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Abstract. We show that there is a discrepancy between the emulated
floating-point multiplication in the submission package of the digital sig-
nature Falcon and the claimed behavior. In particular, we show that some
floating-point products with absolute values the smallest normal positive
floating-point number are incorrectly zeroized. However, we show that
the discrepancy doesn’t affect the complex fast Fourier transform in the
signature generation of Falcon by modeling the floating-point addition,
subtraction, and multiplication in CryptoLine. We later implement our
own floating-point multiplications in Armv7-M assembly and Jasmin and
prove their equivalence with our model, demonstrating the possibility of
transferring the challenging verification task (verifying highly-optimized
assembly) to the presumably more readable code base (Jasmin).

Keywords: Falcon · Floating-point arithmetic · Formal verification ·
CryptoLine

1 Introduction

Falcon [Pre+20] is one of the recently selected digital signatures for standard-
ization by the National Institute of Standards and Technology. Essentially the
signature is sampled with a probability approximated by floating-point numbers.
Since floating-point arithmetic is not always constant-time, [Por19] implemented
a series of constant-time floating-point arithmetic with software emulation. We
show that

– the emulated floating-point multiplication does not honor its behavior claimed
by [Por19];

– the discrepancy does not affect the complex fast Fourier transform in the
signature generation of Falcon; and

– how to prove the equivalence between emulated floating-point addition/sub-
traction/multiplication implementations.

Our source code is publicly available at
https://github.com/vincentvbh/Float_formal.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
K. Minematsu and M. Mimura (Eds.): IWSEC 2024, LNCS 14977, pp. 125–141, 2024.
https://doi.org/10.1007/978-981-97-7737-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-7737-2_7&domain=pdf
https://github.com/vincentvbh/Float_formal
https://doi.org/10.1007/978-981-97-7737-2_7


126 V. Hwang

2 Preliminaries

2.1 Falcon

Falcon is a lattice-based hash-and-sign digital signature based on fast Fourier
sampling over an NTRU lattice [Pre+20]. The NTRU lattice is determined by
four integer polynomials f, g, F,G satisfying

fG − gF = q mod (xn + 1)

where q = 12289 and n = 512, 1024. The lattice is generated by the basis B :=(
g −f
G −F

)
.

For the key generation, the four polynomials f, g, F,G form the secret key sk
and hence must have small coefficients, and the public key pk is the polynomial
h := gf−1 mod (xn + 1, q). See Algorithm 1 for an illustration.

For the signature generation, we generate a nonce r and hash it with the
message m. We then start sampling two small polynomials s1 and s2 satisfying
s1 + s2h = c mod (xn + 1, q) where c is the hash. The signature is defined as
(r, s2). Falcon adopts the so-called fast Fourier sampling based on a randomized
variant of fast Fourier nearest plane [DP16,Pre+20]. The idea essentially goes
as follows: We compute B̂ = FFT (B) and ĉ = FFT (c) with complex fast Fourier
transform, compute t =

(
− ĉF̂

q , ĉf̂
q

)
, construct the corresponding Falcon tree

T from the LDL decomposition of B̂B̂
∗
, and apply fast Fourier nearest plane

where the nearest plane part at the leaf level is replaced by a discrete Gaussian
sampling with secret center constructed serially from t and prior samples and
secret deviation constructed from T. We refer to Algorithm 2 for an overview
of the signature generation and [Pre+20, Algorithm 11] for a more detailed
explanation of the fast Fourier sampling.

For the signature verification, we compute s1 = c − s2h mod (xn + 1, q) and
accept the signature if || (s1, s2) ||2 is small enough (reject otherwise). See Algo-
rithm 3 for an illustration.

Algorithm 1: Falcon key generation from the reference implementation.
Outputs: a public key pk and a secret key sk
1: (f, g) = mkgauss() � Generate f, g from a discrete gaussian distribution.
2: (F, G) = solve_NTRU(f, g, xn + 1, q) � fG − gF = q mod (xn + 1)
3: h = gf−1 mod (xn + 1, q)
4: sk = (f, g, F, G)
5: pk = h
6: return pk, sk
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Algorithm 2: Falcon signature generation from the reference implementation.
Inputs: A message m and a secret key sk.
Outputs: A signature sig.
1: r ← {0, 1}320 uniformly � Salt.
2: c = HashToPoint (r||m)
3: ĉ = FFT(c)

4: B =

(
g −f
G −F

)

5: B̂ =

(
ĝ −f̂

Ĝ −F̂

)
= FFT(B)

6: T = ffLDL∗
(
B̂B̂

∗)
7: T = Normalize (T)

8: t =
(

−̂cF̂
q

, ĉf̂
q

)
� t = (ĉ, 0) B̂

−1

9: do
10: do
11: z = ffSampling (t,T)
12: s = (t − z) B̂
13: while ||s||2 >

⌊
β2

⌋
14: (s1, s2) = iFFT (s)
15: s = Compress (s2, 8 · sbytelen − 328)
16: while s == ⊥
17: sig = (r, s)
18: return sig

2.2 Fast Fourier Transform

Fast Fourier transform (FFT) is a popular approach in signal processing, poly-
nomial multiplication, and sampling. For a power of two n and the primitive
2n-th root of unity ω2n ∈ C, the negacyclic Cooley–Tukey FFT transforms the
polynomial ring C[x]/〈xn + 1〉 into

∏
i=0,...,n−1 C[x]/

〈
x − ω1+2i

2n

〉
in O(n log2 n)

operations in C up to the bitreversal permutation. In Falcon, since the input
coefficients are integers, [Por19] implemented an optimized variant of the com-
plex Cooley–Tukey FFT with C = R[z]/

〈
z2 + 1

〉
. They also approximated the

real number arithmetic by floating-point arithmetic in the signature generation.

2.3 Emulated Floating-Point Arithmetic

In Falcon, the real arithmetic in the signature generation is implemented as
floating-point arithmetic. We briefly review the IEEE 754 double-precision
floating-point specification.

A double-precision floating-point number is a 64-bit element consists of three
parts (most significant bits first): a 1-bit s for the sign, an 11-bit e for the biased
exponent, and a 52-bit m for the mantissa. We denote a floating-point number
as s|e|m with the sign s, the biased exponent e, and the mantissa m. When the
biased exponent satisfies 0 < e < 2047, the floating-point number corresponds
to the following real number:
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Algorithm 3: Falcon signature verification.
Inputs: a message m, a signature sig, and a public key pk = h

1: c = HashToPoint (r||m)
2: s2 = Decompress (s, 8 · sbytelen − 328)
3: if s2 == ⊥ then
4: reject
5: s1 = c − s2h
6: if || (s1, s2) ||2 >

⌊
β2

⌋
then

7: reject
8: accept

(−1)s 2e−1075
(
252 + m

)
.

We call such a floating-point number normal. In addition to the normal values,
we also have the following special values:

– e = 0, m = 0: This corresponds to a zero value. Notice that there are two zeros
±0 distinguished by the sign s.

– e = 0, m �= 0: This corresponds to the denormalized number (−1)s 2e−1074m.
– e = 2047, m = 0: This corresponds to an infinity. Notice that there are also

two infinities ±∞ distinguished by the sign s.
– e = 2047, m �= 0: This corresponds to a NaN (not-a-number) value.

In IEEE 754, “rounding to the nearest even” is adopted by default for rounding
the real number result to a floating-point number. In Falcon, the authors claimed
that infinites, NaNs, and denormalized numbers are not used and implemented
a set of functions emulating the elementary floating-point arithmetic where the
results are, according to their claim, correctly rounded for all normal values and
zeros with “rounding to the nearest even” rule [Por19, Section 3.3]. We show that
the latter doesn’t hold, but it doesn’t impact the complex fast Fourier transform
in the signature generation of Falcon.

2.4 CryptoLine

CryptoLine is a domain specific language for modeling straightline cryp-
tographic programs. It was introduced by [TWY17,PTWY18] for verifying
elliptic-curve arithmetic with assembly programs optimized “in the wild.” In
other words, assembly optimized programs were first delivered by experts in
assembly programming without considerations on verification, and verification
effort was later devoted to verifying the resulting programs. CryptoLine was
extended by [LSTWY19] for verifying elliptic-curve C implementations, and
by [FLSTWY19] for signed arithmetic. Recently, [Hwa+22] extended CryptoLine
with compositional reasoning for verifying large dimensional number-theoretic
transforms, and [LLSTWY23] extended CryptoLine with logical equivalence
checking for the stream cipher ChaCha20 [Ber08] and the cryptographic hash
functions SHA-2 and SHA-3.
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In CryptoLine, there are various instructions implementing basic arithmetic,
including signed/unsigned addition/subtraction/multiplication, logical/arith-
metic shift, bit-wise or/exclusive-or/and/not, bit-field splitting/concatenation,
signed/unsigned extension, and conditional move. These instructions effectively
capture the commonly used assembly instructions in cryptographic programs.
We translate the target assembly programs into strings of CryptoLine instruc-
tions, and argue the properties of the strings of CryptoLine instructions.

There are two classes of predicates in CryptoLine for modeling the proper-
ties of strings of CryptoLine instructions: the algebraic predicates and the range
predicates. An algebraic predicate is a conjunction of equations and modular
equations, and a range predicate is a boolean formula with comparisons, equa-
tions, and modular equations. We have the assertion assert and the assumption
assume annotations for imposing properties on the predicates. For an algebraic
predicate P and a range predicate Q, assert P && Q asks the backend to verify
P with the associated computer algebra system and Q with the associated SMT
solver, and assume P && Q adds P and Q to the corresponding backend tools.

Assertions are used alone for verifying properties, and assumptions are com-
monly used in conjunction with assertions for transferring predicates between the
backend tools. For example, we first verify an algebraic predicate P by imposing
assert P && true and pass it to the SMT solver by imposing assume true &&
P.

For verifying a program as a whole, we specify pre-conditions on the vari-
ables, insert the string of CryptoLine instructions translated from the target
program, annotate it with assertions and assumptions at proper locations, and
finally specify the post-conditions. The most difficult part is the insertions of
annotations, which, if ignored, results in non-responseness of the verification
process in our context.

2.5 Jasmin

Jasmin is a programming language serving as a vehicle correlating assembly
programs and their high-level abstractions. It was introduced by [Alm+17] for
verifying the memory safety and constant-timeness of elliptic-curve arithmetic
implementations. Jasmin was extended by [Alm+19] for verifying implemen-
tation correctness and the security of SHA3 implementations with EasyCrypt,
and [Alm+20] revisited the compiler, memory model, and EasyCrypt embedding
for verifying the ChaCha20 stream cipher, the Poly1305 message-authentication
code [Ber05], and the Gimli permutation [Ber+17]. Recently, [Alm+23] extended
Jasmin with function calls, pointers to the stack memory, and the system call
randombytes, and proved the implementation correctness of the key encapsula-
tion mechanism Kyber recently selected by the National Institute of Standards
and Technology as one of the to-be-standardized algorithms for post-quantum
cryptography.

Programmers write Jasmin programs with similar control of the computa-
tional flow as in assembly, and compile the programs into assembly programs
with the certified compiler jasminc. For verification purpose, we extract the
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Jasmin programs to EasyCrypt according to the Jasmin model in EasyCrypt,
and verify the desired properties with EasyCrypt. Compared to CryptoLine,
verification in EasyCrypt requires much more effort by explicitly applying var-
ious lemmas instead of simply imposing properties in a declarative fashion in
CryptoLine, but one can argue more properties in Easycrypt, for example, the
indifferentiability of SHA3 from random oracle as shown in [Alm+19].

3 Incorrect Zeroization

3.1 The Problem of Floating-Point Multiplication

We point out an incorrect zeroization in the emulated floating-point multiplica-
tions in Falcon. We illustrate the issue in the C reference implementation, and
our finding also applies to the Armv7-M assembly optimized implementation.

We briefly review the C reference implementation of the emulated floating-
point multiplication in the submission package of Falcon as follows:

1. The inputs are two 64-bit integers with each representing a double-precision
floating-point number.

2. Extract the mantissas and add them with 252 as if the floating-point inputs
are non-zero.

3. Compute the product of mantissas with radix-25 arithmetic.
4. Normalize the product to a 55-bit value.
5. Compute the exponent field as the sum of input exponent fields with a

corrective subtraction.
6. Compute the sign field as the exclusive-or of the input sign fields.
7. Zeroize the product if any of the input exponent fields is zero.
8. Zeroize the product if the resulting exponent is too small.
9. Zeroize the exponent field if the product is zero.

10. Assemble the sign field, exponent field, and the upper 53 bits of the 55-bit
product.

11. Increment the resulting floating-point as an unsigned 64-bit integer if the
55-bit product should be rounded.

The issue is that the zeroization due to the smallness of the exponent field
should be the last operation since the increment from rounding may results
in an exponent field that is slightly above the zeroization threshold. We refer
to Algorithm 4 for a more detailed illustration where the line in red (blue)
corresponds to the line in red(blue) of the above.

3.2 Extracting Witnesses

We show how to find inputs triggering the incorrect zeroization. For a floating-
point number with exponent field e and mantissa m, we find that if 1 ≤ e ≤ 1022,
1 ≤ m ≤ 252−2, and

⌊
2105

252+m

⌋ (
252 + m

) ≥ 2105−251, then a floating-point with

exponent field 1023 − e and mantissa
⌊

2105

252+m

⌋
leads to incorrect zeroization in
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Algorithm 4: Emulated C implementation (with some high-level syntax for the
irrelevant parts for readability) of floating-point multiplication in Falcon.
1: uint64_t xu, yu, zu, z;
2: uint32_t z0, z1, sticky, round;
3: int ex, ey, e, d, s;
4: xu = 252 | x & (252 − 1);
5: yu = 252 | y & (252 − 1);
6: z0 + z1 * 225 + zu * 250 = xu * yu;
7: sticky = ((z0 | z1) + 225 − 1 ) » 25; � sticky = 0 if z0 = z1 = 0, otherwise

1.
8: zu = zu | (uint64_t)sticky;
9: ex = (int)((x » 52) & (211 − 1));

10: ey = (int)((y » 52) & (211 − 1));
11: e = ex + ey - 2100;
12: (zu, e) = normalize(zu, e, 55, sticky);
13: s = (int)((x ˆ y) » 63);
14: d = ((ex + 211 − 1) & (ey + 211 − 1)) » 11; � d = 0 if ex = 0 or ey = 0,

otherwise 1.
15: zu = zu & (uint64_t)-d; � zu = 0 if d = 0, otherwise unchanged.
16: m = zu & ( ((uint32_t)(e + 1076) » 31) - 1); � m = 0 if e < −1076,

otherwise unchanged.
17: e = e + 1076;
18: e = e & -((int)(uint32_t)(m » 54) ); � e = 0 if m = 0, otherwise unchanged.
19: z = ( ((uint64_t)s « 63) | (m » 2) ) + ( (uint64_t)(uint32_t) e ) «

52;
20: round = (0xc8 » ((uint32_t)m & 7) ) & 1; � round = 1 if m & 7 = 3, 6, 7,

otherwise 0.
21: z = z + (uint64_t)round;
22: return (fpr)z; � fpr is defined as uint64_t.

Algorithm 4 where the correct result is a floating-point number with absolute
value the smallest normal positive floating-point number.

Recall that the issue of Algorithm 4 is that the product is zeroized due to the
smallness of the sum of exponents prior to the rounding at the end. We seek for
conditions triggering both lines (if-conditions are taken) while the floating-point
product is large enough after the rounding.

For simplicity, we first assume that the product of mantissas is an unsigned
105-bit integer (we will explain how this condition is satisfied shortly) so Line 12
changes nothing. We then choose e as the largest value, −1077, triggering Line 16
in Algorithm 4:

m = zu & ( ((uint32_t)(e + 1076) » 31) - 1).

This leads to the exponent fields ex = e and ey = 1023−e after tracing the code
(cf. Line 11). It remains to choose mantissas with a 105-bit product triggering
Line 20:

round = (0xc8 » ((uint32_t)m & 7) ) & 1.
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This leads to the mantissas xu = 252+m and yu =
⌊

2105

252+m

⌋
with an m satisfying

– 1 ≤ m ≤ 252 − 2, and
–

⌊
2105

252+m

⌋ (
252 + m

) ≥ 2105 − 251.

This implies that we have 255 − 2 or 255 − 1 after normalizing to a 55-bit value
(cf. Line 12), whose rounded value is 255 if we round it prior to the zeroization
in Line 16. Since the correct mantissa is 255, we have to increment the exponent
by 1, removing the need of zeroization from the smallness of the exponent.

Listing 1.2 is our program testing if we can find a floating-point number b
from the input floating-point number a whose floating-point product leads to an
incorrect zeroization in Algorithm 4, and Listing 1.1 is an auxiliary function.

Listing 1.1: Our C program testing if the input is small enough. We return 1 if
x is small enough, and 0 otherwise.

int test_smallness(fpr x){

fpr e = (x >> 52) & 0x7ff;
fpr m = x & 0xfffffffffffff;

if( (1 <= e) && (e <= 1022) )
if( (1 <= m) && (m <= 0xffffffffffffe) )

return 1;

return 0;

}

Listing 1.2: Our C program testing if there is an input leading to incorrect
zeroization. If we find a floating-point value such that its floating-point product
with a leads to incorrect zeroization, the floating-point value is stored in *b and
1 is returned. Otherwise, −1 is returned.

int retrieve_zeroization(fpr *b, fpr a){

uint64_t t;

__uint128_t a128 , b128 , t128;

if(test_smallness(a) == 0)
return -1;

a128 = (1ULL << 52) + (a & 0xfffffffffffff);
t128 = 1; t128 <<= 105;
b128 = t128 / a128;

if( a128 * b128 + (1ULL << 51) < t128)
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return -1;

t = ( 1023 - ((a >> 52) & 0x7ff) ) << 52;
t |= b128 - (1ULL << 52);
*b = t;

return 1;

}

3.3 An Example in Falcon

In Falcon, we need to approximate the real number 1√
2

for representing the

complex number e
πi
4 = 1√

2
+ i√

2
. The real number 1√

2
is approximated by the

floating-point number s|e|m = 0|1022|1865452045155277. Since 1 ≤ e ≤ 1022,
1 ≤ m ≤ 252 − 2, and

⌊
2105

252+m

⌋ (
252 + m

)
= 6369051672525772

(
252 + m

) ≥
2105 − 251, we know that if the other operand is the floating-point number
0|1|6369051672525772, the result is incorrectly zeroized. One can pass the
pair

(
1022 · 252 + 1865452045155277, 252 + 6369051672525772

)
as arguments of

the emulated floating-point multiplication in Falcon and compare the result with
the native floating-point multiplication to see the difference.

4 Is it Relevant to Falcon?

In previous section, we demonstrate that the emulated floating-point multipli-
cation doesn’t honor its claim where some non-zero floating-point numbers are
zeroized. An immediate question is its impact to Falcon implementations. Among
the functions in Falcon, we are interested in the complex FFT in the signa-
ture generation where the inputs are polynomials with integer coefficients in[−215, 215

)
. After going through the tests for all the floating-point constants in

the complex FFT, we find that 692 out of 2048 floating-point constants admit
floating-point operands leading to incorrect zeroization. Nevertheless, we model
the floating-point addition, subtraction, and multiplication in CryptoLine, and
show that all non-zero intermediate floating-point numbers have absolute values
lie in [

2−476, 227(252 + 605182448294568)
]
,

far away from triggering incorrect zeroizations.

4.1 Modeling with CryptoLine Instructions

We first model our own strings of CryptoLine instructions and start annotating
CryptoLine programs with assertions and assumptions to transfer predicates
between backend tools. The main difficulties are as follows:
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– When to declare statements that should be proved by the backend proof
systems?

– Which statements should be transferred between proof systems at a given
point?

We do not know of any systematic approaches resolving the two difficulties.
Nevertheless, we find the following constructions of intermediate symbols and
annotations sufficient for verifying the range:

1. Construct the 128-bit product r of mantissas with the long multiplication.
2. Split the input into radix-25 representation with bitfield arithmetic, verify the

correctness of the spliting with the SMT solver, and add the corresponding
algebraic identities to the computer algebra system.

3. Compute the multi-limb product, verify its algebraic correctness with r in
the computer algebra system, and add the corresponding boolean identities
to the SMT solver.

4. Verify the remaining operations (zeroization, rounding, assembling) entirely
with the SMT solver.

If we remove Steps 2. and 3., the SMT solver doesn’t return a result (it doesn’t
find an instance disproving the properties, but it doesn’t finish verifying over all
the possible inputs).

4.2 Range-Checking

We develop our own range arithmetic in C++ computing the pre- and post-
conditions to be verified. Once the pre- and post-conditions are computed for all
the possible floating-point additions/subtractions/multiplications, we verify the
correctness with CryptoLine. Typically, range-checking of floating-point arith-
metic focus on upper-bounding the floating-point errors1. However, we need to
derive non-trivial lower bounds of floating-point numbers for proving the non-
smallness of the absolute values of non-zero floating-point numbers.

For two non-negative floating-point numbers a.l ≤ a.u, we represent the
subset {0}∪ [a.l, a.u]∪ [−a.u,−a.l] as a structure with lower bound a.l and upper
bound a.u. Since the definition is symmetric for the positive and negative sides,
we only store the positive bounds, and update the positive bounds throughput
the entire computation. The zero values are included implicitly and we do not
store its existence (it always exists in all the ranges). The range arithmetic of
floating-point multiplication is straightforward as shown in Algorithm 5. For
the floating-point addition/subtraction with the ranges a and b, we distinguish
between two cases:

1 For example, Frama-C [CKKPSY12] only shows that the floating-point number is
upper-bounded by a floating-point number and lower-bounded by 0, which is use-
less for proving the non-smallness of the absolute values of non-zero floating-point
numbers.
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1. Case a∩ b = {0}: The upper bound is computed as the sum of upper bounds,
and the lower bound is defined as the minimum of the absolute values of the
differences between an upper bound and a lower bound from different ranges.
In other words, the lower bound is defined as min (|a.u − b.l|, |b.u − a.l|).

2. Case a ∩ b = t �= {0}: The upper bound is also computed as the sum of
upper bounds, and the lower bound is defined as the floating-point value
with mantissa 0 and exponent field 52 smaller than the exponent field of t.l,
since the smallest value occurs when subtracting two values with the real
value difference 2e−1075 where e is the smallest exponent field of the two and
choosing e as the exponent field of t.l results in a worse case analysis. Since we
have to shift the leading bit of mantissa to the 52-th bit position, the exponent
field is subtracted by 52 and the mantissa becomes 252. By the definition of
floating-point numbers, the leading bit of mantissa is stored implicity. This
is why we set the mantissa to 0 in the floating-point number representation.

Algorithm 6 is an illustration of the range arithmetic of floating-point addi-
tion/subtraction. After replacing all the floating-point arithmetic with the range
arithmetic in the FFT of Falcon, we transform all the input-output tuples into
pre- and post-conditions for the corresponding CryptoLine model. We then run
CryptoLine to verify the conditions. Our CryptoLine verification shows that

– All the range arithmetic are correct within our modeling of floating-point
addition, subtraction, and multiplication.

– All non-zero intermediate floating-point numbers have absolute values lie in
[
2−476, 227(252 + 605182448294568)

]

when the input coefficients of FFT are integers in
[−215, 215

)
.

Table 1 summarizes the verification time of the range conditions of floating-point
additions and multiplications in Falcon’s size-1024 complex FFT.

Algorithm 5: Range arithmetic of floating-point multiplication.
Inputs: a = (a.l, a.u) , b = (b.l, b.u)
Output: c = (c.l, c.u)

1: c.l = a.l · b.l
2: c.u = a.u · b.u
3: return c
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Algorithm 6: Range arithmetic of floating-point addition/subtraction.
Inputs: a = (a.l, a.u) , b = (b.l, b.u)
Output: c = (c.l, c.u)

1: t = a ∩ b.
2: if t = {0} then
3: (d0, d1) = (|a.u − b.l|, |b.u − a.l|)
4: c.l = min (d0, d1)
5: c.u = a.u + b.u
6: return c
7: c.u = a.u + b.u
8: s|e|m = t.l
9: c.l = s|(e − 52)|0

10: return c

Table 1. Verification time of range conditions for a size-1024 complex FFT with
C ∼= R[z]/

〈
z2 + 1

〉
and input polynomials drawn from Z∩ [−215, 215

)
. Floating-

point subtractions are regarded as floating-point additions in our interval arith-
metic. FP stands for “floating-point.”

Operation Number of instances Verification time (avr./total in seconds)

FP addition 767 0.297 886/228.478 732
FP multiplication 511 2.589 009/1 322.983 371

5 Equivalence Proofs

In this section, we briefly describe our implementations of floating-point multi-
plication and their equivalence proofs.

5.1 Our Implementations and The Claimed Behavior

Since there is a discrepancy between the emulated floating-point multiplications
in Falcon and the claimed behavior, we implement our own assembly implemen-
tation honoring the following rules:

– It rounds the values correctly by experiment.
– Its output range is always zeros or normal floating-point values by formal

verification. If the real number product is too small in absolute value, it
returns a zero. If the real number product is too large in absolute value, the
largest possible normal value is returned when the result is positive (smallest
possible normal value is returned in the negative case).

We start with the assembly implementation in Falcon, which is much more opti-
mized compared to the C reference implementation, and implement the above
rules. This ensures that the output range is always a zero or a normal floating-
point value when the inputs are zeros or normal floating-point values.
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Comparisons to [Por19]. In the emulated floating-point multiplications in Falcon
by [Por19], since the program does not handle infinities, one has to verify the
correctness within a certain input range avoiding infinity outputs. The former
forbids us to argue the correctness of the full range of zeros and normal floating-
point values.

In addition, we also implement an emulated floating-point multiplication in
Jasmin essentially following the more readable (but slower) C reference imple-
mentation. In the follow-up section, we explain how to verify the equivalences of
emulated floating-point multiplication implementations.

5.2 Equivalence Proofs in CryptoLine

We start with our CryptoLine model used for range-checking and add more
annotations. Essentially, the majority of the effort is still about verifying the
multi-limb arithmetic and transferring its correctness to the SMT solver. In
principle, whenever we issue a multiplication, we prove its correctness in the
computer algebra system, and add the corresponding boolean identities to the
SMT solver. We apply the idea to proving the equivalence of our CryptoLine
model and our assembly implementation, and the equivalence of our CryptoLine
model and our Jasmin implementation. See Table 2 for an overview of verification
time of the equivalences. Since equivalence is transitive, we have an equivalence
between our assembly optimized implementation and our Jasmin implementation
where the former is more optimized and the latter is more readable.

Table 2. Verification time of equivalence proofs between Armv7-M implemen-
tations and our CryptoLine model.

Programming langauge Verification time (in seconds)

Floating-point addition
Jasmin 53.946 560
Assembly 59.863 976
Floating-point multiplication
Jasmin 57.108 668
Assembly 5.333 913

6 Discussions

6.1 How the Discrepancy Was Found?

The core of this paper is about modeling floating-point addition, subtraction,
and multiplication with the domain specific language CryptoLine, and its appli-
cation in proving the lower bound and upper bound of non-zero intermediate
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floating-point numbers and the equivalences between implementations via soft-
ware emulation. The whole paper is written in a way with concise logical reason-
ing so readers can follow more easily. However, the true story of the discovery is
more disorganized than the story told in the paper.

The true story is that, we first wrote a model in CryptoLine and proved
its equivalence with the emulated floating-point multiplication by [Por19]. With
a much more readable model at hand, we were confounded by its correctness
since it was inconsistent with our understanding of floating-point arithmetic.
Our careful examinations eventually led to the C program extracting witnesses
with incorrect zeroization, in the sense that the results were different from the
native floating-point multiplication on our laptop and the emulated floating-
point multiplication by the Arm’s toolchain for Cortex-M4. After contacting the
author of [Por19], we knew that experimentally, there were no such floating-point
numbers but there was no formal proof. We later fixed our model, simplified it for
range-checking, and verified the absence of non-zero floating-point numbers with
absolute values the smallest normal positive floating-point number throughout
the complex FFT in the signature generation of Falcon. The model was finally
used for verifying the equivalence of implementations. We hope the true story
will give more insights on how to use the tools.

6.2 The Validity of This Paper After Recent Uses of Fixed-Point
Arithmetic

Recently, a fixed-point implementation for the complex FFT in the key gen-
eration was proposed by [Por23]. An immediate question is the validity of our
findings in the emulated floating-point arithmetic. We would like to stress that,
the roles of the complex FFTs are quite different in key generation and signature
generation.

Key Generation. We review the uses of complex FFT in the key generation of
Falcon as follows. We first generate short integer polynomials f and g, and solve
for integer polynomials F and G satisfying

fG − gF = q mod (xn + 1) .

Since the coefficients of F and G could be too large for efficient computation
for the follow-up computation, we need to reduce the bit-size of the pair (F,G)
with respect to the pair (f, g). This can be achieved by the Babai’s reduction:
we compute k =

⌊
Ff∗+Gg∗

ff∗+gg∗

⌉
and subtract (kf, kg) from (F,G) where f∗ :=

f0 − ∑n−1
i=1 fix

n−i is the adjoint of f =
∑n−1

i=0 fix
i. Obviously, if fG − gF =

q mod (xn + 1), then f (G − kg)− g (F − kf) = fG − gF = q mod (xn + 1) and
(F − kf,G − kg) is a valid solution for the NTRU equation. For the quotient
Ff∗+Gg∗

ff∗+gg∗ in Q[x]/〈xn + 1〉, we instead compute them with the aid of complex
FFT in C[x]/〈xn + 1〉. In [Por23], the author implemented the complex FFT
with scaled 64-bit fixed-point arithmetic and reduced the pair (F,G) several
times instead of reducing it once with high-precision complex FFT.
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Signature Generation. In the signature generation, the role of the complex FFT
is quite different. Essentially, the sampler in Falcon converts the sampling task
over the NTRU lattice into several one-dimensional sampling task and the com-
plex FFT is involed in this conversion. If one wants to replace the floating-point
FFT with scaled fixed-point arithmetic, one has to thoroughly revise the range
analysis of the scaling, potentially use a much higher precision, and revise the
security analysis from the implementational perspective. We have not seen effort
from the community deploying the scaled fixed-point arithmetic and analyzing
the accompanied security impact.

6.3 Possible Future Extensions

We briefly outline several possible future extensions of this paper.

Verifying Additional Constant-Time Emulations of Floating-Point Arithmetic.
This paper demonstrates the formal verification of the software emulation of
floating-point addition, subtraction, and multiplication with respect to our Cryp-
toLine model. Our approach extends to several interesting floating-point arith-
metic, including negation, halving and fused multiply-add/sub. Our approach
also applies to other rounding rules. As for the floating-point division, it will be
interesting to explore the formal verification of the bit-by-bit division by [Por19].

Applications to ffLDL∗ and ffSampling. In this paper, we verify the range of the
complex FFT computation with input integer polynomials. An immediate ques-
tion is the applicability of our verification approach to the operations ffLDL∗ and
ffSampling in the signature generation. For ffLDL∗, it is a straightline program
with floating-point divisions so we can only verify the computation once floating-
point division is verified. For ffSampling, it is built upon the one-dimensional
discrete Gaussian sampler with a rejection loop. Therefore, CryptoLine along
cannot verify this operation. We believe CryptoLine should be used as a plug-in
of formal verification tools handling the rejection loop.

6.4 Applications to Other Lattice-Based Schemes

Our formal verification approach applies to several digital signature schemes.
For ModFalcon [CPSWX20], since it also relies on the fast Fourier sampling
from [DP16], one needs to apply FFT in a similar fashion as in Falcon’s signature
generation. For Mitaka [Esp+22], there are two samplers proposed by [Esp+22]:
the hybrid sampler built upon the Gram-Schmidt orthogonalization with the
aid of complex FFT and the integer arithmetic friendly sampler built upon
the integral Gram decomposition by [DGPY20]. For the former, our verifica-
tion approach applies since one needs to apply complex FFT. For the latter,
integral Gram decomposition reduces to writing a positive integer as a sum
of four squared integers and the fastest know algorithms are the randomized
ones [PT18]. It seems difficult to find an unconditional deterministic algorithm
for the problem [PT18, Section 5]. Therefore, it is unclear to us whether the
integral version of Mitaka can be implemented securely and efficiently.
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