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Abstract Python libraries are a collection of essential functions that eliminate the 
need for users to develop code from scratch. Python is a plethora of libraries that 
serve a range of purposes and it has become a necessity to have sound knowledge 
of the best ones. Human and machine data production greatly outpaces humans’ 
ability to absorb, assess, and make complicated decisions based on that data. AI 
(Artificial Intelligence) is the foundation of all computer learning and the future of 
all intricate decision making. These technologies are being looked upon as tools and 
techniques to make this world a better place. It’s application ranges from various fields 
like healthcare, finance, transport, manufacturing, fraud detection and so on which 
evidently depicts its potential to transform the future. This paper intends to well verse 
the readers with the top libraries used to implement concepts of Artificial Intelligence 
like Machine Learning, Data Science, Deep Learning, Data Visualization and so on. 
It provides meticulous and unambiguous details about the essential building blocks 
necessary to execute and perform such ideas. It also includes a comparative analysis 
of various libraries to provide a detailed understanding and overview of them. 
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1 Introduction 

Artificial Intelligence (AI) is a group of mighty interrelated technologies that can be 
used to perform complex and multiplex tasks openly with little or no human guid-
ance. It is a vast topic of applied sciences and is used to demonstrate intelligence 
even beyond natural human intelligence. AI has progressed from data models for 
problem-solving to artificial neural networks, a computational model based on the 
structure and functions of human biological neural networks. Existing methodologies 
must be merged in order to convert vast amounts of data into value for individuals, 
businesses, and society. Furthermore, new barriers have evolved, not just in terms of 
magnitude (“Big Data”), but also in terms of the questions that should be answered. It 
encompasses broad topics like Experts Systems, Robotics, Machine Learning, Data 
Science, Neural networks, Fuzzy Logic, Natural Language Processing and so on 
which are booming rapidly in the times we live in. AI and DS are influenced by 
python. It helps to slow down the efforts of the human brain. From speech recog-
nition to data interpretation, python and its libraries have taken AI to the sky with 
remarkable success. Neural networks and machine learning are the branches of AI 
that illuminate the future of python. Python language focuses on the readability of 
the code. Python has incorporated mathematical libraries and functions, making it 
easy to calculate mathematical problems and perform data analysis. Python libraries 
are in great demand even in the IoT sector. It is widely used in home and office 
automation to speed up the work process easily. There are numerous tools, program-
ming languages and applications to build AI-based systems out of which Python is 
the most popular language for AI because of its flexibility, platform autonomy, better 
data visualisation and optimization options. The Python libraries are a powerful way 
to invent AI-based systems in a very efficient and pragmatic manner. This article 
aims to concentrate on and analyse the characteristics of the most popular Python 
libraries, as well as their potential for data mining and big data research. Throughout 
the paper, each of these techniques will be examined in-depth, with examples of their 
use in diverse domains. These libraries are the most frequently used and respected 
resources for solving real-world issues and developing high-tech systems. 

2 Tools in Python Aiding to Artificial Intelligence 

Python is a powerful interpreted language with a solid core foundation and a robust 
modular component that extends the language with external modules that provide 
new features. As a result, we now have an extensible language with tools for doing a 
particular operation as efficiently as feasible. Packages are frequently used to arrange 
modules. A package is a logical grouping of modules that all serve the same function.



Analysis of Python Libraries for Artificial Intelligence 159

2.1 Numpy 

The Python programming language has a large number of high-level data structures 
available such as lists that enumerate collections of objects, dictionaries for building 
hash tables, and more. However, these structures are not ideally suited for high-
performance numerical calculations. All the fundamental operations in programming 
include mathematical tools such as arrays, matrices, integration tools, linear equation 
solvers, differential equation solvers, etc. Python provides the necessary tools to 
easily perform these complicated calculations and difficult mathematical operations 
in the form of its Numpy package. 

In the mid-nineties, an international team of volunteers began developing data 
structures for efficient array calculations [1]. This structure has evolved into what is 
now known as the N-dimension NumPy array. NumPy is a general-purpose array-
processing package. Its main object is the homogeneous multidimensional array. It 
is a table containing elements (commonly numbers) of the same type that are all 
indexed by a tuple of non-negative integers. In NumPy dimensions are called axes. 
The package provides a fast interface for storing and manipulating dense data buffers. 
NumPy arrays are similar to Python’s built-in list type in certain aspects, but NumPy 
arrays allow far more efficient storage and data operations as the arrays grow in size. 
NumPy arrays are at the root of basically the entire Python ecosystem of data science 
tools. Python NumPy arrays provide tools for integrating C, C++, etc. It is also useful 
in linear algebra, random number capability etc. The NumPy array can also be used 
as a multi-dimensional container for general data [1]. We can initialize NumPy arrays 
from nested Python lists and access its elements. The NumPy package, consisting 
of NumPy arrays and their corresponding set of mathematical functions, is widely 
used in academia, national labs, and industry in applications from games to space 
exploration. 

Here are the top four benefits that NumPy can bring to your code: 

1. More speed: NumPy uses algorithms written in C that complete in nanoseconds 
rather than seconds. 

2. Fewer loops: NumPy assists you in reducing loops and avoiding becoming 
entangled in iteration indices. 

3. Clearer code: Without loops, the code will look more like the equations which 
are being tried to calculate. 

4. Better quality: There are thousands of contributors working to keep NumPy fast, 
friendly, and bug free. 

Because of these advantages, NumPy has become the de facto standard in Python 
data science for multidimensional arrays, and many of the most popular libraries 
are built on top of it. It is a very important library on which almost every data 
science or machine learning Python packages such as SciPy (Scientific Python), 
Mat-plotlib (plotting library), Scikit-learn, etc. depend on to a reasonable extent. 
Learning NumPy is an excellent approach to lay a solid basis for furthering one’s 
expertise in more specialised fields of data science.
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Fig. 1 Basic matrix operations using NumPy 

The Numpy library uses multidimensional ndarrays to perform numerical 
processing by allowing broadcasting i.e. each and every element is processed one after 
another. It also allows wrapping codes of C, C++ and FORTRAN to compute core 
mathematical operations including linear algebra. NumPy operates on in-memory 
arrays using the central processing unit (CPU). To utilize modern, specialized storage 
and hardware, there has been a recent proliferation of Python array packages [2]. 
Numpy offers N-Dimensional arrays (ndarray), a storage object and a Universal 
Function Object (ufunc) for computing data efficiently. The ndarray consists of two 
essential pieces of information first being the size of the array (also referred as the 
shape of the array, it is a tuple of N integers containing the number of rows and 
columns) and second being the datatype of the items stored inside the Numpy array 
(Fig. 1). 

2.2 Pandas 

The pandas package is the most important data manipulation and analysis tool at the 
disposal of Data Scientists and Analysts working in Python today. Although advanced 
machine learning and fancy visualisation tools get all the attention, pandas is the foun-
dation of most projects and initiatives. Through pandas, one can get acquainted with 
their data by cleaning, transforming, and analyzing it. The library’s name springs 
from panel data, a general term for multidimensional data sets encountered in statis-
tics and econometrics. It is a Python library that includes a variety of knowledge 
structures and tools for working with structured datasets that are used in statistics, 
finance, social sciences, and a variety of other fields. The library is incorporated to
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conduct typical data processing and analysis of certain datasets, with user-friendly 
procedures. 

The panda library, which has been developed since 2008, aims to bridge the gap 
in the abundance of data analysis tools available between Python, general-purpose 
systems, and scientific computing languages, and many domain-specific statistical 
computing platforms and database languages. The aim is to provide equivalent func-
tionality and implement many features, such as automatic data alignment and hier-
archical indexing, which are not available in a tightly integrated manner like so in 
other libraries. 

Pandas is constructed on top of the NumPy package, which means that much of 
NumPy’s structure is used or recreated in Pandas. Pandas data is frequently used 
to feed statistical analysis in SciPy, graphing functions in Matplotlib, and machine 
learning algorithms in Scikit-learn. 

The Series and DataFrame are the two main components of pandas. A Series is 
just a column, while a DataFrame is a multi-dimensional table composed of Series. 
Exploring, cleaning, transforming, and visualizing data with pandas in Python is an 
essential skill in data science. Just cleaning wrangling data is 80% of the job of a 
Data Scientist. 

Operations after loading dataset in the Python Environment:

● You may compute the fundamental statistics of your dataset and answer typical 
inquiries such as what the mean, median, minimum, and maximum values are.

● A correlation between two or more columns in the dataset can also be discovered.
● Clean up the data by deleting missing or blank values and filtering entries based 

on a criterion.
● Use other modules to visualise the data, such as seaborn, matplotlib, and so on.
● Save the cleaned data frame to a CSV or database of your choosing. 

We believe that in the coming years there will be great opportunities to attract users 
in need of statistical data analysis tools to Python who might have previously chosen 
R, MATLAB, or another research environment [3]. By designing robust, easy-to-use 
data structures that cohere with the rest of the scientific Python stack, we can make 
Python a compelling choice for data analysis applications. In our opinion, pandas 
provides a solid foundation upon which a very powerful data analysis ecosystem can 
be established (Fig. 2).

2.3 MatPlotlib 

Representation of data in visual form is a necessity nowadays. As the amount of data 
is increasing day by day, it isn’t easy to manage and represent data in text. Human 
brains are more flexible and adjustable to visual representation, and this helps to 
comprehend, analyze, and make decisions for AI and ML. Matplotlib is a Python 
plotting tool that produces high-quality graphics. Matplotlib was created with the 
goal of allowing users to produce basic as well as complicated plots with only a
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Fig. 2 Data analysis using Pandas and plotting its graph

few instructions [4]. Jupyter notebooks and web application servers can also utilise 
Matplotlib. 

Graphs of production quality may be generated with Matplotlib’s Python module 
for 2D plotting. In addition, it can export pictures in a variety of output formats 
and offers both interactive and non-interactive plotting capabilities. In addition, 
it supports a broad range of plot kinds and can work with different window 
toolkits. Aside from that, it’s very customisable, versatile, and simple to use. Due 
to Matplotlib’s dual nature, it may be used both in interactive and non-interactive 
scripts. Use it in scripts without a visual display, in graphic apps, or in web pages. 
Python or IPython can also be used interactively with matplotlib. 

John D. Hunter initially wrote Matplotlib in 2003. It is open-source software and 
can be downloaded, used, and distributed freely. 

Key features 

Many different situations may be addressed using Matplotlib. Plots and pictures may 
be created interactively using the command-line, which is well-known to most users. 
A simple pop-up window is used to show and manipulate the data. The main plotting 
module of matplotlib, which is operating system and GUI agnostic, is the true power 
of the library [5]. Can be used as part of a webserver to produce plots and pictures 
in different hardcopy output formats, or it can be integrated in a more complete 
programme using one of many GUIs, running on one of several OSs.
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Pyplot—matplotlib.pyplot is a group of functions and commands that make 
matplotlib work like MATLAB. These commands are helpful to create figures, make 
changes in them, create plotting areas, and embellish the plots. 

Pylab: Pylab is an interface to matplotlib for object-oriented plotting. The Pylab 
module is installed alongside matplotlib. 

The types of plots include-Bar, Barht, scatter, stack, Box Plot, step, quiver, violin, 
Hist, hist2d, pie, plot, polar plot, stemplot. 

Axis functions like—Title (Add text to the axes), xlabel (Set the x-axis label of 
the current axis), xlim, xscale (Set the scaling of the x-axis), Axes (Add axes to the 
figure), Text (Add text to the axis), ylabel (Set the y axis label current axis), ylim 
(Get or set the y-limits of the current axes), scale (Set the scaling of the y-axis), are 
useful to embellish the plots. 

Figure functions like- Figtext, Figure, Show, Savefig, Close are important 
functions for the creation of plots. 

Matplotlib’s ease of usage is largely due to the following features:

● Open-source, thus there’s no need to pay for a licence: Students and teachers on 
a tight budget will find it intriguing.

● It’s an actual programming language: The MATLAB language lacks many of the 
features of a general-purpose language like Python.

● It’s much more complete: Python has many external modules that will help us 
execute all the functions we need to perform.

● With a simple interactive GUI, the plot window allows you to zoom in and out of 
the plot as well as remember the plot’s history and save it to hardcopy.

● The command-line interface is based on the MatLab interface, which is straight-
forward to use.

● Plot and picture support on many pages
● For the GD, Agg and Paint backends as well as PostScript, there are TrueType 

fonts that may be used.
● Mathematical text LATEX math mode is available whenever TrueType fonts are 

available.
● Resampled images are automatically resized to the figure’s dimensions.
● Assists in programming and development using a fully object-oriented design. 

Matplotlib is mostly used to create graphical applications. Python has a convenient 
graphing package. The Matplotlib library is ideally suited to developing an interac-
tive two-dimensional application, while the three-dimensional plots library is used 
to build a three-dimensional application. It may also be used to create high-quality 
photographs [6]. The features and the facilities of matplotlib are advancing day by 
day. Some of the new features include creating 3D plots using the mplot3d toolkit. 
Contour plots, wireframe plots, surface plots can also be made using matplotlib. 
Transformations in the coordinate axes can be quickly done and manipulated. 
Matplotlib can plot anything, however plotting non-basic plots or adjusting graphs 
to appear beautiful can be difficult (Fig. 3).
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Fig. 3 Plotting a 3-dimensional graph for the given data using Matplotlib 

2.4 Seaborn 

In this arena of data analysis and interpretation, visualisation of data is the best way 
to get insights and gain information from the data. For this purpose Seaborn is an 
excellent library for making statistical graphs in Python. It provides an excessive-
degree interface to matplotlib and is tightly integrated with the Pandas data structure 
[7]. 

The seaborn library functions expose a dataset-oriented declarative API that can 
easily convert questions about the data into charts. When a dataset and drawing 
specification is provided to produce, seaborn will automatically map the data values to 
visual attributes such as colour, size, or style, and calculate statistical transformations 
internally. Seaborn is designed to play a role throughout the life cycle of scientific 
projects. By generating complete graphs from a single function call with minimal 
parameters, seaborn can easily and quickly build prototypes and analyze exploratory 
data. By providing a wide range of customization options, in addition to exposing 
the underlying matplotlib objects, it can also be used to create polished shapes and 
visuals.



Analysis of Python Libraries for Artificial Intelligence 165

Users interact with seaborn through a number of drawing functions. These drawing 
functions share common APIs for drawing specifications and provide many more 
specific customization options. These functions range from basic drawing types, 
such as scatter plots and line graphs, to functions that apply various transformations 
and abstractions, such as histogram fusion, kernel density estimation, and regres-
sion model fitting. Functions in seaborn are categorized as “axis level” or “figure 
level”. The behaviour of the Axes level function is similar to most plot functions in 
matplotlib-pyplot namespace. By default, they are linked to a state machine that tracks 
the “current” figure and appends a layer to it, but they can also accept objects from 
the matplotlib axis to control the position of the graph, similar to using matplotlib’s 
“object-oriented” interface. The Figurelevel function creates its own graphs when 
called, allowing them to “facet” the dataset by creating multiple conditional subplots 
and adding conveniences, such as placing the legend outside of the graph space by 
default. Each figure level function corresponds to several axis level functions for 
similar purposes, using a parameter to select the type of drawing to be performed. 
For example, the displot function can generate several different distribution repre-
sentations, including histograms, kernel density estimates, or empirical CDFs. The 
figure level function utilizes a seaborn class to control the layout of the figure and 
mediate between the axis layer function and matplotlib. These classes are part of the 
public API and can be used directly in advanced applications. 

Seabron is one of the most widely used python libraries. With Seaborn we can 
visualise both univariate and bivariate data. It provides rapid, detailed and accurate 
graphics. It has built-in functions and themes for embellishing the plots, plus has an 
edge over matplotlib. Seaborn is a complement to matplotlib. This library is easy to 
comprehend and implement (Fig. 4).

2.5 Scikit 

Scikit-learn is one of the most beneficial and a key python library which is a struc-
tured tool for machine learning and statistical modelling. It is an open-source and 
commercially available software. It is capable of performing numerous statistical, 
data mining and data analysis operations like- Classification, Clustering, Regression. 
Scikit-learn is straightforward in design, efficient and is easily approachable through 
non-experts. It first emerged through David Cournapeau as a Google summer time 
season code project in 2007. Fabian Pedregosa, Gael Varoquaux, Alexandre Gram-
fort and Vincent Michel, from FIRCA, took this project to the next possible degree 
and made the primary launch in 2010. 

The features of the package Scikit-learn are: 
Supervised Learning Algorithms—Nearly all supervised learning algorithms 

like, linear regression, Decision Tree, SVM (Support Vector Machine) belong to 
Scikit-learn. These algorithms help to estimate the outcomes for unforeseen data.
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Fig. 4 Plotting a heatmap using Seaborn

Unsupervised Learning Algorithms—This library also includes very popular 
unsupervised learning algorithms of clustering, PCA (principal component anal-
ysis), factor analysis which helps in performing more complex processing tasks 
[8]. It allows the model to work on its own, without any supervision and discover 
information and data. 

Cross Validation—It is used to verify the accuracy of supervised models on 
unseen data and helps in estimating the performance of models.
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Feature Extraction—It is used to extract features from the data consisting text 
and images in formats supported by machine-learning. It includes functions like-
DictVectorizer(), feature_name, CountVectorizer() and many more. 

Feature Selection—This module is used to recognize useful attributes to create 
supervised models. Feature selection methods are used for simplification of models, 
improve data compatibility, and make the data easier for the users to interpret. 

Dimensionality Reduction—This is used to reduce the attributes in the data 
for feature selection, summarisation and visualization. The transformed low-
dimensional space retains important features of the original data and is convenient 
to analyze and process using machine learning techniques. This can be done using 
the PCA functions like-PCA (n-components, svd_solver), pca.fit(). 

Scikit-learn uses an enormous and substantial variety of machine learning algo-
rithms. It supports machine learning in python and allows to build various machine 
learning models for predicting and deciphering abstract, unorganised and unexpected 
data. Scikit-learn is a set of successfully implemented machine learning algorithms 
that is well-documented and maintained by the community [9]. It is a useful tool 
to process large to small scale data. Both supervised and unsupervised learning 
methods can be adopted by using well suited and task-based interfaces. This enables 
assessment of methods and strategies for a given application (Fig. 5).

2.6 TensorFlow 

Tensors are groups of data with an arbitrary number (zero to infinity) of dimen-
sions. They can be arranged in scalars (dimensionless), vectors (unidimensional), 
matrices (2 dimensional), cubes (3 dimensional), sets of cubes (4 dimensional) and 
so on. TensorFlow is a platform for solving machine learning algorithms, and an 
implementation for such algorithms [10]. 

The flow of information between various tensors is controlled by thousands of 
parameters. In a neural network, elements in one tensor are bound to elements in the 
next. Tensor Algebra deals with this information flow between the various tensors. 

The TensorFlow open-source software library is a collection of tools developed 
by Google for numerical computation. It is commonly used by IT firms and giants to 
perform various computational tasks. Its library can be executed on various platforms, 
such as mobile platforms and distributed systems with very little or no modification 
[11]. 

A few salient features of the TensorFlow framework are as follows:

1. Python is the language of choice for Theano and TensorFlow. Mx Net also 
consists of some useful Python APIs. TensorFlow and Theano are very similar 
when it comes to Deep Learning systems, however TensorFlow is preferable for 
distributed systems as it has better support for them [12]. 

2. TensorFlow uses Automatic Differentiators which are different from numeric and 
symbolic differentiation. Automatic differentiators are very useful and efficient
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Fig. 5 Basic program for linear regression using SciKit learn

in neural networks and can be easily understood using the simple chain rule of 
differentiation.

3. TensorFlow is compatible with various platforms like Android, IOS, Cloud as 
well as architectures such as CPU and GPU. TensorFlow applications can easily 
be executed on these platforms and architectures. This is primarily due to the 
ability of TensorFlow to train neural models using its own designed hardware 
known as TPU’s (TensorFlow Processing Units) 

4. TensorFlow is very proficient in data abstraction. A defined view level is available 
for the user so that the programmer does not have to focus on the procedure to 
provide or receive inputs, rather more emphasis is given on understanding and 
implementing the logic behind the problem statement. 

5. TensorFlow is more effective to implement deep-learning models as the data 
structure tensor allows this framework to work with multidimensional arrays. 
A tensor can be categorized using the attributes rank, type and shape. [13] All  
tensors are immutable i.e., once some data is stored in a tensor it cannot be 
changed. To store new data, we need to define a new tensor all together (Fig. 6).



Analysis of Python Libraries for Artificial Intelligence 169

Fig. 6 Demonstrating matrix addition using TensorFlow 

2.7 Keras 

Keras is a Python-based deep learning framework that makes it simple to design 
and train nearly any deep learning model. It is a high-level neural network API that 
can be used with Tensorflow, Theano, and CNTK. It was created to allow for quick 
experimenting. 

Keras relieves developer cognitive strain, allowing you to focus on the most 
important aspects of the problem. 

The Keras principle of progressive disclosure of complexity states that simple 
processes should be quick and straightforward, whereas arbitrarily sophisticated 
workflows should be feasible via a clear route that builds on what you’ve already 
learned. 

Keras is utilised by organisations and enterprises like NASA and YouTube to 
deliver industry-leading performance and scalability. 

Keras has the following features 

1. Convolutional and recurrent networks, as well as a mixture of the two, are 
supported.
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2. It can handle a wide range of network architectures, including multi-input and 
multi-output models, layer and model sharing, and so on. As a result, Keras 
may be used to create deep learning models ranging from generative adversarial 
networks to a neural Turing machine. 

3. Keras is a modular design. A model in the form of a graph or a sequence is 
considered. Keras gives you the option of saving the model you’re working on. 

4. Keras comes with a huge dataset that has been pre-defined. It gives you access 
to a range of datasets. You may use this dataset to import and load it directly. 

5. Keras includes a number of models that have already been trained. Keras may be 
used to import these models. Applications. These models are useful for extracting 
features and fine-tuning them. 

6. Keras is a Python library in its entirety. It employs all of Python’s well-known 
ideas. It is a library built in the Python programming language. Keras delivers a 
user-friendly environment because it is Python-based. 

7. Keras includes a number of functions for data pre-processing. 

Keras is a human-centric API, not a machine-centric API. Keras adheres to best 
practises for decreasing cognitive load by providing consistent and straightforward 
APIs, minimising the amount of user activities required for typical use cases, and 
providing clear and responsive feedback in the event of user error. 

Keras is thus simple to understand and use. As a Keras user, you are more produc-
tive, allowing you to attempt more ideas than your competition, faster, which helps 
you win machine learning competitions. 

This simplicity does not come at the expense of flexibility: because Keras inte-
grates strongly with low-level TensorFlow capabilities, it allows you to create highly 
hackable workflows in which any piece of functionality is customizable. Keras makes 
it simple to convert models into final products. 

Keras uses a strong and clear deep learning library built on top of Tensor-
Flow/Theano to give high-level neural networks. Keras is an excellent addition to 
TensorFlow because its layers and models work with pureTensorFlow tensors [14]. 

Keras is simple to understand and use as a result of this. Keras users are more 
productive, allowing them to test more ideas faster than their competitors, which 
helps them win machine learning contests. 

Keras is a human-centric API. Keras adheres to best practices for minimizing 
cognitive load, such as providing consistent and straightforward APIs, decreasing 
the number of user steps necessary for typical use cases, and providing clear and 
responsive feedback in the event of a user error. 

2.8 Theano 

Python is a potent and pliant programming language for machine learning and in 
addition involves plenty of complex mathematical calculations, algorithms, arith-
metic computations and mainly large matrices of multiple dimensions. To build such
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complex machine learning algorithms and to advance the mathematical expressions 
Theano is a structured and ideal python library. This library can be run on CPU or GPU 
[15]. It is an open source software and released under a BSD license. For building 
different algorithms and codes Theano requires mainly the support of Numpy, SiPy, 
BLAS. 

Features of Theano 

Theano permits to define, optimize and evaluate mathematical expressions. It effi-
ciently facilitates the development of Machine Learning models. Generating compu-
tational graphs is a key feature of Theano which helps in expressing and calculating 
a mathematical expression. There are also various data types in Theano like- Scalers, 
Tensor, Matrix, Vectors, Arrays, Plural Constructors, Complex, Double, Float, Byte, 
16-bit integers, 32-bit integers and 64-bit integers. These data types are used in 
Theano with proper and structured syntax. It also involves variables and shared vari-
ables. Theano functions are bridges for interacting with symbolic graphs. Some parts 
of the code are compiled in C. The compiled code is then provided input to Theano 
function [16]. In this way an optimum code is executed. But creating complex set of 
codes and algorithms using Theano is possible due to-

● Stability Optimization- Theano is not just used for integrating mathematical 
expressions but can be used also to stabilize the unstable expressions in order 
to get optimum results.

● Faster Execution Speed- Theano utilizes current GPU’s and can execute the 
expressions much faster. Plus it produces dynamic C code which helps in 
evaluation of expressions faster.

● Symbolic Differentiation- Theano is capable of automatically generating 
symbolic graphs for computing gradients. It performs derivatives of functions 
with one or many inputs. 

Building Machine Learning models incorporates rigorous and complex compu-
tations. For this Theano is an excellent platform. It is a beneficial tool to enhance the 
execution time and perform repetitive computations of mathematical expressions. 
It can be used for deep learning and solving real-world problems. Theano is well 
developed and accepted world-wide by industries and academics (Fig. 7).

2.9 PyTorch 

Traditionally, deep learning frameworks have prioritised either usability or speed, 
but rarely both. The machine learning toolkit called PyTorch demonstrates that these 
two aims may coexist. PyTorch provides an imperative and Pythonic programming 
language that allows code as a model, makes debugging easy while being efficient and 
enabling hardware accelerators such as GPUs. PyTorch, like Python, is a fantastic 
introduction to deep learning as well as a tool that can be used in sophisticated 
real-world applications [17].
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Fig. 7 Demonstrating matrix multiplication using Theano

Facebook, Inc. created PyTorch, an open source machine learning and deep 
learning library. It’s Python-based, as the name implies, and attempts to be a faster 
NumPy alternative [17]. 

Uber’s Pyro probabilistic programming engine is built on it. Using the same 
core C libraries for the backend code as Torch, PyTorch re-designs and implements 
Torch in Python using the same C libraries. To make Python run as efficiently as 
possible, PyTorch engineers optimised the backend code. Lua-based Torch retained 
the GPU-based hardware acceleration as well as the extensible capabilities that made 
it famous. 

PyTorch key features

● Front-end: Using PyTorch, a user-friendly and flexible front-end is created, which 
seamlessly transitions from diagram format to C++ execution contexts for speed, 
optimization, and operability.

● Dispersed training: C++ and Python provide native asynchronous imple-
mentation of cooperative processes and peer-to-peer communications, which 
improves speed in both exploration and production.

● Tools and libraries: Scientists and innovators have collaborated to create an 
extensive network of tools and libraries to help disseminate PyTorch and 
advance research in fields such as Reinforcement Learning.

● Cloud partners: PyTorch is extremely well supported on the most popular 
cloud platforms, enabling not only frictionless development but also stress-
free scaling with large scale preparation on GPUs, the ability to track models 
in a construction scale setting etc.

● Programming: Every time PyTorch reads a line of code, it does computations. 
In many ways, this is the same as running a Python application. Imperative 
programming is a term used to describe this type of programming. It also has 
the advantage of making it easier to debug and programme the logic.
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● Dynamic Graphing: It is said that PyTorch is defined by run, which implies that 
execution time is when the real computation graph for neural network design is 
generated. However the major value of this characteristic is that it provides an 
elastic and programmable execution interface, which makes it possible to create 
or modify whole system structures through the use of process-linking tech-
niques. PyTorch is a great framework for creating dynamic computing graphs, 
which may be modified during operation. If you don’t have the memory to 
create a neural network model, this can be incredibly helpful. A new computa-
tional graph is created at each PyTorch advancing pass. TensorFlow’s approach 
is significantly different. Inventors are often faced with reworking, training, 
adaptability, and scalability problems. All of these duties take a lot of time, 
and they demand a lot of work. This is why PyTorch was created to assist 
innovators and researchers in these fields with its sophisticated capabilities. 

By combining an emphasis on usability with thorough performance considera-
tions, PyTorch has become a popular tool in the deep learning research community. 
Pytorch offers a lot of customizability with minimum code, in addition to continuing 
to support the newest trends and developments in deep learning. While it may be 
difficult to grasp how the entire ecosystem is organised using classes at first, it is 
ultimately just Python (Fig. 8).

2.10 NLTK 

Processing and understanding human language data are crucial for any interactive AI 
to function properly, provide more value and solve problems. NLP (Natural Language 
Processing) is a domain that focuses on understanding, processing and implementing 
human language data effectively to solve real world problems by ensuring that the 
computer–human interaction takes place smoothly. NLTK is implemented as a large 
collection of minimally interdependent modules, organized into a shallow hierarchy 
[18]. The Natural Language Toolkit (NLTK) was created in 2001 at the University of 
Pennsylvania in connection with a computational linguistics course. Assignments, 
demonstrations, and projects were the three pedagogical uses in mind when it was 
created. 

NLTK (Natural Language Toolkit) is a python package which is predominantly 
used for NLP. NLTK preprocesses unstructured data containing human language 
references using computational linguistics, NLP data types and animated algorithms. 
NLTK also provides problem sets and tutorials to make the user familiar with this 
python library. Natural language processing functions are drawn up as transforma-
tions on Tokens [19]. NLTK is very beneficial for the students or programmers who 
are learning NLP or conducting research on the same topic. 

Run the following instructions in your terminal to install NLTK 

sudo pip install nltk.
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Fig. 8 Basic operations on tensors using Pytorch
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Then, on your terminal, type python to launch the Python shell and run the 
following instructions. 

import nltk. 
nltk.download(‘all’). 
Since NLTK is completely written in python, it has the following features:

● Easier and convenient to learn.
● Exceptional at string-handling.
● Well defined syntax.
● Data encapsulation is possible and data can be reused multiple times. 

NLTK Implementation:

● Chatbots
● Machine Translation
● Speech Recognition
● Text Summarization
● Recommendation Engine
● Sentiment Analysis for Customer Reviews 

NLTK has been effectively utilised as a teaching tool, as a tool for individual 
study, and as a platform for prototyping and developing research systems. NLTK 
offers a simple, versatile, and consistent framework for assignments, projects, and 
class presentations. It’s well-documented, easy to understand and utilise. The most 
popular tool for teaching NLP is NLTK. It’s also commonly used as a prototype and 
research tool [20]. 

3 Comparative Analysis 

See Tables 1, 2 and 3. 

Table 1 Matplotlib versus seaborn 

Features Matplotlib Seaborn 

Utility Developed for basic plotting and 
extends MATLAB 

Extends Matplotlib and 
specializes in statistics 
visualization 

Flexibility Highly customizable Includes default themes 

Handling multiple figures Multiple figures can be opened Automates creation of 
multiple figures 

Dependency Uses Numpy majorly for plotting Uses Pandas heavily for 
plotting



176 A. Khandare et al.

Table 2 Comparative analysis of libraries 

Parameters Keras Tensorflow PyTorch 

Open source Yes Yes Yes 

Level of API High-level API Both high- and 
low-level APIs 

Lower-level API 

Speed Slower Fast Equivalent to 
Tensorflow 

Architecture Simple architecture Not easy to use Complex 

Debugging Less frequent need to 
debug simple networks 

Difficult to perform 
debugging 

Better debugging 
capabilities 

Datasets Small datasets Large datasets Large datasets 

Popularity 1st in popularity 2nd in popularity 3rd in popularity 

Trained models Yes Yes Yes 

Programed in Python Python, C++, CUDA Lua 

Community Smaller community 
support 

Large community 
support 

Stronger community 
support 

Ease of deployment Deployment can be 
done with TensorFlow 
or flask 

Easy to deploy 
TensorFlow serving 

Deployment is easy but 
not as much as 
Tensorflow 

Table 3 Matplotlib versus 
Seaborn 

Plot type Matplotlib Seaborn 

Spectrogram Yes No 

3D plot Yes No 

Pair plot No Yes 

Heat map No Yes 

Polar plot Yes No 

Regression plot No Yes 

4 Conclusion 

Python’s libraries, modules, and frameworks have made it very simple to implement 
Artificial Intelligence ideas. Python machine learning libraries have evolved into 
the most widely used language for building machine learning algorithms. Under-
standing Python is essential for building conceptual knowledge of Artificial Intel-
ligence and specialising in it. Python libraries are crucial in developing machine 
learning, data visualisation, data science, image and data processing, and other appli-
cations. This paper properly discussed, compared, and emphasised the critical and 
necessary Python Programming Libraries involved in researching the vast topic of 
Artificial Intelligence.



Analysis of Python Libraries for Artificial Intelligence 177

Acknowledgements This paper on ‘Analysis of Python Libraries for Artificial Intelligence’ has 
been possible only because of kind cooperation lent by our teacher and project guide Dr. Anand 
Khandare without which this would not have been possible. We would also like to thank our parents, 
who have provided us with all possible resources to gain the best possible knowledge. 

References 

1. Van Der Walt S, Chris Colbert S, Varoquaux G (2011) The NumPy array: a structure for efficient 
numerical computation. Comput Sci Eng 13(2):22–30 

2. Harris CR, Millman KJ, Van Der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Oliphant 
TE et al (2020) Array programming with NumPy. Nature 585(7825):357–362 

3. McKinney W (2011) Pandas: a foundational Python library for data analysis and statistics. 
Python High Perform Sci Comput 14(9):1–9 

4. N. Ari and M. Ustazhanov, “Matplotlib in python,” 2014 11th International Conference on 
Electronics, Computer and Computation (ICECCO), 2014, pp. 1–6, doi: https://doi.org/10. 
1109/ICECCO.2014.6997585. 

5. Barrett P, Hunter J, Todd Miller J, Hsu J-C, Greenfield P (2005) matplotlib—a portable python 
plotting package 

6. Ranjani J, Sheela A, Meena KP (2019) Combination of NumPy, SciPy and Matplotlib/Pylab—a 
good alternative methodology to MATLAB—a comparative analysis. In: 2019 1st international 
conference on innovations in information and communication technology (ICIICT) 

7. Waskom ML (2021) Seaborn: statistical data visualization. J Open Source Softw 6(60):3021 
8. Pedregosa F et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825– 

2830 
9. Hao J, Ho TK (2019) Machine learning made easy: a review of Scikit-learn package in python 

programming language. J Educ Behav Stat. 107699861983224. https://doi.org/10.3102/107 
6998619832248 

10. Abadi M et al (2016) Tensorflow: large-scale machine learning on heterogeneous distributed 
systems. arXiv preprint. arXiv:1603.04467 

11. Girija SS (2016) Tensorflow: large-scale machine learning on heterogeneous distributed 
systems. Software available from tensorflow. org 39, no 9 

12. Imambi S, Prakash KB, Kanagachidambaresan GR (2021) PyTorch. Programming with 
TensorFlow. Springer, Cham, pp 87–104 

13. Goldsborough P (2016) A tour of tensorflow. arXiv preprint. arXiv:1610.01178 
14. Manaswi NK (2018) Understanding and working with Keras. Deep learning with applications 

using python. Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4842-3516-4_2 
15. Team TTD et al (2016) Theano: a python framework for fast computation of mathematical 

expressions. arXiv preprint. arXiv:1605.02688 
16. Bergstra J, Breuleux O, Bastien F, Lamblin P, Pascanu R, Desjardins G, Turian J, Warde-Farley 

D, Bengio Y (2010) Theano: a CPU and GPU math compiler in Python. In: Proceedings of the 
9th python in science conference, vol 1, pp 3–10, 1–5. https://doi.org/10.1109/ICIICT1.2019. 
8741475 

17. Ketkar N, Moolayil J (2021) Deep learning with python. https://doi.org/10.1007/978-1-4842-
5364-9 

18. Bird SG, Loper E (2004) NLTK: the natural language toolkit. Association for Computational 
Linguistics 

19. Loper E (2004) NLTK: building a pedagogical toolkit in Python. PyCon DC 2004 
20. Singh A, Ramasubramanian K, Shivam S (2019) Building an enterprise chatbot: work with 

protected enterprise data using open source frameworks. https://doi.org/10.1007/978-1-4842-
5034-1

https://doi.org/10.1109/ICECCO.2014.6997585
https://doi.org/10.1109/ICECCO.2014.6997585
https://doi.org/10.3102/1076998619832248
https://doi.org/10.3102/1076998619832248
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1610.01178
https://doi.org/10.1007/978-1-4842-3516-4_2
http://arxiv.org/abs/1605.02688
https://doi.org/10.1109/ICIICT1.2019.8741475
https://doi.org/10.1109/ICIICT1.2019.8741475
https://doi.org/10.1007/978-1-4842-5364-9
https://doi.org/10.1007/978-1-4842-5364-9
https://doi.org/10.1007/978-1-4842-5034-1
https://doi.org/10.1007/978-1-4842-5034-1

	 Analysis of Python Libraries for Artificial Intelligence
	1 Introduction
	2 Tools in Python Aiding to Artificial Intelligence
	2.1 Numpy
	2.2 Pandas
	2.3 MatPlotlib
	2.4 Seaborn
	2.5 Scikit
	2.6 TensorFlow
	2.7 Keras
	2.8 Theano
	2.9 PyTorch
	2.10 NLTK

	3 Comparative Analysis
	4 Conclusion
	References


