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Abstract. Consumer IP cameras are now the most widely adopted solu-
tion for remote monitoring in various contexts, such as private homes or
small offices. While the security of these devices has been scrutinized,
most approaches are limited to relatively shallow network-based anal-
yses. In this paper, we discuss a methodology for the security analysis
and identification of remotely exploitable vulnerabilities in IP cameras,
which includes static and dynamic analyses of executables extracted from
IP camera firmware. Compared to existing methodologies, our approach
leverages the context of the target device to focus on the identification of
malicious invocation sequences that could lead to exploitable vulnerabil-
ities. We demonstrate the application of our methodology by using the
Tenda CP3 IP camera as a case study. We identified five novel CVEs,
with CVSS scores ranging from 7.5 to 9.8. To partially automate our
analysis, we also developed a custom tool based on Ghidra and rhabdo-
mancer.

1 Introduction

This paper discusses the application of a classical methodology for conducting
in-depth security analysis with a focus on consumer IP cameras. IP cameras are
popular IoT devices, and their cybersecurity has been scrutinized by the scien-
tific community in recent years. Related works [11,12] have already identified
several vulnerabilities, but their analysis has mainly focused on network traffic.
The discussed methodology takes an in-depth approach and requires physical
disassembly of the device. While this attacker model may seem more powerful
than the one used in related literature, we argue that it is more realistic and
allows for the identification of a higher number of more relevant software vul-
nerabilities. Consumer IP cameras are inexpensive, making it easy for attackers
to purchase one or more devices to experiment on. Moreover, our results demon-
strate that this kind of analysis enables attackers to extract sensitive information
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and devise attack strategies that can be weaponized against other IP cameras of
the same make and model, even without physical access. The adopted method-
ology comprises five main steps.

The first step involves gathering information from open and public sources
related to the IP camera under analysis. This step does not require the camera
itself and can be performed by checking public data records from the FCC ID
Search web service [7]. This information proves to be extremely useful, as it often
includes high-resolution pictures of the printed circuit boards, which can be used
to identify diagnostic and programming interfaces. Additionally, valuable infor-
mation can be obtained from firmware repositories. Depending on the camera
manufacturer and model, it is often possible to download a copy of the firmware
from official or unofficial repositories. This step may enable an attacker to focus
on a limited number of IP cameras that are more likely to exhibit interesting
vulnerabilities.

The second step requires physical access to a specimen of the IP camera
under analysis. Within this step, the camera is disassembled to gain physical
access to the inner printed circuit board. The primary objective is to visually
inspect it and identify one or more vulnerability surfaces that enable direct and
low-level interaction with the camera. In our experience, it is highly likely to
identify internal USB ports that have no external connectors, as well as simpler
debugging and diagnostic interfaces based on standard JTAG or UART proto-
cols. Having physical access allows us to connect and probe these interfaces to
confirm that they are active and explore the related attack surfaces. At this step,
it is usually possible to interact with the bootloader and potentially gain access
to a command-line interpreter as a privileged user.

The third step begins by extracting the firmware deployed on the IP camera.
This task can be accomplished either by exploiting low-level read access to the
memory of the IP camera through a diagnostic interface or by physically con-
necting an external reader to the memory chip soldered to the PCB. In some
cases, a chip-off might be necessary, although it has not been required in our
experience. The extracted firmware is then subjected to common static analysis
procedures aimed at identifying relevant partitions, configuration files, scripts,
executable files, and cryptographic material.

The fourth step complements the static analysis of the firmware with a
dynamic analysis of the network behavior of the IP camera under test. The
peculiarity of our approach is that, instead of applying a general approach for
static analysis we focus on the main services exposed on the network by the
device, thus considering its use-case scenario. By considering the classical usage
scenario of the target device, we demonstrate how existing classical tools for
static analysis can be tweaked to quickly identify vulnerabilities exposed by the
target device, thus preventing the security researcher to manually analyze dif-
ferent potential sources of vulnerabilities that wouldn’t lead to exploits.

The fifth and final step builds upon the information gathered in the previous
steps to perform a detailed reverse-engineering process of all executables that
implement services available from the network. To partially automate this com-
plex step, we developed a novel tool based on Ghidra [14] and rhabdomancer [13]
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that identifies the functions responsible for handling data received from net-
work connections, builds the invocation sequence list and correctly identifies the
thread responsible for each invocation sequence. This allows security researchers
to quickly analyze the whole function call sequence of a target network handler
to identify potential vulnerabilities in its code, thus helping them to demonstrate
potential exploits and identify possible mitigation.

In this paper, we demonstrate the effectiveness of the proposed methodology
by focusing on a popular consumer IP camera, the Tenda CP3, as a use case.
Our analysis has already led to the publication of five new CVEs, two of which
have a CVSS score of 7.5 and the remaining three have a CVSS score of 9.8.

1.1 Related Work

The scientific literature already contains several research papers focusing on
the cybersecurity of IoT devices, IP cameras, and video surveillance systems.
However, most of this work limits itself to network-based security analysis, either
by sniffing and analyzing network traffic or by interacting with exposed network
services. Notable contributions in this field include the analysis of the attack
surface of IP-based surveillance systems [10], as well as wide-ranging analysis of
IoT devices [12] and the exposed network services of IP cameras belonging to a
given nation [3]. These papers demonstrate that connected IoT devices present
many vulnerabilities; however, in many cases, the analysis is limited to relatively
simple scanning and probing activities.

Other papers more related to our proposal focus on the in-depth analysis of
network communications of a given IP camera [1,4]. In particular, the authors
of [4] managed to exploit network-based attacks, such as Man-in-the-Middle, to
eavesdrop on and interact with network communications between the IP cam-
era (a TP-Link Tapo C200) and other devices on the same local network, thus
identifying three novel vulnerabilities. We remark that these papers only based
their analysis on network interactions, without identifying relevant vulnerabili-
ties (such as remote code execution) that require an in-depth reversing of exe-
cutables extracted from the firmware of IP cameras.

In relevant related work, Shwartz et al. [16] perform firmware extraction from
16 different IoT devices, with the final goal of extracting and cracking passwords
that would allow remote access to the compromised devices. They demonstrate
the effectiveness of their approach, as well as the widespread vulnerability related
to password management of IoT devices, by creating a modified version of the
Mirai botnet that utilized these passwords to compromise vulnerable devices.
The authors discuss the possibility of conducting a more comprehensive static
analysis and reverse engineering of the analyzed devices but do not undertake
these tasks themselves.

On the other hand, this paper introduces a methodology for the security
analysis of consumer IP cameras, demonstrated through the examination of the
Tenda CP3 as a case study, and the development of a novel tool. To our knowl-
edge, this is the first paper to delve into such an in-depth analysis of IP cameras.
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1.2 Outline

The remainder of this paper is organized as follows. Section 2 presents the IP
camera that we use to demonstrate the application of our analysis methodol-
ogy, while Sect. 3 presents the detailed analysis of the firmware extracted from
our device. Section 4 analyses and describes the two main programs responsi-
ble to handle all external connections to the camera, demonstrating a practical
method to identify potential vulnerability and to design their related exploit.
Finally, Sect. 5 highlights the main strengths of this work and describes future
development.

2 Analysis of the Tenda CP3 IP Camera

In this section, we present the analysis of the Tenda CP3 connected camera and
provide details of the hardware platform. Although we had full access to the
IP camera during our analysis, our primary focus was on outlining the steps
necessary for gathering as much information as possible using OSINT sources
and firmware analysis. Consequently, we describe a methodology that could be
applied not only to other IP cameras but also to various IoT devices.

2.1 Hardware Analysis

The Tenda CP3 connected camera is based on a single PCB platform to which
the lens and all extension PCBs are connected. We conducted an analysis of
the camera’s internals using its FCC ID, a unique identifier required for devices
transmitting over radio frequencies in the United States. Upon locating the FCC
ID on one of the labels attached to the camera, we entered its value into the FCC
ID search form available on the Federal Communications Commission website.
The FCC ID of the Tenda CP3 cameras is V7TCP3, with V7T representing the
grantee code (i.e., Shenzen Tenda Technology Co., Ltd.) and CP3 being the
product code assigned by the grantee. By examining the internal pictures of the
V7TCP3 product (Fig. 1) we identified the main components of the main PCB.

The Tenda CP3 is equipped with a Fullhan FH8626 V100 System on Chip
designed for HD IP cameras, capable of multi-stream encoding in H.264 format
at 1080p resolution and 15 frames per second. Additionally, it features a Real-
tek 8188FTV Network Interface Controller, providing support for 802.11b/g/n
2.4GHz connectivity. On the top side of the main PCB, we also identified a
UART serial interface, indicated by the two tx and rx pads located at the top of
the image, as well as a flash chip (partially visible on the left side of the picture).

2.2 UART Serial

After the initial hardware analysis, we decided to access the internals of the
camera available to us to verify the information found via OSINT. Although the
labels tx and rx were not printed on the PCB found inside our device, all the
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Fig. 1. Internal pictures of the Tenda CP3 accessed via the FCC ID public repository.

other components and their locations were exactly the same. We proceeded by
connecting to the UART serial interface using a USB TTL adapter and minicom
configured with a baud rate of 115200 (8N1).

During the first boot of the device we only connected to the tx pad of the
UART interface with the rx pin of our USB TTL adapter to log the output of
the system boot process. After analyzing the recorded log of the boot process, we
identified several useful information about the bootloader (U-Boot 2010.06-dirty,
with the possibility to interrupt the autoboot process by pressing ‘E’), the OS
(a Linux-3.0.8 ARMv7 Linux Kernel Image), the number and mapping of the
partitions on the spi flash, the name of some demons and applications started
by the system (one of them being telenetd), and some configurations saved by
the device, including the configured WiFi credentials printed in clear.

We then connected the tx pin of our USB TTL adapter to the rx pad of the
PCB to interrupt the autoboot sequence, only to encounter a password-protected
login prompt. Later, we will discuss how the password was recovered to access
the U-Boot console.

CVE-2023-30354: Physical access and WiFi credentials disclosure - Tenda
IP Camera CP3 does not defend against physical access to U-Boot via the
UART; the Wi-Fi password is shown, and the hard coded boot password can
be inserted for console access.

Base Score: 9.8 Critical
Vector: CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

2.3 Firmware Extraction and Analysis

We extracted the firmware from the SOIC8 chip by directly connecting to the
pins of the chip via a dedicated clip, as depicted in Fig. 2. We took care to isolate
the processor from the flash memory to prevent any modifications during the
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firmware extraction procedure, thus enabling us to work with the corresponding
image of the data found on the flash memory.

Fig. 2. Firmware extraction procedure.

We extracted the firmware image using the flashrom utility [8], and we mod-
ified the permissions on the saved image to be read-only. Additionally, we com-
puted a fresh checksum of the saved flash image to ensure that we always had a
clean image available.

After obtaining the firmware image, we manually extracted the partitions
described in the boot process, resulting in 6 different files (one for each partition).
Here, we provide a high-level analysis of the content of the partitions extracted
from the flash image:

– bootstrap and uboot-env: partitions containing the configuration of the
bootstrap and uboot environment;

– uboot: partition containing the uboot bootloader of the device;
– kernel: partition containing the root file system of the device. The root file

system is stored in a compressed format.
– data: partition containing the user data used by the applications being exe-

cuted on the device. This partition is formatted in a jff2 file system.
– app: partition containing the file system on which all scripts, applications and

configuration file of the Tenda CP3 IP camera. This partition is formatted in
a squashfs file system
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3 Detailed Analysis of the Tenda CP3 System

The detailed analysis of the Tenda CP3 camera combines both dynamic and
static analysis on the content of the app partition of the extracted firmware
image. Specifically, we are primarily interested in mapping all services being
executed on the camera that accept any incoming traffic, and in enumerating
interesting files found in the app partition of the camera via the firmwalker util-
ity [6]. These files include UNIX configuration files (such as /etc./passwd and
/etc./shadow files), bash scripts, and all executable files found in the partition.

In this section, we present the results of the analysis of the UNIX configu-
ration files, the service mapping, and the bash scripts responsible for the ini-
tialization of the system. In Sect. 4, we provide a detailed analysis of the main
programs found active on the camera.

The scripts used the steps outlined below are available on GitHub [2].

3.1 UNIX Configuration Files

We identified several different configuration files available in the app partition
of the extracted file system. While some configuration files are related to the
behavior of the applications executed by the system at start up (more on this
in Sect. 3.3), by examining certain well-known strings in the text files, we were
able to identify two extremely interesting files.

The first file is ap mode.cfg (located at the root directory), which contains
the default configuration for the access point exposed by the device while in
configuration mode. This includes the interface label, the SSID type and prefix,
the default IP address (192.168.55.1), DHCP range, and default password in
plain text.

The second file is shadow (also located at the root directory), which serves
as a modified version of the /etc./shadow file found in all UNIX systems that
will be copied in the /etc. folder at start up (see Sect. 3.3). The shadow file
contains a single user (root) and the hash (generated with descrypt) of the
password associated with the root user. Since the length of the hash is limited to
only 13 bytes, we attempted to reverse-engineer the password via a brute-force
attack, eventually succeeding in recovering it. The recovered password has a
length of 8 characters and is likely generated following a pre-defined scheme used
by the vendor. Upon successful authentication with the recovered credentials via
UART shell, we were also able to access the U-Boot shell after a couple of easy
and intuitive modifications to the password.

3.2 Service Mapping

We conducted a network mapping on our device to identify all services accepting
incoming traffic from external hosts. This mapping was performed from both an
external attacker’s perspective (e.g., by mapping the ports from a host connected
to the same network as the device) and by accessing the internal shell of the
camera (made possible by the recovered password found in Sect. 3.1) to identify
the services handling incoming traffic.
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External Mapping Report. We performed the external mapping using the
nmap utility [9] to identify all listening ports accepting both TCP and UDP con-
nections. The results of the network mapping procedure indicate that the cam-
era is accepting telnet connections on port 23/TCP, rtsp (Real-Time Streaming
Protocol) connections on port 8554/TCP, and exposes other unknown services
on ports 843/TCP, 1300/TCP, 6688/TCP, 8699/TCP, 9876/TCP, 3702/UDP,
5012/UDP, 5683/UDP, and 19966/UDP.

We were able to access the camera via the telnet protocol using the root cre-
dentials recovered in the previous step, and via rtsp using the default credentials
associated with the service, stored in plain text in the ap mode.cfg configuration
file. It is worth noting that these credentials are hard-coded and identical in all
IP cameras from the same vendor, and cannot be modified via the corresponding
smartphone application. Therefore, by accessing a network where a camera from
the same vendor as the one used in our analysis is installed, anyone can access
its live video stream using the same set of credentials.

CVE-2023-30351: Remote access via hard-coded credentials - Tenda IP
Camera CP3 was discovered to contain a hard-coded default password for
root which is stored using weak encryption. This vulnerability allows attack-
ers to connect to the TELNET service (or UART) by using the exposed
credentials.

Base Score: 7.5 High
Vector: CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

CVE-2023-30352: RTSP feed access via hard-coded credentials - Tenda IP
Camera CP3 was discovered to contain a hard-coded default password for
the RTSP feed.

Base Score: 9.8 Critical
Vector: CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

Internal Mapping Report. Following the mapping of services accepting
incoming connections from outside the device, we exploited the previously found
access via telnet to discover other potentially interesting services running on the
device that could lead to further vulnerability findings. Initially, we analyzed the
processes active on the device after gaining root access through the exploited tel-
net service. We found that only slightly more than 50 processes were active on
the device, many of which were observed starting as system processes via the
UART serial interface logs.

Upon observing the list of active threads on the device, we discovered that
the vast majority were spawned from two different applications, namely noodle
and apollo, which were also found in our copy of the flash memory in the app
partition.

We then proceeded with the identification of processes associated with
the open ports found in the external network mapping. The results of the
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netstat command highlighted that the telnet connection is managed by inetd
(as expected), while all other connections are managed by either noodle or apollo.
Specifically, noodle listens on ports 843/TCP, 1300/TCP, and 5012/UDP, while
apollo serves all other ports, including 8554/TCP (RTSP). Since these two bina-
ries serve as the main entry points for any external connection (including com-
munication with the vendor’s servers and the vendor’s application), we will focus
on their analysis in Sect. 4.

3.3 Bash Scripts

We analyzed the content of the bash scripts found in the /etc./init.d folder,
which contains 5 different scripts:

– S01udev: responsible for creating some system folders and run the udevd
demon and to start the udevstart program;

– S02init rootfs: responsible for mounting the data file system partition;
– S03network: responsible for configuring the network interface;
– S04app: responsible for mounting the app file system, initializing different

applications, and starting the noodles application;
– rcS: responsible for executing all the scripts found in the /etc./init.d folder

starting with the S[0-9][0-9] regex expression.

Since the S04app script is the most interesting initializing script, we decided
to analyze it in detail to recreate the entire initialization process of the appli-
cations being executed on the device and to find any potential vulnerabilities.
The S04app script invokes another script (chk ver.sh) that is responsible for
updating any script found in the /usr/bin folder with newer versions found in
the /app folder, if available. While it is possible to exploit this script to over-
write system applications with another file with the same name placed in the
/app folder, it is worth noting that obtaining access to the system is necessary
to perform this exploit. Given that the only user available on the device is the
root user, the process of modifying a script is trivial and of little interest in our
case study.

The S04app then proceeds to invoke three hard-coded scripts (patch.sh,
sys init.sh, and app init.sh) from the /app directory, if available. Unfortu-
nately, in both our device and flash image, we were unable to locate these scripts,
as they are most likely related to the installation of a patch downloaded from
the vendor’s website.

After executing the noodles application, the S04app script identifies and
mounts the SD card on the /mnt/sd mount point. If the SD card is mounted
correctly, it then executes another script (iu.sh), which appears to be an update
script. Upon further analysis, the iu.sh script copies the content of a file named
Flash.img found in the root directory of the SD card to a temporary working
folder (/home) and proceeds by copying its content to replace the entire flash
memory. It is worth noting that since the entire system boot process does not
check the integrity of the loaded flash image, it is possible to overwrite the system
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simply by inserting a properly formatted SD card with the malicious firmware
image, without the necessity of accessing the device through the network.

CVE-2023-30356: Missing support for Integrity Check - Tenda IP Cam-
era CP3 was discovered missing Support for an Integrity Check, allowing
attackers to update the device with crafted firmware.

Base Score: 7.5 High
Vector: CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:N

4 Binary Analysis: Noodles and Apollo

In this section, we present a detailed analysis of the two main binaries responsible
for managing network connections on the Tenda CP3 camera, namely noodles
and apollo. The primary objective of the analysis presented in this section is
to outline the methodology we adopted in identifying vulnerabilities that could
potentially allow for remote code execution on the device.

Our analysis is based on the reverse-engineered representation of the two
binaries obtained with Ghidra [14], upon which we applied a customized version
of the rhabdomancer script [13] to identify insecure functions handling external
connections (recv, recvfrom, and recvmsg). Rhabdomancer is a Ghidra script
designed to assist with vulnerability research tasks based on a candidate point
strategy against software written in C/C++. It locates all calls to potentially
insecure functions (the candidate points), which can be used to find insecure
input access to the process. Additionally, we developed a tool on top of rhab-
domancer that automates the entire process of reconstructing the function call
sequence from the main function to the specified entry points [2], enabling us
to easily map all the threads of the two processes to the different ports they
use. Subsequently, we proceeded with a manual analysis to identify potential
security vulnerabilities and design exploits to achieve remote code execution on
our device.

4.1 The Noodles Binary

By executing our modified version of the rhabdomancer script, which specifi-
cally targeted functions relevant to our analysis (primarily recv, recvfrom, and
recvmsg), we identified three candidate points in the decompiled binary. These
points were labeled as FUN 00014e68, FUN 0001fc14, and FUN 00012b7c.

FUN 00014e68. This function is referenced in 5 other functions within the noodles
binary. We will refer to these different invocations using the memory addresses
of our reversed binary for simplicity.

1. 0x00011b04. The first reference is inside the main function, and is related to
a socket listening on port 1300 (one of the ports already identified in the previous
analysis step). In this invocation, FUN 00014e68 is used to receive commands
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from the client, as confirmed by the string receive cmd from client<%d>:
<%s> len = %d \n found a couple of instructions later. The available commands
(hard-coded in the binary) through this interface include some suspicious strings
like ELFEXEC, DOWNLOAD, and SYSTEM.

2. 0x000123bc. The second reference to our target function is inside the
FUN 00012110 function, which is referenced by 3 other functions: FUN 000128a0
(invoked by the main function after the ELFEXEC command is received),
FUN 00014674 (invoked by the main function after the DOWNLOAD command is
received), and FUN 000147ac (invoked by the main function after the UPGRADE
command is received). Upon further investigation, we confirmed that these ref-
erences are all related to the previously discussed functionalities, and they can
be used to trigger the execution of different scripts available on the camera.

3. 0x0001272c. The third reference is found inside two different functions:
FUN 000146e4 (invoked by the main function after the UPLOAD command is
received) and FUN 00014748 (invoked by the main function after the FLASHDUMP
command is received). While via the former invocation it is possible to upload a
specific file to the camera, by exploiting the latter invocation we demonstrated
that it is possible to remotely upload a modified version of the firmware that will
be copied to the flash memory on the next restart. This enables the exploitation
of the vulnerability identified in Sect. 3.3 (CVE-2023-30356) without requiring
physical access to the camera to upload a modified firmware version on the SD
card.

4. 0x00013cbc. The fourth reference is found inside the function FUN 00013c30,
which happens to be the policy thread spawned by the function FUN 00013df4
(directly called in the main function). The policy thread is listening on port 843,
accepts a fixed string (policy-file-request), and responds with a fixed XML
structure.

5. 0x000144f8. The final reference is found inside FUN 000143c0, which
is another function associated with the management of external commands
accepted by noodles. Specifically, this function is called upon the reception of
the SYSTEMEX command, which has already been exploited by other researchers
in CVE-2023-23080 to achieve remote code execution.

FUN 0001fc14. The second function containing a recv invocation is referenced
only once in function FUN 0001d2c8 in the noodles binary. However, this latter
function is referenced three times.

The first reference (FUN 0001d2c8) is related to some WiFi connection tests
and extends up to the main function (invoked after receiving a SYSTEM command
containing the STATUS keyword). We analyzed the entire activation graph of
this invocation, composed of 6 different functions, and established that this set
of functions is used to test the status of a known WiFi SSID by the camera on
system boot.

The second reference (FUN 0001d1f8) is also related to WiFi communication
and is also invoked indirectly by the main function after a SYSTEM command
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is received. However, this second function accepts a different system command
(SCAN ) and performs a network scan on the wlan0 (hard-coded) network inter-
face.

The third reference (FUN 0001d3b0) is once again related to WiFi commu-
nication and invoked via the SYSTEM handler of the main function. This time,
the function accepts a SCAN RESULTS command and prints the output of the
last saved network scan on the serial interface. We remark that all three of these
handlers return the same value (<SYSTEMEX ACK>ok</SYSTEMEX ACK>), which is
the default response for any successful connection via the SYSTEM command.
Additionally, we note that all of these commands are vulnerable to remote code
injection, and that any received command is executed on the device with root
privileges without requiring authentication.

FUN 00012b7c. The third function containing a recvfrom function is actually the
multicast thread spawned by the main function and attached to port 5012/UDP.
The multicast thread is configured to accept two commands, namely YGMP SVR
and YGMP CMD.

Upon reception of the former command, noodles opens different configuration
files to read the current settings of the device, which are then returned as an
XML structure to the caller. These settings include the IP and MAC addresses
of the camera, its serial number, the value encoded in the QR Code, the hardware
version, and other information.

The latter command (YGMP CMD), however, is far more interesting in the scope
of our work, as it allows unauthenticated remote code execution on the camera by
sending a formatted XML payload. In particular, the payload accepts 3 different
tags for parsing: TARGET, MAC, and CMD. Although the content of both
TARGET and MAC are apparently not used except in some printing functions,
the content of the CMD tag is compared to the reboot string. If the strcmp
returns 0, the FUN 00016ea8 function is called with the argument /app/bin/cmd
reset; otherwise, the content of the CMD tag is passed directly to the same
function.

Upon further inspection, we verified that the FUN 00016ea8 function is a
simple wrapper for the system function, with the arguments passed to the func-
tion being forwarded directly to system without proper sanitization. This allows
unauthenticated remote code execution on the camera by simply passing a com-
mand different from reboot.

CVE-2023-30353: Unauthenticated RCE - Tenda IP Camera CP3 allows
unauthenticated remote code execution via an XML document.

Base Score: 9.8 Critical
Vector: CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

We emphasize that by following the described methodology, which is based
on the analysis of the recv functions and their activation path, we were able
to find all handlers for incoming connections managed by the noodles appli-
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cation. Furthermore, we demonstrated how to exploit these handlers to obtain
unauthenticated RCE with root privileges on the device.

4.2 The apollo Binary

We employed the same methodology applied on the noodles binary to analyze the
apollo binary. In particular, we want to remark that the vanilla rhabdomancer
script on the whole apollo binary resulted in more than 128000 candidate points,
while our tool returned less than 100 points, which we further reduced with a
simple duplicate removal of different points on the same function calls.

The apollo binary utilizes 65 different threads to perform various tasks based
on commands received from 7 different ports. Each of these threads eventually
leads to one or more of the 25 recv functions. These functions containing the
recv calls are solely responsible for managing incoming data, while the parsing
of the received data structure is handled by the calling functions.

After thorough analysis, we successfully mapped each thread to a specific
port listened to by the apollo process and identified the exposed functionalities.

– 3702/TCP exposes ONVIF [15] discovery, notification and hello threads as
required by the ONVIF Core Specification [3 threads];

– 6688/TCP: exposes an HTTP server [3 threads];
– 8554/TCP: exposes the RTSP service, which is used to access the camera

video and audio [2 threads]
– 8699/TCP: exposes a set of threads related to manage different functional-

ities of the camera [52 threads];
– 9876/TCP: exposes the yserver TCP handler for incoming connections [3

threads];
– 5683/UDP: exposes the COAP (COnstrained Application Protocol [5])

functionalities [1 thread];
– 19966/UDP: exposes the yserver UDP handler for incoming connections [1

thread].

We proceeded with a more in-depth analysis of the main handler of port
8699/TCP (ut cmd server init) due to the significant number of threads
directly associated with this port. We discovered that this connection is utilized
for direct communication with the user application within the same network or
via cloud services when in a different network. It accepts all possible commands
that the user can provide through the application interface.

The incoming packets are handled by a dedicated thread (ut rcmd server
proc) and then passed to a parser function to identify the received command
(FUN 0007cb00). In this function, the parser only checks that the received com-
mand starts with the character ! and then proceeds to compare the remainder
of the received string with hard-coded commands. If the received string matches
one of the commands, then a thread is spawned and the desired function is exe-
cuted on the camera. We identified 148 different commands (147 plus the help
command, which returns the description of all the other commands), which are
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mapped to 50 different threads. As an example, the audio output proc man-
ages various functionalities related to recording audio from the microphone (e.g.,
audio vol in, used to set the audio input volume, or capture audio, used to cap-
ture audio from the microphone) and setting different speaker parameters. Mean-
while, functionalities related to playing audio on the camera are managed by
the audio output proc (e.g., loop audio and play audio). However, if the string
received by the ut rcmd server proc thread and parsed by the FUN 0007cb00
function is not recognized as one of the commands directly managed by the
process, the system function is executed by passing the remaining string as the
only parameter. By supplying a correctly formatted string to the service, we
were able to achieve another instance of unauthenticated remote code execution
on the camera.

Finally, we note that we also identified potential exploits on the other ports
handled by the apollo process. While the methodology presented in this paper
has proven effective in identifying vulnerabilities on our device, we emphasize
that the process of behavior reconstruction (i.e., the detailed analysis presented
on the noodles binary) and the subsequent crafting of exploits to verify a security
vulnerability still heavily rely on human skill and experience.

5 Conclusions

This paper analyzes the process of vulnerability discovery on a consumer IP
camera to demonstrate the effectiveness of the approach in the identification of
security vulnerabilities. The methodology comprises five steps:

1. gathering relevant information from open sources;
2. physical access to a IP camera specimen aiming at identifying low-level attack

vectors;
3. firmware extraction and static analysis of the whole file system, including

configuration files, scripts and executables;
4. dynamic analysis of the network behavior, aiming at identifying all remote

attack surfaces (such as open TCP and UDP port) of the connected IP cam-
era;

5. in-depth reversing of all executables that implement network-facing services.

We provide a detailed example of the application of the proposed methodol-
ogy by applying it on the widespread Tenda CP3 IP camera as a relevant use
case. Our methodology allowed us to identify five new CVEs with a CVSS score
ranging from 7.5 to 9.8.

We remark that the proposed methodology differs from the approaches that
are commonly proposed in many related works, which only perform network-
based analysis and fall short from executing a complete reversing of relevant
executables.

To partially automate our approach we also developed a novel tool [2] based
on Ghidra and rhabdomancer that is able to identify the functions managing
incoming connection, to reconstruct their call tree from the main function for a
fast identification of critical points in large binary executables.



Finding and Exploiting Vulnerabilities on IP Cameras 209

Responsible Disclosure

Before publication of this work we contacted Shenzen Tenda Technology Co.,
Ltd. (May 2023) and disclosed our initial findings to them. We informed their
representative that we had discovered several vulnerabilities in one of their prod-
ucts and mutually agreed to proceed with the responsible disclosure procedure
once the CVE IDs for the vulnerabilities were assigned. We obtained 5 CVE IDs
(out of the 7 initially requested, with 2 CVE IDs covering two vulnerabilities
each) at the beginning of June 2023, and promptly reached out to their repre-
sentative. As of time of submission of the camera ready of this work (July 2024),
all details of our findings have been shared with the Tenda representative, who
also assured that a patch resolving all these vulnerabilities is currently being
developed and will be available in the next months.

Acknowledgments. This work was partially supported by project SERICS
(PE00000014) under the MUR National Recovery and Resilience Plan funded by the
European Union - NextGenerationEU.
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