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Abstract. The MISTY1 is a 64-bit block cipher designed by Matsui in
1997. It is listed on the Japanese CRYPTREC Candidate Recommended
Ciphers List. Cryptanalysis against the full MISTY1 has already been
known, which is the analysis of weak keys in a related-key setting and the
integral attack using the division property in a single-key setting. How-
ever, these attacks require large amounts of data and time complexity
that are practically infeasible. In this paper, we show the existence of new
weak keys for the full MISTY1. The MISTY1 can be distinguished from
a random permutation and the keys are recovered with a realistically fea-
sible computational complexity, in a related-key setting. It means that a
pair of weak keys, one key of which has a specific differential relationship
with the other, is used. The computational complexity of the attacks
is 25 chosen plaintexts for distinguishing the MISTY1 from a random
permutation, and 28 chosen plaintexts, 225 bytes of memory and a few
seconds computed by a desktop PC for key recovery.
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1 Introduction

The MISTY1 [1] is a symmetric key 64-bit block cipher designed by Matsui in
1997, which is listed on the Japanese CRYPTREC Candidate Recommended
Ciphers List [2] and has been standardized in NESSIE [4], ISO/IEC [5] and
RFCs [6].

Theoretical attacks on the full-round MISTY1 are already known. We sum-
marize attacks on the full-round MISTY1 in Table 1. In 2013, Lu et al. showed
the existence of weak keys in a related-key setting [7], followed by the related
work [8]. In 2015, Todo presented the integral attack in a single-key setting using
the division property [9], followed by the related work [10,11]. However, these
attacks are not yet a realistic threat due to the very large amount of computa-
tional complexity (Table 1).
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Table 1. Attacks on the full MISTY1

Attack Keys Data Time Memory

Related-key differential [7] 2103.57 261CC 290.93 299.2Bytes

Related-key amplified boomerang [8] 292 260.5CP 287.33 280.07Bytes

Related-key differential

Distinguisher Section 4.1 3 · 274 25CP 29†

Key recovery Section 4.2 3 · 274 28CP � 229 225Bytes

Integral [9] 2128 263.58CP 2121 not specified

Integral [10] 2128 263.994CP 2108.3 not specified

Integral [11] 2128 263.9999CC 279 not specified

Integral [11] 2128 264 − 236CPC 269.5 not specified

CP: chosen plaintexts, CC: chosen ciphertexts
CPC: chosen plaintexts and ciphertexts
† The unit of time is the time for comparing two ciphertexts
In the other cases it is the time for encrypting one time.

Weak keys mean the keys whose use would cause some kind of unexpected
behavior in this paper. The related-key attacks [14] are attacks under the condi-
tion that a ciphertext and the corresponding plaintext encrypted with multiple
keys that are related to each other are available.

Our contributions presented in this paper are as follows.

• We found weak keys of the MISTY1, which have not been previously shown.
• We showed that it is possible to distinguish the MISTY1 from random per-

mutations and to recover the keys when the weak keys are used.
• We estimated the computational complexity required for these attacks, and

by conducting computer experiments using a desktop PC we demonstrated
that the keys are recovered in less than a few seconds.

Note that the attacks are not considered to be a realistic threat for two reasons.
Firstly, they are related-key attacks where two weak keys with a differential
relationship between them convenient for attackers need to be used. Secondly,
the number of weak keys we found is 3 ·274. It is not small, but extremely smaller
than the total number of keys.

This paper is organized as follows. In Sect. 2 we describe the notation used
in this paper, weak keys, related-key attacks and the structure of the MISTY1.
In Sect. 3 we analyze the key scheduling part of the MISTY1 to derive the weak
keys, and show that there is a differential characteristic in the data randomizing
part with a very large differential probability in a related-key setting. In Sect. 4,
we construct a related-key distinguisher of the MISTY1 and recover secret key
exploiting the differential characteristic shown in Sect. 3. In Sect. 5 we summarize
our results.
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2 Preliminaries

In this section we describe the notation used in this paper, weak keys, related-
key attacks and the structures of the data randomizing and key scheduling parts
of the MISTY1.

2.1 Notation

The notation used throughout this paper is as shown in the reference [3] and
Table 2.

Table 2. The notation used in this paper

Subscript:in/out Denotes the input/output data of the function

e.g., FOin, FOout

Subscript: i Denotes the i-th 16-bit data from the left

Subscript: (Rj) The right (lower) j-bit value of 16-bit data

Subscript: (Lj) The left (upper) j-bit value of 16-bit data

e.g., P = P1||P2||P3||P4

K1 = K1(L9)||K1(R7) = K1(L7)||K1(R9)

Prefix: Δ Denotes a differential between two data

Typewriter style Hexadecimal notation (e.g., 0a)

ΔK := Ksec ⊕ Krel The differential between the secret key and the related key

ΔK′ The differential between the two corresponding extended keys

2.2 MISTY1

The MISTY1 is a symmetric key block cipher with a data block length of 64 bits
and a secret key length of 128 bits. It consists of two parts: the data randomizing
part, which randomizes a 64-bit plaintext and outputs the 64-bit ciphertext, and
the key scheduling part, which outputs the 128-bit extended key for an input
of 128-bit secret key. Both the secret key and the extended key are used in the
data randomizing part. The structures of the data randomizing and the key
scheduling parts are explained below.

2.2.1 The Data Randomizing Part The structure of the data randomiz-
ing part of the MISTY1 is shown in Fig. 1. It is a Feistel structure in which
the input 64-bit plaintext is divided into two 32-bit blocks, and each block is
transformed alternately by the function FO. The function FO and its internal
function, the function FI, also have Feistel structures. As a whole, the data ran-
domizing part has a three-layer nested structure, and also has a structure in
which the transformation is repeated with two function FLs and two function
FOs as a unit.
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Fig. 1. The Data randomizing part of the MISTY1

The keys used in the data randomizing part are the 16-bit secret keys K1 to
K8 and the extended keys K ′

1 to K ′
8, which are described in Sect. 2.2.2. In the

function FO, the extended keys are used in its internal functions, the function
FIs, and the secret keys are used outside the function FIs. In the function FL,
one secret key and one extended key are used.

The non-linear operations with respect to the exclusive-or (XOR) operation
are the bitwise AND (∩) and OR (∪) operations in the function FL and are
the substitution tables S7 and S9 in the function FI. Within one function FO,
the transformations by substitution tables S7 and S9 are performed many times,
which is the reason why the differential probability in single-key settings is small.
If there are differential characteristics of the function FO with a large differential
probability, the differential probability of the entire data randomizing part may
be also large.

2.2.2 The Key Scheduling Part The structure of the key scheduling part
of the MISTY1 is shown in Fig. 2. In the key scheduling part, the 128-bit secret
key is divided into eight 16-bit secret keys K1 to K8, each 16-bit key is input to
two adjacent function FIs and eight 16-bit extended keys K ′

1 to K ′
8 are output.

Each extended key K ′
i is obtained as an output for two secret key inputs, Ki

and Ki+1, to the function FI. In the function FI, the substitution tables S9 and
S7 are used, which are non-linear operations with respect to the XOR operation.
The function FI is identical to that in the data randomizing part.
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Fig. 2. The Key Scheduling part of the MISTY1

2.3 Weak Keys

In this paper, weak keys are defined as the keys whose use would cause some
kind of unexpected behavior as mentioned in Sect. 1. Although, a weak key was
initially defined as a key that reverts to the original plaintext in the block cipher
DES [12] when encrypted twice with the same key for any plaintext, the former
definition is used in the previous works [7,8]. When a pair of weak keys shown
in this paper is used, we can distinguish MISTY1 from a random permutation
and recover the keys.

2.4 Related-Key Attacks

Related-key attacks were proposed in the early 1990 s [14,15]. Biryukov et al.
illustrated the first attack on the full-round AES-192 and AES-256 [13] in a
related-key setting, which distinguished AES from a random permutation and
recovered an AES encryption key more efficiently than a brute force attack [16,
17].

In a related-key setting, attackers can obtain pairs of plaintexts and the
corresponding pairs of ciphertexts associated with each other by related keys
besides the encryption key. Attackers can also know and control the relation-
ships between the encryption key and related keys, even if they do not know
the encryption key itself. Thus, the related-key attack is an attack under very
favourable conditions for the attackers, and conversely, the conditions for the
attack to be successful are so severe that it is considered to be an attack with
a small chance of being realized in normal encryption applications. However,
depending on the method of secret key generation and distribution, etc., an
attacker may be able to obtain the differential between multiple secret keys, and
therefore the related-key attack may be a realistic attack.
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Fig. 3. Differences between weak key pairs

In this paper, we consider the related-key differential attack shown below:

P
K−→ C

P ⊕ ΔP
K⊕ΔK−→ C ⊕ ΔC,

where P , C and K denote a plaintext, a ciphertext and a secret key and ΔP ,
ΔC and ΔK are differences between the two plaintexts, the two ciphertexts
and the two secret keys, respectively. When P s, ΔP , and ΔK are chosen to be
convenient to the attacker, the probability of differential characteristic is large
enough for the attacker to distinguish MISTY1 from a random permutation and
to recover the secret key.

3 Weak Keys of the MISTY1

When the weak key shown in this paper is used together with another weak key
with a specific differential relationship as the related key, the MISTY1 can be
distinguished from a random permutation and the secret key can be recovered.
In this section, we first illustrate what pairs of secret keys and related keys
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can be weak keys, and then show that when these pairs of weak keys are used,
there exists a differential characteristic with very large probability in the data
randomizing part.

3.1 Pairs of Weak Keys and the Differentials in Them

Table 3. Tuples of differences between two weak keys, and the lower 7-bit values of
the weak keys

h Tuples of ΔKi(R7) and (Kseci(R7), Kreli(R7)) Number of keys

1 01(0a,0b),20(0c,2c),40(18,58) 3 · 274

2 03(61,62),06(31,37),09(53,5a),0c(30,3c),18(4c,54), 12 · 268

21(45,64),24(5e,7a),28(50,78),30(41,71),41(26,67),

42(35,77),60(2e,4e)

3 07(72,75),0d(21,2c),13(28,3b),1c(2e,32),25(48,6d), 16 · 262

26(19,3f),29(1c,35),38(01,39),43(03,40),46(07,41),

49(08,41),52(0b,59),61(1e,7f),64(36,52),68(06,6e),

70(0d,7d)

4 0f(07,08),1b(2f,34),1d(25,38),1e(45,5b),27(15,32), 13 · 256

2d(0c,21),2e(46,68),3c(1e,22),4b(02,49),4d(39,74),

53(0a,59),71(1a,6b),78(27,5f)

5 1f(00,1f),2f(04,2b),3b(15,2e),3e(58,66),57(09,5e), 13 · 250

5b(15,4e),5d(22,7f),6b(1c,77),73(09,7a),75(01,74),

76(07,71),79(08,71),7c(32,4e)

6 3f(5b,64),7d(2a,57),7e(18,66) 3 · 244

7 N/A

h: Hamming weight of ΔKi(R7)

The key scheduling part is a function that outputs a 128-bit extended key for an
input of 128-bit secret key (Fig. 2). As this function is not bijection, there may
be more than one secret key such that the key scheduling part outputs extended
keys with the same value. For example, if the conditions Kseci(R7) = 0a or 0b
and ΔKi := Kseci ⊕ Kreli = 01 (i = 1, · · · , 8) for the secret key and the related
key pair (Ksec,Krel) are satisfied, the key scheduling part outputs the extended
keys with the same value.

This weak key pair thus satisfies the condition that the lower 7-bit value of
a 16-bit secret key, Kseci(R7), is one of the two values and that the differential
between Ksec and Krel, ΔKi, is the same for all i. Furthermore, another condition
is imposed on the extended key K ′ as described in Sect. 3.2.2. The conditions to
be satisfied by the weak key pair are as follows:
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Conditions on pairs of weak keys

ΔKi(L9) = 0 (i = 1, · · · , 8), ΔK1(R7) = ΔK2(R7) = · · · = ΔK8(R7) (1)
ΔK ′

i = 0 (i = 1, · · · , 8) (2)
K ′

i(R7) ∩ ΔKi(R7) = ΔKi(R7) (except for i = 3, 7) (3)

Figure 3 shows a differential between a pair of weak keys in case of ΔKi(R7) =
01. To satisfy the condition (2), the input and output differential values of
S7 must be equal in the differential path on the right-hand side of Fig. 3, and
such tuples of input differentials ΔKi(R7) and pairs of input values (Kseci(R7),
Kreli(R7)) for S7 are limited to the 60 tuples shown in Table 3. ΔKi+1(R9) on the
right-hand side of Fig. 3 always cancels out with the input differential ΔKi(R9)

according to the condition (1).
The condition (3) is imposed on the extended key that the bit value of the

extended key K ′
i corresponding to the bit position with a non-zero difference of

ΔKi is 1. This is necessary for the differential characteristic of the function FL
described in Sect. 3.2.2 to be possible.

The number of weak keys is estimated as follows. From the conditions (1)
and (2), each Kseci(L9) can take 29 values and each Kseci(R7) can take two values.
If the Hamming weight of ΔKi(R7) is h, from condition (3) h bits of the extended
key K ′

i must be 1 (except for i = 3, 7). Therefore, for each ΔKi(R7) in Table 3,
the number of weak keys is 29·8+8−6h = 280−6h and decreases exponentially as h
increases.

The number of weak keys is the largest when ΔKi(R7) = 01, 20, 40 with
h = 1, which is 29·8+8−6·1 = 274 each. It is also when h=1 that the differential
probability of the data randomizing part is the largest, as described in Sect. 4.
In the following, unless otherwise stated, we will discuss the case ΔKi(R7) = 01,
but exactly the same argument holds for the cases ΔKi(R7) = 20 and 40.

3.2 Differential Characteristics

It has been shown by the developers that the MISTY1 is based on the theory
of provable security against differential cryptanalysis in single-key settings [1].
When the differential path is actually explored, it can be seen that the differ-
ential probability is significantly small in the function FOs. If the differential
probability is sufficiently large in each function FO, the differential probability
of the entire data randomizing part may be large.

In this section, we first show that there exists a differential characteristic for
the function FO with a differential probability of 1 when a pair of weak keys
satisfying conditions (1) to (3) in Sect. 3.1 is used. Next, it is shown that for the
entire data randomizing part, there exists a differential characteristic where the
differential probability of all function FOs is 1, and the differential characteristics
and differential probabilities of the function FLs in that case are shown.



Weak Keys of the Full MISTY1 Recovered in Practical Time 73

Fig. 4. Differential characteristics of the 2-round function that can be exploited for the
attacks

3.2.1 The Function FO For the case ΔKi(R7) = 01, the differential charac-
teristic of the function FO, where the differential probability is 1, is shown in the
center of Fig. 4. In this differential characteristic, the input differential values of
the function FI are always zero because a difference between two secret keys,
ΔKi, and the difference between two input values cancel just before the function
FI. Also, since ΔK ′

i = 0 for the extended key, no differences occur in the func-
tion FI. This results in an output differential value ΔFOout = 0000 0001 with
probability 1 for the input differential value ΔFOin = 0001 0001 of the function
FO.

Note that such differential paths of the function FO exist that the differential
probability be 1 not only when the Hamming weight of ΔKi(R7) is 1, but also
for all 60 cases in Table 3.

3.2.2 The Function FL The data randomizing part has a structure in which
transformations using two function FLs and two function FOs are repeated as a
unit. So, if a differential characteristic exists in which the input differential value
and output differential value are equal and the differential probability is suffi-
ciently large in the transformation of this unit, then a differential characteristic
with a large differential probability also exists for the entire data randomizing
part.

Using the differential characteristic of the function FO with probability 1
described in Sect. 3.2.1 to search for the differential characteristics in the trans-
formation of the unit iteration described above, it can be seen that in order for
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the input and output differential values to be equal, the input and output dif-
ferences of the odd-th (FLodd) and even-th (FLeven) of the function FL must
be the following values (right-hand of Fig. 4).

Odd-th : ΔFLoddin = 0001 0000, ΔFLoddout = 0001 0001

Even-th : ΔFLevenin = 0001 0001, ΔFLevenout = 0001 0000
(4)

In order for the differential property of the function FL taking such input
and output differences to actually exist, condition (3) of Sect. 3.1 is required for
the extended key K ′

i, as follows.
In the FLodd, the condition (3) of Sect. 3.1, where the least significant bit

of the extended key K ′
i is 1, is required because the output difference of the ∪

operation must be zero. Conversely, if this condition is satisfied, the differential
after the ∪ operation is 0 with probability 1. The differential probability is 2−1 in
the ∩ operation and therefore also 2−1 for the whole FLodd (top right of Fig. 4).

Since the output difference of the ∩ operation must be 0001 in the FLeven,,
the condition that the least significant bit of the extended key K ′

i is 1 is required,
as in the FLodd case. If this condition is satisfied, the difference of the ∩ operation
is 0001 with probability 1. The differential probability is 2−1 in the ∪ operation
and therefore also 2−1 for the whole FLeven (bottom right of Fig. 4).

In general, the differential probability of the function FL when the Hamming
weight of ΔKi(R7) is h is found to be 2−h by the same argument. In addition,
the condition of a bit value of 1 for h bits of the extended key K ′

i is required,
which means that the number of weak keys decreases exponentially as h increases
(Table 3).

3.2.3 The Data Randomizing Part Figure 6 shows the differential charac-
teristics used in the attacks. The left-hand side is used to distinguish the MISTY1
from a random permutation, while the right-hand side is used for key recovery.

In the function FL1 and FL2, each of the upper 15 bits of the plaintext
difference ΔP1 to ΔP4 must be 0 and each of the least significant bit of them
are not restricted, while the output difference must satisfy the condition (4) in
Sect. 3.2.2. In the function FL9 and FL10, even if the output differential value
does not satisfy condition (4), the attack is possible because the upper 15 bits
of the ciphertext differentials ΔC1 and ΔC2 are 0. Therefore, condition (3) in
Sect. 3.1 is not necessary for the extended keys K ′

3 and K ′
7, which are used in

the function FL1, 2, 9 and 10 but not in the function FL3 to 8. The function
FL8 is discussed later.

In the attacks, plaintext pairs that take the differential values of all patterns
with respect to the least significant bits of ΔP1 to ΔP4 are used.

The differential values of the ciphertext used in the attack differ between the
case of distinguishing from a random permutation and the case of key recovery.
For ΔC1 and ΔC2, the upper 15-bit values are 0 in both cases, whereas for ΔC3

and ΔC4, there is no restriction in the case of distinguishing from a random
permutation, but the upper 15-bit value is non-zero for key recovery.
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The differential probabilities are as follows. The differential probabilities for
the function FL3 to FL7 are 2−1 each, as described in Sect. 3.2.2. For the func-
tion FL1 and FL2, the differential probability is 2−1 for each of the ∩ and ∪
operations, so the probabilities of the function FL1 and FL2 are both 2−2. For
the function FL8, the differential probabilities are different in the case of dis-
tinguishing from a random permutation and the case of key recovery. For the
input difference ΔFL8in = 0001 0001, the output difference is either ΔFL8out
= 0001 0000 or 0000 0000, both with a differential probability of 2−1. In the
case of distinguishing from a random permutation, the attack succeeds because
ΔC1(L15) = ΔC2(L15) = 0, regardless of the value of ΔFL8out, so the differential
probability of the function FL8 can be regarded as 1. On the other hand, in
the case of key recovery, the differential probability of the function FL8 is 2−1

because ΔFL8out must be = 0000 0000. For the function FL9 and FL10, the
differential probability can be regarded as 1, as there is no restriction imposed
on the output differences. Therefore, the differential probability for the entire
data randomizing part is 2−(2·2+1·5) = 2−9 for distinguishing from a random
permutation and 2−(2·2+1·6) = 2−10 for key recovery.

4 Attacks on the MISTY1

In this section, we show the attack procedure for distinguishing the MISTY1
from a random permutation and for key recovery by using the differential char-
acteristics of the data randomizing part described in Sect. 3.2.

4.1 Distinguisher

In this attack, plaintext pairs need to be encrypted with a weak key and the
related key, respectively, and the corresponding ciphertext pairs be compared
with each other, in order to distinguish MISTY1 from a random permutation.
The values of the chosen plaintext and the corresponding ciphertext are assumed
to be known to the attacker. The attack procedure and computational complexity
are shown later.

The Attack Procedure. The attacker chooses plaintexts according to the
following procedure.

(i) For an arbitrarily chosen plaintext P = P1||P2||P3||P4, fix the upper 15 bits
of each Pi, take the all values for the least significant bit, and a total of
24 = 16 plaintexts make up a set.

(ii) Choose a total of 2n sets of plaintexts described in (i) that differ from each
other (the total number of chosen plaintexts is 2n · 24 = 2n+4).

Next, the attacker obtains two ciphertexts encrypted with the weak key and
the related key, respectively, for each of the 24 = 16 plaintexts, constructs 24·24 =
28 ciphertext pairs for each set of plaintexts, that is, 2n · 28 = 2n+8 ciphertext
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pairs for 2n sets of plaintexts. The paired ciphertexts are compared with each
other and if a ciphertext pair is found for which ΔC1(L15) = ΔC2(L15) = 0, the
attack is considered successful. ΔC3(L15) and ΔC4(L15) may or may not be zero
and are determined by the output difference of the function FL8.

Complexity. Since the differential probability of the data randomizing part
is 2−9 as calculated in Sect. 3.2.3, one ciphertext pair per 2n+8 = 29 pairs is
expected to satisfy the condition ΔC1(L15) = ΔC2(L15) = 0. That is, if the
attacker obtains about 29 ciphertext pairs, then the attacker can distinguish
MISTY1 from a random permutation. The data complexity required is 2n+4 =
25 chosen plaintexts and the time complexity is the comparison of 29 pairs of
ciphertexts.

4.2 Key Recovery

Table 4. Examples of pairs of CPs and the corresponding ciphertexts that are exploited
for key recovery

Pairs of CPs ciphertexts

b707 5efb b524 23a5 9e1c 104c eaac 4784

b706 5efb b525 23a5 9e1c 104d b9a7 285f

1622 a031 4495 b33c 06e8 0d03 2b57 5ae9

1623 a030 4495 b33c 06e9 0d02 a0a6 7273

01b9 8a3f 1b4e 5471 2678 717a 8e1a 9671

01b8 8a3f 1b4f 5471 2678 717b 062f 5fbb

170c 43b5 75e6 01e4 aeaa 0b5c dd53 bc03

170d 43b4 75e6 01e4 aeaa 0b5d 8d91 21f8

499f f3d3 916e 382b a8bb 1931 b66a 9275

499e f3d3 916f 382b a8ba 1930 a624 0556

2281 76ff 86c0 1446 b072 ab51 4865 11eb

2280 76ff 86c0 1446 b073 ab50 3978 f941

2280 76ff 86c0 1447 2484 25c8 fcef c910

2281 76fe 86c1 1447 2484 25c9 cd4e 2ac5

366f 51ca b97c e559 b7d0 ea3c 941a 0e58

366e 51ca b97d e559 b7d0 ea3d 7830 3fa0

e724 f9e3 960d ce69 dc99 dd98 7143 8869

e725 f9e2 960c ce69 dc99 dd99 e8dd 133e

ΔKi=0001

Ksec = 170b 438a 758b 018b 498b f38a 910a 380b

Krel = 170a 438b 758a 018a 498a f38b 910b 380a
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Fig. 5. Key recovery for K1, K5 to K8 and K′
3

In this attack, the attacker recovers the weak key by exploiting the ciphertext
pairs obtained by encrypting the chosen plaintexts with the weak key and the
related key, respectively. The attacker needs to know the values of the ciphertexts
and that the ciphertext pairs are obtained by encrypting the chosen plaintexts
with a weak key and the related key, but does not need to know the values of
the plaintexts.

The Attack Procedure. The attacker chooses 2n sets of plaintexts to form
2n+8 pairs of ciphertexts by the same procedure as for distinguisher, and picks up
the ciphertext pairs with ΔC1(L15) = ΔC2(L15) = 0, ΔC3(L15) �= 0, ΔC4(L15) �=
0 among these pairs. Since the differential probability is 2−10 as obtained in
Sect. 3.2.3, the expected value of the number of the ciphertext pairs to be picked
up is 2n−2.

The attacker then calculates ΔFO8out in two different ways, denoted as
ΔFO8out→ and ΔFO8out←. The subscript → shows that ΔFO8out are obtained
by calculating the inverse function of FO10 and the function FO8, and the sub-
script ← shows that ΔFO8out are obtained by the inverse function of FO9.
ΔFO8out→ depends on C1s, C2s, K1, K7, K8, K ′

3(R9) and K ′
5, and ΔFO8out← is

obtained depends on C3s, C4s, K5 and K ′
3 (see Fig. 5). The correct key candidate

is narrowed down using the fact that ΔFO8out→ is always equal to ΔFO8out←
if the key candidate is correct and that ΔFO8out→ �= ΔFO8out← with a high
probability if it is incorrect.
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The keys that need to be assumed are K1, K5 to K8 and K ′
3, as K ′

5 is obtained
from K5 and K6 by calculating the function FI. According to the conditions (1)
to (3) of Sect. 3.1, 6 of the lower 7 bits in each Ki and 1 bit in each of the K ′

5, K ′
6

and K ′
8 are known, so the total number of bits of the key to need to be assumed

is 5 · 10 − 3 + 16 = 63 bits.
The search for the entire 63 bits of the key is very time-consuming using a

desktop PC. Therefore, ΔFO8out was divided into three blocks to reduce the
search time in our analysis, which are (a) ΔFO8out1(L7), (b) ΔFO8out1(R9) and
(c) ΔFO8out2, and then key recovery was performed by calculating (a) to (c) in
sequence.

First, in the calculation of (a), K1(R7), K8(R7) and K ′
3(L7) are narrowed down

by comparing ΔFO8out1(L7)→ with FO8out1(L7)←. Next, in the calculation of (b),
K1, K8, K ′

3 and K ′
5(R7) are narrowed down by comparing ΔFO8out1(R9)→ with

FO8out1(R9)←. Then, in the calculation of (c), K1, K5 to K8 and K ′
3 are narrowed

down by comparing ΔFO8out2→ with FO8out2←. Finally, an exhaustive search
of the remaining unknown bits containing K2 to K4 completes key recovery for
all bits. Note that 6 bits of each of K2 to K4 and the least significant bit of K ′

1,
K ′

2 and K ′
4 are known, and the 16 bits of K ′

3 have been narrowed down in (a)
to (c). The time complexity is reduced because it can be expressed as the sum
of those required for each procedure, not the product.

In the case of ΔKi(R7) = 01, 6 of the lower 7 bits of each Ki and the least
significant bit each of K ′

1, K ′
2, K ′

4 to K ′
6 and K ′

8 are already known before these
procedures are performed, so 8 ·(16−6)−6 ·1 = 74 bits of the keys are recovered
in these procedures.

As the key assumptions required for the ΔFO8out→ and ΔFO8out← calcu-
lations can be made independently, the number of calculations can be reduced
in exchange for requiring memory by expanding the data related to the key
assumed in one of them into memory.

Table 5. The number of ciphertext pairs and time required for key recovery

The number of ciphertext pairs: N 3 4 5 6

Average timeseconds 54 1.4 0.81 0.71

Time complexity† � 233.7 � 228.8 � 227.2 � 227.0

Memory (MiB) � 82 32 32 32
† The unit of time is the time for encrypting one time

(� the time for calculating the function FO8 eight times)

Complexity. In the calculation of (a), 9 bits of the keys are searched exhaus-
tively, which are the 1 bit of K1(R7), the 1 bit of K8(R7) and the 7 bits of K ′

3(L7).
In the calculation of (b), 34 bits of the keys, which are the 17 bits of K1(L9)

and K8(L9), the 9 bits of K ′
3(R9) and the 8 bits of K ′

5(R9), are searched, in addi-
tion to the bits that are narrowed down in (a). Note that the condition (3) on
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Fig. 6. Differential characteristics of the data randomizing part that can be exploited
for the attacks

K ′
8 reduces the complexity of searching K1 and K8 by 1 bit. Furthermore, by

narrowing down K1, K8 and K ′
5(R9) prior to narrowing down K ′

3(R9), though
memory complexity is increased, the time complexity is reduced. In the calcu-
lation of (c), 10 · 3 − 9 − 1 = 20 bits of K5, K6 and K7 in addition to the bits
that are narrowed down in (a) and (b) are searched exhaustively. Note that the
complexity of searching K5, K6 and K7 is reduced by 9 bits because the K ′

5(R9)
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are narrowed down in (b) and by 1 bit because of the condition 3 on K ′
6. The key

to be searched for in the calculations of (a) to (c) is 63 bits in total, as described
above.

If the number of ciphertext pairs used for key recovery is small, then the keys
cannot be sufficiently narrowed down in each calculation of (a) to (c) as a result
the time complexity increases in subsequent calculations. Also, the time/memory
complexity varies depending on the value of the ciphertext pairs. Therefore, it
is difficult to estimate the time/memory complexity theoretically. So, we mea-
sured the time, the number of calculations of the function FO and amount of
memory required for the key recovery by computational experiment. The results
are shown in Table 4. The desktop PC used was as follows.

Processor: Intel(R) Core (TM) i9-9900K CPU
Memory: 32GB

Development
environment: Microsoft Visual C++ 2015

In Table 5, N (= 2n−2) is the number of ciphertext pairs used, and Average
time is the average of the search time required for all combinations of N pairs
from the 9 ciphertext pairs in Table 4. The search time was about 1.4 s when
N = 4 and less than 1 s when N = 5 and 6. It also took less than about
1 min when N = 3. When N = 2 it took between 15 min and 65 h in the range
measured, although this is not shown in the table because only part of it could be
measured because it was too time-consuming. The amount of memory required
is 82MiB maximum when N = 3 and is 32MiB when N ≥ 4.

As the search time increases rapidly with N < 4, the number of ciphertext
pairs required in this paper is defined to be N (= 2n−2) = 4, though the key
recovery is also feasible when N = 3 or N = 2. When n = 4, the required number
of chosen plaintexts is 2n+4 = 28. We counted the number of the function FO
calculations and measured the amount of memory used during the search. The
number of the function FO calculations was � 232, then the time complexity is
� 229 in terms of one encryption which contains 8 = 23 function FOs, and the
memory used was about 225 bytes (= 32MiB).

5 Summary

In this paper, we first described how to derive the weak keys by analyzing the key
scheduling part and showed that when a weak key and the related key are used,
there is a differential characteristic with a very large differential probability in
the data randomizing part of the MISTY1 in the related-key setting.

Next, we described the attack procedures of distinguishing MISTY1 from a
random permutation and the key recovery using this differential characteristic,
and show that the computational complexity for these attacks is realistically
feasible. For distinguishing MISTY1 from a random permutation, data and time
complexity is 25 chosen plaintexts and the time for comparing 29 ciphertext
pairs. For the key recovery, data, memory and time complexity is 28 chosen
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plaintexts, 225 bytes and the time for encrypting � 229 times. The actual time
measured on a desktop PC was less than or equal about 2 s on average, although
it depends on the value of secret keys and ciphertexts.

It should be noted that the set of the weak keys occupies a small fraction of
the entire key space and that this attack is the related-key attack, so it is not
considered to be a realistic threat in normal encryption applications.
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