
tion management by locating threatened plant species, detecting habitat alterations
brought on by invasive species and climate change, pinpointing areas where
threatened plant species should be relocated, or locating target areas for invasive
species mitigation. It could be challenging to employ SDMs or other habitat suit-
ability models when a landscape contains natural or artificial features that signifi-
cantly differ from their current range. Therefore, researchers and management
practitioners should innovate the methodology based on using SDMs for specific
purposes. The stakeholders should focus more on communication, establishing a
trustworthy and open connection, translating scientific findings into conservation
goals, and sharing results and progress with all stakeholders.
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Habitat Suitability Analysis of Asiatic
Elephants (Elephas maximus) in the Tropical
Moist Deciduous Forest of Assam Using
Analytic Hierarchy Process (AHP)
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Abstract

Asiatic elephant (Elephas maximus) listed as Endangered in the IUCN Red List is
the only living species of genus Elephas, distributed in the Indian sub-continent
and Southeast Asia. The decreasing number of Asiatic elephant is attributed to
habitat destruction and human-elephant conflict (HEC) due to human encroach-
ment in the forest areas. Therefore there is a need to understand the habitat
suitability of Asiatic elephants and conserve them in situ. The objective of the
study is to analyse the habitat suitability and map the corridor of Asiatic elephants
in two reserve forests, namely, Barduar and Mayang Hill, situated on both sides
of Chandubi Lake in Kamrup District. Remote sensing (RS) and geographic
information system (GIS) have been playing an important role in decision-
making and conservation of natural resources. Utilization of analytic hierarchy
process (AHP) using spatial information and habitat suitability inputs,
i.e. landcover, proximity to water, slope, aspect and elevation in GIS platform
through weighted overlay, results in habitat suitability map of the species. The
output raster is the resultant of untamed life mapping by providing weightage to
the combination of factors contributing to their habitat suitability in the AHP
model. The map generated will be useful for the conservation of Asiatic elephants
in their natural habitat as well as synchronizing human activities to reduce HEC.

T. Hussain (✉) · S. Kalita
Department of Environmental Science, Gauhati University, Guwahati, India
e-mail: tanvihussain@gauhati.ac.in

A. K. Misra
Pollution Control Board, Assam, Guwahati, India

# The Author(s), under exclusive license to Springer Nature Singapore Pte
Ltd. 2023
S. Dhyani et al. (eds.), Ecosystem and Species Habitat Modeling for Conservation
and Restoration, https://doi.org/10.1007/978-981-99-0131-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0131-9_14&domain=pdf
https://orcid.org/0000-0002-1163-9868
mailto:tanvihussain@gauhati.ac.in
https://doi.org/10.1007/978-981-99-0131-9_14#DOI


268 T. Hussain et al.

Keywords

Tropical forest · Asiatic elephant · Habitat suitability · Analytic hierarchy process
(AHP) · Human-elephant conflict (HEC)

14.1 Introduction

Deforestation, forest degradation and rapid conversion of forests to agricultural land,
human settlement and various other developmental activities have resulted in frag-
mentation and loss of wildlife habitat. During the past few decades, wildlife habitats
and wilderness areas have shrunk due to unprecedented human growth and devel-
opmental activities (Sanare et al. 2015), especially in Northeast (NE) India. There is
a growing need to conserve wildlife habitats and wild species in situ, for which a
detailed understanding of the change of their habitat condition both in time and space
is required. Although these fragmentation and habitat loss have affected all wildlife
species like rhinoceros (Rhinoceros unicornis), tiger (Panthera tigris), leopard
(Panthera pardus), etc., elephants (Elephas maximus) have become the focal point
for conflict and conservation issues. Human-elephant conflicts (HEC) have an
untoward impact on local communities like damage to crops and property and loss
of human lives which incite fear, anger and hostility among the local communities
resulting in retaliatory killings of elephants and undermining of conservation efforts.
Forests of the Himalayan foothills and Northeast India accommodate one of the last
remaining adequate elephant populations but are severely threatened at the same
time (Choudhury 1999; Sukumar 2006). Hence, these areas are high-priority areas
for elephant conservation with a distinct call for mitigation of HEC (Gureja et al.
2002). The wild elephant population in the country is estimated to be 29,964, with
Karnataka reporting the highest population at 6049, followed by Assam at 5719
(MoEFCC 2017). Therefore, Assam is one of the important strongholds for the
survival of Asian elephants.

Remote sensing (RS) and geographic information system (GIS) help understand
the wildlife habitat in time and space, its past and present landuse/landcover
characteristics, the rate at which the landuse is changing and the factors associated
with the changes. Understanding the spatial characteristics of wildlife habitats and
the requirements such as food availability, proximity to water, topography, etc.
serves as the basis of habitat suitability analysis of the species or a specific species
living in that area (Parihar et al. 1986; Davis and Goetz 1990; Roy et al. 1995;
Kushwaha and Hazarika 2004; Imam and Kushwaha 2013). Analytic hierarchy
process (AHP) is a decision-supporting tool which runs on the principle of pairwise
comparisons of priorities and relies on the judgement of decision-makers to derive a
priority scale (Saaty 1977). AHP helps decompose the factors on which a species
relies for its survival into priorities, and pairwise comparison of priorities helps
evaluate the combination of factors on a mathematical basis. Weightage obtained
from AHP can serve as inputs in GIS platform for weightage overlay analysis to
work out a habitat suitability map of wildlife for its conservation (Ying et al. 2007;



Imam and Tesfamichael 2013). Habitat suitability analysis will stand as a very
important tool for study and conservation of wildlife in its natural domain and the
reduction of man-animal conflict or specifically human-elephant conflict (HEC) in
the areas where humans dwell in close proximity to wildlife habitats.
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At present, there are only two living species of the biggest terrestrial animal
belonging to two different genera, Loxodonta africana (African elephant) and
Elephas maximus (Asian elephant). L. africana has two distinct sub-species found
in the Savannas of Central and Western African, and E. maximus has at least three
sub-species distributed in Sri Lanka (E. maximus maximus), Asia and Indian
sub-continent (E. maximus indica) and Sumatran island (E. maximus sumatranus)
(Hildebrandt et al. 2006). Attributed as the ‘heritage animal of India’, the species has
found its place in the IUCN Red List as Endangered animal. There are ten
(10) known elephant landscapes in India: East-Central landscape (South-West
Bengal-Jharkhand-Orissa), Kameng-Sonitpur landscape (Arunachal-Assam), East-
ern-South Bank landscape (Assam-Arunachal), Kaziranga-Karbi Anglong-Intaki
landscape (Assam-Nagaland), North Bengal-Greater Manas landscape (Assam-
West Bengal), Meghalaya landscape (Meghalaya), Brahmagiri-Nilgiri-Eastern
Ghats landscape (Karnataka-Kerala-Tamil Nadu-Andhra), Anamalai-
Nelliyampathy-High Range landscape (Tamil Nadu-Kerala), Periyar-Agasthyamalai
landscape (Kerala-Tamil Nadu) and North-Western landscape (Uttarakhand-Uttar
Pradesh). Of the ten elephant landscapes, four are in Northeast India of which three
are in Assam itself. There is a growing need to conserve this gigantic terrestrial
species. In order to conserve this species in situ, a habitat suitability analysis has
been carried out in the tropical deciduous forest of Barduar and Mayang Hill Reserve
Forests of Loharghat Range, Kamrup West Forest Division, Assam, India.

14.1.1 Human-Elephant Conflict in Assam and Northeast India

The gigantic mammals are listed under Schedule I of the Wild Life (Protection) Act,
1972 (GOI 2003), which is the highest level of protection granted to any species in
India. In Northeast India only 25% of the elephant habitat is located within protected
areas which accounts for the high likelihood of HEC in the region. The prime cause
of HEC is the loss of habitat and shortage of food owing to a decrease in forest cover.
Since 1950 more than half of the elephant habitat has been lost due to the conversion
of forest-covered lands to cropland, human settlement areas and other developmental
activities (Choudhury 2004). In NE India crops are cultivated on the hill slopes
(shifting cultivation), in areas interspersed at the forest edges and the river plains.
HEC occurs over crop raiding when elephants travel to the plains of Assam from the
Himalayan foothills of Arunachal Pradesh and the hilly areas of Assam as well.
Human settlement in the forest areas and at the forest fringes is another major cause
of HEC, and most of these conflicts occur in the elephant movement routes, human-
encroached elephant habitat areas and small forest patches.

The contiguous habitat in Kameng (Arunachal Pradesh)-Sonitpur (Assam)
supports a large elephant population that witnessed HEC since the 1990s due to



crop raiding and damage to property resulting in human deaths which in retaliation
caused unexpected harming, and as many as 30 elephants were killed by poisoning
during 2001–2002 (Choudhury 2002). Due to human encroachment in the area for
various reasons including ethnic clashes in 2002, not less than 50% of the elephant
habitat has lost in Sonitpur and nearby areas (Bist 2002; Choudhury 2002). The
foothills of Barail range in Assam and Jaintia Hills in Meghalaya harbour as many as
100 elephants around the 1950s, and by the 1980s, the elephant population started
declining due to habitat fragmentation in the adjoining hill ranges. The elephants
wandered aimlessly in the region due to the loss of habitat in their range and killed
41 people from 1991 to 1997. Later the government sponsored the shooting of
‘rogue’ elephants, and by the end of the decade, the mammals extirpated from the
area (Choudhury 2001a, 2004). Elephant habitats in Garo Hills of Meghalaya have
been fragmented and destroyed over the increased practice of shifting ( jhum)
cultivation, logging, coal mining and poaching for ivory (Williams and Johnsingh
1996; Gurung and Lahiri Choudhury 2000; Datta-Roy et al. 2009). On the other
hand, HEC has a different context in the hilly areas of Manipur, Nagaland and
Mizoram wherein elephants are killed for their flesh, which is a native delicacy
(Choudhury 2001b).
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14.2 Materials and Methods

14.2.1 Study Area

The study was carried out in Mayang Hill (from 91°29′27.831″E and 25°50′34.412″
N to 91°29′24.993″E and 25°51′48.923″N) and Barduar Reserve Forest (RF) (from
91°26′19.40″E and 26°0′30.856″N to 91°25′32.258″E and 25°52′30.95″N) lying
adjacent to the outer hilly ranges of Khasi Hills with an area of 9239.35 ha located in
Kamrup District, Assam, India (Fig. 14.1). A tropical climate prevails in the forests,
and distinct seasons can be recognized; May to mid-October is the rainy season,
when maximummonsoon rainfall occurs and average rainfall is about 1300 mm. The
winter experiences only occasional showers. Both the reserve forests are drained by
numerous streams. The Chandubi Lake lies in between the two reserve forests. The
forests may be classified as tropical moist deciduous forest sub-categorized into
Kamrup Sal forest and mixed moist deciduous forest (Champion and Seth 1968).

14.2.2 Data

In this study, Landsat-8 (OLI and TIRS) satellite imagery and ASTER Digital
Elevation Model (DEM) were downloaded from the EarthExplorer user interface
of the US Geological Survey (USGS) and Survey of India digital toposheets
obtained from the Geological Survey of India (GSI), Government of India
(Table 14.1).



Data Bands
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Fig. 14.1 Locational map of the study area

Table 14.1 Details of the data used for spatial mapping

Path and
row

Spatial resolution
(in meter)

Period of
acquisition

Landsat-8 OLI and TIRSa

satellite imagery
137/42 11 30 (bands 1, 2, 3, 4,

5, 6, 7 and 9)
15 (band 8)
100 (bands 10 and 11)

March 2016
November
2017

ASTERb DEM – 14 30 November
2011

SOI Toposheetc 78O/5 – 2005
aLandsat-8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS)
bAdvanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
cSurvey of India (SOI) Toposheet

14.2.3 Generation of Spatial Database

The generation of a spatial database for the study has been carried out using ArcGIS
version 10.1 software and Google Earth has also been used for identification of
location and routes. The flowchart of database generation has been shown in
Fig. 14.2.
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Fig. 14.2 Flowchart showing the generation of spatial database

14.2.4 Preparation of Forest Type, Forest Cover and Forest Strata
Layers

Spatial analysis for the generation of forest type, forest cover and forest strata layers
has been carried out using ERDAS Imagine version 2013 and ArcGIS version 10.1
software. The flowchart has been shown in Fig. 14.3.
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Fig. 14.3 Flowchart of the generation of forest cover, forest and forest strata spatial layers
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14.2.5 Collection of Field Information

Barduar RF and Mayang Hill RF lie in the Loharghat Forest Range and the reserves
consist of approximately 17 forest villages. A semi-structured interview and a group
discussion were carried out with the village headman (Gaon Bura) along with the
members of various committees, natives of all the forest villages, officials and staff
of the Forest Department, Govt. of Assam, to gain insight into human-elephant
conflict (HEC) in the two RFs. The information recorded were most frequently Asian
elephant-sighting places, pathways of movement of herd as well as lone bulls,
assembly points, season and locations of crop raiding and property damage,
locations of human-elephant coincidence and injury or death of humans.

14.2.6 Field Survey

Based on the inputs received from the interview and group discussion with the
natives and other literature, a field survey based on centre line transect was
conducted. The Chandubi Lake where the herds of the gigantic mammal are mostly
spotted was taken as the centre and line transects of n = 15 of 5 km and 10 km long
and 100 m wide (based on terrain feasibility) were covered on foot to trace elephant
footprints, dung and other signs of elephant movement (Fig. 14.4).

14.2.7 Analytical Hierarchy Process (AHP) for Habitat Suitability
Analysis

Analytical hierarchy process (AHP) is a very flexible and efficient decision-making
tool introduced by Thomas L. Saaty in 1980. AHP works on the principle of
decomposing the decision-making into criteria and sub-criteria and alternatives on
which the decision-making is based (Malczewski 2006). The criteria and sub-criteria
are compared pairwise in a matrix assigning weights based on their relative impor-
tance. In AHP the weights for different criteria and sub-criteria are assigned in such a
way that if there are n number of criteria or sub-criteria (C1. . . .Cn) to be compared
then the real matrix will be n × n with n(n - 1)/2 number of evaluations. A square
matrix A is computed. Let each entry to the matrix A be aij where i and j are two
criteria and i ≠ j. If aij > 1, then the ith criterion is more important than the jth
criterion, while if aij < 1, then the ith criterion is less important than the jth criterion.
The entries aij and aji should be such that aij × aji = 1. In the pairwise comparison
matrix, the entry for the same criteria such as aii = 1 or ajj = 1. The relative
importance between two criteria is measured on a numerical scale from 1 to 9, as
shown in Table 14.2.

If it is assumed that the ith criterion has strong importance over the jth criterion,
then the entry in the matrix will be aij = 5, and for the jth criterion over the ith
criterion, it will be a reciprocal, i.e. aji = 1/5. Such a matrix is said to be a reciprocal
matrix. The weights are consistent and transitive such that aik for all i, j and k is
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Fig. 14.4 Map showing line transects and points of elephant footprints and dung traced in the field
study



9

aik = aij × ajk. The values in Table 14.2 are only suggestive and translate the
decision-maker’s qualitative evaluations of the relative importance between two
criteria into numbers. AHP uses a 9-point measurement scale ranging from 1 to
9 wherein the odd values are absolute weights like 1 denotes equal importance, 3 is
moderate importance, 5 is strong importance, 7 is very strong importance and 9 is
extreme importance (Sanare et al. 2015). It is also possible to assign the even values
which are intermediate values and do not correspond to a precise interpretation. AHP
involves direct participation to find out the final result, and it has gained wide
applications in different fields of decision-making such as suitability analysis, site
selection, product selection, marketing and business, etc. (Ayalew et al. 2005). Once
the pairwise matrix is computed, the geometric mean and normalized weights for the
criteria or sub-criteria are obtained by dividing the weights assigned to each criterion
by the sum of the weights of that criteria or sub-criterion (Chowdhury et al. 2010).
After the normalized matrix is computed, the average weight for each criteria or
sub-criteria is calculated which is the eigenvector ω (of order n) or priority or score
for respective criteria or sub-criteria and λ is the eigenvalue, a comparison matrix is
consistent if λ = n. For matrices involving human judgement, the condition like
aik = aij × ajk does not hold good as human judgements are inconsistent to a greater
or lesser extent; in such cases if λmax = n, then the judgements have turned out to be
consistent. To calculate λ the eigenvector is multiplied with each of the entries in the
judgement matrix and added:
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Table 14.2 RCI values for different values of n

n 1 2 3 4 5 6 7 8

RCI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45

λ=
Xn

j= 1

aij � ωj

The maximum eigenvalue (λmaxω) is divided by n to obtain λmax:

λmax =
λ
n

Finally, a consistency index (CI) can be calculated from:

CI=
λmax - nð Þ
n- 1ð Þ

It is necessary to calculate CI against judgements basically for random
judgements. Saaty (1980) has calculated large samples of random matrices of
increasing order and the CIs of those matrices. A true consistency ratio (CR) is
calculated by dividing the CI for the set of judgements by the random consistency
index (RCI) for the corresponding random matrix:
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CR=
CI
RCI

Saaty (1980) suggests that if that ratio is less than 0.1, the judgement is consistent
and if it exceeds 0.1, the set of judgements may be too inconsistent to be reliable. In
practice, CRs of more than 0.1 have to be accepted sometimes. But if CR equals
zero, the judgement is perfectly consistent.

14.2.8 Habitat Suitability Analysis

Decision-making in the first place involves gathering information, Asiatic elephants
require a large range of habitats and provision for suitable habitat is the key
requirement for the survival of the gigantic mammalian population. Asiatic elephants
prefer areas with greater landcover (Sanare et al. 2015) and heterogeneity (Datye and
Bhagwat 1995; Desai and Hedges 2010; Mandal and Das Chatterjee 2021) in close
proximity to water (Sharma et al. 2020) such as mixed forest and riverine forest since
these types of forests are potential sources of food (Sukumar 2003; Yamamoto-
Ebina et al. 2016). These gigantic mammals have a tendency towards lower slopes
(Sharma et al. 2020) and avoid monoculture forests since this type of forest does not
have much food variability. Elephants also avoid humans while searching for food in
the forest (Gaynor et al. 2018). Based on their requirements and habitat
characteristics, the suitability analysis hierarchy has been decomposed into the
following levels, shown in Fig. 14.5 (Table 14.3).

Fig. 14.5 Factors considered for elephant habitat suitability analysis
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Table 14.3 Weighted factors considered for elephant habitat suitability analysis

Proximity to
water

Human
interaction

Dense mixed
forest

Within 5 km 2 km away ≤45° 9 (highly suitable)

Open mixed forest Within 5 km 2 km away ≤45° 7 (strongly suitable)

Dense Sal forest Within 5 km 2 km away ≤45° 5 (moderately suitable)

Open Sal forest Within 5 km 2 km away ≤45° 3 (suitable)

Fig. 14.6 Process flowchart of the weighted overlay model for habitat suitability

14.2.9 Weighted Overlay Model

Weighted overlay model is a general overlay analysis process processed in a single
tool which reclassifies the input raster values into a common evaluation scale of
preference or suitability, risk, etc. The weighted overlay model only accepts raster as
inputs such as different forest classes or landuse classes with different input integers
as values. The model was built in ArcView 10.2, the weightage derived for each
criterion from AHP was incorporated in the input raster layers and the model was
processed to obtain the elephant habitat suitability map for the study area (Fig. 14.6).
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14.3 Results and Discussions

14.3.1 Forest Type

The forest-type map has been prepared based on different spectral signatures taken
from seasonal (mid-October to mid-January and end of January to end of March)
satellite imageries and classified as per Champion and Seth’s forest-type classifica-
tion (1968) shown in Fig. 14.7. The forest-type area statistics show that 41.83% of

Fig. 14.7 Forest-type map of the study area



Table 14.5 Area statistics
of forest cover and other
landuse in the study area

the area is dominated by 3C/C2d (iv) App. Kamrup Sal (Table 14.4) and 26.32% of
the area is covered by 3C/C3b East Himalayan moist mixed deciduous forest. Water
bodies cover 6.06% area, and 25.78% of the area is non-forest which attributes to
other landuse classes such as cropland, settlement areas, etc.
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Table 14.4 Area statistics of forest types in the study area

Forest-type classes Area (in ha) Area (in %)

3C/C2d (iv) App. Kamrup Sal forest 3865.22 41.83

3C/C3b East Himalayan moist mixed deciduous forest 2432.07 26.32

Water bodies 560.33 6.06

Non-forest 2381.73 25.78

Total 9239.35 100

Forest cover categories Area (in ha) Area (in %)

Dense forest 1840.60 19.92

Open forest 4456.69 48.24

Water bodies 560.33 6.06

Cropland 1563.63 16.92

Rural settlement 818.10 8.85

Total 9239.35 100

14.3.2 Forest Cover, Water Bodies and Other Landuse

The Barduar and Mayang Hill RFs covering an area of 9239.35 ha have 19.92% of
dense forest (Table 14.5) which exists mostly on the southern part of the forest
stretch in the Mayang Hill RF (Fig. 14.8). Open forest dominates 48.24% of the area
of which the majority lies in Barduar RF, and water bodies constitute 6.06% of the
total area. Cropland and rural settlement occupy 16.92% and 8.85% of the area,
respectively.

14.3.3 Forest Strata

In the present study, forest stratification refers to the horizontal stratification of the
forest canopy. The forest strata map (Fig. 14.9) has been obtained by integrating the
forest type and forest cover vector layers. The schema of the horizontal forest
stratification has been shown in Table 14.6.

The forest strata area statistics of the two RFs (Table 14.7) show that Kamrup Sal
open forest covers 24.52% and East Himalayan moist mixed deciduous open forest
covers 23.72% of the total area. On the dense forest classification, Kamrup Sal dense
forest covers 17.31% area, and East Himalayan moist mixed deciduous dense forest
covers only 2.61% of the area.
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Fig. 14.8 Forest cover map of the study area

14.3.4 Identification of Suitable Habitat Zones

A pairwise comparison matrix was built based on the habitat suitability criteria for
Asiatic elephants. The giant mammals prefer to dwell in dense vegetation covered in
close proximity to water and away from human habitation. Table 14.8 shows the
pairwise comparison matrix and the scores assigned to each pair of criterion.

After building the pairwise comparison matrix, a normalized matrix was
computed, and the eigenvector for each criterion was derived. The priority



percentage shows (Graph 14.1) that for elephant habitat suitability the foremost
factor is the availability of food in the forest which also shelters and sheds the
gigantic mammals, followed by proximity to water, topography (slope) and distur-
bance or avoiding human interaction.
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Fig. 14.9 Forest strata map of the study area

The eigenvalue (λ) for each criterion was as follows: forest (4.09), proximity to
water (4.40), slope (4.11) and human interaction (4.25). The maximum eigenvalue
(λmax) was found to be 4.212, and the consistency index (CI) obtained was 0.070.
The consistency ratio (CR) for this matrix n = 4 and R = 0.90 was 0.07. Since a CR
for this matrix is less than 0.1, therefore the judgement is consistent.



Table 14.7 Area statistics
of forest strata in the
study area

Slope Forest#
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Table 14.6 Forest strata classes based on the union of forest cover and forest type in the study area

Forest cover Forest type Forest strata

Forest Dense 3C/C3b East Himalayan moist
mixed deciduous forest

3C/C3b East Himalayan moist
mixed deciduous dense forest

Open 3C/C3b East Himalayan moist
mixed deciduous open forest

Dense 3C/C2d (iv) App. Kamrup Sal
forest

3C/C2d (iv) App. Kamrup Sal
dense forest

Open 3C/C2d (iv) App. Kamrup Sal
open forest

Water
bodies

River Water bodies Water bodies

Lake

Other
landuse

Cropland Non-forest Cropland

Rural
settlement

Rural settlement

Forest strata classes Area (in ha) Area (in %)

Kamrup Sal open forest 2265.55 24.52

Mixed deciduous open forest 2191.16 23.72

Kamrup Sal dense forest 1599.67 17.31

Mixed deciduous dense forest 240.91 2.61

Water bodies 560.33 6.06

Cropland 1563.63 16.92

Rural settlement 818.10 8.85

Total 9239.35 100

Table 14.8 Pairwise comparison matrix

j →
i Human

interaction
Proximity to
water

Geometric
mean

Human
interaction

1 0.33 (1/3) 0.33
(1/3)

0.2
(1/5)

0.39

Proximity to
water

3 1 4 0.5
(1/2)

1.57

Slope 3 0.25 (1/5) 1 0.25
(1/5)

0.66

Forest 5 2 4 1 2.51

Total 12 3.58 9.33 1.95 –

14.3.5 Asian Elephant Habitat Suitability

The respective weights derived for each criterion from AHP (Table 14.9) were fitted
in the model, and the weight overlay model (Fig. 14.6) was executed to obtain the
elephant habitat suitability map (Fig. 14.10) which has been classified into four
categories, viz., low, moderate, moderately high and high.

The Asian elephant habitat suitability area statistics for the study (Table 14.10)
show that 24% of the area has high habitat suitability for Asian elephants, 12.73% of



Habitat suitability categories

the area is moderately suitable and 34.95% is moderately suitable in the study area.
Only 14.10% of the area has low suitability. Of the total study area, 71.68% is
suitable for the Asian elephants as a habitat. Forest cover is one of the important
factors for Asian elephants’ habitat suitability along with other factors like forest
cover density, less fragmented forest, food variability and availability of water.
Elephants have a tendency to rest and stay in moist dense forest areas of relatively
low temperatures (Forman 1995; Mandal and Chatterjee 2018, 2019). Therefore, it is
very crucial that the contiguous forest stretch of Mayang Hill RF on the Assam-
Meghalaya state border and Barduar RF adjoining the Kulsi River and Chandubi
Lake be given due emphasis for conservation and restoration of the areas under low
suitability to intensify the habitat suitability in the area.
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Table 14.9 Area statistics of the suitable habitat for Asian elephants in the study area

Area
(in ha)

Study area
(in ha)

Area under suitability
categories (in %)

High 2217.15 9239.35
(i.e. 100% of
the area)

24.00

Moderately high 1176.54 12.73

Moderate 3229.57 34.95

Low 1302.55 14.10

Total (low suitability has not been
considered)

6632.26 71.68

14.3.6 Pathways of Elephant Movement and Identification
of Human: Elephant Conflict Areas

Based on the information received from the informants and field data of locations of
elephant traces and HEC places, the pathways of elephant movement and areas of
HEC have been generated in the GIS environment (Fig. 14.10). In Fig. 14.10 the
orange-coloured dots represent the locations of elephant sighting, assembling points



and traces like footprints, faeces, etc., and the red-dotted lines represent the pathways
of elephant movement in the area which have been traversed on the field and
connected with the orange dots in GIS environment. Most of the human-elephant
interaction occurs near the road passing along the Chandubi Lake between Barduar
and Mayang Hill RF (Fig. 14.11). The point marked A, B and C in Fig. 14.11 are the
locations where so far human casualties have been reported due HEC in the study
area (Fig. 14.12).
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Fig. 14.10 Asian elephant habitat suitability map of the study area
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Table 14.10 Normalized matrix

Human
interaction

Proximity to
water

Eigenvector
(ω)

Priority
(%)

Human
interaction

0.083 0.093 0.036 0.103 0.079 8

Proximity to
water

0.250 0.279 0.429 0.256 0.304 30

Slope 0.250 0.070 0.107 0.128 0.139 14

Forest 0.417 0.558 0.429 0.513 0.479 48

Total 1 1 1 1 1 100

Fig. 14.11 Pathways of elephant movement of HEC in the study areas
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Fig. 14.12 Asian elephant movement pathways and coincidence with cropland and rural
settlement

14.4 Conclusion

The study finds some of the ecological factors essential for the survival and habitat
suitability of Asian elephants and demarcates the habitat suitability areas using
geospatial tools. The gigantic mammals find areas suitable for the habitat with
sufficient food, shade for resting and secured shelters away from disturbance.



Therefore, forest cover and availability of food are crucial for movement and habitat
selection. Elephants are long-ranging animals which move in search of food and
shelter from low suitability areas to suitable or highly suitable areas and given the
presence of humans and road networks in the forest areas in many instances result in
HEC (Koirala et al. 2016; Kumara et al. 2017). The study will be useful for
improving the habitat quality and conservation of Asian elephant habitat in the
present study area. The demarcated habitat suitability areas will help ecologists,
conservationists, foresters and the government for managing elephant movement
pathways, enhance forest and food sources for elephants and check on HEC in the
present area. The study may also be useful for further research in this field.
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Factors Affecting the Habitat Suitability
of Eastern Swamp Deer (Rucervus duvaucelii
ranjitsinhi Groves, 1982) in Manas National
Park and Implication for Terai Grassland
Restoration
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Abstract

Conservation management to aid in the recovery of threatened species requires an
understanding of their habitat availability and preference. Species distribution
modelling can help delineate critical habitats to frame conservation decisions,
particularly for a habitat-specialist species. Swamp deer is a grassland-obligate
species, with three subspecies identified based on physical and geographic
variations. Of these, the eastern swamp deer has restricted distribution and occurs
only in two protected areas in the Brahmaputra valley of Assam, India. With
assisted conservation efforts, the swamp deer population has revived in Manas
National Park from an erstwhile heavily reduced remnant population. Through
this paper an attempt has been made to analyse the patterns of swamp deer
occurrence as determined by habitat variables using random forest algorithm
models. The results indicate that the optimal habitats of swamp deer are the
large grassland patches with wet climatic conditions, measured by the precipita-
tion and evapotranspiration, within the broad grassland habitat of the park. The
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findings have significant implications for the conservation of the threatened
grassland habitat and its obligate species in the Terai grasslands of the region.
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15.1 Introduction

Large herbivores play crucial ecological roles including seed dispersal and nutrient
cycling, which have significant effects on forest structure and regeneration, and
benefit other species in the environments they co-occur (Danell et al. 2006; Ripple
et al. 2015). Habitat degradation, resource depletion, hunting and human-animal
conflict have resulted in the rapid decline in the herbivore population with around
60% of them facing extinction (Ripple et al. 2015; Ceballos et al. 2017; Lindsey et al.
2017; Trouwborst 2019). The consequences of such human influences on extinction
are magnified by the species’ low population numbers and specialised habitat needs
(Wallach et al. 2015; Ripple et al. 2016).

The Indian subcontinent has one of the most diverse large herbivore populations
in southern and south-eastern Asia (Johnsingh et al. 2004; Ahrestani et al. 2011).
The IUCN Red List of Threatened Species categorises 12 of the 15 terrestrial big
herbivores as ‘Threatened’ indicating that the subcontinent’s large herbivore species
assemblages are now experiencing significant conservation challenges (Ripple et al.
2015). The subcontinent’s habitat-specific large herbivores, swamp deer, greater
one-horned rhinoceros and wild buffalo, are more vulnerable to extinction due to
their inherent species biology and various anthropogenic activities and require
accurate information on distribution, population size and various habitat parameters
to ensure their survival in the future (Karanth et al. 2010). Due to their low density
and cryptic behaviour, producing such information is difficult for many of these
species, especially those residing in a mosaic of protected and non-protected
environments near human settlements (Jathanna et al. 2003; Linkie et al. 2013;
Marshal 2016).

The swamp deer, or barasingha (Rucervus duvaucelii), is an example of a South
Asian habitat specialist and an endemic large herbivore (Qureshi et al. 2004; Tewari
and Rawat 2013). Historically, the species was distributed throughout the Indo-
Gangetic plains and the southern Himalayas covering India, Bangladesh, southern
Nepal and Pakistan (Schaller 1967; Groves 1982; Sankaran 1989). Three subspecies
have been defined based on physical and geographical variations: western swamp
deer Rucervus duvaucelii duvaucelii (Cuvier 1823) restricted to the Terai grasslands
of northern India and south-western Nepal; hard-ground Barasingha Rucervus
duvaucelii branderi (Pocock 1943) restricted to Madhya Pradesh; and eastern
swamp deer Rucervus duvaucelii ranjitsinhi (Groves 1982) restricted to the
Brahmaputra valley (Groves 1982; Gopal 1992; Schaller 1967; WII 2017).



15 Factors Affecting the Habitat Suitability of Eastern Swamp. . . 293

In the closing decades of the twentieth century, swamp deer saw a significant
decline owing to widespread poaching and alteration of suitable habitats (Sankaran
1990; Singh 1970; Qureshi et al. 2004; Ahmed and Khan 2008; Saikia et al. 2012).
The species is categorised as ‘Vulnerable’ on the IUCN Red List of Threatened
Species (Duckworth et al. 2015) and included in Schedule I of the Indian Wildlife
(Protection) Act, 1972. In Assam, the eastern swamp deer (ESD henceforth) was
known to occur in the Brahmaputra valley’s flat alluvial plains with tall grasses and
in the Terai grasslands of flat to moderately hilly terrain, particularly in the Manas
landscape near the southern foothills of Bhutan (Schaller 1967). By the late 1980s,
only two remaining populations of this subspecies were reported from Kaziranga and
Manas National Parks in Assam (Lahan and Sonowal 1973).

Before the socio-political upheaval in the Manas landscape, a robust population
of ESD with about 500 individuals were reported in the Terai grassland of Manas
National Park (Choudhury 1997). During the civil unrest, the species was almost
extirpated from the protected area along with other grassland-dependent species such
as greater one-horned rhinoceros (Rhinoceros unicornis) and pygmy hog (Porcula
salvania) (Goswami and Ganesh 2014; Saikia et al. 2012). With the restoration of
governance and renewed conservation efforts in the park, surveys were undertaken
to confirm the species’ presence. Indirect evidences such as pellets and antlers in the
grassland habitat, along with the anecdotal sighting reports of the park rangers,
indicated the presence of a highly diminished swamp deer population in the park
(Das et al. 2009). In 2013, photographic evidence of the species further established
the existence of swamp deer in Manas National Park (Borah et al. 2013). To
supplement the existing population of the deer translocation of ESD in a phase-
wise approach was planned. In 2014, 19 ESD were translocated from Kaziranga
National Park followed by another 17 individuals in 2017 (Ahmed et al. 2016;
Ghosh and Mathur 2020). Since its restocking, the population increased by twofold,
and the recent population estimation recorded the presence of 121 swamp deer
(Islam et al. 2022). However, the grassland habitat of which the species is obligate
has been on the spatial decline (Sarma et al. 2008) and largely impacted by the
invasion of invasive alien plants (Nath et al. 2019).

While it is confirmed that with greater protection ESD has rebounded from the
brink of extinction in Manas National Park and has repopulated several areas of the
park which are dominated by grasslands, there is potential for additional expansion,
provided sound scientific and management interventions are in place to reduce the
anthropogenic pressure and ensure the recovery of suitable habitats (Islam et al.
2022). To this end, the current study attempts to delineate suitable habitats within
Manas National Park and suggests conservation strategies for restoring its habitat.

Delineating a species’ distribution and optimal habitat is a necessary step in
formulating conservation strategies for species management at the habitat or land-
scape level (Ortega-Huerta and Peterson 2004). In general, species distribution
models (SDM) give a measure of a species’ occurrence probability in a geographic
region and help in identifying a habitat that is critical for target species management
(Araujo and Williams 2000; Graham et al. 2004; McFarland et al. 2013). In Manas,
an increase in the population of swamp deer (Islam et al. 2022) demands the



implementation of specific habitat management strategies, as well as the identifica-
tion of environmental, geographical, landscape and anthropogenic factors
influencing the habitat suitability of the species. Here, we used the random forest
algorithm model (Biau 2012) to find out a suitable habitat for swamp deer within the
broad grassland habitat in the park. The findings of this study would help different
stakeholders in developing long-term conservation strategies for swamp deer
habitats which also support several other threatened habitat-specialist species.

294 A. Nath et al.

15.2 Study Area

Manas National Park (MNP henceforth) is a strategic conservation area in the Jigme
Dorji-Manas-Bumdeling conservation landscape in the eastern Himalayan
eco-region, located (26°35′–26°50′N, 90°45′–91°15′E; Baksa and Chirang districts
of Assam) at the junction of Indo-Gangetic, Indo-Malayan and Indo-Bhutan realms
(Wikramanayake et al. 2002). MNP covering an area of 500 km2 represents the core
portion of the notified Manas Tiger Reserve that spans in an area of 2837 km2

(Fig. 15.1). The park stretches on both banks of the Manas-Beki River and is
bounded to the north by Bhutan’s international boundary to the south by human
habitations, west by the First Addition to Manas NP and in the east by Daodhara
Reserve Forest (RF).

Fig. 15.1 Land use type (MF, mixed forest; WB, water body) of Manas National Park. (Source:
Roy et al. 2016)



15 Factors Affecting the Habitat Suitability of Eastern Swamp. . . 295

MNP is located in the Terai-Duar eco-region which is characterised by tall
savannah-type grasslands interspersed with Sal (Shorea robusta)-dominated/moist
mixed deciduous forests, along with tracts of swamps dominated by floodplain
vegetation. The region once characterised the entire lowland region along the
Himalayan foothills extending in India, Nepal and Bhutan into the Indo-Gangetic
plains. Fire, floods and the edaphic climax resulted in a domination of natural
grassland species which is now limited to protected areas along the Terai belt
(Lehmkuhl 1994; Das et al. 2022).

The landcover type of MNP can broadly be categorised into woodland, which
consists mostly of tree species from the semi-evergreen forest and moist mixed
deciduous forest (Sarma et al. 2008). The semi-evergreen category covers
233.31 km2 of the park, with the majority of it being in the north and extreme
southwest. Savannah grasslands are dominated by tall grasses like Narenga
porphyrocoma, Imperata cylindrica, Phragmites karka, Arundo donax, Saccharum
spontaneum, Themeda arundinacea, Saccharum procerum and Vetiveria zizanioides
with trees like Bombax ceiba and Dillenia pentagyna interspersed in the grasslands.
This category has a total area of 161.98 km2. Alluvial grasslands, which cover
approximately 44.49 km2 of the area, are distinguished by pristine patches of
grasslands and the presence of waterlogging condition during the rainy season.

15.3 Methodology

15.3.1 Swamp Deer Occurrence Data

The presence records of swamp deer were compiled from various sources such as
published literature (Das et al. 2009; Islam et al. 2022) and after consultation with
subject experts and researchers working in the study zone. A few anecdotal reports
on the species occurrence based on indirect evidence like fresh pellet groups were
also included. The presence locations of the species were superimposed on 6.25 ha
grid cells to remove multiple presence points, and only one presence point per grid
cell (Brown et al. 2017) was retained. This resulted in using 82 locations for
modelling the habitat suitability of the species (see Fig. 15.2).

15.3.2 Generating Pseudo-absences

Obtaining true absence data is especially challenging for a rare species with low
density. However, these species typically have a high conservation value. When the
actual absence data are unavailable, as in this study, pseudo-absences are frequently
substituted (Brotons et al. 2004; Ferrier et al. 2002; Pearce and Boyce 2006). We
generated 1000 pseudo-absences, which is more than ten times the number of
presence records. The pseudo-absences were generated in a spatially random pattern
within the MNP and by creating a buffer of up to 30 km on the southern side of
the park.
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Fig. 15.2 Variable importance plot for the predictor variables based on model improvement ratio
(MIR) from random forest classifications used for predicting occurrence of eastern swamp deer in
Manas National Park

15.3.3 Habitat Variables

A total of 36 habitat variables that are potentially related to habitat selection of
eastern swamp deer in northeast India based on published literature (Paul et al. 2020)
were used as input variables for the suitability model. These variables represent
climate, landscape composition, topography and anthropogenic influences in the
region. All variables were projected to the 46 R UTM projection and resampled to a
6.25 ha spatial resolution in ArcGIS. Continuous variables were resampled using the
bilinear interpolation method. The complete list of variables, their description and
source are given in the Appendix.

The random forest algorithm (Breiman 2001) was used to develop multivariate
models to predict the probability of swamp deer occurrences. To identify the most
parsimonious model, the variables were filtered using a two-step procedure, e.g. step
1 (a multicollinear function under utilities in the R package (Ihaka and Gentleman
1996)) was applied to assess the potential correlation among all possible pairs of the
above-mentioned variables and removed the variables (n = 24) that were highly
correlated (P < 0.05), and step 2 (a model improvement ratio (MIR)) was used to
retain the most important variables (Murphy et al. 2010). TheMIR uses the permuted
variable importance, represented by the mean decrease in out-of-bag (OOB) error,
standardised from 0 to 1. The variables are subsets using 0.10 threshold increments,
with all variables above the threshold retained for each model. This subset is always
performed on the original model’s variable importance to avoid over-fitting (Svetnik
et al. 2004). Each subset model was compared, and the model that exhibited
the lowest total OOB error and lowest maximum within-class error was selected.
The variable importance and partial dependency plots for each variable selected in
the final model (Dar et al. 2021) were generated. The partial dependency plots are



useful in illustrating the relationship between the predicted probability of swamp
deer occurrence and each habitat variable in the model. Prior to all random forest
modelling, the minimum number of trees required by testing 10,000 boot-strap
samples was determined and examined when the out-of-bag error ceased to improve.
It was determined that the OOB error stabilised between 1000 and 1500 trees. The
random forest algorithm was performed using the R package ‘random forest’ (Liaw
and Wiener 2002).
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An imbalance between presence and absence classes may cause prediction and
model-fit bias (Chawla et al. 2003; Chen et al. 2004). To fix this, we iteratively
down-sampled the majority class by randomly choosing 2 × [n of minority] and
running a new random forest model with random subsets while preserving the
minority sample size. We built a covariance matrix to capture sample distributions
of independent habitat characteristics. The iterating models were stopped when the
cumulative subset data covariance matrix was equivalent to the entire data covari-
ance matrix (P < 0.0001). Our final model was an ensemble of randomly
subsampled majority data models. The ESD probability distribution was generated
using the proportion of majority votes across all branches. We also created variable
significance and partial dependency plots for every habitat variable in the random
forest model. Finally, our partial dependency graphs show how each predictor
variable influences model predictions when all other predictor factors are controlled
and describe the connection between ESD incidence and predictor variables.

15.3.4 Model Validation

Random permutations (n = 99) as well as cross-validation using the resampling
approach was used to assess the model performance, and one-tenth of data was held
as a validation set for each permutation (Evans and Murphy 2018). A number of
performance matrices, including OOB error rate, model error variance and Kappa
index of agreement, were produced by the cross-validation permutations. The OOB
error rate measures the proportion of OOB samples that are incorrectly classified,
and the Kappa index of agreement is a measure of agreement between predicted
presences and absences with actual presences and absences corrected for an agree-
ment that might be due to chance alone. The statistical range of the Kappa index of
agreement ranges from 0 to 1: <0 values indicate no agreement, 0–0.20 as slight,
0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 as substantial and 0.81–1 as
almost perfect agreement (Landis and Koch 1977).
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15.4 Results

15.4.1 Variable Importance

The final model included six variables after variable selection with the model
improvement ratio (Fig. 15.2). The most important variables were the proportion
of grassland, average annual precipitation (bio12), annual potential evapotranspira-
tion (PET), precipitation of the driest month (bio14), compound topography index
(CTI) and largest patch index (LPI) for grassland.

15.4.2 Response of Swamp Deer to Habitat, Topography
and Environmental Variables

Eastern swamp deer occurrence had a positive association with all the climatic
variables (Fig. 15.3). As expected, swamp deer occurrence probability was the
highest in the places where annual precipitation measured more than 3000 mm.
Similarly, the probability of swamp deer increased sharply (<1400 mm) with the
increase in annual potential evapotranspiration. Precipitation of the driest month
(bio14) was also related to swamp deer occurrence. As expected, the proportion of
grassland habitat has a positive association with swamp deer occurrence. Apart from
that, the largest patch index of grassland has a linear response with the occurrence

Fig. 15.3 Partial dependency plots representing the marginal effect of habitat variables on the
predicted occurrence of eastern swamp deer



Table 15.1 Cross-
validated performance of
random forest habitat suit-
ability model for the eastern
swamp deer in Manas
National Park, Assam,
India

probability of the study species. The topographic variable (CTI) had non-linear
relationships with swamp deer occurrences (Fig. 15.3). The compound topographic
index showed a bimodal relationship with swamp deer occurrence, with the highest
probability at >17 CTI. However, the species tend to avoid overlapping edges of
woodland and grassland (CTI range, 14.5–16; Fig. 15.3).
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15.4.3 Habitat Suitability Model

The habitat suitability map produced by the random forest model performed excep-
tionally well (P < 0.001, OOB error rate = 0.04; Table 15.1 and Fig. 15.4). The
model had high accuracy (PCC 94.10%, 0.94) with high sensitivity and specificity
(Table 15.1). The area under the ROC curve (AUC) was 0.94 (Table 15.1),
indicating excellent model performance in predicting the occurrence of swamp
deer in Manas National Park. The ESD was found to prefer the habitat of Kuribeel,

Performance matrix Value

Accuracy (PCC) 94.1

Cohen’s kappa 0.88

Area under the ROC curve 0.94

True skill statistics 0.88

Sensitivity 0.93

Specificity 0.95

Cross-validation OOB error 0.04

Cross-validation error variance 2.82E-05

Fig. 15.4 The habitat suitability map showing the predicted occurrence probability of eastern
swamp deer in Manas National Park. The map displayed areas of low to high suitability represented
in a gradient from the lowest probability of swamp deer occurrence (blue) to the highest (red)



Bangale-haatdhowa, Uchila, Rupohi and Makhibaha sites (management units)
within the park. The current model also showed preference in the Sidhajhar grass-
land in the western part of Manas.
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15.5 Discussion

Our analysis provided insights into the patterns of habitat preference of eastern
swamp deer in the Terai grassland of Manas National Park. Specifically, the model
shows that optimal swamp deer habitat in Manas includes areas of relatively high
grassland proportion along with large patches of grassland habitat and wet climatic
conditions, as measured by precipitation and evapotranspiration. Annual precipita-
tion and mean annual potential evapotranspiration are sufficient variables to capture
water and energy aspects of species niches. Annual total precipitation (bio12)
approximates the total water inputs and is therefore useful when ascertaining the
importance of water availability to a species distribution. Additionally, the impor-
tance of precipitation during the driest month is an important factor as the species is
dependent on the wet areas of grassland ecosystems. Subsequently, evapotranspira-
tion is regarded as a strong predictor of net primary productivity of terrestrial
ecosystems (Rosenzweig 1968) and is especially important to the swamp deer in
parts of Terai because they predominantly forage on grasses (Nawaz 2008). It was
found that the occurrence probability increased with an increase in precipitation in
the driest month (bio14: the total precipitation that prevails during the driest month).
The driest month is useful if extreme precipitation conditions during the year
influence a species potential range.

We carefully constructed the swamp deer habitat suitability modelling for this
investigation and incorporated important factors based on the species ecology.
Although it is well known that species distribution modelling for habitat specialists
produces better predictions (Connor et al. 2018; Rhoden et al. 2017), our study
design included a focal area-based modelling approach, accurate presence locations
(primary data), ecologically meaningful covariates with temporal correspondence to
occurrence locations and an appropriate spatial scale for prediction (Araujo and
Guisan 2006; Aubry et al. 2017; Beerkircher et al. 2009). It is important to note that
we employed pseudo-absence data throughout studies since determining real
absence from these tall grassland habitats had proven difficult. Overall, our model
produced highly accurate predictions (AUC of 0.94), as would be anticipated for an
obligate species (Connor et al. 2018).

The annual population estimation has revealed that the ESD population is
increasing in Manas National Park (Islam et al. 2022). Interestingly, the ESD in
Manas have been recorded from different wet-alluvial grasslands and swampy
habitats of the park since its restocking and thus indicating that the translocated
groups have suitably adapted in the wild, dispersed and occupied suitable habitats.
Currently, the ESD population is confined to the central (Bansbari) and the eastern
(Bhuyanpara) ranges of the park. The occurrence probability increased recently in
another area—Sipajhar—of the central range which was earlier unoccupied by the



species. There is a likelihood that the species might colonise the western range
(Panbari), as the area has few large patches of swampy areas adjacent to the Manas
River, in otherwise dry grassland habitat. Swamp deer recover from near-extinction
status in Manas to a viable population and have dispersed within the park. There is a
high potential, with proper scientific and management interventions to expand the
population by addressing habitat enrichment and restoration. Ecologically, swamp
deer plays an important role as a prey base for large predators (Lahkar et al. 2020)
besides contributing significantly to the overall maintenance of the grassland
ecosystem.
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15.5.1 Conservation Strategies

From the above, it is well established that increasing the suitable habitat for eastern
swamp deer would require specific management interventions that are proposed in
the following pages:

Habitat management: A recent study (Nath et al. 2019) highlighted that approxi-
mately 30% of the existing grassland habitat in Manas is affected due to invasion by
two invasive alien plants (IAPs)—Chromolaena odorata and Mikania micrantha. It
is also predicted that in the absence of any management intervention, large tracts of
prime grassland habitat are vulnerable to further collapse due to the onslaught of
these invasive species. Further, proliferation of woody plants like Bombax ceiba and
Dillenia pentagyna is supported by annual fires, and pure patches are being
converted to a savannah type of habitat. Therefore, a systematic plan to manage
the IAPs and supplement the invaded areas with native grass species using the
technique of manual uprooting of the IAPs and creating a grass nursery will aid in
grassland restoration (for details see Sinha et al. 2022). Furthermore, stakeholders
associated with habitat and species management in Manas may take further help
from Corporate Social Responsibility (CSR)-generated fund for the long-term
sustainability of the eastern swamp deer in the region. The approach of CSR is to
look at ecological, social and economic aspects when it comes to sharing responsi-
bility (Ghosh and Mathur 2020). Therefore, Manas landscape provides a strong
opportunity to get further support from CSR.

Management of grassland fires: Terai grasslands are largely a fire climax.
Nonetheless, systematic controlled burning regime, along with the timing of induc-
ing fire for managing the grasslands, is crucial. The grassland burning season
(December to March) corresponds with the breeding season for the swamp deer.
The fire not only destroys the cover and food, but it may also be fatal for escaping
animals. In many cases fire is induced by graziers who seek to bring in their cattle, as
well as opportunistic hunters. Active fire management (as a control burn) in the early
winter (November–January) or a checkered burning regime with maintenance of fire
lines is therefore prescribed.

Regulate livestock overgrazing: Instances of livestock grazing in the Bansbari
range and parts of Bhuyanpara range of the park have been reported by the authors
(pers comm). This damages the habitat and cover for wild animals, causes soil
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compaction and promotes invasive species. Cattle can also be a source of zoonotic
infections that may be transmitted to wild animals. Therefore, stall-feeding of cattle
can be promoted to restore swamp deer habitat.

302 A. Nath et al.

Intensive study on vegetation dynamics: According to research, the park has lost
more than 40% of its prime grassland habitat (short alluvial grasslands) owing to
natural succession facilitated by yearly burning and floods (Ghosh et al. 2014). The
spread of invasive species is another crucial aspect that must be examined on a
spatiotemporal scale. The use of high-resolution satellite data (1 m) for detailed
mapping of landcover categories will aid in comprehending landscape processes.

Undertake long-term research program: To develop effective management
strategies, it is necessary to investigate and understand the impact of each distur-
bance factor on the grassland habitat of the species. Thus, studies on fire ecology, for
example, the impacts of burning timing, frequency of burning and soil water content
of grass species, need to conduct to come up with that appropriate management plans
for different habitat types within the broad grassland habitat in the park.

15.6 Conclusion

Species distribution models have assisted biodiversity conservation by integrating
research into policy and decision-making processes. In addition, conservation
planning and execution need the identification of habitat regions where land preser-
vation and management may increase the viability of a single or group of endangered
species (McFarland et al. 2013). We give the first prediction map of suitable habitat
for swamp deer in Manas National Park as well as the variables influencing their
habitat preference. It is hoped that the results of the current research may encourage
policy and management authorities to act on the management and restoration of
swamp deer habitat.

Acknowledgements The authors would like to thank the Assam Forest Department and Bodoland
Territorial Region for issuing necessary permits for various field-based studies that form part of this
paper. The Field Directorate of Manas Tiger Project and the forest frontline staffs are thanked for the
logistics support.

Appendix: List of 36 Habitat Variables Used for Habitat Suitability
Modelling for Eastern Swamp Deer

Predictor variable Source Description Units

Group 1: Climate

Annual potential
evapotranspiration
(PET)

ENVIREM (http://
envirem.github.io; Title
and Bemmels 2018)

Mean monthly estimates mm/
month

PET seasonality Monthly variability in potential
evapotranspiration

mm/
month

http://envirem.github.io
http://envirem.github.io


ontinued)
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Predictor variable Source Description Units

PET of the coldest
quarter

Mean monthly PET of the coldest
quarter

mm/
month

PET of the driest
quarter

Mean monthly PET of the driest
quarter

mm/
month

PET of the
warmest quarter

Mean monthly PET of the warmest
quarter

mm/
month

PET of the wettest
quarter

Mean monthly PET of the wettest
quarter

mm/
month

Maximum
temperature of the
coldest month

Maximum temperature of the
coldest month, i.e. January

°C

Minimum
temperature of the
warmest month

Minimum temperature of the
warmest month, i.e. June

°C

Climatic moisture
index

A metric of relative wetness and
aridity

–

Bio1 WorldClim (https://
www.worldclim.org/;
Hijmans et al. 2005)

Mean estimates °C

Bio2 Mean estimates °C

Bio3 Mean estimates °C

Bio4 Mean estimates °C

Bio5 Mean estimates °C

Bio6 Mean estimates °C

Bio7 Mean estimates °C

Bio8 Mean estimates °C

Bio9 Mean estimates °C

Bio10 Mean estimates °C

Bio11 Mean estimates °C

Bio12 Mean estimates mm

Bio13 Mean estimates mm

Bio14 Mean estimates mm

Bio15 Mean estimates mm

Bio16 Mean estimates mm

Bio17 Mean estimates mm

Bio18 Mean estimates mm

Bio19 Mean estimates mm

Group 2: Vegetation

Land cover and vegetation indices

Grasslands Roy et al. 2016 %

Largest patch
index

Calculated based on the grassland
land cover type using the software
FRAGSTATS

%

Group 3: Topographic

Elevation CGIAR-CSI SRTM elevation data at 90 m
resolution

m

Calculated based on the elevation
data using the Geomorphometry and

(c

–

https://www.worldclim.org/;
https://www.worldclim.org/;
http://srtm.csi.cgiar.org/


(CTI)

Gradient Metrix Toolbox in ArcGIS
(Evans and Cushman 2009)
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Predictor variable Source Description Units

Compound
topographic index

Water bodies Roy et al. 2016 %

Distance to rivers HydroSHEDS database
(http://hydrosheds.cr.
usgs.gov)

River networks and was used to
calculate the distance to river
variable

m

Group 4: Disturbance

Human footprint Last of the Wild, v2
(http://sedac.ciesin.
columbia.edu/
wildareas/)

Anthropogenic impacts on the
environment for the period
1995–2004, Last of the Wild Data
Version 2, 2005

%

Distance to roads DIVA-GIS (diva-gis.
org/gdata)

Road networks and was used to
calculate the road density variable

m
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Abstract

Fragmentation has now emerged as a major global problem, with anthropogenic
activities regarded as one of the main causes, primarily for affecting the habitat
suitability. Habitat suitability is influenced by several elements, the most signifi-
cant of which are the structural components of land use and topography. With the
aid of remote sensing and GIS tools, habitats were assessed using a multi-criteria
approach and the habitat suitability modelling. Land Use/Land Cover and topo-
graphic characteristics were used in MaxEnt distribution model to assess the
habitat suitability in the heterogeneous landscape of Central India. Significant
overlaps of potential habitats were observed between the species mostly within
the protected areas.
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16.1 Introduction

Habitat suitability assessments are recommended for conservation efforts on the
basis that they will promote or preserve the survivability and diversity of wildlife
species in the habitat units. The loss, fragmentation and alteration of habitats due to
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land use change and the introduction of alien pests endanger the health and diversity
of the wildlife population.

310 G. Areendran et al.

Changes in land cover, which are often caused by anthropogenic land use
alterations, affect the land-atmosphere interactions on which ecosystem services
rely, which can further hamper the functioning of the ecosystem (Nduati et al.
2013). Observation of LULC (land use/land cover) changes is therefore critical
(Nduati et al. 2013). There are numerous factors that can control the survival of
certain species, and observing them can help in forecasting future trends and
targeting conservation measures towards species in severe need. Developments in
worldwide ecological regions, rare species and protected areas indicate that current
and future urbanization has the potential to cause localized but considerable biodi-
versity damage (Mcdonald et al. 2008). Such studies illustrating LULC transforma-
tion may be beneficial in decision-making and policy direction and related
administrative actions. They will also be important in determining the causes and
effects of LULC transformation (Kumar and Singh 2021).

A tool for explaining or predicting key ecological factors for various species, such
as species distribution and habitat quality, is habitat suitability modelling (Prajapati
et al. 2015). The protection and management of vulnerable species depend heavily
on the knowledge of regional distributions and habitat suitability; hence ecologically
niche models (ENM) are useful tools in conservation biology because they may be
used to map potentially suitable habitats (Jackson and Robertson 2011). Diverse
techniques for ecological niche modelling are among the new software tools being
used to address concerns of biodiversity. Niches may be recreated by associating the
data on species occurrences with data sets that summarize climatic, topographic,
edaphic and other “ecological” dimensions. Environmental modelling is an interdis-
ciplinary field of study that calls for expertise in both biology and geographic
information systems (GIS) to offer accurate geographical data for analysis, as both
are necessary for the competent collecting of primary data and analysis of outcomes
(Lissovsky and Dudov 2021). The combinations of environmental variables that are
most closely associated with observed species presences may then be identified and
projected onto landscapes to identify suitable regions (Soberon and Peterson 2005).
The framework is related to the maximum entropy (MaxEnt) principle that forecasts
the likelihood of species distribution under limitations based on environmental
variables and species occurrence data (Teng et al. 2021). Since there are often
insufficient reliable locations available for mapping the distribution of many species,
MaxEnt has a relatively low location requirement for accurate model generation
which is a very advantageous feature (Hernandez et al. 2006). Presence-only data
and environmental data for the entire study region are needed. It can make use of
both continuous and categorical data, as well as interactions between several factors
(Phillips et al. 2006). One of the most reliable metrics for assessing the precision of
model prediction is the AUC value of the area under the ROC curve (Wang et al.
2021). The distribution with the maximum entropy from every single environmental
variable is chosen as the optimal distribution by MaxEnt using environmental
variables and known sample information at a single point in time (Yang et al. 2021).
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When using the jackknife method, the model is run while excluding one variable
at a time. This provides information about the performance of every single variable
in the model depending upon the crucial role played by each variable towards
describing the distribution of the species and the amount of unique information
offered by the variables. Since this can highlight strongly connected variables, as a
result, the user can assess whether percent contribution values are likely to be
influenced by these correlations (Baldwin 2009). The accuracy of MaxEnt is
constrained by the approach and data used during modelling (Boral and Moktan
2021) despite the fact that it is an effective tool for modelling endangered species
(Gebrewahid et al. 2020).

This paper is aimed at habitat suitability of chital, sloth bear and jungle cat, the
forest dwelling species, in the highly fragmented Central Indian landscape.

16.2 Study Area

The study area, Central Indian landscape, extends from 21° 11′N–76°12′E to 22°59′
N–81°16′E which encompasses the wildlife reserves and corridors of Melghat tiger
reserve, Satpura tiger reserve, Kanha tiger reserve and Pench tiger reserve along with
their connecting corridors. Following the trend of the Satpura range, the area falls in
the states of Maharashtra, Madhya Pradesh and Chhattisgarh within the districts of
Amravati, Nagpur, Bhandara, Gondiya, Dewas, Sehore, Hoshangabad,
Narsimhapur, Mandla, Dindori, Burhanpur, West Nimar, East Nimar, Betul,
Chhindwara, Seoni, Balaghat, Kawardha and Rajnandgaon in Central India.

Hosting some of India’s greatest dense forests, as well as diverse plant and animal
species and indigenous people, Central India is widely regarded as the core of India’s
wildlife (Fig. 16.1).

16.3 Data and Methodology

See Figs. 16.2 and 16.3.

16.3.1 Data Sources

The images were procured from the US Geological Survey (USGS) EarthExplorer
website. The data for the years 2020–2021 was taken from Landsat 8 to 9 OLI/TIRS.
The OLI on Landsat 8 collects images spanning 11 spectral bands in different
wavelengths of visible, near-infrared, shortwave infrared, panchromatic, cirrus and
thermal infrared. It has a temporal resolution of 16 days and covers a swath of
185 kilometres. All of the bands are quantized to 8-bit data. The images were taken
in the post-monsoon period ranging from the months of November to February for
the years 2020–2021. Eight satellite images covered the target landscape area.
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Fig. 16.1 Map of the study area

SRTM digital elevation model data was also acquired from the USGS
EarthExplorer website. Shape files for railways were procured from Bhukosh GSI
site. Bioclimatic variables were downloaded from Worldclim.org. Point location
data was procured from Global Biodiversity Information Facility (GBIF) database
for the period of 2015–2021.

http://worldclim.org
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Fig. 16.2 Data processing
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Fig. 16.3 Data processing flow chart 2
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16.3.2 Methodology

16.3.2.1 Digital Elevation Model
The SRTM data was mosaicked, re-projected and then subsetting was done
according to the study area. A depiction of the topographic surface of the earth’s
bare ground (bare earth) without trees, buildings or other surface items is provided
by the digital elevation model (DEM). Slope and aspect elements were extracted. A
slope map of study area was prepared with five classes of slope degrees (Fig. 16.4).

16.3.2.2 Land Use/Land Cover Classification
The classification of the image was done using the hybrid classification method.
Table 16.1 showing the different LULC classes considered for the analysis is
provided as follows (Figs. 16.5 and 16.6):

According to the methodological framework, factors used for the analysis were
land use/land cover, slope and the bioclimatic variables which included:

Bio1, annual mean temperature; Bio2, mean diurnal range; Bio3, isothermality;
Bio5, maximum temperature of the warmest month; Bio6, minimum temperature of
the coldest month; Bio7, temperature annual range; Bio8, mean temperature of the
wettest quarter; Bio9, mean temperature of the driest quarter; Bio10, mean tempera-
ture of the warmest quarter; Bio11, mean temperature of the coldest quarter; Bio12,
annual precipitation; Bio13, precipitation of the wettest month; Bio14, precipitation
of the driest month; Bio15, precipitation seasonality; Bio16, precipitation of the
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Table 16.1 Land use/land
cover classes

wettest quarter; Bio17, precipitation of the driest quarter; Bio18, precipitation of the
warmest quarter; and Bio19, precipitation of the coldest quarter (WorldClim n.d.).
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S. no Land use/land cover classes

1. Dense forest

2. Open forest

3. Cultivation

4. Open scrub

5. Fallow land

6. Barren land

7. Built-up

8. Water body

9. River bed

10. Natural vegetation
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Fig. 16.5 Land use/land cover classification

The bioclimatic variables were clipped according to the study area and resampled
to the layer of slope. A few layers had mismatch in the rows and columns of pixels
and had to be corrected using the resample and extract by mask tools along with
setting the processing extent and raster analysis to match the layers. All the layers
were projected to the same projection system WGS 1984. The layers were then



converted to the ASCII format. The point location data of species were sorted to get
the latitude and longitude of occurrence and saved in a .csv format. The layers were
used in the MaxEnt model keeping LULC as categorical and the rest as continuous
variables.
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16.4 Results and Discussions

The majority of the protected areas of the Central Indian landscape such as Pench
Tiger Reserve, Kanha Tiger Reserve and Satpura Tiger Reserve are observed to be
very suitable zones (that are shown in blue- to green-coloured zones) which are
mostly the core areas of these protected regions forming a high to moderately
suitable zone. The zone in yellow suggests a marginally appropriate area. The final
brown zone is an area that is completely unsuited for chital (Figs. 16.7 and 16.8).

Looking at the AUC jackknife for chital, it is possible to estimate the amount of
influence each variable has. Histograms of each variable are calculated where
relations are depicted with either just one variable, which is represented by a light
blue-coloured histogram, the value without any variables is indicated by a dark blue
colour and that with all variables is displayed by a red colour.
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HABITAT SUITABILITY OF CHITAL
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Fig. 16.7 Habitat suitability of chital

As seen from the jackknife, the model has taken into consideration almost each
variable showing that it has an influence on the habitat suitability of chital
(Fig. 16.9).

The suitable habit for the sloth bear as indicated is within the areas of Satpura
Tiger Reserve and the denser forest regions highlighted in a shade of dark blue to
green. The moderately suitable habit is shown in yellow, while the least suitable
regions are shown in brown (Fig. 16.10).

The observed jackknife for sloth bear also shows a considerable influence of
almost all variables with a few having higher influence (Fig. 16.11).

As it can be noted, the jungle cat has a suitable habitat spanning the regions of
protected areas and dense forest cover as shown by dark blue shade. Moderately
suitable habitats are shown in yellow tones, while the least suitable zones are shown
in brown (Fig. 16.12).

The habitat for jungle cat is highly influenced by a handful of variables as can be
observed from the jackknife plot (Fig. 16.13).

The potential habitats of the species under study have significant overlaps
especially within the protected regions of Satpura Tiger Reserve for sloth bear and
jungle cat, Pench Tiger Reserve for chital and jungle cat and Kanha Tiger Reserve
for sloth bear and jungle cat again as well as within Nagzira Reserve.
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Fig. 16.8 Jackknife of regularized training grain of chital

16.5 Conclusion

With a large distribution range and multiple big populations, chital populations in
India are believed to be stable. Habitat destruction, poaching and anthropogenic
conflict may represent potential areas of conflict for India’s vast mammalian diver-
sity. Declared vulnerable by the IUCN, sloth bear in India still has few suitable
habitats present, but as a result of habitat loss and poaching, the species is currently
under constant threat. Problems with anthropogenic pressure are widespread, partic-
ularly for carnivores. The encroachment of agricultural regions has a significant
negative impact on jungle cats as they can cause further human wildlife conflict. The
primary risks to jungle cats are habitat destruction, fragmentation, fuel wood
collecting and poaching.

This study aimed to draw attention to the Central Indian landscape as it has a vast
and fragmented area that has both the potential of providing suitable habitats to many
species and at the same time faces the threat of further fragmentation. This study can
be used for further conservation and monitoring efforts within this region.
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HABITAT SUITABILITY OF SLOTH BEAR
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Fig. 16.9 Habitat suitability of sloth bear
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HABITAT SUITABILITY OF JUNGLE CAT
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Fig. 16.11 Habitat suitability of jungle cat
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Fig. 16.13 Potential habitats of species
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Abstract

Freshwater ecosystems are severely affected by the alteration of habitat due to
various anthropogenic influences including overexploitation of resources, con-
struction of dams, soil and water pollution, land use/land cover change, etc.
Habitat suitability modeling is an essential step toward the conservation of
freshwater species including all types of mahseers. In this study, we predicted
the habitat suitability of Tor tor in Indian river systems using the MaxEnt method.
The performance of the model was good with the area under the curve (AUC)
value of 0.86 and the true skill statistic (TSS) of 0.711. The model predicted a
total river length of 9214.15 km (1.83%) and 17,155.93 km (3.42%) as highly
suitable and suitable, respectively. The results show that Northeast India, the
Himalayan region, and the Gangetic plain have highly suitable habitats for T. tor.
Therefore, the model outcomes could help formulate policies for the conservation
of T. tor.
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17.1 Introduction

Freshwater species play an important role in the respective ecosystem in association
with the surrounding environment. Fishes are an important source of animal protein
in the world and are widely recognized as a good source for maintaining body health
(Ganaie and Sharma 2021). The quantification of these relationships portrays the
core of predictive geographical modeling in ecology to solve the crucial problem of
how various environmental factors are controlling the distribution of species and
communities (Guisan and Zimmermann 2000). The diversity of freshwater species is
declining swiftly worldwide, and the population of freshwater wildlife has declined
by 83% since 1970 (WWF 2018; Acreman et al. 2019). The huge concentration of
population and urban centers around the freshwater ecosystems has threatened the
freshwater species diversity including habitat loss and degradation, water pollution,
overfishing, etc. (Arthington et al. 2016).

Species distribution models (SDMs) connect the species’ occurrences with the
prevailing environmental conditions and extrapolate the suitable habitat of a species
(Domisch et al. 2015a). In other words, it estimates the distribution of a species
within the geographic space and time with the help of environmental information as
well as occurrence records (Mahato et al. 2022). Generally, SDMs can be
characterized as a methodology that is based on core ecological and biogeographical
principles about the association of species distributions with the physical environ-
ment (Elith and Franklin 2017). SDMs are frequently named correlative or statistical
models, habitat models, or ecological niche models and are broadly separated into
two categories, namely, correlative and process-based or mechanistic models
(Srivastava et al. 2019). The outcomes of SDMs are also applied as input data for
other investigations, especially in the field of conservation planning, impact assess-
ment, and land use planning to identify suitable locations for habitat restoration and
reintroduction of species (Elith and Franklin 2017).

Tor tor, commonly known as mahseer or Tor Barb, is the type of species of the
genus Tor (Pinder et al. 2019). It was first described from the Mahananda, a tributary
of the Ganges flowing through Northeast Bengal, India, by Hamilton (1822). It is a
well-known game and food fish which inhabits the streams and rivers of the
mountainous area and fast-flowing rivers of the plains and mostly prefers clear,
fast-flowing waters having a stony, pebbly, or rocky surface (Shrestha 1997). The
species has been described to reach 150 cm Total Length (TL) (Mishra 1959) and
gain a maximum weight of 68 kg (Talwar and Jhingran 1991). T. tor is a native
species of south Himalayan rivers extending from Pakistan to Myanmar and also
toward the rivers of South India (Rayamajhi et al. 2018). The southernmost native
distribution of T. tor was believed to be the Narmada River in Madhya Pradesh
(Desai 2003). However, it was also discovered from the Godavari and Krishna River
basins (Lal et al. 2013), which raises the question of whether it is native to tropical
Peninsular India or expanded through artificial propagation (Pinder et al. 2019).
T. tor has been earlier assessed as “Near Threatened” in the IUCN Red List due to
swiftly decreasing populations, but recently it has been reassessed as “Data Defi-
cient” (Rayamajhi et al. 2018). The present work is an attempt to predict the suitable



habitats of T. tor in the Indian river systems by combining species occurrences,
environmental variables, and geospatial technology.
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17.2 Materials and Methods

17.2.1 Study Area

T. tor is native to the rivers of the Himalayas, Central India, Northeast India, and
northern Peninsular India. Hence, the study area includes the rivers of the whole
country. India is the seventh largest country in the world and the third largest in Asia.
It is located between 8° 4′ N and 37° 6′ N latitudes to 68° 7′ E and 97° 25′ E
longitudes. It shares an international border with Afghanistan and Pakistan in the
northwest; China, Bhutan, and Nepal in the north; and Myanmar and Bangladesh in
the east. The southern part of the country is also bounded by the Bay of Bengal to the
east and the Arabian Sea to the west (Fig. 17.1). The biogeographic regions of India
have been also considered to comprehend the habitat suitability of T. tor (Fig. 17.2).

17.2.2 Occurrence Records

The occurrence records of T. tor have been collected from both primary and
secondary sources. The majority of the occurrence records were downloaded from
the Global Biodiversity Information Facility (GBIF) using the dismo package of R
(version 4.0.3) following (Hijmans et al. 2011). The primary data was collected from
different rivers of Arunachal Pradesh using a handheld Global Positioning System
(GPS). All the occurrence records have been filtered to remove records with no
coordinate information. Initially, a total of 301 occurrence records were generated.
We used a snapping tolerance of 3 km to move the occurrence points to the closest
freshwater pixel, and the points falling beyond this range have been removed.
Further, the spThin package in R was used to remove the biases from the records.
The algorithm retained only one record within a 10-km spatial grid and returned a
dataset of 95 occurrence records for the final model execution.

17.2.3 Selection of the Best Environmental Variables

Initially, a set of 51 environmental parameters (1-km spatial resolution) have been
downloaded from the EarthEnv project (www.earthenv.org) using R (Table 17.1).
The sources of the data include WorldClim, Consensus Land Cover, HydroSHEDS,
and World Soil Information (ISRIC) as explained by Domisch et al. (2015b).
Various statistical techniques face multicollinearity problem due to the presence of
highly correlated information among the variables (Miller 2010), which negatively
affects the model performance and poses difficulties in interpreting the relative
performance of variables in the model predictions (Dormann et al. 2013; Manzoor

http://www.earthenv.org


et al. 2018). The complex features created by MaxEnt are often highly correlated. So,
it is recommended to minimize such highly correlated environmental variables
(Merow et al. 2013). A threshold of |r| > 0.7 correlation coefficients between
predictor variables is a proper indicator of collinearity (Dormann et al. 2013;
Manzoor et al. 2018; Sony et al. 2018; Farrell et al. 2019; Feng et al. 2019).
Similarly, the variance inflation factor (VIF) must be computed to check the effects
of the multicollinearity of the variables. It is suspiciously high when VIF for an
independent variable is greater than 5 or 10 (Tsagris and Pandis 2021). Initially,
17 (Table 17.2) out of 51 variables were selected based on the correlation
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Fig. 17.1 Map of the study area



coefficients of |r| < 0.7 and VIF less than 5 using usdm package in R (Naimi, 2016).
Out of these, ten variables with more than 1% contribution were selected
(Table 17.3). The final model was performed with three replications to predict the
suitable habitat of T. tor in the Indian river systems.
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Fig. 17.2 Biogeographic regions of India



Variable code Unit Source

(continued)
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Table 17.1 Environmental data used for species distribution modeling of Tor tor

Variable code Upstream average land cover Unit Source

Lc_avg_01 Evergreen/deciduous needleleaf trees % Consensus Land Cover

Lc_avg_02 Evergreen broadleaf trees % Consensus Land Cover

Lc_avg_03 Deciduous broadleaf trees % Consensus Land Cover

Lc_avg_04 Mixed/other trees % Consensus Land Cover

Lc_avg_05 Shrubs % Consensus Land Cover

Lc_avg_06 Herbaceous vegetation % Consensus Land Cover

Lc_avg_07 Cultivated and managed vegetation % Consensus Land Cover

Lc_avg_08 Regularly flooded vegetation % Consensus Land Cover

Lc_avg_09 Urban/built-up % Consensus Land Cover

Lc_avg_10 Snow/ice % Consensus Land Cover

Lc_avg_11 Barren % Consensus Land Cover

Lc_avg_12 Open water % Consensus Land Cover

Variable code Upstream elevation Unit Source

Elv_01 Upstream elevation (min) Meter [m] HydroSHEDS

Elv_02 Upstream elevation (max) Meter [m] HydroSHEDS

Elv_03 Upstream elevation (range) Meter [m] HydroSHEDS

Elv_04 Upstream elevation (avg) Meter [m] HydroSHEDS

Variable code Upstream slope Unit Source

Slope_01 Upstream slope (min) Degree * 100 HydroSHEDS

Slope_02 Upstream slope (max) Degree * 100 HydroSHEDS

Slope_03 Upstream slope (range) Degree * 100 HydroSHEDS

Slope_04 Upstream slope (avg) Degree * 100 HydroSHEDS

Variable code Stream length and flow accumulation Unit Source

Flow_acc_01 Stream length Number_cells HydroSHEDS

Flow_acc_02 Flow accumulation Number_cells HydroSHEDS

Upstream averaged hydroclimatic variables
(bioclim)

Hydroclim_01 Annual mean temperature [°C] *
10

WorldClim

Hydroclim_02 Mean diurnal range (mean of monthly (max temp–
min temp))

[°C] *
10

WorldClim

Hydroclim_03 Isothermality (BIO2/BIO7) (×100) * 100 WorldClim

Hydroclim_04 Temperature seasonality (standard deviation ×100) [°C] *
10

WorldClim

Hydroclim_05 Max temperature of the warmest month [°C] *
10

WorldClim

Hydroclim_06 Min temperature of the coldest month [°C] *
10

WorldClim

Hydroclim_07 Temperature annual range (BIO5–BIO6) [°C] *
10

WorldClim

Hydroclim_08 Mean temperature of the wettest quarter [°C] *
10

WorldClim

Hydroclim_09 Mean temperature of the driest quarter [°C] *
10

WorldClim



Variable code Unit Source

Soil upstream average Unit Source

O pH *
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Table 17.1 (continued)

Upstream averaged hydroclimatic variables
(bioclim)

Hydroclim_10 Mean temperature of the warmest quarter [°C] *
10

WorldClim

Hydroclim_11 Mean temperature of the coldest quarter [°C] *
10

WorldClim

Hydroclim_12 Annual precipitation [mm] WorldClim

Hydroclim_13 Precipitation of the wettest month [mm] WorldClim

Hydroclim_14 Precipitation of the driest month [mm] WorldClim

Hydroclim_15 Precipitation seasonality (coefficient of variation) * 100 WorldClim

Hydroclim_16 Precipitation of the wettest quarter [mm] WorldClim

Hydroclim_17 Precipitation of the driest quarter [mm] WorldClim

Hydroclim_18 Precipitation of the warmest quarter [mm] WorldClim

Hydroclim_19 Precipitation of the coldest quarter [mm] WorldClim

Variable
code

Soil_avg_01 Soil organic carbon [g/kg] ISRIC

Soil_avg_02 Soil pH in H2

10
ISRIC

Soil_avg_03 Sand content mass fraction % ISRIC

Soil_avg_04 Silt content mass fraction % ISRIC

Soil_avg_05 Clay content mass fraction % ISRIC

Soil_avg_06 (Coarse fragments >2 mm fraction) volumetric % ISRIC

Soil_avg_07 Cation exchange capacity [cmol/
kg]

ISRIC

Soil_avg_08 Bulk density of the fine earth fraction [kg /
m3]

ISRIC

Soil_avg_09 Depth to bedrock (R horizon) up to maximum 240 cm [cm] ISRIC

Soil_avg_10 Predicted probability of occurrence (0–100%) of R horizon
across sub-catchment

% ISRIC

17.2.4 Model Setup and Evaluation

MaxEnt (version 3.4.4) was used to predict the habitat suitability of T. tor. MaxEnt is
a machine learning algorithm that performs best with high prediction accuracy when
used in small sample sizes and presence-only datasets (Ji et al. 2020; Li et al. 2022).
It possesses several advantages over other methods such as good performance with
incomplete datasets, short running time, simple operation, needs small sample size,
and high simulation precision (Li et al. 2020). The settings of the model include
logistic output, cross-validate replicate run type, response curves, jackknife
measures of variable importance, ten percentile training presence, and rest kept as
default settings (Mahato et al. 2022). The results ranging between 0 and 1 have been
classified into five classes of suitability, viz., <0.1 unsuitable; 0.1–0.3, slightly
suitable; 0.3–0.5, moderately suitable; 0.5–0.7, suitable; and >0.7, highly suitable.



The stepwise methodology followed in this study is shown in Fig. 17.3. The
threshold-independent, area under the curve (AUC) of the receiver operating char-
acteristic (ROC) curve and true skill statistic (TSS) were used to evaluate the overall
performance of the model.
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Table 17.2 Variance inflation factor and contribution of selected variables

Sl. no. Variable code VIF Initial contribution Initial permutation importance

1. Hydroclim_14 1.28 30.0 9.2

2. Lc_avg_01 2.59 25.9 9.4

3. Lc_avg_03 2.18 14.0 7.6

4. Elv_01 1.53 5.3 29.8

5. Lc_avg_02 2.23 5.1 7.4

6. Hydroclim_03 1.38 4.8 3.7

7. Lc_avg_04 2.18 4.6 5.5

8. Soil_avg_07 2.51 3.4 8.4

9. Hydroclim_09 4.47 2.5 3.8

10. Slope_01 1.56 1.1 8.0

11. Lc_avg_05 1.81 0.9 1.1

12. Soil_avg_09 1.82 0.7 1.2

13. Lc_avg_11 2.26 0.6 2.3

14. Lc_avg_09 1.26 0.4 0.8

15. Lc_avg_12 1.43 0.2 1.2

16. Soil_avg_04 1.35 0.2 0.3

17. Lc_avg_08 1.20 0.1 0.1

17.3 Results

17.3.1 Model Performance

The model results show the distribution of T. tor is mostly influenced by
Hydroclim_14 with 31.2% followed by Lc_avg_01 (26.9%) and Lc_avg_03
(14.7). Elevation, Lc_avg_02, and Hydroclim_03 were other important predictors
with over 5% contributions. The rest of the variables such as Lc_avg_04,
Soil_avg_07, and slope also slightly influenced the distribution of T. tor
(Table 17.2). The performance of the model was reasonably consistent and good
with a mean AUC of 0.860 and a TSS value of 0.711.

17.3.2 Habitat Suitability Modeling of Tor tor

The final results of habitat suitability were considered in terms of the total river
length (km). Out of the total river length of 502,255.03 km, the model showed
9214.15 km (1.83%) as highly suitable and 17,155.93 km (3.42%) as suitable



followed by 37,352.21 km (7.44%) as moderately suitable, and 159,173.13 km
(31.69%) as slightly suitable. More than half of the study area, i.e., 279,359.61 km
(55.62%), falls under the unsuitable category (Table 17.4 and Fig. 17.4). The results
were also separately calculated for each biogeographic region of India. Out of the ten
biogeographic regions, the highly suitable habitat has been predicted in only five
regions. Among these regions, Northeast India showed the highest percentage
(9.44%), followed by the Himalayan region (8.16%), the Gangetic plain (5.76%),
the semi-arid region (0.57%), and the Deccan Plateau (0.15%) (Table 17.4 and
Fig. 17.4). The model predicted Andaman and Nicobar Islands (100%), Trans-
Himalayan region (99.35%), coastal region (92.00%), and Indian Desert region
(85.61%) as unsuitable for T. tor.
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Table 17.3 Contribution of selected variables

Sl. no. Variable code Contribution (%) Permutation importance (%)

1. Hydroclim_14 31.2 11.2

2. Lc_avg_01 26.9 14.2

3. Lc_avg_03 14.7 8.5

4. Elv_01 5.7 31.9

5. Lc_avg_02 5.2 8.1

6. Hydroclim_03 5.2 5.4

7. Lc_avg_04 4.4 3.5

8. Soil_avg_07 3.0 8.7

9. Hydroclim_09 2.6 4.0

10. Slope_01 1.1 4.6

Fig. 17.3 Flowchart of the methodology

A close examination of the model outputs reveals the rivers of Northeast India as
suitable for the targeted species (Fig. 17.4). The north and south bank tributaries of
the mighty river Brahmaputra appear to be the best home of T. tor. The northern



tributaries of the Brahmaputra such as Kameng, Dikrong, Subansiri, Siang, etc. have
been predicted as suitable habitat for the species. Besides, a portion of the Barak
River system also falls under suitable habitat. In the central and northern parts of the
country, Ganga and its tributaries fall under the suitable category. Narmada, Tapi,
and Godavari River systems have been also found suitable for T. tor. Some of the
reservoirs, namely, Indra Sagar Reservoir of Madhya Pradesh, Gobind Sagar, and
Maharana Pratap Sagar of Himachal Pradesh, also fall under suitable habitat for the
species (Table 17.5).
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Table 17.4 Habitat suitable for Tor tor in the Indian river system

Categories Suitability index River length (km) Percentage

Unsuitable <0.1 279,359.61 55.62

Slightly suitable 0.1–0.3 159,173.13 31.69

Moderately suitable 0.3–0.5 37,352.21 7.44

Suitable 0.5–0.7 17,155.93 3.42

Highly suitable >0.7 9214.15 1.83

Total 502,255.03 100

17.4 Discussion

The distribution and occurrences of fish communities are highly influenced by the
surrounding environment. The habitat of fish is largely influenced by various factors
such as the meandering of streams, the gradient of river banks, riparian vegetation,
and stream flow dynamics (Gebrekiros 2016). Based on the quality of water and the
associated environmental factors especially rainfall and temperature, the species can
travel to large rivers for breeding and feeding (Kaushik and Bordoloi 2016). The
model finds a positive association of T. tor with precipitation of the driest month,
land cover classes (evergreen/deciduous needleleaf trees, deciduous broadleaf trees,
and evergreen broadleaf trees), upstream minimum elevation, and isothermality.

T. tor is widely distributed in Bangladesh, Bhutan, India, Myanmar, Nepal, and
Pakistan. In India, the species is distributed over Arunachal Pradesh, Assam, Bihar,
Haryana, Manipur, Meghalaya, Nagaland, Punjab, Sikkim, Uttar Pradesh, and
Uttaranchal (Khajuria and Langer 2016). The model predicted the drainage system
of the Himalayan foothill zone, Central India, Northeast India, and southern India
(Narmada, Godavari, and Tapi) as the suitable habitats of T. tor. The results are in
agreement with the earlier studies (Lal et al. 2013; Pinder et al. 2019). The results
also show the highly suitable habitats over the hilly and mountainous rivers, which
may be attributed to better growth in the rivers with a rocky surface (Brraich and
Saini 2019) and clear and swiftly flowing water along with optimum water tempera-
ture and pH level (Patil and Saxena 2021).

The inland drainage systems provide fewer chances of migration to better envi-
ronmental conditions and are frequently confined within the landlocked water bodies
(Roy et al. 2021). Human populations are always settled along water bodies



including rivers; hence, the rivers are severely affected by human influences (Zeng
et al. 2022). The fish habitats have been altered or degraded resulting in the declining
trend of fish assemblage, extinction of species, and replacement by other species
(Aadland 1993; Gebrekiros 2016). In general, anthropogenic influences alter the
natural environment through changing land use/land cover, modifying flow regimes,
constructing river dams, and polluting soil and water as well as climate change
which indirectly influences the extinction of various native species and/or
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Fig. 17.4 Habitat suitability mapping of Indian drainage system



Zones Unsuitable Suitable

introduction of non-native species (Su et al. 2021). Most of the cities and large urban
centers in India are located near the drainage network. In general, mahseer is
decreasing very hastily in their population and size in Central India because of
many reasons including overexploitation, water pollution, habitat destruction,
domestic effluent, and use of insecticides and pesticides (Nautiyal and Dwivedi
2020), particularly the exploitation rate of T. tor (Dwivedi and Nautiyal 2012). T. tor
has been reported to possess high nutrition and economic values (Dey et al. 2015).
Therefore, there is an urgent need of evolving sound conservation strategies for the
species in the country before it’s too late. The results of the present study could help
formulate plans and policies for the conservation and management of T. tor.
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Table 17.5 Habitat suitability of Tor tor in different biogeographic regions (in %)

Slightly
suitable

Moderately
suitable

Highly
suitable

Trans-Himalayan
region

99.35 0.43 0.22 0.00 0.00

Himalayan zone 40.98 23.13 16.08 11.65 8.16

Indian desert zone 85.61 14.39 0.00 0.00 0.00

Semi-arid region 54.63 39.22 3.84 1.74 0.57

Western Ghats 57.53 40.38 2.07 0.02 0.00

Deccan Plateau 48.04 39.39 9.64 2.78 0.15

Gangetic plain 62.78 21.83 4.85 4.78 5.76

Northeast region 18.18 38.65 20.88 12.85 9.44

Coastal region 92.00 6.83 1.17 0.00 0.00

Andaman and Nicobar
Islands

100.00 0.00 0.00 0.00 0.00

17.5 Conclusion

The study predicted the habitat suitability of T. tor in the Indian river systems
through the MaxEnt model. The suitable habitats have been mostly predicted in
the North Eastern and the Himalayan region. Although the species is widely
distributed in the country, the model results show limited occupancy of the species
in certain concentrated pockets. Keeping in view the reported declining population
of the species due to various anthropogenic activities, there is a need of exploring the
potential habitats of the species. The model predictions, particularly the moderately
suitable areas, should be explored and confirmed about the occurrence of the species.
Moreover, the predicted suitable and highly suitable areas need to be prioritized for
the conservation and restoration of the species in the future. However, our study is
constrained by the vastness of the study area. Therefore, we recommend further
research at biogeographic/regional levels based on the results of the present study.
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Abstract

Long-term emissions of carbon dioxide by mechanised boats can negatively
impact marine environment through drastic reduction in target fish stocks,
increase in by-catches and low profits for fishers. These in turn trigger a vicious
cycle of overcapacity fishing to compensate for loss of profits and severely impact
marine biodiversity conservation and sustainability. India’s Marine Fishery
Advisories (MFAs), developed and disseminated by INCOIS, is a valuable
knowledge product to optimise the fishing expeditions to fish accumulation
zones under the lowest disturbance to the marine environment, with significant
co-benefits of lowering the emissions from industrial fishing activities.
Simulating decadal, annual scale emissions for RCP 4.5 and 8.5 using a
CMIP5-based modelling approach in the present study showed negligible effects
under the former and significant rise in the latter scenario. Investigations also
revealed that MFAs have the capacity to reduce the annual emissions by
220,667.5 tonnes/year for the Bay of Bengal region near Odisha. The present
study provides an evidence-based policy approach for promoting and enabling
the use of MFAs as knowledge products of geospatial technology, not just to meet
the targets of Sustainable Development Goals 14b (SDG 14b) but also to contrib-
ute towards national-level conformance to international standards for prevention
of maritime pollution such as ‘MARPOL 73/78’ and its subsequent amendments.
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18.1 Introduction

One-third of the total world population is dependent on the oceans for their
livelihoods from fisheries, tourism and many other sectors (UNEP 2022; United
Nations 2022). In the case of India, fishery and aquaculture sectors provide
livelihoods to nearly 25 million fishers, while the number is double along the
value chain (Department of Fisheries 2020b). Fishery sector in India also accounted
for 1.24% of the total Gross Domestic Product (GDP) and 7.28% of the agriculture
sector GDP for the years 2019–2020 (Department of Fisheries 2020a). The estimated
total value of cumulative coastal and marine ecosystem services in India is to the
tune of approximately 1.5 trillion Indian Rupees (INR) which contributed to 3.2% of
the net national product during 2012–2013 (Kavi Kumar et al. 2016). One of the
most significant ecosystem services rendered by marine ecosystems is carbon
sequestration which helps in absorbing surplus carbon dioxide (CO2) and keeps
the global ecosystem cool through feedback mechanisms (United Nations 2022).
However, the coastal regions are extremely vulnerable to extreme weather events
(e.g. cyclones, storm surges, etc.), environmental degradation (e.g. coastal erosions,
etc.), pollution and overfishing (UNEP 2022). Global warming due to the rising level
of human-induced greenhouse gases (GHGs; dominated by CO2) impacts the marine
environment in the form of sea-level rise and many other extreme weather conditions
(Zickfeld et al. 2017).

The global transportation sector has been treated as the fastest-growing one of the
major contributors to climate change with one-fourth (almost 23%) of the CO2

emissions added by the sector to the total emissions (Asian Development Bank
2020). Due to the enhancement in the fishing effort and efficiency in the marine
fishery sector in India, the CO2 emissions due to the operational diesel-based fishing
crafts had also been increased subsequently from 0.30 million tonnes in the 1960s to
3.60 million tonnes in the 2010s (Vivekanandan et al. 2013). Mechanised fishing
crafts contributed to approximately 88% of the total emissions from the marine
fishery sector in India followed by motorised (~12%), while the emission was
reported to be nil for the non-motorised sector (Vivekanandan et al. 2013).

Quantifications of the contributions of marine transportation sector to the
emissions of Indian seas need close attention for Indian seas. The emission rate of
carbon dioxide is also higher in the case of mechanised crafts (50.7 kg/h) compared
to the motorised crafts (16.1 kg/h) in India. In this context, searching time for the fish
accumulation zones in the open sea plays a crucial role in the consumption of diesel
and, hence, CO2 emissions. Therefore, the known and predicted location of the fish
aggregation zones in the sea is very important in order to reduce the search time and
fuel consumption. The ESSO-Indian National Centre for Ocean Information



Services (ESSO-INCOIS) has developed and disseminates Marine Fishery
Advisories (MFAs) in the name of Potential Fishing Zone (PFZ) advisories to all
the coastal communities on a daily basis subject to the availability of the cloud-free
satellite data except for the fishing ban period imposed by the Government of India
(ESSO-INCOIS 2020). PFZ advisories, short-term and reliable forecasts of the fish
aggregation zones in the open sea, help fishers obtain the maximum catch with
minimum effort by avoiding lengthy search time and hence reduce diesel consump-
tion and CO2 emissions from the fishing crafts in the Indian Ocean. In the case of
Odisha, more than 500,000 fishers depend on marine fishing for their livelihoods
across six coastal districts (CMFRI-DoF 2020).
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Fig. 18.1 Emission scenario of relevance to the marine fishing sector

India has aimed to reduce its CO2 emissions (Fig. 18.1) by 33% to 35% by 2030
from the 2005 levels as a part of the 2015 Paris Climate Agreement (Reuters 2021).

The emissions levels of CO2 for India were found to be at 2.63 billion tonnes in
2019 (before the emergence of the COVID-19 pandemic), contributing around
7.15% to the global annual emissions in the same year, when the per capita CO2

emission in India was reported to be about 1.92 tonnes per person (Ritchie et al.
2020). While the global transport sector accounted for 24% of the total CO2

emissions due to the fuel combustion, the emissions contributed by the Indian
transport sector have been found to be about 13.5% to the total emission (Climate
Action Tracker 2020). However, the share of transportation in marine and coastal
ecosystems (i.e. mechanised and motorised fishing crafts) for India is not fully
constrained. The emission intensity of CO2 gas is higher for mechanised crafts
compared to motorised crafts. For the capture of 1 tonne of marine fishes, on an
average 1.18 tonne of CO2 is emitted by mechanised crafts, compared to only 0.59
tonne for motorised crafts (Vivekanandan et al. 2013).

In this regard, the prediction of the emissions of anthropogenic CO2 from the
transportation sectors, especially in the marine fishery sector, is very crucial in the
present scenario, especially with respect to emissions for the diesel-based marine
fishing crafts (e.g. mechanised and motorised crafts). Global climate models (GCM)
have been popularly used to simulate the anthropogenic CO2 emissions worldwide



(Jones et al. 2013). GCM that was a part of the fifth phase of Coupled Model
Intercomparison Project 5 (CMIP5) was utilised in the present study in order to
compare the emissions of anthropogenic CO2 between the last and current decades
over the Bay of Bengal (BoB) under various warming scenarios. Considering the
above, an effort has also been made to calculate the reduction rate of CO2 emissions
due to the usages of MFAs by the fishing crafts in Odisha during the fishing
expeditions.
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18.2 Methodology

18.2.1 Study Area and Data Used in the Study

The present study was carried out for the state of Odisha (Fig. 18.2), located on the
north-eastern coast adjacent to the BoB. Odisha has six coastal districts, namely,
Balasore, Bhadrak, Kendrapara, Jagatsinghpur, Puri, and Ganjam, from the north to
south parts of the state. All along its 480-km-long coastline, Odisha has exhibited a
high potential for marine fish production in India (Department of Fisheries 2020a).
Approximately 83% of the total fish landings in Odisha are attributed to mechanised
fishing from a total of 1748 mechanised crafts (CMFRI-FSI-DoF 2020; FRAD-
CMFRI 2022). In general, mechanised crafts are associated with multi-day fishing
trips lasting between 6 and 15 days in Odisha and with a diesel consumption of
nearly 2000–3000 L per trip significantly adding to the emissions of CO2.

In general, the PFZ advisories provide reliable and short-term predictions of the
fish accumulation zones in the open sea (Subramanian et al. 2014). The basic inputs
to generate this forecast are chlorophyll-a (Chl-a) concentration and sea surface
temperature (SST). The satellite-derived Chl-a data are retrieved from the optical
bands available in IRS-P4 OCM and MODIS-AQUA, while the thermal infrared
channels of NOAA-AVHRR and ESA’s Met-Op are used to generate SST data over
the BoB and the Arabian Sea (ESSO-INCOIS 2020; Kundu et al. 2020).

Fig. 18.2 Study area map of Odisha alongside the Bay of Bengal where the CMIP modelling
approach simulated
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The PFZ advisory developed by the ESSO-INCOIS is presently provided to
different fish landing centres and fishing boat owners along the Indian coast daily
subject to the availability of the cloud-free satellite data except during the fishing ban
period imposed by the Government of India to preserve the juvenile stocks. The
identification of PFZ using the remotely sensed data improves the catch size of fishes
(by two- to fivefold) by minimising the effort (popularly known as catch per unit
effort, CPUE) as well as reducing the diesel consumption as a result of the
minimisation of the search time up to 30 to 70% per trip (Tummala et al. 2008).
The PFZ advisories are also disseminated to Odisha state as in the case of the rest of
the country, with uneven usage ratios across the different FLCs attributed to socio-
technical constraints (Santhanam and Kundu 2022a).

18.2.2 Analyses of CMIP5 Scenarios

The fifth phase of the modelling framework of Coupled Model Intercomparison
Project 5 (CMIP5) coordinated by the World Climate Research Programme (WCRP)
was produced in order to improve the understanding of climate and also to provide
the futuristic estimation of climate change which will be needful to those considering
its possible consequences (Taylor et al. 2012). The CMIP5 model, namely, Model
for Interdisciplinary Research on Climate Version 5 (MIROC5), has been used for
the present comparison study in order to simulate the anthropogenic CO2 emissions
over the BoB under the Representative Concentration Pathways (RCP) 4.5 and RCP
8.5 during the 2010s and 2020s. The MIROC-ESM used in the present investigation
was developed by the Japan Agency for Marine-Earth Science and Technology
(JAMSTEC) in collaboration with institutions such as the University of Tokyo and
the National Institute for Environmental Studies (NIES) and was selected for the
ability to simulate the anthropogenic carbon dioxide emissions at the horizontal
resolution (latitude × longitude) of around 1.4° × 1.4° (Watanabe et al. 2011).

RCPs used in the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, considered as one of the latest generations of scenarios, are largely
used to provide inputs to the climate models in the global context (Bjørnæs 2015).
RCPs are time- and space-dependent trajectories of concentrations of various GHGs
and pollutants resulting from anthropogenic activities, including changes in land use
(Bjørnæs 2015). Of the different scenarios projected by the RCP, the RCP 4.5
scenario indicates a moderate emissions scenario and mitigation policies with the
most probable baseline scenario where the global mean surface temperature will
likely be restricted to 2.6°C by 2100 (van Vuuren et al. 2011). Under the “moderate”
effect scenario represented by the RCP 4.5 scenario, it is understood that the marine
species may not respond to the increase in emissions. On the other hand, RCP 8.5
denotes the scenario with high emissions and the absence of coherent management
where the global mean surface temperature may arrive at 4.8°C by the end of the
twenty-first century (van Vuuren et al. 2011; IPCC 2013). For the present analysis
considering RCP 4.5 and RCP 8.5 for Odisha, two timescales are considered for,
e.g. decadal changes (2010s versus 2020s) and year-wise changes (2020 versus



2021) in order to compare the anthropogenic carbon dioxide emission between RCP
4.5 and RCP 8.5 over the BoB adjacent to the Odisha coast. It has been assumed that
the simulation of anthropogenic CO2 will be higher under the RCP 8.5 scenario
compared to RCP 4.5 over the BoB as it is expected to have higher emissions under
the strongest warming scenario (IPCC 2013).
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18.3 Results and Discussions

The present study compares the anthropogenic CO2 emissions between two warming
scenarios in decade-wise and year-wise over the Odisha coast adjacent to the BoB.
The anthropogenic CO2 concentration was simulated in ppmv from the MIROC5.
Besides the comparison, the reduction in the emissions of CO2 due to the usage of
MFAs by mechanised and motorised crafts is also estimated for Odisha.

18.3.1 CMIP5 RCP Scenarios: Decadal

For the period 2011–2020 (Fig. 18.3), the simulated anthropogenic carbon dioxide
emission ranged from 401.03 ppmv to 401.04 ppmv for RCP 4.5; on the other hand,
CO2 concentration varied between 410 ppmv and 414 ppmv under the RCP 8.5
scenario over Odisha region. However, the differences in the simulated versus actual
anthropogenic CO2 emissions recorded are of the order of 0.01 ppmv under RCP 4.5,
while this was observed to be to the extent of 4 ppmv under the RCP 8.5 scenario.

For the investigation corresponding to the year 2020, the anthropogenic carbon
dioxide under RCP 4.5 was simulated at around 411.04 ppmv, while the same
ranged from 424 to 428 ppmv under RCP 8.5 (Fig. 18.4). Therefore, the differences
in the emission are comparatively insignificant in the case of RCP 4.5 in 2020, while
they are of the order of almost 4 ppmv change between RCP 4.5 and RCP 8.5.

In the post-pandemic year 2021, the carbon dioxide emission concentration was
observed to be in the range of 413.290–413.291 ppmv under RCP 4.5, while the

Fig. 18.3 Scenarios in the past decade, 2011–2020, simulated from CMIP5 corresponding to RCP
4.5 and RCP 8.5 for the Bay of Bengal region adjacent to Odisha



same ranged from 427 ppmv to 434 ppmv under RCP 8.5 in 2021 (Fig. 18.5). For
this period as well, the differences under the RCP 4.5 scenario were observed to be
very insignificant, while differences in the emissions recorded were of the order of
around 7 ppmv under the RCP 8.5 scenario.
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Fig. 18.4 CMIP5 models for RCP 4.5 and RCP 8.5 scenarios simulated for the pandemic year
2020 for Odisha

Fig. 18.5 CMIP5 models for RCP 4.5 and RCP 8.5 scenarios simulated for the post-pandemic year
2021 for Odisha

The above results indicate that while the decadal changes have been quite
significant from 2011 to 2020 for both scenarios, RCP 4.5 as well as RCP 8.5,
there is a marked difference between the simulated values for the two scenarios in
both 2020 and 2021. The changes are quite insignificant for RCP 4.5, while they are
high in the case of RCP 8.5.

18.3.2 Comparative Analyses of the Scenarios in Emission Reduction
Versus the Use of MFAs

The search time for the fishing attributed to MFA usages has been reported to be
reduced by 30%–70% per trip for mechanised fishing crafts (Tummala et al. 2008).
Therefore, the respective consumption of diesel also expectedly reduces for fishing



due to the reduction of search time as reported therein. For example, saving of 1 L of
diesel has been observed to reduce 2.63 kg of carbon dioxide emissions (NCAER
2015).
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Table 18.1 Estimation in the reduction of the carbon dioxide (CO2) emissions due to the usages of
Marine Fishery Advisories (MFAs) by the mechanised fishing sector for Odisha

Daily diesel consumption: (A) 300 L

Daily diesel consumption using MFAs: (B) 140 L

Daily saving in diesel consumption: (C = A–B) 160 L

Saving in diesel consumption per trip by assuming a 10-day trip:
(D = 10 × C)

1600 L

Reduction in carbon dioxide emission per trip: (E = D × n1) 4208 kg/trip

Annual reduction in carbon dioxide emission for one craft: (F = E × n2) 126,240 kg/craft

Annual reduction of carbon dioxide emission for Odisha: (G = F × n3) 220,667,520 kg/
year

Annual reduction of carbon dioxide emission for Odisha: (H = G/n4) 220,667.5 tonnes/
year

n1 = 2.63 kg/L (reduction in carbon emission per litre of diesel saved)
n2 = 30 (number of annual trips undertaken as obtained from field survey)
n3 = 1748 (total number of mechanised crafts operated in Odisha as of 2020 from CMFRI census
report)
n4 = 1000 (factor of conversion to tonnes)

On an average, a mechanised fishing craft in Odisha consumes 300 L of diesel
fuel per day in order to conduct fishing expeditions in the open sea while not utilising
MFAs to reach PFZ. If the fishers can effectively make use of the MFAs for
searching fish shoals, 160 L of diesel can be estimated to be saved per day. In this
way, 1600 L of diesel can be saved per trip for a mechanised craft for a 10-day trip
(Table 18.1). Therefore, a total volume of 48,000 L of diesel will be saved in a 1-year
time span for one mechanised craft in Odisha assuming 30 trips per year (excluding
the fishing ban period). Therefore, the reduction in the carbon dioxide emission is
estimated in the present investigation to be 126,240 kg considering the reduction of
2.63 kg of carbon dioxide per litre of diesel saving due to the usage of MFAs. In a
similar way (as detailed in Table 18.1), the reduction in carbon dioxide due to the
usage of MFAs in Odisha will be 220,667,520 kg considering 1748 mechanised
crafts are currently in operation in Odisha as reported CMFRI census (CMFRI-DoF
2020).

18.3.3 Futuristic Projections for 2030

The futuristic projection for the anthropogenic emissions of carbon dioxide has also
been simulated from the MIROC5 model during 2021–2030 (Fig. 18.6). The
simulated emissions under the RCP 4.5 scenario ranged from 423.917 ppmv to
423.918 ppmv; however, in the case of the RCP 8.5 scenario, the emission is



observed to be higher and ranged from 446 ppmv to 453 ppmv. Therefore, the
differences in the RCP 4.5 scenarios within the ranges of emissions may not be
significant for the present decade, while those for RCP 8.5 in the order of 7 ppmv are
expected to show high increases in the emissions as shown in Fig. 18.6.
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Fig. 18.6 Projected emissions from CMIP5 model for RCP 4.5 and RCP 8.5 scenarios for the
period of 2021–2030

18.3.4 Discussions

It must be noted that though the differences in the ranges of anthropogenic carbon
dioxide emission under RCP 4.5 are not significant in the case of the future
projection too, the simulated emission is higher than that of the past decade under
the same forcing scenario. On the other hand, the simulated emission under the
warmest scenario was higher than that of RCP 4.5, and also the differences in the
ranges varied significantly, from 4 ppmv to 7 ppmv for the Odisha region.

While it was evident during the pandemic year (2020) that the mechanised fishing
crafts were not operated for a few months due to a nation-wide lockdown in India
(Kundu and Santhanam 2021), in all probability, the CO2 emissions may have been
reduced attributed to the less operational crafts. However, it is difficult to quantify
the extent to which the CMIP5 model may have simulated the reduction in the
emissions at annual scales, although a slight enhancement in CO2 emissions in the
BoB in the post-pandemic years as projected in the model simulations appears to
signify the rise in emissions from the periods of low emissions (2020, with succes-
sive pandemic lockdown periods) to elevated levels cumulatively (2021 post-
pandemic lockdown year; Figs. 18.5 and 18.6).

It is essential to balance economic developmental needs with basic human needs
such as food security and poverty alleviation; however a higher number of fleets of
mechanised crafts with lengthier fishing trips being operated in the BoB will likely
enhance the emissions of carbon dioxide in the coming decade and creating
challenges for India to meet the net-zero emission commitment. On the other
hand, the counter-productive impacts of the loss of fish stocks due to the disturbance
of the marine environment as well as emissions can negatively impact the



livelihoods of small-scale fishers as well and prevent the meeting of national targets
across several Sustainable Development Goals (SDGs), especially SDG 14. How-
ever, the innovative use of geospatial technologies such as MFAs has the potential to
function as aiding nature-based solutions (NbS) for stock replenishment in the form
of NbS-Aiding Technologies (NAT; Santhanam and Kundu 2022b). Recognising
the urgent need for stock preservation, the fishers of all sectors are ready to embrace
sustainable fishing through MFA technologies at a ground level (Santhanam and
Kundu 2022a; Santhanam et al. 2022). The incorporation of MFAs as NAT will
provide unique protocols for effective co-management of fisheries especially under
the RCP 8.5 scenario simulated in the present study, lowering the social cost of
carbon for Odisha as well as India (Santhanam and Kundu 2022a, b). This can
provide effective marine policy handles to formulate evidence-based policy
frameworks at a national level to implement the use of critical, space-based technol-
ogy products as MFAs with significant outcomes for fisher communities and marine
ecosystem service regulation.
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Further, the use of MFAs to lower emissions can be useful to implement measures
related to emissions from vessel fleets in the ocean in conformance to the interna-
tional legislations promulgated by ‘The International Convention for the Prevention
of Pollution from Ships, and subsequently amended by the protocol of 1978, the
“MARPOL 73/78”. The use of MFAs provides policy enablement for national
conformance to the 2005 Amendment of MARPOL 73/78 which deals with the
“Prevention of Air Pollution from Ships”’ described in Annex VI, 2005 (Mantoju
2021).

18.4 Conclusions

In the present study, cumulative anthropogenic carbon dioxide emissions were
modelled for the BoB coast near Odisha, under decadal (2011–2020; 2021–2030)
and annual scales (2020 pandemic scenario and 2021 post-pandemic scenario). In
general, the emissions are projected to be higher under the RCP 8.5 scenario than
that of under RCP 4.5. Under the circumstances, the contribution of the large-scale
mechanised fishing boats operating in the Odisha coast can add significant emissions
to those of the BoB. The present study illustrated an evidence-based approach to
assess the same, given that the total of 1748 mechanised crafts operated (approxi-
mately) in Odisha can potentially emit up to 413,752 tonnes of carbon dioxide every
year if fishing expeditions are not optimised.

However, the proper usage of MFAs can help in reducing the search time for the
identification of PFZ and minimising the diesel consumption for both large trawler
and mechanised fishers. The carbon dioxide emission due to the operation of
mechanised crafts in Odisha can also be decreased by approximately 53% under
regular usage scenario; fishers for arriving at the PFZ aided by MFA have the
potential to reduce carbon dioxide emissions by approximately 220,667.5 tonnes/
year (220,667,520 kg/year) promoting sustainable fishing for Odisha alone.
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In order to facilitate the regular usage of MFAs, incorporation of suitable policies
for MFA-based sustainable fishing operations through public, private and institu-
tional partnerships will be advantageous. The reduction in the carbon dioxide
emissions will be co-beneficial to improve the sustainability of the marine ecosys-
tem, species survival and stock preservation/diversification. The present investiga-
tion provided an example to illustrate that a robust targeted policy framework to
make MFAs accessible and useable to all the marine fishers in India is critical to
achieving lower emissions from industrialised fishing activities for India, at the same
time with the opportunity to conform to international maritime regulations such as
MARPOL 73/78 (Annex VI; 2005).
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Abstract

Tropical montane and temperate forests of South Asia, specifically India and Sri
Lanka, were studied for symptoms of pollution by postgraduate students from the
respective countries. The study focused on multiple abiotic parameters to docu-
ment deposition of pollutants on forests, centralizing on a particular pollution-
sensitive species called lichens as the biotic component. Remotely sensed pollu-
tion data was extracted to estimate ground air pollution values, pH of bark, soil
chemistry and lichen tissue nitrogen content which was collected over the
identified sample sites in both countries. All tests together gave baselines for
the forests’ state of health. Independent tests on soil pH, conductivity, nitrate and
others in both countries did not express any trend. Bark pH measured in Sri Lanka
was higher in value than reported literature indicative of deviation from normal.
Total nitrogen accumulation in lichen thallus from India was highest in most
anthropogenically disturbed sites and least in lichens collected from interiors of
the forest. In Sri Lanka, the lichen species, especially the pollution-sensitive ones,
were highest in number and expressed growth forms farthest from the city,
consequently having the lowest ambient pollution. These studies were compiled
together as research findings conducted by postgraduate students through the
funding from UNU—ProSPER.net—under the overarching support of SANH.
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19.1 Introduction

In the times of climate change crisis, we have more problems than solutions. The
concept of planetary boundaries (Rockström et al. 2009) offers a good metric to
understand which aspects of our environment are out of balance. Nitrogen biogeo-
chemical cycle is beyond the zone of uncertainty leading to over-enrichment of air,
land and water with nutrients known to be limiting on Earth (de Vries 2021).
Nitrogen has been the dominant gas but chemically intern as dinitrogen (N2)
makes up 78% of the atmosphere. Reactive nitrogen or Nr was exclusively formed
through Biological Nitrogen Fixation (BNF) (Bobbink et al. 2010). This always kept
the concentration of usable nitrogen in depleted amounts until Haber’s process was
discovered and popularized through fertilizers in the green revolution (Galloway
et al. 2003). Now, the sources of Nr are beyond the Haber’s process as the burning of
fossil fuels also commonly releases SOx and NOx (Stevens et al. 2020).

Countries still in their industrial age, mostly developing countries, use fossil fuels
such as coal and petroleum as their primary source of energy. This put developing
countries at risk of degrading their biosphere integrity disproportionately than other
parts of the world. Areas that are eco-sensitive are at a greater threat of harm. The
Himalayas is one such site that offers a unique habitat for unique organisms. It is
considered to have lower levels of pollution given its altitude, forest cover and lower
urban pockets than flatlands owing to its difficult terrain. It is, therefore, home to
many pollution-sensitive organisms. The temperate forests of the Himalayas have an
abundance of an organism arising from a symbiotic association of fungi and algae
called lichens. They have been historically used for biomonitoring air pollution.
During the industrial revolution in the UK, it was found that lichens disappeared
from locations close to sources of pollution. This led to the discovery of their
sensitivity to SOx and NOx pollutants. Western Himalayas has been recently
observed to show a sharp boom in economic growth and infrastructural develop-
ment. It has led to increased tourism, urbanization, development of railways,
industries and even improved farming supplemented with fertilizers. The expected
impacts are disturbing the hydrological cycle, air pollution and land and water
degradation leading to overall environmental deterioration. Its proximity to the
Indo-Gangetic plains is also problematic since the entire region has been declared
a global pollution hotspot. It is one of the most polluted sites in the world owing to
the highly fertile soil that encourages heavy agriculture and industrialization. These
factors made Uttarakhand, a state under the western Himalayas, a suitable study
location. The tropical montane forests of Sri Lanka, however, are yet to reach such
elevated levels of pollution. Therefore, they offer a good contrast also is a landscape
unexplored for lichens and their capacity to indicate polluted sites. This research has



opened that avenue by selecting three forests with varying proximity to a popular
city called Kandy.
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The comparative studies in the above-mentioned locations use lichens as the
primary focus but measure several environmental pollution indicative parameters as
an accessory to overall findings. The objective is to:

(a) Identify visible changes in lichen tissue nitrogen due to increased Nr pollution in
and around the forests of Himalayas as well as Sri Lanka.

(b) Use accessory samples such as satellite imagery, bark and soil pH and lichen
diversity to support the findings from lichen tissue composition.

19.2 Methodology

19.2.1 Study Area

Indian samples were collected from inside and outside forest at Chamoli district in
the Garhwal division of Uttarakhand, 30.42°N 79.33°E, which belongs to the Lesser
Himalayas region. Inside Chamoli, seven community forests were identified,
namely, Jhinjhoni, Sankot, Bamiyala, Khanoli, Kimoli, Ghes and Koti. Samples
from these sites were collected each month. A few sample gaps occurred due to
COVID-19 restrictions as well as severe flooding and landslides in the study area but
were consolidated to the best of scientific reasoning (Fig. 19.1).

In Sri Lanka, the forests selected were Udawatta Kele forest reserve, Gannoruwa
forest reserve and Hanthana forest reserve close to Kandy city. Two transects in
Udawatta Kele forest reserve and three transects in each Gannoruwa and Hanthana
forest reserve were laid down. Transects were of the size 100 m × 5 m and were
located at two places in Udawatta Kele forest reserve and three places of each
Gannoruwa and Hanthana forest reserve so as to distribute from the most disturbed
areas (close to the city) to far from the city. Each transect was created so as to have
2.5 m to either side, and the samples were collected within this range (Fig. 19.2).

19.2.2 Specific Analyses

The methodologies followed are described under several heads as follows:
The study considered four broad indicators of pollution to explore within the

scope of the current study as follows:

(a) Identification of areas undergoing high and low pollution through remote
sensing

(b) Delineation and exploration of N deposition on dominant forest trees of study
locations

(c) Study of the soil chemistry with a focus on acidification due to pollutants
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Fig. 19.1 Map showing study locations in India

Fig. 19.2 Map showing study location in Sri Lanka
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(d) Study of the bark pH and association of diversity of species reported to be
sensitive to pollution

All these tests were conducted in seven community forests in Uttarakhand, India,
and in three forests in Sri Lanka. The study had different methodologies depending
on the level of restrictions on travel due to the COVID-19 pandemic. The sampling
spanned across 12 months (February 2021–March 2022) in India with monthly
sample collection of lichen, soil and twigs. In Sri Lanka transects were laid in all
three forests, and one set of samples was collected from each transect.

Air pollution data—The air pollution data was acquired using Giovanni, a
NASA-powered satellite product visualization tool. India acquired data for the
state of Uttarakhand on the gaseous pollutants NO2, SO2 and PM2.5. Sri Lanka
acquired satellite data on O3, SO2 and PM 2.5 for the forests studied. They also
acquired data from government pollution monitoring department for the city of
Kandy.

Lichen—In India, samples were collected from two villages: the village of
Jhinjhoni and an eco-trek spot called Khaliya in Munsiyari village. From Jhinjhoni
two landscapes were selected: inside the forest, called Inside Jhinjhoni, and outside
the forest of Jhinjhoni called Outside Jhinjhoni. The reserved land for protection and
eco-tourism in Munsiyari called Khaliya is referred to as Munsiyari everywhere in
this paper hereafter. These locations offered three unique landscapes—inside forest
for unpolluted air, outside forest for air with anthropogenic influence and eco-trek
Munsiyari lying in between with little human influence due to treks but not a lot as it
is also a protected site. Total nitrogen (TN) and dN15/dN14 were performed on
lichens using the instrument IRMS (isotope-ratio mass spectrometer). This was to
provide insight into the N deposition in the forests. The samples were sent to Birbal
Sahni Institute of Palaeosciences (BSIP) Lucknow, India, as they had the facility for
IRMS testing. In Sri Lanka, lichen specimens were observed through the light
microscope (Nikon, SM5 621323). Characters such as thallus colour, shape, thallus
structure, margins of lobes, presence/absence of isidia, soredia, external cephalodia,
cyphellae, pseudocyphellae, cilia, rhizines, ascomata and conidiomata were
observed under 40× magnification. The image of each lichen thallus was taken
with clear details of the thallus and reproductive structures. Samples were then
classified according to the microscopic observations. Species were identified using
available field guides (Weerakoon 2015). Furthermore, lichens were classified
according to indicator species of air pollution based on the available literature and
findings of previous studies (Perlmutter 2010; Will-Wolf et al. 2015; Weerakoon
2013).

Soil quality—In India, convenient soil samples (n= 53) were collected both from
inside and outside forest plots that were corresponding to the trees from which
lichens, the primary pollutant indicator, were collected. The sample collection
spanned from June to November 2021 despite restrictions associated with severe
landslides and the pandemic, and the sampling effort throughout the study period
was enhanced with utmost care. The collection process was facilitated by the
members of community who worked with the Uttarakhand Youth and Rural



Development Centre (UYRDC), Chamoli. The soil samples were air-dried, sieved
using a 2-mm sieve and mixed, and then 40 g of each was utilized for nitrate analysis
via UV-Vis spectrophotometry at Food Analysis and Research (FARE) Labs Pvt.
Ltd., Gurugram, Haryana, India. Twenty grams of each sample was used to form a 1:
2 mixture (Radojevic et al. 2007) for pH and conductivity analysis which was
conducted at the Environmental Monitoring Lab, TERI SAS, using a pH meter
“Thermo Scientific™ Orion™ 4-Star pH/ISE Benchtop Multiparameter Meter” and
a standard conductivity meter. In Sri Lanka, four composite soil samples from each
plot were collected using a soil auger from a depth of 0–30 cm at random places
within the transect for the soil analysis. Samples were collected into sampling bags,
and they were labelled with the name of the transect and the sample number and
taken to the laboratory for soil sample analysis. In Sri Lanka, soil’s electrical
conductivity in 1:5 ratio, pH in 1:2.5 ratio, soil organic carbon (SOC) using ignition
method and soil K content was measured as described by Warncke and Brown
(1998) and Motsara and Roy (2008).
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Twig/bark test—In India, unbranched twigs of approximately 1 cm diameter and
6 cm length were collected from trees in the study location. The trees were selected at
random, and the twigs were collected from an accessible height. The twigs were cut
to a length of 6 cm to ensure uniformity. The ends were then sealed with petroleum
jelly to ensure that the extract is only from the outside of the bark. The pH of the bark
was measured as the pH of the unbuffered aqueous solution in contact with the bark.
The twigs were soaked in deionized water for 24 h, and the pH was recorded from
the extract using a standard pH electrode. This methodology is adapted from
Wolseley et al. (2009). In Sri Lanka bark pH analysis was done as mentioned by
Kricke (2002). Pieces as thin as possible were removed from the surface of the bark
on the tree using a knife or a chisel in order to measure only the outermost bark layer
which has the closest association with the epiphytic vegetation. Then, 0.5 g of
sampling materials was used for the analysis. Tiny bark samples were put into a
5-mL stoppered flask, and then bark samples obtained from different plants were
soaked separately in distilled water with a constant volume of 5 mL for approxi-
mately 1 h at 80 °C. Finally, the pH value of each sample was measured using a
standard pH meter (Consort C6010 3.3).

19.3 Results and Discussions

19.3.1 Study on Air Pollution Trends to Identify the Pollution Zones

From the maps it is evident that NO2 is quite prominent as a pollutant, followed by
PM2.5. The minimum and maximum values in these maps are the highest and lowest
the state of Uttarakhand has seen in the decade 2010–2020. All the values in between
are plotted as equal intervals in classes of 5. SO2 has very low concentrations when
visualized in the context of whole India but is shown to have high and low pollution
areas when just Uttarakhand is brought into perspective. Polluted areas for SO2 don’t
correspond with NO2 and PM indicating that their source might be different as the



high pollution areas are not near the valleys. PM 2.5 and NO2 both have high
pollution at low elevation which decreases as we move towards the north or high
altitudinal areas. Man-Kendall test revealed that there exists a trend, but none of
them are statistically significant. The atmospheric pollutants NO2 and PM2.5 are
actually moving upwards but have statistically insignificant p-value (Table 19.1).
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Table 19.1 Trend analysis for major pollutant in Uttarakhand

Pollutants M-ktau Two-sided p-value Comments

NO2 0.13 0.63839 Upward slope but statistically insignificant

PM2.5 0.127 0.64043 Upward slope but statistically insignificant

SO2 -0.382 0.11947 Downward slope but statistically insignificant

The NO2 and PM2.5 can be attributed partly to the high developmental activity,
vehicular and other fuel-related emissions and partly the stubble burning that occurs
every year in the Indo-Gangetic plains. The noticeable downward trend in all the
graphs from 2019 is due to the COVID-19-linked lockdowns on all activities and
movements.

In Sri Lanka, the air pollution is measured in two sets. The first is for the forests
through remote sensing. It can be noticed here through the graph that the three
locations have very similar pollution levels for NO2 owing to the coarse resolution of
satellite data. However, Hanthana forest shows consistently lower pollution level
than the other two forests. Hanthana is also located farthest from Kandy city.

The data for Kandy city is however more variable.
The graphs are for NO2, CO and PM10, respectively. It shows an evident dip in

pollution levels for all pollutants during all quarters of 2021. It is attributable to the
lockdown due to COVID-19.

19.3.2 Study on Lichen Tissue

The chlorolichen species, i.e. Usnea sp., Everniastrum sp., Parmeloids and
Ramalina sp., are charted separately for location-wise analysis as they were found
in all three sites, whereas cyanolichen was only found in Munsiyari.

Figure 19.6 shows total nitrogen accumulation in the four sampled chlorolichen
species, and we find that Outside Jhinjhoni with most human interference, the value
is highest and inside the forest it is lowest. Munsiyari has intermediate values.
Figure 19.3 however does not give any conclusive inference for the dominant
pollutant in our study location as the δ15N values vary for location with every
lichen species. This could be due to sampling since convenient sampling as per
availability of lichen also means that distance from source of pollutant could not be
standardized within the same location also for these lichen species. Figure 19.4
shows the levels of total nitrogen and corresponding δ15N for them. The
cyanolichens studied are Peltigera sp., Loberia sp. and Leptogium sp. They are
consistently seen from Figs. 19.4 and 19.5 to have higher levels of total tissue
nitrogen, owing to their nitrogen fixation ability due to the presence of heterocyst.



These specialized cells could also be the reason for lower δ15N values as the
N-fixation would have occurred from N2 gas in the atmosphere which is 99.63%
of δ14N (Diaz-Alvarez et al. 2018). Figure 19.6 is a dot plot showing a significant
correlation of R = 0.69 between δ15N and total tissue nitrogen. It shows that the
higher the total nitrogen in the tissue, the less negative will the δ15N value is
expected to be, which says that more than emissions of NH3 from agriculture and
livestock and vehicular emission of NOx dominate the study locations. Higher
negative values with high accumulation of Nr are seen when agriculture is a
dominant activity, but here evidently fuel combustion, biomass burning and vehicu-
lar pollution are more dominant (Fig. 19.7).
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Fig. 19.3 Decadal pollution map of the region under study

19.3.3 Study on Lichen Diversity and Growth

The forests of Sri Lanka studied diversity of lichens under the pretense that location
with higher pollution would be less habitable and would inherently have lower
diversity than lesser polluted location. They also checked each lichen against
pollution indicator list and found that the forest Hanthana, being the farthest from
the city, also had the most diversity in forms as seen in Fig. 19.8 of lichen and the
highest number of pollution-sensitive indicator lichen species as marked in
Table 19.2.
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Fig. 19.5 Air pollution in study sites of Sri Lanka

19.3.4 Study on Soil Chemistry

From the line graph below (Fig. 19.9), a clear distinction in the nitrate level of soil
inside and outside forest could be observed over the months. The level of nitrate is
higher outside the forest compared to the soil nitrate of samples collected from inside
the village forests. A potential explanation for the same could be that the forest
canopy intercepts the incoming atmospheric nitrogen (Kennedy 2003); thus, inside
the forest, vegetation may be acting as a buffer, but on the other hand, no such buffer
is present outside the forest as the canopy cover is relatively less.

Higher amounts of nitrate in soil outside the forest could also be asserted to the
fact that it is closer to the source of pollution such as fields that use Nitrogen,
Phosphorus and Pottasium (NPK) fertilizers and vehicular pollution that is comple-
mentary to the presence of human and their activities in the region. A general decline
in the nitrate level over the time period is also being reflected, yet it could be
attributed to continuous improvement and increase in the sampling effort during
the study.

A paired Wilcoxon or Mann-Whitney U test was performed to compare the
medians of the nitrate level in both the regions using the “wilcox.test()” function
in R studio as per which the median value of nitrate in soil was 20.5 mg/kg and
51.5 mg/kg inside and outside forest, respectively. The p-value for this comparative
test was p = 0.125 making the difference non-significant, and thus the null hypothe-
sis that the nitrate level inside and outside is statistically similar cannot be rejected.

Soil pH both inside and outside forest samples seemed to be in the same range,
and hence, nearly overlapping with median value for the same was 4.83 and 5.09.
The soil of the sites which sustain pristine oak forests naturally also lies in on the
acidic side, thus corresponding to their general range. These values also correspond
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to the pH range of Garhwal region characterized by previous studies (Sheikh et al.
2010) (Fig. 19.10).
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Fig. 19.8 Lichen species diversity in Sri Lanka

The soil electric conductivity is comparatively higher in the samples collected and
analysed from outside forest sample locations which could be attributed to the higher
nitrate levels. The incoming ammonia in the soil is converted into nitrate during
which H+ ions are released which may be one of the contributing variables to the
higher electric conductivity.

The median values for this parameter inside and outside forest are 0.261 and
0.226 S/m as determined by Wilcoxon test, yet it is statistically similar ( p-
value = 0.812) (Fig. 19.11).

In Sri Lanka, the soil pH and the electrical conductivity of each transect of
Gannoruwa, Hanthana and Udawatta Kele forest reserves was tested. Out of this
the average pH of transect one at Udawatta Kele sampling site was the lowest;
however, the electrical conductivity was the highest of all. The average soil pH of the
transectsof the sampling sites ranged fromG2>G1>G3>U2>H1>H2>H3>U1
whereas the average electrical conductivity ranged from
U1 > H1 > U2 > H2 > G2 > G1 > G3 > H3. This gave no clear trend however
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Fig. 19.9 Graphs showing soil nitrate content during June to November in Uttarakhand during the
study period

Fig. 19.10 Graphs showing soil pH range in Uttarakhand

Fig. 19.11 Graphs showing soil conductivity in Uttarakhand during the study period



established a range of soil pH from 6 to 4 and conductivity ranging from 74 to 30 μS/
cm (Fig. 19.12).
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Fig. 19.12 Soil pH range in the sampling sites of Sri Lanka

Twig Bark pH for 7 locations from June to March

Month
Jun

Jhinjhoni Bamiyala Sankot Khanoli Kimoli Koti Ghes

7
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5
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3
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1

0

pH

Jul Aug Sep Oct Nov Dec Jan Feb Mar

Fig. 19.13 Bark pH range for twig sampled from Uttarakhand

19.3.5 Study on Bark pH

Monthly test in India reveals the bark pH ranged from 3.38 to 6.32 in the 9 months
from June 2021 to March 2022. This finding is consistent with the literature;
therefore no abnormality was observed. The bark in Sri Lanka was measured, and
their range lay between 5.4 and 6.13. This reading does not coincide with the past
studies on bark pH which report the range at 2.2 to 4.7 (Grodzińska 1979). There-
fore, the bark pH in Sri Lanka is more neutralized than expected. This can be
attributed to many naturally occurring factors such as age of the tree, duration of
storage of the bark, the level of insect infestation and the height of samples collected.



It can also be explained using ammonia pollution which is rising in both urban and
natural landscapes. Given its basic nature, ammonia deposition can also be respon-
sible since the existing literature is based on data recorded decades ago. But to
definitively provide a reason, an extensive study would be required (Fig. 19.13).
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19.4 Conclusion

Pollution studies are particularly important in not just urban areas to study the extent
of pollution but also in locations that are remote and considered pristine. Indian
Himalayas and tropical forests and Sri Lanka were observed to be clear examples
that showed signs of pollution. In India high pollution levels were observed. Lichen
thalli showed Nitrogen deposition. This is in conformity with existing litera-
ture. (Diaz-Alvarez et al. 2018). In Sri Lanka it was the bark pH that has turned
basic as compared to the expected acidic value. The diversity and abundance of
pollution lichens in forest Hanthana, farthest from city pollution, also indicate that
pollution from neighbouring locations can stress even the pollution absorbing and
purifying forests and the diversity within them. The study in both countries was
conducted by university students to understand consequences of pollution through
practical approach and benefit from cross-country knowledge exchange as well.
Adding value to these datasets through ecosystem modelling is a vital step following
sample data collection. Climate change and air pollution are highly interlinked, and
effects of both biotic and abiotic components are evident. Mathematical modelling
helps understand the importance of changes in pH, tissue N and soil chemistry can
have and showcase broader implications they may have on ecosystems.
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Selection of Strategic Sampling Sites
for River Quality Assessments Near Mined
Areas as a Policy Handle for Low-Impact
Development and Biodiversity
Conservation: A Case Study of River
Godavari
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Abstract

Low-impact development (LID) synchronous with green infrastructure
(GI) development is largely being perceived as a favoured approach for sustain-
able development and biodiversity conservation around mined out lands. While
GI-based pathways can provide adequate insights for achieving the targets of land
degradation neutrality in the case of mined lands, its crucial and apparent link to
the water environment needs consideration to achieve LID in practical terms. The
impacts of mining close to riverine environments are known to have spatially
far-reaching effects. To detect the same, review the sampling strategy to arrive at
the best-possible sampling strategy for effective restorative practices. Supporting
this idea, the present study highlights the need of a geospatial modelling and
visualization approach to review and design strategic sampling sites with case of
River Godavari. The configuration facilitates the rapid investigation of adverse
impacts of industrial pollution on land, in water or in air, and it directs the
re-evaluation of distribution of the sampling locations to other land uses across
the river. Such strategic sampling can provide data as policy handles to plan the
nature of response (urgent, short or sustained) and spatial extent of
eco-restoration of land and biodiversity.
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20.1 Introduction

The sixth sustainable development goal (SDG) focuses on clean water and sanitation
with eight targets to be achieved by 2030. SDG targets 6.3, 6.4, 6.5 and 6.6 stresses
on the specific need to protect and restore water systems, to implement integrated
water resources management, to substantially increase water use efficiency across all
sectors and to improve water quality by reducing pollution. Management of water for
better environmental standards is crucial, and as a flowing body, its standards and
frequent monitoring is essential to account for the dynamic changes (Hobbs 2008).
To ensure the successful operation of the ‘triple bottomline’ of societal, economic
and environmental sustainability, it is essential to focus on not only the above-
mentioned SDGs but also those integrated with the developmental aspects of India.
Hence, the perspective of integrating development and eco-restoration is quite
relevant in land-water resources management, especially with respect to the mining
environment.

For river water quality sampling and monitoring, national mission on Clean
Ganga in its five-tier approach is a mega project for river cleaning and rejuvenation
project in India. To test water quality as per Central Pollution Control Board
(CPCB), there are, at present, a total of 870 water monitoring stations in the country
over 218 wells, 189 rivers, 53 lakes, 9 drains, 4 tanks, 3 creeks, 3 canals and 2 ponds.
Water pollution changes in the physical characteristics of water such as colour,
odour, faecal and organic matter contamination and toxic pollutants such as organic
and heavy metals, river ageing, salinization, changes in river hydrology, contamina-
tion from agrochemicals and mining activities. The sources of contamination of
rivers are classified as direct point sources, diffuse agricultural sources and diffuse
urban sources as per the water testing and monitoring authorities in India. In addition
to being a source of water, rivers are also sinks . The current norms for water quality
set by the World Health Organization (WHO) is more stringent as compared to India,
with 200 mg/L and a taste threshold of 500 mg/L (Rickwood and Carr 2017). The
European Union1 revised norms as per the tests conducted on 12 January 2021 for a
total of 36 elements in the water such as Acrylamide, antimony, Bisphenol A, lead,
nitrate, pesticides and seven biological parameters such as for Clostridium
perfringens spores, coliform bacteria, enterococci, Escherichia coli, Heterotrophic

1Drinking water legislation in European Union
https://ec.europa.eu/environment/water/water-drink/legislation_en.html
https://www.consilium.europa.eu/en/documents-publications/public-register/public-register-

search/results/?AllLanguagesSearch=False&OnlyPublicDocuments=False&DocumentNumber=
5846%2F18&DocumentLanguage=EN

https://ec.europa.eu/environment/water/water-drink/legislation_en.html
https://www.consilium.europa.eu/en/documents-publications/public-register/public-register-search/results/?AllLanguagesSearch=False&OnlyPublicDocuments=False&DocumentNumber=5846%2F18&DocumentLanguage=EN
https://www.consilium.europa.eu/en/documents-publications/public-register/public-register-search/results/?AllLanguagesSearch=False&OnlyPublicDocuments=False&DocumentNumber=5846%2F18&DocumentLanguage=EN
https://www.consilium.europa.eu/en/documents-publications/public-register/public-register-search/results/?AllLanguagesSearch=False&OnlyPublicDocuments=False&DocumentNumber=5846%2F18&DocumentLanguage=EN


plate counts and somatic coliphages, considering the expected effects of seasonality
and temporality of the source waters as well as the contributions of the natural
run-offs, groundwater seepages into the rivers. Monitoring effort encapsulates the
land-use changes using primary surveys, secondary data, or direct surveys. The
CPCB stipulations require water samples to be collected both upstream and down-
stream of the established sampling points of a river in the jurisdiction of the
respective state pollution control board by trained personnel from established moni-
toring sites. State Pollution Control Board take samples fortnightly (TSPCB, https://
tspcb.cgg.gov.in/default.aspx). The collected samples are analysed at EMPRI labo-
ratory (TSPCB, https://tspcb.cgg.gov.in/default.aspx). In 1978, CPCB took lead for
water quality testing with the launch of Global Environmental Monitoring System
(GEMS) in India. Initially, under GEMS, 24 surface water and 11 groundwater
stations were launched. Apart from GEMS, the National Programme of
Monitoring of Indian National Aquatic Resources (MINARS) for water quality
monitoring started in 1984, with 113 stations spread over ten river basins. The
monitoring stations are of three kinds with baseline, trend and impact or flux stations.
All the major rivers of the country are included in the monitoring scheme starting
from Brahmaputra, Ganga, Cauvery, Krishna, Narmada, Godavari, as well as their
tributaries and distributaries. Of the total drainage basin in India, rivers form 82.4%
of the drainage basin in the country. Currently, the list of parameters tested for water
quality in India stands at 28. The water quality assessment tests water for physico-
chemical parameters such as pH, turbidity, hardness of water, presence of nitrogen,
phosphorus, potassium, lead, arsenic and heavy metals (TSPCB, https://tspcb.cgg.
gov.in/default.aspx-yes). As per CPCB, the 28 parameters include 9 trace metals and
15 pesticides.
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For a low-impact development in mining region, bio-retention and nutrient
retention is sensitive to changes in pH and soluble salts of calcium and magnesium,
whereas bacteria retention and water temperature attenuation could be potentially
sensitive to pH, hardness and fertility changes (Dietz 2007). The hardness of water is
an important parameter in the regulation of the biogeochemical cycle and nutrient
cycling for redeveloping mined areas. Models such as MUSIC, SGWATER, L-
THIA-LID evaluate bioretention, permeability pavement, differences in density
development, impervious rain barrel, porous pavement and Swale2 development
(Eckart et al. 2017). The major objective of the work is to assess the strategic
placement of observational cum sampling sites, which is necessary to plan LID
(low-impact development) and LDN (land degradation neutrality) strategies for
mined out lands. The study aims to re-evaluate the number of water quality sampling
location and its distribution for River Godavari using geospatial technique. Addi-
tionally, application of geospatial techniques for monitoring changing conditions
and statistical measures for stream network analysis could facilitate determination of
sampling distribution in future for remaining rivers (Coraggio 2022; Paul et al. 2019;
Brus and Knotters 2008; Sharp 1971).

2Swale is a low or hollow place, especially a marshy depression between ridges.

https://tspcb.cgg.gov.in/default.aspx
https://tspcb.cgg.gov.in/default.aspx
https://tspcb.cgg.gov.in/default.aspx
https://tspcb.cgg.gov.in/default.aspx-yes
https://tspcb.cgg.gov.in/default.aspx-yes


376 J. Sharma and H. Santhanam

The deleterious impact of mining in a region is reflected by acid mine drainage,
heavy metal residues, imbalances in nutrient cycling, poor water quality, loss of
aquatic biodiversity, impact of rate of post mining ecological recovery and potential
lung as well as other human health conditions (Srikanth and Nathan 2017; Garai and
Narayana 2018; Sheoran et al. 2010; Singh 2017; Saini 2016; Ghose 1997). Inland
water contamination in coal mine areas is a priority for research, as agricultural and
industrial run-offs contaminate surface water (Garai and Narayana 2018). Sampling
and monitoring the type, level, nature, persistent or residual activity, hydrological
changes and spread of pollutant released in water sources, as well as accounting for
the presence of mines, agricultural or other industries, is essential for developing
low-impact recovery strategies for land uses in the aforementioned regions
(Langereo 2017; Kay et al. 2006; Kilmartin 1989). The study asks a couple of
questions: if the number of sampling location is enough for the length of the river;
if the spatial spread of the sampling location is justified as per advanced or recent
understanding of stream networks or sampling design. It is understood the distance
between each sampling point and that of the river has to be ecologically optimum;
synchronous sampling, spatial spread, frequency of monitoring sites and interval are
essential for redesigning strategic water sampling sites for River Godavari (Brus and
Knotters 2008; King and Hamel 2003). The assumption here is that the sampling
plan requires revision.

20.2 Study Area

For the present investigation, we take the example of a study along a stretch of the
River Godavari (Fig. 20.1) to highlight the scope for improvement in the present
sampling network to enable short-term and long-term change detection synchronous
to both the water environment (quality in terms of the hardness estimates) and the
land environment (as changes in land use) with obvious repercussions to biodiversity
conservation. The basin-wide study over an area of 200–400 sq. kilometre could
provide closer estimation of sampling location requirement. It would make it easier
to cover the length of the river as well. After the established water quality standard, a
re-look at spatial spread of the sampling points using basin, watershed and stream
order was facilitated to study representative sampling for water quality testing. The
site of the study is the length of the River Godavari flowing though Telangana. It is a
major water source and accounts for 73,201 km2 basin for undivided state of Andhra
Pradesh and Telangana. It traverses across the mineral-rich areas of Pranahita
Godavari valley of the state and passes through the districts of Nizamabad, Adilabad,
Karimnagar, Warangal and Khammam before flowing into the Bay of Bengal. In the
study area of Godavari coalfields, there are six identified land use types. Overall,
60% of the land is agricultural which includes plantation, crop and fallow land. A
series of coal mines are found on both sides of the river. Backed by the studies on
impact of coal mines and prescribed by CPCB, environmental parameters are tested
in and around coal mines fortnightly. Water quality data is collected and maintained
by Telangana State Pollution Control Board (TSPCB) across the length of the river



in Telangana. The industrial profile across the River Godavari in the state of
Telangana has been attributed to causing water pollution in the river (Hussain
et al. 2017). The predominant industries are coal mines and power plant, along
with iron-based industries. The effluents from these industries lead to higher
concentrations of heavy metals and other pollutants in the river (George et al.
2010). The study by Garai and Narayana (2018) in the Godavari coalfields has
acknowledged increase in barren land as well as increased efforts of afforestation
and plantation activity in the mining lease area in the decade ending in 2000.
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Fig. 20.1 The sampling stations distribution for River Godavari in Telangana where the field
survey and studies on site selections were carried out

20.3 Methodology

Freshwater ecosystem is essential for human as well as biodiversity of a region. It
supports 7% of global biodiversity (Dudgeon et al. 2006). The mining, agricultural,
industrial and day-to-day activities lead to soil, air and water pollution (Srikanth and
Nathan 2017; Ghose 1997). To assess the ecological, agricultural, industrial impact
on the freshwater ecosystem, a variety of tools are used such as the water quality test
for physical, chemical and biological pollution using grab samples and hydrographs;
geospatial analysis for the river flow using digital elevation model (DEM)-based
stream order changes as well as water quality of riverine system; and indicator-based
method to ensure suitability with the ecological health of the river (Davies 2014;
WHO 2011; CPCB 2011; USGS 2006; Speight et al. 2004; King and Hamel 2003).
The primary mode of water quality assessment for freshwater ecosystem is through
on-site and lab-based sampling methods. The methodology adopted in the present
study is presented under three sections. In the first section, geospatial mapping of



hardness of water using TSPCB data is used to represent spatial distribution of
sampling sites on the River Godavari. In the second section, DEM-based analysis of
stream networks and stream order is used in the area for visual representation of
existing routes and possibility for future strategic sampling for the river ecosystem.
In the last section, the synchrony with biodiversity hotspots is tested as a measure to
access the ecological suitability in the area.
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20.3.1 Mapping of Hardness of Water as a Proxy

First, mapping of River Godavari (line string) across the state of Telangana was done
on Google Earth. Then, the monitoring stations on the River Godavari were marked
as locations along with data in description. Since TSPCB website provides sampling
place names, and not latitude and longitude of sampling locations, the locations were
marked as per closest access location to the river from those places. The latitude and
longitude of sampling locations were received through Right to Information (RTI)
filed on 6 September 2019 and the reply received on 23 September 2019. The
sampling locations were verified using the latitude and longitude. The layer was
saved as a Keyhole Markup Language (KML).3 This layer was converted as a vector
shape file and processed in Quantum GIS software (QGIS) and Arc GIS for further
editing and map composition. In the vector layer obtained, representation of hard-
ness of water was done in incremental size of spherical dots marked. The categori-
zation of data was done according to World Health Organization (WHO) and United
States Geological Survey (USGS) classification.

20.3.2 Mapping of Stream Networks

The DEM-based watershed delineation method is used for stream network design,
calculating stream order and distances and proximity analysis for sampling sites
(Luo 2011; Tarbotan 1991; Sharp 1971). In the second section for representation of
stream and drainage in watershed delineation in Arc GIS, Cartosat-1 digital elevation
model (DEM) of 30 m resolution at equator was downloaded in .tiff format (https://
bhuvan.nrsc.gov.in/bhuvan_links.php). The Cartosat-1 satellite has a pair of Pan-
chromatic cameras having an along-track stereoscopic capability with spatial reso-
lution of 2.5 m in the horizontal plane with a swath of 27 km. A ready DEM of 30 m
resolution is made available on Bhuvan (https://bhuvan.nrsc.gov.in/updates/
bhuvan_jul2022.html), from which the DEM for present study area (a total of
12 tiles of 1 arc sec) was downloaded. The 12 tiles were stitched using ARC GIS
Pro 1 released in 2001 by ESRI provided by UC Davis. For further watershed
delineation and creation of drainage network, the following steps were followed.

3KML is a file format used to display geographic data in an Earth browser such as Google Earth
(https://developers.google.com/kml/documentation/kml_tut).

https://bhuvan.nrsc.gov.in/bhuvan_links.php
https://bhuvan.nrsc.gov.in/bhuvan_links.php
https://bhuvan.nrsc.gov.in/updates/bhuvan_jul2022.html
https://bhuvan.nrsc.gov.in/updates/bhuvan_jul2022.html
https://developers.google.com/kml/documentation/kml_tut


The open layers plugin, the Google Satellite image, was used as the backdrop of the
map for georeferencing and contextualization of the plotted map.
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20.3.3 Suitability of Site for Synchrony with Biodiversity Hotspots

With regard to land degradation and freshwater ecosystem loss, assessing ecological
and biodiversity health is essential for attaining sustainable development goals. The
analysis of site suitability for biodiversity hotspots along the stream is conducted for
characteristics such as suitability for quality change, land use, scale, water degrada-
tion, land degradation, magnitude of biodiversity change and magnitude of change.
This change in suitability for biodiversity hotspot is crucial for green development,
LID and LDN. This comparison provides a comparison of ecological health at the
stream network.

20.4 Results and Discussions

20.4.1 Strategic Sampling Design to Arrive at Rational Location
of Proposed Sampling Sites

Spatial distribution of water sampling is crucial for scale and assessment of water
quality (Zhai 2022). While policies related to monitoring and evaluation of riverine
ecosystems in proximity to mining environments from conservation perspectives in
general indicate the need for a dense network, geospatial analyses of River Godavari
indicated that the 100–200 km wide stretch of river did not possess a sampling point
(Speight et al. 2004). Hence, through the present study, a rationale for the presence
or absence of sampling points could be established with a basin-wide study as
35 sampling stations for a 73,000 km2 basin river is not quite representative.
Accordingly, the enablement of policies related to close-range monitoring of rivers
as specified by CPCB, 35 sampling points—seven are clustered in first industrial
area and six in the second cluster—were identified through field surveys and
synoptic assessments. The areas where sampling points are stationed together
happen to be industrial areas and could be studied as a basin for analysis. First
area of cluster is dominated by coal mines and thermal power plants and the second
area by medium and minor industry as per state level geographic and industrial
presence data. A plausible explanation for this is the widely acknowledged and
researched fact that industrial units are considered a major source of pollution.
Surface mining impacts the physical, sequential and dynamic system of hydrological
cycle over a large topography by altering hydraulic conductivity,4 saturated

4Hydraulic conductivity: It is the rate of flow under a unit hydraulic gradient through a unit cross-
sectional area of aquifer. In simpler terms, it is the material’s (soil or plants) capacity to transmit
water (http://www.aqtesolv.com/aquifer-tests/aquifer_properties.htm).

http://www.aqtesolv.com/aquifer-tests/aquifer_properties.htm


hydraulic conductivity,5 macro-porosity and drainage rate at the mines and mine
spoil, run-offs as well as biological contamination (Garai and Narayana 2018; Kay
et al. 2006; King and Hamel 2003; Kilmartin 1989; Potter et al. 1988; Chong et al.
1985; Ward 1983). However, in order to conduct any comparative study for impact
of activities or impact of land uses or precipitation at cotton plot in close proximity to
the river or the selective impact of minor dyeing industries close to the river or how
much stream and drainage network is apt to capture the difference between an
assumed unpolluted stretch of river with that of the polluted one, further analysis
could suggest if there is scope of improving the network design which could
eventually provide more data points for river water quality analysis (Figs. 20.2 and
20.3).
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Fig. 20.2 Cluster of sampling station near coal mines (identified as first cluster in the text) where
field investigations combined with geospatial analyses lead to identification of these monitoring
sites

20.4.2 Revise Number of Water Quality Parameters Sampling
Location

The proposed revision for strategic water sampling could establish the number of
strategic sampling in addition to water sampling distribution. One of the means to

5Saturated hydraulic conductivity: It is the quantitative measure of a saturated material’s (soil)
ability to transmit water when subjected to a hydraulic gradient (https://www.nrcs.usda.gov/wps/
portal/nrcs/detail/soils/ref/?cid=nrcs142p2_053573).

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ref/?cid=nrcs142p2_053573
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ref/?cid=nrcs142p2_053573


achieve this is through geospatial representation to corroborate the sediment, soil
characteristics, mine or agricultural run-off interaction with routes option (Coraggio
2022; Zhai 2022). In other words, the present geospatial analyses helped to explore
whether the current network design resulted in the absence any relevant data. This
does not imply sampling each and every metre or kilometre of the river length, rather
a study on the network design could provide insights to improve sampling strategies
in the country. Another unique aspect of finding this plausible gap is the method
through which it was explored, i.e. through geospatial analysis, which provided the
synoptic datasets crucial for conservation planning. The gap in network design could
be visualized using geospatial tools, whereas in all probability these gaps would
have gone unnoticed otherwise. This gap, if studied, could lead to a more compre-
hensive network design with the presence of more sampling locations for River
Godavari and isolate the hotspots of biodiversity decline. In order to design a more
efficient spatial distribution of sampling sites, the number of sampling points adds to
improved ecosystem services, operational costs and data quality for a river ecosys-
tem using geospatial or statistical techniques (Coraggio 2022; Zhai 2022; Dobriyal
2017).
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Fig. 20.3 The second cluster of sampling location at the River Godavari where field investigations
combined with geospatial analyses lead to identification of the monitoring sites

20.4.3 Detect Water Quality Parameters for Possible Integrated
Water Quality Assessment

The proposed revision for strategic water sampling could be extended to all the water
quality parameters. The imprecise extent of spatial distribution for sampling water
quality could lead to imprecise data collection. For effective data collection of river



banks for all physical, chemical and biological parameters tested as per the current
established norms. A revision of stream network redesign for the River Godavari
could make the water quality data collection more accurate and reflective of the state
of river ecosystem. Frequency of data collection is another important consideration
for more accurate water quality of River Godavari (Corragio 2022). The rule of
thumb of any statistical design is that the larger the sampling size, the higher is the
chances of accruing accurate data. Arguments against the study could be if it is
practical or economically feasible to conduct such analysis, as well as if further
analysis would add anything of value or utility, or if it would be merely for research
purposes. To address these concerns, it might be important to recall types and
classification of pollutants discussed earlier; they are as diverse as agricultural
run-off, mining and industrial residues arising from various land uses, and having
a sampling location only for a type of pollutant would not provide data for the rest of
the source of pollution. Therefore, there is potential for further research into the
network design for river water. This finding could prompt the need for larger and
well as distributed collection of sampling locations for monitoring water quality in
India. Geospatial visualization is one of the techniques to determine the possible
changes in existing water sampling sites. Using a geospatial multiparameter
weighted approach could establish an integrated water quality assessment (Zhai
2022).
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20.4.4 Synchrony with Biodiversity Hotspots

Table 20.1 shows the suitability of the sites for short-term change detection and
long-term ecological monitoring. These sites were identified based on the field
surveys in the area combined with the stream analysis.

It is evident from the above table that the NTPC outlet site is quite vulnerable to
changes in all the three categories and indicates the need to plan better long-term in
situ ash pond restoration or reuse policies. On the other hand, the predominantly high
level of influence of the anthropogenic factors such as solid wastes and water
pollution near the railway bridge deemed this site quite less suitable for change
detection compared to the other, except for the case of land degradation (LD) from
possible plastics and solid wastes pollution. It is therefore essential to note from the
study that the biodiversity conservation is most essential around sites showing
higher magnitudes of change detections. The present study indicates that though
the sites vary between their characteristics to indicate LD or water quality changes,
they remain central to plan adequate policies for biodiversity conservation as seen
from the field-based assessments presented here.

It is important to note that Government of India has proposed sustainable landfill
management as well as post-mining operations from land-use as well as water-use
perspectives (PIB 2022). Further while, pit lake management has become a scientific
methodology to innovate sustainable post-closure voids around the world (Younger
and Wolkersdorfer 2004; Wolkersdorfer et al. 2020); recently, Santhanam and
Srikanth (2019) discussed the applicability for Indian conditions. However, the
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current investigation details that the use of the pit lake methodology alone may not
suffice the integrated water resources management solutions in a mining environ-
ment in the vicinity of the riverine environments such as River Godavari. Further,
despite the above discussions on the role of creating water assets for eco-restoration,
the glaring lack of planning with respect to biodiversity conservation, which is
critical for developing the natural feedbacks in the post-mining scenario, is apparent
in many discourses. Given the circumstance, planning around well-established
sampling nodes across a vast spatial scale provides the first-cut beginning towards
long-term ecological monitoring of the restoration processes and pathways for
sustainable natural resources management (e.g. Dhyani et al. 2022).
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20.4.5 DEM-Based Integrated Strategic Water Sampling Design

The hydrological assessment for selecting site selection uses statistical measures,
sampling methods, routing assessment and water assessment methods. A few of the
contact and non-contact methods such as ultrasonic method, particle image
velocimetry method, remote sensing method, electromagnetic method, flame
method, weir method are used to establish the strategic site sampling points against
operational, cost-effectiveness, accuracy, time-effectiveness, environmental impact
(Dobriyal 2017). If the strategic sampling design is made using DEM-based study, it
will require pre-requisite survey in the river belt. The DEM-based design for stream
order and stream network could establish accurate stream hydrological processes
(Tarbotan 1991; Sharp 1971). The DEM-based stream delineation for strategic water
sampling design is effective for small scale (Luo 2011). The effectiveness of the
DEM-based strategic sampling unit will have to be tested on the ground through
the survey of stream network, water control project and routing processes in the
River Godavari belt.

20.5 Conclusion

Overall, the present study provided useful discussions on the optimal distances and
placement of sampling locations or the network design, which have not been
mainstreamed among researchers and/or administrative bodies at a local or regional
level with respect to riverine water monitoring in India. While majority of
discussions is restricted to quality and standards, without a consensus on the optimal
sample design and/or framework for deciding the representative sampling strategy,
the objectives of LID and LDN remain unfulfilled. The strategic distribution of the
sampling points proved that the notion of placement and distances may be very
important considerations to aid rapid change detection across the land–water–air
continuum in the case of mined regions. While it is assumed that the idea of sampling
an entire river is cumbersome in practice, the use of geospatial methodology for
deriving judicious placement of sampling sites as illustrated in the present study can
facilitate effective assessments of the coupled land use, water quality and



biodiversity of mined regions. The central argument presented here is to re-vision
river sampling network design as part of the monitoring policy of mined areas
through establishment of strategic sites. It is envisaged that the changes in the
existing design could yield better data for water quality and thereby water-related
policies in the country.
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Abstract

Ecological niche modeling (ENM) aids in delineating and demarcating the
distributional range of a species, the potential distributional area of species in
the future, and plans for targeted biodiversity surveys in new areas. We elucidate
that ENM can also be applied to agroforestry and block plantations. Despite the
technical difference between agroforestry and farm forestry, both these concepts
encourage the plantation of woody plants in private and farmlands. Typically, the
choice of species has a high influence on the economic success of agroforestry
and farm forestry. There is a broad range of species that can be grown in these
systems, but a diligent recommendation has to be made for the betterment of the
farming community. In this study, we have delineated the niche of one of the most
popularly promoted tree species, Melia dubia Cav. (Meliaceae), for agroforestry
using the Maximum Entropy (MaxEnt) model. The model predicts that 3.92% of
the total geographical area of India is highly suitable for M. dubia. Careful and
dedicated tree management practices can be developed to ensure the success of
the plantation in the less suitable areas.
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21.1 Introduction

India is a net importer of wood owing to the ban on green felling inside natural
forests as well as the policy framed to protect the rich biodiversity for future
generations. Thus, the country’s wood and timber demand are mainly met by the
trees outside forests (TOFs) along with the wood imported from other countries. As
per the report released by the Centre for Science and Environment under the theme
“Wood is Good: But, is India doing enough to meet its present and future needs?”,
TOFs provide the major portion of wood and timber demand. To quote the exact
wordings, In India, TOFs is defined as ‘all trees growing outside recorded forest
areas. TOF provides the meat of India’s timber needs, and agroforestry and farm
forestry are the backbones of TOF’ (Shrivastava and Saxena 2017). India became a
leading example by adopting the National Agroforestry Policy in 2014, a first of its
kind. One of the major goals of the policy was:Meeting the ever-increasing demand
of timber, food, fuel, fodder, fertilizer, fibre, and other agroforestry products;
conserving the natural resources and forest; protecting the environment &
providing environmental security, and increasing the forest/tree cover, there is a
need to increase the availability of these from outside the natural forests (GoI 2014).

Agroforestry as a land-use practice is very much relevant to United Nations’
Sustainable Development Goals (SDGs) as it addresses 12 out of 17 SDGs
(Arunachalam and Ramanan 2021). In most developing countries such as India
where land is a scarce resource, a large proportion of land cannot be diverted for
tree plantation and forestry practices. In this context, agroforestry is a viable option
for meeting the increasing wood demand and also meeting the 33% green cover
target of FAO (Joshi et al. 2011). Owing to its importance, India adopted the first
agroforestry policy in 2014 (Ahmad et al. 2019).

Reviewing the tree plantations and agroforestry practices in the country, a few
industrially important tree species such as Eucalyptus, Casuarina, and Populus got
the major share owing to the demand from plywood and paper industries (Kulkarni
2013; Parthiban et al. 2019). Due efforts were made to find alternative species such
as Leucaena and Gmelina. However, these efforts could not gain momentum in
replacing the industrial tree species. Moreover, even the very fast-growing bamboo
species could not replace the industrially valued species because of many reasons
such as low pulp recovery and high silica content (Wang et al. 2021). Further,
industrial species such as Eucalyptus had also gotten into controversial clout of high
water usage and groundwater depletion (Morris et al. 2004; Reichert et al. 2021).
This warranted a need to find an alternative tree species.

Melia dubia Cav. (Family: Meliaceae) is a native fast-growing tree species with
clear bole and is recommended to be promoted as one of the viable choices for
plantations and agroforestry (Chavan et al. 2022; Handa et al. 2020). Typically,



Meliaceae can be regarded as the timber family, given that important timber species
such as Azadirachta indica A.Juss., Cedrela odorata L., Toona ciliata M. Roem.,
and Swietenia macrophylla King. belong to this family (Gupta et al. 2019).M. dubia
as an agroforestry tree species can address various SDGs such as no poverty (SDG1)
by increasing farmer’s income, gender equity (SDG-5) by providing womenfolk
with fuelwood for cooking, affordable and clean energy/sustainable energy solutions
(SDG-7) wood fuel supply to poor farmers, responsible consumption and produc-
tion, and ecological footprints (SDG-12) (Arunachalam and Ramanan 2021; van
Noordwijk et al. 2018). Thus, this species has been promoted in different parts of the
country (Kumar and Joshi 2021). In Kerala, this species has been cultivated on large
scale compared to commercial crops such as rubber (Binu and Santhoshkumar
2019). Furthermore, there are clones/varieties released for this species at the country
level. However, it has been reported that this species is native to the Western Ghats,
so it will be significant to delimit the niche of this species, thereby delineating the
areas where this species can be promoted for cultivation.
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21.1.1 Ecological Niche Modeling for Agroforestry and Farm
Forestry

Ecological niche modeling (ENM) aids in modeling and demarcating the distribution
range of the species concerned while also predicting its stable habitats suited
climatically under multiple projected climatic scenarios (Adhikari et al. 2018,
2019). Rajpoot et al. (2020) carried out niche modeling for Boswellia serrata
Roxb. and reported that there is a potential chance for a decrease in the spread of
the species in its natural distributions, thus recommending a long-term action plan
for the conservation of this species. This sort of finding on the conservation of
species based on niche modeling has been done for many floral and faunal species
(Majumdar et al. 2019; Mipun et al. 2019; Pradhan et al. 2020).

After 1970s, agroforestry gained momentum as a scientific discipline (Nair et al.
2021). The definition of agroforestry clearly states it as a sustainable land-use
practice where woody perennials/trees are grown along with crops and animals in
spatial and temporal sequences (Arunachalam et al. 2021). Inherently, farm forestry
and agroforestry promote the cultivation of trees in private/farmlands, i.e., trees
outside forests. The success of agroforestry and farm forestry is highly dependent on
the choice of species and thus ENM can play a significant role in pointing out the
suitable area for a particular species. A study in Yunnan province applied ENM for
identifying the climate space or niche of ten tree species and predicted the impact of
climate change on the distribution of these species (Ranjitkar et al. 2016). Similarly,
ENM based on the BiodiversityR package was used to delineate the “always-
suitable” distributions of the Xanthoceras sorbifolium Bunge. in China (Wang
et al. 2017). In Nepal, the potential zone for Himalayan alder species was delineated
using Maximum Entropy (MaxEnt) and insisted that only 24% area of Nepal is
suitable for Alnus nepalensis. All these studies attempted to provide practical



solutions to one of the fundamental issues faced in agroforestry: selecting a tree/
woody perennial species so that it is suitable for that region.
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Thus, the objective of the present study is to model the niche of M. dubia and
demarcate its present distributional ranges.

21.2 Materials and Methods

21.2.1 Data Collection

Eighty-four species occurrences records of M. dubia were compiled from field
surveys carried out in the natural distribution range and published literature. The
field surveys were carried out in the Western Ghats states such as Gujarat,
Maharashtra, Karnataka, Kerala, and Tamil Nadu. A total of 19 bioclimatic variables
of the current climatic conditions were used to delineate the niche of M. dubia
(Table 21.1). All these 19 variables describe the annual trends in temperature and
precipitation variability that may act as physiological constraints on the species and
determine their geographic distribution (O’Donnell and Ignizio 2012). These
variables have been derived from the average monthly climate data for minimum,
mean, and maximum temperature and precipitation of the years 1970–2000 (Fick
and Hijmans 2017). The dataset was downloaded as geoTiff files of 2.5 min spatial
resolution from the WorldClim website (https://www.worldclim.org/).

Table 21.1 Description of 19 bioclimatic variables used (Source: O’Donnell and Ignizio 2012)

Variable code Description Unit

BIO1 Annual mean temperature °C

BIO2 Mean diurnal range (mean of monthly (max temp - min temp)) °C

BIO3 Isothermality (BIO2/BIO7) (× 100) %

BIO4 Temperature seasonality (standard deviation × 100) %

BIO5 Max temperature of warmest month °C

BIO6 Min temperature of coldest month °C

BIO7 Annual temperature range (BIO5–BIO6) °C

BIO8 Mean temperature of wettest quarter °C

BIO9 Mean temperature of driest quarter °C

BIO10 Mean temperature of warmest quarter °C

BIO11 Mean temperature of coldest quarter °C

BIO12 Annual precipitation mm

BIO13 Precipitation of wettest month mm

BIO14 Precipitation of driest month mm

BIO15 Precipitation seasonality (coefficient of variation) %

BIO16 Precipitation of wettest quarter mm

BIO17 Precipitation of driest quarter mm

BIO18 Precipitation of warmest quarter mm

BIO19 Precipitation of coldest quarter mm

https://www.worldclim.org/
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21.2.2 Ecological Niche Modeling Process

Among the range of different algorithms (e.g., GLM, GBM, MaxEnt, SVM,
XGBoost, NBM, RF) for species distribution modeling (Hao et al. 2012), the
MaxEnt algorithm is preferred by the researchers owing to its simplicity and
reliability of the results (Valencia-Rodríguez et al. 2021). MaxEnt software ver.
3.4.3 was used to model the niche of M. dubia. It uses occurrence records together
with a summary of the environments in the accessible area, i.e., the background, to
identify the environmental conditions and geographical area by the species of
interest (Lantschner et al. 2019; Sillero and Barbosa 2021).

Model parameterization was done using a 10,000 background points:
500 iterations and a convergence threshold of 0.00001. Hinge, product, linear, and
quadratic feature types were used to deal with model complexity, and overfitting was
controlled using a regularization value of 1. Ten replicated model runs with cross-
validations were implemented to assess model consistency. Performance was
assessed based on the area under the curve (AUC) value. Analysis of variable
contributions, jackknife procedure, and response curves were used to assess the
importance of the predictor variables. The current distribution of M. dubia was
predicted based on the logistic outputs, which were converted into binary maps to
the climatic suitability and unsuitability with the condition of applying the threshold
rule of 10 percentile training presence.

21.3 Result and Discussion

The average training and test AUCs were high (0.97 ± 0.002 SD and 0.958 ± 0.029
SD, respectively), which shows satisfactory model performance. The analysis of
variable contribution showed that the temperature seasonality (49%) has the highest
rank followed by the isothermality (19.9%), precipitation of the warmest quarter
(9.2%), and precipitation of the coldest quarter (7.7%). These variables account for
>85% of predicting the potential climatic niche of M. dubia. The jackknife analysis
showed that the temperature seasonality contributed to the highest model gain
(1.457) when used in isolation, while the precipitation of the coldest quarter
decreased the gain predominately by 2.104 when omitted from the analysis
(Table 21.2). This indicates the influence of these variables on the distribution of
the species compared to other variables.

Response curves for the most important variables revealed that the climatic niche
of the species is characterized by the temperature seasonality of 1.5°C (amount of
temperature variation over a given year), the isothermality of 60–65%, precipitation
of warmest quarter ~400 mm, and precipitation of coldest quarter ~1000–2000 mm
(Fig. 21.1). Thus, the variables provide an estimate of the important climatic
attributes of the species niche and potential distribution of M. dubia in India.

The MaxEnt model predicted that 1.66% of the total geographical area of India is
highly suitable, moderate (2.26%), low (4.46%) respectively for M. dubia.
Karnataka and Kerala have more suitability compared to Tamil Nadu, Maharashtra,



Bioclimatic variable
codes

and Gujarat, along with certain areas in Andaman & Nicobar Islands and
Lakshadweep.
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Table 21.2 Results of the analysis of variable contributions and Jackknife test of variable
importance

Analysis of variable contributions
Jackknife values of regularized
training gain

Percent
contribution

Permutation
importance

Without
variable

With only
variable

bio_1 0.3 0.3 2.1571 0.118

bio_2 0.6 0 2.1574 0.3785

bio_3 19.9 0.8 2.1603 1.3743

bio_4 49 58.1 2.1381 1.4465

bio_5 0.4 1.7 2.1495 0.6244

bio_6 0 0 2.1602 0.7318

bio_7 0.8 0.1 2.1602 1.0087

bio_8 5.5 15.3 2.1153 0.6437

bio_9 0.6 5.8 2.1387 0.3953

bio_10 0 0 2.159 0.6317

bio_11 1.7 0.5 2.1541 0.6367

bio_12 0.6 0.8 2.1542 0.3011

bio_13 2.3 0.8 2.1532 0.5

bio_14 0.9 1.3 2.147 0.0844

bio_15 0.3 0.2 2.1552 0.23

bio_16 0.1 0.2 2.1584 0.3465

bio_17 0.1 0 2.1583 0.0795

bio_18 9.2 6.2 2.0916 0.3433

bio_19 7.7 8.1 2.0604 0.5826

The climate niche of M. dubia can be described via. climate parameters as the
mean annual temperature is 22–24°C, mean temperature of the warmest quarter is
25–27°C, the mean temperature of the coldest quarter is 22–26°C, the maximum
temperature of the warmest month is 33–34°C, a minimum temperature of coldest
month is 20–22°C, temperature annual range is 10–13°C, mean diurnal range is 6–8°
C, annual precipitation is 2200–2800 mm, precipitation in the wettest month is
800–1000 mm, precipitation in the driest month of the quarter is 90–100 mm,
precipitation of wettest quarter is 1800–2000 mm, precipitation of driest quarter is
250–280 mm, precipitation of warmest quarter is 300–400 mm, and precipitation of
coldest quarter is 1000–2000 mm.

Species of Melia are native to the Indo-China continent (Kumar and Joshi 2021),
and owing to economic and medicinal utility, many species of this member have
been introduced to different parts of the world. There is ambiguity regarding the
interspecies differentiation among the individual Melia species. For instance, Gam-
ble (1922) reported onlyM. azedarach L.,M. birmanica Kurz,M. compositaWilld.,
and M. indica (A.Juss.) Brandis from India. In the Flora of India (Hajra et al. 1997),
M. birmanica and M. composita were synonymized under M. dubia, and



M. azedarach and M. dubia were recognized as two distinct species. There are
research works that demarcated the difference between these species, yet there is no
clear distinction in the present geographical distribution. It is reported that three
different ecotypes exist in M. dubia and clear morphological segregation is reported
as well (Kumar et al. 2022). In this context, this study defines the climatic niche of
the Melia dubiao occurring in the Western Ghats. Champion and Seth (1968)
reported that M. dubia belongs to the tropical moist and dry deciduous forests,
which are characterized by the mean annual temperature of 24–27°C and 23.5–29°
C and mean annual rainfall of 1200–3000 mm and 750–1900 mm, respectively.
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Fig. 21.1 Response curves elucidate the dependence of the predicted suitability on the selected
variable as well as on the dependencies induced by correlations between the selected variable and
other variables. The red curve shows the mean response of 20 replicated runs, while the blue shade
represents ± 1 standard deviation

The MaxEnt model indicates bioclimatic variable limits within the range of
tropical moist and dry deciduous forests, thus corroborating the model predictions.
Furthermore, a recent study has indicated the need for irrigation for M. dubia
plantations established in the area having rainfall less than 1000 mm/year. The
MaxEnt model indicated that there will be a declining trend in the suitability of
the site having precipitation of less than 400 mm during the warmest quarter and
precipitation of less than 1000 mm during the coldest quarter. Given that the
sensitivity of this species, the planting materials sourced from the Western Ghats
might not perform better in other areas than that indicated in Fig. 21.2, provided
alternative irrigation and suitable silvicultural practices are adopted.
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Fig. 21.2 Occurrence localities ofMelia dubia overlaid on the modeled climatic suitability map of
the species in India for current period. The different colored regions represent the climatically
suitable area identified through applying 10 percentile threshold limit to the average probabilistic
output
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The model tentatively indicates that 3.92% of the geographical area of the country
may be suited for M. dubia cultivation, especially for the planting material
originating from the Western Ghats region. Given that there is ambiguity in the
Melia species occurring in the North and North-eastern regions as separate species or
ecotypes, there is a need for niche differentiation or niche overlap works to be carried
out in the future. This sort of work demonstrates that niche-based analyses can help
not only to identify suitable areas for the cultivation of a particular species but also to
pertinently point out the suitable location of the germplasm/clones developed based
on their native geographic distribution occurrence.

ENM can be used to collate more information with regard to agroforestry. There
are instances where niche modeling has led to the development of suitability maps
for different species as individuals as well as the combination of different woody
perennials. For instance, an ensemble-based niche modeling has been used to create
the “Suitability of key Central American agroforestry species under future climates:
an atlas”which per se predicts the present area and projects the shift in the area for 54
important agroforestry tree species in the Central America countries of Belize,
Guatemala, El Salvador, Honduras, Nicaragua, Costa Rica, and Panama (de Sousa
et al. 2017). Agroforestry is inherent—the combination of different trees and crops
together and therefore, collating the niche of different species together will aid in
predicting suitable geographic areas for different agroforestry models. As there is
due possibility for extrapolating the climate change impact, there is a way to predict
the viability of different agroforestry models in the upcoming years (Ranjitkar et al.
2016). This sort of work can enable the policymakers to reframe the existing
agroforestry policy and tree marketing guidelines to suit a particular species. From
the agroforestry perspective in the farmer’s field, it has always been the introduction
of new tree species having better economic returns. For instance, the Indian Sandal-
wood tree (Santalum album L.) is native to southern India specifically, the Deccan
Plateau. However, it is now cultivated in many parts of the country apart from its
native distribution. There are a lot of speculations about the growth and yield from
these new cultivation areas (Sandeep et al. 2020); in this regard ENM can tentatively
provide a clear recommendation on species introduction. A similar sort of ENM
work carried out in Nepal has provided inputs to the forest department to avoid
Alnus nepalensis D.Don in the north-eastern part of India and to replace it with
Alnus nitida (Spach) Endl. in combination with cardamom or tea as an intercrop
(Rana et al. 2018). The results of the niche modeling of the trees and crops coupled
with the fuzzy logic model have been used to determine the optimal tree crop
combination too. This sort of result needs post-modeling data processing to make
it more reliable and adaptable (Ranjitkar et al. 2021).

We believe that ENM can be applied in agroforestry in the following aspects:
(1) to predict the suitability extent of newly developed clones/varieties, (2) to predict
the present and future climatic suitability of a particular agroforestry model
(tree + crop combination), (3) to prepare suitability maps/atlas for a particular region
with the list of most suitable species, and (4) to facilitate policy formulation, thereby
forewarning the promotion of new species in farmers’ fields.
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Abstract

Air quality in India is being continuously assessed based on the data on air quality
parameters, including PM10 and PM2.5 across different air monitoring stations,
which are often unevenly distributed across the geographic and political
boundaries within the country. Most of these stations form a part of networks
operated by the Central and State Pollution Control Boards as well as in
partnerships with research institutions such as the SAFAR and MAPAN. Further,
the use of complex weather models and computational steps induce methodolog-
ical complexities in deriving reliable patterns of air quality changes, which
provide data for critical ecosystem and/or biodiversity assessments. The present
study illustrates the use of a simple methodology to model the changes in the
PM10 concentrations of Peninsular India in the form proportions of changes
derived from a suite of geospatially derived datasets on land-use land cover,
aerosol optical depths and the planetary boundary layers, as well as new metrics
such as Blue to Built-up ratios, Green to Blue ratios and percentage of impervious
surface area across Peninsular India during the period 2009–2019. The present
study provides a methodological approach to assess the air quality changes as
inputs to plan appropriate policy interventions.
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22.1 Introduction

Global studies on air quality and its deterioration demonstrated that elevated levels
of particulate matter (PM) concentrations have a substantial effect on attributable
mortality due to four causes, namely chronic obstructive pulmonary disorder
(COPD), lung cancer, ischemic heart disease (IHD) and stroke (e.g. Dandona et al.
2020; Pope et al. 1995; MoHFW 2020). Despite the global and national recognitions
of serious implications of the persistence of particulates PM10 in the air, country-
wide assessments are often marred by factors such as the non-availability of ade-
quate monitoring stations, lack of good quality datasets, the non-uniform coverage
of the large area of interest that are typically investigated and the presence of
numerous geographic barriers. In spite of the increasing impacts of the PM on the
environmental and human health, air quality has taken centre stage in recent years;
differential methodologies in the monitoring and assessment of the changes provide
poor policy background to ensure the health and safety. Hence, developing better
monitoring and evaluation frameworks for PM need innovative approaches to
quickly detect changes synoptically and pay attention to areas where large-scale
changes are observed. Under data-rich circumstances, the quality assurance and
application of the environmental datasets can be expected to lead to successful
interpretation of PM dynamics and thence the evolution of useful policy
recommendations. In contrast, factors such as the availability of a poor quality of
datasets that did not pass adequate quality assurance, absence of time series and/or
absence of data on influential parameters (e.g. meteorological, climatological, envi-
ronmental) and different levels of quality control of the monitoring instruments
across different parts of the country can result in the use of sparse datasets to
study the evolving patterns of air quality. These factors highly affect the formulation
of best practices for air quality control, leading to adoption of rather ‘quick-fixes’ for
resolving local-scale issues in the place of strong regulatory policies for summative
improvements in the air quality as well as public health.

A typical investigation of the relationships of PM concentrations with land
management as well as environmental characteristics demands the modelling of
the parameters affecting the air quality characteristics. Such studies are reported
over different resolutions: coarse or fine as per the scale of the investigations.
However, both approaches have inherent advantages and disadvantages: for exam-
ple, at a coarser resolution, it might not be possible to determine the nature of
changes, impacts of local emissions, or specialised factors affecting air quality. At
a finer scale, signals of the effects of the geography, impacts of the boundary layer
and large-scale climatological characteristics may not provide accurate
representations of the trends of air quality changes and/or the transboundary nature
of the pollution. Integrating the coarser and finer resolution models may not always



be possible, especially in the absence of reliable spatiotemporal time-series datasets.
Thus, the concept of airsheds to study local scale changes becomes more important
in place of investigating air quality changes across geopolitical borders such as state
borders or national borders.
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In India, the absence of adequate monitoring stations across the states has always
been an issue of concern. For example, it has been reported that as per the WHO
guidelines, an urban centre must possess at least 10–12 monitoring stations to
adequately study the air pollutants trends at city level (Source: https://
indianexpress.com/article/cities/mumbai/safar-framework-one-stop-solution-for-
air-quality-management-7536259/). Successful projects such as SAFAR (Source:
http://safar.tropmet.res.in/) and MAPAN (Source: https://www.ncess.gov.in/
research-groups/atmospheric-science-group/laboratories/air-quality-monitoring-lab-
aqml.html) have fulfilled these needs to an extent by providing a background for data
collection in urban centres at higher resolutions. However, the need for greater
number of air quality monitoring stations for sub-national, sub-regional, or
peninsular-level assessment still remains unresolved, which is not easily and practi-
cally achievable owing to the cost factor, as well as the scientific manpower required
to calibrate and collate the air quality datasets.

The Government of India (GoI) launched the National Clean Air Programme
(NCAP) to tackle air pollution in 122 non-attainment cities. The NCAP aims to
reduce the ambient air PM10 and PM2.5 concentrations to 20–30% by 2024
compared to the corresponding levels in 2017. To achieve this, the Central Pollution
Control Board (CPCB) stated that there is a need for 800 Continuous Ambient Air
Quality Monitoring Stations (CAAQMS) and 1250 manual monitoring stations
compared to the current availability of 193 CAAQMS and 658 manual stations
(NGT 2021). Moreover, most of the current AAQM stations are predominantly
located in the National Capital Region (NCR) and the Indo-Gangetic Plain (IGP).

CAAQMS are expensive (Rs. 80 crores required to procure and install for only
25 CAAQMS) to install and maintain (MoEFCC 2020b). This strategy also suffers
from other limitations (e.g. access to suitable locations for installation and mainte-
nance). While geospatial techniques are used by ISRO and several agencies in India
to perform a multitude of functions more efficiently and accurately than what is
possible without them, the use of these versatile techniques for air pollution moni-
toring is not fully realised. A few models have been developed to relate PM pollution
in India to geospatial parameters. However, these models suffer from limitations
when they are applied to Peninsular India since they are largely based on the
CAAQMS data from the highly polluted areas in the NCR and IGP. Hence, a robust
mathematical model relating ambient air pollution in Peninsular India with
geospatial and meteorological parameters is the need of the hour to monitor and
forecast PM pollution levels in this region, which is less studied compared to the
NCR and the IGP. Most of the existing air pollution models in India use air quality
data extracted from the CAAQMS only. Since these stations are relatively few, the
ground-truthing carried out in earlier studies is inadequate to model the PM pollution
in this region in a reliable manner. The proposed investigation uses verified and
validated data from multiple AAQM stations maintained by CPCB/SPCBs in

https://indianexpress.com/article/cities/mumbai/safar-framework-one-stop-solution-for-air-quality-management-7536259/
https://indianexpress.com/article/cities/mumbai/safar-framework-one-stop-solution-for-air-quality-management-7536259/
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84 cities/towns in Peninsular India to identify the hotspots of changes in the air
quality in the last decade in a pre-pandemic scenario. This enhanced level of ground-
truthing will contribute to a more robust model that can be used for PM pollution
control.
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22.2 Methodology

22.2.1 Study Area

Air pollution levels in Peninsular India have different scenarios when compared to
the Indo-Gangetic region. As most of the developed cities lie in this region, most of
the emission comes from industrialisation and vehicular pollution. Apart from this
emission, sea salt levels in the atmosphere increases whenever there is landfall of
cyclones, which adds to the mixed concentration levels of PM in the atmosphere.
Metropolitan cities such as Chennai, Mumbai and Hyderabad also have statistically
negative trends as of Delhi from 2014 to 2019 (Singh et al. 2020). In 2020,
122 non-attainment cities within 11 states of southern cities under the NCAP had
been identified for rehabilitation and restoration of ambient quality in India by 2024
(PIB 2020).

While approximately 127 towns/cities in Central and South India have at least
one AAQ monitoring station operated by the concerned State Pollution Control
Board (SPCB), the collection and analysis of data from these stations requires a
higher level of effort and duty of care compared to data collected from CPCB’s
continuous monitoring stations limited to 12 towns/cities in Central and nine cities/
towns in South India. This may be due to the following reasons:

1. The historical datasets from the AAQM stations maintained by the SPCB have
not been digitised for various reasons, including the lack of adequate capacity in
several SPCBs to complete this on time.

2. Since these datasets are derived largely from manual monitoring stations (com-
pared to CPCB’s continuous monitoring stations), they must be carefully verified
and validated before using them in any model.

While the parameters and processes influencing PM pollution in Peninsular India
need to be investigated in greater detail, the inadequate number of CPCB-maintained
continuous AAQ monitoring stations in this region has posed a challenge to other
researchers who rely only on CPCB stations for ground-truthing geospatial
parameters affecting air pollution. Therefore, while the pollution trends in the
northern, western and eastern parts of India have been studied separately by other
researchers, lesser attention has been paid to the air pollution levels in Peninsular
India. The diverse topography and the high level of variability in meteorological
parameters in this region indicate the necessity to develop more granular PM
pollution models with multiple geospatial and meteorological parameters using



data from a larger number of AAQ monitoring stations spread across Peninsular
India.
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Fig. 22.1 Map of the study region and the state-wise distributions across India showing the
distributions of the Central Ambient Air Quality Monitoring Stations (CAAQMS) and National
Air Pollution Monitoring Programme (NAMP) stations of the CPCB and SPCB from where the
spatio-temporal datasets were used for the present study

The National Clean Air Programme (NCAP) provided the scope to expand the
effectiveness of the AAQ monitoring network across the country since it is critical to
develop an action plan for the prevention, control and abatement of air pollution, as
well as to enhance public awareness and capacity building (MoHFW 2020). There
are currently 132 non-attainment cities throughout India under the NCAP located
within the diverse geography of the Peninsular India region, over which the trends of
air quality changes need to be reported. The present study provides a robust
compilation of multisource datasets on air quality data in the public domain,
including datasets contributed to public databases by CPCB and SPCB from multi-
ple stations located in 84 cities/towns across Peninsular India. In the present study,
the study area is divided into three parts: Central, Eastern and Western Peninsular
India, consisting of ten states as shown in Fig. 22.1:

1. Madhya Pradesh and Chhattisgarh located in the Central Peninsular region of
India.

2. Tamil Nadu, Pondicherry, Andhra Pradesh, Odisha and Telangana constituting
the Eastern parts of Peninsular India.
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Fig. 22.2 The cumulative seasonal rainfall (in mm) and distances from the coast for selected
locations within Peninsular India

3. Maharashtra, Kerala, Karnataka and Goa constituting the Western parts of Pen-
insular India.

The rainfall and distance from the coast for important sites within the area of
interest in the Peninsular India are shown in Fig. 22.2a, b, illustrating the differential
geographies and climatology of the three portions of the area studied. In general, the
northeast monsoon is found to be less intense than the southwest monsoon in the
study area across the different states, except for the Chennai metropolitan city, where
the northeast monsoon was of higher magnitude during the period of investigation
(Fig. 22.2a). No direct correlation was observed between the amount of rainfall, with
the distances of the key cities from the coast as per the present study (Fig. 22.2b).
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Table 22.1 List and descriptions of the datasets used in the present analyses as well as their
sources

S. no. Dataset Description Source for datasets

1 Basemap Indian Boundary Shape file
(Vector layer)

iGIS map

2 PM10 Point datasets of PM10
concentrations in different
states and regions

CPCB, SPCB (annual datasets)—online
datasets

3 LULC Annual land use land cover
(LULC) with scale of 250k

Downloaded from ISRO’s Bhuvan
Geoportal and remapped with
georeferencing

4 AOD INSAT 3D aerosol optical
depth (AOD)

Downloaded from ISRO’s VEDAS
Geoportal remapped with
georeferencing

5 PBL Monthly planetary boundary
layer (PBL) of ERA
5 reanalysis data

Downloaded from Copernicus Climate
Data Store of European Centre for
Medium-Range Weather Forecasts
(ECMWF)

22.2.2 Data Collection and Analyses

22.2.2.1 Data Collection and Compilation
The annual data on the PM10 concentrations were obtained from the CPCB and
state-wise SPCB repositories available in the public domain up to December 2021.
The PM10 data gaps from 2009 to 2014 were also complemented using data referred
to in the CPCB reports available in the public domain on the web, and the data from
2015 to 2019 were obtained from online repositories maintained by CPCB and
SPCB. Aerosol optical depth (AOD) data from INSAT 3D was obtained from
ISRO’s VEDAS repository corresponding to the 15th day of every month at 12 p.
m. in 2019 in order to capture the peak monthly and diurnal changes. Due to the
non-availability of data for January and November alone, the respective data were
downloaded for the 16th day and 19th day, respectively. The land use land cover
(LULC) annual data of 25,000 scale were obtained from ISRO’s Bhuvan Geoportal
from 2009 to 2019. Monthly data on the planetary boundary layer (PBL) of ERA
5 reanalysis data were downloaded from Copernicus Climate Data Store. Table 22.1
lists the different datasets used in the study as well as their sources.

22.2.2.2 Data Analyses
A maximum of 625 station points were selected during the period 2009–2019
corresponding to the datasets on PM10. These were clustered for the state-wise
distributions of station points, and the densities of the sampling sites were calculated
by dividing the total number of stations by total area. It is found that the total station
density of selected states in Peninsular India to be 0.000405/km2. The station
densities for the selected states in Peninsular India are shown in Fig. 22.3. The
distributions of the AAQMS stations were observed to be quite uneven, with states
with smaller areas (e.g. Goa) accounting for higher density of stations and hence



higher monitoring resolutions compared to other states encompassing greater geo-
graphic area but lesser station densities. However, it must be noted that the present
study used only the data available in the public domain, while the possibility of the
availability of data with a higher temporal resolution exists with the administrative
units of the state or central boards.
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Fig. 22.3 State-wise
densities (represented as
percentages of the total
number of locations) of the
Ambient Air Quality
Monitoring Stations
(AAQMS) distributed over
the total area of study obtained
from the databases accessed
online from the websites of
Central and State Pollution
Control Boards, for Southern,
Central and Eastern India for
the period 2009–2019
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The databases of the monthly, seasonal (summer, winter, monsoon), annual
concentrations of PM10 were prepared for grids of sizes 10 km × 10 km (coarser
model), which is usually adopted to survey population distributions at regional
scales.

A geodatabase was created using the ground-level data in QGIS environment
(QGIS 3.18.2 version), and a representation of the spatial distributions of the stations
were created using the inverse distance weighting (IDW) interpolation for PM10
data selected areas of interest (AOI) using Eq. (22.1) as follows:

Zj =

Pn

i

Zi
Dij

Pn

i

1
Dij

ð22:1Þ

where

Zi = value of known point,
Dij = distance to known point,
n = user selected exponential and
Zj = unknown point.
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Further, the annual datasets on LULC, obtained from ISRO’s Bhuvan Geoportal,
were georeferenced and clipped to the study area (iGISmap). The root mean square
error was calculated to be in the range between 0.05 and 0.09. Georeferencing of the
INSAT 3D AOD data were performed, and the root mean square error was found to
be in the range between 0.05 and 0.09. Monthly ERA 5 reanalysis data were spatially
integrated across the study area and represented for 12 a.m. and 12 p.m. The PM10
data were also spatially interpolated and reclassified based on CPCB standard
categories. The SCP plugin in QGIS and the land cover change function in post-
processing were used to analyse the annual changes in PM10 concentrations.

During this process, the previous year’s spatial datasets of PM10 were used for
reference classification to compute the proportions of changes to generate the new
PM10 values. Post-analyses reclassification was performed to categorise areas of no
change, increase or decrease in annual PM10 concentration. In this way, the change
detection maps were created from the reclassified outputs. The Raster layer unique
value report generated for annual periods from the geospatial computation of the
indices across the study area was used to delineate the reclassified image where the
changes in the ratios were maximum or minimum across the years. Areas with an
increase in the ratio corresponding to the increase in PM10 concentration area to
total area were classified as ‘red’, whereas the areas showing a decrease in the ratios
were classified as ‘green’. The area statistics for 16 classes of LULC were obtained
from ISRO’s Bhuvan Geoportal, and the waterbody area was calculated by taking
mean of minimum and maximum areas for the particular class. In the case of
vegetation cover, the sum of areas under the classes of rabi crop, double/triple
crop, plantation, deciduous forest, littoral swamp, shifting cultivation, kharif crop,
Zaid crop, evergreen forest, degraded/scrub forest and grassland were computed.
The Green to Blue ratio (GBR), Blue to Built-up area (BBA) and impervious surface
area (ISA) were calculated as per the methodology described in Santhanam and
Majumdar (2022) and Varshini et al. (2022).

22.3 Results and Discussions

22.3.1 Analyses of Land Use and Land Cover (LULC) and Aerosol
Optical Densities (AOD) with Respect to PM10 Concentrations

Figure 22.4 shows the annual changes of LULC statistics of the study area during the
period 2009–2015. An initial increase in the area for the LULC categories
corresponding to built-up, waterbodies and vegetation areas followed by a decrease
in the latter years were observed. In terms of the decadal change (2009–2019) area
corresponding to built-up regions, extents of waterbodies and vegetation were
observed to increase by 3.6%, 7.7% and 14.6%, respectively. In terms of annual
changes, the percent increase in the areas of the built-up regions, waterbodies and
vegetation were found to be in the range between 0.5% and 9%, 0.09% and 2%, and
0.6% and 14%, respectively. From these results, it is evident that the changes in



built-up area were observed to be very less when compared to the changes
undergone by the areas of vegetation.
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Fig. 22.4 Land use land cover (LULC) maps obtained from ISRO’s Bhuvan Geoportal for the
period 2009–2019 after georeferencing representing the pre-pandemic LULC scenario for Peninsu-
lar India

Gupta et al. (2020) from IIRS developed satellite-derived estimates of PM
concentrations for the entire country by using a geographical weighted regression
(GWR) model relating PM concentrations to INSAT 3D AOD and specific meteo-
rological parameters and demonstrated a significant correlation (r > 0.55) over most
parts of India except Central India and the Deccan Traps region (r < 0.35) where
meteorological parameters are highly variable. Gupta et al. (2020) also reported that
the spatial variability of air pollution in North India can be attributed to episodic



events such as dust and biomass burning in addition to the ‘inversion’ effect during
winter. Further, the PM2.5/PM10 ratio was also found to be highest (0.7 ± 0.08) in
South India, while it was least (0.59 ± 0.08) in West India. This indicates that
anthropogenic emissions are the major source of air pollution in South India, while
meteorology and background dust also contribute to the air pollution in North India.
A similar trend is observed in Fig. 22.5, with generally low AOD in southern regions
compared to the central, eastern and western regions.

22 Proportions of Change in the Airborne Particulate Matter (PM10). . . 411

Fig. 22.5 Aerosol optical density (AOD) maps obtained from ISRO’s Visualisation of Earth
observation Data and Archival System (VEDAS) Geoportal (https://vedas.sac.gov.in/air-quality-
monitoring/index.html) for the period January to December 2019 at 12 p.m. from INSAT data
representing the pre-pandemic status of PM10 concentrations over ground-based monitoring
stations of the Central Pollution Control Board (CPCB) in the study region

https://vedas.sac.gov.in/air-quality-monitoring/index.html
https://vedas.sac.gov.in/air-quality-monitoring/index.html
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Fig. 22.6 Map of PM10 concentrations from ground data of CPCB and SPCB stations from the
years 2009 to 2019

It is evident from Fig. 22.6 that the PM10 concentration levels in Madhya Pradesh
and Chhattisgarh were found to be critical, whereas the concentration levels in
Andhra Pradesh and Goa were higher; Tamil Nadu, Odisha, Maharashtra had
medium to critical concentration levels; and Karnataka and Kerala had lower to
critical and medium to higher concentration levels, respectively (CPCB 2009–2010).
These concentration levels remain unchanged till 2012 except Kerala, where the
concentration levels seem to be decrease from lower to medium range (CPCB
2011–12). Concentration levels in Andhra Pradesh shows critical levels when
compared to previous years (CPCB 2015–16).

Further, it is observed that the concentration levels of PM10 shows decreasing
trends over the years from 2009 to 2019. There are mainly four notable clusters
evident from Fig. 22.6 between 2009 and 2019, which are as follows: dark green,



which is less than 50 μg/m3, green (50–100 μg/m3), yellow (220–250 μg/m3) and
orange (340–350 μg/m3). Although dark green and orange are not significant, it can
be seen over southern and central parts of India, respectively. There has been a
gradual decrease in concentration from 2009 to 2019. As observed, within the range
of the concentration levels considered in the present study, most parts in Southern
India does not fall above 50–100 μg/m3, classified as indicated ‘good air quality’.
The central parts (i.e. Madhya Pradesh, Maharashtra and Chhattisgarh) are moder-
ately polluted, which was observed from 2012 to 2015 and thereon small insignifi-
cant clusters are observed in the same locations from 2016 to 2019. The fluctuations
in the concentration levels are greater in the central part of India, while the concen-
tration levels are stagnant in other parts, specifically over the southern parts of India.
As per the current study, the best air quality is observed spatially in almost all parts
of Kerala over the years.
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22.3.2 Deriving the Proportions of Change—Annual and Decadal
Changes

Presently, PM10 measurements are reported only state-wise or city-wise (physical or
geographic boundaries) and these do not correspond to actual airshed boundaries,
which need to be established. Since we need to identify the probable airsheds over
several years to understand the dynamicity of distributions, we looked at stable,
ambient signals of air quality classification in pre-pandemic times to distinguish the
possible changes in terms of proportions of changes. This is shown in Fig. 22.7 and
discussed as follows.

Between 2009 and 2019, on a decadal scale, many areas studied show differential
changes in the concentration levels. While looking at the year-to-year changes, it is
observed that increased concentration levels are highlighted from 2010 to 2011,
specifically over the central parts of India covering some parts of Madhya Pradesh,
Maharashtra, Chhattisgarh and Odisha. No changes in the proportions between
successive years were observed between 2012 and 2013, as well as from 2014 to
2015, except for some small parts of Maharashtra and Chhattisgarh, respectively.
The decreased concentrations were also observed in some parts of Central India.
Significantly, over some parts of Madhya Pradesh, Maharashtra and Chhattisgarh,
the proportions of changes indicate a slight improvement in air quality. The current
study also revealed that consistent good air quality was observed in the successive
periods of 2014–2015 and 2015–2016.

Decadal changes from 2009 to 2019 are shown in Fig. 22.8, and the air quality has
been observed to have progressively changed to ‘good’ during this decade (PM10
increased from 220–250 μg/m3 to 50–100 μg/m3). Although no significant changes
in concentrations were observed over southern parts of India, enhanced air quality on
a decadal scale is observed in central parts of India. Many parts of Madhya Pradesh
and Chhattisgarh show good air quality in 2019 as compared to 2009 (Fig. 22.8a, b).
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Fig. 22.7 Change detection map of PM10 concentrations for the period 2009–2019 in a
pre-pandemic scenario. The changes here are represented as ‘proportion of change’ between
successive years (e.g. 2009–2010, . . ., 2018–2019)

22.3.3 Estimation of BBA, GBA and ISA

The overall proportion of change in the green and red areas are 0.22 and 0.05,
respectively, for the change between 2009 and 2019, indicating the slight increase in
built-up areas during the decade as shown in Fig. 22.9. However, it is interesting to
note the highest proportions of the red areas were mapped in 2010–11 and those of
the green areas in 2015–16. Green area also showed a higher proportion of change to
the total area in 2014–15 supporting lower PM10 and higher air quality.

As observed in Fig. 22.10, the proportion of Blue to Built-up area (BBA) varied
between 40 and 41 throughout the decade (2009–2019), implying low level of



changes to the water spread area. It was observed that ISA remained constant with
less variations in the values. In the case of GBR, however, a sudden increase in the
proportion (almost double) was observed from 2015 to 2019, indicating slight
revegetation. This also coincides with the better air quality observed from
Fig. 22.7f, g.
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Fig. 22.8 Map of PM10 concentrations for the period 2009–2019, and change detection map of
PM10 concentrations for the period 2009–2019
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Fig. 22.9 Proportion of change in green area (decrease in PM10 concentrations) and red area
(increase in PM10 concentrations) to the total area investigated between the years 2009 and 2019

22.3.4 Changes in the PBL and Its Link to the Observed Proportions
of Change

Figure 22.11 (i) and (ii) indicates the change in planetary boundary layers (PBL) at
12 a.m. and 12 p.m., respectively, during the years 2009–2019. Monthly changes
have been derived and represented geospatially to understand any changes, which
may be ascribed to diurnal changes and/or the seasonal changes. In terms of the
diurnal changes from January to December, it is clear that there is a significant
variation when compared to the height of PBL at 12 a.m. and 12 p.m. Higher PBL



height is mainly attributed to the heating effect of the atmosphere, which is high
during daytime and low during night-time. Consequently, high and low PBL height
were observed at 12 p.m. and 12 a.m., respectively, which were selected as time
windows for comparison across different seasons.
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Fig. 22.10 Proportion of change in Blue to Built-up area (BBA), Green to Blue ratio (GBR) and
impervious surface area (ISA) for the area of interest in the present study. The proportions of change
for BBA, GBR and ISA were calculated using the data on LULC from Bhuvan Geoportal of India.
(Source: https://bhuvan.nrsc.gov.in/home/index.php)

High PBL height is observed during summer season (March, April, May and
June) due to intense heat during summer season as compared to other seasons. Black
Carbon (PM10 and PM2.5) produced by most of the industries and vehicles during
daytime is also one of the reasons for increased height in PBL levels due to its heat
absorption characteristics. There is almost 80% reduction in PBL height from 3.5 to
0.8 km during 12 p.m. and 12 a.m., particularly in summer season. During monsoon
and winter seasons, there is little heating effect produced, and hence low PBL level is
observed.

22.4 Discussion and Conclusions

Air pollution is one of the major problems faced by India (especially in northern part
of India) because of industrialisation and other anthropogenic activities. India has the
ten most populated cities out of the 20 cities in the world and it is also the fifth most
polluted country in the world, which was reported by World Health Organization
(WHO) in 2019. Consistent increase in population has put undue demand for energy,
which impacts the environment and Earth’s atmosphere. For example, in Delhi the
demand for energy increased on a decadal scale by 57.16% from 2001 to 2011 and
further expected to increase to meet the greater energy demand (Kumar et al. 2015).
Recent policies and regulations from the government have led to statistically

https://bhuvan.nrsc.gov.in/home/index.php
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significant decrease in particulate matter (PM) concentration (especially PM2.5) in
Delhi, thus the negative trend is seen in 5 years from 2014 to 2019 (Singh et al.
2020). While such trends have been reported across the country (MoEFCC 2020a), it
is difficult to understand the holistic scenario without a study of the trends and
changes. The present study thus demonstrated a new methodology to monitor these
changes reflected as a ‘proportion of change’ at a coarser resolution in order to
identify the predominant ‘airsheds’ where the changes are mostly observed.
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The importance of the present study is that it simplifies the methodology of
deriving the sub-national level air quality across the whole geographic extent as
opposed to the existing practice of integrating the city- or state-level measurements
to reflect air quality changes across the political sate boundaries within India. While
the movement of air parcels are very dynamic, such stratified monitoring cannot be
helpful to study the associated impacts of air quality on the ecosystems or the
bioclimatic divisions transcending the state or district boundaries alone, but require
synoptic studies of airsheds to understand PM10 migrations. Although effective
mathematical modelling can provide insights and also the delineation of airshed at
higher resolutions (e.g. Guttikunda & Kopakka 2014; Guttikunda et al. 2019),
simpler metrics save time and effort to delineate airsheds, which provide crucial
information on air quality to support multi-proxy ecosystem analyses at sub-national
or sub-regional scales.

The present study also provided an extensive and comprehensive pre-pandemic
database of the PM10 concentrations for a decadal investigation from 2009 to 2019
compiled from multiple sources. The database was also expanded to include
geospatial databases for meteorological parameters such as LULC and AOD. The
overlay analyses of the critical land-use parameters, such as LULC with the airshed
properties represented by AOD and PM10, were validated by the novel indices of
urbanisation such as the proportions of change with respect to Blue to Built-up areas
(BBA), Green to Built-up areas (GBR), percentage impervious surface area (ISA)
and the planetary boundary layer (PBL). This extensive work resulting in the
convergence of the datasets revealed the extents and magnitudes of changes,
which is necessary to identify cross-over regions in Peninsular India region. Ambi-
ent data in stable pre-pandemic time provided for better constraint, and the data for
reflection attributed to non-lockdown effects. Hence, the present study provides a
unique methodology to assess proportions of changes according to the nature of
stabilisation of the air environment and the land-use patterns in post-pandemic
periods. The use of the indices as illustrated in the present study can be successfully
used to study decadal-scale changes in the ecosystems at moderate resolutions with
respect to land and water. Further, the present study can also provide a useful
methodological approach to assess the proportional impacts of air quality as part
of multi-proxy assessments of ecosystems and biodiversity. While the data
distributions within the state borders vary largely across different states/divisions
within a country, the data densities observed in the present study reinforce the need
to identify the airsheds for the study of air quality unconfined to state/geopolitical
borders.
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Abstract

The study determined the nutrient content of sunflower stalks and leaves, the
decomposition rate of varied amounts of sunflower cuttings applied to rice
terrace—payoh, and the effect of sunflower cutting application on the soil fertility
of payoh during the decomposition period. The nutrient content of sunflower
stalks and leaves and other plant species was analyzed for N, P, and K contents
using standard methodology. The experiment for sunflower decomposition was
also set up in a payoh terrace. The statistical analysis used is two-way analysis of
variance (ANOVA). The experiment was conducted in Barangay Poitan, Banaue,
Ifugao, Philippines for a 12-week duration from September to December 2013.
First, N, P, and K contents of sunflower stalks and leaves and other plant species
from the study site were analyzed. Second, sixteen 1 m × 1 m plots treated with
four replications of each four sunflower treatments (0, 500, 1000, and 2000 g
sunflower cuttings per plot) were randomly set up following completely
randomized design (CRD) to determine the bi-weekly decomposition of sun-
flower applied within the 12-week duration. Third, soil collected from the upper
10 cm of each of the 16 plots was analyzed for pH, organic matter, P, and
K. Results revealed that N, P, and K contents of sunflower stalks and leaves are
higher than other plant species used as fertilizer in the payoh plots, while all
treatments with sunflower cuttings were fully decomposed 4 weeks after
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sunflower application. On the other hand, payoh plots treated with 2000 g of
sunflower cuttings had significantly higher pH, organic matter, available P, and
exchangeable K than other sunflower treatments. The application of 2000 g of
sunflower cuttings to payoh plots results in significantly higher soil pH, soil
organic matter, soil available P, and soil exchangeable K within 12-week
duration.
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23.1 Introduction

Themuyong forests (privately managed secondary forest or forest garden) and payoh
(terraced paddies) are two of the five interconnected components of the agroecologi-
cal zones in Ifugao that represent a hilly type or watershed model production system.
In the production system, the muyong forest serves as the major component by
providing water and stability to payoh. Given the location of the forests in the upper
terrace, it also controls the overall physical soundness of the payoh by means of the
water flowing from it (Butic and Ngidlo 2003). In addition, these forests also provide
continuum supply of nutrients to the payoh (SITMo 2008). Hence, the long-term
sustainability of the payoh is significantly dependent on the muyong forest (Butic
and Ngidlo 2003; SITMo 2008). However, the muyong forests were increasingly
under pressure from the need of cash income and growing upland population. Thus,
some areas of the forests had been converted to coffee and banana for commercial
plantings. Other areas were cleared to give way to residential development (Rondolo
2001). In effect, land conversions in the muyong forests might affect the release of
nutrients from the slowly decomposing litters in the muyong forests to the terrace
paddies, through the likely effects of changes in the structure of the forests to litter
decomposition.

Hence, there is a need to supplement the probable reduction of nutrient release
from the muyong forests to the payoh through biomass transfer of available organic
materials. However, traditional organic materials used like crop residues and animal
manures are typically unavailable in adequate quantities, labor intensive in
processing and application, and low in nutrients (Palm and Rowland 1997). There



is also the problem of competing uses of some organic materials such as fodder for
livestock (Jama et al. 2000). Therefore, readily available and abundant organic
materials with high nutrient content must be used. Various reports have shown the
effective use of sunflower as soil amendment for rice (Nagarajah and Nizar 1982;
Gusnidar et al. 2012), maize (Jama et al. 2000; Gachengco et al. 1999; ICRAF 1998;
Gachengco 1996; Niang et al. 1996), and okra (Olabode et al. 2007). This is
attributed to Tithonia’s high nutrient content and other beneficial properties. The
use of readily available and abundant organic materials with high nutrient content is
a good practice to supplement the nutrients required at the farm level. A good
candidate for organic source of nutrients that satisfy these criteria is the Tithonia
diversifolia, which is available in sufficient quantities in most farms in rice (payoh)
terraces in Banaue, Ifugao.
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T. diversifolia is commonly known as Mexican sunflower. It is a dicotyledonous
shrub that belongs to the family Asteraceae. It is a succulent and soft shrub that
grows up to a height of 1–3 m. The shrub produces seeds all year round, which are
dispersed easily by wind, water, and animals (ICRAF 1997). It is also an aggressive
weed that grows naturally everywhere due to its adaptability to most soils (Ojeniyi
2012; Ganunga et al. 1998). Hence, the plant is now widely spread in the humid and
subhumid tropics in Central and South America, Asia, and Africa, aside from its
country of origin in Mexico (Sonke 1997). In addition, Tithonia grows rapidly
(Azeez 2020; Obatolu and Agboola 1993) and is capable of producing high biomass
(Jama et al. 2000). It has fast decomposition due to its low lignin and polyphenol
contents, C:N ratio, and high water content. It is an effective retriever of high
amounts of nutrients from the soil (Jama et al. 2000). It is capable of attracting
fungi and protecting the soil from soil erosion (Ojeniyi et al. 2012). Above all, the
biomass of Tithonia has been found to have high nitrogen (N), phosphorus (P), and
potassium (K) contents (Jama et al. 2000; Gachengco et al. 1999). Hence, Tithonia is
an organic material that has a high potential for nutrient recycling, release, and
supply.

Given these qualities of Tithonia, the use of plant’s biomass in varying forms as
soil amendment has been reported to effectively improve the growth and yield of
various crops. The significant effect of incorporating Tithonia green biomass on
maize yield was widely documented in Nigeria and Western Kenya (Gachengco
et al. 1999; ICRAF 1998; Niang et al. 1996). The application of freshly crushed and
dried ground Tithonia to soil pots was also shown to have significantly higher okra
yield in Nigeria (i.e., number and weight of okra fruits per plant) than the application
of Tithonia ash (Olabode et al. 2007). In addition, the use of Tithonia biomass was
also reported to have significant effects on tomato (Liasu and Achakzai 2007) and
yam (Adeniyan et al. 2008) yield. On the other hand, the combined effect of soil
incorporation of tender green leaves and stems of Tithonia and second level of
mineral fertilizer was reported to be comparable to the rice yield from the
recommended mineral fertilizer application in Sri Lanka (Nagarajah and Nizar
1982). Likewise, Tithonia biomass was also proven to generate higher maize dry
matter yield when incorporated or mulched Tithonia was combined with NPK
fertilizer (Azeez 2010).
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However, only the study of Nagarajah and Nizar (1982) is known to have
documented the potential of Tithonia as a green manure for lowland rice and its
combined effect with mineral fertilizer on rice yield. Recent studies have focused
their attention in finding the appropriate application rate of Tithonia biomass with
mineral fertilizer in rice paddies of Indonesia (Gusnidar et al. 2012; Hakim et al.
2012). There is no known study yet that explored the individual effect of Tithonia
biomass application on the fertility of upland soil paddies, specifically terrace
paddies. Hence, this study analyzed the nutrient content of wild sunflower stalks
and leaves, determined the rate of decomposition of varied amounts of sunflower
cuttings applied to payoh, and quantified the effect of sunflower cutting application
on soil chemical properties of payoh during the decomposition period.

The results of this study will provide information on the nutrient content and
speed of decomposition of sunflower stalks and leaves, and the application rate of
sunflower cuttings that effectively improves the soil nutrients of the payoh. Gener-
ally, this study will provide relevant baseline information to rice farmers in Brgy.
Poitan, Banaue, Ifugao on the potential use and benefits of sunflower cutting as soil
fertilizer to terrace rice paddies.

23.2 Methodology

23.2.1 Nutrient Content of Sunflower Stalks and Leaves and Other
Plant Species

Stalks and leaves of various plant species (i.e., sunflower, bolo, alangtin, rice, and
azolla) commonly used as green manure/organic fertilizer in the payoh terraces were
collected in areas surrounding the payoh terraces in Brgy. Poitan, Banaue, Ifugao.
Nutrient content of sunflower stalks and leaves and other plant species was analyzed
for N, P, and K contents using standard methodology. The nitrogen content was
analyzed following the Kjeldahl method, total phosphorus was analyzed colorimet-
rically using phospo-molybdenum, and total potassium using flame photometer.

23.2.2 Sunflower Decomposition Experiment

The experiment for the sunflower decomposition was set up in a payoh terrace in
Brgy. Poitan, Ifugao, Banaue. Sixteen 1 m × 1 m plots were set up by enclosing with
polyethylene plastic and removing remaining rice stalks from the plots. Four sun-
flower treatments were applied in the experiment: 0, 500, 1000, and 2000 g sun-
flower cuttings per plot. Each treatment had four replicates that were arranged in
completely randomized design (CRD). Soil samples collected from the upper 10 cm
of each quadrat plot at bi-weekly intervals for 12 weeks were analyzed for pH,
OM, P, and K contents.
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23.2.3 Statistical Analysis of Data

Two-way analysis of variance (ANOVA) was used to determine the existence of
significant difference in soil nutrients and soil properties of soil plots treated with
varying amounts of sunflower cutting throughout the 12-week decomposition
period. Specifically, the test determined if there was significant difference in soil
nutrients and soil properties between sunflower treatments and between weeks.

23.3 Results and Discussion

23.3.1 Nutrient Content of Sunflower and Other Plant Species
in Muyong–Payoh System

Sunflower stalks and leaves have higher N (2.61%), P (0.33%), and K (3.10%)
contents (Table 23.1) compared with azolla, bolo, and alangtin plant commonly used
as fertilizer in the payoh plots in Banaue, Ifugao. The P and K contents of sunflower
stalk and leave samples fall within the range of P (0.2%–0.5%) and K (2.3%–5.5%)
contents of 100 samples of wild sunflower leaves and stems from Kandy, Kegalle,
Matale, and Kurunegala districts in Sri Lanka (Nagarajah and Nizar 1982), but falls
below their result on N content range (3.2%–5.5%).

According to Gachengco et al. (1999), the average nitrogen (N), phosphorus (P),
and potassium (K) concentrations of green leaf biomass of sunflower collected in
East Africa is 3.5%, 0.37%, and 4.1%, respectively, on a dry weight basis. Compa-
rably, samples collected within the top 50 cm of sunflower from several locations in
West Sumatra had an average N, P, and K of 3.16%, 0.38%, and 3.45%, respectively
(Hakim 2002). Nagarajah and Nizar (1982) also reported 3.2%–5.5% N, 0.2%–
0.5% P, and 2.3%–5.5% K from 100 samples of sunflower leaves and tender stems
from Sri Lanka. Different forms of 1 kg dried sunflower harvested in Western Kenya
during the flowering stage also revealed N, P, and K concentrations of 1.76%,
0.82%, and 3.92%, respectively (Olabode et al. 2007).

In addition, green sunflower biomass was also found to have 1.8% calcium
(Ca) and 0.4% magnesium (Mg) (Gachengco et al. 1999). On the contrary, a lower
Ca (0.59%) and Mg (0.27%) contents of sunflower were reported by Rutunga
et al. (1999).

Table 23.1 Nutrient contents of various plant species collected in the muyong–payoh system in
Brgy. Poitan, Banaue, Ifugao, Philippines

Plant species N (%) P (%) K (%) Remarks

Bolo 1.63 0.19 1.22 Used as fertilizer

Rice (Oklan variety) 1.17 0.15 0.47 Rice variety

Azolla 1.45 0.24 0.45 Used as fertilizer

Alangtin 1.96 0.32 3.13 Used as fertilizer

Wild sunflower 2.61 0.33 3.10 Used as fertilizer
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In comparison to other plant organic materials, average N concentrations (3.5%)
of green leaf biomass are comparable to other N2 fixing leguminous shrubs and trees
(i.e., Calliandra calothyrsus, Crotalaria grahamiana, Lantana camara, Leucaena
leucocephala, Sesbania sesban, and Tephrosia vogelii) (Gachengco et al. 1999).
Dried samples of Tithonia were found to have significantly higher N, P, and K than
dried Chromolaena odorata by 28%, 18%, and 17%, respectively. In addition,
sunflower dried samples were significantly greater than dried Panicum maximum
in terms of N, K, and Ca by 36%, 62%, and 54%, respectively (Olabode et al. 2007).

Compared to animal manure, sunflower’s N concentration (1.76%) was not
significantly different from N concentrations of poultry (1.78%) and swine manure
(1.69%). The P content of sunflower (0.82%) was also not significantly different
from the P content of swine manure (1.32%), but significantly higher than P
concentrations of cattle manure (0.52%). In terms of K content, sunflower (3.92%)
was significantly greater than those found in poultry (1.80%), cattle (0.95%), and
swine manure (0.77%). However, sunflower had the lowest Mg concentration
(0.0055%) among the organic materials compared (Olabode et al. 2007).

23.3.2 Sunflower Decomposition

Figure 23.1 shows the rapid transformation of sunflower cuttings applied (500, 1000,
and 2000 g) to the soil plots 2 weeks after the sunflower application, which signals
the rapid decomposition of sunflower cuttings. All soil plots treated with varying
amounts of sunflower cuttings had fully decomposed by the 4th week, which is in
accordance with the results reported by Nagarajah and Nizar (1982), who found that
wild sunflower (green leaves and tender stems) applied to lowland rice paddies in the

Fig. 23.1 Weekly decomposition of varied amounts of sunflower cuttings applied to each soil
plots, Brgy. Poitan, Banaue, Ifugao, Philippines



mid-country wet zone of Sri Lanka had completely decomposed in about 3–4 weeks
after planting.
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In addition to the considerably high N, P and K contents of sunflower green
biomass, it also has low lignin (6.5%) and polyphenol (1.6%) contents, which
highlights its high potential as a soil amendment (Jama et al. 2000). Palm and
Rowland (1997) also reported moderate lignin content and high soluble fraction as
other strong points of the use of sunflower as organic material, which results in high
biodegradability of the organic material. Dried samples of this weed were also
shown to have a lower C/N ratio (8:1) than Chromolaena odorata (12:1) and
Panicum maximum (30:1), which is an indication of a faster rate of decomposition
(Olabode et al. 2007). Dried sunflower samples were also significantly better than
dried Chromolaena odorata samples (25.72%) in terms of organic matter content
(24.04%) (Olabode et al. 2007).

According to Gachengco et al. (1999), dry matter of sunflower takes a half-life of
about 1 week to disappear during the rainy season in Western Kenya. A statistical
comparison of species decomposition constants also showed that sunflower has the
fastest decomposition rate, which was significantly different from leguminous crops
at a P value of 0.05 (Partey 2010).

Fast decomposition of sunflower leaf biomass suggests a rapid release of
nutrients, which is beneficial to short duration crops (i.e., vegetables and most annual
crops) (Jama et al. 2000). However, the form of sunflower biomass to be applied
must be a prime consideration as this affects the release of nutrients. According to
Mafongoya and Nair (1997), drying of plant biomass leads to increase in polyphenol
content and reduction in nutrient release. Hence, the application of sunflower green
biomass is more beneficial to the soil than the application of dried sunflower biomass
(Otuma et al. 1998).

23.3.3 Effects of Different Sunflower Application Rates on Soil
Nutrients and Soil Properties of Closed Payoh System

23.3.3.1 Soil pH
At the start of the experiment, the pH of the soil was acidic, with values around
5 across all treatments of sunflower. Naturally, this is expected as the pH of soil
under waterlogged conditions becomes acidic due to soil chemical reactions that take
place under anaerobic conditions. The addition of sunflower at varying amounts
resulted in an increase in soil pH 2–4 weeks after the application of sunflower. The
plot with the highest treatment of sunflower (2000 g) showed the highest increase in
soil pH (reaching up to pH of 6) on the 4th week after sunflower application.

Likewise, sunflower application of 500 and 1000 g resulted in high increase in
soil pH for the two treatments 4 weeks after application (Fig. 23.2). These results
conform the findings of Atayese and Liasu (2001), Hakim and Agustian (2003), and
Hakim et al. (2009) that the use of sunflower as soil amendment results in higher soil
pH.
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Fig. 23.2 Changes in soil pH
of plots treated with varying
levels (0, 500, 1000, and
2000 g) of sunflower during
the 12-week decomposition
period, Brgy. Poitan, Banaue,
Ifugao, Philippines
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Table 23.2 Analysis of variance (ANOVA) of soil pH between week, sunflower treatments, and
interaction of week and sunflower treatments, Brgy. Poitan, Banaue, Ifugao, Philippines

Source of variation SS df MS F P value F crit

Sample (week) 4.590536 6 0.765089 16.71456 1.36E-12 2.208554

Columns (sunflower
treatments)

3.591429 3 1.197143 26.15345 4.83E-12 2.713227

Interaction
(week × sunflower
treatments)

1.047321 18 0.058185 1.271131 0.228078 1.727955

Within 3.845 84 0.045774

Total 13.07429 111

After week 4, the soil pH across all treatments declined to pH levels around
5. Soil pH for all treatments rises again on the 8th week, but decreases back to around
5 pH levels on the 10th and 12th weeks (Fig. 23.2).

Based on the result of the two-way ANOVA test, the soil pH level across all
treatments (P value = 1.36E-12) for each week (P value = 4.83E-12) was signifi-
cantly different from each other (Table 23.2). That is, soil pH for 0, 500, 1000, and
2000 g of sunflower application was significantly different from each other for each
week. Hence, this confirms that soil pH after the application of 2000 g of sunflower
is significantly less acidic compared to other amounts of sunflower application.

Atayese and Liasu (2001) reported that soil under sunflower has higher pH. In
addition to the improved soil fertility effect of sunflower by increasing soil pH,
sunflower also reduces acid content and Al saturation of soil (Hakim and Agustian
2003; Hakim et al. 2009).

23.3.3.2 Soil Organic Matter (OM) Content
The soil organic matter (OM) content of the soil treated with sunflower increased
4 weeks after the application of sunflower. It was also shown that the soil organic
matter increased in parallel with the rate of sunflower application (Fig. 23.3). Plots
with the highest sunflower application (2000 g) had the highest soil organic matter
content.
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Fig. 23.3 Changes in soil
organic matter (OM) content
of plots treated with varying
levels (0, 500, 1000, and
2000 g) of sunflower during
the 12-week decomposition
period, Brgy. Poitan, Banaue,
Ifugao, Philippines
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Table 23.3 Analysis of variance (ANOVA) of soil organic matter between week, sunflower
treatments, and interaction of week and sunflower treatments, Brgy. Poitan, Banaue, Ifugao,
Philippines

Source of variation SS df MS F P value F crit

Sample (week) 14.89465 6 2.482441 12.22524 7.71E-10 2.208554

Columns (sunflower
treatments)

2.321496 3 0.773832 3.810879 0.012968 2.713227

Interaction
(week × sunflower
treatments)

4.293911 18 0.238551 1.174787 0.300548 1.727955

Within 17.05693 84 0.203059

Total 38.56698 111

This observation is confirmed by the result of the two-way ANOVA test, which
revealed that organic matter for all treatments was significantly different from each
other (P value = 7.71E-10) for each week (P value = 0.012968) (Table 23.3). In
other words, the organic matter for the four applications of sunflower (0, 500, 1000,
and 2000 g) was not the same for each week. Thus, soil organic matter content for
12 weeks is higher with higher applications of sunflower to the soil.

These findings are also in agreement with the results of Hakim and Agustian
(2003) and Hakim et al. (2009) that soil application of sunflower increases soil
organic matter.

23.3.3.3 Soil Available Phosphorus (P)
In general, soil available P for all treatments experienced large fluctuations within
the 12-week decomposition period (Fig. 23.4), which might be related to factors
affecting the availability of soil nutrients such as increase in soil microbial P biomass
and decrease in soil P sorption (Jama et al. 2000).

Increase in soil available P for most of the 12-week decomposition period was
only evident with the application of 2000 g of sunflower (Fig. 23.4). This might be
attributable to large amount of sunflower applied to the soil, which is higher than the



sunflower (5 t dry matter per ha) applied by Nziguheba et al. (1998) to maize crop
that resulted in high increase in microbial P and larger reduction in sorbed P. On the
other hand, the application of 500 and 1000 g of sunflower might be too low to
induce a significant increase in soil available P in a flooded soil, as suggested by the
results of Mutuo (2000) that a lower rate of application of sunflower biomass to
maize crop does not result in an increase in soil microbial P. Results also show that
the levels of soil available P for all treatments peak on the 12th week of decomposi-
tion (Fig. 23.4).
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Fig. 23.4 Changes in soil
phosphorus (P) content of
plots treated with varying
levels (0, 500, 1000, and
2000 g) of sunflower during
the 12-week decomposition
period, Brgy. Poitan, Banaue,
Ifugao, Philippines
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Table 23.4 Analysis of variance (ANOVA) of soil phosphorus between week, sunflower
treatments, and interaction of week and sunflower treatments, Brgy. Poitan, Banaue, Ifugao,
Philippines

Source of variation SS df MS F P value F crit

Sample (week) 592.7143 6 98.78571 8.618187 2.63E-07 2.208554

Columns (sunflower
treatments)

183.8338 3 61.27795 5.345963 0.002031 2.713227

Interaction
(week × sunflower
treatments)

639.9143 18 35.55079 3.101495 0.000239 1.727955

Within 962.8475 84 11.46247

Total 2379.31 111

Furthermore, two-way ANOVA results revealed that soil available P for all
sunflower treatmentswas significantly different from each other (P value= 0.002031)
for each week (P value = 2.63E-07) (Table 23.4). Thus, this confirms that soil
available P for 2000 g sunflower application was significantly higher for each week
than other amounts of sunflower application.

23.3.3.4 Effect of Sunflower on Nutrient Release, Uptake,
and Availability

During the decomposition process of sunflower, organic acids (i.e., acetic, propionic,
salicylic, citric, succinic, and tartaric acids) were released, which potentially make



the insoluble form of P and K to a more readily available form for plants to absorb.
These organic acids also allow these insoluble P and K in the soil to potentially form
chelates with Fe and Al (Gusnidar 2007).
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Another strong point of sunflower as a soil amendment is its ability to attract
fungi. According to Gusnidar (2007), soils under sunflower experienced increase in
arbuscular mycorrhizal fungi spore, which enhances the nutrient absorption from the
soil to the biomass.

Evidences also showed that soil incorporated with sunflower green biomass also
induces rapid release of phosphorus. This is exhibited by the higher labile inorganic
P in the acid soil of Western Kenya at 2 weeks incorporation of 15 kg P per ha from
sunflower (8.1 mg P per kg) than those from the triple superphosphate (3.6 mg P per
kg) (Nziguheba et al. 1998).

Studies also showed that sunflower application also increased the availability of
nutrients by increasing P in soil microbial biomass and reducing P sorption by soil
(Jama et al. 2000). Specifically, Nziguheba et al.’s (1998) findings revealed higher
increase in microbial P (4.3 mg P/kg) and larger reduction in sorbed P (40 mg P/kg)
from 15 kg P per ha as sunflower (equivalent to 5 t dry matter per ha) than as triple
superphosphate (1.8 mg P/kg increase in microbial P and 19 mg P/kg reduction in
sorbed P) after 2 weeks of application. However, lower application rate of sunflower
(1.8 t dry matter per ha) to maize cropping did not result in an increase in microbial P
(Mutuo 2000).

23.3.3.5 Soil Exchangeable Potassium (K)
Figure 23.5 shows that soil exchangeable potassium (K) increased with increasing
amounts of sunflower cuttings applied. This might be attributed to the organic acids
(i.e., acetic, propionic, salicylic, citric, succinic, and tartaric acids) produced by
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Fig. 23.5 Changes in soil exchangeable potassium (K) content of plots treated with varying levels
(0, 500, 1000, and 2000 g) of sunflower during the 12-week decomposition period, Brgy. Poitan,
Banaue, Ifugao, Philippines



sunflower during its decomposition that potentially transform the insoluble K to a
form that are more readily absorbed by the crop (Gusnidar 2007).
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Table 23.5 Analysis of variance (ANOVA) of soil potassium between week, sunflower
treatments, and interaction of week and sunflower treatments, Brgy. Poitan, Banaue, Ifugao,
Philippines

Source of variation SS df MS F
P
value F crit

Sample (week) 17.91227 6 2.985378 43.13314 1.22E-
23

2.208554

Columns (sunflower
treatments)

11.93265 3 3.97755 57.46817 2.69E-
20

2.713227

Interaction
(week × sunflower
treatments)

9.986825 18 0.554824 8.016165 8.87E-
12

1.727955

Within 5.8139 84 0.069213

Total 45.64564 111

Specifically, the peak increase in soil exchangeable K across three applications of
sunflower cuttings (500, 1000, and 2000 g) was observed 4 weeks after sunflower
application. Among the three treatments with sunflower cuttings, the highest soil
exchangeable K was observed on soil plots treated with 2000 g of sunflower
(Fig. 23.5).

This trend was further confirmed by the results of the two-way ANOVA test. The
statistical test showed that soil exchangeable K across all treatments
(P value = 1.22E-23) was different for each week (P value = 2.69E-20)
(Table 23.5). Hence, a higher application of sunflower cuttings to the soil results
in higher soil K.

23.3.3.6 Effect of Sunflower on Soil Properties
The findings of Atayese and Liasu (2001) revealed that soil under sunflower in the
guinea savanna zone of Nigeria had higher N, P, K, Na, and Ca than bare soil. In
comparison to soil cropped to cassava, soil fallowed to sunflower experienced an
increase in soil N, available P, and exchangeable K by 206%, 41%, and 57%,
respectively. Soil under sunflower and Chromolaena was insignificantly different
from each other in terms of soil N and P, but the former was significantly greater than
the latter’s soil K by 18% (Onejiyi et al. 2012).

At different soil depths, soil chemical properties in terms of N (0.55%), P (8.3 mg/
kg), K (0.47 cmol/kg), Mg (0.93 cmol/kg), Ca (3.8 cmol/kg), and organic matter
(2.96%) at 0–5 and 5–10 cm depths were higher in soils fallowed to sunflower than
the soils cropped to cassava. In addition, soils under sunflower had also higher N
(0.29%), P (5.9%), Ca (2.9 cmol/kg), and organic matter (2.37%) values at 10–15 cm
soil depth than the cropped soils. Results also showed that fallow plants like
sunflower increase soil nutrients at a decreasing rate from 0 to 15 cm soil depth
(Onejiyi et al. 2012).
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In terms of soil physical properties, Atayese and Liasu (2001) also reported that
soil under sunflower had higher pH, porosity, moisture content, arbuscular mycor-
rhizal fungi spores, and earthworm cast density and lower bulk density than bare
soil. Likewise, Ojeniyi et al. (2012) found that soil fallowed to sunflower had
significantly higher total porosity (62%) and significantly lower soil bulk density
(1.0 g/cm3) than soils cropped to cassava and fallowed to spear grass. Soil moisture
content under sunflower (35.7%) was also insignificantly different from soil
fallowed to spear grass (37.5%).

In addition to the improved soil fertility effect of sunflower by increasing soil pH,
soil organic matter, and soil nutrients (i.e., N, P, K, Ca, and Mg levels), the weed also
reduces acid content and Al saturation of soil (Hakim and Agustian 2003; Hakim
et al. 2009).

23.4 Conclusion

Results revealed that nutrient content of sunflower stalks and leaves in terms of N, P,
and K were relatively higher than other plant species used as soil fertilizer in the
payoh plots of Banaue, Ifugao. In terms of rate of decomposition of sunflower,
various amounts of sunflower cuttings applied were completely decomposed
4 weeks after the application of cuttings to the soil plots.

As to the effect of sunflower cuttings application on soil nutrients, an application
of 2000 g of sunflower cuttings to 1 × 1 m soil plots resulted in significantly higher
soil pH, soil organic matter, soil available P, and soil exchangeable K during the
12-week decomposition period than other amounts of sunflower cuttings applied.

In conclusion, the application of 2000 g of sunflower cuttings to soil plots in the
payoh of Brgy. Poitan, Ifugao, Banaue results in significantly higher soil pH, soil
organic matter, soil available P, and soil exchangeable K within 12-week duration.

Acknowledgments This study is part of the project entitled “Nutrient and Water Dynamics, Plant
Biodiversity and Agricultural Productivity of Muyong–Payoh Systems in Banaue, Ifugao” funded
by the National Research Council of the Philippines. We would like to thank our farmer
collaborators in Brgy. Poitan and the Local Government Unit of Banaue, Ifugao for their support
during the conduct of the study.

References

Adeniyan BO, Ojeniyi SO, Awodun MA (2008) Relative effect of weed mulch types on soil
properties and yield of yam in Southwest Nigeria. J Soil Nat 2(3):1–5

Atayese MO, Liasu MO (2001) Arbuscular mycorrhizal fungi weeds and earthworm interactions in
the restoration of soil fertility in the Guinea savanna region of Nigeria. Moor J Agric Res 3:104–
109

Azeez JO (2010) Dynamics of carbon, nitrogen, phosphorus and potassium under different Tithonia
diversifolia management systems in a tropical Alfisol: a greenhouse bioassay. J Agric Sci
Environ 10(1):61–71



434 D. B. Magcale-Macandog et al.

Butic M, Ngidlo R (2003)Muyong forest of Ifugao: assisted natural regeneration in traditional forest
management. In: Dugan PC et al (eds) Advancing assisted natural regeneration (ANR) in Asia
and the Pacific. Food and Agriculture Organization of the United Nations, Regional Office for
Asia and the Pacific, Bangkok, Thailand, pp 23–27

Gachengo CN (1996) Phosphorus release and availability on addition of organic materials to
phosphorus fixing soils. MSc thesis. Moi University, Eldoret, Kenya

Gachengo CN, Palm CA, Jama B, Othieno C (1999) Tithonia and senna green manures and
inorganic fertilisers as phosphorus sources for maize in western Kenya. Agr Syst 44:21–36

Ganunga R, Yerokun O, Kumwenda JDY (1998) Tithonia diversifolia; an organic source of
nitrogen and phosphorus for maize in Malawi. In: Waddington SR et al (eds) Soil fertility
research for maize-based farming systems in Malawi and Zimbabwe, pp 191–194

Gusnidar (2007) Budidaya dan pemanfaatan Tithonia diversifolia untuk menghemat pemupukan N,
P, dan K padi sawah intensifikasi. Disertasi Doktor Ilmu Pertanian Program Pascasarjana
Unand, Padang, Indonesia

Gusnidar SY, Burbey Y, Saleh S, Andhika R (2012) Application of rice straw and Tithonia for
increasing fertilizer use efficiency on Paddy soil. J Trop Soils 17(2):151–156

Hakim N (2002) Kemungkinan penggunaan Tithonia diversifolia sebagai sumber bahan organik
dan unsur hara. J Andalas Bid Pert 38:80–89. Indonesian

Hakim N, Agustian (2003) Gulma Tithonia dan pemanfaatannya sebagai sumber bahan organik dan
unsur hara untuk tanaman hortikultura. Laporan Penelitian Tahun I Hibah Bersaing XI/I. Proyek
Peningkatan Penelitian Perguruan Tinggi DP3M Ditjen Dikti. Lembaga Penelitian Unand.
Padang, Indonesian

Hakim N, Agustian MY (2012) Application of organic fertilizer Tithonia plus to control iron
toxicity and reduce commercial fertilizer application on new Paddy field. J Trop Soils 17(2):
135–142

Hakim N, Mala Y, Agustian (2009) Pembuatan dan pemanfaatan pupuk organik Tithonia plus
dalam penerapan metode SRI pada sawah bukaan baru. Laporan Hasil Penelitian KKP3T Tahun
I. LP Unand dan Balitbang Pertanian Deptan. 61. Indonesian

ICRAF (1997) Using the wild sunflower, T. diversifolia in Kenya. International Centre for Research
in Agroforestry, Nairobi, Kenya, p 5

ICRAF (1998) Annual report for 1997. International Centre for Research in Agroforestry, Nairobi,
Kenya

Jama BCA, Buresh RJ, Niamg A, Gachenco CN, Nziguheba G, Amadalo B (2000) Tithonia
diversifolia as green manure for soil fertility improvement in western Kenya. A review. Agr
Syst 49:201–221

Liasu MO, Achakzai AK (2007) Influence of Tithonia diversifolia leaf mulch and fertilizer
application in the growth and yield of potted tomato plants. Am Euras J Agric Environ 2:
335–340

Mafongoya PL, Nair PKR (1997) Multipurpose tree prunings as a source of nitrogen to maize under
semiarid conditions in Zimbabwe. Nitrogen recovery in relation to pruning quality and method
of application. Agr Syst 35:31–46

Mutuo PK (2000) Soil phosphorus pools following phosphorus fertilization and their relationship to
maize yield in western Kenya. MSc thesis. Moi University, Eldoret, Kenya

Nagarajah S, Nizar BM (1982) Wild sunflower as a green manure for rice in the mid-country west
zone. Trop Agric 138:69–78

Niang A, Amadalo B, Gathumbi S, Obonyo CO (1996) Maize yield response to green manure
application from selected shrubs and tree species in western Kenya: a preliminary
assessment. In: Mugah JO (ed) Proceedings of the first Kenya agroforestry conference on
people and institutional participation in agroforestry for sustainable development. Kenya For-
estry Research Institute (KEFRI), Muguga, Kenya, pp 350–358

Nziguheba G, Palm CA, Buresh RJ, Smithson CP (1998) Soil phosphorus fractions and absorption
as affected by organic and inorganic sources. Plant and Soil 198:159–168



23 Decomposition of Sunflower Cuttings and Its Impact on Soil Fertility. . . 435

Obatolu CR, Agboola AA (1993) The potential of Siam weed (Chromolaena odorata) as a source
of organic matter for soils in the humid tropics. In: Mulongoy K, Merxckx R (eds) Soil organic
matter dynamics and sustainability in tropical agriculture. IITA/K.U. Leuven; Wiley,
New York, pp 89–99

Ojeniyi SO, Odedina SA, Agbede TM (2012) Soil productivity improving attributes of Mexican
sunflower (Tithonia diversifolia) and siam weed (Chromolaena odorata). Emir J Food Agric
24(3):243–247

Olabode OS, Sola O, Akanbi WB, Adesina GO, Babajide PA (2007) Evaluation of Tithonia
diversifolia (Hemsl) a Gray for soil improvement. World J Agric Sci 3(4):503–507

Otuma P, Burundi C, Khabeleli A, Wasia E, Shikanga M, Mulogoli C, Carter SE (1998) Participa-
tory research on soil fertility management in Kabras, Western Kenya: report of activities,
1996–1997. Tropical Soil Biology and Fertility Programme (TSBF), Nairobi, Kenya

Palm CA, Rowland AP (1997) Chemical characterization of plant quality for decomposition. In:
Cadisch G, Giller KE (eds) Driven by nature, plant litter quality and decomposition, pp 379–392

Partey ST (2010) The agronomic qualities of the Mexican sunflower (Tithonia diversifolia) for soil
fertility improvement in Ghana: an exploratory study. PhD Thesis. Kwame Nkrumah University
of Science and Technology, Kumasi, Ghana

Rondolo MT (2001) Fellowship report. Tropical forest update. ITTO, Japan. 11(4)
Rutunga V, Karanja NK, Gachene CKK, Palm CA (1999) Biomass production and nutrient

accumulation by Tephrosia vogelli and Tithonia diversifolia fallows during six-month growth
at Maseno. Biotechnol Agron Soc Environ 3:237–246

SITMo (2008) Impact: the effects of tourism on culture and the environment in Asia and the Pacific:
sustainable tourism and the preservation of the World heritage site of the Ifugao rice terraces,
Philippines. Save the Ifugao terraces movement. UNESCO, Bangkok, Thailand, p 89

Sonke D (1997) Tithonia weed—a potential green manure crop. Echo Dev Notes 57:5–6



Part V

Ecosystem and Species Modelling
for Evidence-Based Decision Making



439

Forest Ecosystem Modeling for Policy
Planning: A Review 24
Karun Jose, Aritra Bandopadhyay, A. Arya,
and Rajiv Kumar Chaturvedi

Abstract

Vegetation modeling is an advanced tool that helps to understand the current
forest ecosystem dynamics and provides a peek into future possibilities. In the era
of climate change, projecting and monitoring different ecosystem elements and
biodiversity are critical in supporting the management and conservation of forest
ecosystems. Quantitative models are often used to understand and project the
“impact of climate change” and the associated disturbances in forest ecology.
Here we present a review of different ecosystem modeling approaches, exploring
their potential applications to understand changing forest dynamics and climate
change adaptation options in forest ecosystems. This comprehensive and com-
parative study helps us to get insights into the advantages and limitations of the
various modeling-based approaches, providing a guideline for systematic execu-
tion of policy assessment according to a defined criteria (e.g., uncertainty man-
agement, data required, spatial and temporal dynamics, adaptation measures
integration, and level of complexity). Further, we present an overview of ecosys-
tem modeling and its usability for global policy planning in the forest sector.
Finally, we suggest ways to use these advanced tools to help policy planning for
conservation, restoration, and climate change adaptation in forest ecosystems.
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24.1 Introduction

Greenhouse gas build-up in the atmosphere and rising temperatures have already
caused widespread losses and damages to nature, ecosystems, and people (IPCC
2022). Observed climate change has caused substantial damages, and irreversible
losses, to many of the terrestrial ecosystems across the world including the forest
ecosystems. These changes include increase in burned area by wildfires, shifting of
species poleward and to higher elevations, among other examples. Global
temperatures have so far risen by only 1.1 °C, even this small change in global
temperatures has already caused irreversible losses and damages in forest
ecosystems across the world. Under different climate change scenarios, global
temperatures are expected to rise to 2.5–4 °C range (IPCC 2021), even in India.
Chaturvedi et al. (2012) suggest that under business-as-usual scenario, the
temperatures are likely to rise to 3.3–4.8 °C by 2080s. It is important to understand
as to how the projected climate change may affect forest ecosystems in different
future warning scenarios. IPCC AR4, WG2 report concluded that one of the most
advanced tools to assess the impact of climate change on vegetation dynamics/
terrestrial ecosystems is dynamic global vegetation models (DGVMs) (Fischlin
et al. 2007). Vegetation modeling, an emerging sophisticated tool, is being devel-
oped to understand ecosystem dynamics and predict future scenarios. The ecosystem
model is defined as “a model that explains the interconnection between at least two
ecosystem components, where the interactions are true ecological processes”
(Tylianakis et al. 2008). Recently, unregulated anthropogenic emissions of warming
gases and consequent climate change have been posing severe threats to the
protected areas of the environment (IPCC 2022). Moreover, the rising population
and demand for resources amplify agricultural expansion and extensive land-use
changes, thereby destroying habitats and leading to species extinction (Newbold
et al. 2014). Vegetation modeling will help the scientific community to monitor and
understand complex environmental dynamics and develop long-term policy
measures for effective management (Pasetto et al. 2018). Moreover, modeling
biodiversity and ecology would further support the implementation of sustainable
development whereby an understanding of resource utilization is obtained through
this process (Niesenbaum 2019).

The concept of ecological modeling and its evolution began a century ago (Lotka
1925; Volterra 1926), but technological advancement, as seen within the past
decade, has brought significant development in using these models (Chatzinikolaou
2013). The forest ecosystem is also uncertain due to the potential impacts of the
changing climate (Keenan 2015; Nunes et al. 2021). Several forest simulation
models predict that the forest composition and comprehensive coverage will cease
in the future due to unpredictable consequences of climate change (Kirilenko and
Sedjo 2007; d’Annunzio et al. 2015). Forest vegetation models have been coded to
perform on various scales such as the leaf, stand, ecosystem, and regional and global
levels incorporating various processes (such as photosynthesis, stomatal exchange,
and evapotranspiration) (Hui et al. 2017). Farquhar’s photosynthesis model
estimates carbon budget and plant growth at leaf and canopy level, approximating



the plant canopy to be a big leaf (Chen et al. 1999; Wang et al. 2017). On the regional
and global scale, various ecosystem models have evolved; for instance, Schaefer
et al. (2008) applied the Carnegie-Ames-Stanford Approach (CASA) model to
estimate terrestrial biomass and carbon fluxes. They created a hybrid model by
integrating the Simple Biosphere (SiB 2.5) model that provides biophysical and
photosynthesis with the CASA model, which was able to project long-term carbon
sources and singles that the individual models could not have. The terrestrial
ecosystem carbon model (TECM) is another process-based model that explains the
carbon dynamics of soils and plants within the terrestrial ecosystem (Wang et al.
2011). TECM mainly utilizes information on spatially explicit parameters in terres-
trial ecosystems to calculate the estimates of carbon pool sizes and carbon fluxes.
Schaphoff et al. (2018) provide an extensive overview of the latest version of
LPJmL4, a process-based dynamic global vegetation model (DGVM) project,
which is the consequence of climate and land use changes on the agriculture,
terrestrial biosphere, and hydrological and carbon cycle. Joint U.K. Land Environ-
ment Simulator (JULES) is an improved model based on MOSES and TRIFFID
DGVM, which includes a multitude of options for photosynthesis scaling from leaf
to canopy, with the utmost intricate modeling of light interception profile through the
vegetation (Clark et al. 2011).
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Modeling helps policymakers anticipate the impacts of ecosystem degradation on
human actions and projects future scenarios based on direct and indirect factors.
Simulation of interaction between humans and the environment is essential for
summiting the pathways to Sustainable Development Goals 2030. Despite all
advancements in Vegetation modeling, it is evident that the research community
has used a few models for management and decision-making processes, given the
complexity of understanding mathematical models (DeAngelis et al. 2021). In this
study, we attempt to review different Vegetation modeling approaches and explore
their potential to understand forest dynamics and their applications in climate change
adaptations.

24.2 Vegetation Modelling: From Correlative to Process-Based
Approaches

Models are valuable tools for summarizing, arranging, and combining information
or data into formats that enable the creation of probabilistic, quantitative, or Bayes-
ian statements regarding the potential or future condition of the modeled entity
(Duarte et al. 2003). Based on the complexity and degree of formalization, the
Vegetation modeling can be sub-segmented into correlative, process-based, and
expert-based models (Ferrier et al. 2016). Traditionally, the most common method
of management was based on information provided by experts (Sutherland 2006).
The term “expert” can be defined as one who attained a highly precise skill set in a
specific field through learning experience (Kuhnert et al. 2010). An expert-based
method generally comprises the following steps as described: deciding on how the
information is to be used, what to bring out from it, designing the elicitation process,



actual conducting the elicitation, and finally converting the output into quantitative
statements that can be applied to a modeling approach (Martin et al. 2012). This
approach has a time advantage over other models when the final decision is to be
made exceptionally quickly with minimal data.
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Correlative models use statistical techniques to develop the direct connection
between biodiversity data (species abundance, richness, distribution) and environ-
mental variables (Morin and Lechowicz 2008; Li et al. 2020). Based on actual
observation data, correlative models generate information on biodiversity trends
and their responses to the controlling factors, but they do not make an attempt to
describe the mechanisms behind such patterns and reactions. They are usually used
to forecast the future impact of environmental changes, the effects on biodiversity by
human intervention, to help human production activities (increasing agricultural
production), and to understand the ecological requirements for different species
(Rahbek et al. 2007; Elith and Franklin 2013; Cobos et al. 2019). Since these models
are designed based on data from the past state of the system, rapid decisions based on
statistical relationship is feasible (Cuddington et al. 2013). However, under the
current climate change conditions, models based on the previous data of a system
are not suitable for future simulations (Williams et al. 2007). For example, many
studies have predicted changes in species range based on climatic conditions in
India. Models such as MaxEnt and SMCE use climatic data and species occurrence
data of a particular location to develop a correlation and predict the future species
range under climate change (Nimasow et al. 2016; Yadav et al. 2022). However,
they deny including relevant ecological processes such as interspecific interactions
and demographic relationships, which can also limit the species range, and their
effect may not be included in future predictions.

Process-based models that work based on understanding critical ecological pro-
cesses from a theoretical perspective give a suitable framework for including specific
responses to changing environmental conditions (Cuddington et al. 2013). These are
often more challenging to design than correlative models, because they need consid-
erable information on factors that drive biodiversity patterns (Ferrier et al. 2016).
There are many types of process models, for example, gap models, biogeochemical
models, and DGVMs. Gap models are applied to investigate changes in vegetation
and species interactions at significantly higher spatial resolution (plots the size of a
single canopy gap or individual trees) across daily to yearly time steps. However,
simulation of dynamics over several stands and cells is achievable. Biogeochemical
models project carbon, water, and mineral (nutrient) cycles in terrestrial ecosystems
such as forests. In climate change research, these models are widely applied to
predict ecosystem net primary production, carbon flow, and storage. DGVMs project
changes in vegetation attributes (such as leaf area and phenology) across annual to
decadal time steps at vast geographical scales (Kerns and Peterson 2014) (more
details on DGVMs are available in Sect. 24.3.2). However, Hybrid models are a
combination of empirical and mechanistic components. There are two kinds of
hybrid models: the first one integrates process-based empirical models by creating
signal-transfer environment productivity functions, and the second one includes a



causal structure with both empirical and mechanistic components (Luxmoore et al.
2002; Pretzsch 2009).
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24.3 Vegetation Modeling at Leaf, Individual, Plot, Regional,
and Global Levels

Vegetation models are designed at various scales, ranging from the leaf to the plant
canopy and at the plot, regional, and global levels. These models mainly project
phenomena such as photosynthesis and respiration, carbon distribution between
plant organs, nitrogen uptake and mineralization, litter production, and Soil Organic
Carbon (SOC), and these processes are used to understand the carbon fluxes between
the atmosphere, soil, and plants (Hanson et al. 2004).

24.3.1 Leaf and Stand Models

At the leaf level, Farquhar, von Caemmerer, and Berry (FvCB) is the most
commonly used model for projecting photosynthesis and leaf-level carbon and
water fluxes (Rogers et al. 2017). The photosynthesis module predicts leaf-level
carbon uptake based on biochemical or physiological characteristics, as well as the
abiotic environment (intercellular CO2 concentration and temperature). Similarly,
stomatal modules connect the intercellular leaf space to the canopy air space and
biophysically constrain carbon and water fluxes from the perspective of gas diffusion
(Xu and Trugman 2021). Individual tree growth models such as BWIN, Prognaus,
Silva, and Moses are widely used for predicting the influence of climate change on
tree development, yield predictions, and ecosystem fluxes (Vospernik 2017). Most
growth models are designed based on the mass balance method and consider organic
matter decomposition, ecosystem fluxes (forest), and water balance. Hence, these
models can evaluate above- and below-ground biomass production and assess
carbon dynamics for a particular location (Hui et al. 2017). Table 24.1 represents
some of the widely used individual and strand-level models (the table is classified
based on type, spatial structure, and temporal structure).

Climate change affects specific physiological processes in plant species, such as
photosynthesis, respiration, and growth, and can be investigated by different models.
While certain models focus on the impact of elevated CO2 concentration on the
ecosystem, others, especially biogeochemical models, simulate the consequences of
various climatic factors on the forest ecosystem carbon cycle. The physiological
principles predicting growth (3-PG) model was developed to connect the traditional,
mensuration-based growth and yield with process-based carbon balance models.
Gross primary production (GPP) in forest ecosystems is mostly estimated using
3-PG process-based model at the stand level. By combining remote sensing and GIS
techniques, the upgraded version of 3-PGS (physiological principles in predicting
growth with satellite) estimates biophysical variables, including LAI (leaf area
index), CWC (canopy water content), and FAPAR (fraction of absorbed



Model name Type Reference

photosynthetically active radiation), which can be used to simulate forest biomass
and productivity at regional level (Gupta and Sharma 2019).
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Table 24.1 The leaf and stand-level Vegetation models and classification based on temporal and
spatial structure

Sl.
no.

Spatial
structure

Temporal
structure

1 3-PG Process-
based

Stand or
cohort

Monthly Almeida et al.
(2004)

2 PNET (-C.N.,
-DAY)

Process-
based

Stand Monthly/
daily

Aber et al. (1997)

3 BWIN PRO Empirical
model

Individual 5 year Albrecht et al.
(2011)

4 SIMWAL Process-
based

Individual Hour Balandier et al.
(2000)

5 EMILIION Process-
based

Individual 1/50 day Bosc (2000)

6 Hybrid Process-
based

Individual Daily Friend et al. (1997)

7 BALANCE Process-
based

Individual Daily Rötzer et al. (2010)

8 FORECAST Hybrid
model

Individual Yearly Kimmins et al.
(1990)

9 TREE-BGC Process-
based

Individual Daily Korol et al. (1995)

10 FORGEM Process-
based

Individual Daily Kramer et al.
(2008)

11 TREEMIG Process-
based

Cohort Yearly Lischke et al.
(2006)

12 CO2FIX V.2 Empirical
model

Cohort Yearly Masera et al. (2003)

13 WOODPAM Process-
based

Stand Monthly Peringer et al.
(2013)

14 BIOME-BGC Process-
based

Stand Daily Pietsch et al. (2003)

15 SILVA Hybrid
model

Individual 5 year Pretzsch et al.
(2002)

16 YIELD-SAFE Process-
based

Individual Daily Van der Werf et al.
(2007)

Similarly, Yan et al. (2011) applied the PnET-CN model to describe the carbon
sequestration potential using biogeochemical cycles of carbon (C) and nitrogen (N);
they also validated the output using the data from coniferous forests in south China.
EMILION model can be used to project the carbon budget of current branches based
on their age and position within the crown, considering parameters such as distribu-
tion of light and interception, respiration, photosynthesis, transpiration, stomatal
conductance, phenology, water transfer, and intra-annual growth by utilizing an
object-oriented approach (Bosc 2000). FORECAST Climate model operates through



a hybrid simulation approach, representing moisture and temperature availability on
tree growth and survival and nutrient cycling, litter decomposition, and also
representing the impact of growing CO2 on water use efficiency (Seely et al. 2015).
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24.3.2 Regional and Global Ecosystem Models

Understanding the ecosystem response to climate change on a global scale is
essential both as a scientific question and for making policy decisions. The accuracy
of regional models depends on how effectively the field data used for model
development represents the region of interest (ROI), how accurate the environmental
model driving variables (vegetation type, climate) represent the ROI, and the
accuracy of the model prediction and observe data for the region (Olson et al.
2001). In this section, we will explain different DGVMs, which are mainly used
globally and in India.

DGVM is a computational-based model that simulates terrestrial vegetation and
the phenomenon and processes related to it; broadly speaking, the biogeochemical or
hydrological cycles and the influence climatic parameters have on them. It is
powerful enough to capture the transition in the forest ecosystem due to the influence
of one or more input parameters from climatic variables to soil parameters (Kumar
et al. 2018). Fischlin et al. (2007) suggested that one of the most advanced tools to
assess the impact of climate change on vegetation dynamics/terrestrial ecosystems is
dynamic global vegetation models (DGVMs). Prentice (1989) put forward the first
outline for DGVMs (Fig. 24.1). In DGVMs, time series datasets are fed to replicate
the ecological processes and the way they influence the establishment of dominant
forest vegetation. DGVMs were needed because static vegetation was incapable of
including the plant life cycle, and various cyclic processes such as carbon cycle and
nitrogen cycle were not integrated, nor were considered the various anthropogenic
and natural disturbances and climatic extremes (Quillet et al. 2010). The important
processes represented in DGVMS are (1) terrestrial or surface processes, including
energy flow and water budget; (2) carbon flux and plant growth as part of the carbon
cycle; (3) plant establishment, completion, and mortality as vegetation dynamics;
and (4) natural and anthropogenic disturbances such as a forest fire, overgrazing,
land-use change, and storms (Korappath and Bilyaminu 2022). Table 24.2 represents
a few DGVMs and required input parameters and outputs.

Although a PFT (plant functional types)-based approach is employed in most of
the DGVMs rather than an individual species-based approach, much information
about species type is suppressed on the regional scale rather than on the global scale,
to the point where the dominant species may be excluded. The necessity to input
high-resolution land use datasets for accurate energy and water cycle measures in
coupled model systems such as RCM-DGVM improved model performance and
accurate projections. It also requires modifying the parameters for their applicability
at a regional scale (Myoung et al. 2011). In India, several studies are available where
DGVMs have been applied to assess the impact of climate change on forest



ecosystems (Chaturvedi et al. 2011, 2012; Gopalakrishnan et al. 2011; Kumar et al.
2018).
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Fig. 24.1 The general framework and mechanisms of a DGVM and its time scale (adapted from
Cramer et al. 2001)

24.4 Modeling and Policy-Making

The first National Forest Policy in India lead back to 1894, the British era. The policy
was formulated to benefit the British Empire, restricting local people from utilizing
forest resources and large-scale commercial deforestation by the East India Com-
pany. After independence, the National Forest Policy, 1952 was India’s first forest
policy; it was formulated with the concern about the need for efficient forest
management and to prevent forest exploitation after the havoc of mindless defores-
tation during the colonial era. It incorporated every aspect that the world is
concerned about today, such as protection measures, community interactions and
administrative measures by the government, the scope for research, and annual
budget allotment, which are mentioned and have evolved. It is also argued that to
increase the forest cover to about one-third of the total land area today, we need even
more robust and reliant policies to not only manage and protect the forest cover
today but also the future and revive the already ailing forest regions. Making
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Table 24.2 Major DGVMs that are broadly used in India and globally; we also represent the
required inputs, outputs, and plant functional type (adapted from Aaheim et al. 2011, Kumar et al.
2018)

Model Required input PFTs Output Description

IBIS 1. Longitude and
latitude (m)
2. Monthly mean
temp. (°C)
3. Monthly mean
temp. range (°C)
4. Minimum temp.
ever recorded minus
avg. temp. of the
coldest month (°C)
at that location
5. Mean “wet” days
per month (days)
6. Monthly mean
precipitation rate
(mm/day)
7. Monthly mean
relative humidity
(%)
8. Monthly mean
cloudiness (%)
9. Percentage of
sand (%)
10. Percentage of
clay (%)

Temperate
broad-leaf
evergreen
Tropical
broad-leaf
evergreen
Tropical
broad-leaf
drought-
deciduous
Temperate
broad-leaf
cold-
deciduous
Boreal
conifer
evergreen
Boreal
broad-leaf
cold-
deciduous
Temperate
conifer
evergreen
Boreal
conifer
evergreen
Boreal
broad-leaf
cold-
deciduous
Boreal
conifer cold-
deciduous
Evergreen
shrub
Cold-
deciduous
shrub

Average
evapotranspiration
Soil temperature
Fractional cover of
canopies
Height of
vegetation
canopies
Leaf area index
NPP
Total soil carbon
and nitrogen
Average sensible
heat flux
Vegetation types
(IBIS
classification)
Total carbon from
the exchange of
CO2

IBIS is recognized as
the first model of its
kind. It guides the
researchers to
develop improved
global dynamic
models with a better
understanding to
simulate the impacts
of climate change on
forests and their
ecological processes.
IBIS is a framework
that combines land
surface, vegetation
dynamics,
biogeochemical
cycles, and
hydrological
processes. IBIS
allows for the
simulation of both
short-term
physiological
processes and long-
term ecosystem
dynamics, which can
be effectively
included in
atmospheric models.
(Foley et al. 1996;
Kucharik et al. 2000)

JULES 1. Longitude of the
region
2. Temperature (°C)
3. Daily mean
precipitation
4. Frequency of wet
days
5. Incoming short-
and long-wave

Broad-leaf
trees
Needle leaf
trees
C3
(temperate)
grasses
C4 (tropical)

Soil temperature
Soil moisture
Surface runoff
Plant respiration
Soil evaporation
Gross primary
productivity
NPP
Soil respiration

The Hadley Centre
climate model
includes the Joint
U.K. Land
Environment
Simulator (JULES)
to represent the land
surface. It
parameterizes the

(continued)



radiation (W m-2)
6. Diurnal temp.
range (K)
7. Specific humidity
8. Wind speed

grasses
Shrubs

Surface fluxes of
heat
Surface fluxes of
carbon

(continued)
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Table 24.2 (continued)

Model Required input PFTs Output Description

hourly flows of
energy, water, and
CO2 from the ground
to the atmosphere. By
developing seasonal
stores of energy,
water, and carbon
budget, it can
simulate changes in
vegetation from
decade to century
(https://jules.jchmr.
org/)

Biome-
BGC

1. Altitude
2. Mean monthly
values of
precipitation (mm)
3. Temperature (°C)
4. Cloud cover (%)
5. Available water
capacity of the
topsoil
6. AWC of the
subsoil

Tropical
evergreen
Temperate
broad-leaved
evergreen
Summer
green
Tropical rain
green
Temperate
evergreen
conifer
Boreal
evergreen
Temperate
boreal
deciduous
Temperate
grass
Tropical/
warm-
temperate
grass

1. Annual total
precipitation
(mm/yr)
2. Annual average
air temperature (°
C)
3. The annual
maximum value of
the projected leaf
area index
4. Annual total
evapotranspiration
(mm/yr)
5. Annual total
outflow (mm/yr)
6. Annual total
NPP
7. Annual total net
biome production

Biome-BGC is a
model that estimates
the fluxes and storage
of energy, water,
carbon, and nitrogen
for the plant and soil
components of
terrestrial
ecosystems. Because
its algorithms depict
physical and
biological processes
that influence energy
and mass flows, it is a
process model

LPJ 1. Daily air
temperature (°C)
2. Precipitation
(mm)
3. Solar radiation
(W m-2)
4. CO2

concentration (ppm)
5. Soil texture (%)
6. Temperature (°C)
7. Soil water content

Tropical
broad-leaved
rain green
Temperature
needle-
leaved
evergreen
Tropical
broad-leaved
evergreen
Temperate
broad-leaved
evergreen
Temperate

Vegetation
structure
PFTs
Biomass carbon

Lund-Potsdam-Jena
(LPJ) is a powerful
model for studying
the impacts of
climate change on
global vegetation
(Sitch et al. 2003)

https://jules.jchmr.org/
https://jules.jchmr.org/


broad-leaved
summer
green
Boreal
needle-
leaved
evergreen
Boreal
needle-
leaved
summer
green

decisions that will have its impact, even after centuries, is not easy and needs
scientific insights to formulate, thus compelling us to use the Vegetation model to
get insights into the future.
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Table 24.2 (continued)

Model Required input PFTs Output Description

LPJmL 1. Temperature (°C)
2. Precipitation
(mm)
3. Rainy days
4. Cloud cover (%)
5. Atmospheric CO2

6. Soil texture (%)
7. Potential
evapotranspiration
8. Soil temperature
PFTs

Temperate
needle-
leaved
evergreen
Temperate
broad-leaved
evergreen
Tropical
broad-leaved
evergreen
Temperate
broad-leaved
summer
green
Tropical
broad-leaved
rain green
Boreal
summer
green
Boreal
needle-
leaved
evergreen
C3
herbaceous
C4
herbaceous

GPP
NPP
Net ecosystem
exchange (NEE)
Autotrophic and
heterotrophic
respiration
Vegetation carbon
Soil carbon

LPJmL is a dynamic
global vegetation,
hydrology, and crop
model that
incorporates the
carbon, water, and
nitrogen cycles at the
plant and soil levels.
It is based on an
extended Farquhar
photosynthesis
scheme, stomatal
conductance
mechanics, and
functional and
allometric principles,
and it can represent
managed and natural
ecosystems and the
biogeochemical
fluxes between them

Over the years, Vegetation models have become increasingly dynamic and are
increasingly accepted to support computer-based forest policy-making by creating
scenarios and projections representing the future of plant growth, forest productivity,
carbon sink estimation, and other parameters. Ecology-based models are necessary



for environmental arbitrament support and pro-environment policy formulation
because they allow the effects of alternative management to be explored spatiotem-
porally and empirically. However, because environmental issues are so important,
further evaluation of the model quality and applicability is essential, particularly if
vegetation models are used to support decisions that impact the real world for the
sustainability of the ecosystem. Modeling and policy-making interact in specific
policy processes, but the relationship is less explored (Rykiel Jr 1996). We will try to
discuss how Vegetation models support or might support the process of political
decision-making processes. First, we go through the model evaluation process,
which includes six steps, as identified by Jacqueline Augusiak and the team in
2014. The primary six elements of the evaluation process are (1) “data evaluation,”
scrutinizing the data used for model formulation and testing; (2) “conceptual model
evaluation,” understanding model complexity, design, and assumptions; (3) “imple-
mentation validation,” testing the execution of equations used and the computer
programs run; (4) “model output validation,” comparisons of model output with the
patterns that shape the model built and the calibrations made; (5) “model analysis”
estimating model’s sensitivity to parameter alteration; and (6) “model output cor-
roboration,” comparability of the model output with other datasets or different model
output for the developmental purpose (Thacker et al. 2004). The multidimensional
complexity of environmental concerns is addressed with the help of mathematical
and statistical concepts and computer-based models; we need systematic checking of
various building blocks of a model throughout its lifecycle and evolution to a
guaranteed reduction in uncertainties and easy to use so that meaningful insights
can be drawn, which will act as a basis for policy developmental plans.
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The policy cycle can be summed up in four steps (Fig. 24.2): (1) “agenda or target
setting,” for achieving ecological sustainability; (2) “policy formulation and adapta-
tion,” by the governing bodies, guided by forest ecology experts; (3) “policy imple-
mentation,” with the help of experts and computer-based modeling for predicting the
future impacts of the agendas; and (4) “policy evaluation,” analysis of the
implemented policy and expanding the scope (Jordan 2001). The models act as an
input for policymakers, or the policymakers’ decision has to impact the modelers and
sips into the models. For example, the t33% of forest cover India had been presenting
as a goal to be met is a decision made by policymakers in 1952 and is still practically
the basis of target fixing for all modelers working over the Indian region, thus
influencing the model as well. So, it is essential to understand and realize how and
when Vegetation models influence policy-making and how and when policymakers
influence a model’s built or structural design. The basic interaction between policy-
making, society, forest ecosystem, and modeling is briefly described in Fig. 24.3.

24.4.1 Policy-Making: Ecological Sustainability and Conservation

The government of India has used outcomes of static and dynamic vegetation models
to report to UNFCCC (United Nations Framework Convention on Climate Change)
about the vulnerability of its forest ecosystem, as part of its various national



communications to the global body. For example, India’s initial national communi-
cation to UNFCCC (MoEF 2004) used BIOME-3 vegetation response model to
simulate the impact of climate change on Indian forests and to identify vulnerable
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Fig. 24.2 The policy cycle and the possible use of models at various stages (adapted from Süsser
et al. 2020)

Fig. 24.3 Management concept for forest ecosystems. A system is converted from a starting state
to a target state. Society’s normative valuation and scientific knowledge contribute to the growth
and accomplishment of the desired state (adapted from Süsser et al. 2021)



grids in Indian forests. This analyses further reported projected shifts in Indian forest
boundaries, changes in forest types, shifts in NPP, potential forest die-back, and
possible loss or change in biodiversity under changing climate scenarios. Similarly,
in 2012, as part of its second national communication, India used a dynamic
vegetation model, namely “IBIS” (MoEFCC 2012). Similarly, the latest report to
UNFCCC from China shows that according to the results of the multimodel ensem-
ble analyses, the forest area exposed by decreasing NPP will reduce during low
greenhouse gas (GHG) concentration scenarios. In contrast, it is also projected that at
a high GHG concentration scenario, the forest area affected by decreasing NPP will
increase after 2050, from 5.4% (2021–2050) to 27.6% (2071–2099) of the total
forest area.
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Let us look into some of the adaptive measures by making changes in policies
related to ecological sustainability and conservation taken by various countries
around the globe. The following discussed statistics of various countries are
documented in the report “The Global Forest Goals Report, 2021” published by
the Department of Economics and Social Affairs of the UN. Countries such as China
and Liberia made clear guidelines to train and support research on tree breeding and
seedling production for silviculture and afforestation. A forest carbon offset scheme
has been initiated in the Republic of Korea, and New Zealand has further increased
economic incentives for afforestation to strengthen its emission trading scheme.
Ecuador formulated REDD+ action plans to reduce CO2 emissions by 20% by
2025 through policy measures to reduce deforestation. Japan reported new financing
methods such as forest environment tax, Nigeria launched green bonds, and
Suriname raised the concession fee, and many other nations reported similar steps
to promote sustainable forest management or forest growth. Canada, China, Serbia,
Suriname, Lesotho, the Slovak Republic, and the United States of America have
been vocal about the increasing interdependency of the forest ecosystem for employ-
ment. In China, the number of persons generating revenue from the forest increased
from 52.47 million in 2015 to 60 million in 2020. Aside from providing roughly
196,000 employments in 2017 and 2018, the United States Forestry Service (USFS)
employed about 955,400 individuals nationwide in the forest products sector.
During 2017–2019, Uzbekistan restored more than 500,000 ha of an area prone to
soil and water erosion. Vietnam protected fragile mangrove forests by getting shrimp
farmers’ help from UN-REDD and formulated an organic farming model. In
Mongolia, UN-REDD helped people create a national policy for protecting forests
and addressing climate change that focuses on sustainable forest management. India
added 20,000 ha of forest and tree cover every year, and India led the world in
official employment in the forest industry (6.23 million people employed).

24.5 Conclusion

In this review, we compare the various ecosystem modeling approaches that are
being used to predict ecosystem dynamics to understand the forest change dynamics
and climate change adaptation in forest ecosystems and assess their application in



forest policy and planning. It is evident that different modeling approaches are
undergoing fast evolution due to advancements in technology. These models are
practical tools to evaluate various hypotheses and future climatic scenarios for
effective decision-making and assess how policy decisions may impact the ecosys-
tem. The future projections from these models can be used for formulating policy-
making and sustainable environment plans. However, there is no model that can
represent all the aspects of the ecosystem. Accepting the fact that “All the models
have limitations, but they are useful,” it is a big challenge for policymakers whose
decisions may affect people’s lives.
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Abstract

Aquaculture was introduced in the seven lakes in the 1960s and has significantly
contributed to the income of the fishing community, while ecotourism has
boosted the local tourism industry in the city. However, these activities pose
threats to the degradation of the environmental quality of the Seven Lakes. The
sustainability of the aquaculture and tourism activities in the seven lakes was
assessed using the ecological carrying capacity model. This model was composed
of three criteria: biophysical, socioeconomic, and ecotourism. The biophysical
criterion involved the collection of water quality indicators in the lake during the
wet and dry seasons. Household survey and Key Informant Interviews were
conducted to gather primary data on the socioeconomic and tourism indicators.
The maximum value or limit of each indicator was based on water quality
standards for the biophysical indicators, while the maximum values for the
socioeconomic and tourism indicators were based on literature and secondary
data from the local government unit (LGU) of San Pablo. Experts and key
respondents ranked the various biophysical, socioeconomic, and ecotourism
indicators following the Rank-Sum method to determine the weight of each
indicator. Ecotourism lakes Yambo and Pandin had high (0.8549) and very
high (1.2119) ecological carrying capacities (ECC), respectively, while Lake
Mohicap had a medium sustainability index with an ECC value of 0.6500.
Lake Sampaloc had a low sustainability index with only 0.0325 ECC value.
Aquaculture lakes Calibato, Palakpakin, and Bunot had negative ECC values,
indicating unsustainable ecosystems. Estimating and illustrating the recreational
and aquaculture carrying capacities of the lakes can provide local policymakers a
comprehensible overview of the potential consequences of the unrestricted pro-
liferation of the various activities in the lakes.

Keywords

Ecological carrying capacity modeling · Seven lakes · Aquaculture · Ecotourism ·
Sustainable lake management

25.1 Introduction

Sitting 70 km away from Metropolitan Manila, San Pablo City is a chartered city in
Laguna nestling the famous Seven Lakes (Fig. 25.1). These freshwater lakes were
formed through phreatic eruption, a unique process where lava from Mt. San
Cristobal intersected with the groundwater and created a steam-heated eruption
forming crater-like depressions, which were later filled up with rainwater (Laguna
Lake Development Authority [LLDA] 2006–2008).
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Fig. 25.1 Location map of San Pablo City

25.1.1 Seven Lakes of San Pablo City

The seven famous lakes in San Pablo are Lake Sampaloc, Lake Palakpakin, Lake
Calibato, Lake Mohicap, Lake Pandin, Lake Yambo, and Lake Bunot. These
freshwater lakes were formed through phreatic eruption, a unique process where
lava from Mt. San Cristobal intersected with the groundwater and created a steam-
heated eruption forming crater-like depressions, which were later filled up with
rainwater. Since these lakes are all volcanic in origin, it shows the uniqueness of
the city, its traditions, and culture.

Lake Sampaloc is the largest among San Pablo’s Seven Crater Lakes. Located in
the nearest proximity from the city proper, it is considered one of the prime tourist
spots in the city (Fig. 25.2). The aquaculture industry in the lake includes freshwater
fishes such as tilapia, hito, dalag, ayungin, bighead carp, and shrimps.

Lake Palakpakin is the shallowest among the seven lakes but second largest next
to Lake Sampaloc. It is utilized mainly for fishing and aquaculture activities
(Fig. 25.3). An increasing construction of fish cages resulted in limited open fishing
ground for the fisherfolk.

Lake Calibato is the deepest of all the seven lakes (Fig. 25.4). It has the greatest
volume of water in storage. Also, it is the highest lake in terms of elevation.
Abundant fishes in the lake supply both the city of San Pablo and the municipality
of Rizal.
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Fig. 25.2 Fishing and ecotourism in Lake Sampaloc

Fig. 25.3 Fish cages and water hyacinth in Lake Palakpakin

Fig. 25.4 Fish pens in Lake Calibato

Lake Mohicap is the smallest lake. It is also the lowest lake in terms of elevation
(Fig. 25.5). It is a major source of tilapia for Metro Manila and suburbs.

Lake Bunot is closest to Lake Sampaloc. It is used mainly for floating cages
operation and aquaculture where most of the locals derive their source of income
(Fig. 25.6).

Lake Pandin and Lake Yambo are known as “The Twin Lakes” (Fig. 25.7a, b).
Both lakes are considered oligotrophic because of their deep clear lakes with low
nutrient supplies, high dissolved oxygen level, and little organic matter. As San
Pablo’s best kept lakes, both are suitable for recreational activities such as swim-
ming, picnics, and outings but not so much for aquaculture.
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Fig. 25.5 Fish pens in Lake Mohicap

Fig. 25.6 Fish pens and nearby houses in Lake Bunot

Fig. 25.7 The twin lakes of San Pablo – Lake Pandin (a) and Lake Yambo (b)

The multiuses of these lakes, such as irrigation, domestic, navigation, sustenance
fishing, tourism, and aquaculture, benefit the surrounding communities.

25.1.2 Aquaculture

Aquaculture is the breeding, raising, and harvesting of aquatic organisms in coastal
or inland waters involving rearing interventions to enhance the production (National
Oceanic and Atmospheric Administration [NOAA] 2021; Food and Agriculture



Organization [FAO] n.d.). It is an important food production industry and is one of
the fastest developing sectors contributing about 50% of the world’s fish used for
food (FAO n.d.). Aquaculture in the Philippines has a long history and involves
many species and farming practices in diverse ecosystems. Most of the production,
which significantly contributes to the country’s food security and employment,
comes from the farming of seaweed, milkfish, tilapia, shrimp, carp, oyster, and
mussel aquaculture in freshwater lakes in the Philippines (FAO n.d.). In the Seven
Lakes of San Pablo City, Laguna, aquaculture first began in Bunot Lake in 1976 after
the successful introduction of tilapia cage culture in Laguna de Bay by the Laguna
Lake Development Authority (LLDA) in 1974. After some time, tilapia cage
farming spread to other lakes such as Sampaloc, Palakpakin, Calibato, and Mohicap
Lakes (Brillo 2015). By the late 1980s, fish pens and cages have become a common
feature among the Seven Lakes. Tilapia farming extensively expanded and reached
its peak in the late 1990s to the early 2000s, where the 10% area limit for aquaculture
structures pursuant to the Fisheries Code of the Philippines (Republic Act
[RA] 8550, section 51) was breached in most lakes (Brillo 2017). In the 1990s,
illegal constructions of fish cages sprouted in the Sampaloc Lake covering approxi-
mately 70% of the total lake surface area during a certain period (Global Nature Fund
[GNF] 2014). As a result, the lake has become extremely threatened. Removal of
illegal constructions was already done but the increasing number of illegal fish cages
became a problem again in 2012. Overcrowding of fish cages and overfeeding have
resulted in eutrophication, occasional fish kills, and massive growth of green algae.
Because of this, rehabilitation efforts were initiated by environmental organizations
in order to conserve and protect the Sampaloc Lake along with six other crater lakes
in San Pablo City, Laguna. At present, Lakes Sampaloc, Palakpakin, Calibato, and
Bunot are principally exploited for aquaculture, particularly commercial tilapia and
milkfish production via floating fish cages. While Lakes Pandin, Yambo, and
Mohicap are principally used for ecotourism, few fish cages have been built in the
lakes for the culture of the same species, tilapia and milkfish. Approximately
3500–5000 fingerlings of Nile tilapia usually sourced from Bureau of Fisheries
and Aquatic Resources (BFAR) are reared in 10 m × 10 m fish cages and fed with
commercial feeds until marketable size is reached (Guevarra et al. 2020).
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Based on scientific findings, the greatest impact of aquaculture activities is
perceived on water quality. It is important that farmers look into the water’s chemical
and physical properties affecting its quality since poor water quality affects the
health and growth of the fish in the system (Towers 2015). Specific and different
ranges of water quality variables such as salinity, temperature, pH, hardness, and
oxygen concentration have varying effects among different fish species. Each
species has its own optimum range of tolerance. Thus, it is really important for
fisherfolks to make sure that the physical and chemical conditions of the water are
within the optimum range of the fish under culture at all times as much as possible
(The Fish Site 2015).

The physical impact of aquaculture practices like cage culture differs from one
lake to another. In general, factors like accumulation of deteriorating materials such
as nets, bamboos, and poles, buildup of feces, water hyacinth, and uneaten feeds



contribute to the gradual shallowing of lakes. Aquaculture provides a source of
livelihood and protein for fish pen and cage operators as well as local fishing
communities (Fig. 25.8).

25 Ecological Carrying Capacity Modeling and Sustainability Assessment of. . . 465

Fig. 25.8 Fish pens (a) and cages (b) in San Pablo

25.1.3 Ecotourism

Ecotourism is a part of the tourism industry and market forces that influence the
visitors’ choice of destinations, transportations and accommodation, and food. By
providing an income to the protected area via entrance fees, donations, and so on,
ecotourism also provides income to service providers, including those in the com-
munity (Johnson and Thomas 1992).

Three of the seven crater lakes cater to ecotourism services. These are Lake
Sampaloc and the twin lakes Pandin and Yambo. Lake Sampaloc is located at the
city proper of San Pablo, and considered as the largest lake in terms of surface area.
Tourists enjoy biking, jogging, fishing, and many aerobic activities such as Zumba
and yoga in Lake Sampaloc. Among the three lakes, Sampaloc has had the most
tourist arrivals since 2015 as stated by the Tourism Office of San Pablo. The twin
lakes Yambo and Pandin cater to bamboo rafting services, fishing, picture-taking,
and even swimming, since the waters of both lakes were classified as Class B waters,
intended for recreational activities (Fig. 25.9). The ecotourism services serve as an
income generating and source of their livelihood, assuring that the area is well-
maintained and the resources around are protected. Lake Pandin management
requires a fee of PhP 400 per person. This includes native food delicacies offered
by the management and the services while staying in the lake for about 2 h.
Meanwhile, Lake Yambo also offers the same amenities but with a fee of PhP
360 per person. In recent times, Lake Mohicap has also been opened to the public
and is being conserved to be another ecotourism spot in San Pablo. Meanwhile, the
other lakes in San Pablo are known to be sites of aquaculture of various fish species
such as carpa, hito, gurami, bangus, hipon, bitoo, kuhol, ayungin, bighead carp,
tilapia, and many others. Lake Sampaloc has the largest aquaculture among the



seven lakes, with Nile Tilapia (Oreochromis niloticus) as its main farmed fish (San
Pablo City Comprehensive Land Use Plan [CLUP] 2015–2025; LLDA 2006–2008)
(Fig. 25.9).
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Fig. 25.9 Ecotourism in Lakes Pandin, Yambo, and Sampaloc

25.1.4 Ecological Carrying Capacity

Ecological carrying capacity (ECC) is the maximum service function a particular
system can provide on the premise of maintaining its sustainability (Song et al.
2020). Lake’s ecological carrying capacity includes self-maintenance, self-regula-
tion, supply capacity of the lake, and human activities such as fishing, aquaculture,
tourism, and living within the nearby areas. As expounded by Ross et al. (2013) and
Lim (1995) in their articles, assessing the physical carrying capacity of the lake will
define the total area suitable for aquaculture, as well as the threshold limit for tourism
space, beyond which recreational facilities are saturated. The ecological carrying
capacity will identify the magnitude of aquaculture production each lake can support
without leading to significant changes to ecological processes, services, species
biodiversity, populations, or communities in the environment, as well as the thresh-
old limit for visitor use and consequent damage the lake can sustain without being
degraded. ECC can be used as a reliable basis for environmental-economic decision-
making. Estimating and illustrating the recreational and aquaculture carrying



capacities of the lakes can provide the LGUs’ (local government units) constituents
and policymakers a comprehensible overview of the potential consequences of the
unrestricted proliferation of the various activities the lakes are currently hosting.
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In this study, biophysical, socioeconomic, and tourism data gathered and
analyzed were used to develop ECC models of the seven lakes. The ECC models
were used to assess the sustainability of the lakes’ current environmental policies and
management practices. Results of the sustainability assessment will be used as an
instrument in the sustainable and effective policy planning of the local government
of San Pablo City to address issues on food security and sustainability.

There are various ecological carrying capacity studies about lakes available,
highlighting different parameters and factors. A study was prepared by the Lake
Ripley Management District in 2003 to determine the recreational carrying capacity
of Lake Ripley. In the report, the recreational carrying capacity refers to the number
of watercrafts that can simultaneously operate on the lake without compromising
user safety and causing environmental harm to the resource. Based on the findings,
the average boating density exceeded the carrying capacity of the lake. The analysis
suggested that there is a high probability of user conflict and environmental degra-
dation on Lake Ripley due to overcrowding during mid-summer, weekends, and
holidays. Another study by Reghunathan et al. (2016) highlighted the factors
affecting the environmental carrying capacity of a freshwater tropical lake system
in Vellayani Lake, India. Factor analysis was used to identify the factors controlling
the carrying capacity of the lake, and hierarchical cluster analysis (HCA) was used to
classify the lake. The results showed that the lake’s carrying capacity to alkalinity is
low due to ion deficiency. Acidity, mineralization, fertilizer, evaporation, and
organic pollution factors are the controls of water quality during the pre-monsoon
period. All factors except evaporation factor with additional runoff factor control the
water quality during monsoon period. During post-monsoon, all factors as well as
soil erosion factor influence the water quality. The result suggested that during pre-
and post-monsoon, combating the acidic factor must be focused and runoff factor
during monsoon season. Zeng et al. (2011) published a paper about an integrated
approach for assessing aquatic ecological carrying capacity of Tai Lake Basin in
China. According to the study, the aquatic ecological carrying capacity is an
effective method for analyzing sustainable development in water management.
The study used an indicator system that considers social and economic development
as well as ecological resilience. To calculate the ecological index, normalized
difference vegetation index (NDVI) was extracted from Moderate Resolution Imag-
ing Spectroradiometer (MODIS) time series images, which was followed by spatial
and temporal analysis of the vegetation cover. The study was conducted during the
period 2000–2008 and it showed that there is a slight upward trend on the aquatic
ecological carrying capacity, and the intensity of human activities exceeded the
capacity in 2008.

25.1.4.1 Biophysical
In 2017, a study conducted by Paller et al. (2017) found that among the seven lakes,
the most turbid ones were Mohicap (13.34 cm) and Palakpakin (17.37 cm), and can



be classified as eutrophic to hypereutrophic using the Secchi disk visibility depth
(SDVD) index. Other hydrological parameters of the Seven Lakes were also
measured in the study and showed that Palakpakin lake, along with the other
lakes, had mean surface dissolved oxygen level (6.80–9.63 mg/L), surface water
temperature (22–32 °C), and mean pH levels (7.13–8.52) that were all within the
standard levels. They also found out that Pandin lake was the least turbid lake
(25 cm) using the SDVD index. As previously mentioned, other hydrological
parameters of the seven lakes were measured in the study and showed that Pandin
lake, along with the other lakes, had mean surface dissolved oxygen level (6.80–9.63
mg/L), surface water temperature (22–32 °C), and mean pH levels (7.13–8.52) that
were all within the standard levels.
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The water quality of Palakpakin lake was also assessed in another study in which
Mendoza et al. (2019) observed the status and measured the water quality parameters
of the Seven Lakes of San Pablo City to compare with published resources and
literature from the 1930s to 2019 related to the Seven Lakes. One of the parameters
measured in the study was the chlorophyll concentration to assess the trophic status
of the Seven Lakes. It was found that Palakpakin lake, along with lakes Bunot and
Calibato, were categorized to be eutrophic with 6.1–22 μg/L. In addition, it showed
that the pH measurement of Palakpakin lake in August 2018 within 0–15 m depth is
5.16 ± 0.22, which is lower compared to the 6.5–8.5 ideal pH range for fish species
according to the standard adopted for Class C fishery water. With pH levels less than
the 6.5 limit, implications of low pH levels in lakes, specifically within 5.8–6.0, were
reported to severely affect the growth and reproduction of aquatic organisms.

A more specific study by Navarrete et al. (2019) assessed the nutrient dynamics,
phytoplankton diversity, sediment geochemistry, and water quality of Palakpakin
lake during wet and dry seasons in four critical areas in the lake (inlet, center,
sanctuary, and outlet) to comprehend its deteriorating ecological state. Results have
shown that the lake has slightly alkaline water (pH 7.4–8.4) and the dissolved
oxygen concentrations are 7.4 mg/L in the outlet, while the water in the inlet has
5.5 mg/L. Moreover, the turbidity (28 NTU) and Secchi depth (0.7–1.5 m) values
obtained meant that the lake was eutrophic to hypereutrophic. The abundance of
Microcystis aeruginosa, Anabaena helicoidea, and Lyngbya sp., which are indicator
species of eutrophic to highly eutrophic waters, was also observed. The pH level of
the lake supported the growth of M. aeruginosa as blue-green algae including the
said species can grow at pH conditions of and greater than 6.5. Lastly, the concen-
tration of available nutrients such as N and P in the center and sanctuary sediments
was high, with phosphate concentrations of >2.0.5 mg/L, causing internal nutrient
loading in the lake, indicating that the center and sanctuary are depositional areas of
eroded sediments and aquaculture inputs such as excess feeds and fecal materials of
fish. This nutrient loading was described to be a great factor in the increase in both
density and diversity of the phytoplankton.

The study of Paller et al. (2021) on the review of the Seven Lakes of San Pablo
stated that the most recent record of water quality of the Seven Lakes done by the
LLDA in 2018 shows that the mean surface dissolved oxygen was still above the
recommended level of 5.0 ppm for Class C water. The biochemical oxygen demand



(BOD) level of lake Bunot and Mohicap in 2018 exceeded the level of 7.0 ppm with
a value of 7.25 ppm and 8 ppm, respectively. Ammonia levels of the Seven Lakes
were too high and exceeded the level of 0.05 ppm except for Lake Yambo with only
0.03 ppm. The mean phosphate level of lake Sampaloc exceeded the recommended
level of 0.5 ppm with a mean of 0.75 ppm.
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25.1.4.2 Socioeconomic
San Pablo City, a first income class city known as the “City of Seven Lakes”, has
80 barangays, of which 44 are classified as urban and 36 as rural. As of 2015, the city
has a population of 266,068, and its population structure is dominated by younger
age classes and is expanding rapidly (Philippine Statistics Authority [PSA] 2015).
The land use is primarily agriculture with residential, commercial, industrial, special
classes (educational, hospitals, parks and recreation, religious, and charitable areas),
and government properties. Parks and recreational areas include the city’s seven
lakes, which offer different ecosystem services mainly ranging from provisioning to
recreational services. These lakes are classified by the Laguna Lake Development
Authority (LLDA) as Class C waters suitable for fishing and aquaculture. Since the
1980s, the LLDA, by virtue of Republic Act (RA) no. 4850, has the major role and
jurisdiction in the monitoring and sampling of the seven lakes, same with the Laguna
Lake and their tributaries, once every quarter to promote conservation and sustain-
able development (San Pablo CLUP 2015–2025; LLDA 2006–2008).

Each lake has its own operating local Fisheries and Aquatic Resource Manage-
ment Councils (FARMC) and lake residents’ organization. This is one great asset of
San Pablo’s ecotourism as community stakeholders actively involve themselves and
participate in improving the lakes’ sustainable development and management. Over
the years, various community stakeholders have consistently participated and
discussed problems and plans in dialogues and meetings conducted by the LLDA
and the LGU of San Pablo. In fact, a multisectoral coalition composed of the Friends
of the Seven Lakes Foundation, Inc. (FSLF), as well as civic and religious groups,
launched the Yakap sa Lawa prayer rally and protest to prompt the administrative
agencies to take notice of the conspicuous ecological problems that the lakes,
especially Lake Sampaloc, were experiencing in the late 1990s. However, there
had been some issues between proponents of ecotourism and fish farming of
aquaculture lakes including Lakes Sampaloc, Bunot, Palakpakin, and Calibato.
This is because the FARMCwants to have more space in these lakes for fish farming,
while the Seven Crater Lakes and Watershed Management Council (SCLWMC)
wants more area for ecotourism. This fragmentation is evident in the delayed
construction of the Master Development Plan (MDP) of Lake Sampaloc. Distrust
and divergence issues lasted for more than a decade until three of the seven lakes
finally had their MDP in 2015. MDP is fundamental for each lake’s effective
management and is the basic enabler of ecotourism development. Since then, this
plan has been serving as the guide that facilitates the regulation of fish cages or pens
and designates specific areas for aquaculture and ecotourism, including their extent
and arrangement (Brillo 2017).
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Furthermore, it showed through the years that community stakeholders can be
successful in developing the lakes surrounding them with support from a nongov-
ernmental organization (NGO). For instance, the local FARMC and Samahang
Mangingisda ng Lawa ng Pandin (SMLP) were assisted by the Pundasyon ng
Kalikasan (PK), a local environmental group, in planning, organizing, and promot-
ing the Pandin Lake Tour, a successful ecotourism enterprise initiated by a group of
mostly women residents in Lake Pandin. At present, the lake women still continue to
lead the operations of the lake’s ecotourism enterprise. Indeed, the women residents
of Lake Pandin play an important role in its sustainable development and manage-
ment (Brillo 2017).

25.1.4.3 Tourism
Some of the seven crater lakes offer ecotourism, namely Sampaloc, Mohicap, and
the twin lakes Yambo and Pandin. An essential consideration of transforming the
approach of catering tourism into sustainable tourism involves social responsibility,
a strong commitment to nature conservation and an integration of the local commu-
nity in any tourist operation and development. As written in 2015 by the World
Travel and Tourism Council (WTTC) and the Earth Council, the World Tourism
Organization (WTO) defines sustainable tourism development as “meeting the needs
of the present tourists, host region while protecting and enhancing the opportunities
for the future”. As stated in the framework of sustainable tourism development
(Fig. 25.10) as cited by Alampay (2005), sustainable tourism development includes
its basic elements to provide equity, ecological sustainability for the present and
future generation, and economic stability, thus supporting the primary objectives of a
sustainable tourism initiative.

Fig. 25.10 Sustainable
tourism development in the
Philippines. Source: Alampay
(2005)
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While these lakes are utilized mainly for aquaculture and ecotourism, the integrity
of the lakes is compromised. In fact, these lakes were proclaimed by the Global
Nature Fund (GNF) as the “Threatened Lakes of the Year 2014” due to anthropo-
genic activities such as illegal squatting along the shores and its resulting water
pollution, illegal fish pens, overcrowding fish cages, as well as the establishment of a
number of commercial infrastructures nearby the lakes (LLDA 2006–2008). The
aquaculture industry has significantly contributed to the income of the fishing
community, while ecotourism has boosted the local tourism industry in the city.
However, these activities pose threats to the degradation of the environmental
quality of the Seven Lakes. Thus, it is necessary to examine their current condition
and determine if it already exceeds the lakes’ ecological carrying capacity (ECC).
ECC is the maximum service function a particular system can provide on the premise
of maintaining its sustainability (Song et al. 2020).

In this study, the sustainability of the aquaculture and tourism activities in the
Seven Lakes was assessed using the ecological carrying capacity model. This model
was composed of three criteria: biophysical, socioeconomic, and ecotourism. The
biophysical criterion involved the collection of water quality indicators in the lake
including temperature, dissolved oxygen, pH, BOD, total dissolved solids, conduc-
tivity, chlorophyll-a, nitrates, phosphates, and transparency during the wet and dry
seasons. Household survey and Key Informant Interviews were conducted to gather
primary data on the socioeconomic and tourism indicators. The socioeconomic
indicators include the number and area of fish cages, stocking density, income
from aquaculture, and nonfarming activities. Ecotourism indicators include number
of tourists, facilities, manpower, cost and variety of activities, and number of hours
spent in various tourism activities.

Estimating and illustrating the recreational and aquaculture carrying capacities of
the lakes can provide the LGUs’ constituents and policymakers a comprehensible
overview of the potential consequences of the unrestricted proliferation of the
various activities the lakes are currently hosting.

Generally, this study aims to harmonize the sustainable management of the seven
lakes of San Pablo with the increasing density of cultivated areas, which has
potential to offer business and employment opportunities. Specifically, the data
gathered and analyzed will be used to estimate, model, and simulate the long-term
dynamics and stability properties of each of the seven lakes, broken down into
fundamental components of ecological, tourism, and socioeconomic carrying
capacities, since these components act as the main approaches to estimating carrying
capacity (Chougule 2011). The model to be generated by virtual applications will
then be used as an instrument in the sustainable and effective policy planning of the
local government of San Pablo City to address issues on food security and
sustainability.
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25.2 Methodology

25.2.1 Methodological Framework of the Ecological Carrying
Capacity Study

This study aimed to derive a model of the biophysical, socioeconomic, and tourism
carrying capacities of the Seven Lakes of San Pablo City (Fig. 25.11). The model
will provide the stakeholders with a comprehensible framework of the overall
condition of Seven Lakes’ ecosystem, and an assessment of the lake’s sustainability
due to continued stress from aquaculture systems and recreational infrastructures and
activities.

The results of the ecological carrying capacity modeling will be used to assess the
sustainability of the lakes. The sustainability index ranking of each lake will be used
in the crafting of management strategies toward the sustainable management of the
lakes.

By integrating the framework and guidelines provided by related literature, this
study will be able to derive a model of the estimated physical, ecological, social, and
economic recreational and aquaculture carrying capacity of each lake belonging to
the Seven Lakes of San Pablo City. This output will provide the stakeholders with a
comprehensible framework of the overall condition of Seven Lakes’ ecosystem, and
a simulation of the predicted consequences of ecosystem degradation due to
continued stress from aquaculture systems, and recreational infrastructures and
activities.

This study would like to establish an evaluation index system to determine the
ecological carrying capacity of the Seven Lakes of San Pablo, specifically on the
socioeconomic, tourism, and water quality carrying capacity.

Fig. 25.11 Methodological framework for ecological carrying capacity modeling



Lake Locationa
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25.2.2 Characteristics of the Seven Lakes of San Pablo

The seven lakes are generally small lakes with areas ranging from 20.5 to 99.2 ha
(Table 25.1). Lake Sampaloc, located at the center of the city, is the largest among
the seven lakes, while Lake Mohicap is the smallest lake. Lake Palakpakin is the
shallowest among the seven lakes with a maximum depth of 7.7 m. Siltation is a
problem in this lake. On the other hand, Lake Calibato is the deepest lake (156 m)
and has the highest area occupied by fish pens (22.36%). The other two aquaculture
lakes with high proportions of area occupied by fish pens are Lake Bunot (18.7%)
and Lake Palakpakin (17.2%). Lake Sampaloc is the main ecotourism lake in San
Pablo City with 1,967,261 visitors from 2015 to 2019 (Table 25.1). The twin lakes of
Pandin and Yambo as well as Lake Bunot also attract local tourists.

25.2.3 Biophysical Assessment

25.2.3.1 Sampling Stations
The sampling design used in the study is purposive sampling to determine the impact
of structures in and around the lakes. Four or five sampling stations were selected in
each of the seven lakes (Figs. 25.12, 25.13, 25.14, 25.15, 25.16, 25.17, and 25.18).
These stations were located near fish cage, near an outlet, littoral near houses, and
littoral near vegetation and pelagic zone. Three replicate samples were collected at

Table 25.1 Characteristic features of the Seven Lakes of San Pablo

% Area
occupied by
fish pens
(2018)b

Maximum
depth
(in m)b

Total tourist
arrival
(2015–2019)c

Bunot Brgy. Concepcion 38.16 23 18.70 56,966

Calibato Brgy. Sto. Angel 27.18 156 22.36 5237

Mohicap Brgy. San
Buenaventura

20.49 30.4 5.77 10,529

Palakpakin Brgy. San
Buenaventura, San
Lorenzo and Dolores

54.49 7.7 17.25 3518

Pandin Brgy. San Lorenzo,
Sto. Angel

24 61.75 1.80 97,267

Sampaloc Brgy. IV-A, IV-C,
V-A, Concepcion,
San Lucas

99.21 27.6 7.68 1,967,261

Yambo Brgy. San Lorenzo 36 38 2.07 81,341
aSan Pablo City Ecological Profile. City Planning and Development Office-City Government of San
Pablo. San Pablo, City of Seven Lakes
bMendoza, M.U., Briones, J.C.A., Itoh, M., Padilla, K.S.A.R., Aguilar, J.I., Okuda, N., & Papa,
R.D.S. (2019). Small maar lakes of Luzon Island, Philippines: their limnological status and
implications on the management of tropical lakes – a review. Philipp J Sci, 148(3): 565–578
cData provided by the San Pablo Tourism Office (2019)



each station. In situ parameters were measured using a YSI water quality multipa-
rameter sensor. The parameters include dissolved oxygen, temperature, total
dissolved solids, conductivity, salinity, and chlorophyll-a. Water quality parameters
at the surface water and 5 m below the surface were measured for the in situ

474 D. B. Magcale-Macandog et al.

Fig. 25.12 Sampaloc lake sampling stations

Fig. 25.13 Mohicap lake sampling stations



parameters. A Secchi Disk was used to measure the transparency of water. Water
samples were also collected for laboratory analysis. Three 6 L of water samples were
used for BOD analysis. Three 500 mL of water samples were used for nitrogen and
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Fig. 25.14 Bunot lake sampling stations

Fig. 25.15 Yambo lake sampling stations



phosphorus contents analysis. Water quality assessment was done on the following
dates: August 2019, November 2019, and May 2021.
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Fig. 25.16 Pandin lake sampling stations

Fig. 25.17 Calibato lake sampling stations

Gill netting, which is the most common type of fishing being employed by the
locals, was used to determine the fish composition and abundance in the Seven
Lakes. Samples of wild fish species per lake were collected with the assistance of the
local fisherfolk. Horizontally oriented gillnets with different mesh sizes were set up



in each lake at 5:00 PM and were retrieved at 7:00 AM. Fish samples were identified
using several fish identification materials (Herre 1927, 1953; Vidthayanon 2007;
Froese and Pauly 2019; Fitzgerald 1979; Behrends et al. 1982; Wu et al. 1983;
Herder et al. 2012).
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Fig. 25.18 Palakpakin lake sampling stations

25.2.3.2 Floristic Survey Assessment
In Lakes Pandin and Yambo, a reconnaissance survey of macrophyte vegetation was
conducted to identify sampling areas within the lakes where aquatic plants are
present or located. The sampling points for both lakes were identified using a
purposive sampling technique. The macrophyte vegetation is often characterized
by its dispersed location within the lakes, which is affected by shifts in water current
and wind direction (Dar et al. 2014).

The identification of aquatic macrophytes was done using the “A Field Guide of
Aquatic Macrophyte Species Found in New York Lakes along with Potential
Non-Native (Exotic) Invaders” (Johnson 2013) and “Aquatic Weed Identification”
(UC ANR n.d.). A 10-m transect line was established over or through the macro-
phyte vegetation in each sampling location. Macrophytes species were identified and
the extent of the macrophyte cover was determined in each transect. There was a
total of five (5) sampling points for both lakes and each point had four replicates of a
10-m transect line.

A GPS (Garmin eTrex 10 Worldwide Handheld GPS Navigator) was used to
record the coordinates of the sampling points, specifically the latitudinal and longi-
tudinal locations of the transect lines. The identification of aquatic macrophytes



along the transect line was done on-field and in the laboratory. During the field
survey, identification was performed using the Plant ID application, as well as listing
the names of macrophyte species and marking unidentified plant samples.
Photographs of the unidentified macrophytes were taken for identification in the
laboratory using identification materials including Plant List, StuartXchange,
Aquagenixaquatics, Aquaplant, and Co’s Digital. After the necessary data was
gathered, the species count for each macrophyte was conducted using an offline
application called Plant Population Calculator, and the frequency of macrophyte
species in the area was calculated in the laboratory.
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25.2.4 Water Quality and Biological Carrying Capacity (WQBCC)

The water quality and biological carrying Capacity (WQBCC) was obtained by
summing the product of the following subindicators: water quality parameters,
aquatic macrophytes, native fish species, introduced fish species, fish abundance,
fish biomass, and volume of solid wastes, multiplied by its corresponding weight.

25.2.4.1 Socioeconomic Carrying Capacity (SECC)
Various stakeholders and experts were asked to rank the different socioeconomic
indicators including the population living around each lake, annual income from
aquaculture, income from tourism, area occupied by fish pens (ha), number of fish
pens, and area for recreational activities based on importance. The resulting weights
from all respondents were normalized and the average normalized weight for each
sub-indicator was obtained. SECC was then calculated by obtaining the summation
of the product of the aforementioned subindicators, multiplied by its calculated
weight.

Aside from the collection of limited and actual values for each of the
subindicators from literatures and secondary data, Key Informant Interviews (KII)
and Focus Group Discussion (FGD) were also conducted to determine community
participation in lake management and discuss the ecotourism plans in Lakes Pandin,
Yambo, and Sampaloc as basis of the discussion. Participants of the KII and FGD
included various stakeholders such as the Fisheries and Aquatic Resource Manage-
ment Councils (FARMC) members, local government units (LGUs), tourism
officers, bantay-lawa, fisherfolks, civic groups, women groups, and senior citizens.

Meanwhile, a Knowledge, Attitudes, and Practices (KAP) survey was
constructed, pretested, and employed to the residents living near or around Lakes
Sampaloc, Pandin, and Yambo in September 2019 to provide the researchers with
insights regarding the disposal and management of aquaculture and tourism-related
wastes in the area. These three lakes were chosen by the researchers to represent the
Seven Lakes. Lake Sampaloc, as an urban lake, is also considered as the most
populated of all the lakes since it is located in the city proper, and the lake with
the highest number of fish cages and pens. On the other hand, the “twin lakes”
Pandin and Yambo are the most popular ecotourism lakes in San Pablo, and the lakes
with the least numbers of aquaculture structures (San Pablo CLUP 2015–2025).



Moreover, questions related to the residents’ income from aquaculture and tourism-
related activities were included in the KAP survey. KAP survey is a kind of
household survey used primarily to collect data on what is known, believed, and
done in relation to a particular topic (Zahedi et al. 2014).
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In this study, three hundred seventy-six (376) of the total respondents are
residents from the five barangays surrounding Lake Sampaloc, while ninety-four
(94) are from merely Barangay Sulsuguin since it is considered the barangay closest
to Lake Yambo. A total of sixty-four (64) respondents completed the household
survey for Lake Pandin. The total number of respondents was computed using the
Cochran’s Formula and was equally divided per barangay through proportionate
sampling.

25.2.4.2 Tourism Carrying Capacity (TCC)
The threshold limit of tourism activities and the number of individuals who can be
supported within the natural resource limits of each lake were estimated using land-
based surveys and management-by-objectives approaches. Parameters that were
collected include population data, the number of tourists, and hotel daily reception
number/day (Ding et al. 2015). Data on various variables that have noticeable effect
on the ecotourism of the lake, such as the ecotourism awareness and the possibility
of ecotourism disturbance on the ecology and education, seasonal or annual increase
in crowd, modes of transportation, and the reason for visiting, were collected and
incorporated in the management of carrying capacity.

The variables needed for computing carrying capacity were the size of the lake
intended for tourism activities, points of activities, infrastructures and facilities
available, and amenities for tourists. Following the manual of Calanog (2015) of
the Department of Environment and Natural Resources—Ecosystem Research and
Development Bureau (DENR-ERDB), the determination of the carrying capacity
was based on the Boullon’s (1985) carrying capacity mathematical model
(BCCMM), which determined the standard requirement of the visitor, such as
space, time, and other needs, while enjoying an activity, such as swimming.

In the BCCMM, the basic carrying capacity (BCC), potential carrying capacity
(PCC), and real carrying capacity (RCC) were computed and then used in determin-
ing the total tourism carrying capacity (TCC) of an area.

25.2.4.2.1 Basic Carrying Capacity (BCC)
The parameters needed to identify BCC are the following: total size of the area used
by the tourists and standard or average space requirement of visitors.

25.2.4.2.2 Potential Carrying Capacity (PCC)
PCC was calculated by computing the rotation coefficient (RC) of a specific tourism
activity. RC was determined as the total number of hours the lake area was open for
recreational activities (e.g., swimming) divided by the average number of hours the
tourists enjoyed swimming. The average number of hours the tourists enjoyed
recreational activities was based on responses obtained during the interviews.



480 D. B. Magcale-Macandog et al.

25.2.4.2.3 Real Carrying Capacity (RCC)
RCC is the maximum permissible number of uses of an area once limiting (i.e.,
corrective) factors derived from the characteristics of the site (or standards/needs of
the visitors) have been applied. RCC was computed by incorporating the limiting
factors identified from the interviews and observations on-site. The following
limiting variables were incorporated:

• Lf1 (typhoons),
• Lf2 (rainy days),
• Lf3 (time available for swimming), and
• Lf4 (quality of the lake as a tourism site, based on tourists’ perceptions).

For the purpose of modeling, the tourism carrying capacity (TCC) was then
obtained by adding the products of the following subindicators: number of tourists,
hours tourists spent on the lake, facilities, manpower, cost and variety of activities,
which were then multiplied by their corresponding weights (Wi).

25.2.5 Ecological Carrying Capacity (ECC) Modeling and Simulation

After the collection, analysis, and integration of the three components of carrying
capacities (biophysical, socioeconomic, and tourism) of each lake, the water ecolog-
ical carrying capacity (WECC) was developed following the approach of Ding et al.
(2015). WECC models for each lake were developed to assess the effects of the
increasing density of aquaculture systems and recreational activities and
infrastructures to the lakes’ sustainability. The model will help visualize the
sustainability status of each lake related to the associated activities (Ding et al. 2015).

25.2.5.1 Model Framework
This study aimed to derive a model of the biophysical, socioeconomic, and tourism
carrying capacities of the Seven Lakes of San Pablo City. The model will provide the
stakeholders with a comprehensible framework of the overall condition of Seven
Lakes’ ecosystem, and an assessment of the lake’s sustainability due to continued
stress from aquaculture systems and recreational infrastructures and activities.

The results of the ecological carrying capacity modeling will be used to assess the
sustainability of the lakes. The sustainability index ranking of each lake will be used
in the crafting of management strategies toward the sustainable management of the
lakes.

25.2.5.2 Indicators for Determining the Ecological Carrying Capacity
The socioeconomic criteria include the following indicators: population living
around the lake, annual income from aquaculture, income from tourism, area
occupied by fish pens, number of fish pens, and area allocated for recreational
activities (Table 25.2). Tourism criteria include the following indicators: number
of tourists, hours tourists spent on the lake, facilities, manpower, cost of activities,



(continued)
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Table 25.2 Indicators used to determine the ecological carrying capacity

Criteria Indicator Limited value Actual value

Socioeconomic Population living
around the lake

Number of houses that
can occupy the
circumference of the
lake multiplied by the
average household size
of San Pablo, which is 4

Number of houses
around the lake
observed on Google
Earth and multiplied by
the average household
size of San Pablo,
which is 4

Income from
aquaculture (annual)

Obtained from San
Pablo City ecological
profile

Obtained from San
Pablo City ecological
profile

Income from tourism Based on FGD and KII Based on FGD and KII

Area occupied by fish
pens (ha)

Obtained from San
Pablo City ecological
profile

Obtained from San
Pablo City ecological
profile

Number of fish pens Obtained from San
Pablo City ecological
profile

Obtained from San
Pablo City ecological
profile

Area for recreational
activities (ha)

Obtained and measured
during the field visit

Obtained and measured
during the field visit

Tourism Number of tourists Based on the data given
by the San Pablo
Tourism Office

Based on the data given
by the San Pablo
Tourism Office

Hours tourist spent on
the lake

Based on FGD and KII
obtained from the
SKBMLP, and based
on interview conducted
with the tourist
respondents

Based on FGD and KII
obtained from the
SKBMLP, and based
on interview conducted
with the tourist
respondents

Facilities Based on FGD and KII
obtained from the
SKBMLP

Based on FGD and KII
obtained from the
SKBMLP

Manpower Based on FGD and KII
obtained from the
SKBMLP

Based on FGD and KII
obtained from the
SKBMLP

Cost of activities Based on FGD and KII
obtained from the
SKBMLP

Based on FGD and KII
obtained from the
SKBMLP

Variety of water
activities

Based on FGD and KII
obtained from the
SKBMLP

Based on FGD and KII
obtained from the
SKBMLP

Water quality
and biological
indicators

Water quality
parameters (dissolved
oxygen, temperature,
pH, total dissolved
solids, Chl-a,
transparency, nitrate,
phosphate, BOD,
COD)

It is based on the
recommended level set
by the DENR AO 2016-
08

Actual values from field
data collection in 2019
and 2021.



and variety of water activities. The water quality and biological criteria include the
following indicators: water quality parameters (dissolved oxygen, temperature, pH,
total dissolved solids, Chl-a, transparency, nitrate, phosphate, BOD, COD), aquatic
macrophytes, native fish species, introduced fish species, fish abundance, fish
biomass, and volume of solid wastes. The various sources of data for the limited
and actual values were derived from San Pablo City ecological profile; San Pablo
City Tourism Office; field measurements; DENR AO 2016-08; and conduct of PRA,
FGD, and KII, with FARMC officers, Samahan ng Kababaihan sa Pandin, tourists,
and households around the lakes. These actual and limited values for each indicator
were entered into the carrying capacity models (Table 25.2).
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Table 25.2 (continued)

Criteria Indicator Limited value Actual value

Aquatic macrophytes Based on 10% of the
total surface area of
each lake

Based on the surface
area covered by
macrophytes observed
on Google Earth

Native fish species Based on historical data
of fish biodiversity from
the Participatory Rural
Appraisal (PRA) and
actual values from fish
sampling in 2019 and
2021

Based on historical data
of fish biodiversity from
the Participatory Rural
Appraisal (PRA) and
actual values from fish
diversity surveys in
2019 and 2021

Introduced fish species Based on historical data
of fish biodiversity from
the Participatory Rural
Appraisal (PRA) and
actual values from fish
sampling in 2019 and
2021

Based on historical data
of fish biodiversity from
the Participatory Rural
Appraisal (PRA) and
actual values from fish
diversity surveys in
2019 and 2021

Fish abundance Obtained from San
Pablo City ecological
profile

Obtained from San
Pablo City ecological
profile

Fish biomass (kg) Obtained from San
Pablo City ecological
profile

Obtained from San
Pablo City ecological
profile

Volume of solid
wastes (kg)

Obtained from FARMC
members

Obtained from FARMC
members

The compiled data on the biophysical, socioeconomic, and tourism indicators
affecting the lakes’ ecosystem will then help in the generation of the threshold limit
estimates for recreational infrastructures and visitor use of ecotourism lakes, the total
area suitable for aquaculture and magnitude of aquaculture production without
significant effect to the lake’s ecosystem, and the value of stakeholder involvement
and capacity of the lake to tolerate the presence of tourists.



Table 25.3 Sustainability
index used in determining
the sustainability of the
Seven Lakes
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25.2.5.3 Mathematical Model
The mathematical model used in the study was based on Ding et al. (2015). The
calculation of the ECC is given by the following equations:

CSi =CCi=CCimax ð25:1Þ
Equation (25.1) is used to represent the model of the carrying capacity level of

each indicator. CCi is the actual value of the indicator and CCimax is the carrying
capacity limit value of the indicator. CSi, the capacity level of the indicator, was
derived using Eq. (25.1).

After obtaining the carrying capacity level of each indicator, Eq. (25.2) was used
to compute the carrying capacity (CC) of each criterion (SECC, TCC, and
WQBCC):

CC=
X

CSi ×Wi ð25:2Þ

Wi is the weight of each indicator, which was obtained from the results of the
ranking survey conducted. Various stakeholders and experts were asked to rank the
different indicators based on importance. The resulting weights from all respondents
were normalized and the average normalized weight for each indicator was obtained.

Using Eq. (25.2), the socioeconomic carrying capacity (SECC), tourism carrying
capacity (TCC), and water quality and biological carrying capacity (WQBCC) were
computed.

Finally, the ecological carrying capacity (ECC) of each lake was derived by
summing up the three component criteria (SECC, TCC, and WQBCC), given by
the following Eq. (25.3):

ECC= SECC þ TCC þWQBCC ð25:3Þ
The calculated ECC was compared with the sustainability index (Table 25.3) to

assess the level of sustainability of each lake. Table 25.3 shows the sustainability
index used in the study.

ECC value Sustainability status

Below 0 Unsustainable

0–0.33 Low

0.34–0.67 Medium

0.68–1.00 High

Greater than 1 Very high
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25.3 Results and Discussion

25.3.1 Biophysical Indicators

25.3.1.1 Water Quality Assessment and Monitoring
Water quality assessment of the seven lakes of San Pablo was done in between
August and November 2019 and May 2021. The results of water quality monitoring
showed that aquaculture lakes (Bunot, Calibato, Palakpakin, and Sampaloc) have
months and stations with dissolved oxygen lower than 5.0 ppm (Fig. 25.19). A DO
value lower than 5.0 ppm is already stressful and critical for fish survival (Pleto et al.
2018). These lakes are aquaculture lakes that experience fish kills periodically.
Fishes that experience low levels of DO are more prone to disease and infection,
as well as less efficient at converting food into energy and experience stunted growth
(Kremer 2018). The low DO in water primarily results from excessive algal growth
caused by nutrient enrichment, particularly nitrogen and phosphorus. When the
algae die and decompose, the process consumes oxygen (Minnesota Pollution
Control Agency [MPCA] 2009). The four aquaculture lakes have relatively high
phytoplankton density. On the other hand, very high DO levels, especially during
summer months, are due to the photosynthetic activities of aquatic plants and
phytoplankton in water. Supersaturation occurs when oxygen is produced by algae
more quickly than it can escape to the atmosphere. Another factor of supersaturated
DO level is due to the rapid movement of water because of wind and fish movement
that increases the rate of diffusion (Pleto et al. 2018).

The average temperature of the seven lakes is within the recommended range of
25–31 °C (Fig. 25.20). However, there are instances wherein it exceeded the upper
limit especially during the summer months. Temperature is an important factor that

Fig. 25.19 Dissolved oxygen concentration (ppm) of the Seven Lakes of San Pablo (means with
different letters are significantly different)



plays a major role in aquatic life and other water quality parameters. Its relationship
with dissolved oxygen is that colder water or low temperature could hold more
dissolved oxygen than warmer water. During the colder months of January and
February, and toward the onset of the rainy season after a long warm dry season, the
water temperature on the surface of the lake may become colder than the subsurface
layers of the lake. This difference in water temperature may cause lake overturn that
would cause a depletion of dissolved oxygen in the surface that can eventually lead
to the occurrence of fish kill.
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Fig. 25.20 Temperature (°C) level of the Seven Lakes of San Pablo (means with different letters
are significantly different)

The water quality assessment and monitoring showed that the mean pH level of
the seven lakes were within the recommended range of 6.5–9 set by the DENR
(DAO 2016-08) (Fig. 25.21). Fishes can become stressed in water with pH levels
ranging from 4.0 to 6.5 and 9.0 to 11.0 and death is certain at pH level less than 4.0
or greater than 11.0 (Ekubo and Abowei 2011). Changes in pH can cause an increase
in solubility of phosphorus, making it available for algal growth that can cause
eutrophication and eventually oxygen depletion (Munson et al. 2004).

Nutrients such as nitrogen and phosphorus play an important role in the growth of
algae, which forms the base of the food web in the lake ecosystem. However, too
much nitrogen and phosphorus could cause negative impacts on fish population.
Excessive nutrients are known to cause eutrophication that may induce rapid algal
growth. Although eutrophication is a natural process, anthropogenic activities hasten
and make it worse. Excessive algal growth will eventually lead to algal die-off, and
during the decomposition of dead algae, decomposers will take up oxygen in the
water. This will cause a depletion of dissolved oxygen and eventually could lead to
fish kill. The nitrate level of the seven lakes did not reach the recommended level of
7.0 ppm by the DENR (Fig. 25.22). However, there are stations in lakes Calibato and
Pandin that exceed 7.0 ppm. Further, phosphate levels of the seven lakes exceeded



the recommended levels of the updated water quality guideline of the DENR for
Class C water of 0.025 ppm (DAO 21-19). It also shows that aquaculture lakes
(Bunot, Calibato, Palakpakin, and Sampaloc) have relatively high levels of
phosphates compared to ecotourism lakes (Mohicap, Pandin, and Yambo)
(Fig. 25.23).
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Fig. 25.21 pH level of the Seven Lakes of San Pablo (means with different letters are significantly
different)

Fig. 25.22 Nitrates (ppm) level of the Seven Lakes of San Pablo (means with different letters are
significantly different)

Chlorophyll-a is the measure of the amount of algae that is growing in water. This
can be used to classify the trophic condition of a lake. The Organization for
Economic Co-operation and Development (OECD) suggested that a mean of



<2.5 μg/L indicates oligotrophic status or low level of nutrients in water; 2.5–8 μg/L
is mesotrophic status, which means medium level of nutrients; and >8 μg/L is
eutrophic wherein high nutrients are found in water, which can support dense
phytoplankton and macrophyte population. This condition could deplete oxygen,
which in turn could cause fish kill. Based on the assessment, it shows that Lakes
Pandin and Yambo are considered oligotrophic (Fig. 25.24). Lakes Mohicap and
Sampaloc are mesotrophic, while Lakes Bunot, Calibato, and Palakpakin are con-
sidered as eutrophic. The amount of chlorophyll-a in water is related to its tempera-
ture, nutrient content, light intensity, and wind. Anthropogenic activities such as
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Fig. 25.23 Phosphates (ppm) level of the Seven Lakes of San Pablo (means with different letters
are significantly different)

Fig. 25.24 Chlorophyll-a (μg/L) levels on the Seven Lakes of San Pablo (means with different
letters are significantly different)



improper sewage increase nutrients, such as nitrogen and phosphorus, which causes
algal growth (Limno Loan Program Manual n.d.). Another parameter that can
classify the trophic condition of a lake is the Secchi Disk Transparency. According
to the OECD, a transparency level of greater than 6.0 m is considered as oligotro-
phic, 6.0–3.0 m is mesotrophic, and below 3.0 m is considered eutrophic. Based on
the assessment, Lakes Pandin and Yambo are considered mesotrophic, while the
other lakes are classified as eutrophic based on the range set by the OECD
(Fig. 25.25).
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Fig. 25.25 Secchi Disk Transparency (m) on the Seven Lakes of San Pablo (means with different
letters are significantly different)

Another important water quality indicator in lakes is the biochemical oxygen
demand (BOD). It is the measurement of total dissolved oxygen consumed by
microorganisms for biodegradation of organic matter such as food particles or
sewage. The excess entry of cattle and domestic sewage from the nonpoint sources
and increase in phosphate in the village ponds may be attributed to high organic load
in these ponds, thus causing higher levels of BOD (Bhatnagar and Devi 2013). The
DENR set the recommended level of BOD for Class C water to 7.0 ppm. Ekubo and
Abowei (2011) set the aquatic system with BOD levels between 1.0 and 2.0 mg/L—
considered clean; 3.0 mg/L—fairly clean; 5.0 mg/L—doubtful; and 10.0 mg/L—
definitely bad and polluted. Based on the assessment, Lakes Bunot and Calibato
exceeded the recommended level of 7.0 ppm, which is considered to be polluted
according to Ekubo and Abowei (2011) (Fig. 25.26). The fish cage stations on the
lakes have relatively high BOD levels and tend to exceed the limit.

25.3.1.2 Fish Biodiversity
Participatory Rural Appraisal (PRA) results show that fish composition in the Seven
Lakes were very dynamic from 1940 to 2019, which can be attributed to species
introduction (Fig. 25.27). Based on the local ecological knowledge of San Pablo City
residents, introduced fish species are already present from the year 1940 to 1981,



while some of the native species include Glossogobius aureus, Giuris margaritacea,
and Leiopotherapon plumbeus. However, it can be noted that in the year 1981–2019,
these native species became absent in some lakes. Aside from the loss of some native
species in some lakes, the focus group discussion revealed that the abundance of fish
caught during this period diminished.
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Fig. 25.26 Biochemical oxygen demand (BOD) (ppm) on the Seven Lakes of San Pablo (means
with different letters are significantly different)

Table 25.4 shows the fish species composition present in the Seven Lakes
perceived by the community. The results indicate that dalag or mudfish is perceived
to be present in most of the seven lakes, namely Sampaloc, Bunot, Yambo, Pandin,
and Calibato. Consequently, there are various fish that they claimed are only present
in a single lake, for instance, carp, tigreng tilapia, and black mask in Calibato; eel and
starry goby in Sampaloc; tank goby in Bunot; and barangan in Yambo. Moreover,
participants coming from Lake Calibato have given the highest number of fish
species (11) present in their lake, followed by Lake Bunot (10) and Lakes Sampaloc
and Yambo (8).

A total of 620 individuals were collected from the Seven Lakes from July to
August 2019. The sampling was done during the onset of the wet season wherein the
rainfall volume started to increase. Highest number of collected fish samples was
recorded in Bunot Lake (n = 379), followed by Sampaloc Lake (n = 68), Mohicap
Lake (n = 62), Pandin Lake (n = 42), Palakpakin Lake (n = 30), Yambo Lake
(n = 24), and Calibato Lake (n = 15). The total number of fish collected was largely
represented by Amphilophus sp. (red devil) from Bunot Lake and Sampaloc Lake
and Oreochromis niloticus from Sampaloc Lake, Bunot Lake, Yambo Lake,
Calibato Lake, and Palakpakin Lake (Fig. 25.28). The occurrence of Vieja sp., an
aquarium fish, was first reported in Lakes Bunot, Calibato, Mohicap, and Palakpakin
in 2017, but there was no record of mechanism of introduction. O. niloticus is
commonly a cultured fish for aquaculture purposes. Results of Participatory Rural
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Appraisal (PRA) revealed that they are being stocked both in fish cages and in the
wild by the fish farmers. At present, it largely supports the local fisheries production
in San Pablo City (Fig. 25.29).
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Fig. 25.28 Abundance of species collected from the Seven Lakes of San Pablo

25.3.1.3 Aquatic Macrophytes

25.3.1.3.1 Determining Aquatic Macrophyte Composition in Lake Pandin
and Lake Yambo

The lakes are known for their ecotourism and aquaculture activities, and home to
diverse aquatic plant species. Hydrilla verticillata was found in all transects around
the lakes’ periphery. In Lake Pandin, E. crassipes and H. verticillata were frequently
identified together especially in points 1 and 2 (near households) and 5 (near
vegetation). All the five aquatic macrophytes were recorded in sampling points
1 and 2, which were adjacent to the households. In Lake Yambo, H. verticillata
was found in the lake’s margin and was present in all sampling points, similarly with
Lake Pandin. Hydrilla verticillata, P. stratiotes, and I. aquatica were found in
sampling point 1, P. stratiotes and E. crassipes were found in sampling point
2, and E. crassipes was found in sampling point 3. Notably, only P. stratiotes was
included in the sampling point.

As observed, H. verticillata was found to be the most abundant in Lake Pandin
and Lake Yambo, possibly indicating the dominance of the species throughout the
lakes’ water. Hydrilla verticillata is native to Asia, in which it flourished in a wide
range of freshwater environments, particularly lakes, resulting in its aggressiveness
(Go Botany 2020). This aquatic plant is particularly aggressive in areas where water
is regularly disturbed by anthropogenic activities, such as the twin lakes. Hydrilla
produces the majority of its biomass near the water’s surface, forming a dense mat



structure (Olson 2004). The ability of Hydrilla to thrive in a wide variety of
environmental conditions allows it to exceed other aquatic plant species and domi-
nate the water body, as it can be seen lining the lakes’ water margin with a few other
aquatic macrophytes.
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Fig. 25.29 Fish samples collected from seven lakes: (a) Chanos chanos, (b) Channa striata, (c)
Oreochromis niloticus, (d) Oreochromis sp. (red tilapia), (e) Parachromis managuensis, (f) Tilapia
sp., (g) Vieja sp. (red devil), (h) Vieja sp. (green flowerhorn), (i) Vieja sp. (mixed red and green
flowerhorn), (j) Clarias batrachus, (k) Barbonymus gonionotus, (l) Cyprinus carpio, (m)
Glossogobius aureus, (n) Giuris margaritacea, and (o) Leiopotherapon plumbeus

According to a study by CABI (2016) on H. verticillata, it poses economic and
ecological risks to water bodies and the aquatic ecosystem (CABI 2020). Along with
its aggressive growth underwater, this macrophyte species may cause economic
damage to the lake. Hydrilla verticillata was recorded in Lake Pandin and Lake
Yambo, which are both ecotourism destinations that provided locals with livelihood
and visitors with recreation. As part of the recreation activity for tourists, they may
take a bamboo raft tour, known as a “balsa”, to explore the area. However, due to the
significant abundance of H. verticillata, it can hinder the movement of the bamboo
raft, which can ultimately prevent tourists from visiting the lakes. With the decline in



tourist arrivals, the locals will experience a reduction in their daily to weekly income.
Likewise, it may also disrupt the growth of other macrophyte species, resulting in a
reduction in native aquatic plants. This suggests that the proliferation of
H. verticillata in aquatic ecosystems, such as the Lake Pandin and Lake Yambo,
may result in the reduction of other macrophytes and alteration in ecosystem
structure and function. Furthermore, the assessment of the presence of aquatic
macrophytes and their diversity reflects the status of the ecosystem of the lakes.
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Table 25.5 Summary of aquatic macrophytes recorded in Lake Pandin and Lake Yambo, San
Pablo City, Laguna

No. Family Common name Scientific name

1 Araceae Water lettuce Pistia stratiotes Linn.

2 Convolvulaceae Water spinach Ipomeoa aquatica Forsck.

3 Hydrocharitaceae Water thyme Hydrilla verticillata (L. f.) Royle

4 Nymphaeaceae Waterlily Nymphaea rubra

5 Pontederiaceae Water hyacinth Eichhornia crassipes (Mart.) Solms-Laub

Lake Pandin and Lake Yambo are oligotrophic lakes that are known for their
ecotourism and small-scale aquaculture activities. The lakes are considered as a
freshwater ecosystem; thus, invasion of aquatic macrophytes is apparent in the area.
Table 25.5 shows the list of aquatic macrophytes found in Lake Pandin and Lake
Yambo, along with their common and scientific names.

A total of five species of aquatic macrophytes under five different families were
recorded in Lake Pandin. These macrophytes were H. verticillata, E. crassipes,
P. stratiotes, I. aquatica, and N. rubra. Notably, N. rubra is only present in Lake
Pandin. It was stated by some locals that N. rubra was deliberately planted in the
lake for aesthetic purposes. Meanwhile, only four species of aquatic macrophytes
under four families were recorded in Lake Yambo. These macrophytes were
H. verticillata, E. crassipes, P. stratiotes, and I. aquatica. These were the same
species of macrophytes that were also found in Lake Pandin, but without the
presence of N. rubra. In both lakes, H. verticillata was found to be covering both
the lake’s margin or periphery.

Table 25.5 shows the list of aquatic macrophytes recorded in both lakes such as
H. vertcillata, N. rubra, E. crassipes, I. aquatica, and P. stratiotes. Hydrilla
verticillata is a tropical and subtropical native plant to Asia and Indian
subcontinents. It is considered invasive in foreign waters and aggressive in its native
environment. It has been reported to infest a variety of freshwater habitats, including
wetlands, rivers, and lakes, particularly Lake Pandin and Lake Yambo. It was
observed along the margins of both lakes as a submerged macrophyte that is
aggressively developing in the form of dense mats on shallow water (Valley and
Bremigan 2002; Kissoon et al. 2013).Hydrilla can invade a deep-water environment
where other native macrophytes struggle to survive and can effectively displace
them. In the waters it invades, this macrophyte can be both beneficial and harmful.
Hydrilla is known to tolerate a wide range of water conditions and disturbances, but
its growth is restricted in areas with high salinity levels. Low-saline environments



such as Lake Pandin and Lake Yambo provided an ambient habitat for a variety of
aquatic macrophytes. According to studies, a dense population of Hydrillamay raise
pH levels. Without any native predators to control its proliferation, the respondents
control it by local harvesting that is led by the head of the community.
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Table 25.6 shows each transect and cover the extent of aquatic macrophyte cover,
and abundance in terms of count per species. In both lakes, Hydrilla has the highest
cover and count. According to a study on Hydrilla, it has the potential to proliferate
rapidly, posing a serious threat to the bodies of water it has infested (CABI 2020). As
observed in Lake Pandin and Lake Yambo, H. verticillata was the most frequently
recorded and abundant species of macrophyte. It is an Asian native that can thrive in
any freshwater environment and has become aggressive (Go Botany 2020). It is
particularly aggressive in areas where water is often disturbed, such as the twin
lakes, because of ecotourism and aquaculture activities.

Other aquatic macrophytes such as P. stratiotes, I. aquatica, N. rubra, and
E. crassipes were also abundant in Lake Pandin; however, they covered a smaller
proportion of the lake surface than H. verticillata. In Lake Yambo, P. stratiotes and
I. aquatica were both abundant but had less coverage, while E. crassipes had both
less coverage and abundance than the other aquatic macrophytes (Fig. 25.30). This
may be attributed to the ability of H. verticillata to thrive in a wide range of
environmental conditions, allowing it an advantage over other aquatic macrophytes
in terms of cover and abundance on the lake’s periphery. Nevertheless, H.
verticillata poses an ecological threat to the environment it has invaded. It forms
dense mats underwater by growing its biomass near the surface and submerging the
majority of its body in water (Olson 2004). It can clog canals and irrigation systems,
as well as block the inlet or exit of any bodies of water, resulting in decreased water
flow. The high coverage and abundance of H. verticillata can also cause difficulty in
water access, resulting in fewer visitors and a reduction in aquatic species of flora
and fauna.

Hydrilla verticillata, also known as water thyme, thrives in freshwater habitats
such as streams, marshes, ponds, and lakes with a salinity of 7%. Similar to twin
lakes, it can develop in oligotrophic (low nutrients) to eutrophic (high nutrients)
conditions. As a result, it was the most frequently observed macrophyte in both
lakes. Hydrilla has a higher dominance than other aquatic macrophytes, contributing
to the high aquatic plant diversity of Lake Pandin with 435 individuals. The Jaccard
index of similarity for Lake Pandin and Lake Yambo was 80%, indicating that
macrophytes in the two lakes were identical (Fig. 25.30).

25.3.2 Socioeconomic Indicators

Table 25.7 shows the calculated carrying capacity (CCi), which was derived by
dividing the actual value to the carrying capacity limit value of each socioeconomic
indicator. Meanwhile, Table 25.8 shows each indicator’s actual and maximum
values, which were used to compute the CCi. Results showed that Lake Sampaloc
has the highest calculated carrying capacity in terms of the population living around
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–

the lake, followed by Lake Bunot. Lake Sampaloc is considered to be an urban lake
as it is located in the city proper. In terms of annual income from aquaculture, Lake
Calibato appeared to have the highest calculated carrying capacity, followed by Lake
Palakpakin. Together with the other two aquaculture lakes (Bunot and Sampaloc),
these two lakes have a high number of fish production yearly. Meanwhile, Lake
Bunot was found to have the highest calculated carrying capacity both in terms of the
number of fish pens and area occupied by fish pens (ha). According to a study
conducted by Brillo (2015), Lake Bunot is in the worst condition among the seven
lakes of San Pablo due to being oversaturated with fish pens and cages. This is also
the lake with the highest number of flowerhorn found in this study.
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Fig. 25.30 Aquatic macrophytes in Lakes Pandin and Yambo

Table 25.7 Calculated carrying capacity (CCi) for each socioeconomic indicator for the seven
lakes

Indicators

Lakes

Bunot Calibato Palakpakin Sampaloc Mohicap Pandin Yambo

Population
living
around the
lake

0.059 0.005 0.019 0.078 0.002 0.004 0.001

Income from
aquaculture
(annual)

0.099 0.658 0.341 0.090 0.098 0.044 0.023

Income from
tourism

– – -0.105 – 0.059 0.063

Area
occupied by
fish pens
(ha)

0.067 -0.490 -0.272 -0.186 0.031 0.018 0.015

Number of
fish pens

0.066 -0.476 -0.371 0.018 0.024 0.015 0.016

Area for
recreational
activities
(ha)

– – 0.020 0.005 0.017 0.004
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In terms of income from tourism, Lake Yambo was found to have the highest
calculated carrying capacity, followed by its twin lake, Pandin. Based on the water
quality parameters evaluated by LLDA from 2002 to 2005, Lake Yambo has the best
water quality of all the seven lakes. Apparently, Lake Sampaloc and the twin lakes
are the only lakes found to have actual and carrying capacity limit values among the
seven lakes as they are the only lakes being utilized for ecotourism purposes since
the beginning of twentieth century. Lake Mohicap, however, has recently been
included in the lakes, which are open for tourists. Furthermore, Lake Sampaloc
was found to have the highest calculated carrying capacity in terms of the area for
recreational activities, perhaps, because this lake is an open park with various
entrance and exit ways, wherein both locals and tourists can enjoy its beautiful
sceneries for free.

The seven lakes of San Pablo are considered important sources of livelihood for
fishermen as well as recreational sites for locals and tourists. Results of the KAP
survey implied that despite the high economic status and educational attainment of
the people living near cities like San Pablo, where Lake Sampaloc is directly located,
the residents can still have lower environmental awareness, attitudes, and practices.
Perhaps, the main reason why residents of Lakes Yambo and Pandin as ecotourism
lakes were observed to have higher KAP on SWM is their dedicated involvement in
promoting sustainable tourism since these lakes are great source of livelihood for
them, and they benefit from taking care of it as well. More so, the residents are being
incentivized when they collect their waste and bring them to the nearest material
recovery facility (MRF), particularly in Lake Yambo.

25.3.3 Tourism Indicators

The tourism carrying capacity (TCC) of Lakes Sampaloc, Yambo, and Pandin were
evaluated. The variables needed for computing the tourism carrying capacity were
the size of the lake intended for tourism activities, points of activities, infrastructures
and facilities available, and amenities for tourists. Following the manual of Calanog
(2015) of the Department of Environment and Natural Resources—Ecosystem
Research and Development Bureau (DENR-ERDB), the determination of the carry-
ing capacity was based on the Boullon’s (1985) carrying capacity mathematical
model (Fig. 25.31), which determined the standard requirement of the visitor, such
as space, time, and other needs, while enjoying an activity, such as swimming.

Figure 25.32 showed the data on tourist arrivals during the last 5 years. It revealed
that the most obvious peak of arrivals is at Lake Sampaloc. This is due to the
accessibility in the area and is located within the city proper and has several
entrances, while both Lakes Yambo and Pandin require an entrance fee and limited
time (at most for 2 h). The year 2019 data was used to evaluate the capacity of the
lake based on the number of tourists who visited the area.

In the BCCMM, the basic carrying capacity (BCC), potential carrying capacity
(PCC), and real carrying capacity (RCC) were computed and then used in determin-
ing the total tourism carrying capacity (TCC) of an area (Fig. 25.33).
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Fig. 25.31 Determination of
the tourism carrying capacity
of ecotourism lakes. RCC real
carrying capacity, PCC
potential carrying capacity,
BCC basic carrying capacity.
Source: Calanog (2015)

Fig. 25.32 Annual trend in the number of tourists visiting Lake Pandin, Lake Sampaloc, and Lake
Yambo from 2015 to 2019. (Source: City Tourism Office of San Pablo)

The calculated RCCs for swimming, rafting, fishing, and sightseeing and photog-
raphy in Lakes Pandin and Yambo were less at 296, 165, 106, and 284 persons per
day and 214, 167, 108, and 168, respectively. When compared with tourist arrivals
data per day in 2019, these RCCs have not been exceeded so far. However, Lake
Sampaloc showed that the RCCs in all the present recreational activities such as



picnicking, biking, jogging, and areas for exercise (Zumba and aerobics) have been
exceeded with an estimate of 1183 tourists per day compared to the estimated
computed carrying capacity of 1019, 38, and 557, respectively. The calculations
made were also based on the set limiting factors—typhoons, rainy days, available
time tourists may enjoy sightseeing and photography, and the rank of the activity
based on the responses in the questionnaires.

504 D. B. Magcale-Macandog et al.

. r
. r

Fig. 25.33 2019 tourism carrying capacity estimation in Lakes Pandin, Yambo, and Sampaloc.
RCC real carrying capacity epresents the number of tourists that does not exceed the RCC vs
2019 tourists’ arrival epresents the number of tourists that exceeds the RCC vs 2019 tourists’
arrival

This was based on the 250 tourists interviewed during the wet and dry season for
Lake Pandin, and 24 and 75 tourists visited Lakes Yambo and Sampaloc, respec-
tively, who responded to the Google forms distributed during the pandemic season.
The TCC computation done was also based in consideration with the area intended
for tourism activities, the recreational activities available for the tourists, as well as
the declared limiting factors applicable in the site. Further recommendations in
maintaining the lake’s biophysical state as the tourists emphasize the preservation
of the scenic view of Lake Pandin. However, the tourism association is
recommended to enhance the tourist facilities in consideration with sustainable
tourism.

25.3.4 Ecological Carrying Capacity (ECC) Modeling and Simulation

25.3.4.1 Carrying Capacity Level (CCi) and Carrying Capacity Limit
(CCimax)

The actual value of carrying capacity level (CCi) and the carrying capacity limit
value (CCimax) of each indicator are presented in Table 25.8. These values were
obtained from various sources as discussed in the Sect. 25.2. The carrying capacity
level (CSi) of each indicator was obtained using Eq. (25.1).
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Lake Sampaloc has the highest actual value of people (400) living around the
lake. The lake is located at the heart of the city and is surrounded by residential and
commercial establishments. In all the seven lakes, the actual number of people living
around the lake is way below the maximum values (Table 25.9). The income from
aquaculture in Lakes Calibato and Palakpakin exceeded the maximum value of
income based on the 10% of lake area covered by fish cages. Lake Sampaloc has
the highest actual income from tourism compared with Lakes Pandin and Yambo.
The areas occupied by fish pens in Lakes Calibato and Palakpakin exceeded the
maximum area that can be covered by fish cages.

Lake Sampaloc has the highest actual value of tourists that visited the lake. In all
the tourism lakes, the tourists spend about 2 h of recreation activities in the lake. The
dissolved oxygen (DO) in Lakes Mohicap (8.16 ppm), Pandin (7.76 ppm), and
Yambo (7.82 ppm) are well above the threshold of 5 ppm for Class C waters.
Lake Bunot has DO level (4.66 ppm) a bit below the threshold level, while the
other three lakes (Calibato, Palakpakin, and Sampaloc) have DO levels a bit above
5 ppm. The chlorophyll-a levels in aquaculture lakes including Calibato, Mohicap,
Palakpakin, and Bunot were higher than the threshold level of 10. On the other hand,
ecotourism lakes including Pandin, Yambo, and Sampaloc have chlorophyll-a levels
well below the threshold level. Likewise, aquaculture lakes have phosphate levels
above the threshold levels. Thus, aquaculture lakes are classified as eutrophic lakes,
while ecotourism lakes are classified as oligotrophic lakes.

25.3.4.2 Carrying Capacity (CC)
For socioeconomic criteria, among the seven lakes, the carrying capacity for indica-
tor “population living around the lake” is highest in Lake Sampaloc, followed by
Lake Bunot. Lake Sampaloc is located at the center of San Pablo City surrounded by
residential and commercial areas. Similarly, Lake Bunot is surrounded by local
communities. The carrying capacity for the indicator “income from aquaculture” is
highest in Lake Calibato, followed by Lake Palakpakin. Both of these lakes are
aquaculture lakes with high fish production. For the indicator “income from tour-
ism”, ecotourism Lakes Pandin and Yambo have higher carrying capacity. For the
indicator “area occupied by fish pens”, Lakes Calibato, Palakpakin, and Sampaloc
have negative carrying capacities due to the exceedance of the maximum 10%
coverage of fish pens areas mandated by the Laguna Lake Development Authority.
Lake Pandin has the highest carrying capacity for indicator “area for recreational
activities”.

For tourism criteria, the carrying capacity for the indicator “number of tourists” is
highest for Lake Pandin. Lake Sampaloc has negative value for carrying capacity of
the indicator “number of tourists” as the number of tourists that visit the lake exceed
the maximum number that the lake can sustainably accommodate. Lake Yambo has
the highest carrying capacity for the indicator “facilities” as the lake has a number of
facilities that the tourists can use during their stay for recreation purposes in the lake.
Lake Yambo also has the highest carrying capacities for several indicators including
“manpower”, “cost of activities”, and “variety of water activities”.
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Among the indicators for the water quality and biodiversity criteria, the indicator
“dissolved oxygen” has the highest carrying capacity among all seven lakes. This is
because the DO levels of all the lakes are well above the threshold level set for Class
C waters. The indicator “Chlorophyll-a” is negative for all four aquaculture lakes
including Bunot, Calibato, Palakpakin, and Mohicap. Lake Calibato, on the other
hand, has the highest carrying capacity for nitrate-nitrogen. The carrying capacity for
phosphates is negative for aquaculture lakes including Bunot, Calibato, Palakpakin,
and Sampaloc. Likewise, the carrying capacity for the indicator “biological oxygen
demand” is negative for lakes Bunot and Calibato. Lake Yambo has the highest
carrying capacity for the indicator “native fish species” as it has the highest diversity
of native fish species. The carrying capacity for the indicator “volume of solid
wastes” is negative in aquaculture lakes including Bunot, Calibato, Palakpakin,
and Sampaloc.

25.3.4.3 Indicator Weights
The calculated average weights of the various indicators for the three criteria
(socioeconomic, tourism, and water quality and biological) are shown in
Table 25.10. For each criterion (i.e., socioeconomic, tourism, and water quality
and biological), the summation of weights of all indicators is equal to 1.00. The
weights of the indicators vary among the seven lakes. The weight of the indicator
“population living around the lake” is highest in Lake Palakpakin (0.329) and lowest
in Lake Yambo (0.064). The weight of the indicator “income from aquaculture” is
highest in Lake Calibato, followed by Lakes Bunot and Palakpakin. These three are
among the four aquaculture lakes in San Pablo City. On the other hand, among the
ecotourism lakes, Lake Yambo has the highest weight for the indicator “income from
tourism”, followed by Lake Pandin. The weights of the indicator “area occupied by
fish pens” are highest in the aquaculture lakes Bunot and Calibato. The weight of the
indicator “area used for recreational activities” is highest in Lake Pandin.

Comparing the values of the weights among the socioeconomic indicators,
“income from aquaculture” is highest in aquaculture lakes Bunot and Calibato. In
Lakes Palakpakin and Sampaloc, the indicator “population living around the lake”
has the highest weights. In ecotourism lakes (Mohicap, Pandin, and Yambo), the
weight of the indicator “income from tourism” is highest among the indicators.

Among the tourism lakes, the indicator “number of tourists” has the highest
weight. Among the water quality and biological indicators, the indicator “dissolved
oxygen” has the highest weight in Lakes Bunot, Calibato, Mohicap, and Pandin. The
indicator “native fish species” has a high weight in Lake Yambo.

25.3.4.4 SECC, TCC, WQBCC, and ECC of the Seven Lakes
Aquaculture lakes Bunot and Mohicap have high socioeconomic carrying capacities
(SECC) (Table 25.11). The negative SECC values of the other aquaculture lakes
including Palakpakin, Calibato, and Sampaloc are attributed to the high exceedance
of the number and area covered by fish cages over the maximum threshold values.
Lake Yambo has the highest tourism carrying capacity (TCC) (0.5256), followed
closely by Lake Pandin (0.4654). Aquaculture lakes have negative water quality and
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biological carrying capacities (WQBCC), while lake Pandin has the highest
WQBCC. Summing up all the three component carrying capacities yielded the
ecological carrying capacity (ECC).
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Table 25.11 Socioeconomic carrying capacity (SECC), tourism Carrying capacity (TCC), water
quality and biological carrying capacity (WQBCC), and ecological carrying capacity (ECC) of the
Seven Lakes of San Pablo City

Lake SECC TCC WQBCC ECC

Bunot 0.2905 0 -0.4080 -0.1174

Calibato -0.3038 0 -0.3437 -0.6476

Mohicap 0.1609 0.1698 0.3193 0.6500

Palakpakin -0.2134 0 -0.3896 -0.6030

Pandin 0.1574 0.4654 0.5890 1.2119

Sampaloc -0.0847 0.0244 0.1575 0.0325

Yambo 0.1219 0.5256 0.2072 0.8548

Fig. 25.34 Socioeconomic carrying capacity (SECC), tourism carrying capacity (TCC), water
quality and biodiversity carrying capacity (WQBCC), and ecological carrying capacity (ECC) of the
Seven Lakes of San Pablo City

For Lake Pandin, the highest contributor to its high TCC is the presence of
facilities in the lake. The tourists were satisfied with the available facilities such as
the rafts, bathrooms, and parking space. For Lake Yambo, it is the manpower that
significantly contributed to its high TCC (Fig. 25.34).

The water quality and biological carrying capacity (WQBCC) shows that Lakes
Pandin and Yambo have very satisfactory water quality conditions, which is
reflected by its WQBCC values of 0.5890 and 0.2072, respectively (Table 25.11).
For Lakes Pandin and Yambo, the highest contribution to its WQBCC is the
dissolved oxygen level. These lakes have a high dissolved oxygen concentration,
which is suitable for aquatic organisms. On the other hand, Lakes Bunot, Calibato,
and Palakpakin had negative WQBCC values of -0.4080, -0.3437, and -0.3896,
respectively (Table 25.11). The contributory factors to the negative WQBCC values



of these aquaculture lakes are the high concentration of phosphates, chlorophyll-a,
and the presence of introduced species.
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Overall, Lakes Yambo and Pandin had high (0.8549) and very high (1.2119)
ecological carrying capacity (ECC) values, which translates to high and very high
sustainability indices, respectively (Table 25.11). Lake Mohicap had a medium
sustainability index with an ECC value of 0.6500, while Lake Sampaloc had a low
sustainability index with an ECC value of only 0.0325. Lakes Calibato, Palakpakin,
and Bunot had negative ECC values, which translates to unsustainable lake
ecosystems. The water quality and biological carrying capacity (WQBCC) had
significantly contributed to the negative ECC values of these aquaculture lakes
(Fig. 25.34). The aquaculture management strategies such as excessive fish feeds
and number of fish cages have contributed to the deterioration of water quality and
biodiversity in aquaculture lakes.

Aquaculture lakes Bunot and Mohicap have high socioeconomic carrying
capacities (SECC). The negative SECC values of the other aquaculture lakes includ-
ing Palakpakin, Calibato, and Sampaloc are attributed to the high exceedance of the
number and area covered by fish cages over the maximum threshold values. Lake
Yambo has the highest tourism carrying capacity (TCC) (0.5256), followed closely
by Lake Pandin (0.4654). Aquaculture lakes have negative water quality and
biological carrying capacities (WQBCC), while Lake Pandin has the highest
WQBCC. Summing up all the three component carrying capacities yielded the
ecological carrying capacity (ECC).

The socioeconomic carrying capacity (SECC) shows that Lakes Calibato,
Palakpakin, and Sampaloc are unsustainable with -0.3038, -0.2134 and -
0.0847, respectively (Fig. 25.34). Lakes Bunot, Mohicap, Pandin, and Yambo
have low sustainability index. Based on the analysis, it showed that the number
and area occupied by fish pens affected the socioeconomic carrying capacity value
for Lakes Calibato, Palakpakin, and Sampaloc, which makes it unsustainable.

For the tourism carrying capacity (TCC), the twin lakes Pandin and Yambo have
medium sustainability index of 0.4654 and 0.5256, respectively. Lakes Mohicap and
Sampaloc have low sustainability indexes. For Lake Pandin, the highest contributor
to the TCC is the presence of facilities in the lake. The tourists were satisfied with the
available facilities such as rafts, bathrooms, and parking space. For Lake Yambo, it
is the manpower that significantly contributed to the TCC. This is due to the fact that
the area is solely used for ecotourism and no built-up was seen around the lake. The
civic organization welcomes tourists within Lake Yambo. In order to increase the
sustainability index for Lakes Mohicap and Sampaloc, the LGU and community can
focus on improving the facilities and the manpower to attract more tourists coming to
the lake.

The water quality and biological carrying capacity (WQBCC) shows that Lakes
Pandin and Yambo have very satisfactory water quality condition, which is reflected
on its index score of 0.5890 and 0.2072, respectively (Table 25.11). For Lakes
Pandin and Yambo, the highest contribution to its WQBCC is the dissolved oxygen
level. These lakes have a high dissolved oxygen concentration, which is suitable for
aquatic organisms. On the other hand, Lakes Bunot, Calibato, and Palakpakin had



negative WQBCC of -0.4080, -0.3437, and -0.3896, respectively. The highest
contribution to its negative WQBCC is the presence of introduced species.
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Overall, Lakes Yambo and Pandin had high (0.8549) and very high (1.2119)
ecological carrying capacity (ECC), which translates to high and very high
sustainability index, respectively. Lake Mohicap had a medium sustainability
index with an ECC value of 0.6500, while lake Sampaloc had a low sustainability
index with an ECC value of only 0.0325. Lakes Calibato, Palakpakin, and Bunot had
negative ECC values, which translates to an unsustainable ecosystem. The water
quality and biological carrying capacity had significantly contributed to the negative
outcomes of these lakes.

25.4 Summary and Conclusions

Anthropogenic activities such as aquaculture and ecotourism have largely
contributed to the livelihood of local communities located around the Seven Lakes
of San Pablo City. However, these activities pose threats to the degradation of the
environmental quality of the Seven Lakes. Thus, it is necessary to examine the
current ecological conditions and assess the sustainability of aquaculture and eco-
tourism activities in the seven lakes. An ecological carrying capacity modeling
framework consisting of three criteria, namely socioeconomic (SECC), tourism
(TCC), and water quality and biodiversity carrying capacities (WQBCC), was
developed by the researchers to assess the sustainability of the lakes’ current
environmental policies and management practices.

In this study, a series of ecological and social methodologies were created and
implemented to assess the sustainability of the aquaculture and tourism activities in
the seven lakes. The biophysical criterion involved the collection of water quality
indicators in the lake including temperature, dissolved oxygen, pH, BOD, total
dissolved solids, conductivity, chlorophyll-a, nitrates, phosphates, and transparency
during wet and dry seasons. Fish biodiversity and floristic surveys were also
conducted in the lakes to provide further insights regarding the lakes’ biodiversity
carrying capacity and sustainability. Meanwhile, social surveys such as Key Infor-
mant Interviews, Participatory Rural Appraisal (PRA) activities, and Knowledge,
Attitudes, and Practices (KAP) survey were conducted to gather primary data on the
socioeconomic and tourism indicators. The socioeconomic indicators include the
population living around the lake, annual income from aquaculture, income from
tourism, area occupied by fish pens (ha), number of fish pens, and area for recrea-
tional activities. Ecotourism indicators include the number of tourists, facilities,
manpower, cost and variety of activities, and number of hours spent in various
tourism activities. Moreso, secondary data from the LLDA, LGU of San Pablo, and
other stakeholders were used to supplement the primary data.

The values gathered from these sampling and surveys represented the actual value
of the various indicators. The maximum value or limit of each indicator was based on
water quality standards for the biophysical indicators, while the maximum values for
the socioeconomic and tourism indicators were based on literature and secondary



data from the LGU of San Pablo. Normalization of each indicator was done. Experts
and key respondents ranked the various biophysical, socioeconomic, and ecotourism
indicators following the Rank-Sum method to determine the weight of each indica-
tor. The normalized value of each indicator was multiplied with its weight, and then
summed for each criterion. The ECC is the summation for the three criteria.
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Results showed that aquaculture lakes Bunot and Mohicap have high socioeco-
nomic carrying capacities (SECC). The negative SECC values of the other aquacul-
ture lakes including Palakpakin, Calibato, and Sampaloc are attributed to the high
exceedance of the number and area covered by fish cages over the maximum
threshold values. Lake Yambo has the highest tourism carrying capacity (TCC)
(0.5256), followed closely by Lake Pandin (0.4654). Aquaculture lakes have nega-
tive water quality and biological carrying capacities (WQBCC), while Lake Pandin
has the highest WQBCC. Summing up all the three component carrying capacities
yielded the ecological carrying capacity (ECC).

Generally, it showed that ecotourism lakes Yambo and Pandin had high (0.8549)
and very high (1.2119) ecological carrying capacities (ECC), which translates to
high and very high sustainability indices, respectively. Lake Mohicap had a medium
sustainability index with an ECC value of 0.6500, while Lake Sampaloc had a low
sustainability index with an ECC value of only 0.0325. Aquaculture lakes Calibato,
Palakpakin, and Bunot had negative ECC values, which translated to unsustainable
ecosystems.

Estimating and illustrating the recreational and aquaculture carrying capacities of
the lakes can provide the LGUs’ constituents and policymakers a comprehensible
overview of the potential consequences of the unrestricted proliferation of the
various activities the lakes are currently hosting.

25.5 Recommendations

25.5.1 Future Research

This study further recommends for future researchers to study and analyze the
economic carrying capacity of each lake as it will be beneficial for the local
government unit to know their potential opportunities and concerns, which may be
associated with the lakes’ ecosystem services. Furthermore, assessment and moni-
toring models such as an integrative water quality index and Bayesian network could
be developed to predict water quality and fish kill incidence in the aquaculture lakes
of San Pablo. Monitoring of emerging contaminants such as microplastics and heavy
metals as well as pathogenic organisms could be done in each lake of San Pablo.

25.5.2 Lakes Management and Conservation

In terms of aquaculture, this study further recommends for LLDA and LGU of San
Pablo to continuously follow the 10% surface area limit for fish cages and pens in



each lake. Closely monitoring and controlling of highly invasive fish species (e.g.,
Flowerhorns in Lake Bunot) is highly encouraged. Aquaculture lakes (Bunot,
Calibato, and Palakpakin) are currently unsustainable and urgently need proper
management strategies by the local government unit of San Pablo. Moreso, the
government should make sure that the relocated illegal settlers from Lake Sampaloc
and other lakes have alternative livelihoods already, so they will not likely go back
near the lake to reside or catch fish for sustenance.
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For the lakes’ ecotourism, further studies on the basic carrying capacity of each
lake can be done. The determination of the areas intended for an individual swimmer
can be examined. The real carrying capacity may consider other factors that could
affect the decision of the visitor in choosing the lake for recreational visit. Ecotour-
ism facilities such as bathrooms and resting areas should also be improved in
ecotourism lakes such as Pandin and Yambo.

For the local communities, organizations, and the local government unit (LGU) of
San Pablo, the researchers recommend strengthening the strict implementation of
rules and regulations on solid waste management, especially in the water bodies near
public or urban places. Information, education, and communication activities such as
open forums, free discussions, and seminars pertaining to proper disposal of fishing
nets as well as tourism-related wastes should be done to protect and conserve the
lakes even at the barangay level. A material recovery facility (MRF), similar to what
Lake Yambo has, should also be constructed in each lake in San Pablo City to
encourage people to reduce, reuse, and recycle (3Rs).
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Assessment of the Contribution
of Freshwater Ecosystem Services
to the Hydropower Sector in the Kura–Araz
Basin

26

Rovshan Abbasov and Marlon Flores

Abstract

This study focuses on the ecosystem services (ES) in the Kura–Araz basin. The
study assesses the hydropower plant (HPP) dams’ sector and reviews additional
sectors including nature-based tourism, irrigated agriculture, and drinkable water
supply. In addition, the study briefly discusses the role and value of ecosystem
services that help to mitigate natural hazards related to poor ecosystem manage-
ment. The study used a basic Targeted Scenario Analysis (TSA) approach. The
TSA assesses current “business as usual (BAU)” ecosystems management
practices and the current value of ecosystem services under BAU. It uses sector
output indicators and compares them with potential “sustainable ecosystems
management (SEM)” outputs to assess losses and potential gains (or losses) of
shifting from BAU to SEM. The BAU approach is characterized by a focus on
short-term gains (e.g., <10 years), externalization of impacts and their costs, and
little or no recognition of the economic value of ES, which is typically depleted or
degraded. Under SEM, the focus is on long-term gains (>10 years); also under
SEM, the costs of impacts are internalized. BAU practices in freshwater ecosys-
tem management have a high cost to the economy of Azerbaijan. Part of this high
cost can be avoided by shifting to low-cost SEM practices. Despite the availabil-
ity of several laws and regulations governing the administration and management
of HPP and Dams in Azerbaijan, enforcement is weak. The legal framework is
also incomplete, there is no means for law enforcement, and no measurable
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indicators or means to collect and evaluate it. Therefore, no results of the
evaluation are fed into policy-making or to improve HPP/Dams management.
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26.1 Introduction

Freshwater bodies provide drinking and irrigation water, as well as important
ecosystem services (Postel and Carpenter 1997). Water is a source of life, one of
the most important conditions for providing food and recreation needs, and it is a
habitat for a wide range of animals (Aylward et al. 2005). Freshwater sources play a
significant role in everyday life and the economy of Azerbaijan, which is primarily
located in semidesert and temperate climates (Scandizzo and Abbasov 2022a). The
use and nonuse values of Azerbaijan’s freshwater ecosystems have traditionally
contributed to the well-being of water consumers. The use of water and related
environmental commodities or services in the consumption and production process
results in useful values (Abbasov and Smakhtin 2009; Abbasov and de Blois 2021).

Due to human-based factors, including unsustainable urban water consumption,
industry and infrastructure development projects, agriculture, and increased expan-
sion of the hydropower sector, freshwater ecosystems are among the most
endangered habitats in Azerbaijan. In the upper watershed, sectors such as agricul-
ture and forestry contribute by encouraging unsustainable forestry, farming, and
husbandry (extensive/overgrassing) practices. These unsustainable practices have an
adverse effect on freshwater ecosystems, which in turn has an adverse effect on basin
management.

This study focuses on the ecosystem services (ES) in the KARB (Kura–Araz
basin) part of Azerbaijan. The purpose of this study is not to assess the impact of
hydropower plant (HPP)/Dams development on the environment. It is recognized,
however, that HPP/Dam development can be significantly damaging to ecosystems
below the HPP/Dam if not managed following rigorous environmental standards
(BAU practices). Along with reviewing other industries such as nature-based tour-
ism, irrigated agriculture, and drinkable water supply, the study evaluates the
HPP/Dams sector. The research also briefly explores the value and role of ES in
reducing natural risks brought on by ineffective ecosystem management.

26.2 Methodology

The study adopted a Targeted Scenario Analysis (TSA) methodology. The TSA
evaluates the present value of ecosystem services under “business as usual (BAU)”
ecosystem management practices. To evaluate the costs and possible benefits



(or losses) of switching from BAU to SEM (sustainable ecosystems management), it
compares sector output indicators with potential SEM outputs. The BAU approach is
distinguished by a concentration on short-term advantages (e.g., 10 years), external-
ization of consequences and costs, and little to no awareness of the economic worth
of ES, which is often depleted or deteriorated. Long-term gains (over 10 years) are
the main emphasis of SEM, and the costs of consequences are internalized as well.
Maintaining ecosystem services creates the possibility of a long-term flow of
ecosystem products and services that can be considered when making decisions.
As a realistic and economical means of realizing long-term earnings, SEM methods
frequently assist ecosystem sustainability.

26 Assessment of the Contribution of Freshwater Ecosystem Services to. . . 521

The TSA approach serves multiple purposes such as:

• Analyze the HPP/Dam sector and compare “poor” and “good” environmental
management approaches to ascertain the possible economic gains or losses of
engaging in productive activities.

• Provide policymakers and industry with information on the advantages and
disadvantages of engaging in profitable activities that have an influence on
ecosystem services.

• Assist government representatives and the business community in incorporating
ecosystem management strategies into sectoral economic planning, company
business plans, and investment strategies.

• Present financial (and social) justifications to boost political will and bolster
financial backing for better freshwater and forestry ecosystem management.

• Based on data availability, the following indicators were selected to assess BAU
and SEM impact (Table 26.1).

The TSA study includes the following five steps:

• Definition of the scope of analysis: Freshwater ecosystems/HPP and reservoirs.
• Definition of sectors in agreement with stakeholders, and assessment of data

availability vis-à-vis potential indicators to be used.
• Based on data that is already accessible and first-hand research, the selection of

indicators to establish the BAU baseline and prospective SEM intervention.
• Create values/scenarios for BAU and SEM approaches.
• Formulation of recommendations for policy- and decision-makers.

26.3 Ecosystem Services and Problems of Freshwater
Ecosystems in Azerbaijan

The term biodiversity refers to “the variety of life on Earth at all its levels, from
genes to ecosystems, and the ecological and evolutionary processes that sustain it”
(Heywood and Watson 1995; Pimm et al. 1995; Abbasov et al. 2022; Dhyani et al.
2020, 2021; Scandizzo and Abbasov 2022b). Biodiversity includes not only species
we consider rare, threatened, or endangered, but every living thing as well—even



Sector indicators (5–10-year trends)

organisms we still know little about, such as microbes, fungi, and invertebrates.
Biodiversity is important everywhere; species and habitats in your area as well as
those in distant lands all play a role in maintaining healthy ecosystems. We need
biodiversity to satisfy basic needs such as food, drinking water, fuel, shelter, and
medicine (Maclaurin and Sterelny 2008).
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Table 26.1 Sample indicators used to construct BAU/SEM scenarios

Applied in the
study

Employment increase (no. of jobs) by subsector (direct, indirect, and
induced)

Income, average annual increase by subsector √
Annual revenue from green taxes √
Foreign exchange earnings (annual, from exports) √
Sector investment (government) √
Sector investment (private sector) √
Damage costs (because of BAU practices) √
Avoided damages costs (as a result of SEM practices) √
Production trend (volume and value) √
Sector production trend (as a percentage of GDP) √

An ecosystem is an interdependent system of living and nonliving organisms that
share a common habitat (Daily and Matson 2008; Kumar et al. 2022; Weißhuhn et al.
2017; Abbasov et al. 2022, b). An ecosystem is also a completely independent
system of living and nonliving organisms. The term “ecosystem services” describe
how ecosystems both directly and indirectly benefit people (UNEP 2014; Carpenter
et al. 2006). Numerous definitions of ecological services exist (Bennett et al. 2009;
Daily 2003). Abbasov et al. (2022) defined ecosystem services (ES) as the process
through which natural resources, such as trees, snow cover, and fertile soil, are
transformed into beneficial outcomes, such as wood products, winter tourism, and
arable land. ES might be characterized as a “service” offered to individuals by the
natural environment (Scandizzo and Abbasov 2022a).

Water supply, pollination, seed distribution, climate regulation, water purifica-
tion, nutrient cycling, and agricultural pest management are just a few of the services
that ecosystems offer (Daily 1997; Dhyani et al. 2018). Thirty percent of human
crops rely on the free pollination services provided by animals for many flowering
plants (Costanza et al. 1997; Pearce and Atkinson 1993, Flores and Adeishvili 2012).
ES are classified as provisioning, habitat, cultural, and regulating services
(TEEB Foundations 2010):

• Provisioning services are ecological functions that explain how ecosystems
produce materials or energy. They consist of items such as food, water, building
supplies, and other things.

• Regulating services are the services that ecosystems offer by serving as
regulators, such as controlling floods and disease outbreaks or regulating the
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Table 26.2 Ecosystem services provided by freshwater ecosystems

Provisioning services Regulatory services Cultural services Supporting services

Water (quantity and
quality) for
consumptive use
(drinking, domestic
use, and agriculture
and industrial use)

Maintenance of
water quality
(natural filtration and
water treatment)

Recreation and
tourism (river-rafting,
kayaking, hiking, and
fishing as a sport,
river viewing)

Role in nutrient
cycling (role in the
maintenance of
floodplain fertility),
primary production

Water for
nonconsumptive use
(for generating power
and transport/
navigation)

Buffering of floods,
erosion control
through water and
land interactions,
and flood control
infrastructure

Existence values
(personal satisfaction
and free-flowing
rivers)
Option values

Predator/prey
relationships and
ecosystem resilience

Aquatic organisms
for food and
medicines

quality of the air and soil. Habitat/support services are directly linked to the
habitats that support species and they have an indirect influence on human well-
being and other ecosystem services.

• Cultural services are nonmaterial benefits including recreation and tourism,
specifically eco-tourism.

The ecosystem services (ES) linked to hydropower and dam development are
classified under the category of “provisioning.” This refers to the human use of fresh
water for domestic use, irrigation, power generation, and transportation (Millennium
Ecosystem Assessment 2005; Postel and Carpenter 1997; Aylward et al. 2005;
Green et al. 2015). Table 26.2 shows the classification of these ecosystem services.

In the last several decades the protection and management of freshwater sources
became one of the major issues of modern societies. Threats to freshwater
ecosystems have reached global scales and require urgent actions from water
managers and policymakers (Gleick et al. 2001). These threats include climate
changes, contamination of surface and groundwater sources, degradation of fresh-
water ecosystems, and deforestation (Table 26.3). The impact of these threats at the
upper watershed level, where the catchment point is located, can severely affect
HPP/Dam productivity, as well as other sectors depending on freshwater ecosystems
such as irrigated agriculture.

Deforestation and unsuitable agricultural practices (extensive/overgrassing) in
Azerbaijan are considered to be one of the most important factors that threaten
HPP/Dams development. These unsustainable practices caused by poorly planned
agriculture and land use result in increased erosion and change in water flows. In
addition, there are other threats such as contamination of surface and groundwater.
Table 26.3 provides an overview of threats to freshwater/forest ecosystems and its
economic impact.



Caused by Environmental consequences Economic impact
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Table 26.3 Overall threats to freshwater/forest ecosystems

Threats to
freshwater
ecosystems

Climate
changes

Industrial and urban
air pollution

Increased evaporation from
water surfaces, reduced stream
flows, and reduced quantity
and quality of water

Reduced
production of
hydropower and
agriculture
Reduced revenue
Loss of jobs
Power shortages
Reduced foreign
exchange gains
from exports
Less revenue
from taxes to
government
Reduction of
pro-poor
investments and
poverty increase

Contamination
of freshwater
ecosystems

Industrial,
agricultural, and
urban effluents

Habitat pollution, reduced
quality of water, and
eutrophication

Degradation of
freshwater
sources

Agricultural,
industrial, and
municipal water
withdrawals

Reduced flows, narrowing and
extinction of migration routes
for fish, and habitat
degradation

Deforestation Urbanization,
agricultural
development, and
mass removal of
forests

Erosion, landslides, riverbed
sedimentation, increased
turbidity, increased
temperature, reduced oxygen,
and increased BOD levels

Currently, dam development faces rather serious problems in Azerbaijan. Large
areas, forests, and irrigated lands were inundated during the development of dams.
Most of the rivers in the Kura basin are the preferred spawning grounds for valuable
sturgeon fish and serve as migration routes.

Ecosystems that sustain the hydropower industry may see a slow but long-lasting
influence as a result of climate change. Warmer temperatures brought on by climate
change can particularly disrupt the water cycle, throwing off the balance between
precipitation and evaporation. As a result, excessive evaporation and low precipita-
tion can cause drought in some locations, while excessive precipitation might cause
drought in other areas. In addition, warm winter temperatures result in early melting
and more rain than snow, which affects river water flows. Natural disasters such as
floods, droughts, and storms have a direct impact on the water supplies used by
various industries, including the hydropower industry (Abbasov 2018). Because
water from HPP reservoirs can be used in a variety of industries, such as fishing,
recreation, and agriculture, water scarcity often results in conflict across sectors.

26.3.1 Overview of the Hydropower and Dams Sector in the Kura–
Araz Basin

Kura and Araz form the largest transboundary river system of the South Caucasus
region. The origins of the Kura can be found in east Turkey, and it flows across the
Ardahan plateau through Georgia and enters Azerbaijan. In Azerbaijan, the Kura
crosses the Kura–Araks plain, where it joins with the Araks and finally flows into the



Caspian Sea (Map 1). The length of the river is 1364 km and the basin is
188,000 km.
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The Kura River plays a vital role in both local and regional economies and has
been used to generate energy, irrigation, and water supply in Turkey, Azerbaijan,
and Georgia. Recently, there are 63 water reservoirs in the Azerbaijan Republic,
46 of which are located in the Kura–Araz basin (Fig. 26.1).

The hydropower sector plays an important role in the energy sector, contributing
a considerable amount of electricity produced. The installed capacity of all power
generations, in 2018, was 5842 MW, out of which 1147 MW came from the
hydropower sector (or 18.2%).

Dams are utilized in Azerbaijan for a variety of purposes, including irrigation,
hydropower generation, fishing, and recreation, but their primary function is energy
production. Freshwater ecosystems are essential to the production of electricity.
HPPs account for just 10% of all electricity output. A total of 3100 million kW/h
of electricity was produced in 2010.

There are nine HPPs in the Kura basin with various power capacities. In
Table 26.4, the information regarding the capacity and hydropower capacity of
these reservoirs is given.

As noted, to assess the current characteristics of HPP management vis-à-vis
economic impact, the study uses two scenarios: BAU and SEM. Below we give
characteristics of BAU and options for the SEM interventions for the HPP in the
Kura basin (Table 26.5). This table demonstrates the potential benefits of SEM

Fig. 26.1 Kura–Araz river basin (map of REC Caucasus)



No.

approaches. In order to define BAU baselines and possible SEM interventions,
several indicators were used; for example, silting reservoirs, power generation,
fishing, and recreation.
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Table 26.4 Characteristics of HPP reservoirs

Capacity of
reservoir
(km3)

Installed
capacity of
HPP (MW)

Area of
irrigated
lands (ha)

Production
in 2012
(MW/h)

Water
reservoir

Area
(km2)

1. Mingechevir 605 15.73 402 970,000 1,400,000

2. Shamkir 116 2.68 380 46,000 1,200,000

3. Yenikend 23.2 1.58 150 6000 447,000

4. Varvara 22.5 0.06 16 – 75,720

5. Sarsang 14.2 0.565 50 120,000 –

6. Araz 145 1.254 22 400,000 55,690

7. Bilav 0.1 22 – 75,230

8. Vaykhir 0.1 5 16,800 19,460

9. Sugovushan 5.8 0.59 7.8 23,000 120,000

26.4 Economic Benefits from ES to HPP/Dams Development

This section includes information on existing and planned, large and small HPPs; the
annual trends and forecast of electricity production of existing HPPs; and their
average market value (MV). The highest anticipated price that a buyer would
offer, and a seller would accept for an item in a free and open market is referred to
as market value. In accounting, it refers to the replacement cost of an item deter-
mined by subtracting its expected selling price from the estimated carrying, delivery,
and selling costs (Brenner et al. 2010; Krieger 2001).

Figure 26.2 shows HPP output under BAU and SEM. BAU is defined as the
current output. SEM, on the other hand, is calculated using the installed capacity
level. However, considering fluctuations in annual rainfall, siltation, and well-
managed dams, a discount rate of 10% is applied to further define SEM. The current
HPP output is estimated using HPP output data provided by HPPs or government
statistical information.

Figure 26.3 shows the current market value (MV) based on actual HPP output and
average electricity price (price per kW/h). It assumes that the current MV is similar
to the gross revenue. In this example, the estimated loss during the period
2000–2013 is equal to the aggregated potential MV (SEM) minus the current MV
under BAU.

Figure 26.4 shows the electricity output from HPP in Azerbaijan over the last
10 years, based on data provided by the State Statistical Comittee.1 Large

1www.stat.gov.az.

http://www.stat.gov.az
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Table 26.5 Characteristics of BAU and SEM practices in the hydropower sector

BAU SEM

• Lack of an HPP sustainable development
strategy, including watershed management
plans and funding
• Poor/absence of spatial planning policy,
limited capacity
• Deficient monitoring system
• Outdated system to assess the availability of
water resources (“sanitary flow”—10% of
average annual water flow)
• Development of HPPs in pristine ecosystems,
including ecosystems in protected areas
• Absence of freshwater ecosystems
management plans
• Deforestation and erosion in riverbeds in the
upper and mid basins; weak law enforcement,
absence of dam safety standards
• Overgrazing causes erosion in upper and
lower watersheds
• Deteriorated or obsolete infrastructure
(reservoirs, intake points and water canal
network, pumping stations, silting control)
• Lack of metering for domestic and industrial
users, and water fees for irrigation

• Sustainable HPP development strategy,
including watershed management plans and
funding
• Updated system for water availability criteria
for sustainable development of HPPs
Inventory of and monitoring of hydro-
resources
• Introduce spatial planning policy
Freshwater and forest ecosystems management
is an integrated part of the sector policy, and
funding to implement is available
• Deforestation and erosion control programs
are available, and regulations are enforced
• Grassland use and agriculture is planned and
managed in river basins
• Measures to eliminate illegal logging are
enforced; erosion and sediments in water are
decreasing
• Adequate zoning and land use policies and
enforcement
• Infrastructure is maintained (reservoirs,
intake points and water canal network,
pumping stations, silting control)
• Metering for domestic and industrial users,
and water fees for irrigation are applied and
collected
• Adequate investment in maintenance and
renovation
• Increasing institutional capacity
• Strong law enforcement
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investments were made in the HPP industry between 2005 and 2009, including the
installation of new, cutting-edge generators in various HPP. The addition of these
new generators helped to quickly increase the amount of electricity produced, but
during the past 2 years, there has been a dramatic decrease in the amount of
electricity produced. Little to no money was spent on watershed management during
this time (the water factory). This is a typical BAU scenario; it can involve dam
management issues, heavy silting, and deforestation. Figure 26.4 describes the level
of investment in HPP/Dams infrastructure over the last 10 years. Despite the
increasing trend for this period, the total amount of investments is rather low.
Under the BAU scenario, investment in infrastructure and equipment is high;
however, productivity is not sustained as illustrated in Fig. 26.4.
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Figure 26.5 illustrates economic losses in electricity production for the period of
2003–2012. It demonstrates that Azerbaijan’s real HPP production is substantially
lower than the combined installed capabilities of all HPP. For instance, although the
Mingechevir HPP has a 402 MW installed capacity, its actual production in 2012
was only 159 MW. The effects of many causes could account for this disparity. The
efficient management of dams is one straightforward explanation. It is thought that
Azerbaijan’s HPP dam management is BAU based on the significant discrepancy
between installed capacity and actual production. To estimate economic losses in
electricity production, we used the following formula:

EL=MP IC-APð Þ

where EL is the economic losses for 1 year, MP is market prices for the electricity
in 2012, IC is total installed capacity of all HPP in Kura basin, and AP is average
price.

A BAU-based economic loss is shown in Fig. 26.5. This is an estimate of the
discrepancy between the HPP’s installed capacity and its actual output of electricity.
The total economic loss under BAU from 2003 to 2012 is close to 4.5 billion USD
(from 2000 to 2012, it is 6.4 billion USD), which is significantly more than the
market value of the power produced during that time. Under SEM, an annual level of
productivity that is close to 2000 kWh is expected, whereas under BAU, we see
dramatic fluctuations in output.
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Conflict between stakeholders is a result of the existing BAU situation, which
includes decreased electricity production, decreased agricultural output due to less
water available for irrigation, and flooding in downstream regions as a result of
insufficient flood management. For instance, the Mingechevir dam and reservoir is
used for irrigation, flood control, and hydropower production. Therefore, the man-
agement of the dam and reservoir is of interest to at least three parties.

Flow regulation is the most effective method to manage floods effectively in
downstream part of rivers (Abbasov and Mahmudov 2009). Reservoirs can be used
to balance the flow in rivers with spring high flows, taking in water during high flows
and releasing it again during low flows. Seasonal regulations enable to accumulate
water in reservoirs and reduce peak flows during high seasons. In an effort to reduce
the frequency and severity of these floods, the Mingechevir reservoir was
constructed.

After the dam and reservoir were constructed, the highest peak flows were
reduced. Regulated flow from the reservoir altered the annual flow distribution of
downstream, and flood events were almost eliminated during the first 15 years after
construction. Although this was considered a shift to SEM, it was not sustainable,
and mismanagement of the upper KARB, combined with other determining factors,
resulted in increased floods and economic loss during the later years.

Reservoirs that are properly maintained should be able to store water during
strong flows. Although little money is spent on dam repair, state-owned HPP and
dam operators are interested in sustaining energy flow. For instance, Mingechevir
reservoir acts as a flood prevention depository during the high-flow seasons, lower-
ing the risk of flooding. To avoid a decrease in energy production, the Mingechevir
reservoir was not emptied in 2010, nonetheless, before the peak flow season.
Because the reservoir did not serve as a depository during the high flow, there
were floods, inundations of 50,000 ha of irrigated land, and the loss of dwellings.
Hydroelectric power stations in Azerbaijan produced less electricity by the end of
2013—nearly 75% less. This is a compelling argument in favor of switching from
BAU to SEM.

Likewise, the SCS claimed that the Azerbaijani hydropower plant issue began at
the end of 2012 and persisted throughout 2013. According to the data, electricity
production at HPPs for January–October 2013 only totaled 1,209,106 kW/h, which
is 24.5% less than for the same period in 2012. Estimates show that this will result in
extra economic losses totaling USD 184,292,000 alone in 2011–2012. Over the
years 2002–2012, the hydropower sector is estimated to have suffered a total
economic loss of close to USD 4.5 billion.
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26.5 Other Benefits and Risks of Hydropower Development

26.5.1 Nature-Based Tourism

Nature-based tourism is an important part of the world tourism industry. Growing
interest and diminishing areas of open spaces make reservoirs very attractive in
terms of nature-based tourism. They may be very important for tourism both in
mountain and lowland regions. Reservoirs can be used for all types of recreational
activities including rowing, surfing, swimming, and recreational fishing. Reservoirs
of the Kura basin that support hydropower generation may be used for all the
purposes.

Man-made natural attractions such as reservoirs that feed water into HPPs could
enhance the tourism. Following safety standards, HPP reservoirs are used for
outdoor watersports such as kayaking, canoeing, rowing, sport fishing, water skiing.

The assessment of nature-based tourism in any sector requires detailed analyses
of all resources, including location, natural peculiarities, quality and quantity.
Unfortunately, at the time of this study, there was no information available on
tourism in the targeted reservoirs. Therefore, to evaluate the current recreational
potential, a survey with five tourism experts was conducted. The survey was based in
a very simple methodology that reflects the subjective opinions of these experts
regarding real conditions around the reservoirs. Their opinions are included in
Table 26.6.

For example, the recreational potential of the Mingechevir dam/reservoir is
important. Mingechevir reservoir used to be one of the biggest Olympic rowing
centers in the former Soviet Union.

Recently, a new rowing center with modern standards has been built. This center
will likely increase rowing importance in the downstream part of the Kura river. In
2010, the new rowing center opened. The total area of the rowing center is 7.2 ha.
The center’s hotel may host 250 people simultaneously and it can accommodate
500 people to watch rowing games simultaneously. However, the hotel is only
directed to serve sportsmen, and prices are considered too high for ordinary tourist.
Local experts suggest that this center could host over 200,000 tourists every year. In
Azerbaijan, the average tourist daily spending is higher than USD 150. This number
can be used to produce a rough estimate of potential income from tourism. However,
given the fact that these reservoirs are not used for tourism purposes, the estimated
annual loss of revenue is roughly USD 180 million.2

Official statistics confirm that during the past 7 years, there has been significant
growth in the number of tourists visiting Azerbaijan. In 2006, there were 218,982
person-days of foreign visitors served; by 2012, this number had increased to
674,435.3 Investments in the tourism sector have been growing as well. This growth
was accompanied by a gradual reduction of investments in the tourism sector.

2www.amaf.az.
3www.stat.gov.az.

http://www.amaf.az
http://www.stat.gov.az


Moreover, investments in the tourism sector include mainly government
expenditures in large infrastructure; nothing on freshwater ecosystems management.
This is a typical unsustainable BAU practice that undermines the potential long-term
development of the tourism sector. This trend is illustrated in Fig. 26.6.
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Table 26.6 Tourism potential and challenges related to HPP/reservoirs

Reservoir Potential Key challenges

Mingechevir The rowing center near the reservoir
has a great potential. The reservoirs
can be used for rowing, fishing, and
surfing. Suitable climate conditions
prevent freezing of water throughout
the year, which makes reservoir very
attractive for tourists and sportsmen.
The potential annual number of
tourists is 150,000 with an average of
2-day stay

High prices for lodging. Limited
number of budget hotels. The absence
of general services such as restaurants,
car rental, trains from other cities, and
so on

Shamkir and
Yenikend

Attractive for fishing, surfing, and
boating. Mountains and natural
extremes are rather close. The
proximity of such amenities makes the
greatest contribution. The potential
annual number of tourists is 50,000
with an average 2-day stay

Slight remoteness from the residential
areas. No lodging opportunities. Not
easily accessible

Araz Attractive for fishing, surfing, and
boating. Mountain areas and many
types of natural springs are very close.
There are opportunities for extreme
tourism. Could be accessed from
mountain regions of Turkey. Potential
number of tourists is 150,000 with
2 days stay

Located directly on the border. Not
easily accessible from the Baku

Sarsang Attractive for fishing, surfing, and
boating. Mountain areas and many
types of natural springs are very close.
Potential number of tourists is 150,000
with 2 days stay

High risk war zone. Not accessible

It is worth noting that current tourism investments cover only central city of Baku
and are made by international hotel companies. So far, there were no considerable
government investments in regions, while number of tourists continues to increase.
This is a typical BAU approach that results in additional pressure on ecosystems
threatening potential long-term economic gains.

Nature-based tourism has great potential in the region. For instance, if 30% of
these people are interested in nature-based tourism in the target region, and the
average amount of daily spending per tourist is USD 110, including accommodation
($70), food ($20), transport ($10), and other expenses ($10), the total income to
touristic enterprises could reach USD 30,000,000. Attractions such as the new Kura
Olympic Rowing Center in Mingechevir, combined with other local natural



attractions, are essential to sustain the future economic benefits of nature-based in the
region. However, in addition to poor investment in tourism, the Mingechevir
reservoir tourism potential is at risk because of water pollution and sedimentation.
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Fig. 26.6 The trend of investment and person/days served in the tourism sector in the KARB in
Azerbaijan, BAU scenario (Source: State Committee of Statistics)

These estimated values show only part of the existing total spending and do not
reflect the full potential of this sector. Generally, tourism sector in Azerbaijan is still
weak and has poor incentives to develop. A shift to SEM, in addition to additional
investment, includes changes in visa policy, making new regulations concerning
tourism and creation market-driven mechanisms.

26.5.2 Drinkable Water

The increase in demand of drinkable water, in response to the growing population,
indicates the importance of this sector in Azerbaijan. Water is indispensable for
economic growth and poverty reduction (Scandizzo and Abbasov 2022a).

The largest city that is completely supplied from the reservoirs is Mingechevir,
which is the fourth-biggest city in Azerbaijan, with a population of about 100,000.
The water for Mingechevir is taken directly from the Mingechevir reservoir and then
distributed to residential users in urban areas with no treatment.

Shirvan and Karabakh canals are not only major sources of irrigation water but
also main sources of drinking water in most of places of Aran Economic District they
cross.

The main water sources in Azerbaijan are the transboundary Kura and Araz
rivers, which are affected by permanent pollution in the territory of neighboring
Turkey, Iran, Georgia, and Armenia (Abbasov and Smakhtin 2009; Suleymanov
et al. 2010). The quality of the drinking water is poor both in source and distribution
points. The rivers of Kura and Araz, which are the main sources of water supply for



Aran, are highly polluted, with pollution from oil and sulphates exceeds the maxi-
mum allowed concentration by 4–5 times in most cases. For example, concentrations
of As in the Araks river were 11.8–151.3 mg/L, which is more than two times higher
than accepted standards.
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Most of the small streams of the Kura basin are highly polluted by the mining
industry. Over the past 50 years, metal (Cu, Fe, Al) concentrations in some streams
have been increasing due to the growth of the mining operations in Azerbaijan and
Armenia. According to studies conducted by the Blacksmith Institute in 2012, new
gold mines in Azerbaijan threat to the health of thousands of people (www.az.dbisa.
org).

The 11 million people, who live in the catchment region of Azerbaijan’s water
sources, contribute to pollution by discharging untreated or inadequately treated
wastewater. Heavy metals from the mining sector (Cu, Zn, Cd, As), as well as
ammonia and nitrates from the fertilizer industry, are the main pollutants.
Concentrations might go up to nine times above average. Mineral oil and phenols
are six to three times higher than average, respectively.

The Araz River is said to be among the most turbid in the world, and excessive
turbidity raises the expense of treating water for drinking. Due to the noticeable
sediment flows in these rivers, conventional treatment and huge facilities are needed
to improve the water quality and minimize the burden of silt near the withdrawal
point. The Kura withdrawal sites were constructed immediately following the Kura
and Araz river confluence. Due to heavy pollution in upstream regions of the Kura
basin, waterborne diseases in the downstream regions of the Kura basin ravage the
health of thousands of rural people and result in huge economic losses (Scandizzo
and Abbasov 2012).

The City of Baku is the second major user of the regulated Kura water. Nearly
25% of the Greater Baku area that has more than 4 million of residents are supplied
by water withdrawal facilities located in a downstream part of the Mingechevir
reservoir. The whole system has a total capacity of nearly 13.5 m3/c (Scandizzo and
Abbasov 2022a).

Water losses are a major issue in developing countries, seriously undermining
efforts to develop sustainable water supply systems. Current estimates show that
average water losses in Asian cities are around 50–60% of total water released to the
networks, while for European countries these losses range between 10% and 40% of
the total water supply.

Several estimates agree on an average consumption in Baku of 400 liters per
capita per day. However, a World Bank survey (Scandizzo and Abbasov 2012)
confirms that real consumption is nearly 170 L/day. Nevertheless, the apparently
high individual water consumption rate is the result of several factors, mostly related
to the poor condition of the transmission and distribution pipe network, domestic
pipes and taps, as well as the absence of metering. As noted, the current system
provides little or no incentive for consumers to conserve water; this in turn reduces
water available in other parts of the network, and imposes higher operational costs
on the systems. Since water leaks are very common, nearly 60% of the total water

http://www.az.dbisa.org
http://www.az.dbisa.org


input is not used and directly being mixed with wastewater. This is a typical BAU
scenario.
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losses (million USD) under BAU 2000–2021

A water balance can be built to calculate how much water is lost from a system
based on measurements or estimates of the amount of water generated, consumed,
and lost (together with any water imported or exported). The simplest water balance
equation is:

TL= SI–C

where TL is the total loss of water, SI is the distribution network system input, and C
is the consumption.

By estimating the difference between the amounts of water distributed and
invoiced, it is possible to estimate total losses at the distribution network
(Fig. 26.7). This information is presented by state-owned Azersu JSC. Using the
aforementioned information and average cost of water (0.25 USD/m3), economic
losses can be estimated. Total economic loss over the period of 2003–2012 reaches
USD 1 billion 68 million. These losses include maintenance and operational costs
related to water transport, including treatment costs as well.

These losses are the manifestation of BAU scenario and may be partially avoided
by SEM interventions. The implementation of a SEM strategy could considerably
reduce these losses, particularly to control pollution sources and decrease water
treatment costs.
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26.6 Incidence of Natural Hazards

The most common hazard in Azerbaijan that could be linked to poor dam manage-
ment is floods. For example, downstream part of the Mingechevir dam is often
suffered from floods caused as a result of poor dam maintenance. As we have noted,
one of the goals of the construction of Mingechevir dam was to reduce the frequency
and severity of the floods. After the completion of the dam and reservoir, the highest
peak flows were reduced. Regulated flow from the reservoir altered the annual flow
distribution of downstream, and flood events were almost entirely eliminated during
the first 16 years after construction (Abbasov and Mahmudov 2009).

However, according to studies related to investigation of the watershed erosion
and channel silting confirm that the riverbed and reservoir silting was the main driver
of the last year floods. (e.g., Abbasov 2011; Abbasov and Mahmudov 2009).
Intensive deforestation and unsustainable agricultural practices in upper watersheds
increase turbidity of water in rivers and streams. This increased volume of suspended
sediments entering to the reservoirs from the upstream watersheds causes the
reduction of the capacity of the reservoir, and during high water seasons, floods
affect downstream areas.

Large floods have been a result of improper dam and watershed management
since 1993. Recent floods in the target area have an average annual impact of
200,000–250,000 lives. For instance, in May 2010, 50,000 ha of farmland were
flooded, tens of thousands of dwellings were demolished, and more than 240,000
people were affected. The estimated cost of the damage was USD 591 million. Poor
upper basin management and dam management were the primary causes of this flood
devastation (flow regulation).

As a result of flooding, the Government of Azerbaijan (GoA) boosted its state
budget in 2010 by up to USD 425 million. In 2013, USD 180 million were invested
to lessen the effects of floods. The estimated costs for 2014 come to over USD
185 million. The expenses over the previous 4 years has barely above USD 1 billion.
The annual expenditures for preventing floods are displayed in Fig. 26.8. BAU is
related to the high expense of the 2010 flood. By switching to SEM management,
this expenditure might be decreased, for example, to just USD 20 million each year
(Fig. 26.8).

In addition to comparing BAU and SEM scenarios, a comprehensive and yet
simple cost–benefit analysis (CBA) can be used to guide management interventions.
The first requirements of CBA are data on costs and benefits of an integrated SEM
management program. Costs may include forest management, erosion prevention,
dam management, canal cleaning, and construction of dykes along the canal.
However, the GoA does not investment on upper watershed management. As a
reference, the total investment on nature protection, in 2012, slightly exceeded USD
4 million and mainly covered recurrent costs of central and local offices of the
environmental departments.



26 Assessment of the Contribution of Freshwater Ecosystem Services to. . . 537

124230769.2308

424230769.2308

69230769.2308
97435897.4359

179487179.4872

237179487.1795

143979487.1795

11439487.1795

108979487.179599179487.1795
64579487.179564679487.1795

0.0

125.0

250.0

375.0

500.0

2005 2010 2015 2020

M
ill

io
ns

BAU SEM

Fig. 26.8 Annual costs of floods under BAU and SEM and SEM 2008–2015. (Source: Author’s
estimates based on official data)

26.7 Conclusions

The economy of Azerbaijan is heavily impacted by BAU practices in managing
freshwater ecosystems. By switching to low-cost SEM strategies, a portion of this
high cost can be avoided. Although there are numerous laws and rules governing the
management and administration of HPP and Dams in Azerbaijan, enforcement is
inadequate. Additionally, there are gaps in the legislative framework, no
mechanisms for enforcing the legislation, and no tools for gathering and analyzing
data. As a result, the evaluation’s findings are not used to develop policies or to
enhance HPP/Dams management.

The potential effects of present ecosystem management techniques in the upper
river basin are not taken into account in the current environmental impact
assessments of HPP/Dam projects (small and large). The performance of HPP/Dams
will suffer as a result, which could have further negative externalities affecting other
industries such as irrigated agriculture, tourism, fisheries, and drinkable water
supplies. The total cost of these negative externalities frequently exceeds the
advantages now received by the HPP/Dams business.

A comprehensive package of interrelated policy reform measures is required at
both the national and regional levels because improving ecosystem management in
the upper watershed necessitates the involvement of numerous sectors, including
HPP/Dams, agriculture, forestry, fisheries, tourism, and water supply. The introduc-
tion of sustainable HPP/Dams development in the Southern Caucasus is described as
necessitating this “policy mix” package.

Lack of information and data limited the scope of this study; hence, additional
research is needed, some of which would involve the establishment of primary data
baselines. Basic scenarios (BAU/SEM), however, were developed wherever it was



practical to inform businesses and decision-makers about the risks and financial
rewards of engaging in profitable activities that affect ecosystem services.
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It is clear that the BAU scenario significantly reduces long-term gains by causing
considerable economic losses across all industries. On the other hand, the SEM
might contribute to steadily raising environmental values and associated benefits. To
demonstrate how expensive BAU management may be, the following rough total of
economic losses in several BAU-affected sectors is used: USD 18.6 billion. It also
illustrates how, in the absence of SEM management, economic losses may keep
rising.
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Eutrophication Modeling of Chilika Lagoon
Using an Artificial Neural Network
Approach

27

Prasannajit Acharya , Pradipta R. Muduli , and Mira Das

Abstract

Chilika lagoon is the first Ramsar site in India located along the East Coast.
Prediction of the eutrophication of such ecosystems is a key approach for a
sustainable management perspective as it helps to formulate a management action
plan. In the present study, a data-driven modeling approach, an artificial neural
network (ANN), was used to predict eutrophication in the Chilika lagoon. Back-
propagation neural network model was used to relate the major parameters that
influence eutrophication indicators such as total nitrogen (TN), total phosphorus
(TP), Secchi disc depth (SD), dissolved oxygen (DO), biological oxygen demand
(BOD), pH, water temperature (WT), and Turbidity (TURB). The model
evidenced an acceptable level of prediction when compared with the results of
the field observations. This model’s most important determinant variables were
those with a high Random Forest (RF) model permutation relevance ranking,
which reduced the network’s structure and led to a more accurate and effective
process. It demonstrated a high agreement between BOD and Turbidity. As per
the TLI (trophic level index) estimation, the Chilika lagoon was observed to
maintain an oligotrophic condition. However, there was a trophic switchover
between the seasons and sectors. The study evidenced that the ANN was able to
predict the indicators with reasonable accuracy, which could be proved as a
valuable tool for the Chilika lagoon. This approach can be considered when
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developing a sustainable management and conservation action plan for Chilika
and other similar aquatic ecosystems around the world.
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27.1 Introduction

In the area of management of water resources, data-driven models are commonly
implemented since, in contrast to scientific and physical-based models (hydrologi-
cal). They require significantly less effort in terms of the quantity and quality of the
data required (Adnan et al. 2021). Artificial neural networks (ANNs) are computa-
tion models that find widespread use in the resources and environmental research
areas (Oyebode and Stretch 2019). This computational model (ANN) is intended to
function in a manner analogous to that of the human brain and nervous system.
Specifically, ANNs are utilized for the prediction of numerous different subfields of
aquatic ecology, such as benthic, planktonic communities, fishery assemblage, and
bio-manipulation evaluation (Kim et al. 2019). Numerous ANN water quality
modeling studies have been carried out over the course of the past two decades,
and the findings of these studies have been extremely advantageous (Goethals et al.
2007). One of their primary advantages is the capacity to represent complicated and
nonlinear processes, and the other is that they do not require hypotheses to be made
about the distribution of data or the linkages among dependent and independent
variables (Oyebode and Stretch 2019). In contrast to this, it gives users the ability to
properly simulate external linkages despite having a limited understanding of the
issue at concern (Bennett et al. 2013). Therefore, ANNs are considered to be the
optimal choice for predicting marine habitats, which are identified by their intricate
dynamics and nonlinear analyses (Kim et al. 2019).

Programmers that specialize in water quality monitoring, for instance, generate a
great deal of data with complicated structures (Muduli et al. 2017). However, there
are also many cases in which inadequate information and integrity may be a concern
in ecological quality evaluation and management (Panigrahi et al. 2007; Nayak et al.
2004). The lack of data might be due to different causes, including malfunctioning
sensors, insufficient financing, and unfavorable weather conditions during monitor-
ing. In the research done by Sahu et al. (2014), data scarcity of water resources was
brought to light as a problem. The authors successfully addressed this problem by
incorporating a k-fold test set of data incorporated into the ANN’s learning input set.
In general, when predicting with ANNs, the phenomenon of information scarcity or
small datasets is a concern in scientific domains, and the method of k-fold validation
set is widely used (Cigizoglu and Kişi 2005).

The relationships between variables of response and prediction are assumed to be
linear, and normal distribution is made by a significant number of statistical-based



models on the quality of water (Kuo et al. 2007). However, ANNs can accurately
show the nonlinear relationship among ecosystem variables (Maier et al. 2004).
Additionally, ANNs are able to use known data as input without making any prior
assumptions (Maier et al. 2004). A mapping of input and output variables is created
by ANN, which is used for predictions of chosen outcomes with respect to appro-
priate inputs (Wei et al. 2001). By using an appropriate combination of
interconnecting variables and model parameters, a neural network with multiple
layers can generate an approximation of any smooth, measurable function that exists
between the vectors of input and output (Agwu et al. 2020). ANN can model patterns
in the dynamics of algal development and predict algal blooms using environmental
variables (Smith et al. 2008). For instance, ANN models were required to predict the
quality of river waters (Zhang and Stanley 1997; Singh et al. 2009), shallow lakes
(Kuo et al. 2007), coastal areas (Lee et al. 2003a), and reservoirs (Young et al. 2011).
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The primary objective of predictive modeling is to maximize accuracy; hence,
machine learning (ML) methods are often carried out with input variables (predictor
variables) and one or more output variables (target variables) (Phillips et al. 2008).
To predict a water quality metric, all possible variables or a subset of them can be
employed. Due to this, the model may contain either very high or very low numbers
of inputs, and both of them are unacceptable (Maier et al. 2010). To solve this
problem, a predictor variable selection stage was taken into account in this study to
get rid of unnecessary data. To accelerate machine learning, the number of predictor
variables was reduced. The goal of lowering the variable numbers (predictor) in ML
was to increase the speediness of the algorithm’s process of learning, improve
predicted accuracy, and increase the interpretability of outputs (Motoda and Liu
2002; Mulia et al. 2013). Many factors influence the Chl-a level. A Random Forest
(RF) approach was used to identify the utmost important predictor variables for the
Chl-a level. RF modeling technique employs decision trees and is trained on a list of
source variables (predictor) to accurately predict the variables of the output (Strobl
et al. 2007). The RF method has a lot of possibilities. First off, there is no assumption
made regarding predictor variable probability distribution. Second, it can manage a
lot of factors and choose the most helpful ones from them (Park et al. 2015). RF
forecasts sidestep the overfitting issue that plagues different types of regression
techniques, which are nonlinear because they are derived from the average set of
numerous basic models (Were et al. 2015). Since each tree is constructed using an
arbitrary subgroup of the input data, no additional independent dataset is needed to
assess the model’s ability to predict outcomes (Motoda and Liu 2002). The RF
approach is also suitable for natural ecosystems with high physicochemical diver-
sity, leading to the eutrophication process.

Eutrophication is the primary factor responsible for the decline in water quality
that has been observed in several wetlands, estuarine, and oceanic environments all
over the world, which is one of the most critical problems that we face in the modern
era (Smith et al. 2006). The eutrophication of freshwater lakes has serious socioeco-
nomic ramifications that undermine human well-being. Experts are working on the
design of modern tools for more effective comprehensive monitoring of the quality
of water. A lake’s ecosystem is so dynamic and diverse that even a minuscule



fraction of external stress such as tourism activities with a biologically active
component input can cause eutrophication. Because of this, advanced modeling
techniques with different algorithms are employed for eutrophication forecast
scheme preparation (Dynowski et al. 2019). ANNs have already been utilized in
the modeling of eutrophication processes in lakes (Hadjisolomou et al. 2017). The
modeling of eutrophication can also make use of methods such as linear regression
and decision trees, as well as other methodologies. These approaches have the
benefit of requiring adjustments to a limited number of parameters. However, as
per expectation, performance might not be observed when the sample size (data) is
inadequate or when a set of hypotheses regarding distributions (linear or Gaussian)
are violated (Brown et al. 2020). Contrarily, the effect of nonlinearity, which is
frequently recorded among relevant water quality parameters, does not affect artifi-
cial neural networks (ANNs) (Hadjisolomou et al. 2017).
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As a Ramsar site, the conservation of Chilika lagoon’s ecology and biodiversity is
very crucial. Eutrophication and toxic bloom could be vital factors for the deteriora-
tion of the quality of water and health of the Chilika lagoon. This can cause an
overabundance of the growth of aquatic plants and algae, which can throw off the
natural equilibrium of aquatic life (Peetabas and Panda 2015). Indicators of water
quality are commonly utilized to predict eutrophication levels in lake waters
(Hadjisolomou et al. 2017; Hagan et al. 2014). However, for the Chilika lagoon,
accurate estimation could be challenging for two main causes. Initially, the geo-
graphical and seasonal patterns are influenced by altering the environmental, geo-
graphical, and climatic factors. The interdependence and interrelationship of the
variables could be the second factor that could contribute to the challenge of making
reliable predictions (Hagan et al. 2014). Consequently, the investigation of methods
that may quantitatively forecast eutrophication indicators is an essential endeavor to
undertake. Techniques that aid in the development of efficient measures to avoid
eutrophication is the need of the hour. Hence, considering the values of the lagoon
and its conservation measures, the prediction of the Chilika lagoon, Odisha, using
artificial neural networks (ANNs) is the goal of this proposed study.

27.2 Methodology

27.2.1 Study Area

Chilika lagoon, located in the state of Odisha, is the first Ramsar wetland site of India
and has provided support to 200,000 people through tourism (birds and dolphins)
and fishery as a source of income. The location of the lagoon is between the
longitudes 85°05′ and 85°35′ East and the latitudes 19°28′ and 19°54′ North
(Fig. 27.1). During the dry and wet seasons, a total water spread area of 704 km2

and 1020 km2, respectively, maintained in the lagoon (Acharya et al. 2022). The
Chilika lagoon is inhabited by a variety of ecosystems, including saltwater, freshwa-
ter, and marine water environments, ranging from shallow to deeper waters (Barik
et al. 2017). These ecosystems can be considered as four distinct geographical
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sectors: outer channel, central channel, northern channel, and southern channel
(Muduli et al. 2017).
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27.2.2 Analysis of Physicochemical Parameters

Water samples were collected from 33 sampling sites covering the entire lagoon on a
monthly basis from December 2018 to January 2020 for the analysis of Chlorophyll-
a concentration and other relevant parameters such as WT, pH, SD, DO, BOD,
Turbidity, TP, and TN. WT was measured with a glass thermometer with an
accuracy of ±0.01 °C, pH was measured with a Metrohm pH electrode (±0.001),
SD was measured using a Secchi disk, and turbidity was measured with a Thermo
Orion turbidity meter. TN and TP were measured by nutrient autoanalyzer following
methods by Grasshoff et al. (1999). DO, BOD, and Chl-a were measured as
mentioned in Muduli et al. (2022). All the data were divided into three seasons
considering March to June as summer, July to October as monsoon, and November
to February as winter. The sector-wise division was made following Muduli et al.
(2017), whose study used 15 years of salinity data of Chilika lagoon to prepare a
multidimensional scale (MDS) plot for sectoral division. Accordingly, the four
sectors were considered as the northern sector (NS), central sector (CS), southern
sector (SS), and outer channel (OC). The SPSS 20.0 software was used to predict the
model for annoyance (Chl-a) by adding the relevant parameters in the input layer.
The trophic level index (TLI) was calculated using the protocol followed by Muduli
et al. 2022. Analysis of variance (ANOVA) was conducted to find out if there were
any significant difference in Chl-a and relevant parameters with respect to sectors of
the Chilika lagoon.

27.2.3 Artificial Neural Network

The ANN study was performed following the stringent protocol as shown in the
flowchart (Fig. 27.2). The predicted performance efficiencies of each network were
evaluated with the help of two distinct varieties of neural network models. Results
from two neural network techniques were compared and evaluated. This modeling
study aimed to accomplish two different goals at the same time. First, an artificial
neural network was trained by employing a method known as k-fold cross-valida-
tion. Then, the outcomes of the models were compared with those generated with
various k values to the modeling results. In contrast, the element of the required
amount of computational time is considered as a criterion for selecting the ideal
model, with regard to the performance of ANN and the level of complication
(amount of time required for computation). Second, the optimal model’s capacity
for an explanation was investigated in order to identify whether or not it was suitable
for use as a tool for the management of water quality. In this study, the evidence was
presented to demonstrate how well the ANN was able to forecast the Chlorophyll-a



27 Eutrophication Modeling of Chilika Lagoon Using an Artificial. . . 547

 

NO

YES

START

ARCHITECTURE SELECTION:

*NO. OF HIDDEN LAYERS

*NO. OF HIDDEN NEURONS

*SELECTION OF ACTIVATION FUNCTION

*SET UP CONSTANT TRAINING TIME AND EPOCHS

RUN AND VALIDATION OF BEST 

NETWORK

INCORPORATION OF 5 ATTRIBUTES FOR INPUT LAYER TO ASSESS ANNONYANCE IN 

OUTPUT LAYER

SELECTION MLP NETWORK TECHNIQUE

WATER QULITY DATA COLLECTION (MONITORING SITE SELECTION, WATER

QUALITY INDEX METHOD SELECTION, SAMPLING AND WATER QUALITY ANALYSIS,

DATA NORMALIZATION FOR ANN MODEL)

ANN DESIGN CHOICE

IS RMSE 

MINIMUN?

NORMALIZATION DATASETS

NEURAL NETWORK (NN) TYPE CHOICE

PREDICTION OF DATASET USING VALIDATED MODEL WITH MINIMUM RMSE

ERROR IN 

TRAING?

NO

YES
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ð

levels in Chilika lagoon. A sensitivity analysis algorithm was utilized, which was
based on this model, to understand the impact of each environmental variable.

548 P. Acharya et al.

The objective of the study was to model the annoyance on the basis of input
variables such as pH, DO, BOD, Turbidity, WT, SD, TP, and TN. The multilayer
perceptron (MLP) network was selected for this study due to its ability to unfold
complex relationships among the datasets. The best model was picked up, which has
minimum MSE and RMSE value out of 2500 architectures (500 architectures for
each neuron, i.e., 1–5).

27.2.4 Min-Max Normalization

Analyzing datasets without normalizing them reduces the efficacy of a dataset with a
lower scale. So, data normalization is crucial when the attributes are of varying
scales, and it aids in keeping all datasets within the same range (0–1) (Negnevitsky
2011). This method was extremely beneficial to the multilayer perceptron (MLP)
technique. In the present study, the datasets were normalized as per the following
equation:

xμ = x- xminð Þ= xmax- xminð Þ 27:1Þ
where xμ is normalized score, xmax is maximum value, xmin is minimum value, and
x is value of each entry of dataset.

27.2.5 Structure of ANN

In the present study, SPSS 20.0 is used to find annoyance using a feed-forward
architecture. For annoyance prediction, an MLP network with a sigmoid activation
function is used. In general, the activation function transfers the generated values
between 0 and 1 or -1 and +1, and so on (Hew and Kadir 2017). The sigmoid
activation function, often known as the logistic function, is a popular ANN activa-
tion function that exists between 0 and 1 (Tian et al. 2015). A feed-forward neural
network is a classification algorithm that is biologically inspired. In general, an ANN
contains a number of basic neurons that act as processing units and are grouped in
layers. Each unit is linked to the previous layer’s factors. Each connection bears
varying weights or strengths. The network’s knowledge is encoded by the weights of
the connections. The units of a neural network are also referred to as nodes.

In general, data enters the input layers, passes through hidden layers made up of
multiple neurons, and finally reaches the output layer (Tian et al. 2015). When it is
used as a classifier, there is no feedback between the layers during normal operation.
Hence, it is known as feed-forward neural network. ANN models are created by
using data to depict the association between variables of input (x) and output ( y). In
order to use the data for adjustment of weights to reduce error, a data-driven model is
developed using the neuron shown in Eq. (27.2)
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y= f xð Þ þ error ð27:2Þ
where y is desired output variable and x is input variables.

When linear activation function is used in ANN, then neuron is considered as
linear model with weights corresponding to slopes shown in Eq. (27.3)

f x1, x2... xmð Þ= aþ w1x1 þ w2x2 þ . . .wmxm ð27:3Þ
where x1, x2, . . ., xm are the nodes in input layer, a is standard error, w1, w2, . . .,

wm are weighted coefficients to the corresponding nodes.
The eight input nodes (pH, DO, BOD, Turbidity, WT, SD, TP, and TN) were

utilized to predict annoyance level in the output layer. The datasets with one constant
hidden layer and a fixed ratio for testing (70%), training (20%), and hold out (10%)
were run 500 times for each of the neurons (1–5) as illustrated in Fig. 27.3, following
Kuo et al. (2007). The MSE and RMSE were calculated in each run to predict the
best model out of 500 runs in each neuron. The effective model for irritation in each
neuron was chosen and established on the lowest values of MSE and RMSE.
Accordingly, the best architectural model was selected from among the top five
models chosen from various neurons (picked from 500 runs in each neuron that is
1 neuron to 7 neurons). The weights and important bar graph were also used to assess
the importance of the input factors.

The MSE and RMSE were calculated using Eqs. (27.4) and (27.5), respectively
(Neill and Hashemi 2018)

MSE=
1
N

Xn

i= 1

yi -byið Þ2 ð27:4Þ

where N is number of elements of data from the whole test, yi is real value e, and bbyi is
predicted value.

RMSE=
ffiffiffiffiffiffiffiffiffiffi
MSE

p
ð27:5Þ

27.2.6 Training and Testing Parameters

An input random number seed was used to determine the initial values of the
weights, which were then assigned. The starting values of the weights were
established by using a random starting method, and they were arbitrarily set any-
where between -0.1 and 0.1. This range was used to test all the developed models.
All of the neural network models that were used for this research consisted of three
layers, with nodes in adjacent levels being fully connected to one another. This
meant that there was only one hidden layer, and it contained 20–60 hidden nodes.
The learning rate ought to be selectable in order to expedite the process of training
and arriving at a converged value for the weights. It was essential to establish a rate



of learning that was sufficiently low to converge and at the same time also high to
keep the amount of time needed for computing to a manageable level. Therefore, a
learning rate of 0.05 was decided upon and the value of the momentum was decided
to be 0.9.
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Partitions

• Training = 70%

• Testing = 20%

• Holdout =10%  

Architecture

� Activation function – sigmoid

� Training time =60 min

� Maximum number of epochs =500

Input layer

8 Inputs

Hidden layer

1 neuron  

500 iterations

RMSE 

(0.1452)

2 neuron  

500 iterations

RMSE 

(0.1671)

3 neuron  

500 iterations

RMSE 

(0.1321)

4 neuron  

500 iterations

RMSE 

(0.1620)

5 neuron  

500 iterations

RMSE 

(0.1385)

6 neuron  

500 

iterations

RMSE 

(0.1004)

7 neuron  

500 iterations

RMSE 

(0.1276)

Output layer

Annoyance (Chl – a)

8 neuron  

500 iterations

RMSE 

(0.1381)

Fig. 27.3 Schematic representation of ANN model for prediction of Chl-a from relevant water
quality parameters of Chilika lagoon
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27.2.7 Assessment of the ANN Model Performance

The accuracy of the model was determined by calculating four different metrics: the
mean squared error (MSE), the root mean square error (RMSE), the sum of square
errors (SSE), and the percentage error. The RMSE was used as a metric of goodness-
of-fit to rate the effectiveness of the ANN models. Since RMSE efficiently
characterizes an average measure of the inaccuracy in predicting changes in the
eutrophication indicators, it was chosen as the parameter. Table 27.1 displays the
models’ RMSE and correlation coefficient, respectively. To determine the impact of
the input variables and their contribution to the network output, more analysis would
be required (Lee et al. 2003a, b).

27.2.8 Random Forest (RF)

The potential of the RF model to quantify the relative contribution of the numerous
predictor variables to the outcome is an intriguing feature that can be helpful in
selecting the most significant ones. The out-of-bag (OOB) methodology via permu-
tation is a technique that assesses how effectiveness of the predictor variables toward
response variable prediction, and it was used to rank the most significant variables
(predictor). With increasing value of this measure, the impact of the predictor
variable grows (Huang et al. 2015). The model error was expected to change
depending on the permutation of predictor variable’s values due to its influences
on the prediction. The process entailed computing the gain in the MSE by OOB data
permutation. The prediction error on the OOB portion of the data was recorded for
each tree. The disparities between the two OOB errors were then normalized by the
difference’s standard deviation and averaged across all trees (Mitchell 2011).

Two simulations of the RF model were performed in the present study. Initially,
all the seven physicochemical indicators for Chl-a concentrations prediction were
evaluated. Second, whether the Chl-a predictors had any discernible geographical or
seasonal dependence was examined. To put it another way, investigation was also
made to know whether adding sample sites and seasons to the mix of observable
factors would help with predictions of Chl-a concentrations. Since RF models can
handle both quantitative and qualitative predictor variables, this was skilled by
inserting two additional categorical predictor variables, one for each of the
33 stations and the three seasons as well.

27.3 Results and Discussion

27.3.1 Variability of Eutrophication Indicator Parameters

The average values of the eutrophication indicators such as pH, DO, BOD, Turbid-
ity, WT, SD, TP, and TN recorded in the Chilika lagoon found to be significantly
lower than the threshold values specified for good health of surface waters (Smith



–

552 P. Acharya et al.

Ta
b
le

27
.1

D
es
cr
ip
tiv

e
st
at
is
tic
s
of

re
le
va
nt

eu
tr
op

hi
ca
tio

n
in
di
ca
to
r
pa
ra
m
et
er
s
us
ed

fo
r
C
hl
-a

pr
ed
ic
tio

n
fo
r
C
hi
lik

a
la
go

on

N
M
in
im

um
M
ax
im

um
M
ea
n

S
td
.d

ev
ia
tio

n
V
ar
ia
nc
e

T
hr
es
ho

ld
R
ef
er
en
ce

T
N

(μ
M
)

42
9

0.
29

13
5.
90

39
.2
7

29
.4
2

86
5.
82

46
–8

6
S
m
ith

et
al
.(
19

99
)

T
P
(μ
M
)

42
9

0.
17

48
.5
1

1.
33

2.
74

7.
53

0.
97
–3

S
m
ith

et
al
.(
19

99
)

D
O

(p
pm

)
46

2
4.
11

16
.0
0

8.
42

1.
75

3.
07

4
C
P
C
B
(1
98

6)

B
O
D
(p
pm

)
45

2
0.
06

12
.2
8

2.
85

1.
78

3.
17

3
C
P
C
B
(1
98

6)

pH
46

1
6.
36

10
.1
8

8.
26

0.
53

0.
28

6.
5–
8.
5

C
P
C
B
(1
98

6)

T
ur
b
(N

T
U
)

46
2

0.
56

57
4.
00

43
.4
9

79
.0
9

62
56

.1
9

30
C
P
C
B
(1
98

6)

S
D

(m
)

46
2

0.
04

2.
08

0.
61

0.
42

0.
18

<
2

S
m
ith

et
al
.(
19

99
)

W
T
(°
C
)

46
2

11
.8
4

35
.5
0

27
.8
9

3.
68

13
.5
5

–

C
hl
-a

(μ
g
L
-
1
)

42
9

0.
01

25
.7
1

0.
67

1.
62

2.
62

9
S
m
ith

et
al
.(
19

99
)



et al. 1999; CPCB, 1986) (Table 27.1). These indicators found to be significantly
varied with season and sector ( p < 0.05) (Fig. 27.4a, b). As reported by several
studies, these water quality parameters can be considered as indicators of health of
Chilika lagoon (Barik et al. 2017; Muduli and Pattnaik 2020; Muduli et al. 2022).
For instance, according to Smith et al. (1999), low SD, high TN, and TP reduce the
light penetration in water, which in effect reduces the amount of photosynthesis and
supports dominant respiration, which may decline DO levels. A lower DO may also
be the indication of pollutants (total organic nitrogen and total organic phosphorous)
in the ecosystem (Stefanidis and Papastergiadou 2019). As recommended by CPCB
(1986), a minimum DO level of 4 mg L-1 required for fisheries and propagation of
wildlife. Smith et al. (1999) recommended that a lake can be considered as oligotro-
phic, mesotrophic, eutrophic, and hyper-eutrophic if the Chl-a level of <3.5, 3.5–9,
9–25, and >25 maintained in the lake ecosystem. Accordingly, the present study
results indicated that the Chilika lagoon remained in good health (oligotrophic
condition) during the study period. However, if Chl-a data is not available, it will
be inappropriate to predict the trophic state of the aquatic ecosystems. The ANN
model in this case would be much helpful as the model is trained by earlier available
data and predicts for the required period (Srisuksomwong and Pekkoh 2020).
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27.3.2 Trophic Level Index

To find out whether the Chilika lagoon maintains a healthy trophic status, TLI was
calculated using the filed observed data of TN, TP, SD, and Chl-a. The average TLI
(<3) results of the entire lagoon for the complete study period showed that the
lagoon maintained oligotrophic condition. However, the lagoon found to have
trophic status switch over, i.e., from mesotrophic to eutrophic condition in some
regions of the northern sector, particularly in the summer season. The SD was the
main controlling factor to change the trophic status. The SD decline was due to the
mixing of water with high turbidity due to sediment churning by wind action in
low-depth regions (Barik et al. 2017; Jally et al. 2020; Muduli and Pattnaik 2020).
Although all sectors recorded to be within oligotrophic range, the highest was found
in the NS (2.4) followed by OC > CS > SS (1.4).

27.3.3 Correlation of Chl-a with Water Quality Parameters

Chl-a maintained a significant positive correlation with DO, BOD, Turbidity, and a
negative correlation with SD (Table 27.2). Similar result was also recorded by
Gebler et al. (2017) and Singh et al. (2009) for the Polish lowlands, Poland and
Gomti River, Uttarakhand, respectively. No significant associations were identified
with TN, TP, and WT. According to Huo et al. (2013), SD is a major component for
lake eutrophication. This finding was mirrored in this investigation as Chl-a, which
is considered as a proxy for eutrophication in aquatic ecosystems, (Smith et al. 1999)
was negatively correlated with SD. This was also further supported by a positive
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Fig. 27.4 (continued)
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correlation with turbidity. This indicated that the contribution of Chl-a is significant
for the turbidity of the water column of the Chilika lagoon unlike other studies where
total suspended solid (TSS) contributed the most (Patra et al. 2016). Correlation with
BOD could be due to the fact that higher Chl-a was recorded in the NS, where
comparatively higher organic load (BOD) sourced from riverine discharge has been
recorded, and lower Chl-a was observed in the SS, with least observed BOD
(Fig. 27.4a; Muduli and Pattnaik 2020). Significant correlation with DO indicates
that the photosynthesis process was the dominating phenomena in Chilika lagoon,
which controlled the DO level rather than physical phenomena such as wind action
and surfing (Muduli et al. 2022).
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27.3.4 Prediction Model for Chl-a Using ANN

Several studies predicted the major indicators for eutrophication, which are listed in
Table 27.3. Most of the studies used long-term data, which could be taken in the
present study due to certain data scarcity. However, an attempt was made using the
available data of 1 year similar to other studies by Bhagowati et al. (2022) and Strobl
et al. (2007). The selected effective models from 500 runs for various neurons with a
constant hidden layer, input and output layer, and their MSE and RMSE values in
this work has been listed in Table 27.4. The objective of 500 rounds of learning for
multiple neurons was to minimize error and improve model accuracy (EL Idrissi
et al. 2019). The MSE and RMSE values for the architecture “8 inputs → 1 hidden
layer (1 neuron) → 1 output,” “8 inputs → 1 hidden layer (2 neurons) → 1 output,”
“8 inputs → 1 hidden layer (3 neurons) → 1 output,” “8 inputs → 1 hidden layer
(4 neurons) → 1 output,” “8 inputs → 1 hidden layer (5 neurons) → 1 output,” “8
inputs → 1 hidden layer (6 neurons) → 1 output,” “8 inputs → 1 hidden layer
(7 neurons) → 1 output,” and “8 inputs → 1 hidden layer (8 neurons) → 1 output”
were 0.01817 and 0.134801, 0.017976 and 0.134073, 0.017465 and 0.132156,
0.019813 and 0.140757, 0.014658 and 0.12107, 0.01279 and 0.11054, 0.01543
and 0.12053, and 0.014720 and 0.13491, respectively. From Table 27.4, the best
prediction model to measure annoyance was found for the architecture “8 inputs→ 1
hidden layer (6 neurons) → 1 output”. The MSE (0.014658) and RMSE (0.11054)
values were the lowest of all eight best models of distinct neurons, and the network
structure explaining the dynamics of Chl-a annoyance (Fig. 27.5). In order to
eliminate the chances of overfitting the model, RMSE values were taken into account
(Ooi and Tan 2016). Figures 27.5 and 27.6 depict a comparison of the model’s actual
and predicted values and the residuals plot, respectively. A similar approach was
also made by Lee et al. (2003a) to establish a model for Chl-a prediction by
incorporating the water quality parameters (TN, TP, BOD, WT) as input layer by
observing the minimum MSE values of Chl-a.

The correlation coefficient for the model prediction generated during training and
testing for each neural network, as well as the RMSE for the Chilika lagoon are
shown in Table 27.4. It was clear that scenario 6 (Turbidity) indicated a score that
was comparable to both throughout training and testing. Additionally, the ANNs



Place of study Reference

presented in Table 27.4 that produced the scenario turbidity were appropriate for the
use in the prediction of Chl-a. Analysis of the primary parameters that influence the
reproduction of algae can be accomplished through the process of photosynthesis.
These factors include the TN and TP content of the water body, as well as WT and a
variety of other chemical and physical elements. It was found that the amounts of TN
and TP, in addition to the WT, had a positive correlation with the eutrophication
(Chl-a) (Wang et al. 2017; Bui et al. 2017; Luo et al. 2014). As a consequence, these
environmental parameters can be utilized to make accurate forecasts regarding the
development of eutrophication and Chl-a of lagoon (Mowe et al. 2007).
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Table 27.3 Prediction of eutrophication through ANN in aquatic ecosystems around the world

Computed
parameter by
ANN

Period
of data
used

Input parameter for
ANN

1 Lake Fuxian,
Southwest
China

Sl.
no.

TP, DO, SD, Chl-a DO, TN, Chl-a,
SD

5 year Huo et al. (2013)

2 Keban Dam
reservoir,
Turkey

Chl-a Chl-a 6 year Karul et al.
(2000)

3 Assam, India Water quality, Chl-a Chl-a 1 year Bhagowati et al.
(2022)

4 Amirkabir
Reservoir,
Iran

Water quality, Chl-a Chl-a 12 year Aria et al. (2019)

5 Imha Dam,
South Korea

Chl-a Chl-a 17 year Mamun et al.
(2020)

6 Maekuang
River,
Thailand

NH3, NO3, and PO4;
Secchi depth, BOD,
WT, pH

Chl-a and
M. aeruginosa
cells

2 year Srisuksomwong
and Pekkoh
(2020)

7 Florida and
the Southern
Blue Ridge,
USA

Water quality, Chl-a Chl-a 1 year Strobl et al.
(2007)

8 Menor
lagoon, Spain

Water quality, Chl-a Chl-a 4 year Jimeno-Sáez
et al. (2020)

9 Te-chi Dam,
Taiwan

Water quality, Chl-a DO, TP, Chl-a,
SD

15 year Kuo et al. (2007)

10 Tolo, Hong
Kong

Water quality, Chl-a Chl-a 3 year Lee et al.
(2003a)

11 Gomti River,
India

pH, TA, total
hardness, TSS,
COD, NH3, NO3,
chloride, PO4

DO, BOD 10 year Singh et al.
(2009)

12 Chilika
lagoon, India

TP, TN, Chl-a, SD Chl-a 1 year Present study
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Table 27.5 Sensitivity
analysis showing the
importance of eight envi-
ronmental variables used
for prediction of Chl-a
annoyance (relative error:
0.198)
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Fig. 27.5 Actual vs predicted values of Chl-a concentration in Chilika lagoon
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Fig. 27.6 Plot of the residuals model computed values of Chl-a in lagoon waters

Variables Importance Normalized importance

BOD 0.385 100

pH 0.276 71.7

TP 0.116 30.2

DO 0.084 21.9

SD 0.06 15.5

Turbidity 0.056 14.6

WT 0.013 3.4

TN 0.01 2.6

27.3.5 Importance of Variables

The importance of the factors such as BOD, pH, TP, DO, SD, Turbidity, WT, and
TN is demonstrated in Table 27.5. The model’s good performance has been
demonstrated in Fig. 27.5 by observing the relative error of 0.198. Lee et al.



(2003a, b) explained the model’s performance for sensitivity and annoyance by
taking the relative error into account. For the prediction of Chl-a annoyance, BOD of
exposure was found to be most important, whereas TN was of least importance.
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There was no distinct pattern produced by the ANN for other parameters, i.e., SD
and WT. According to Hadjisolomou et al. (2018), modeling limnological
parameters is a very specific instance activity, and the exact processes regulating
limnological parameters are complicated and typically their relationships are not
connected or studied easily. Since ANNs do not involve any hypotheses regarding
the model or the distribution of the data, their data-driven nature makes it difficult to
understand the linkages and interactions between the associated parameters (Teles
et al. 2006). Second, despite the fact that developed ANN is an effective predictor of
the Chl-a parameter, there are a variety of additional variables that could be crucial in
understanding the patterns of Chl-a that have been observed. According to
Napiórkowska-Krzebietke et al. (2020), cyanobacterial bloom dynamics and accu-
mulation in lakes are influenced by a variety of variables, including wind speed, even
though sediment resuspension by wind action is a typical phenomenon in shallow
lakes. The sensitivity analysis findings in relation to the WT were consistent with a
relevant modeling study of Chilika lagoon (Hadjisolomou et al. 2018) that looked at
the interactions between environmental factors with the use of an unsupervised
ANN. It was determined that the Chilika lagoon statistics were mostly related to
the WT. Since the Chilika lagoon is a shallow lake, the seasonality effect has an
impact on how well the temperature affects its operation.

A relatively rise in Chl-a that was found for a reverse change in the water
temperature and relates to months with low temperature was another intriguing
finding from the results of the sensitivity analysis. This increase might be due to
additional meteorological conditions or factors that exist during the summer and
monsoon. As an illustration, wind action is very heavy in these seasons and may
cause the release of phosphate and nitrogen from the sediments, which used to
support eutrophication (Liu et al. 2019). Likewise, based on the findings of the
sensitivity analysis, it was determined that the SD parameter’s role was difficult to
comprehend because it was linked to complicated processes like action of wind and
influx of nutrients from catchment during monsoon (Borowiak et al. 2020). Never-
theless, the ANN was able to link higher SD levels to higher algal production, which
might indicate that higher nutrient levels had an impact on the productivity of the
algae.

The mechanism of meteorological factors and eutrophication indicators are
critical and hence the relationships are frequently nonlinear (Paerl 2006). The
changes in the concentration of Chl-a levels in relation to the accompanying
nutritional variations that were seen during the sensitivity analysis can be
rationalized on the basis of this claim. The sensitivity analysis of ANN showed
that the TP had a bigger effect on algal output than the TN. When TP concentration
raised, the difference between TP’s impact and that of TN became more apparent.
The ANN simulation scenarios for the TN clearly demonstrated that the lagoon was
encouraging algal production and that a decrease in TN level was associated with a
decrease in Chl-a level. As a result, it was advised that nitrogen as well as



phosphorus should be of primary emphasis for the lake’s nutrient management.
Additionally, it was found that reducing both nutrients at the same time caused
Chl-a levels to drop more dramatically and was connected to the additive effects of
DIN and TP parameters (Hadjisolomou et al. 2017). For instance, according to a
recent study, Prespa lagoon is particularly dynamic in terms of increasing nutrient
concentration, and even minor contributions of nutrients from water fowl are linked
to cyanobacterial blooms (Verstijnen et al. 2021). This relationship between
nutrients (TN and TP) and how the Chilika lagoon relates to eutrophication was
clearly recorded by the ANN. The results of the ANN showed that a decrease in TP
was connected to a decrease in Chl-a levels, and vice versa. The strong links between
eutrophication and high influx of phosphorous recorded in freshwater ecosystems
give credence to this modeling scenario that was related to TP disturbances (Heisler
et al. 2008). The second scenario, which dealt with TN disturbances, likewise
demonstrated a drop in Chl-a levels with increased TN. Because the TN and TP
parameters behaved similarly, every rise in nitrogen levels was linked to an increase
in algal productivity (Akagha et al. 2020).
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27.3.6 Random Forest

Chl-a is a very crucial indicator of the level of eutrophication in water bodies
(Lu et al. 2016). The Chl-a concentrations in the Chilika lagoon were ranged from
0.1 to 25.71 μg L-1. The Chl-a concentrations in coastal ecosystems can have
intricate interactions with TN and TP and water quality parameters (temperature,
pH, salinity, dissolved oxygen, and Turbidity) (Jimeno-Sáez et al. 2020). RF is a
useful method from ML algorithms to deal with complex relation among these
variables. The Chilika lagoon data samples of the seven predictor variables (temper-
ature, pH, salinity, dissolved oxygen, Turbidity, TN, and TP), and one target variable
(Chl-a), served as the basis for training the RF model. The approach obtained an R2

score of around 0.62 and an MSE of 0.28. Figure 27.7 showed the OOB technique
using permutation’s ranking of response factor in accordance with its validity. Only
a few characteristics, such as Turbidity, Secchi depth, dissolved oxygen, and pH,
made a discernible difference in the estimation of the Chl-a content. Chl-a pigment is
vital for aerobic photosynthetic process. According to Frolov et al. (2012), the
turbidity affects the intensity of sunlight in the water column, which affects how
efficiently most algae can photosynthesize. This explains the high association
between turbidity and Chl-a.

Oxygen is produced by algae throughout the day, and they consume during the
night period. According to Béjaoui et al. (2016), oxygen is also acquired during
algae decomposition. In agreement with that, the present study also demonstrated a
considerable relation between dissolved oxygen levels and Chl-a concentrations.
Additionally, numerous research has shown the close relationship between pH and
Chl-a (Menendez et al. 2001). The additional predictor variables in the RF model
were TN, TP, salinity, and temperature in descending order of significance.



27 Eutrophication Modeling of Chilika Lagoon Using an Artificial. . . 563

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Turbidity SD PH DO TP TN BOD SALINITY WT

Ou
t-

of
-B

ag
 P

er
m

ut
ed

 P
re

di
ct

or
  

PredictorVarible 

Fig. 27.7 Importance ranking the predictors for the “first” RF model for the prediction of Chl-a in
the Chilika lagoon

Fig. 27.8 Random Forest
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A scatter plot that directly compares the forecasted and observed Chl-a levels has
been illustrated in Fig. 27.8. The fitted RF model performed substantially better than
the one Béjaoui et al. (2016) reported for the Bizerte lagoon (R2 = 0.51), and
similarly to the one reported for the Ghar el Melh lagoon (R2 = 0.64) (Béjaoui
et al. 2018). As a basis, the observed Chl-a concentrations for the Chilika lagoon
were predicted with more accuracy. It is well known that the number of observed
data is crucial to the predictive model’s accuracy (Béjaoui et al. 2016). In the Chilika



Table 27.6 The regres-
sion coefficients between
Chl-a levels and physico-
chemical factors in the
Chilika lagoon were
estimated using a statistical
analysis (coefficients
shown with (*) are signifi-
cantly at p-value <0.05)

lagoon, we employed monthly observations that lasted for around 1 year. In addition
to the RF model, a multivariate linear regression (MVLR) model was fitted for
evaluation. The predictor variables and Chl-a concentrations linear model
parameters (Estimate) were almost in agreement with the associations seen using
the RF model described in Table.27.6. The two most significant predictors of Chl-a
concentration levels were Turbidity and BOD (Table 27.6). The results of the RF
model were quantitatively validated by the linear model. The R2 for MVLR was
approximately 0.21. It was clear that the RF model, as opposed to the MVLR, better
represented the dependence of Chl-a concentrations on other variables. Using the
OOB technique by permutation, the quality of results was ensured. Thus, given that
the RF model has significant advantages over conventional correlative analyses, we
can assert that it might be used to better comprehend more complicated
interdependencies between variables.
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Estimate Std. error t-value p-value

Intercept 3.028 2.154 1.754 0.00757

TN -0.947 0.19 -0.304 0.00932

TP 0.247 0.065 -0.612 0.00687

DO 0.849 0.662 -3.18 0.00905

BOD -0.947 0.744 0.174 0.00401*

pH 0.372 -0.233 0.079 0.00421

Turb 0.329 0.72 -1.799 0.00358*

SD 0.34 0.349 0.33 0.00603

WT -0.771 0.491 -1.794 0.00816

This observation can support the assertion made by Maier et al. (2010) that
developing ANN models does not require a linear method when the input variables
are linked to the output of the model. Prior to doing any modeling analyses, all
variables were gone through treatments to standardize their distribution. The
MVLR’s performance was not enhanced by the modifications, though. It was
expected that there was a strictly nonlinear relationship among all of the variables.
Due to anthropogenic contribution and the effects of hydroclimatic factors such as
evaporation, temperature, precipitation, and so on, ecosystems are ruled by a multi-
tude of complicated phenomena (Viaroli et al. 2008). Chl-a levels were shown to be
linearly independent to the physicochemical parameters in recent investigations
similar to other lagoons in the north of Tunisia (Béjaoui et al. 2016). ML approaches,
which are well-known for their ability to process the complex nonlinear time series
processes, were used to execute all of our modeling directly on the original data. It is
useful for forecasting to fit a model directly without transformations.

To investigate the relationships between physical, chemical, and biological
factors in coastal ecosystems, RF is a useful forecasting tool. According to Béjaoui
et al. (2016), TN and DO are the main sources of Chl-a in the Bizerte lagoon. These
two variables with the strongest correlations to the plankton dynamics in the Ghar
Melh lagoon, according to Béjaoui et al. (2018), are temperature and turbidity.
Despite the fact that the influence of the Chl-a predictor variables varied with respect



to different studies, dissolved oxygen and Turbidity were typically among the key
factors. Using a genetic algorithm-optimized back-propagation neural network, Li
et al. (2017) determined that the temperature, turbidity, dissolved oxygen, total
phosphorus and nitrogen concentrations, and total nitrogen concentration were the
most important input variables for Chl-a. It is noteworthy to mention that the Chilika
lagoon’s unique ecosystem characteristics, such as the size of its water masses,
varying eutrophic states, water depth, and its connectivity to the sea, can be used
to explain the differences in RF results between the preceding ecosystems. Addi-
tionally, diverse modeling methodologies, as well as distinct field studies and
laboratory analytical procedures, could have contributed to these disparities.
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27.4 Conclusion

In the present study, a relatively small number of observations (n= 384) was used to
develop an ANN and model the Chilika lagoon trophic status considering RMSE and
MSE validation. The results evidenced that the created ANN can be used as an
efficient predictor of Chl-a and can serve as a management tool for similar aquatic
ecosystems. The performance of the model was verified on the basis of relative error
of 0.198 and indicated that BOD and Turbidity played a crucial role for prediction of
annoyance, whereas TN and WT played least important factor. The integrated
approach of ANN model and TLI could be considered as an effective tool to
understand the trophic level of any aquatic ecosystems. The present study performed
with limited available dataset of TN and TP for 1 year. However, a long-term dataset
would provide a better prediction and hence it is suggested for monitoring of these
vital water quality parameters on a monthly basis on a long run and recalibrate the
model on availability of more data. This would enable better machine learning/
training and better prediction of trophic status or aquatic health status parameters.
The results from such studies could be a vital scientific input for formulation of
management action plan and conservation of similar aquatic ecosystems around the
globe. Hence, we propose the ANN as an effective tool for the computation of
indicator parameters of Chilika lagoon trophic status and also it can be used in
similar ecosystems to improve the understanding of trend of pollution.
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