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Preface

The 19th International Workshop on Security (IWSEC 2024) was held at Kyoto Interna-
tional Conference Center, Kyoto, Japan between September 17–19, 2024. The workshop
was co-organized by the Technical Committee on Information Security (ISEC) of the
Engineering Sciences Society of the Institute of Electronics, Information and Communi-
cation Engineers (IEICE) and the Special Interest Group on Computer Security (CSEC)
of the Information Processing Society of Japan (IPSJ).

Following IWSEC’s tradition, we classified the topics of interest into two tracks,
namely, the Cryptography Track (Track A) and the Cybersecurity and Privacy Track
(TrackB); each trackwas formedby separate ProgramCommitteemembers.We received
47 submissions in total, 29 papers in Track A and 18 papers in Track B, each of which
was then reviewed in a double-blind fashion by three or four experts in the pertinent
fields. After comprehensive reviews, we accepted 17 papers, nine papers in Track A and
eight papers in Track B, out of which three papers were accepted as short papers, and
included their revised and refined versions in this publication. Among them, we selected
two best paper awards and one student paper award. The best paper awards went to
“Efficient Card-Based Protocols with a Standard Deck of Playing Cards Using Partial
Opening” by Yoshiaki Honda and Kazumasa Shinagawa and “Few Edges Are Enough:
Few-Shot Network Attack Detection with Graph Neural Networks” by Tristan Bilot,
Nour El Madhoun, Khaldoun Al Agha and Anis Zouaoui. The best student paper award
went to “Race condition vulnerabilities in WordPress plug-ins” by Rin Miyachi, Konan
Nagashima and Taiichi Saito.

Three keynote talks were presented by Dustin Moody (National Institute of Stan-
dards and Technology, USA) on “The First PQC Standards”, Thomas Peyrin (Nanyang
Technological University, Singapore) on “Automated Analysis for Pushing Performance
Limits in Symmetric-Key Cryptography”, and Andreas Rauber (Vienna University of
Technology, Austria and Vienna Scientific Cluster Research Center, Austria) on “Se-
curely Working with Confidential Data: Threats and Mitigations across Layers from
Infrastructure to AI Models”.

We express our sincere appreciation to all those who contributed to the remarkable
success of IWSEC 2024.We are grateful to the authors who submitted their studies to the
workshop. We are thankful to the Program Committee members and external reviewers
for their diligent reviews and insightful discussions, which led to the creation of an
outstanding program. Last but not least, we would like to thank the general co-chairs,
Junji Shikata and Koji Chida, for their exceptional leadership, as well as the Organizing
Committee members for their great work resulting in a successful event.

September 2024 Kazuhiko Minematsu
Mamoru Mimura
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Authenticated Encryption



Bit-Wise Analysis for Forgery Attacks
on AES-Based AEAD Schemes

Takuro Shiraya1, Kosei Sakamoto2, and Takanori Isobe1(B)

1 University of Hyogo, Kobe, Japan
takanori.isobe@ai.u-hyogo.ac.jp

2 Mitsubishi Electric Corporation, Kamakura, Japan

Abstract. We examine the security of AES-based authenticated
encryption schemes, including the AEGIS family, Tiaoxin-346, Rocca and
Rocca-S. Existing studies evaluated the security against forgery attacks,
focusing on state collisions in the encryption phase. These studies esti-
mated the lower bounds for the number of active S-boxes by a byte-wise
search. However, this approach might underestimate these bounds, as
it potentially include invalid characteristics. In this paper, we conduct a
bit-wise evaluation of the AEGIS family, Tiaoxin-346, Rocca, and Rocca-
S against forgery attacks based on state collision by Boolean satisfiability
problem (SAT) tools. This approach enables us to derive tighter bounds
for the minimum number of active S-boxes. Besides, for AEGIS-128L,
Tiaoxin-346, and Rocca, we incorporate values of differential distribution
tables of S-boxes to obtain the exact differential characteristics prob-
ability, which directly lead to actual forgery attacks on AEGIS-128L,
Tiaoxin-346, and Rocca. These results reveal that AEGIS-128L cannot
claim 256-bit security for forgery attacks, even with a 256-bit tag. Fur-
thermore, for the first time, we perform a security evaluation against
forgery attacks exploiting tag collisions in the tag generation phase.

Keywords: AEAD · Forgery attack · differential characteristics
probability · SAT solver

1 Introduction

1.1 Background

At SAC 2013, Wu and Preneel proposed an AES-based Authenticated Encryp-
tion with an Associated Data (AEAD) scheme called AEGIS-128/128L/256,
designed to a high-speed encryption in software [23]. To realize high-speed
encryption, the AEGIS family utilizes the AES New Instructions (AES-NI) [4,8],
a particular instruction set for single instruction multiple data (SIMD). The
AEGIS family was submitted to the CAESAR competition [1], and AEGIS-128
was selected as the final portfolio for high-performance applications. AEGIS-
128L/256 has been submitted as an Internet Draft to the RFC [5], featuring the
introduction of a 256-bit tag. Nikolić proposed an efficient AEAD scheme called
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
K. Minematsu and M. Mimura (Eds.): IWSEC 2024, LNCS 14977, pp. 3–22, 2024.
https://doi.org/10.1007/978-981-97-7737-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-7737-2_1&domain=pdf
https://doi.org/10.1007/978-981-97-7737-2_1
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Tiaoxin-346 using AES-NI in 2014 [15], which was chosen as a third-round can-
didate in the CAESAR competition. At FSE 2022, Sakamoto et al. proposed an
AES-based AEAD scheme called Rocca [16,17] for B5G systems. At ESORICS
2023, Ravi et al. proposed Rocca-S, an AEAD scheme for 6G [2], which supports
a 256-bit tag. These ciphers consist of four phases. In the initialization phase,
a key and nonce are loaded into a state. An associated data is used to update
the state in the authenticated data phase. In the encryption phase, a plaintext
is loaded into the state, and a ciphertext is generated. In the finalization phase,
a tag is generated.

Forgery attacks are a powerful form of attack against AEAD. In recent years,
automatic methods have been utilized to search for distinguishers in cryptanaly-
sis. One such method is based on mixed-integer linear programming (MILP), as
proposed by Mouha et al. [14]. This method aims to estimate the lower bound on
the number of active S-boxes. Another significant method in automatic search is
based on the Boolean satisfiability problem (SAT) or its extension called satisfia-
bility modulo theories (SMT). Sun et al. have proposed an SAT-based automatic
search tool for differential characteristics that efficiently evaluates the optimal
differential characteristics [20,21].

1.2 Existing Work

Minaud constructed linear biases in the keystream of AEGIS-256 and showed
that it is possible to recover information from partially known encrypted plain-
text, regardless of the keys involved [13]. Eichlseder et al. proposed improved
keystream approximations for the AEGIS family and proved upper bounds for
the squared correlation contribution of any suitable linear characteristic [7]. At
FSE 2022, Liu et al. showed distinguishing and key recovery attacks for the
encryption phase of AEGIS-128 and Tiaoxin-346 by exploiting some algebraic
properties in a class of weak keys [12]. Hosoyamada et al. conducted a key-
recovery attack on Rocca, showing that despite the designers’ claims of 256-bit
security, it actually possesses only 128-bit security [9]. This issue has been fixed
by introducing a key forward operation in the initialization phase [17]. In this
paper, we consider this variant as Rocca. Derbez et al. assessed the key commit-
ment security of the AEGIS family, considering various existing frameworks, and
culminated in developing an O(1) attack applicable to all variants of AEGIS [6].

Regarding forgery attacks, existing research focuses on a class of forgery
attacks that exploit state collisions by introducing differences during the encryp-
tion phase. These roughly estimate the upper bounds of differential characteris-
tics probability for state collisions in the encryption phase by a byte-wise active
S-box search [2,15,17,22,23]. The byte-wise estimation potentially underesti-
mates the lower bounds for the number of active S-boxes due to the inclu-
sion of invalid differential characteristics, as this evaluation cannot cover bit-
level behaviors. Especially, the estimated bounds for the AEGIS family are
particularly rough, even as the IETF considers their standardization. To our
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Table 1. Summary of forgery attacks based on state collision in the encryption phase.

Target Tag Size Probability Bounds Reference

AEGIS-128L 128/256 bits 2−216 Exact Our (Fig. 3)

Tiaoxin-346 128 bits 2−180 Exact Our

Rocca 128 bits 2−150 Exact Our (Fig. 4)

knowledge, no bit-wise evaluation of forgery attacks based on state collisions has
been conducted during the encryption phase for AEGIS, Tiaoxin-346, Rocca,
and Rocca-S.

1.3 Our Contribution

In this paper, we conduct a bit-wise evaluation against forgery attacks based
on state collisions using the Boolean satisfiability problem (SAT) tools [20,21].
This enables us to derive more accurate bounds of AES-based AEAD schemes.
Specifically, we estimate the minimum number of active S-boxes by considering
bit-level transitions of differential characteristics to exclude invalid characteris-
tics of existing byte-wise searches. Besides, for AEGIS-128L, Tiaoxin-346, and
Rocca, we incorporate differential distribution tables of S-boxes, i.e. take the
actual differential probabilities via S-box operations into consideration to derive
the exact differential characteristics probability. These directly lead to actual
forgery attacks on AEGIS-128L, Tiaoxin-346, and Rocca.

Furthermore, for the first time, we perform a security evaluation against
forgery attacks that exploit a tag collision in the finalization phase. This assumes
that the adversary introduces differences into the plaintext, which canceled out
during the finalization phase. Then, we show that forgery attacks are feasible
on reduced variants in the finalization of target ciphers. Our results reveal the
security margin of the finalization phases. Our contributions are summarized as
follows.

Forgery Attacks Based on State Collisions. As shown in Table 1, our bit-
wise approach significantly improves the upper bounds of differential character-
istics probability of these ciphers. Especially, we significantly improve the upper
bounds of differential characteristics probability for AEGIS-128/128L/256. Our
results indicate that AEGIS-128/256 could claim a 256-bit forgery security by
differential attacks if it supports a 256-bit tag. Additionally, these confirm that
Rocca-S achieves 256-bit security for forgery attacks.

For AEGIS-128L, Tiaoxin-346, and Rocca, we succeeded in deriving the exact
differential characteristics probability, which directly leads to actual forgery
attacks. More precisely, forgery attacks are feasible with time complexity of
2216, 2180 and 2150 for AEGIS-128L, Tiaoxin-346, and Rocca, respectively. These
results reveal that these cannot claim 256-bit security for forgery attacks even
with a 256-bit tag.
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Table 2. Summary of forgery attacks based on tag collision in the finalization phase.

Target Tag Size Attacked Round (Full) Time

AEGIS-128 128 bits 2 (6) 2125

AEGIS-128L 128/256 bits 2/3 (6/6) 272/2158 (Fig. 5)

AEGIS-256 128 bits 2 (6) 2125

Tiaoxin-346 128 bits 3 (1+20) 236

Rocca 128 bits 4 (20) 2125

Rocca-S 256 bits 4 (16) 2214

Forgery Attacks Based on Tag Collisions. Table 2 shows that forgery
attacks exploiting tag collision are feasible to 2/3/2, 3, 4, and 4-round in the
finalization phase of AEGIS-128/128L/256, Tiaoxin-346, Rocca, and Rocca-S,
respectively. On the other hand, we find that the finalization phase of AEGIS-
128/128L/256, Tiaoxin-346, Rocca, and Rocca-S are secure against forgery
attacks based on tag collision after 3/4/3, 4, 5, and 5 rounds, respectively. As
far as we know, these are the first evaluation results for tag collision attacks in
the finalization phase.

2 Preliminaries

In this section, we first describe forgery attacks. Then, we explain differen-
tial characteristics, the security evaluation using the automatic method, and
the specifications of AEGIS-128/128L/256, Tiaoxin-346, Rocca, and Rocca-S,
respectively.

2.1 Forgery Attacks

The goal of the forgery attacks is to generate the same tag when different mes-
sages are input. It has been shown in [15] that the forgery attack is a main threat
to the constructions like Tiaoxin-346 and AEGIS as only one-round updates are
used to absorb each block of associated data and plaintext.

To proceed with the forgery attacks, we request the encryption of some mes-
sages, nonce, and the associated data. The contents of the message, the nonce,
and the associated data are not of concern to us. If an internal collision occurs
during the cipher operations under these conditions, it becomes possible to forge
the tag. We utilize differential characteristics to implement the forgery attacks.
The evaluation method of this research is described in Sect. 4.3, while the differ-
ential characteristics are explained in Sect. 2.2.

2.2 Differential Characteristics

In this paper, We consider that based on the AES round function, we must regard
only an S-box in AES as a non-linear function. In general, differential propaga-
tion can be probabilistic only when the differences pass a non-linear function.
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Therefore, the differential probability decreases only when the differences pass
an S-box. The S-box with a non-zero input difference is called an “active S-
box.” Basically, when all S-boxes are independent of each other, we can estimate
the differential probability of the entire round function by the product of the
differential probability of all active S-boxes. We can apply this method to our
round function because, for differential propagation, all S-boxes are independent
of each other [11,16]. Let DPFR

and DPs be the differential probabilities of the
whole round function and S-box, respectively. We can calculate DPFR

as follows.

DPFR
=

n∏

i=1

DPs, (1)

where n is the number of active S-boxes in this differential characteristic, which
indicates a certain differential propagation. DPFR

is equivalent to the probability
of an internal collision in a certain round of FR.

When evaluating security against an internal collision on t rounds of FR, the
maximum differential probability must be evaluated such that the differences
in states at t rounds will all be 0. This can be calculated by searching for the
differential characteristics with the minimum number of active S-boxes among all
the differential characteristics. Conversely, the maximum differential probability
of FR can be estimated by searching for the lower bound for the number of active
S-boxes. Let DPFRmax and DPsmax be the maximum differential probabilities
of the differential characteristics with the minimum number of active S-boxes on
FR and the S-box, respectively. DPFRmax can be calculated as follows.

DPFRmax =
m∏

i=1

DPsmax, (2)

where m is the lower bound of the number of active S-boxes.

2.3 Automatic Search Tools for Differential Cryptanalysis

The automatic search method showed incredible performances in the search for
various distinguishers in cryptanalysis. The first category of automatic search is
based on mixed integer linear programming (MILP). Another important auto-
matic search is based on the Boolean satisfiability problem (SAT) or the more
general extension called satisfiability modulo theories (SMT). Let’s consider an
example of security evaluation against differential attacks using an active S-box.
In the search using MILP, binary variables are assigned to the input and output
of each operation, and the differential propagation of each operation is repre-
sented in a linear form. Minimizing the number of active S-boxes in the objective
function, the lower bound for the active S-boxes is derived. In the search using
SAT, binary variables are assigned to the input and output of each operation,
and the differential propagation of each operation is represented in CNF. By
adding a CNF to minimize the number of active S-boxes, the SAT problem is
repeatedly solved to derive the lower bound for the active S-boxes. In this paper,
we adopt the SAT method.
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3 Our Targets

We explain the encryption phase and the finalization phase, as the other phases
are not involved in our evaluation.

3.1 AEGIS Family

A family of AEGIS, including AEGIS-128/128L/256, consists of four phases: ini-
tialization, processing the authenticated data, encryption, and finalization [23].

AEGIS-128. The input of the round function R(S,Xr) consists of the state S
and one block (Xr). The round function of AEGIS-128 is given as follows:

S′[0] = A(S[4], S[0] ⊕ Xr), S′[1] = A(S[0], S[1]), S′[2] = A(S[1], S[2]),
S′[3] = A(S[2], S[3]), S′[4] = A(S[3], S[4]).

Let A be one AES round function, A(X,K) are defined as follows:

A(X,K) = (MixColumns ◦ ShiftRows ◦ SubBytes(X)) ⊕ K.

Encryption Phase. Let msglen be the length of plaintext in bits, and the
number of 128-bit plaintext blocks v is expressed as v = �msglen

128 �. Let Pi and Ci

(0 ≤ i ≤ v − 1) be the 128-bit plaintext/ciphertext block, respectively. The data
Xr inserted in r rounds is expressed as Xr = Pr. The ciphertext Ci is expressed
as follows:

Ci = Pi ⊕ S[1] ⊕ S[4] ⊕ (S[2]&S[3]), (0 ≤ i ≤ v − 1).

In the encryption phase, v −1 iterations of the round function are applied to the
state S, and the ciphertext block Ci is generated.

Finalization Phase. Let adlen be the length of the associated data, tmp
is expressed as tmp = S[3] ⊕ (adlen||msglen), where adlen and msglen are
expressed as 64-bit integers. In the finalization phase, 6 iterations of the round
function R(S, tmp) are applied to the state S. After 6 iterations of the round
function, the 128-bit tag T is generated as follows:

T = S[0] ⊕ S[1] ⊕ S[2] ⊕ S[3] ⊕ S[4].

AEGIS-128L. The input of the round function R(S,Xr,a,Xr,b) consists of the
state S and two blocks (Xr,a,Xr,b). The round function of AEGIS-128L is given
as follows:

S′[0] = A(S[7], S[0] ⊕ Xr,a), S′[1] = A(S[0], S[1]),
S′[2] = A(S[1], S[2]), S′[3] = A(S[2], S[3]),
S′[4] = A(S[3], S[4] ⊕ Xr,b), S′[5] = A(S[4], S[5]),
S′[6] = A(S[5], S[6]), S′[7] = A(S[6], S[7]).
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Encryption Phase. Let msglen be the length of plaintext in bits, the number
of 256-bit plaintext blocks v is expressed as v = �msglen

256 �. Let Pi = P 0
i ||P 1

i

and Ci = C0
i ||C1

i (0 ≤ i ≤ v − 1) be the 256-bit plaintext/ciphertext block,
respectively. The data Xr = Xr,a||Xr,b inserted in r rounds is expressed as
Xr,a = P 0

i ,Xr,b = P 1
i . The ciphertext Ci is expressed as follows:

C0
i = P 0

i ⊕ S[1] ⊕ S[6] ⊕ (S[2]&S[3]),

C1
i = P 1

i ⊕ S[2] ⊕ S[5] ⊕ (S[6]&S[7]), (0 ≤ i ≤ v − 1).

In the encryption phase, v −1 iterations of the round function are applied to the
state S, and the ciphertext block Ci is generated.

Finalization Phase. Let adlen be the length of the associated data, tmp
is expressed as tmp = S[2] ⊕ (adlen||msglen), where adlen and msglen are
expressed as 64-bit integers. In the finalization phase, 6 iterations of the round
function R(S, tmp, tmp) are applied to the state S. After 6 iterations of the
round function, the 128-bit tag T is generated as follows:

T = S[0] ⊕ S[1] ⊕ S[2] ⊕ S[3] ⊕ S[4] ⊕ S[5] ⊕ S[6] ⊕ S[7].

In the finalization phase of RFC’s Draft [5], 7 iterations of the round function
are applied to the state S. If the tag size is 128 bits, the tag is generated using
the same method as described in the proposed paper. Otherwise, if the tag size
is 256 bits, the tag T is generated as follows:

T = S[0] ⊕ S[1] ⊕ S[2] ⊕ S[3] || S[4] ⊕ S[5] ⊕ S[6] ⊕ S[7].

AEGIS-256. The input of the round function R(S,Xr) consists of the state S
and one block (Xr). The round function of AEGIS-256 is given as follows:

S′[0] = A(S[5], S[0] ⊕ Xr), S′[1] = A(S[0], S[1]), S′[2] = A(S[1], S[2]),
S′[3] = A(S[2], S[3]), S′[4] = A(S[3], S[4]), S′[5] = A(S[4], S[5]).

Encryption Phase. Let msglen be the length of plaintext in bits, and the
number of 128-bit plaintext blocks v is expressed as v = �msglen

128 �. Let Pi and Ci

(0 ≤ i ≤ v − 1) be the 128-bit plaintext/ciphertext block, respectively. The data
Xr inserted in r rounds is expressed as Xr = Pr. The ciphertext Ci is expressed
as follows:

Ci = Pi ⊕ S[1] ⊕ S[4] ⊕ S[5] ⊕ (S[2]&S[3]), (0 ≤ i ≤ v − 1).

In the encryption phase, v −1 iterations of the round function are applied to the
state S, and the ciphertext block Ci is generated.

Finalization Phase. Let adlen be the length of the associated data, tmp
is expressed as tmp = S[3] ⊕ (adlen||msglen), where adlen and msglen are
expressed as 64-bit integers. In the finalization phase, 6 iterations of the round
function R(S, tmp) are applied to the state S. After 6 iterations of the round
function, the 128-bit tag T is generated as follows:

T = S[0] ⊕ S[1] ⊕ S[2] ⊕ S[3] ⊕ S[4] ⊕ S[5].
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3.2 Tiaoxin-346

Tiaoxin-346 consists of four phases: initialization, processing associated data,
encryption, and finalization/tag production [15]. The input of the round function
R(T3, T4, T6,Xr,0,Xr,1,Xr,2) consists of the state (T3, T4, T6) and three blocks
(Xr,0,Xr,1,Xr,2). The round function of Tiaoxin-346 is given as follows:

T ′
3[0] = A(T3[2], T3[0]) ⊕ Xr,0, T ′

3[1] = A(T3[0], consta), T ′
3[2] = T3[1],

T ′
4[0] = A(T4[3], T4[0]) ⊕ Xr,1, T ′

4[1] = A(T4[0], consta), T ′
4[2] = T4[1],

T ′
4[3] = T4[2], T ′

6[0] = A(T6[5], T6[0]) ⊕ Xr,2,

T ′
6[1] = A(T6[0], consta), T ′

6[2] = T6[1], T ′
6[3] = T6[2],

T ′
6[4] = T6[3], T ′

6[5] = T6[4].

Encryption Phase. Let msglen be the length of plaintext in bits, and the
number of 256-bit plaintext blocks v is expressed as v = �msglen

256 �. Let Pi =
P 0
i ||P 1

i and Ci = C0
i ||C1

i (0 ≤ i ≤ v − 1) be the 256-bit plaintext/ciphertext
block, respectively. The data Xr inserted in r rounds is expressed as Xr,0 =
P 0
i ,Xr,1 = P 1

i ,Xr,2 = P 0
i ⊕ P 1

i . The ciphertext Ci is expressed as follows:

C0
i = T3[0] ⊕ T3[2] ⊕ T4[1] ⊕ (T6[3]&T4[3]),

C1
i = T6[0] ⊕ T4[2] ⊕ T3[1] ⊕ (T6[5]&T3[2]), (0 ≤ i ≤ v − 1).

In the encryption phase, v −1 iterations of the round function are applied to the
state S, and the ciphertext block Ci is generated.

Finalization Phase. Let adlen be the length of the associated data, 1
iteration of the round function R(T3, T4, T6, adlen,msglen, adlen ⊕ msglen)
is applied to the state S. Then, 20 iterations of the round function
R(T3, T4, T6, constb, consta, constb) are applied to the state S. After 20 itera-
tions of the round function, the 128-bit tag T is generated as follows:

T = T3[0] ⊕ T3[1] ⊕ T3[2] ⊕ T4[0] ⊕ T4[1] ⊕ T4[2] ⊕ T4[3]
⊕ T6[0] ⊕ T6[1] ⊕ T6[2] ⊕ T6[3] ⊕ T6[4] ⊕ T6[5].

3.3 Rocca

Rocca consists of four phases: initialization, processing the associated data,
encryption, and finalization [16,17]. The input of the round function
R(S,Xr,a,Xr,b) consists of the state S and two blocks (Xr,a,Xr,b). The round
function of Rocca is given as follows:

S′[0] = S[7] ⊕ Xr,a, S′[1] = A(S[0], S[7]), S′[2] = S[1] ⊕ S[6],
S′[3] = A(S[2], S[1]), S′[4] = S[3] ⊕ Xr,b, S′[5] = A(S[4], S[3]),
S′[6] = A(S[5], S[4]), S′[7] = S[0] ⊕ S[6].
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Encryption Phase. Let msglen be the length of plaintext in bits, and the
number of 256-bit plaintext blocks v is expressed as v = �msglen

256 �. Let Pi =
P 0
i ||P 1

i and Ci = C0
i ||C1

i (0 ≤ i ≤ v − 1) be the 256-bit plaintext/ciphertext
block, respectively. The data Xr inserted in r rounds is expressed as Xr,a =
P 0
i ,Xr,b = P 1

i . The ciphertext Ci is expressed as follows:

C0
i = A(S[1], S[5]) ⊕ P 0

i ,

C1
i = A(S[0] ⊕ S[4], S[2]) ⊕ P 1

i , (0 ≤ i ≤ v − 1).

In the encryption phase, v −1 iterations of the round function are applied to the
state S, and the ciphertext block Ci is generated.

Finalization Phase. Let adlen be the length of the associated data, 20 itera-
tions of the round function R(S, adlen,msglen) are applied to the state S. After
20 iterations of the round function, the 128-bit tag T is generated as follows:

T = S[0] ⊕ S[1] ⊕ S[2] ⊕ S[3] ⊕ S[4] ⊕ S[5] ⊕ S[6] ⊕ S[7].

3.4 Rocca-S

Rocca-S consists of four phases: initialization, processing the associated data,
encryption, and finalization [2]. The input of the round function R(S,Xr,a,Xr,b)
consists of the state S and two blocks (Xr,a,Xr,b). The round function of Rocca-S
is given as follows:

S′[0] = S[6] ⊕ S[1], S′[1] = A(S[0],Xr,a), S′[6] = A(S[1], S[0]),
S′[3] = A(S[2], S[6]), S′[6] = A(S[3],Xr,b), S′[5] = A(S[4], S[3]),
S′[6] = A(S[5], S[4]).

Encryption Phase. Let msglen be the length of plaintext in bits, the number
of 256-bit plaintext blocks v is expressed as v = �msglen

256 �. Let Pi = P 0
i ||P 1

i

and Ci = C0
i ||C1

i (0 ≤ i ≤ v − 1) be the 256-bit plaintext/ciphertext block,
respectively. The data Xr inserted in r rounds is expressed as Xr,a = P 0

i ,Xr,b =
P 1
i . The ciphertext Ci is expressed as follows:

C0
i = A(S[3] ⊕ S[5], S[0]) ⊕ P 0

i ,

C1
i = A(S[4] ⊕ S[6], S[2]) ⊕ P 1

i , (0 ≤ i ≤ v − 1).

In the encryption phase, v −1 iterations of the round function are applied to the
state S, and the ciphertext block Ci is generated.

Finalization Phase. Let adlen be the length of the associated data, 16 itera-
tions of the round function R(S, adlen,msglen) are applied to the state S. After
16 iterations of the round function, the 256-bit tag T is generated as follows:

T = S[0] ⊕ S[1] ⊕ S[2] ⊕ S[3] || S[4] ⊕ S[5] ⊕ S[6].
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4 Methods of SAT-Aided Security Evaluations

In this section, we recall the pure SAT-based method to evaluate differential
characteristics shown in Sun et al.’s work [20,21]. Then, we explain the tag- and
state-collision-based forgery attacks.

4.1 Security Evaluation of SAT

The Boolean satisfiability problem (SAT) is the problem of determining whether
there exists an evaluation for the binary variables such that the value of the given
Boolean formula equals one. The SAT is formulated with Boolean variables, the
operators AND(∧), OR(∨), NOT(¬), and parentheses. Every Boolean formula
can be converted into an equivalent formula that is in conjunctive normal form
(CNF), which is a propositional formula of the form

∧n
i=0

∨mi

j=0 Cij, where each
Cij(0 ≤ i ≤ n, 0 ≤ j ≤ mi) is either an atomic formula, i.e., a variable or
constant, or the negation of an atomic formula, and each disjunction

∨mi

j=0 Cij
is called a clause. In this study, we generate CNF using PySAT [10] and derive
solutions using the parkissat-rs [24] and mallob-kicaliglu [18,19] solvers.

4.2 SAT-Based Automatic Search for Differential Characteristics

Since our targets are constructed by an S-box, matrix, and XOR operations, it
is sufficient to describe these modeling methods. Note that the modeling of a
matrix can be implemented by an XOR operation as a matrix is decomposed by
multiple XOR operations.

– XOR. For a bit-wise XOR operation, s.t., α⊕β = γ. Differential propagation
is valid over XOR if the following clauses hold

α ∨ β ∨ γ = 1, α ∨ β ∨ γ = 1,

α ∨ β ∨ γ = 1, α ∨ β ∨ γ = 1.

}

– S-box. Let a = (a0, a1, . . . , ai−1), b = (b0, b1, . . . , bi−1), and p =
∑j−1

i=0 pi
be the input and output differences of an i-bit S-box and boolean variables
expressing the weight in an S-box where j is the maximum weight of the
differential propagation, respectively. To express the differential propagation
and its weight in an S-box, we construct the following Boolean formula:

f(a, b,p) =

{
1 if Pr(a → b) = 2−p ,

0 otherwise.

A set A, which contains all the vectors satisfying f(x,y,z) = 0, is expressed
as follows:

A = {(x,y,z) ∈ F
2i+j
2 | f(x,y,z) = 0},

where x = (x0, x1, . . . , xi−1), y = (y0, y1, . . . , yi−1), and z = (z0, z1, . . . ,
zj−1). We need to exclude the propagation expressed A because it is equivalent
to a set of invalid propagation patterns as follows:
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i−1∨

c=0

(ac ⊕ xc) ∨
i−1∨

d=0

(bd ⊕ yd) ∨
j−1∨

e=0

(pe ⊕ ze) = 1, (x,y,z) ∈ A. (3)

These clauses exactly extract the differential propagation with the corre-
sponding weight in an i-bit S-box. We can convert Eq. (3) to

g(a, b,p) =
∧

(x ,y ,z )∈F
2i+j
2

(
f(x,y, z) ∨

i−1∨

c=0

(ac ⊕ xc) ∨
i−1∨

d=0

(bd ⊕ yd) ∨
j−1∨

e=0

(pe ⊕ ze)

)
.

This equation is called the product-of-sum of g. We can reduce the number
of clauses in g by several tools, such as Espresso logic minimizer1. For the
modeling of an S-box to count the number of S-boxes, we simply replace p to
a, expressing whether an S-box is active.

– Boolean cardinality constraints. Lastly, we need to give an objective func-
tion to search the lower bounds for the number of Active S-boxes/the exact
differential characteristics probability. Such a function can be implemented by
Boolean cardinality constraints. In SAT, it is necessary to model the prob-
lem of searching the lower bounds for the number of Active S-boxes/the
exact differential characteristics probability, and we utilize Boolean cardinal-
ity constraints. Boolean cardinality constraints put numerical restrictions on
the number of propositional variables that are allowed to be true at the same
time. The following constitute a typical construct of the Boolean cardinality
constraints, ∑n

i=1
xi ≤ k,

where (x1, ..., xn) are Boolean variables (0 or 1), and k define the maximum
number of variables. In searching for the lower bounds for the number of
Active S-boxes and the exact differential characteristics probability, the vari-
able xi corresponds to the binary variable a/p as previously described in
the context of S-box modeling for AS/DCP. We utilized the better encoding
method proposed by Bailleux et al. [3], which is implemented in the CardEnc
module from the PySAT for Boolean cardinality constraints.

4.3 Our Analysis of Forgery Attacks

We consider two types of approaches for forgery attacks. In the following, we
explain details of our evaluations.

State Collision. The first one exploits state collisions in which the adversary
inserts differences into a plaintext, causing state collisions during the encryption
phase, as shown in Fig. 1. This approach is the same as existing work [22] and
designer’s evaluations [2,15,17,23].

In this setting, using the modeling explained in Sect. 4.2, we estimate the
lower bounds for the number of active S-boxes by considering the bit-level behav-
iors of differentials during the search. Additionally, by exploiting the properties
1 https://ptolemy.berkeley.edu/projects/embedded/pubs/downloads/espresso/index.

htm.

https://ptolemy.berkeley.edu/projects/embedded/pubs/downloads/espresso/index.htm
https://ptolemy.berkeley.edu/projects/embedded/pubs/downloads/espresso/index.htm
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Fig. 1. Overview of forgery attacks based on state collisions.

Fig. 2. Overview of forgery attacks based on tag collisions.

of the differential distribution table of the S-box, we find optimal differential
characteristic probabilities instead of the upper bounds.

Tag Collision. The second approach exploits tag collisions in which the adver-
sary inserts differences into a plaintext in the last round of the encryption phase
so that a state collision occurs in the finalization phase, as shown in Fig. 2. This
approach has not been explored in existing work.

In this setting, we also aim to estimate the lower bounds for the number of
active S-boxes and, furthermore, derive optimal differential characteristic prob-
abilities, leading to tag collisions.

Table 3. The differential characteristics probability for forgery attacks based on state
collisions in the encryption phase (lower bounds for the number of active S-boxes)
[− log2].

Target Tag Size (bits) 4R 5R 6R 7R 8R 9R 10R Reference

AEGIS-128 128 bits 156 (26) 156 (26) 156 (26) 156 (26) 156 (26) [23]

– – 336 (56) 336 (56) 336 (56) 336 (56) 336 (56) Section 5.1

AEGIS-128L 128/256 bits 150 (25) 150 (25) 150 (25) 150 (25) 150 (25) 150 (25) [23]

– 210 (35) 210 (35) 210 (35) 210 (35) 210 (35) 210 (35) Section 5.1

– 216 216 216 216 216 216 Section 5.2

AEGIS-256 128 bits 156(26) 156(26) 156(26) 156(26) 156(26) 156(26) 156(26) [23]

– – – 420 (70) 420 (70) 420 (70) 420 (70) Section 5.1

Tiaoxin-346 128 bits 180 (30) 180 (30) 180 (30) 180 (30) [15]

– – – 180 (30) 180 (30) 180 (30) 180 (30) Section 5.1

– – – 180 180 180 180 Section 5.2

Rocca 128 bits 144 (24) 144 (24) 144 (24) 144 (24) 144 (24) 144 (24) 144 (24) [17]

216 (36) 150 (25) 150 (25) 150 (25) 144 (24) 144 (24) 144 (24) [22]

234 (39) 216 (36) 180 (30) 150 (25) 150 (25) 150 (25) 150 (25) Section 5.1

150 150 150 150 Section 5.2

Rocca-S 256 bits 276 (46) 276 (46) 276 (46) 276 (46) 276 (46) 276 (46) 276 (46) [2]

300 (50) 276 (46) 276 (46) 276 (46) 276 (46) 276 (46) 276 (46) Section 5.1
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5 Results of Forgery Attacks Based on State Collisions

In this section, we show results of bit-level analysis for forgery attacks based on
state collisions with a comparison to existing results. In Sect. 5.1, we estimate
the minimum number of active S-boxes by considering bit-level transitions of
differential characteristics to exclude invalid characteristics of byte-wise searches.
In Sect. 5.2, we incorporate differential distribution tables of S-boxes for AEGIS-
128L, Tiaoxin-346, and Rocca. Due to computational complexity issues, it was
not feasible to obtain these results for AEGIS-128/256 and Rocca-S.

5.1 Lower Bounds for the Number of Active S-Boxes

Table 3 shows the lower bounds for the number of active S-boxes, considering
bit-wise differential transitions, while existing work focuses on byte-wise trun-
cated characteristics. By using the maximum differential probability of the S-box,
namely 2−6 as the differential probability of each active S-box, we estimate the
upper bounds of the differential characteristic probabilities.

AEGIS-128/128L/256. For the encryption phase of AEGIS-128, AEGIS-
128L, and AEGIS-256, we identify differential characteristics that lead to state
collisions after 6, 5, and 7 rounds, respectively. As a result, we significantly
improve the upper bounds compared to the results provided by the designers.
Our findings suggest that AEGIS-128 and AEGIS-256 could claim 256-bit forgery
security by differential attacks, provided they support a 256-bit tag.

Tiaoxin-346. For the encryption phase of Tiaoxin-346, we identify differential
characteristics that lead to state collisions after 7 rounds. According to Table 1,
our evaluation is the same as the byte-wise evaluation by the designer [15]. Thus,
unlike AEGIS-128 and AEGIS-256, our results show that Tiaoxin-346 cannot
claim 256-bit forgery security, even if supporting a 256-bit tag.

Rocca. For the encryption phase of Rocca, we identify differential characteris-
tics that lead to state collisions after 4 rounds. According to Table 1, our results
improve the bounds by a byte-wise evaluation [17]. Our results also show that
Rocca cannot claim 256-bit forgery security, even if supporting a 256-bit tag.

Rocca-S. For the encryption phase of Rocca-S, we identify differential charac-
teristics that lead to state collisions after 4 rounds. According to Table 1, our
evaluation matches with the byte-wise evaluation by the designer [2].

5.2 Exact Differential Characteristics Probability

Table 3 also shows the exact bounds of differential characteristic probabilities for
AEGIS-128L, Tiaoxin-346, and Rocca by exploiting the properties of the differ-
ential distribution table of the S-box, namely properly choosing the probability
of 2−6 or 2−7 in each S-box.
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Table 4. The differential characteristics probability for forgery attacks based on tag
collisions in the finalization phase (lower bounds for the number of active S-boxes)
[− log2].

Target Tag Size 1R 2R 3R 4R 5R 6R Reference

AEGIS-128 128 bits 48 (8) 114 (19) 144 (24) 210 (35) 288 (48) 348 (58) Section 6.1

52 125 158 – – – Section 6.2

AEGIS-128L 128/256 bits 12 (2) 72 (12) 144 (24) 210 (35) 288 (48) 360 (60) Section 6.1

12 72 158 – – – Section 6.2

AEGIS-256 128 bits 48 (8) 114 (19) 144 (24) 210 (35) 288 (48) 360 (60) Section 6.1

52 125 158 – – – Section 6.2

Tiaoxin-346 128 bits 12 (2) 24 (4) 36 (6) 198 (33) 258 (43) 300 (50) Section 6.1

12 24 36 203 or more – – Section 6.2

Rocca 128 bits 12 (2) 12 (2) 114 (19) 114 (19) 186 (31) 354 (59) Section 6.1

12 12 125 125 190 – Section 6.2

Rocca-S 256 bits 48 (8) 114 (19) 186 (31) 210 (35) 450 (75) – Section 6.1

52 125 198 214 437 or more – Section 6.2

AEGIS-128L. For the encryption phase of AEGIS-128L, we find optimal dif-
ferential characteristics for forgery attacks after 5 rounds. Our results reveal
that forgery attacks are possible with a time complexity of 2216. The differential
characteristic for the 5-round forgery attack is shown in Fig. 3.

Tiaoxin-346. For the encryption phase of Tiaoxin-346, we find optimal differ-
ential characteristics for forgery attacks after 7 rounds. Our results reveal that
forgery attacks are possible with a time complexity of 2180.

Rocca. For the encryption phase of Rocca, we find optimal differential charac-
teristics for forgery attacks after 7 rounds. Our results reveal that forgery attacks
are possible with a time complexity of 2150. The differential characteristic for
the 7-round forgery attack is shown in Fig. 4.

6 Results of Forgery Attacks Based on Tag Collisions

In this section, we show the results of a bit-level search for forgery attacks
exploiting tag collisions. In Sect. 6.1, we estimate the minimum number of active
S-boxes by considering bit-level transitions of differential characteristics, which
lead to tag collisions. In Sect. 6.2, we utilize differential distribution tables of
S-boxes to accurately derive the exact probabilities of differential characteristics
for tag collisions.

6.1 Lower Bounds for the Number of Active S-Boxes

Table 4 shows the lower bounds for the number of active S-boxes, which lead to
tag collisions. These can be converted into the upper bounds for the differential
characteristics probability for each round.
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AEGIS-128/128L/256. As the tag length of AEGIS-128/128L/256 is 128/128
or 256/128 bit [23], the lower bounds for the number of active S-boxes should
be 22/22 or 43/22 or more in the finalization phase, respectively. According
to Table 4, for the finalization phase of AEGIS-128/128L/256, the estimated
number of rounds required to be secure against forgery attacks based on tag
collisions is estimated as 3/5/3 rounds, respectively.

Tiaoxin-346. As the tag length of Tiaoxin-346 is 128 bits [15], the lower bounds
for the number of active S-boxes should be 22 or more in the finalization phase.
According to Table 4, for the finalization phase of Tiaoxin-346, the estimated
number of rounds required to be secure against forgery attacks based on tag
collisions is estimated as 4 rounds.

Rocca. As the tag length of Rocca is 128 bits [16,17], the lower bounds for
the number of active S-boxes should be 22 or more in the finalization phase.
According to Table 4, for the finalization phase of Rocca, the estimated number
of rounds required to be secure against forgery attacks based on tag collisions is
estimated as 5 rounds.

Rocca-S. As the tag length of Rocca-S is 256 bits [2], the lower bounds for
the number of active S-boxes should be 43 or more in the finalization phase.
According to Table 4, for the finalization phase of Rocca-S, the estimated number
of rounds required to be secure against forgery attacks based on tag collisions is
estimated as 5 rounds.

6.2 Exact Differential Characteristics Probability

Table 4 shows the exact differential characteristics probability for forgery attacks
based on tag collisions for each round.

AEGIS-128/128L/256. For the finalization phase of AEGIS-128/128L/256,
we find optimal differential characteristics up to 3/3/3 rounds, respectively.
For AEGIS-128/128L/256, forgery attacks based on tag collisions are feasible
with 2/2/2 rounds, respectively. The optimal differential characteristic for the 2
rounds of tag collisions is shown in Fig. 5.

Tiaoxin-346. For the finalization phase of Tiaoxin-346, we find optimal differ-
ential characteristics up to 3 rounds. For Tiaoxin-346, a forgery attack based on
tag collisions is feasible with 3 rounds.
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Rocca. According to Table 4, for the finalization phase of Rocca, we find optimal
differential characteristics up to 5 rounds. For Rocca, a forgery attack based on
tag collisions is feasible with 4 rounds.

Rocca-S. According to Table 4, for the finalization phase of Rocca-S, we find
optimal differential characteristics up to 4 rounds. For Rocca-S, the maximum
number of rounds that can be attacked in forgery attacks based on tag collisions
is 4 rounds.

7 Conclusion

In this paper, we conducted a bit-wise evaluation of the AEGIS family, Tiaoxin-
346, Rocca, and Rocca-S, against forgery attacks based on state collision and tag
collision. We utilized the Boolean satisfiability problem (SAT) tools to obtain
exact lower bounds for the number of active S-boxes. Moreover, we derived
the optimal differential characteristics in both the encryption phase and the
finalization phase. As a result, we obtained the lower bounds for the number of
active S-boxes in certain rounds for each target and derived the probability of
optimal differential characteristics for the first time.
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A Details of Differential Characteristics for Forgery
Attacks

Fig. 3. Optimal differential characteristic for 5-rounds of AEGIS-128L for the forgery
attack based on a state collision.
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Fig. 4. Optimal differential characteristic for 7-rounds of Rocca for the forgery attack
based on a state collision.
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Fig. 5. Optimal differential characteristic for 2-rounds for forgery attack based on tag
collision of AEGIS-128L.
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Abstract. Authenticated encryption (AE) plays a central role in build-
ing secure channels for wireless systems, with well-established AE
schemes such as CCM or GCM being widely used in security proto-
cols for wireless networks based on IEEE 802.11 (Wi-Fi), IEEE 802.15.4
(such as Zigbee), as well as LTE and 5G mobile networks. Having been
proposed as general-purpose AE schemes, they leave optimization poten-
tial for new algorithms specifically designed for wireless applications. In
this paper, we analyze the security of three such AE algorithm fam-
ilies, namely PFX, PFC and IAR, which were designed to guarantee
confidentiality and authenticity in a single-pass process while reducing
the number of block cipher calls and avoiding expensive operations like
finite field multiplications. As such, they were proposed as alternatives to
CCM or GCM for wireless systems, lightweight wireless sensor networks,
and real-time wireless applications.

In this paper, we describe universal forgery attacks on all three algo-
rithm families, allowing an adversary to compute valid ciphertexts and
authentication tags for any message of their choice without knowledge of
the secret key. All attacks only have linear complexity in the length of the
target message and as such are entirely practical, essentially as fast as the
encryption itself. Our attacks imply that the affected schemes should not
be used in practice, despite their attractive performance characteristics.

Keywords: Symmetric cryptography · authenticated encryption ·
cryptanalysis · universal forgery attacks · wireless network security

1 Introduction

1.1 Motivation and Background

Wireless and mobile networks have become integral components of modern com-
munication systems, playing a central role in connecting individuals, devices, and
applications. Since it is common for such networks to handle sensitive and pri-
vate information, ensuring secure communication to protect transmitted data
against unauthorized access is of great importance.
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In order to achieve these security objectives, one usually uses authenticated
encryption (AE) schemes, which provide both confidentiality and authenticity
and integrity in one combined cryptographic primitive [4,24]. In many applica-
tions, e.g. secure software updates, healthcare IoT or smart grid management,
data authentication is arguably even more important than confidentiality.

Authenticated encryption schemes can broadly be divided into two main
categories: the generic composition [4] of an encryption scheme and a message
authentication code (MAC), and dedicated constructions aimed at integrating
both with more attractive performance or implementation characteristics. Many
AE schemes are modes of operation for a block cipher, meaning they can be
instantiated with any desired block cipher (for instance, the AES or GIFT [3])
as the underlying cryptographic primitive.

Authenticated encryption for wireless networks is implemented in the IEEE
802.11 (Wi-Fi) family of protocols. The WPA2 and WPA3 protocols employ
CCM for confidentiality and integrity [15]. CCM, a mode of operation for block
ciphers combining Counter (CTR) mode with CBC-MAC, requires two passes
over the message and hence two block cipher calls per message block.

In the context of low-power and resource-constrained wireless sensor net-
works, the IEEE 802.15.4 standard, used in applications like Zigbee, also uses
authenticated encryption in the form of CCM mode [16]. One main concern and
design restriction in the context of wireless sensor networks is extending the
operational lifespan of battery-powered devices.

In more recent wireless communication protocols such as Long-Term Evo-
lution (LTE) and 5G networks as well as in WPA3, Galois/Counter Mode
(GCM) [10,23] has gained prominence due to its parallelizable nature and effi-
ciency for high-speed data transmission, both to secure user data and control
plane signaling [11,15]. However, due to the use of large finite field multipli-
cations in addition to block cipher calls, GCM is not particularly suited for
resource-constrained environments.

Another particularly efficient scheme is the OCB mode [21,26,27], which is
widely standardized [17,22] and in the final portfolio of the NIST-sponsored
CAESAR competition [5]. It has the advantage of being a single-pass scheme,
requiring only one block cipher call per message block and being completely
parallelizable. Its patent status and large internal state however mean that OCB
has not found as widespread use as one might expect. However, OCB has been
considered in scenarios where minimizing overhead and achieving low-latency
communication are critical, such as in real-time applications within mobile
networks.

1.2 New AE Designs for Wireless and Real-Time Systems

Design constraints in wireless networks, including limited bandwidth, variable
channel conditions, and power constraints, necessitate the careful selection of
authenticated encryption schemes. The resulting trade-offs between security,
computational efficiency, and energy consumption are central for the inclusion of
these schemes in current and future wireless network protocols. As the landscape
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of wireless communication evolves with emerging technologies like the Internet
of Things (IoT) and 6G, it remains an active research topic to improve upon
existing authenticated encryption schemes to better meet these specific design
constraints.

One particular need for resource-constrained platforms is to minimize the
amount of state (e.g., the number of keys or tweaks derived from the master key
and nonce) and auxiliary routines (such as finite field multiplication) beyond
simple block cipher calls. It is also important to achieve secure AE within a
single pass over the data and ideally with only one block cipher call per message
block.

These requirements have led to the proposal of several new AE schemes
specifically designed for use in wireless and real-time systems. In this paper, we
consider the PFX, PFC and IAR families of AE algorithms. PFX [13] is a family
of authenticated encryption modes designed to achieve single-pass AE with only
n + 1 block cipher calls for an n-block message. It relies on the idea of plain-
text feedback and consists of three individual variants, plain PFX as the basic
algorithm, and the two main new variants PFX-CTR and PFX-INC combining
ideas from CTR mode and GCM and OCB, respectively. Its main application
area are general-purpose wireless networks. The PFC [14] family of AE schemes
follows similar design ideas as PFX, but is tailored towards more lightweight
platforms such as wireless sensor networks and comes in two variants based on
CTR and OCB mode. Finally, IAR [12] is family of two AE modes IAR-CTR
and IAR-CFB developed for use in applications with real-time constraints. It
caters for a maximum acceptable system delay by using multiple authentication
tags.

All three families are designed to improve upon the state of the art in Wi-Fi
security by providing superior performance characteristics compared to existing
modes such as CCM or GCM. They are also accompanied by security proofs,
meaning that they are designed to offer confidentiality and authenticity up to
the standard birthday bound of 2n/2 provided the underlying n-bit block cipher
is secure. They also have in common that they are based upon widely used and
standardized secure building blocks such as the CTR, CFB and OCB modes of
operation.

We finally note that all AE schemes discussed in this section depend on
the uniqueness of a nonce for their security guarantees. The same holds for the
standard AE schemes such as CCM, GCM, and OCB. All of our attacks respect
this setting and never repeat nonces for queries with the same key.

1.3 Contributions

In this paper, we present universal forgery attacks on several authenticated
encryption schemes proposed for wireless and real-time systems, in particular
the PFX, PFC and IAR families of algorithms. These attacks allow the adver-
sary to create valid ciphertexts and tags for any message of their choice without
knowledge of the secret key in a chosen plaintext attack (CPA). We note that
the CPA setting is the standard security model in symmetric cryptography, and
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all schemes attacked in this paper actually come with a security proof in this
model. Our attacks hence also invalidate these proofs.

The basic attack strategy is to simulate the calls to block cipher encryptions
with the fixed but unknown key by auxiliary chosen plaintext queries. The results
from these queries can then be used by the attacker to compute ciphertext
and tag for an arbitrary message, resulting in universal forgery attacks. The
complexity of our attacks is also very low, namely linear in the length of the
target message of the forgery. This means that the effort to universally forge a
message for these schemes is basically equivalent to the effort of actually carrying
out the authenticated encryption algorithm with knowledge of the secret key.

Altogether, our attacks imply that the affected schemes do not provide the
claimed security guarantees and, despite their attractive performance character-
istics, should not be used in practice.

Outline of the Paper. We first describe the three algorithm families analyzed in
this paper in Sects. 2 to 4. Section 5 outlines the attack model and the general
strategy for the universal forgery attacks, then presents our attacks on the PFX,
PFC and IAR families of authenticated encryption schemes. Section 6 concludes.
A detailed description of our notation can be found in AppendixA.1.

2 The PFX Family of Authenticated Encryption Schemes

The scheme PFX and its advanced modes PFX-CTR, PFX-INC and PFX-CBC
are authenticated encryption (AE) protocols designed by Hwang and Gope [13].
Their goal was to perform encryption and authentication with only n + 1 block
encryption calls and in one natural single process (referred to as “authencryp-
tion”). The main idea of this family is the use of plaintext feedback as seen
in Fig. 1. Each mode has two variants for certifying the integrity of the mes-
sage. The first works with a so called indicator I which is a preshared value
between sender and receiver. This indicator “may not be confidentia” [13] and
therefore may be known to the adversary in an attack scenario. The second
variant encrypts the last block with a second key K ′. Since the basic version of
PFX has some limitations compared to AE schemes such as CCM, its designers
only recommend this mode for improved authenticity and integrity over conven-
tional encryption-only modes such as CTR. For a full replacement of standard
AE schemes, they propose three advanced modes building on PFX: PFX-CTR
and PFX-CBC are a fusion of PFX with counter mode [6] and CBC mode [25],
respectively, whereas PFX-INC is a fusion with schemes including a increment-
ing function. The authors mention to use the incremental interface of GCM,
OCB, IAPM [19] or CWC [20] for their incremental function. Detailed algorith-
mic descriptions and illustrations for the encryption process of PFX, PFX-CTR
and PFX-INC are provided in Algorithms 1 and 2 and Figs. 1, 3 and 4 in Sect. 5
for easier cross-reference with the attack procedures.
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Fig. 1. The PFX authenticated encryption algorithm.

3 The PFC Family of Authenticated Encryption
Algorithms

The modes PFC-CTR and PFC-OCB [14] are authenticated encryption schemes.
Their motivation is to guarantee integrity and confidentiality with a small addi-
tional computation cost. Their schemes work with only n + 2 encryption block
calls for an n-block message and no other expensive functions, aiming at resource-
constrained platforms such as wireless sensor networks. The main idea consists
of plaintext feedback, the truncation of block cipher outputs to some most sig-
nificant bits and a double encryption for the tag. The scheme PFC-OCB is illus-
trated in Fig. 7 and is a fusion of the well-known OCB mode with the general
framework of PFC. This variant follows the OCB standard quite closely, and as
such is not affected by our analysis. When instantiated with a p-bit block cipher,
the plaintext and ciphertext blocks are r bits long and the tag consists of � bits
with r < � ≤ p. The tag is computed by a double encryption where the number
of blocks (NOB) of the message is xored between the encryptions. The authors
specifically propose the PFC schemes for use in the context of wireless sensor
networks, Global Mobility Networks and cloud computing environments because
of their attractive computational properties. Detailed algorithmic descriptions
and illustrations for PFC-CTR are provided in Algorithm 3 and Fig. 5 in Sect. 5
alongside the corresponding attack procedures.

4 The IAR Family of Authenticated Encryption Schemes

The authenticated encryption modes IAR-CTR and IAR-CFB [12] have been
developed for the use in real-time applications, in particular low-latency wireless
real-time networks. As for the other families a major focus is the efficiency.
Hence IAR-CTR and IAR-CFB use only n + 2t and n + t respectively many
block cipher calls for an n-block message. Both modes are designed to cater for
a system delay of t encryption blocks. This delay can be adjusted according to
the time a message block is processed in a concrete application. The procedure
of the IAR schemes can be separated in three parts, as illustrated in Fig. 2.
The first part is t blocks long without the plaintext feedback. The input of the
block cipher is not message dependent and could in principle be preprocessed.
In the second part, the remaining message blocks are encrypted where the input
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is xored with the t previous (zero padded) plaintexts. The last part creates the
t authentication tags. Note that the IAR family use a p-bit block cipher, message
blocks of r bits and t many �-bit tags with r < � ≤ p.

The first proposed mode IAR-CTR has its focus on the use of a counter and
double encryption for the tags, similar to the PFC family. The second mode
IAR-CFB makes use of ciphertext feedback after the initial t ciphertext blocks,
meaning a ciphertext block is concatenated to the last one shifted by r bits in a
ciphertext feedback shift register (or in other words, the p − r least significant
bits are taken). For the first shift operation (during the computation of Ct+1),
the last counter value from the first part is used instead. A detailed description
and illustration of the encryption algorithm for IAR-CTR and IAR-CFB can be
found in Algorithm 4 and Figs. 2 and 6 in Sect. 5 alongside the corresponding
attack procedures.

Fig. 2. The IAR-CTR authenticated encryption algorithm.

5 Attacks

In this section, we present several universal forgery attacks on the PFX, PFC
and IAR families of authenticated encryption modes. All these attacks allow an
adversary to produce valid ciphertexts and tags for an arbitrary message of their
choice in a standard chosen plaintext attack setting. Their complexity is always
at most linear in the length of the target message, which makes them completely
practical, essentially as efficient as running the encryption algorithm itself on the
same message.

5.1 Attack Model

We assume the adversary to be able to make chosen plaintext queries to the
scheme with an unknown but fixed key K, which is the exact model used for the
security proofs of PFX, PFC and IAR [12–14]. In detail, the rules for the adver-
sary are the following: The adversary does not know the key(s). The adversary
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can make chosen plaintext queries by asking for the encryption of some mes-
sages of their choice. Extra parameters such as IV or nonce may be set by the
adversary. To respect the design constraints of the modes, the adversary is not
allowed to ask for messages with repeating values for an extra parameter, e.g.
the adversary may not ask for two message encryptions with the same nonce.
In the indicator version of the modes of the PFX family, we assume that the
indicator is not known. When making requests, the correct but secret indicator
is used for the encryption.

The goal is to build a valid ciphertext-tag pair C1, . . . , Cn, T for an arbitrary
message M = M1, . . . ,Mn of our choice out of these queries. When making
auxiliary chosen plaintext queries, these auxiliary messages need to be different
from M itself. Such a procedure constitutes a universal forgery attack on the
authenticated encryption scheme, since the adversary is able to forge arbitrary
messages of their choice without knowledge of the secret key.

5.2 General Strategy

Most of our forgery attacks are based on the general approach of simulating valid
encryptions through carefully crafted auxiliary queries, which we summarize in
the following observation:

Observation 1. Obtaining a block cipher oracle EK(X) through one or more
requests to the authenticated encryption mode is equivalent to being able to per-
form the encryption and authentication process without knowing the secret key K
since the subsequent operations then depend only on values known to the adver-
sary.

The algorithm which implements such a block cipher oracle through auxiliary
chosen plaintext queries to the scheme is referred to as a gadget G which has
the property that G(X) = EK(X) without knowledge of the secret key K.

In some schemes, the outputs of the block cipher calls are immediately trun-
cated to the most b significant bits. In these cases we create a gadget simulating
the combined process. We mark this property in the superscript of the gadget,
i.e. Gb(X) = MSBb(EK(X)).

5.3 Attack on PFX

We present a universal forgery attack on PFX in this section. Assume we want
to forge the authenticated encryption C1, . . . , Cn, T ∗ of the message M = M1,
. . . , Mn with initial value IV∗.

We use the strategy described in Observation 1. In the case of PFX, the
inputs to the encryption query interface only consist of the IV and plaintext and,
depending on the variant, the indicator. We create a gadget GPFX simulating
calls to the block cipher EK(·) by auxiliary chosen plaintext queries to the PFXK

authenticated encryption scheme. To obtain EK(X) the gadget requests

PFXIV
K (X) = C ′

1, T
′
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with an arbitrary, unused IV �= IV∗. The block C ′
1 is one-block result and T ′

is the tag which is of no interest. Since C ′
1 = EK(X) ⊕ IV the gadget returns

GPFX(X) := C ′
1 ⊕ IV = EK(X).

Observation 2. With GPFX one can get EK(X) for an arbitrary X without
knowledge of the key.

Now we can forge the ciphertext of our message by the following algorithm.

1. Use GPFX to obtain EK(M1), . . . , EK(Mn).
2. Compute Ci = EK(Mi) ⊕ Mi−1 with M0 = IV∗.
3. Request any j-block message M ′ = M1, . . . ,M j−1,Mn with Mn as the last

block. The tag T ′ of PFXIV′
K (M ′) = C ′

1, . . . , C ′
j , T ′ fits the demands since

(a) (indicator variant) T ′ = EK(I) ⊕ Mn = T ∗.
(b) (two key variant) T ′ = EK′(Mn) = T ∗.

The use of single-block auxiliary queries to PFX in the gadget means that the
above method cannot be used for forging single block messages. For this special
case, we can use an insertion variant which works for messages of length 1 (as
well as also for longer messages). This variant requests

PFXIV
K (IV ∗,M1, . . . ,Mn) = C ′

0, C1, . . . , Cn, T ∗

for some arbitrary IV, obtaining all the necessary ciphertext blocks for our
forgery. Only the block C ′

0 is of no use and is discarded. In both the indica-
tor and the two-key variants of PFX, the token T ∗ is valid as shown in the last
step of the above forgery algorithm.

Algorithm 1: Encryption PFXIV
K (M1, . . . , Mn)

C1 ← EK(M1) ⊕ IV
for i = 2 to n do

Ci ← EK(Mi) ⊕ Mi−1

if I �= NULL then // indicator version

T ← EK(I) ⊕ Mn

else
T ← EK′(Mn)

return C1, . . . , Cn, T

5.4 Attack on PFX-CTR

We now describe a universal forgery attack on PFX-CTR. Assume we want to
forge the encryption C1, . . . , Cn, T ∗ of the message M = M1, . . . ,Mn with start-
ing value for the counter SV∗ and initial value IV∗. First note that Observation 1
also holds for PFX-CTR, we therefore create a gadget GPFX-CTR simulating
EK(X). The use of a starting value gives us more possibilities for the gadget.
To simulate EK(X) the gadget requests
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PFXSV,IV
K (X ⊕ SV) = C ′

1, T
′

with an unused IV �= IV∗ and an unused SV �= SV∗. The block C ′
1 is a one-block

result and T ′ is the tag which is of no interest. Since C ′
1 = EK((X ⊕ SV ) ⊕

SV) ⊕ IV the gadget returns GPFX-CTR(X) := C ′
1 ⊕ IV.

Observation 3. For a given X the gadget GPFC-CTR returns EK(X) without
knowledge of the key K.

The universal forgery attack procedure is then as follows. Note that the indi-
cator I is not known to the attacker and that T ∗ = EK(I ⊕ Ctrn+1) where
Ctrn+1 = SV∗ + n is the counter value on I when M is encrypted.

1. Use GPFX-CTR to obtain A1, . . . , An = EK(M1 ⊕SV∗), EK(M2 ⊕ (SV∗ +1)),
. . . , EK(Mn ⊕ (SV∗ + n − 1)).

2. Compute Ci = Ai ⊕ Mi−1 with M0 = IV∗.
3. Request any j-block message M ′ = M1, . . . ,M j−1,Mn with Mn as the last

block and let SV′ = SV∗ + n − j. The tag T ′ of PFXSV′,IV
K (M ′) = C ′

1, . . . ,
C ′

j , T ′ with an arbitrary IV �= IV∗ fits the demands since
(a) (indicator variant) the starting value SV∗ + n − j is so chosen that the

counter value for the indicator is (SV∗ + n − j) + j = SV∗ + n. Hence,
T ′ = EK(I ⊕ (SV∗ + n)) ⊕ Mn = T ∗.

(b) (two key variant) T ′ = EK′(Mn) = T ∗.

Due to the freedom provided by choosing the starting value, the same procedure
also works for one block messages, so no special variant is required for this case
as was necessary for PFX.

Fig. 3. The PFX-CTR authenticated encryption algorithm.

5.5 Attack on PFX-INC

In this section, we show a universal forgery attack on PFX-INC for the two key
variant. Furthermore, we present a universal forgery attack when the indicator is
known to the adversary, which is within the security model of PFX-INC. Since
PFX-INC follows the pattern of increment-based schemes, we assume that a
nonce is part of the scheme and incorporated into the first increment as indicated
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Algorithm 2: Encryptions of PFX-CTR and PFX-INC

PFX-CTRSV,IV
K (M1, . . . , Mn):

Ctr1 ← SV
O1 ← EK(M1 ⊕ Ctr1)
C1 ← IV ⊕ O1

for i = 2 to n do
Ctri ← Ctri−1 + 1
Oi ← EK(Mi ⊕ Ctri)
Ci ← Mi−1 ⊕ Oi

if I �= NULL then // indicator

version

Ctrn+1 ← Ctrn + 1
On+1 ← EK(I ⊕ Ctrn+1)
T ← Mn ⊕ On+1

else
T ← EK′(Mn)

return C1, . . . , Cn, T

PFX-INCNonce
K (M1, . . . , Mn):

Δ ← Init(Nonce)
Δ1 ← Inc1(Δ)
O1 ← EK(M1 ⊕ Δ1)
C1 ← O1 ⊕ Δ1

for i = 2 to n do
Δi ← Inci(Δ)
Oi ← EK(Mi ⊕ Δi)
Ci ← Mi−1 ⊕ Oi ⊕ Δi

if I �= NULL then // indicator

version

Δn+1 ← Incn+1(Δ)
On+1 ← EK(I ⊕ Δn+1)
T ← Mn ⊕ On+1 ⊕ Δn+1

else
T ← EK′(Mn)

return C1, . . . , Cn, T

in Algorithm 2. First, assume we want to forge the encryption C1, . . . , Cn, T ∗

of the message M = M1, . . . ,Mn with nonce N∗ in the two key variant. Since
the tag depends only on the last block, the adversary asks for a message with a
doubled last block. This means that one can ask for

PFX-INCN∗
K (M1, . . . ,Mn,Mn) = C1, . . . , Cn, C ′

n+1, T
′.

Since the tag T ′ = EK′(Mn) is the same for all messages with equal last block
the equation, T ∗ = T ′ holds. The block C ′

n+1 is of no use and can be discarded.
The remaining blocks are our valid ciphertext-tag pair.

Now, for the indicator variant of PFX-INC, assume that the pre-shared indi-
cator I is known to the adversary. Again, we want to forge the encryption
C1, . . . , Cn, T ∗ of the message M = M1, . . . ,Mn with nonce N∗ in the indi-
cator variant. We take advantage of the fact that the indicator is encrypted in
the same way as the other blocks. Hence, we request the extended message

PFX-INCN∗
K (M1, . . . ,Mn, I) = C1, . . . , Cn, C ′

n+1, T
′.

In this scenario the tag T ′ is of no use for us. But the block C ′
n+1 fulfills the

demands for the tag because C ′
n+1 = E(I ⊕ Δn+1) ⊕ Δn+1 ⊕ Mn. Hence, T ∗ =

C ′
n+1 and we get the desired ciphertext with its valid tag.
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Fig. 4. The PFX-INC authenticated encryption algorithm.

5.6 Attack on PFC-CTR

We demostrate a universal forgery attack on PFC-CTR. Assume we want to forge
the encryption C1, . . . , Cn, T ∗ of the message M = M1, . . . ,Mn with initial value
IV∗. Again, we create a gadget Gr

PFC-CTR simulating MSBr(EK(X)). To obtain
the result of MSBr(E(X)), Gr

PFC-CTR asks for

PFC-CTRIV
K (M ′

1,M2) = C ′
1, C

′
2, T

′

with an arbitrary block M2, an unused IV �= IV∗ and M ′
1 = X ⊕ (IV + 1).

The idea of this gadget is to get the result from the second ciphertext block
because of the freedom provided by the choice of IV and M ′

1 in the equation
(IV + 1) ⊕ M ′

1 = X. Hence, the gadget returns Gr
PFC-CTR(X) := C ′

2 ⊕ M2.
The tag now needs to be computed in a different way than the ciphertext

blocks. We will take the advantage of the fact that the tag depends only on the
length of the message NOB, the last block and the initial value. This means that
the tag remains the same as long as the last block, the number of blocks and
the initial value are the same. We can then forge our message by the following
procedure:

1. Use Gr
PFC-CTR to obtain A1, . . . , An = MSBr(EK(Ctr1)), MSBr(EK

(Ctr2 ⊕ M1)), . . . , MSBr(EK(Ctrn ⊕ Mn−1)) with Ctri = IV∗ + i − 1.
2. Compute Ci = Ai ⊕ Mi.
3. To get the tag request PFC-CTRIV∗

(M1, . . . ,Mn−1,Mn) = C ′
1, . . . , C

′
n, T

with arbitrary M1, . . . ,Mn−1.

Note that the ciphertext blocks C1, . . . , Cn can be also obtained by only one
request via an insertion variant of the above algorithm. In this case, we ask for
PFC-CTRIV∗−1

K (M0, M1, . . . , Mn) = C ′
0, C1, . . . , Cn, T ′ with an arbitrary block

M0. This gives us all the necessary blocks for the forgery.

5.7 Attack on IAR-CTR

Assume we want to forge the encryption C1, . . . , Cn, T1, . . . , Tt of the message
M = M1, . . . ,Mn with initial value IV∗. To achieve this we create a gad-
get Gr

IAR-CTR to simulate MSBr(EK(X)) and get the tags by a special request.
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Fig. 5. The PFC-CTR authenticated encryption algorithm.

Algorithm 3: Encryption PFC-CTRIV
K (M1, . . . , Mn)

Ctr1 ← IV
O1 ← EK(Ctr1)
C1 ← M1 ⊕ MSBr(O1)
for i = 2 to n do

Ctri ← Ctri−1 + 1
Oi ← EK(Mi−1 ⊕ Ctri)
Ci ← Mi ⊕ MSBr(O1)

Ctrn+1 ← Ctrn + 1
τ ← EK(Mn ⊕ Ctrn+1)
On+1 ← EK(NOB ⊕ τ ⊕ Ctrn+1)
T ← MSB�(On+1)
return C1, . . . , Cn, T

The simplest option for such a gadget would be to set the initial vector such
that the first output block is used for the simulation. However, this does not
work whenever one block Mi happens to equal IV∗ + 1. To avoid this scenario
we prepare a message such that the j-th ciphertext output block will be used
with j > t. To obtain MSBr(EK(X)) the gadget picks a (preferably small) j > t
and chooses some M ′

j−t and an unused IV′ �= IV∗ subject to the constraint

X = (M ′
j−t||0..0) ⊕ (IV′ + j).

Let M ′ = M1, . . . ,M
′
j−t, . . . ,M j , . . . ,M q a new q-block message with M ′

j−t

as the (j − t)-th block. The other blocks can be set to arbitrary values. The
gadget Gr

IAR-CTR then asks for

IAR-CTRIV′
K (M ′) = C ′

1, . . . , C
′
j , . . . , C

′
q, T

′
1, . . . , T

′
t .

At last, Gr
IAR-CTR returns Gr

IAR-CTR(X) := C ′
j ⊕ M j .

Observation 4. For a given X the gadget Gr
IAR-CTR simulates MSBr(EK(X)).

To obtain the tags we take advantage of the fact that the tags depend only on
the counter, the number of blocks and the last t message blocks. Let MTAG =
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M1, . . . ,Mn−t−1,Mn−t+1, . . . ,Mn be the message with the same t last blocks as
M and some arbitrary ones for the other blocks. Hence we get the tags by the
request

IAR-CTRIV∗
K (MTAG) = C ′

1, . . . , C
′
n, T1, . . . , Tt. (1)

A problem occurs when n = t because then M = MTAG and a request of the mes-
sage M is not allowed by attack model. To handle this issue, we create another
gadget G�

IAR-CTR to obtain a desired tag. Consider the following calculations.
Let Ctri = IV∗ + i. One tag Ti is constructed by the formula

Ti = MSB�(EK(n ⊕ Ctrn+i ⊕ EK(Ctrn+1 ⊕ Mn−t+i||0..0)).

The task is to find another initial value IV′, number of blocks n′ and some
message blocks such that we get the same Ti. Let Ctr′

i = IV′ + i. By

Ti = MSB�(EK(n′ ⊕ Ctr′
n′+i ⊕ EK(Ctr′

n′+1 ⊕ M ′
n′−t+i||0..0))

we get the following constraints:

Ctrt+i ⊕ Mn−t+i||0..0 = Ctr′
n′+i ⊕ M ′

n′−t+i||0..0,

n ⊕ Ctrn+i = n′ ⊕ Ctr′
n′+1

By transforming these equations we get

Ctrt+i ⊕ Ctr′
n′+i = Mn−t+i||0..0 ⊕ M ′

n′−t+i||0..0,

Ctrn+i ⊕ Ctr′
n′+i = n ⊕ n′,

⇒d := Ctrt+i ⊕ Ctr′
n′+i = Mn−t+i||0..0 ⊕ M ′

n′−t+i||0..0 = n ⊕ n′.

It follows that difference d has to be greater or equal to 2p−r because of d =
Mn−t+i||0..0 ⊕ M ′

n′−t+i||0..0. By choosing d one gets the necessary variables n′,
M ′

n′−t+i, and IV′. Let MTi
be the message

M1, . . . ,Mn′−t+i−1,Mn−t+i ⊕ MSBr(d),Mn′−t+i+1, . . . ,Mn′

with the desired block at the (n′ − t + i)-th position and the remaining blocks
set to arbitrary values. Hence we can get the tag Ti by the following request

IAR-CTRIV∗⊕d
K (MTi

) = C ′
1, . . . , C

′
n′ , T ′

1, . . . , Ti, . . . , T
′
t

Observation 5. With given p-bit integers n, c and r-bit block Z0 the gad-
get G�

IAR-CTR returns MSB�(EK(n ⊕ c ⊕ EK(c ⊕ Z0||0..0))). This can be used to
simulate a tag for IAR-CTR.
We can now forge the desired message by the following procedure:
1. Use Gr

IAR-CTR to obtain A1, . . . At = MSBr(EK(IV∗ + 1)), . . . ,
MSBr(EK(IV∗ + t)).

2. Use Gr
IAR-CTR to obtain At+1, . . . , An = MSBr(EK((IV∗ + t + 1) ⊕ M1)),

. . . , MSBr(EK((IV∗ + n) ⊕ (Mn−t))).
3. Compute Ci = Ai ⊕ Mi.
4. Get the tags T1, . . . , Tt by the above-mentioned request (1) if n �= t. Otherwise

use the gadget G�
IAR-CTR to obtain the tags.
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Algorithm 4: Encryptions of IAR-CTR and IAR-CFB

IAR-CTRIV
K (M1, . . . , Mn):

Ctr0 ← IV
for i = 1 to t do

Ctri ← Ctri−1 + 1
Oi ← EK(Ctri)
Ci ← Mi ⊕ MSBr(Oi)

for i = t + 1 to n do
Ctri ← Ctri−1 + 1
Oi ← EK((Mi−t||0..0) ⊕ Ctri)
Ci ← Mi ⊕ MSBr(Oi)

for i = n + 1 to n + t do
Ctri ← Ctri−1 + 1
τi ← EK((Mi−t||0..0) ⊕ Ctri)
Oi ← EK(NOB ⊕ τi ⊕ Ctrn+1)
Ti−n ← MSB�(Oi)

return C1, . . . , Cn, T1, . . . , Tt

IAR-CFBIV
K (M1, . . . , Mn):

Ctr0 ← IV
for i = 1 to t do

Ctri ← Ctri−1 + 1
Oi ← EK(Ctri)
Ci ← Mi ⊕ MSBr(Oi)

Yi = Ctri

for i = t + 1 to n do
Yi ← LSBp−r(Yi−1)||Ci−t

Oi ← EK((Mi−t||0..0) ⊕ Yi)
Ci ← Mi ⊕ MSBr(Oi)

for i = n + 1 to n + t do
Yi ← LSBp−r(Yi−1)||Ci−t

Oi ← EK((Mi−t||0..0) ⊕ Yi)
Ti−n ← MSB�(Oi)

return C1, . . . , Cn, T1, . . . , Tt

5.8 Attack on IAR-CFB

In this section, we present a universal forgery attack on IAR-CFB for the case
where t ≥ �p

r �. This scenario is not only within the specified requirements for
these parameters but also entirely practical (see e.g. the experiments in [12]),
considering that if r is relatively small compared to p, the number of block cipher
calls per message increases, reducing the efficiency of the scheme.

Assume we want to forge the encryption C1, . . . , Cn, T1, . . . , Tt of the message
M = M1, . . . ,Mn with initial value IV∗. Note that the input for the block cipher
is not known immediately since the delayed ciphertext is used as part of the
input. We create two gadgets Gr

IAR-CFB and G�
IAR-CFB to simulate MSBr(E(X))

and MSB�(E(X)), respectively. The first gadget Gr
IAR-CFB makes use of one

of the first t encryptions. Let 1 ≤ j ≤ t be the desired index position. To
obtain MSBr(EK(X)) on the j-th position the gadget Gr

IAR-CFB asks for

IAR-CFBX−j
K (M1, . . . ,M t) = C ′

1, . . . , C
′
t, T

′
1, . . . , T

′
t

with an arbitrary Mi. Since C ′
i = MSBr(EK(X)) ⊕ M i this gadget returns

Gr
IAR-CFB(X) := C ′

j ⊕ M j . We do not fix one position j due to the freedom of
initial vectors we can choose. This comes in quite handy for the next gadget.

Observation 6. The gadget Gr
IAR-CFB returns MSBr(EK(X)) for a given X.

In the following the idea behind the second gadget G�
IAR-CFB is explained.

We take advantage of the fact that the chained value Yi (see Algorithm 4) which
is used as the input for the ciphertext is updated by the delayed ciphertext
blocks. Let g = �p

r �. After g blocks we have full control of this chained value.
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Fig. 6. The IAR-CFB authenticated encryption algorithm.

For the sake of simplicity we assume that r|p. The adjustment for the case r � p
is described in AppendixA.3. Hence g = p

r . Furthermore, let X be the desired
message. We split X into g equal sized parts X1, . . . , Xg. The gadget G�

IAR-CFB

uses the g-th tag as the result of a t-block message. Before X is used as the input
of EK it will be xored with Mg||0..0. Thus, we have to set the ciphertexts as
X1 = C1 ⊕ Mg and Xi = Ci for 2 ≤ i ≤ g. Due to Ci = Mi ⊕ MSBr(EK(Ctri))
we know that

M1 = X1 ⊕ Mg ⊕ MSBr(EK(Ctr1)), (2)
Mi = Xi ⊕ MSBr(EK(Ctri)). (3)

By the following we obtain a procedure for computing the auxiliary message
which has to be requested to obtain MSB�(EK(X)):

1. Find unused IV′ such that all of {Ctr1, . . . ,Ctrg} and IV′ − j for 1 ≤ j < t
are unused as the initial vector with Ctri = IV′ + i.

2. Obtain Ai = MSBr(EK(Ctri)) by Gr
IAR-CFB such that IV′ is still unused for

a request.
3. For 2 ≤ i ≤ g set M ′

i = Xi ⊕ Ai (because of (3)).
4. Set M ′

1 = X1 ⊕ A1 ⊕ M ′
g (because of (2)).

Now, to obtain MSB�(EK(X)) we ask for

IAR-CFBIV′
K (M ′

1, . . . ,M
′
g,Mg+1, . . . ,M t) = C ′

1, . . . , C
′
t, T

′
1, . . . , T

′
n

where M ′
1, . . . ,M

′
g and IV′ are obtained by the above procedure and the other

blocks are arbitrary. Finally return G�
IAR-CFB(X) := T ′

g = MSB�(EK(X)).

Observation 7. With G�
IAR-CFB one can get MSB�(EK(X)) without knowledge

of the key by g many calls of Gr
IAR-CFB and one oracle request.

We now have all the required tools for our universal forgery attack:

1. Obtain Oi = MSBr(IV∗ + i) by Gr
IAR-CFB for 1 ≤ i ≤ t.

2. Compute Ci = Mi ⊕ Oi.
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3. Let Yt = Ctrt, for t + 1 ≤ i ≤ n
(a) Compute Yi = LSBp−r(Yi−1)||Ci−t

(b) Obtain Oi = MSBr(Mi−t||0..0 ⊕ Yi) by Gr
IAR-CFB.

(c) Ci = Mi ⊕ Oi.
4. For n + 1 ≤ i ≤ n + t

(a) Compute Yi = LSBp−r(Yi−1)||Ci−t

(b) Obtain Ti−n = MSB�(Mi−t||0..0 ⊕ Yi) by G�
IAR-CFB.

The resulting ciphertext blocks and tags yield the desired forgery.

6 Conclusion

In this paper, we have analyzed the security of three AE algorithm families,
namely PFX, PFC and IAR, which were designed as improvements to general-
purpose well-established AE schemes such as CCM, GCM or OCB which are
widely used in security protocols for wireless networks based on IEEE 802.11
(Wi-Fi), IEEE 802.15.4 (such as Zigbee), as well as LTE and 5G mobile networks.
The design objective of PFX, PFC and IAR was to guarantee confidentiality and
authenticity in a single-pass process while reducing the number of block cipher
calls and avoiding expensive operations like finite field multiplications. As such,
they appeared to be well-suited alternatives to standard modes such as CCM or
GCM for wireless systems, lightweight wireless sensor networks, and real-time
wireless applications.

Our analysis however indicates that these AE schemes cannot provide their
claimed security guarantees. We described universal forgery attacks on all three
algorithm families, allowing an adversary to compute valid ciphertexts and
authentication tags for any message of their choice without knowledge of the
secret key. All of our attacks only have linear complexity in the length of the
target message and as such are entirely practical. Overall, our analysis implies
that the affected schemes should not be used in practice, despite their attractive
performance characteristics in the context of wireless and real-time networks.

It remains an interesting open problem to adapt existing well-established
and secure cryptographic primitives for authenticated encryption more to the
specific requirements of wireless network applications, especially in the context
of lightweight wireless sensor nodes or real-time constraints. The forgery attacks
on PFX, PFC and IAR illustrate the need for thorough and long-term secu-
rity analysis of new cryptographic algorithms before considering their deploy-
ment, emphasizing the importance of adhering to well-established standardized
cryptographic algorithms. For applications where standard solutions such as
CCM or GCM are not ideal, a promising line of research would be to com-
paratively evaluate the NIST lightweight cryptography standard Ascon [7–9] as
well as algorithms from the CAESAR final portfolio, which besides Ascon include
ACORN [28] with a lighweight focus, AEGIS [29] and OCB for high-throughput
networks, and Deoxys [18] and COLM [1,2] for scenarios where defense in depth
against e.g. nonce misuse is required. These algorithms have already received
extensive cryptanalytic scrutiny over a couple of years and could potentially be
included in future versions of standards for wireless encryption.
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A Appendix

A.1 Notation

In the following we briefly define some notation used in this article. Let M and
C respectively denote the bit strings containing the plaintext message and its
encryption in some mode by a block cipher EK with the secret key K. Subscripts
for M or C, like Mi, denote the i-th block of M or C respectively. The size of
each block depends on the used block cipher (typically 64 or 128 bits). The
operator A ⊕ B is the bitwise xor operation on two bit strings A and B. The
output of a MAC is called tag and denoted by the variable T . The selection of
the b most or b least significant bits of a bit string is written as MSBb(·) and
LSBb(·), respectively. The total number of blocks of a message is referred to as
NOB. The operator || denotes concatenation of two bit strings. We use 0..0 to
abbreviate the repetition of zeros up to a number (such as the block size) which
is clear from the context.

A.2 PFC-OCB Scheme

Fig. 7. The PFC-OCB authenticated encryption algorithm.

A.3 Adjustment for G�
IAR-CFB for the Case r � p

In the following we explain how to adjust the gadget G�
IAR-CFB for the case r � p.

Let g = �p
r � and let q = p mod r. First, we consider the case for g > 2. Then,

the case g = 2 will be discussed. We split the input X in the parts X1, . . . , Xg

where only X1 consists of q bits and all other blocks of r bits. In this case, the
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message block Mg influences X1 and X2, see Fig. 8a for a visualization. This
yields the equations

X1 = LSBq(C1) ⊕ MSBq(Mg), (4)
X2 = C2 ⊕ LSBr−q(Mg)||0..0, (5)
Xi = Ci. (6)

By combining these equations with Ci = Mi ⊕ MSBr(EK(Ctri)) we obtain the
following relations:

LSBq(M1) = X1 ⊕ MSBq(Mg) ⊕ LSBq(MSBr(EK(Ctr1))), (7)
M2 = X2 ⊕ LSBr−q(Mg)||0..0 ⊕ MSBr(EK(Ctr2)), (8)
Mi = Xi ⊕ MSBr(EK(Ctri)), (9)

from which we can replace the last two steps (3 and 4) of the message creation
step of G�

IAR-CFB with three ones above.

Fig. 8. Illustration of the computation of X in the message creation part for GIAR-CFB

in the case r � p. Note that Mg is r bits long while X1 and LSBq(C1) consist of q = p
mod r bits.

Now we consider the case g = 2. Similar to the above case we replace the
formulas for the message creation part. Let s := r − q. See Fig. 8b for the depen-
dencies in this case. Note that the ciphertexts C1 and LSBq(C1) are replaced
with LSBq(M1) ⊕ LSBq(MSBr(EK(Ctr1))) and M2 ⊕ MSBr(EK(Ctr2)) respec-
tively because of Ci = Mi ⊕ MSBr(EK(Ctri)). For ease of presentation, let
H1 := LSBq(MSBr(EK(Ctr1))) and H2 := MSBr(EK(Ctr2)). For the s most
significant bits of X2 there is an “overlap” of two different parts of M2 as seen
in the equations:

LSBq(X2) = LSBq(M2) ⊕ LSBq(H2), (10)
MSBs(X2) = LSBs(M2) ⊕ MSBs(M2) ⊕ MSBs(H2), (11)

X1 = MSBq(M2) ⊕ LSBq(M1) ⊕ H1. (12)

For this overlap we will define MSBs(M2) bitwise. Let P [i] denote the i-th bit
of P . For q ≤ i < q + s we compute

M2[i] := X2[i] + M2[i − q] + H2[i]. (13)
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The q least significant bits of M2 can be computed directly by (10). After the
computation of M2 the desired bits of M1 are obtainable by (12). The adjustment
is done by replacing the last 2 formulas in the auxiliary message creation part
of G�

IAR-CFB by these ones for M1 and M2. This concludes the universal forgery
for this case.
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Abstract. In ToSC 2/2018, Grassi introduced mixture differentials for
the AES. A mixture takes a pair of texts and derives a second pair from
mixing parts of the first one. The conditional probability of the second
pair to follow a certain (truncated) differential is then strongly influenced
by that of the first pair. Mixtures found various follow-up applications for
attacks, leading to Bar-On et al.’s fastest key-recovery attacks on 5-round
AES, the fastest boomerangs on up to 6-round AES, or to Bardeh and
Rønjom’s 6-round distinguisher. However, mixtures are not limited to the
AES. Among the recent proposals of AES-based ciphers, TweAES aug-
ments the AES by a tiny tweak that is expanded with a simple code and
added to the first two rows. Inspired by the observation that the tweak-
expansion code of TweAES effectively thwarts tweak-induced mixtures,
we propose higher-order mixtures as a generalization. To demonstrate
their applicability, we describe a 6-round distinguisher and a 7-round
key recovery attack on TweAES.

Keywords: Secret-key cryptography · Differential cryptanalysis · AES

1 Introduction

Recent Distinguishers on the AES. The recent years had seen much crypt-
analysis on round-reduced AES, where the community has identified several novel
distinguishers, such as mixture differentials [18], yoyos [32], multiple-of-n prop-
erties [20], and truncated differentials with small probability distance to an ideal
permutation [19]. In the sequel, they were refined and led to more efficient attacks
on round-reduced AES, such as more efficient five-round attacks [3], six-round
distinguishers [5,6], and six-round attacks [16].

Mixture-Differential Cryptanalysis. Mixture differentials represent a pow-
erful variant of conditional differentials. Given a pair of texts (x, x′) that dif-
fer in at least two distinct cells xi �= x′

i and xj �= x′
j , one can build a mix-

ture pair (u, u′) �= (x, x′) such that (ui, uj) = (xi, x
′
i) and (u′

i, u
′
j) = (x′

i, xj).
Then, one considers the differential propagation of Δx = x ⊕ x′ to an out-
put difference Δy through the cipher and the propagation of the difference
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
K. Minematsu and M. Mimura (Eds.): IWSEC 2024, LNCS 14977, pp. 45–64, 2024.
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Δu = u ⊕ u′ to some difference Δv, conditioned on Δx → Δy. If the prob-
ability of Pr[Δu → Δv|Δx → Δy] is higher or lower than that for an ideal
permutation, it can produce a distinguisher.

For the AES, Grassi [18] showed that four-round AES exhibits deterministic
mixture-differential trails, which was derived from the observation in [20] that
the set of all eight mixture pairs in a column or diagonal space guarantees that
the cardinality of truncated differentials is a multiple of eight. This fact that had
been generalized by Boura et al. [9].

The properties for high-probability mixture differentials in the AES stem
from its SPN structure and linear layer. Bardeh and Rønjom [5,6] extended
them to probabilistic distinguishers on up to six rounds of the AES. Bardeh
and Rijmen [4] outlined the relation to related differences; Xie and Tian showed
the absence of six-round deterministic mixtures on AES [35]; Qiao et al. [29–31]
automated the search for mixtures with a MILP-based approach.

Towards Higher-Order Mixtures. The previous works on AES mixtures had
considered the difference between pairs, although they had already studied the
cardinality of the set of such conditioned pairs. However, there are AES-based
primitives and settings where forming mixture pairs is obstructed. One good
example is TweAES that served as instantiation in the NIST LwC candidate
ESTATE [11,12]. TweAES is an instantiation of their ElasticTweak framework
that extended the AES by a tiny tweak that allowed to derive a small family
of independent block ciphers for efficient domain-separation in authenticated
encryption schemes. In its tiniest variants, TweAES adds only a four-bit tweak
for this purpose. While the AES round function still possesses the structural
properties that allow mixtures, the tweak expansion seems to efficiently prohibit
mixtures induced by tweak differences, which could allow to pass two rounds for
free. For such and similar cases, we propose higher-order mixture differentials
that study differences between 2k pairs for k ≥ 2. While higher-order mix-
tures naturally represent a special case of higher-order conditional differentials,
it seems to be an interesting subcase that may invite further research.

Outline. In what follows, we provide the necessary notions and descriptions
of mixtures, the AES, and TweAES. We show the inapplicability of conventional
(first-order) mixtures to induce mixtures from tweak differences for TweAES with
four-bit tweaks in Sect. 3. For comparison, we describe partial mixtures and the
application to TweAES as an alternative avenue in Sect. 4. We define higher-
order mixtures in general in Sect. 5 before we show a distinguisher on six rounds
of TweAES with four-bit tweaks that we extend to a seven-round key-recovery
attack in Sect. 6. We conclude in Sect. 7.

2 Preliminaries

General Notations. For a non-negative integer k, we write [k] = {1, . . . , k},
and [0..k] = {0, 1, 2, . . . , k}. We denote by Zq the ring of non-negative integers
modulo q and by Fqk the finite field of characteristic q and power k. We represent
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functions and variables by upper case letters and indices by lowercase letters, sets
by calligraphic letters. Moreover, we use bold variables for vectors and matrices.

We employ typewriter font for hexadecimal values or values in fields. Let
X,Y ∈ F

n
2 for some positive integer n in the following. Then, we denote by X||Y

the concatenation of X and Y , by X ⊕Y their bitwise XOR. For all X ∈ F
n
2 , we

index the bits X = (Xn−1 . . . X1X0) where Xn−1 is the most significant and X0

the least significant bit of X. We write wt(X) for the hamming weight of a vector
X and [i..j] for the integer interval {i, i+1, . . . , j}. For all-zero or all-one-element
vectors of m elements each, we write 0m = (0, 0, . . . , 0) and 1m = (1, 1, . . . , 1),
respectively. For a set X , we denote by X � X that X is sampled independently
and uniformly at random from X . For vectors x, y, . . . , we write span (x, y, . . .)
for their span.

2.1 Brief Overview of The AES

Brief Definition. We recall only those details of the AES that are necessary
for understanding in this work. The AES [13,27] is a substitution-permutation
network that transforms 16-byte plaintexts through 10, 12, or 14 rounds in its
version with 128, 192, or 256-bit key, respectively, where each byte is interpreted
as an element of a field F28 , and the state as being in F

16
28 or F

4×4
28 ; we will refer

to them also as cells. We will write i for constants to highlight that they refer
to elements of F28 .

Almost every round consists of the operations SubBytes (SB), ShiftRows (SR),
MixColumns (MC), and a round-key addition with a round key Ki. Before the
first round, an additional whitening key K0 is XORed to the state; the final
round omits the linear MixColumns operation.

We write Si for the state after Round i, and Si[j] for the j-th byte, for
0 ≤ i ≤ 10 and 0 ≤ j ≤ 15. Though, we interchangeably also use the indices for
a matrix x ∈ F

4×4
28 with the usual byte ordering of either
⎡
⎢⎢⎣

x0 x4 x8 x12

x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15

⎤
⎥⎥⎦ or

⎡
⎢⎢⎣

x0,0 x0,1 x0,2 x0,3

x1,0 x1,1 x1,2 x1,3

x2,0 x2,1 x2,2 x2,3

x3,0 x3,1 x3,2 x3,3

⎤
⎥⎥⎦ .

When using two-dimensional indices, we assume, all indices are modulo four.
We denote by R[Ki] =def AK[Ki] ◦ MC ◦ SR ◦ SB one application of the AES

round function and by Sr
SB, Sr

SR, and Sr
MC the states in the r-th round directly

after the application of SubBytes, ShiftRows, and MixColumns, respectively. We
denote by R̂ =def AK[Ki] ◦SR ◦SB the reduced final round and K̂i = MC−1(Ki)
an equivalent key of Ki transformed through the (bijective) inverse MixColumns
operation. Later, we will also use the overline notation such as MC to refer to
inverse operations. Finally, M denotes the MixColumns matrix.

Spaces in the AES. Grassi et al. [21] introduced column, diagonal, anti-
diagonal, and mixed spaces that will alleviate our descriptions. Let {e0,0, . . .,
e3,3} be unit vectors of F4×4

28 , where ei,j has a single 1 in Row i and Column j.
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The column spaces Ci are defined as the span of unit-cell vectors in the i-th
column, i.e. Ci = span (e0,i, e1,i, e2,i, e3,i) for i ∈ [0..3], e.g. C0 corresponds to

C0 =

⎧
⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

x0 0 0 0
x1 0 0 0
x2 0 0 0
x3 0 0 0

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
∀x0, x1, x2, x3 ∈ F28

⎫
⎪⎪⎬
⎪⎪⎭

≡

⎡
⎢⎢⎣

x0 0 0 0
x1 0 0 0
x2 0 0 0
x3 0 0 0

⎤
⎥⎥⎦ .

The diagonal spaces Di, anti-diagonal spaces IDi, and mixed spaces are defined
as Di = SR−1(Ci), IDi = SR(Ci), and Mi = MC(IDi), respectively:

D0 ≡

⎡
⎢⎢⎣

x0 0 0 0
0 x1 0 0
0 0 x2 0
0 0 0 x3

⎤
⎥⎥⎦ , ID0 ≡

⎡
⎢⎢⎣

x0 0 0 0
0 0 0 x1

0 0 x2 0
0 x3 0 0

⎤
⎥⎥⎦ , M0 ≡

⎡
⎢⎢⎣
2 · x0 x3 x2 3 · x1

x0 x3 3 · x2 2 · x1

x0 3 · x3 2 · x2 x1

3 · x0 2 · x3 x2 x1

⎤
⎥⎥⎦ .

For I ⊆ [0..3], CI , DI , IDI , and MI are defined as

CI =
⊕
i∈I

Ci , DI =
⊕
i∈I

Di , IDI =
⊕
i∈I

IDi , and MI =
⊕
i∈I

Mi .

By slight abuse of notation, we will use Di(S) or DI(S) for some state S ∈ F
4×4
28

and I ⊆ [0..3] to refer to the i-th diagonal or the union of i-th diagonals of S for
all i ∈ I, respectively. This generalizes to columns, inverse diagonals, and mixed
spaces of S in a natural manner.

2.2 Mixtures

Activity-Pattern Function. Let x ∈ F
m
qb be a vector of field elements, e.g. an

AES state for (q, b,m) = (2, 8, 16). Following [32], the activity-pattern function
activity : Fm

qb → F
m
2 , maps x = (x0, . . . , xm−1) to a vector α = (α0, α1, . . . , αm−1)

where αi = 1 if xi �= 0 and 0 otherwise for all i ∈ [0..m − 1]. We call α the
activity vector of x. Later, we will use similar vectors for column-, diagonal-,
anti-diagonal-, and mixed-space activity patterns.

Exchange Function. Given two distinct vectors x0, x1 ∈ F
m
qb and an activity

vector α ∈ F
m
2 , we define exchange : Fm

2 × F
m
qb × F

m
qb → F

m
qb as

exchangeα(x0, x1) = (y0, . . . , ym−1) ∈ F
m
qb where yi = xαi

i for all i ∈ [0..m − 1] .

Note that exchangeα(x1, x0) = exchangeα⊕1m(x0, x1). For vectors x ∈ F
m
qb , we

use wt(x) for the number of non-zero cells in x:

wt(x) def=
m−1∑
i=0

αi where α = activity(x) .
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Definition 1 (Mixtures and Mixture Pairs). Let x0, x1 ∈ F
m
qb be distinct.

The set of all mixtures (that is, mixed texts) of (x0, x1) is defined as

mixtures(x0, x1) =
{

y ∈ F
m
qb : ∃α ∈ F

m
2 such that y = exchangeα(x0, x1)

}
.

The elements y are called mixtures of (x0, x1). A text y is called a trivial mixture
of (x0, x1) iff α ∈ {0m, activity(x0 ⊕ x1)}, i.e. if y ∈ {x0, x1}; otherwise, y is a
non-trivial mixture. The set of all mixture pairs of (x0, x1) is defined as

mixturepairs(x0, x1) =
{

(y0, y1) ∈ F
m
qb × F

m
qb : ∃α ∈ F

m
2 such that

y0 = exchangeα(x0, x1) and y1 = exchangeα(x1, x0)
}

.

The pairs (y0, y1) are called mixture pairs of (or induced by) (x0, x1). A pair
(y0, y1) is called a trivial mixture pair of (x0, x1) iff (y0, y1) ∈ {(x0, x1), (x1, x0)}
and a non-trivial mixture pair otherwise.

2.3 The Need for Small Tweaks and TweAES

Tweak Lengths. Various block-cipher modes of operation employ the primitive
for several purposes, e.g. for authentication, encryption, producing an authen-
tication tag, masks for distinct treatment of messages and associated data, etc.
Tweakable block ciphers (TBCs) [24] add a tweak as an additional public input
that can allow the use of different tweaks for different sub-applications in modes,
for security and clarity of description. However, tweak lengths are often as
large as block lengths or even longer, e.g. in CRAFT [8], QARMA [1] and QAR-
MAv2 [2], or T-TWINE [33]; the TWEAKEY framework mixes keys and tweaks
e.g. in Deoxys-BC and Joltik-BC [22], Skinny and MANTIS [7]. Before 2019, only
Kiasu-BC [22] differed in that sense, which is a tweakable block cipher proposed
alongside the TWEAKEY framework as an example of how one could transform
the AES into a TBC with minimal modifications. It is almost identical to the
AES-128 and only adds an unchanged 64-bit tweak to the topmost two rows of
the state whenever a round-key addition is performed. Still, this 64-bit tweak
is more than what would suffice in many modes for domain separation, which
comes at a non-negligible price of implementation costs.

TweAES. To address this need, Chakraborti et al. [10,12] introduced the Elas-
ticTweak framework to augment existing SPN block ciphers with tiny tweaks.
They employed a linear code to expand such a tiny tweak to affect a significant
portion of the state.1 They defined a flexible transformation of a block cipher BC
into a tweakable block cipher tBC[t, te, tic, gap], with t as the tweak length, te
the expanded tweak length, tic the number of S-boxes affected by a tweak addi-
tion, and gap as the number of rounds between two tweak additions. In terms of

1 An [n, k, d]-linear code over a field F is defined by a k × n-element generator matrix
G such that for all nonzero vectors v ∈ F

k, v · G has at least d nonzero elements.
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instantiations, Chakraborti et al. proposed TweAES, TweGIFT-64, and TweGIFT-
128, which tweaked AES-128, GIFT-64, and GIFT-128, respectively. For ESTATE,
their second-round candidate to the NIST LightWeight Competition, the authors
employed TweAES and TweGIFT as TweGIFT-128 as well as TweAES-6 as a six-
round variant [11]. Hereafter, we consider only their variant of tweaked AES with
four-bit tweaks, which corresponds to AES[4, 8, 8, 2] in their representation. We
call this variant TweAES hereafter, consistent to [11]. TweAES enriches the AES
with a tweak addition after Rounds 2, 4, 6, and 8. It takes a four-bit tweak
T = (t0, t1, t2, t3) and expands it to eight bits as Te = (t0, . . . , t7)� = J · T�

with a code G = [I|I⊕J] that consists of the identity I and an all-one matrix J.
Given that each entry of Te contains only te/tic bits, we define T̂ ∈ F

16
28 such that

(T̂�)[i] = t̂i = 0b−te/tic||ti for i ∈ [0..7] and 0b for i ∈ [8..15] for the expanded
tweak, i.e. for AES[4, 8, 8, 2]:

T̂ =

⎡
⎢⎢⎣

t̂0 t̂1 t̂2 t̂3
t̂4 t̂5 t̂6 t̂7
08 08 08 08

08 08 08 08

⎤
⎥⎥⎦ where

⎡
⎢⎢⎣

t4
t5
t6
t7

⎤
⎥⎥⎦ = (I ⊕ J) · T� =

⎡
⎢⎢⎣

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

t0
t1
t2
t3

⎤
⎥⎥⎦ .

We can write ti+4 = s ⊕ ti for all i ∈ [0..3] with the sum s = t0 ⊕ t1 ⊕ t2 ⊕ t3.
I ⊕ J ensures at least four active bits for any nonzero input tweak difference. In
TweAES, each tweak bit is XORed to the least significant bit of a byte in the
two top rows, i.e., the first bytes in the topmost row are XORed with t0, t1, t2,
t3, respectively. The bytes in the second row are XORed with t4, t5, t6, and t7,
respectively. In combination with the XOR into the second row and the Shift-
Rows operation after a tweak addition, a non-zero tweak difference will affect at
least three pairwise distinct columns of the state.

3 Inapplicability of Tweak-Induced First-Order Mixtures
to TweAES with Four-Bit Tweaks

This section explains why the four-round mixture distinguisher by Grassi [17,18]
cannot be started from tweak differences for TweAES with four-bit tweaks. Prior,
we provide a short overview of the four-round mixture distinguisher.

3.1 Mixture Distinguisher on Four-Round AES

Grassi [18] introduced mixtures as simple structural recombination of bytes of
two texts x and x′ for deriving a second pair of texts y and y′ out of x and x′ for
AES-like ciphers. He observed that if the bytes of the plaintexts are not mixed
inside diagonals, the difference between the mixed pair will match that of the
first pair after two rounds:

R2(x) ⊕ R2(x′) = R2(y) ⊕ R2(y′) .
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Fig. 1. A mixture-differential distinguisher on four-round AES. Colored bytes are active
differences, white bytes are inactive; equal variables mean equal values. (Color figure
online)

Thus, if the difference of the first pair will lie in a certain byte-aligned subspace
after two rounds, the same will hold for the second pair. Given that if x⊕x′ ∈ DJ
for some set J ⊂ [0..3] and |J | ≤ 3, it holds that

R2(x) ⊕ R2(x′) ∈ DJ ⇔ R4(x) ⊕ R4(x′) ∈ MJ , which leads to

R4(y) ⊕ R4(y′) ∈ MJ ⇔ R4(x) ⊕ R4(x′) ∈ MJ ,

i.e., the conditional-differential probability for the second pair is significantly
different from that for a random permutation.

Figure 1 illustrates an example. The diagonal activity vector of two plaintexts
(x, x′), with two active diagonals in x⊕x′, could be activity(x⊕x′) = (1, 1, 0, 0).
A mixture of two new texts (y, y′) with y ⊕ y′ = x ⊕ x′ can be derived by
mixing the active diagonals of x and x′: y = exchange(1,0,0,0)(x, x′) and y′ =
exchange(0,1,0,0)(x, x′).

The four-round mixture distinguisher above also applies to four-round
TweAES when the starting differences are injected into the plaintexts. How-
ever, the more interesting aspects in the cryptanalysis of TweAES lie in eval-
uating how the additional tweak affects its security compared to that of the
plain AES. If the mixture differential above could be started from a difference
in the tweak only, it could yield an eight-round attack. An adversary could try
to cancel a difference in the plaintext with the tweak after the first two rounds,
bypass the next two rounds with a zero difference, and inject the differences
for two mixture pairs after Round 4 for an eight-round key-recovery attack or
even distinguisher. Such bypassing rounds for free by canceling the state differ-
ence with the tweak has been used extensively in previous attacks. For example,
existing integral, impossible-differential, boomerang, and Demirci-Selçuk meet-
in-the-middle attacks on the AES could be extended by one round when applied
to Kiasu-BC [14,15,25,34]. Thus, one is naturally interested in methods that
make dedicated use of the tweak for more effective attacks also on TweAES.
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3.2 On Tweak-Induced Mixtures in TweAES

Tweak-induced mixture differentials can be found for Kiasu-BC straightforwardly
since the 64-bit tweak undergoes no transformations. For TweAES, we would
have to find four pairwise distinct text-tweak tuples (P, T 0), (P, T 1), (P, T 2),
and (P, T 3) such that the diagonals of the extensions T̂ 2 and T̂ 3 are mixtures of
the diagonals of T̂ 0 and T̂ 1. We can show that the code used for tweak expansion
in TweAES, in the way it is combined with ShiftRows, prevents such mixtures.
We cannot derive a tweak T̂ 2 such that its diagonals are a mixture of those of T̂ 0

and T̂ 1. Theorem 1 captures this statement. We slightly abuse notation Dj(T̂ i)
to refer to the j-th diagonal of T̂ i, for j ∈ [0..3], in the remainder of this section.

Theorem 1. Let T 0, T 1, T 2 ∈ ({0, 1}4)3 be three pairwise distinct tweaks for
TweAES and T̂ i ∈ F

4×4
28 for i ∈ [0..2] their corresponding expanded tweaks. Then,

there exists a diagonal-space index j ∈ [0..3] s. t. Dj(T̂ 2) �∈ {Dj(T̂ 0),Dj(T̂ 1)}.

Proof. We denote the expanded tweaks as T i
e ∈ {0, 1}8 = (ti0, . . . , t

i
7) and the

non-expanded tweaks as T i = (ti0, . . . , t
i
3). Note that T̂ i ∈ F

4×4
28 are expanded

AES states. Recall that tij+4 = si ⊕ tij for si =
⊕3

j=0 tij and all j ∈ [0..3]. We will
treat all column and diagonal indices j modulo four in the remainder. We define
si,i′

= si ⊕si′
. In the following, we consider four cases that cover all possibilities.

Case (1): wt(T 0⊕T 1) = 1. In this case, there must exist exactly one bit j ∈ [0..3]
such that t0j �= t1j . If t2j = t0j , T̂ 2 would be identical to T̂ 0. Otherwise, if t2j = t1j ,
all other bits are identical to that of T̂ 0 and T̂ 1, producing T̂ 2 = T̂ 1 and not a
distinct mixed text. Hence, the case is invalid.

Case (2): wt(T 0 ⊕ T 1) = 2. Here, it holds that s0 = s1. In the following, we
distinguish between two subcases.

Subcase (2.1): there exists j ∈ [0..3] such that t1j �= t0j , t1j+1 �= t0j+1. Thus,
both non-expanded tweak bits that differ in T̂ 1 from T̂ 0 are adjacent. To be a
mixture, T̂ 2 must share exactly one of the non-expanded tweak bits with T̂ 0 and
one with T̂ 1, i.e. (t2j , t

2
j+1) ∈ {(t0j , t

1
j+1), (t

1
j , t

0
j+1)} and therefore s0,2 = s1,2 = 1.

It follows that t2j+6 = t0j+6 ⊕1 = t1j+6 ⊕1. Thus, Dj+1(T̂ 2) can never be identical
to Dj+1(T̂ 0) or Dj+1(T̂ 1).

Subcase (2.2): there exists j ∈ [0..3] such that t1j �= t0j , t1j+2 �= t0j+2. In
this case, the non-expanded tweak bits wherein T̂ 1 differs from T̂ 0 are non-
adjacent. For T̂ 2 to be a mixture of T̂ 0 and T̂ 1, it must share exactly one
of the non-expanded tweak bits with T̂ 0 and one with T̂ 1, i.e. (t2j , t

2
j+2) ∈

{(t0j , t
1
j+2), (t

1
j , t

0
j+2)} and again s0,2 = s1,2 = 1. It follows that t2j+5 = t0j+5 ⊕1 =

t1j+5 ⊕ 1. Thus, Dj(T̂ 2) can never be identical to Dj(T̂ 0) or Dj(T̂ 1).
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Case (3): wt(T 0 ⊕ T 1) = 3. In this case, it holds that s0 �= s1. There exists a
single j ∈ [0..3] such that t1j = t0j . Again, we distinguish between two subcases.

Subcase (3.1): s2 = s0. Since T̂ 2 shall be a mixture, there must exist some bit
j′ that T̂ 2 shares with T̂ 0. Since s2 = s0, t2j′+4 = t0j′+4 must hold. Thus, for the
diagonal Dj′−1(T̂ 2) ∈ {Dj′−1(T̂ 0),Dj′−1(T̂ 1)}, t2j′+4 = t0j′+4 implies that t2j′−1

must be t0j′−1. For T̂ 2 to be a mixture, there must exist a bit j′′ ∈ {j′ +1, j′ +2}
that is shared with T̂ 1. However, from s2 = s0 �= s1, it follows that t2j′′+4 =
t2j′′ ⊕ s2 �= t1j′′+4 = t0j′′+4. Thus, the expanded value of t2j′′+4 occurred in neither
T̂ 0 nor T̂ 1 and therefore the diagonal Dj′′−1(T̂ 2) �∈ {Dj′′−1(T̂ 0),Dj′′−1(T̂ 1)}.

Subcase (3.2): s2 = s1. Similarly, since T̂ 2 shall be a mixture, there must exist
some bit j′ that T̂ 2 shares with T̂ 0. Since s2 = s1, t2j′+4 = t1j′+4 must hold.
The diagonal Dj′−1(T̂ 2) can only be {Dj′−1(T̂ 0),Dj′−1(T̂ 1)} if j′ = j, i.e. the
bit where the non-expanded tweaks t0j = t1j were identical. Then, the diagonal
demands that t2j−1 = t1j−1 and therefore t2j+3 = t1j+3. Thus, T̂ 2 shares two
columns with T̂ 1. For T̂ 2 to be a mixture, there must exist a bit j′′ ∈ {j+1, j+2}
that is shared with T̂ 0. However, from s2 = s1 �= s0, it follows that t2j′′+4 =
t2j′′ ⊕ s2 �= t0j′′+4 = t1j′′+4. Thus, the expanded value of t2j′′+4 occurred in neither
T̂ 0 nor T̂ 1 and therefore the diagonal Dj′′−1(T̂ 2) �∈ {Dj′′−1(T̂ 0),Dj′′−1(T̂ 1)}.

Case (4): wt(T 0 ⊕ T 1) = 4. It holds that s0 = s1 in the following two subcases.

Subcase (4.1): s2 = s0 = s1. For T̂ 2 to be a mixture of T̂ 0 and T̂ 1, there must
exist some j ∈ [0..3] such that t2j = t1j and t2j+1 = t0j+1. Since s2 = s0 = s1, it
holds that t2j+5 = t0j+5. This implies Dj(T̂ 2) = (t1j , t

0
j+5) �∈ {Dj(T̂ 0),Dj(T̂ 1)}.

Subcase (4.2): s2 �= s0 = s1. For T̂ 2 to be a mixture of T̂ 0 and T̂ 1, there must
exist some j ∈ [0..3] such that t2j = t1j and t2j+1 = t0j+1. Since s2 �= s0 = s1,
it holds that t2j+4 = t0j+4 and t2j+5 = t1j+5. Thus, Dj(T̂ 2) = Dj(T̂ 1). To have
Dj+1(T̂ 2) ∈ {Dj+1(T̂ 0),Dj+1(T̂ 1)}, and Dj−1(T̂ 2) ∈ {Dj−1(T̂ 0),Dj−1(T̂ 1)}, it
follows that t2j+6 = t0j+6 and t2j+3 = t0j+3. From an iterated argument, the only
solution for the non-expanded parts of T̂ 2 is (t20, . . . , t

2
7) ∈ {(t00, t

1
1, t

0
2, t

1
3, t

1
4, t

0
5, t

1
6,

t07), (t10, t
0
1, t

1
2, t

0
3, t

0
4, t

1
5, t

0
6, t

1
7)}. However, both solutions have t2j+4 �= t2j for all

j ∈ [0..3] but s2 = 0, which cannot occur. ��
Thus, we cannot induce mixtures from only tweak differences in TweAES.

In the following, we study two alternative directions for constructing mixtures
induced by tweak differences: (1) partial mixtures and (2) higher-order mixtures.
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Fig. 2. Six-round trails of TweAES with expanded tweaks from a partial mixture.

4 Partial Mixtures

We can define partial mixtures straightforwardly. Prior, we have to define a
generalized variant of the exchange function.

Definition 2 (Second-order exchangeFunction). Let x = (x0, x1, x2, x3) ∈
(Fm

qb)4 be pairwise distinct with x0 ⊕ x1 = x2 ⊕ x3 and α ∈ (Z4)m. We define

exchange(2) : (Z4)m × (Fm
qb)4 → F

m
qb as

exchange(2)α (x) = (y0, . . . , ym−1) ∈ F
m
qb , where yi = xαi

i for all i ∈ [0..m − 1] .

Definition 3 (ε-partial Mixture). Let x and α be defined as in Definition 2.
We call a pair of texts y0 = exchange(2)α (x) and y1 = exchange

(2)
α⊕1m(x) an ε-

partial mixture of (x0, x1) if |{i ∈ [0..m − 1] : αi �∈ {0, 1}}| ≤ ε. Thus, at most ε
elements in y0 and y1 do not originate from x0 or x1.

The lowest ε for a tweak-difference-induced ε-partial mixture of TweAES is
two. Figure 2 shows an attempt of a six-round distinguisher from partial mix-
tures. Let P ∈ (F28)16 be a 16-byte plaintext and assume T 0 = (0, 0, 0, 0),
T 1 = (1, 1, 1, 1), T 2 = (1, 1, 0, 0), T 3 = (0, 0, 1, 1). Let T̂ i denote the correspond-
ing expanding tweaks or i ∈ [0..3] as before. We denote by Si,r the states after
r-round encryption of (P, T i), for i ∈ [0..3], under a random secret key. The
diagonals of T 1 are all (1, 1), so that all columns of S0,3 differ from those of
S1,3. For the second pair, it holds that D0(T̂ 2) = D0(T̂ 1), D2(T̂ 2) = D2(T̂ 0),
D0(T̂ 3) = D0(T̂ 0), and D2(T̂ 3) = D2(T̂ 1). Thus, the first and third columns
of S2,3 and S3,3 are inherited from S0,3 and S1,3, respectively. However, the
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second and fourth diagonals, Dj , for j ∈ {1, 3}, are fresh and therefore, the
corresponding columns in S2,3 and S3,3 differ from those of S0,3 and S1,3.

Define I ⊂ [0..3] and let d = 4−|I| ∈ {1, 2, 3}. We will derive the probabilities
that both pairs lie in a mixed space MI after almost six rounds, with the final
tweak addition inverted. As an example, Fig. 2 shows I = {0, 2, 3}. For a random
permutation, the probability for this event is approximately (2−4·8d)2 = 2−64d.
For TweAES, we need d inactive diagonals after Round 4 in both pairs:

S0,4 ⊕ S1,4 ∈ DI and S2,4 ⊕ S3,4 ∈ DI

since they propagate through two rounds to the mixed space with probability
one as R2(x) ⊕ R2(y) ∈ MI ⇔ x ⊕ y ∈ DI holds for two-round AES [21]:

Pr
[
R2(S0,4) ⊕ R2(S1,4) ∈ MI ,
R2(S2,4) ⊕ R2(S3,4) ∈ MI

∣∣∣∣
S0,4 ⊕ S1,4 ∈ DI
S2,4 ⊕ S3,4 ∈ DI

]
= 1 .

In the following, we assume that the cipher behaves like a first-order
Markov cipher, that the S-box is close to being APN (cf. [19]), and the
keys are chosen uniformly at random. The probability that the first pair
of TweAES has d inactive diagonals is approximately (2−4·8)d. The probability
for the second pair’s difference to be in DI after four rounds conditioned on
the event that the first pair’s difference after four rounds is in DI is a little
more sophisticated. In each column, d bytes must share the same difference of
S2,4 ⊕ S3,4 = S0,4 ⊕ S1,4. It has to hold in each column i ∈ [0..3] that

αj1(y
2
1−i ⊕ y3

1−i) ⊕ βj1(w
2
3−i ⊕ w3

3−i) = αj1(y
0
1−i ⊕ y1

1−i) ⊕ βj1(w
0
3−i ⊕ w1

3−i)
...

...
...

αjd(y
2
1−i ⊕ y3

1−i) ⊕ βjd(w
2
3−i ⊕ w3

3−i) = αjd(y
0
1−i ⊕ y1

1−i) ⊕ βjd(w
0
3−i ⊕ w1

3−i) .

where the α’s and β’s are coefficients in the MixColumns matrix and the variables
of yj and wj refer to the variables in the states after almost four rounds (without
the final MixColumns operation) in Fig. 2. If d ≤ 2, the probability is lower
bounded by 2−4·8 d. However, if d = 3, the probability in each column i is at
least

Pr
[
S2,4 ⊕ S3,4 ∈ DI |S0,4 ⊕ S1,4 ∈ DI

]

≥ Pr
[

y2
1−i ⊕ y3

1−i = y0
1−i ⊕ y1

1−i

w2
3−i ⊕ w3

3−i = w0
3−i ⊕ w1

3−i
for all i ∈ [0..3]

]
≥ 2−64 .

Thus, the conditional probability for d = 3 inactive diagonals is at least 2−4·16

given that the first pair has d inactive diagonals, under our assumptions. It
follows in the real world that for d ∈ [1..3]

Pr
[
S2,6 ⊕ S3,6 ∈ MI ∧ S0,6 ⊕ S1,6 ∈ MI

] � 2−(32d+min(32d,64)) .

Thus, such a distinguisher based on a partial mixture seems to require three
active diagonals so that the probability of two pairs conforming to the mix-
ture can be substantially higher than the probability for a random permutation.
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However, the associated probability of 2−160 would imply that the number of
necessary pairs was impossible to collect for TweAES with four-bit tweaks since
there exist at most

(
16
3

) ·2128/ � 2137.1 unordered plaintext-tweak tuples (P, T 0),
(P, T 1), and (P, T 2) (which would define T 3 = T 0 ⊕ T 1 ⊕ T 2) for a fixed key.
Therefore, we study higher-order mixtures in the following sections.

5 Higher-Order Mixtures

For first-order mixtures, the set of all mixture texts was derived from a single
base pair, and an activity vector determined both mixed texts of the tuple.
For higher-order mixtures, one can derive texts from more than two texts but
from 2k-tuples instead. For this purpose, we generalize activity vectors α ∈ F

m
2

to selection vectors for generating mixed texts and σ ∈ Z2k and permutation
vectors ψ for generating (i.e. to permuting the values in) mixture tuples. We
will extend the earlier Definition 2 of exchange(2) to exchange(k). Moreover, we
define generatemixturetuple(k) since exchange cannot define 2k-tuples for k > 1.

For definitional purposes, let Perm(X ) be the set of all permutations over a
set X . We define two specific applications in the following. We define

NbPerm(Z2k) def= {π ∈ Perm(Z2k) : |π(2i) − π(2i + 1)| = 1, i ∈ [0..2k−1 − 1]} .

Moreover, we extend it to NbPerm0(Z2k) def= NbPerm(Z2k) ∪ 02k . The constant
element 02k will be necessary to cover the space spanned by those vector elements
that are constant over all base texts.

Definition 4 (2k-tuple-derived Mixtures). Define x = (x0, . . . , x2k−1) ∈
(Fm

qb)2
k

such that for all s ∈ [0..2k−1 − 1], x2 s ⊕ x2 s+1 = Δx is constant and

nonzero. For σ ∈ (Z2k)m, we define exchange(k) : (Z2k)m × (Fm
qb)2

k → F
m
qb as

exchange(k)σ (x) = (y0, . . . , ym−1) ∈ F
m
qb , where yi = xσi

i for all i ∈ [0..m − 1] .

We call y a trivial mixture of x if y ∈ x i.e., σ0 = · · · = σ2k−1 and a non-trivial
mixture of x otherwise. The set of all k-th-order mixtures is defined as

mixtures(k)(x) =
{

y ∈ F
m
qb : ∃σ ∈ (Z2k)m such that y = exchange(k)σ (x)

}
.

Let ψ = (ψ0, . . . , ψ2k−1) ∈ NbPerm0(Z2k)m. We define generatemixturetuple(k) :
NbPerm0(Z2k)m × (Fm

qb)2
k → (Fm

qb)2
k

as

generatemixturetuple
(k)
ψ (x) = (y0, . . . , y2k−1) where yj

i = x
ψi(j)
i ,

for all j ∈ [0..2k − 1] and i ∈ [0..m − 1] . A mixture tuple y is called a trivial
mixture of x iff it is a permutation of x, i.e. ∃ψ ∈ NbPerm0(Z2k) such that
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yj = xψ(j) for all j ∈ [0..2k − 1]. y is called a non-trivial mixture tuple of x
otherwise. The set of all k-th-order mixture tuples is given by

mixturetuples(k)(x) =
{

(y0, . . . , y2k−1) ∈ (Fm
qb)2

k

: ∃ψ ∈ NbPerm0(Z2k)m s.t.

(y0, . . . , y2k−1) = generatemixturetuple
(k)
ψ (x)

}
.

Example 1. Consider the following 22 base texts from two base pairs with m = 4:

x = (x0, x1, x2, x3) =

⎛
⎜⎜⎝

⎡
⎢⎢⎣

a0

b0
c0
d0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

a1

b1
c1
d0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

a2

b2
c2
d0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

a3

b3
c3
d0

⎤
⎥⎥⎦

⎞
⎟⎟⎠

and the four derived mixtures:

y = (y0, y1, y2, y3) =

⎛
⎜⎜⎝

⎡
⎢⎢⎣

a2

b1
c3
d0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

a3

b0
c2
d0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

a0

b3
c1
d0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

a1

b2
c0
d0

⎤
⎥⎥⎦

⎞
⎟⎟⎠ .

The texts in y are mixtures of x since there exist corresponding selection vectors
σi for all i ∈ [0..2k − 1]. y is also a mixture 4-tuple of x since there exist
permutation vectors ψj j ∈ [0..m − 1]:

σ = (σ0, σ1, σ2, σ3) = ((2, 1, 3, 0), (3, 0, 2, 0), (0, 3, 1, 0), (1, 2, 0, 0))

ψ = (ψ0, ψ1, ψ2, ψ3) =
(
(2, 3, 0, 1), (1, 0, 3, 2), (3, 2, 1, 0),04

)
.

Impact on Conditional Probability. In contrast to their first-order variants,
mixtures derived from more than one pair may not follow a (truncated) differ-
ential trail only because the base pairs do. For example, Grassi [18] exploited
that, whenever a base pair followed a truncated differential through four-round
AES, its mixtures would also follow this differential. However, the texts yi in
Example 1 above are generated from two pairs each, which defines more equa-
tions in addition to those of the base pairs. Still, since all defining vectors ψi

are permutations or all-constant vectors, their equation system cannot have full
rank. This means, that whenever all base pairs and all but one of the mixture
pairs follow the same (truncated) differential, this is guaranteed for the remain-
ing pair. Consequently, higher-order mixtures can be a tool for settings where
first-order mixtures are inapplicable. Plus, one may construct considerably more
sets of higher-order mixture tuples than of the first order. However, higher-order
mixtures may come at the price of a significantly reduced probability that all
pairs fulfill a certain difference later.

We can define a further extension that can become helpful. Let NbPerm0,c

(Z2k) def= NbPerm(Z2k)∪02k ∪ (2k−1)2
k

. This means that the set of 2k−1 mixture
texts can define constants not defined by the 2k−1 base texts. In Example 1, this
could be the case when replacing ψ3 with 24, i.e. replacing d0 in each mixture yi

by a new value d1 �= d0. This does not change the differences between pairs and
yields more flexibility while preserving a non-full rank of the equation system.
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Fig. 3. Second-order mixture distinguisher on six rounds of TweAES. Top: Rounds 3
and 4. Bottom: Truncated differential between state pairs (2j, 2j+1) through Rounds 5
and 6, here for a difference in D0,1,2 after four rounds.

6 Second-Order Mixtures for TweAES

In the following, we construct a second-order mixture distinguisher on six-round
TweAES before we extend it to a seven-round key-recovery attack.

6.1 Six-Round Distinguisher

Assume a set of eight plaintext-tweak pairs (P, T j) for j ∈ [0..7]. Let Ci be the
ciphertexts after six rounds and by Y i the states with the final tweak addition
and the MixColumns operation inverted over all text-tweak tuples i. For all j ∈
[0..3], we need ΔT = T 2j ⊕ T 2j+1 to be constant, where for concreteness, we
choose ΔT = (0, 1, 1, 0). In the following, we describe a second-order mixture
distinguisher on six-round TweAES, which is visualized in Fig. 3. We assume
that we obtain the same inactive diagonal after the tweak addition at the end
of the fourth round between the texts of each of the first three pairs with some
probability p � 2−32. We want IDI for |I| = 3, i.e. a single inactive anti-diagonal
after six rounds without the final MixColumns operation and tweak addition.
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Distinguisher Procedure. The distinguisher proceeds as follows:

1. Fix eight pairwise distinct tweaks T j with T 2j ⊕T 2j+1 = ΔT for all j ∈ [0..3].
2. For all i ∈ [0..294−1] and j ∈ [0..7], choose P i randomly but pairwise distinct

and collect the encryptions Ci,j of (P i, T i,j). For all Ci,j , invert the final Mix-

Columns operation and tweak addition: Y i,j = MC−1(Ci,j ⊕ T̂ i,j).
3. If there exist i and I ⊂ {0, 1, 2, 3}, i.e. |I| ≤ 3, such that Y i,2j⊕Y i,2j+1 ∈ IDI

holds for all j ∈ [0..3], then output real and output random otherwise.

Complexity. Since we can choose any of the four anti-diagonals to be inactive
in the four pairs, the distinguisher needs 296/4 = 294 chosen plaintexts plus
294 · 8 inverse MixColumns operations for each octet of eight texts. The memory
complexity is negligible, given that at most eight states must be stored at a
time. The success probability for the real six-round TweAES is approximately
1 − e−1 whereas that of a random four-tuple of pairs to have the same inactive
anti-diagonal in all pairs is roughly 4 · (2−32)4 � 2−126, and approximately
294−126 = 2−32 over all encrypted octets.

6.2 Deriving a Seven-Round Key-Recovery Attack

The distinguisher from Sect. 6.1 can be turned into a key-recovery attack on
seven rounds in the spirit of the six-round attacks in [3]. Figure 4 illustrates
the appended round and variables. Prior to the attack description, we define
precomputation tables Ht

c for c ∈ [0..3] and t ∈ {0, 1}:

1. Initialize an empty table Z.
2. For all columns y = (y0, y1, y2, y3) ∈ F

4
28 and all 224 differences Δy =

(Δy0,Δy1,Δy2,Δy3) ∈ F
4
28 such that Δyc = 07||t:

• Compute z ← SB(MC(y)) and z′ ← SB(MC(y ⊕Δy)), derive Δz ← z ⊕ z′

and add z to Z[Δz]. Note that SB and MC operate on a single column
here. We expect on average 232+24−32 = 224 entries per Δz.

3. For each Δz,Δx ∈ (F4
28)

2:
• For all entries z ∈ Z[Δz] and x ∈ Z[Δx], determine Δa = z ⊕ x. Store x

in Ht
c[Δx,Δz,Δa]. There will be on average 232+32+24+24−96 = 216 values

x per index.

The time complexity for the tables Z is 2 · 4 · 232+24 = 259 single-column partial
encryption and decryptions through one round and all combinations of t and c
each. The complexity for the eight tables Ht

c is 2 ·4 ·232+32+24+24 = 2115 memory
accesses. We approximate the complexity of an encryption through seven-round
TweAES by 7 ·16 = 112 � 26.7 S-box lookups in the spirit of e.g. [3,19]. Thus, we
consider the creation of the tables to be equivalent to roughly 259· 24 · 17+2115−6.7 �
2108.3 encryption equivalents. The memory costs are 232 · 224 for a temporary
table Z and 2 · 4 · 296 · 216 four-byte values or 2113 AES states over all tables Ht

c.
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Fig. 4. Final round of the key-recovery attack on seven-round TweAES. Gray bytes are
active bytes in differences. (Color figure online)

Attack Procedure. The attack over the first seven rounds proceeds as follows:

1. Initialize empty lists C and K and precompute the hash tables Ht
c.

2. Choose 2s random but pairwise distinct plaintexts and form structures of 8·2s

plaintext-tweak tuples (P i, T j) for i ∈ [0..2s − 1] with T 2j ⊕ T 2j+1 = ΔT for
j ∈ [0..3].

3. Collect all ciphertexts Ci,j corresponding to (P i, T j) for j ∈ [0..7] from the
encryption oracle, invert the final MixColumns and ShiftRows operations to
derive Zi,j , and store the resulting eight-tuples into C.

4. For all eight-tuples i, all four inverse diagonals (in Y , i.e. S6
SR), and all columns

c ∈ [0..3]:
• For all pairs Zi,0, Zi,1, Zi,2, Zi,3, define Δx = Zi,0⊕Zi,1, Δz = Zi,2⊕Zi,3,

and Δa = Zi,0 ⊕ Zi,2. Lookup Ht
c[Δx,Δz,Δa] to obtain 216 values z on

average that yield 216 key candidates k = Zi,0⊕z that produce a difference
of t in the byte at the intersection of column c and a fixed inverse diagonal
d. Note that whether t should be zero or one depends on the column and
diagonal.

• Repeat the process, redefining Δx = Zi,4 ⊕ Zi,5, Δz = Zi,6 ⊕ Zi,7, and
Δa = Zi,4 ⊕ Zi,6. Lookup Ht

c[Δx,Δz,Δa] to obtain 216 values z′ on
average that yield 216 key candidates k′ = Zi,4 ⊕ z′.

• For all 216 candidates k, look up if there exists k′ = k. We expect one
candidate on average per column and therefore one 128-bit key candidate
for K̂7 on average per ciphertext tuple and considered inverse diagonal.
Store the candidates into K.

5. Finally, sort K and output all candidates that occur at least 2s−95 times.

Complexity. Consider a structure of 8 · 2s plaintext-tweak tuples and their
corresponding ciphertexts. The distinguisher had a probability of approximately
2−94 to occur, i.e. we expect 2s−94 eight-tuples that satisfy our distinguisher on
average. We suggest s = 102 for our attack, which corresponds to 8 · 2102 =
2105 chosen plaintext-tweak tuples and 28 eight-tuples expected to satisfy our
distinguisher on average. They cost 2105 encryptions and 2105 · 1

7 � 2102.2 partial
decryptions. For each eight-tuple and column, we have to lookup 216 candidates
for the first two pairs and 216 candidates for the next two pairs with 4 ·4 ·2s+16 =
2122 memory accesses over four columns and possible inverse diagonals, that
yields approximately 2115.3 encryptions. Merging them needs again 216 lookups
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Table 1. Distinguishers and key-recovery attacks on TweAES. Memory = #16-byte
states, tw. = #tweaks, rds. = #rounds, KP/CP = known/chosen plaintext(s), trunc.
= truncated, imp. = impossible, negl. = negligible.

Complexities

Rds. Attack type Tw. Time Data Memory Reference

Distinguishers

6 Imp. differential 2 2127 2127 CP negl. [11]

6 2nd-order Mixture 23 297 294 CP negl. Sect. 6.1

Key-recovery attacks

5 Trunc. differential 2 226 25 CP 228 [11]

6 Integral 24 245 25 KP negl. [11]

6 Imp. differential 2 2119 2119 CP 272 [11]

7 2nd-order Mixture 23 2116.3 2102 CP 2113 Sect. 6.2

7 Imp. differential 2 2100 2100 CP 266 [28]

8 Imp. differential 2 2124.4 2124.3 CP 2111.8 [28]

8 Imp. differential 2 2120.8 2122.1 CP 2109 [23]

each i.e. 4 · 4 · 2s · 216 = 2122 memory accesses. Storing the candidates takes on
average 4 ·2s = 2104 memory accesses or 297.3 encryptions. Sorting and counting
in a list of 4 ·2s key candidates in O(n log n) takes approximately 2110.2 memory
accesses or 2104 encryptions. In total, the time complexity is approximately

2108.3 + 2105 + 2102.2 + 2115.3 + 2115.3 + 297.3 + 2104 + 2110.2 � 2116.3

encryption equivalents. We assume that the key candidates are randomly dis-
tributed, which allows us to use the following well-studied lemma. The proof for
K = N can be found e.g. in [26], the case for K < N follows easily.

Lemma 1 (Maximum Load of Bins and Balls). Consider the setting of
throwing K balls into N bins uniformly and independently at random. Let 	i

denote the load of the i-th bin. For positive K ≤ N , it holds that

Pr
[
∃i ∈ [1..N ] : 	i ≥ 3 ln N

ln lnN

]
≤ 1

N
.

We have K = 2104 key candidates on average and N = 2128 bins representing
the possible key values. Even for K = N , the probability that any key will be
suggested more than 3 lnN

ln lnN < 60 times is therefore upper bounded by 2−128

under the assumptions of uniform and independent key suggestions. In contrast,
we expect that the correct key is suggested 28 times on average. Therefore, we
expect only the correct key to occur at least 2s−95 = 27 times. We compare
our attack on TweAES to others on that primitive in the literature in Table 1.
However, we emphasize that our goal was not to provide better attacks on the
particular primitive but to propose a generalization of an established technique.
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7 Conclusion

We proposed higher-order mixtures for settings where conventional (first-order)
mixtures were inapplicable. One such setting was the case of TweAES, whose
tweak-expansion code prevented tweak-induced mixture differentials. We out-
lined the application for a six-round mixture distinguisher on TweAES and
derived a seven-round key-recovery attack in the spirit of [3] under the Markov-
cipher and black-box S-box assumption. Our result does not threaten the security
TweAES but points out a property of its tweak expansion. We propose a general
technique with potentially broader applicability to other primitives that allows
more and more flexible mixtures at the cost of a lower probability of the differ-
ential propagation of all pairs. Future work can study further applications on
AES-based and other primitives.

Acknowledgments. We thank the reviewers of IWSEC 2024 for their fruitful com-
ments. Eik List has been supported by Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) – LI 4223/1-1.
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Abstract. The MISTY1 is a 64-bit block cipher designed by Matsui in
1997. It is listed on the Japanese CRYPTREC Candidate Recommended
Ciphers List. Cryptanalysis against the full MISTY1 has already been
known, which is the analysis of weak keys in a related-key setting and the
integral attack using the division property in a single-key setting. How-
ever, these attacks require large amounts of data and time complexity
that are practically infeasible. In this paper, we show the existence of new
weak keys for the full MISTY1. The MISTY1 can be distinguished from
a random permutation and the keys are recovered with a realistically fea-
sible computational complexity, in a related-key setting. It means that a
pair of weak keys, one key of which has a specific differential relationship
with the other, is used. The computational complexity of the attacks
is 25 chosen plaintexts for distinguishing the MISTY1 from a random
permutation, and 28 chosen plaintexts, 225 bytes of memory and a few
seconds computed by a desktop PC for key recovery.

Keywords: MISTY1 · Weak keys · Related-key attack

1 Introduction

The MISTY1 [1] is a symmetric key 64-bit block cipher designed by Matsui in
1997, which is listed on the Japanese CRYPTREC Candidate Recommended
Ciphers List [2] and has been standardized in NESSIE [4], ISO/IEC [5] and
RFCs [6].

Theoretical attacks on the full-round MISTY1 are already known. We sum-
marize attacks on the full-round MISTY1 in Table 1. In 2013, Lu et al. showed
the existence of weak keys in a related-key setting [7], followed by the related
work [8]. In 2015, Todo presented the integral attack in a single-key setting using
the division property [9], followed by the related work [10,11]. However, these
attacks are not yet a realistic threat due to the very large amount of computa-
tional complexity (Table 1).
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Table 1. Attacks on the full MISTY1

Attack Keys Data Time Memory

Related-key differential [7] 2103.57 261CC 290.93 299.2Bytes

Related-key amplified boomerang [8] 292 260.5CP 287.33 280.07Bytes

Related-key differential

Distinguisher Section 4.1 3 · 274 25CP 29†

Key recovery Section 4.2 3 · 274 28CP � 229 225Bytes

Integral [9] 2128 263.58CP 2121 not specified

Integral [10] 2128 263.994CP 2108.3 not specified

Integral [11] 2128 263.9999CC 279 not specified

Integral [11] 2128 264 − 236CPC 269.5 not specified

CP: chosen plaintexts, CC: chosen ciphertexts
CPC: chosen plaintexts and ciphertexts
† The unit of time is the time for comparing two ciphertexts
In the other cases it is the time for encrypting one time.

Weak keys mean the keys whose use would cause some kind of unexpected
behavior in this paper. The related-key attacks [14] are attacks under the condi-
tion that a ciphertext and the corresponding plaintext encrypted with multiple
keys that are related to each other are available.

Our contributions presented in this paper are as follows.

• We found weak keys of the MISTY1, which have not been previously shown.
• We showed that it is possible to distinguish the MISTY1 from random per-

mutations and to recover the keys when the weak keys are used.
• We estimated the computational complexity required for these attacks, and

by conducting computer experiments using a desktop PC we demonstrated
that the keys are recovered in less than a few seconds.

Note that the attacks are not considered to be a realistic threat for two reasons.
Firstly, they are related-key attacks where two weak keys with a differential
relationship between them convenient for attackers need to be used. Secondly,
the number of weak keys we found is 3 ·274. It is not small, but extremely smaller
than the total number of keys.

This paper is organized as follows. In Sect. 2 we describe the notation used
in this paper, weak keys, related-key attacks and the structure of the MISTY1.
In Sect. 3 we analyze the key scheduling part of the MISTY1 to derive the weak
keys, and show that there is a differential characteristic in the data randomizing
part with a very large differential probability in a related-key setting. In Sect. 4,
we construct a related-key distinguisher of the MISTY1 and recover secret key
exploiting the differential characteristic shown in Sect. 3. In Sect. 5 we summarize
our results.
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2 Preliminaries

In this section we describe the notation used in this paper, weak keys, related-
key attacks and the structures of the data randomizing and key scheduling parts
of the MISTY1.

2.1 Notation

The notation used throughout this paper is as shown in the reference [3] and
Table 2.

Table 2. The notation used in this paper

Subscript:in/out Denotes the input/output data of the function

e.g., FOin, FOout

Subscript: i Denotes the i-th 16-bit data from the left

Subscript: (Rj) The right (lower) j-bit value of 16-bit data

Subscript: (Lj) The left (upper) j-bit value of 16-bit data

e.g., P = P1||P2||P3||P4

K1 = K1(L9)||K1(R7) = K1(L7)||K1(R9)

Prefix: Δ Denotes a differential between two data

Typewriter style Hexadecimal notation (e.g., 0a)

ΔK := Ksec ⊕ Krel The differential between the secret key and the related key

ΔK′ The differential between the two corresponding extended keys

2.2 MISTY1

The MISTY1 is a symmetric key block cipher with a data block length of 64 bits
and a secret key length of 128 bits. It consists of two parts: the data randomizing
part, which randomizes a 64-bit plaintext and outputs the 64-bit ciphertext, and
the key scheduling part, which outputs the 128-bit extended key for an input
of 128-bit secret key. Both the secret key and the extended key are used in the
data randomizing part. The structures of the data randomizing and the key
scheduling parts are explained below.

2.2.1 The Data Randomizing Part The structure of the data randomiz-
ing part of the MISTY1 is shown in Fig. 1. It is a Feistel structure in which
the input 64-bit plaintext is divided into two 32-bit blocks, and each block is
transformed alternately by the function FO. The function FO and its internal
function, the function FI, also have Feistel structures. As a whole, the data ran-
domizing part has a three-layer nested structure, and also has a structure in
which the transformation is repeated with two function FLs and two function
FOs as a unit.
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Fig. 1. The Data randomizing part of the MISTY1

The keys used in the data randomizing part are the 16-bit secret keys K1 to
K8 and the extended keys K ′

1 to K ′
8, which are described in Sect. 2.2.2. In the

function FO, the extended keys are used in its internal functions, the function
FIs, and the secret keys are used outside the function FIs. In the function FL,
one secret key and one extended key are used.

The non-linear operations with respect to the exclusive-or (XOR) operation
are the bitwise AND (∩) and OR (∪) operations in the function FL and are
the substitution tables S7 and S9 in the function FI. Within one function FO,
the transformations by substitution tables S7 and S9 are performed many times,
which is the reason why the differential probability in single-key settings is small.
If there are differential characteristics of the function FO with a large differential
probability, the differential probability of the entire data randomizing part may
be also large.

2.2.2 The Key Scheduling Part The structure of the key scheduling part
of the MISTY1 is shown in Fig. 2. In the key scheduling part, the 128-bit secret
key is divided into eight 16-bit secret keys K1 to K8, each 16-bit key is input to
two adjacent function FIs and eight 16-bit extended keys K ′

1 to K ′
8 are output.

Each extended key K ′
i is obtained as an output for two secret key inputs, Ki

and Ki+1, to the function FI. In the function FI, the substitution tables S9 and
S7 are used, which are non-linear operations with respect to the XOR operation.
The function FI is identical to that in the data randomizing part.
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Fig. 2. The Key Scheduling part of the MISTY1

2.3 Weak Keys

In this paper, weak keys are defined as the keys whose use would cause some
kind of unexpected behavior as mentioned in Sect. 1. Although, a weak key was
initially defined as a key that reverts to the original plaintext in the block cipher
DES [12] when encrypted twice with the same key for any plaintext, the former
definition is used in the previous works [7,8]. When a pair of weak keys shown
in this paper is used, we can distinguish MISTY1 from a random permutation
and recover the keys.

2.4 Related-Key Attacks

Related-key attacks were proposed in the early 1990 s [14,15]. Biryukov et al.
illustrated the first attack on the full-round AES-192 and AES-256 [13] in a
related-key setting, which distinguished AES from a random permutation and
recovered an AES encryption key more efficiently than a brute force attack [16,
17].

In a related-key setting, attackers can obtain pairs of plaintexts and the
corresponding pairs of ciphertexts associated with each other by related keys
besides the encryption key. Attackers can also know and control the relation-
ships between the encryption key and related keys, even if they do not know
the encryption key itself. Thus, the related-key attack is an attack under very
favourable conditions for the attackers, and conversely, the conditions for the
attack to be successful are so severe that it is considered to be an attack with
a small chance of being realized in normal encryption applications. However,
depending on the method of secret key generation and distribution, etc., an
attacker may be able to obtain the differential between multiple secret keys, and
therefore the related-key attack may be a realistic attack.
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Fig. 3. Differences between weak key pairs

In this paper, we consider the related-key differential attack shown below:

P
K−→ C

P ⊕ ΔP
K⊕ΔK−→ C ⊕ ΔC,

where P , C and K denote a plaintext, a ciphertext and a secret key and ΔP ,
ΔC and ΔK are differences between the two plaintexts, the two ciphertexts
and the two secret keys, respectively. When P s, ΔP , and ΔK are chosen to be
convenient to the attacker, the probability of differential characteristic is large
enough for the attacker to distinguish MISTY1 from a random permutation and
to recover the secret key.

3 Weak Keys of the MISTY1

When the weak key shown in this paper is used together with another weak key
with a specific differential relationship as the related key, the MISTY1 can be
distinguished from a random permutation and the secret key can be recovered.
In this section, we first illustrate what pairs of secret keys and related keys



Weak Keys of the Full MISTY1 Recovered in Practical Time 71

can be weak keys, and then show that when these pairs of weak keys are used,
there exists a differential characteristic with very large probability in the data
randomizing part.

3.1 Pairs of Weak Keys and the Differentials in Them

Table 3. Tuples of differences between two weak keys, and the lower 7-bit values of
the weak keys

h Tuples of ΔKi(R7) and (Kseci(R7), Kreli(R7)) Number of keys

1 01(0a,0b),20(0c,2c),40(18,58) 3 · 274

2 03(61,62),06(31,37),09(53,5a),0c(30,3c),18(4c,54), 12 · 268

21(45,64),24(5e,7a),28(50,78),30(41,71),41(26,67),

42(35,77),60(2e,4e)

3 07(72,75),0d(21,2c),13(28,3b),1c(2e,32),25(48,6d), 16 · 262

26(19,3f),29(1c,35),38(01,39),43(03,40),46(07,41),

49(08,41),52(0b,59),61(1e,7f),64(36,52),68(06,6e),

70(0d,7d)

4 0f(07,08),1b(2f,34),1d(25,38),1e(45,5b),27(15,32), 13 · 256

2d(0c,21),2e(46,68),3c(1e,22),4b(02,49),4d(39,74),

53(0a,59),71(1a,6b),78(27,5f)

5 1f(00,1f),2f(04,2b),3b(15,2e),3e(58,66),57(09,5e), 13 · 250

5b(15,4e),5d(22,7f),6b(1c,77),73(09,7a),75(01,74),

76(07,71),79(08,71),7c(32,4e)

6 3f(5b,64),7d(2a,57),7e(18,66) 3 · 244

7 N/A

h: Hamming weight of ΔKi(R7)

The key scheduling part is a function that outputs a 128-bit extended key for an
input of 128-bit secret key (Fig. 2). As this function is not bijection, there may
be more than one secret key such that the key scheduling part outputs extended
keys with the same value. For example, if the conditions Kseci(R7) = 0a or 0b
and ΔKi := Kseci ⊕ Kreli = 01 (i = 1, · · · , 8) for the secret key and the related
key pair (Ksec,Krel) are satisfied, the key scheduling part outputs the extended
keys with the same value.

This weak key pair thus satisfies the condition that the lower 7-bit value of
a 16-bit secret key, Kseci(R7), is one of the two values and that the differential
between Ksec and Krel, ΔKi, is the same for all i. Furthermore, another condition
is imposed on the extended key K ′ as described in Sect. 3.2.2. The conditions to
be satisfied by the weak key pair are as follows:
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Conditions on pairs of weak keys

ΔKi(L9) = 0 (i = 1, · · · , 8), ΔK1(R7) = ΔK2(R7) = · · · = ΔK8(R7) (1)
ΔK ′

i = 0 (i = 1, · · · , 8) (2)
K ′

i(R7) ∩ ΔKi(R7) = ΔKi(R7) (except for i = 3, 7) (3)

Figure 3 shows a differential between a pair of weak keys in case of ΔKi(R7) =
01. To satisfy the condition (2), the input and output differential values of
S7 must be equal in the differential path on the right-hand side of Fig. 3, and
such tuples of input differentials ΔKi(R7) and pairs of input values (Kseci(R7),
Kreli(R7)) for S7 are limited to the 60 tuples shown in Table 3. ΔKi+1(R9) on the
right-hand side of Fig. 3 always cancels out with the input differential ΔKi(R9)

according to the condition (1).
The condition (3) is imposed on the extended key that the bit value of the

extended key K ′
i corresponding to the bit position with a non-zero difference of

ΔKi is 1. This is necessary for the differential characteristic of the function FL
described in Sect. 3.2.2 to be possible.

The number of weak keys is estimated as follows. From the conditions (1)
and (2), each Kseci(L9) can take 29 values and each Kseci(R7) can take two values.
If the Hamming weight of ΔKi(R7) is h, from condition (3) h bits of the extended
key K ′

i must be 1 (except for i = 3, 7). Therefore, for each ΔKi(R7) in Table 3,
the number of weak keys is 29·8+8−6h = 280−6h and decreases exponentially as h
increases.

The number of weak keys is the largest when ΔKi(R7) = 01, 20, 40 with
h = 1, which is 29·8+8−6·1 = 274 each. It is also when h=1 that the differential
probability of the data randomizing part is the largest, as described in Sect. 4.
In the following, unless otherwise stated, we will discuss the case ΔKi(R7) = 01,
but exactly the same argument holds for the cases ΔKi(R7) = 20 and 40.

3.2 Differential Characteristics

It has been shown by the developers that the MISTY1 is based on the theory
of provable security against differential cryptanalysis in single-key settings [1].
When the differential path is actually explored, it can be seen that the differ-
ential probability is significantly small in the function FOs. If the differential
probability is sufficiently large in each function FO, the differential probability
of the entire data randomizing part may be large.

In this section, we first show that there exists a differential characteristic for
the function FO with a differential probability of 1 when a pair of weak keys
satisfying conditions (1) to (3) in Sect. 3.1 is used. Next, it is shown that for the
entire data randomizing part, there exists a differential characteristic where the
differential probability of all function FOs is 1, and the differential characteristics
and differential probabilities of the function FLs in that case are shown.
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Fig. 4. Differential characteristics of the 2-round function that can be exploited for the
attacks

3.2.1 The Function FO For the case ΔKi(R7) = 01, the differential charac-
teristic of the function FO, where the differential probability is 1, is shown in the
center of Fig. 4. In this differential characteristic, the input differential values of
the function FI are always zero because a difference between two secret keys,
ΔKi, and the difference between two input values cancel just before the function
FI. Also, since ΔK ′

i = 0 for the extended key, no differences occur in the func-
tion FI. This results in an output differential value ΔFOout = 0000 0001 with
probability 1 for the input differential value ΔFOin = 0001 0001 of the function
FO.

Note that such differential paths of the function FO exist that the differential
probability be 1 not only when the Hamming weight of ΔKi(R7) is 1, but also
for all 60 cases in Table 3.

3.2.2 The Function FL The data randomizing part has a structure in which
transformations using two function FLs and two function FOs are repeated as a
unit. So, if a differential characteristic exists in which the input differential value
and output differential value are equal and the differential probability is suffi-
ciently large in the transformation of this unit, then a differential characteristic
with a large differential probability also exists for the entire data randomizing
part.

Using the differential characteristic of the function FO with probability 1
described in Sect. 3.2.1 to search for the differential characteristics in the trans-
formation of the unit iteration described above, it can be seen that in order for
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the input and output differential values to be equal, the input and output dif-
ferences of the odd-th (FLodd) and even-th (FLeven) of the function FL must
be the following values (right-hand of Fig. 4).

Odd-th : ΔFLoddin = 0001 0000, ΔFLoddout = 0001 0001

Even-th : ΔFLevenin = 0001 0001, ΔFLevenout = 0001 0000
(4)

In order for the differential property of the function FL taking such input
and output differences to actually exist, condition (3) of Sect. 3.1 is required for
the extended key K ′

i, as follows.
In the FLodd, the condition (3) of Sect. 3.1, where the least significant bit

of the extended key K ′
i is 1, is required because the output difference of the ∪

operation must be zero. Conversely, if this condition is satisfied, the differential
after the ∪ operation is 0 with probability 1. The differential probability is 2−1 in
the ∩ operation and therefore also 2−1 for the whole FLodd (top right of Fig. 4).

Since the output difference of the ∩ operation must be 0001 in the FLeven,,
the condition that the least significant bit of the extended key K ′

i is 1 is required,
as in the FLodd case. If this condition is satisfied, the difference of the ∩ operation
is 0001 with probability 1. The differential probability is 2−1 in the ∪ operation
and therefore also 2−1 for the whole FLeven (bottom right of Fig. 4).

In general, the differential probability of the function FL when the Hamming
weight of ΔKi(R7) is h is found to be 2−h by the same argument. In addition,
the condition of a bit value of 1 for h bits of the extended key K ′

i is required,
which means that the number of weak keys decreases exponentially as h increases
(Table 3).

3.2.3 The Data Randomizing Part Figure 6 shows the differential charac-
teristics used in the attacks. The left-hand side is used to distinguish the MISTY1
from a random permutation, while the right-hand side is used for key recovery.

In the function FL1 and FL2, each of the upper 15 bits of the plaintext
difference ΔP1 to ΔP4 must be 0 and each of the least significant bit of them
are not restricted, while the output difference must satisfy the condition (4) in
Sect. 3.2.2. In the function FL9 and FL10, even if the output differential value
does not satisfy condition (4), the attack is possible because the upper 15 bits
of the ciphertext differentials ΔC1 and ΔC2 are 0. Therefore, condition (3) in
Sect. 3.1 is not necessary for the extended keys K ′

3 and K ′
7, which are used in

the function FL1, 2, 9 and 10 but not in the function FL3 to 8. The function
FL8 is discussed later.

In the attacks, plaintext pairs that take the differential values of all patterns
with respect to the least significant bits of ΔP1 to ΔP4 are used.

The differential values of the ciphertext used in the attack differ between the
case of distinguishing from a random permutation and the case of key recovery.
For ΔC1 and ΔC2, the upper 15-bit values are 0 in both cases, whereas for ΔC3

and ΔC4, there is no restriction in the case of distinguishing from a random
permutation, but the upper 15-bit value is non-zero for key recovery.
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The differential probabilities are as follows. The differential probabilities for
the function FL3 to FL7 are 2−1 each, as described in Sect. 3.2.2. For the func-
tion FL1 and FL2, the differential probability is 2−1 for each of the ∩ and ∪
operations, so the probabilities of the function FL1 and FL2 are both 2−2. For
the function FL8, the differential probabilities are different in the case of dis-
tinguishing from a random permutation and the case of key recovery. For the
input difference ΔFL8in = 0001 0001, the output difference is either ΔFL8out
= 0001 0000 or 0000 0000, both with a differential probability of 2−1. In the
case of distinguishing from a random permutation, the attack succeeds because
ΔC1(L15) = ΔC2(L15) = 0, regardless of the value of ΔFL8out, so the differential
probability of the function FL8 can be regarded as 1. On the other hand, in
the case of key recovery, the differential probability of the function FL8 is 2−1

because ΔFL8out must be = 0000 0000. For the function FL9 and FL10, the
differential probability can be regarded as 1, as there is no restriction imposed
on the output differences. Therefore, the differential probability for the entire
data randomizing part is 2−(2·2+1·5) = 2−9 for distinguishing from a random
permutation and 2−(2·2+1·6) = 2−10 for key recovery.

4 Attacks on the MISTY1

In this section, we show the attack procedure for distinguishing the MISTY1
from a random permutation and for key recovery by using the differential char-
acteristics of the data randomizing part described in Sect. 3.2.

4.1 Distinguisher

In this attack, plaintext pairs need to be encrypted with a weak key and the
related key, respectively, and the corresponding ciphertext pairs be compared
with each other, in order to distinguish MISTY1 from a random permutation.
The values of the chosen plaintext and the corresponding ciphertext are assumed
to be known to the attacker. The attack procedure and computational complexity
are shown later.

The Attack Procedure. The attacker chooses plaintexts according to the
following procedure.

(i) For an arbitrarily chosen plaintext P = P1||P2||P3||P4, fix the upper 15 bits
of each Pi, take the all values for the least significant bit, and a total of
24 = 16 plaintexts make up a set.

(ii) Choose a total of 2n sets of plaintexts described in (i) that differ from each
other (the total number of chosen plaintexts is 2n · 24 = 2n+4).

Next, the attacker obtains two ciphertexts encrypted with the weak key and
the related key, respectively, for each of the 24 = 16 plaintexts, constructs 24·24 =
28 ciphertext pairs for each set of plaintexts, that is, 2n · 28 = 2n+8 ciphertext
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pairs for 2n sets of plaintexts. The paired ciphertexts are compared with each
other and if a ciphertext pair is found for which ΔC1(L15) = ΔC2(L15) = 0, the
attack is considered successful. ΔC3(L15) and ΔC4(L15) may or may not be zero
and are determined by the output difference of the function FL8.

Complexity. Since the differential probability of the data randomizing part
is 2−9 as calculated in Sect. 3.2.3, one ciphertext pair per 2n+8 = 29 pairs is
expected to satisfy the condition ΔC1(L15) = ΔC2(L15) = 0. That is, if the
attacker obtains about 29 ciphertext pairs, then the attacker can distinguish
MISTY1 from a random permutation. The data complexity required is 2n+4 =
25 chosen plaintexts and the time complexity is the comparison of 29 pairs of
ciphertexts.

4.2 Key Recovery

Table 4. Examples of pairs of CPs and the corresponding ciphertexts that are exploited
for key recovery

Pairs of CPs ciphertexts

b707 5efb b524 23a5 9e1c 104c eaac 4784

b706 5efb b525 23a5 9e1c 104d b9a7 285f

1622 a031 4495 b33c 06e8 0d03 2b57 5ae9

1623 a030 4495 b33c 06e9 0d02 a0a6 7273

01b9 8a3f 1b4e 5471 2678 717a 8e1a 9671

01b8 8a3f 1b4f 5471 2678 717b 062f 5fbb

170c 43b5 75e6 01e4 aeaa 0b5c dd53 bc03

170d 43b4 75e6 01e4 aeaa 0b5d 8d91 21f8

499f f3d3 916e 382b a8bb 1931 b66a 9275

499e f3d3 916f 382b a8ba 1930 a624 0556

2281 76ff 86c0 1446 b072 ab51 4865 11eb

2280 76ff 86c0 1446 b073 ab50 3978 f941

2280 76ff 86c0 1447 2484 25c8 fcef c910

2281 76fe 86c1 1447 2484 25c9 cd4e 2ac5

366f 51ca b97c e559 b7d0 ea3c 941a 0e58

366e 51ca b97d e559 b7d0 ea3d 7830 3fa0

e724 f9e3 960d ce69 dc99 dd98 7143 8869

e725 f9e2 960c ce69 dc99 dd99 e8dd 133e

ΔKi=0001

Ksec = 170b 438a 758b 018b 498b f38a 910a 380b

Krel = 170a 438b 758a 018a 498a f38b 910b 380a
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Fig. 5. Key recovery for K1, K5 to K8 and K′
3

In this attack, the attacker recovers the weak key by exploiting the ciphertext
pairs obtained by encrypting the chosen plaintexts with the weak key and the
related key, respectively. The attacker needs to know the values of the ciphertexts
and that the ciphertext pairs are obtained by encrypting the chosen plaintexts
with a weak key and the related key, but does not need to know the values of
the plaintexts.

The Attack Procedure. The attacker chooses 2n sets of plaintexts to form
2n+8 pairs of ciphertexts by the same procedure as for distinguisher, and picks up
the ciphertext pairs with ΔC1(L15) = ΔC2(L15) = 0, ΔC3(L15) �= 0, ΔC4(L15) �=
0 among these pairs. Since the differential probability is 2−10 as obtained in
Sect. 3.2.3, the expected value of the number of the ciphertext pairs to be picked
up is 2n−2.

The attacker then calculates ΔFO8out in two different ways, denoted as
ΔFO8out→ and ΔFO8out←. The subscript → shows that ΔFO8out are obtained
by calculating the inverse function of FO10 and the function FO8, and the sub-
script ← shows that ΔFO8out are obtained by the inverse function of FO9.
ΔFO8out→ depends on C1s, C2s, K1, K7, K8, K ′

3(R9) and K ′
5, and ΔFO8out← is

obtained depends on C3s, C4s, K5 and K ′
3 (see Fig. 5). The correct key candidate

is narrowed down using the fact that ΔFO8out→ is always equal to ΔFO8out←
if the key candidate is correct and that ΔFO8out→ �= ΔFO8out← with a high
probability if it is incorrect.
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The keys that need to be assumed are K1, K5 to K8 and K ′
3, as K ′

5 is obtained
from K5 and K6 by calculating the function FI. According to the conditions (1)
to (3) of Sect. 3.1, 6 of the lower 7 bits in each Ki and 1 bit in each of the K ′

5, K ′
6

and K ′
8 are known, so the total number of bits of the key to need to be assumed

is 5 · 10 − 3 + 16 = 63 bits.
The search for the entire 63 bits of the key is very time-consuming using a

desktop PC. Therefore, ΔFO8out was divided into three blocks to reduce the
search time in our analysis, which are (a) ΔFO8out1(L7), (b) ΔFO8out1(R9) and
(c) ΔFO8out2, and then key recovery was performed by calculating (a) to (c) in
sequence.

First, in the calculation of (a), K1(R7), K8(R7) and K ′
3(L7) are narrowed down

by comparing ΔFO8out1(L7)→ with FO8out1(L7)←. Next, in the calculation of (b),
K1, K8, K ′

3 and K ′
5(R7) are narrowed down by comparing ΔFO8out1(R9)→ with

FO8out1(R9)←. Then, in the calculation of (c), K1, K5 to K8 and K ′
3 are narrowed

down by comparing ΔFO8out2→ with FO8out2←. Finally, an exhaustive search
of the remaining unknown bits containing K2 to K4 completes key recovery for
all bits. Note that 6 bits of each of K2 to K4 and the least significant bit of K ′

1,
K ′

2 and K ′
4 are known, and the 16 bits of K ′

3 have been narrowed down in (a)
to (c). The time complexity is reduced because it can be expressed as the sum
of those required for each procedure, not the product.

In the case of ΔKi(R7) = 01, 6 of the lower 7 bits of each Ki and the least
significant bit each of K ′

1, K ′
2, K ′

4 to K ′
6 and K ′

8 are already known before these
procedures are performed, so 8 ·(16−6)−6 ·1 = 74 bits of the keys are recovered
in these procedures.

As the key assumptions required for the ΔFO8out→ and ΔFO8out← calcu-
lations can be made independently, the number of calculations can be reduced
in exchange for requiring memory by expanding the data related to the key
assumed in one of them into memory.

Table 5. The number of ciphertext pairs and time required for key recovery

The number of ciphertext pairs: N 3 4 5 6

Average timeseconds 54 1.4 0.81 0.71

Time complexity† � 233.7 � 228.8 � 227.2 � 227.0

Memory (MiB) � 82 32 32 32
† The unit of time is the time for encrypting one time

(� the time for calculating the function FO8 eight times)

Complexity. In the calculation of (a), 9 bits of the keys are searched exhaus-
tively, which are the 1 bit of K1(R7), the 1 bit of K8(R7) and the 7 bits of K ′

3(L7).
In the calculation of (b), 34 bits of the keys, which are the 17 bits of K1(L9)

and K8(L9), the 9 bits of K ′
3(R9) and the 8 bits of K ′

5(R9), are searched, in addi-
tion to the bits that are narrowed down in (a). Note that the condition (3) on
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Fig. 6. Differential characteristics of the data randomizing part that can be exploited
for the attacks

K ′
8 reduces the complexity of searching K1 and K8 by 1 bit. Furthermore, by

narrowing down K1, K8 and K ′
5(R9) prior to narrowing down K ′

3(R9), though
memory complexity is increased, the time complexity is reduced. In the calcu-
lation of (c), 10 · 3 − 9 − 1 = 20 bits of K5, K6 and K7 in addition to the bits
that are narrowed down in (a) and (b) are searched exhaustively. Note that the
complexity of searching K5, K6 and K7 is reduced by 9 bits because the K ′

5(R9)
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are narrowed down in (b) and by 1 bit because of the condition 3 on K ′
6. The key

to be searched for in the calculations of (a) to (c) is 63 bits in total, as described
above.

If the number of ciphertext pairs used for key recovery is small, then the keys
cannot be sufficiently narrowed down in each calculation of (a) to (c) as a result
the time complexity increases in subsequent calculations. Also, the time/memory
complexity varies depending on the value of the ciphertext pairs. Therefore, it
is difficult to estimate the time/memory complexity theoretically. So, we mea-
sured the time, the number of calculations of the function FO and amount of
memory required for the key recovery by computational experiment. The results
are shown in Table 4. The desktop PC used was as follows.

Processor: Intel(R) Core (TM) i9-9900K CPU
Memory: 32GB

Development
environment: Microsoft Visual C++ 2015

In Table 5, N (= 2n−2) is the number of ciphertext pairs used, and Average
time is the average of the search time required for all combinations of N pairs
from the 9 ciphertext pairs in Table 4. The search time was about 1.4 s when
N = 4 and less than 1 s when N = 5 and 6. It also took less than about
1 min when N = 3. When N = 2 it took between 15 min and 65 h in the range
measured, although this is not shown in the table because only part of it could be
measured because it was too time-consuming. The amount of memory required
is 82MiB maximum when N = 3 and is 32MiB when N ≥ 4.

As the search time increases rapidly with N < 4, the number of ciphertext
pairs required in this paper is defined to be N (= 2n−2) = 4, though the key
recovery is also feasible when N = 3 or N = 2. When n = 4, the required number
of chosen plaintexts is 2n+4 = 28. We counted the number of the function FO
calculations and measured the amount of memory used during the search. The
number of the function FO calculations was � 232, then the time complexity is
� 229 in terms of one encryption which contains 8 = 23 function FOs, and the
memory used was about 225 bytes (= 32MiB).

5 Summary

In this paper, we first described how to derive the weak keys by analyzing the key
scheduling part and showed that when a weak key and the related key are used,
there is a differential characteristic with a very large differential probability in
the data randomizing part of the MISTY1 in the related-key setting.

Next, we described the attack procedures of distinguishing MISTY1 from a
random permutation and the key recovery using this differential characteristic,
and show that the computational complexity for these attacks is realistically
feasible. For distinguishing MISTY1 from a random permutation, data and time
complexity is 25 chosen plaintexts and the time for comparing 29 ciphertext
pairs. For the key recovery, data, memory and time complexity is 28 chosen
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plaintexts, 225 bytes and the time for encrypting � 229 times. The actual time
measured on a desktop PC was less than or equal about 2 s on average, although
it depends on the value of secret keys and ciphertexts.

It should be noted that the set of the weak keys occupies a small fraction of
the entire key space and that this attack is the related-key attack, so it is not
considered to be a realistic threat in normal encryption applications.
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Abstract. Card-based protocols are cryptographic protocols that use
a deck of physical cards. In this paper, we deal with card-based pro-
tocols using a standard deck of playing cards, which are commonly
available commercially. For finite-runtime committed-format protocols,
Mizuki (CANS 2016) proposed an eight-card AND protocol with four
random bisection cuts and a six-card COPY protocol with one random
bisection cut. In this paper, we propose a partial-open action, which
reveals any position of the face of cards, by generalizing the half-open
action introduced by Miyahara and Mizuki (IJTCS-FAW 2022). Using
the partial-open action, we propose a four-card AND protocol with three
random cuts and a four-card COPY protocol with three random cuts.
We note that, without partial-open actions, these protocols are known
to be impossible to construct. Therefore, the partial-open actions are
inherently necessary to obtain our results.

Keywords: Card-based cryptography · Playing cards ·
Committed-format · Finite-runtime · Random cut · Half-open action ·
Partial-open action

1 Introduction

1.1 Background

Card-based cryptography studies cryptographic techniques that uses a deck of
physical cards to realize cryptographic tasks such as secure multiparty com-
putation and zero-knowledge proof. The historically first studies [1,2] used a
two-color deck consisting of ♣ and ♥ , while Niemi and Renvall [13] used a
standard deck of playing cards, which is commercially available and easy to pre-
pare. Using the standard deck of playing cards, they constructed a Las Vegas
protocol for any function, and later Mizuki [11] constructed a finite-time proto-
col for any function. Since these studies, efficient protocols have been proposed
for various functions: a two-input AND protocol [5], a three-input AND proto-
col [6], a Millionaire’s protocol [9], a Sudoku protocol [14,15], and a three-input
majority protocol [3]. There have also been proposed card-based protocols based
on private permutations [8,12].
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
K. Minematsu and M. Mimura (Eds.): IWSEC 2024, LNCS 14977, pp. 85–100, 2024.
https://doi.org/10.1007/978-981-97-7737-2_5
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Fig. 1. A card and the cover Fig. 2. Half-open action

Most of the existing protocols have three basic actions on a sequence of cards:
permutation, shuffle, and turn. In particular, a turn action for a face-down card
reveals the face of the card. Since the face of a playing card has a number (from
1 to 13) and a suit (i.e., ♣,♥,♦, or ♠), it is natural to partially reveal the face,
although this is an extraordinary idea. Miyahara and Mizuki [10] proposed a
half-open action that reveals only the suit of a face-down card while hiding the
number. They designed a four-card AND protocol with a half-open action. One
way to implement the half-open action is to use a cover (i.e., a piece of paper
with a hole in it). For example, a half-open action for 1 of the heart suit can
be done by overlaying the cover, which is a joker card (as an example) with a
hole as in Fugire 1, as shown in Fig. 2. Note that we are using a joker as a cover,
but the cover does not have to be a card. Therefore, we do not count the cover
as an additional card.

1.2 Our Contribution

In this paper, we introduce a partial-open action, which is a generalized version of
the half-open action by Miyahara and Mizuki [10]. A partial-open action reveals
any part of the face of cards. For example, applying a partial-open action for
the center of the face, we can see whether the card has a suit mark in the
center of the face. Using the partial-open actions, we propose AND and COPY
protocols (see Table 1). Here, our protocols are committed-format protocols, in
which both input and output follow the encoding rule called a commitment,
so these protocols can be combined with each other. In addition, our protocols
require only the most basic shuffle called a random cut, which shifts a sequence
of cards cyclically and uniformly at random. In particular, we construct a four-
card AND protocol with three random cuts and a four-card COPY protocol with
three random cuts. Since our protocols do not use additional cards besides the
input and output, they are optimal in terms of the number of cards.
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Table 1. Existing committed-format protocols and ours using the standard deck of
cards: RC stands for random cut and RBC stands for random bisection cut

# of Cards Runtime # of Shuffles Shuffle Partial-Open

◦ AND Protocol

Niemi–Renvall [13] 5 Las Vegas 9.5 (exp.) RC

Mizuki [11] 8 finite 4 RBC

Koch et al. [5] 4 Las Vegas 6 (exp.) RC

Ours 4 finite 3 RC �
◦ COPY Protocol

Niemi–Renvall [13] 6 Las Vegas 5.5 (exp.) RC

Mizuki [11] 6 finite 1 RBC

Koyama et al. [7] 6 Las Vegas 3 (exp.) RC

Ours 4 finite 3 RC �
◦ Committed-Format XOR Protocols

Niemi–Renvall [13] 4 7 (exp.) RC

Mizuki [11] 4 finite 1 RBC

Koyama et al. [7] 4 finite 1 RC

In the setting without partial-open actions, Koch et al. [5] showed the impos-
sibility of a finite-runtime four-card AND protocol and Kastner et al. [4] showed
the impossibility of a finite-runtime four-card COPY protocol [5]. Thus, the
partial-open actions are inherently necessary to obtain our results.

It should be noted, however, that our protocols cannot choose any one as
the base (the type of cards that consisting the commitment, see Sect. 2.2) of the
input/output commitments, but must choose an appropriate base. For our AND
protocol, the base of the input commitments are 2 4 and 5 6 and the base of
the output commitment is 2 4 . For our COPY protocol, the bases of the input
commitment and additional cards are 1 2 and 9 10 . Fourtunately, there are
several existing protocols for base conversion, so when executing our protocols,
one can either create commitments using the appropriate bases in advance or
convert them to the appropriate bases using base conversion protocols. We also
note that there are other bases where our protocols can be executed. In Appendix
A, we give a list of other bases for executing our protocols.

2 Preliminaries

In this section, we introduce basic definitions for card-based cryptography and
the existing AND and COPY protocols.

2.1 Playing Cards

In this paper, we will use the standard deck of playing cards called BICYCLE
shown in Fig. 3, which is made by the U.S. Playing Card Company. The backs of
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Fig. 3. The standard deck of playing cards called BICYCLE

all cards have the same pattern and are assumed to be indistinguishable. In this
paper, we will use cards numbered from 1 to 10 of the same suit in a single pro-
tocol, and denote the front sides of these cards as 1 2 3 4 5 6 7 8 9 10
and the back side as ? .

Note that although we assume BICYCLE as the deck of playing cards in this
paper, our protocols can be implemented with other decks of playing cards. For
example, other deck by U.S. Playing Card Company, such as TALLY-HO and
Bee, are similar in design to BICYCLE and can be used for our protocols.

2.2 Commitment

A commitment is a pair of face-down cards holding a binary value. For two cards
i j with 1 ≤ i < j ≤ 10, we define the encoding as follows:

i j = 0, j i = 1.

We denote a commitment holding x ∈ {0, 1} as follows:

? ?
︸ ︷︷ ︸

[x]{i,j}

.

Here we call the set {i, j} a base of the commitment.

2.3 Random Cut

A random cut is a shuffle action that performs a random cyclic shifting on
a sequence of cards. For example, applying a random cut to a sequence of
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face-down cards 1 2 3 4 yields one of four sequences of face-down cards as
follows:

1 2 3 4 , 2 3 4 1 , 3 4 1 2 , 4 1 2 3 .

The probabilities of transition to each sequence are all equal, and in the above
example, 1/4 for each. The application of a random cut is denoted as follows:

〈

? ? ? ?
〉

.

2.4 Random-Cut-Based Search

The random-cut-based search [11,13] is a technique to search for a specific card in
a sequence of face-down cards using random cuts. For example, when searching
for 1 from a sequence of face-down cards consisting of 1 2 3 4 , do the
following procedure:

1. Apply a random cut to the sequence as follows:
〈

? ? ? ?
〉

.

2. Reveal the first card as follows:

? ? ? .

3. If the revealed card is 1 , the search is over. Otherwise, turn the revealed
card face-down and return to Step 1.

In the random-cut-based search with n cards, the expected number of shuffles
until finding the desired card is n. The idea of our protocols is to perform the
search in finite runtime by using partial-open actions.

2.5 Koch–Schrempp–Kirsten’s AND Protocol

Koch, Schrempp, and Kirsten [5] proposed a four-card Las Vegas AND protocol
using the standard deck of playing cards. It uses only random cuts, and the
expected number of shuffles is 6.

Here, we give a simplified version of the Koch–Schrempp–Kirsten’s protocol.
The expected number of shuffles in the protocol below is 11, while the number
is 6 in the original protocol. The idea of this protocol is shown in Table 2.

The protocol procedure is as follows.

1. Arrange the input commitments as follows:

? ?
︸ ︷︷ ︸

[a]{1,2}

? ?
︸ ︷︷ ︸

[b]{3,4}

.
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Table 2. The idea of the simplified Koch–Schrempp–Kirsten’s AND protocol

Input Find 1 After swap Remove 3 Find 4

(0,0) 1234 1234 1243 124 412

(0,1) 1243 1243 1234 412 412

(1,0) 2134 1342 1324 241 412

(1,1) 2143 1432 1423 142 421

2. Apply the random-cut-based search to find 1 as follows:
〈

? ? ? ?
〉

→ 1 ? ? ? .

3. Rearrange the sequence as:

? ? ? ?
������

? ? ? ? .

4. Apply the random-cut-based search to find 3 and remove it as follows:
〈

? ? ? ?
〉

→ 3 ? ? ? → ? ? ? .

5. For the sequence of the remaining three cards, apply the random-cut-based
search to find 4 and obtain a commitment to a ∧ b as follows:

〈

? ? ?
〉

→ ? ? 4 → 4 ? ?
︸ ︷︷ ︸

[a∧b]{1,2}

.

The expected number of shuffles in the above protocol is 4+4+3 = 11, while
the number of shuffles is 6 in the original protocol.

2.6 Niemi–Renvall’s COPY Protocol

Niemi and Renvall [13] proposed a six-card Las Vegas COPY protocol using the
standard deck of playing cards. The expected number of shuffles is 5.5, and all
of them are random cuts.

The protocol procedure is as follows.

1. Arrange the input commitments as follows:

5 ? ?
︸ ︷︷ ︸

[a]{1,2}

6 3 4 .
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2. Apply the random cut to the right two face-down cards as follows:

5 ? ?
︸ ︷︷ ︸

[a]{1,2}

6
〈

? ?
〉

→ 5 ? ?
︸ ︷︷ ︸

[a]{1,2}

6 ? ?
︸ ︷︷ ︸

[r]{3,4}

.

3. Turn over all face-up cards as follows:

? ? ?
︸ ︷︷ ︸

[a]{1,2}

? ? ?
︸ ︷︷ ︸

[r]{3,4}

.

4. Using the random-cut-based search, find one of four cards 1 2 3 4 . Then,
reveal the fourth card. For instance, if we found 1 in the random-cut-based
search, we have either two possible cases as follows:

1 ? ? 3 ? ? or 1 ? ? 4 ? ? .

If the opened cards are either 1 3 or 2 4 , then a = r, and if they are
either 1 4 or 2 3 , then a 
= r.

5. Turn over all face-up cards as follows:

? ? ? ? ? ? .

6. Using the random-cut-based search to find one of two cards 5 6 and obtain
the commitments to [a]{1,2} and [r]{3,4} as follows:

5 ? ?
︸ ︷︷ ︸

[a]{1,2}

? ? ?
︸ ︷︷ ︸

[r]{3,4}

or 6 ? ?
︸ ︷︷ ︸

[r]{3,4}

? ? ?
︸ ︷︷ ︸

[a]{1,2}

.

Note that from Step 4, we know whether it is either a = r or a 
= r. Thus
these commitments imply two copies of the commitment to a.

The expected number of shuffles in the above protocol is 1+6/4+6/2 = 5.5.

3 Partial-Open Action for Playing Cards

3.1 Partial-Open Action

A partial-open action is an action that reveals only a part of the face of cards,
rather than the entire face. It is a generalized action of half-open action [10],
which reveals only the suit of cards. Since the partial-open action reveals any
part of the face, the half-open action can be considered a special case of the
partial-open action when the revealed position is the suit.

We consider seven positions for partial-open actions (see Fig. 4). Note, how-
ever, that these seven positions are representative disclosure positions in terms
of ease of operation, and that other disclosure positions may also be useful.
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Fig. 4. Seven disclosure positions for partial-open actions

The circle (A) is the position for revealing the number (and the color) of the
card. The circle (B) is the position for revealing the suit of the card, which is
equivalent to the half-open action by Miyahara and Mizuki [10]. The circles (C),
(D), (E), (F), and (G) are positions for revealing the left topmost suit, the left
second suit, the left centered suit, the middle topmost suit, and the centered suit,
respectively. For example, by applying the partial-open action at the position
(G) to a face-down card, we will know whether it is either one of 1 3 5 9 or
one of 2 4 6 7 8 10 . For example, if a partial-open action is applied to a
sequence of four face-down cards and it reveals ♥ for only the second card, we
would write it as follows:

? ? ? ? → (⊥,♥,⊥,⊥).

We will use to denote the application of a partial-open action in a similar way.
See Table 3 for summary of partial-open actions.

Note that partial-open actions for cards of different suits are also useful,
although our protocols use only partial-open actions for cards of the same suit.
For example, for cards of the four suits (hearts, diamonds, clubs, and spades),
a partial-open action through a small hole in the middle of the suit (under
the number) provides one bit information about whether red or black is being
revealed. Such partial-open actions seem to be useful in constructing protocols
for the standard deck of cards. We left as an future research to construct new
protocols using such operations.
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Table 3. Summary of the revealed symbols by partial-open actions

Position 1 2 3 4 5 6 7 8 9 10

A 1 2 3 4 5 6 7 8 9 10

B ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥
C ♥ ♥ ♥ ♥ ♥ ♥ ♥
D ♥ ♥
E ♥ ♥ ♥
F ♥ ♥
G ♥ ♥ ♥ ♥

Fig. 5. An implementation of the partial-open action using the cover

3.2 Implementation of Partial-Open Actions

The procedure of the partial-open action is as follows. First, prepare a piece of
paper with a hole in the position to be revealed, which we call a cover, as in
the leftmost in Fig. 5. Next, insert the cover under the card to be applied the
partial-open action as in the second from the left in Fig. 5. Next, the card and
the cover are lifted together as in the third from the left in Fig. 5. Finally, the
card and the cover are turned over as in the rightmost in Fig. 5. In the case of
Fig. 5, the red color can be seen through the hole, indicating that the suit is in
that position.

4 Our Protocols

4.1 Our AND Protocol

In this section, we propose a finite-runtime committed-format AND protocol
that uses four cards 2 4 5 6 and three random cuts. The protocol is based
on a simplified version of Koch et al.’s AND protocol in Sect. 2.5. The idea of
the proposed protocol is shown in Table 4. The protocol procedure is as follows.

1. Arrange the input commitments as follows:

? ?
︸ ︷︷ ︸

[a]{2,4}

? ?
︸ ︷︷ ︸

[b]{5,6}

.
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Table 4. Our AND protocol

Input Find 2 After swap Remove 5 Find 6

(0,0) 2456 2456 2465 246 624

(0,1) 2465 2465 2456 624 624

(1,0) 4256 2564 2546 462 624

(1,1) 4265 2654 2645 264 642

2. Apply a random cut to the sequence as follows:
〈

? ? ? ?
〉

.

3. Apply the partial-open action at (F) in Fig. 4, which reveals ♥ for 2 and
nothing for 4 5 6 , to each card as follows:

? ? ? ? →

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

(♥,⊥,⊥,⊥)
(⊥,♥,⊥,⊥)
(⊥,⊥,♥,⊥)
(⊥,⊥,⊥,♥)

.

From this, the position of 2 in the sequence is determined.
4. Cyclically shift the sequence so that 2 will be the leftmost card. For exam-

ple, if the third card is 2 , rearrange the sequence as follows:

?
⊥

?
⊥

?
♥

?
⊥

→ ?
♥

?
⊥

?
⊥

?
⊥

.

5. Rearrange the sequence as:

? ? ? ?
������

? ? ? ? .

6. Apply a random cut to the sequence as follows:
〈

? ? ? ?
〉

.

7. Apply the partial-open action at (G) in Fig. 4, which reveals ♥ for 5 and
nothing for 2 4 6 , to each card as follows:

? ? ? ? →

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

(♥,⊥,⊥,⊥)
(⊥,♥,⊥,⊥)
(⊥,⊥,♥,⊥)
(⊥,⊥,⊥,♥)

.

From this, the position of 5 in the sequence is determined.
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8. Discard 5 from the sequence. For example, if the second card is 5 , discard
the second card as follows:

?
⊥

?
♥

?
⊥

?
⊥

→ ?
⊥

?
⊥

?
⊥

.

9. Apply a random cut to the sequence as follows:
〈

? ? ?
〉

.

10. Apply the partial-open action at (E) in Fig. 4, which reveals ♥ for 6 and
nothing for 2 4 5 , to each card as follows:

? ? ? ? →

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

(♥,⊥,⊥,⊥)
(⊥,♥,⊥,⊥)
(⊥,⊥,♥,⊥)
(⊥,⊥,⊥,♥)

.

From this, the position of 6 in the sequence is determined.
11. Cyclically shift the sequence so that 6 will be the leftmost card; then the

remaining cards are the output. For example, if the second card is 6 , the
output is obtained as follows:

? 6 ? → 6 ? ?
︸ ︷︷ ︸

[a∧b]{2,4}

.

Correctness. The correctness of the proposed protocol follows from Table 4.
Security. In the proposed protocol, the front-side symbol information of the
card sequence is revealed only in the partial-open action in Steps 3, 7, and 10.
In Step 3, the partial-open action at (F) in Fig. 4 is applied to all cards. Due
to the random cut in Step 2, the sequence of the opened symbols in Step 3
is chosen uniformly at random from (♥,⊥,⊥,⊥), (⊥,♥,⊥,⊥), (⊥,⊥,♥,⊥),
and (⊥,⊥,⊥,♥), and independent of the inputs. Similarly, the sequences of
the opened symbols in Steps 7 and 10 are chosen uniformly at random and
independent of the inputs due to the random cut in Steps 6 and 9, respectively.
Therefore, the protocol is secure.

4.2 Our COPY Protcol

In this section, we present a finite-runtime COPY protocol that uses four cards
and three random cuts. The procedure is as follows.

1. Apply a random cut to the sequence as follows:

? ?
︸ ︷︷ ︸

[a]{1,2}

9 10 .
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2. Turn the face-up cards and apply a random cut to them as follows:

? ?
〈

? ?
〉

→ ? ?
︸ ︷︷ ︸

[a]{1,2}

? ?
︸ ︷︷ ︸

[b]{9,10}

,

where b ∈ {0, 1} is a uniformly random bit.
3. Apply a random cut to the sequence as follows:

〈

? ? ? ?
〉

.

4. Apply the partial-open action at (G) in Fig. 4, which reveals ♥ for 1 9 and
nothing for 2 10 , to each card as follows:

? ? ? ? →

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

(♥,♥,⊥,⊥)
(⊥,♥,♥,⊥)
(⊥,⊥,♥,♥)
(♥,⊥,⊥,♥)

or

{

(♥,⊥,♥,⊥)
(⊥,♥,⊥,♥)

.

From this, whether 1 and 9 are cyclic neighbors or not is determined.
5. Apply a random cut to the sequence as follows:

〈

? ? ? ?
〉

.

6. Apply the partial-open action at (C) in Fig. 4, which reveals ♥ for 9 10 and
nothing for 1 2 , to each card as follows:

? ? ? ? →

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

(♥,♥,⊥,⊥)
(⊥,♥,♥,⊥)
(⊥,⊥,♥,♥)
(♥,⊥,⊥,♥)

.

From this, the position of 9 10 (or 10 9 ) is determined.
7. Cyclically shift the sequence so that 9 10 will be the leftmost card as follows:

?
⊥

?
♥

?
♥

?
⊥

→ ?
♥

?
♥

?
⊥

?
⊥

.

8. If 1 9 are not cyclic neighbors in Step 4, then we have a = b and the current
card sequence consists of two copies of [a].

? ?
︸ ︷︷ ︸

[a]{9,10}

? ?
︸ ︷︷ ︸

[a]{1,2}

.
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9. If 1 9 are cyclic neighbors in Step 4, then we have a 
= b and the current
card sequence consists of [a] and [a].

? ?
︸ ︷︷ ︸

[a]{9,10}

? ?
︸ ︷︷ ︸

[a]{1,2}

.

Correctness. The suits at position (G) of the Fig. 4 in Step 4 are 1 and
9 . In the relationship between the numbers 1 and 2 and 9 and 10 , 1
and 9 are both the smaller values, so if they are not cyclically adjacent, the
values of a and b are identical, and if they are adjacent, the values are not
identical. Then, since 9 and 10 are the suits in position (C) of the figure in
Step 4 in Step 6, we can identify the commitment to which we are copying.
Since this commitment can be identified as a or a by the result of Step 4, a
copy can be obtained by outputting the commitment as is in the case of a
and inverting it in the case of a. This proves the validity.
Security. In the proposed protocol, the front-side symbol information of the
card sequence is revealed only in the partial-open action in Steps 4 and 6. In
Step 4, the partial-open action at (G) in Fig. 4 is applied to all cards. Due
to the random cut in Step 3, the sequence of the opened symbols in Step 4
is chosen uniformly at random from (♥,♥,⊥,⊥), (⊥,♥,♥,⊥), (⊥,⊥,♥,♥),
(♥,⊥,⊥,♥),(♥,⊥,♥,⊥) and (⊥,♥,⊥,♥), and independent of the inputs.
Similarly, the sequences of the opened symbols in Step 6 is chosen uniformly
at random and independent of the inputs due to the random cut in Step 5,
respectively. Therefore, the protocol is secure.

5 Conclusion

In this paper, we proposed the partial-open action, which is a generalization
of Miyahara–Mizuki’s half-open action. Using the partial-open action, we con-
structed four-card AND and COPY protocols using only random cuts.

A future research direction is to further develop protocols using the partial-
open actions and other applications. In particular, many of the Las Vegas proto-
cols using the standard deck of cards may be converted to finite-runtime proto-
cols using our method. Although we have studied secure computation protocols
for the elementary functions, the construction of secure computation protocols
for other functions and physical zero-knowledge proof protocols for puzzles are
also future work.

A Bases for Our Protocols

Tables 6 and 5 show the bases for our protocols, where “Position” indicates
the position of the partial-open action. For example, FG for our COPY protocol
indicates that the positions of the partial-open action in Steps 4 and 6 are F and
G, respectively. The bases of a and b in our COPY protocol can be interchanged.
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Table 5. Bases for our COPY protocol

a b Position

{3, 5} {2, 4} FG

{3, 5} {2, 6} FG

{3, 5} {2, 7} FG

{3, 5} {2, 8} FG

{3, 5} {2, 10} FG

{3, 9} {2, 4} FG

{3, 9} {2, 6} FG

{3, 9} {2, 7} FG

{3, 9} {2, 8} FG

{3, 9} {2, 10} FG

{5, 6} {1, 2} GC

{5, 7} {1, 2} GC

{5, 8} {1, 2} GC

{5, 10} {1, 2} GC

{9, 10} {1, 2} GC

{9, 10} {1, 2} GD

{9, 10} {1, 4} GD

{9, 10} {1, 6} GD

{9, 10} {1, 7} GD

{9, 10} {1, 8} GD

{9, 10} {3, 4} GD

{9, 10} {3, 6} GD

{9, 10} {3, 7} GD

{9, 10} {3, 8} GD

{9, 10} {5, 6} GD

{9, 10} {5, 7} GD

{9, 10} {5, 8} GD
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Table 6. Bases for our AND protocol

a b a ∧ b Position

{1, 2} {6, 10} {1, 2} GEC

{1, 2} {6, 10} {1, 2} GED

{1, 2} {7, 10} {1, 2} GEC

{1, 2} {7, 10} {1, 2} GED

{1, 2} {8, 10} {1, 2} GEC

{1, 2} {8, 10} {1, 2} GED

{1, 4} {2, 6} {1, 4} GFE

{1, 4} {2, 7} {1, 4} GFE

{1, 4} {2, 8} {1, 4} GFE

{1, 4} {2, 10} {1, 4} GFD

{1, 4} {6, 10} {1, 4} GED

{1, 4} {7, 10} {1, 4} GED

{1, 4} {8, 10} {1, 4} GED

{1, 6} {2, 10} {1, 6} GFD

{1, 7} {2, 10} {1, 7} GFD

{1, 8} {2, 10} {1, 8} GFD

{1, 10} {2, 6} {1, 10} GFE

{1, 10} {2, 7} {1, 10} GFE

{1, 10} {2, 8} {1, 10} GFE

{2, 4} {1, 6} {2, 4} FGE

{2, 4} {1, 7} {2, 4} FGE

{2, 4} {1, 8} {2, 4} FGE

{2, 4} {1, 10} {2, 4} FGD

{2, 4} {5, 6} {2, 4} FGE

{2, 4} {5, 7} {2, 4} FGE

{2, 4} {5, 8} {2, 4} FGE

{2, 4} {5, 10} {2, 4} FGD

{2, 4} {6, 9} {2, 4} FED

{2, 4} {6, 9} {2, 4} FEG

{2, 4} {6, 10} {2, 4} FED

{2, 4} {7, 9} {2, 4} FED

{2, 4} {7, 9} {2, 4} FEG

{2, 4} {7, 10} {2, 4} FED

{2, 4} {8, 9} {2, 4} FED

{2, 4} {8, 9} {2, 4} FEG

{2, 4} {8, 10} {2, 4} FED

{2, 4} {9, 10} {2, 4} FGD

{2, 5} {6, 9} {2, 5} FED

{2, 5} {6, 10} {2, 5} FED

{2, 5} {7, 9} {2, 5} FED

{2, 5} {7, 10} {2, 5} FED

{2, 5} {8, 9} {2, 5} FED

{2, 5} {8, 10} {2, 5} FED

{2, 6} {1, 10} {2, 6} FGD

{2, 6} {5, 10} {2, 6} FGD

{2, 6} {9, 10} {2, 6} FGD

{2, 7} {1, 10} {2, 7} FGD

{2, 7} {5, 10} {2, 7} FGD

{2, 7} {9, 10} {2, 7} FGD

{2, 8} {1, 10} {2, 8} FGD

a b a ∧ b Position

{2, 8} {5, 10} {2, 8} FGD

{2, 8} {9, 10} {2, 8} FGD

{2, 10} {1, 6} {2, 10} FGE

{2, 10} {1, 7} {2, 10} FGE

{2, 10} {1, 8} {2, 10} FGE

{2, 10} {5, 6} {2, 10} FGE

{2, 10} {5, 7} {2, 10} FGE

{2, 10} {5, 8} {2, 10} FGE

{2, 10} {6, 9} {2, 10} FEG

{2, 10} {7, 9} {2, 10} FEG

{2, 10} {8, 9} {2, 10} FEG

{3, 4} {6, 9} {3, 4} FED

{3, 4} {6, 10} {3, 4} FED

{3, 4} {6, 10} {3, 4} GED

{3, 4} {7, 9} {3, 4} FED

{3, 4} {7, 10} {3, 4} FED

{3, 4} {7, 10} {3, 4} GED

{3, 4} {8, 9} {3, 4} FED

{3, 4} {8, 10} {3, 4} FED

{3, 4} {8, 10} {3, 4} GED

{3, 5} {6, 9} {3, 5} FED

{3, 5} {6, 10} {3, 5} FED

{3, 5} {7, 9} {3, 5} FED

{3, 5} {7, 10} {3, 5} FED

{3, 5} {8, 9} {3, 5} FED

{3, 5} {8, 10} {3, 5} FED

{5, 6} {2, 10} {5, 6} GFD

{5, 7} {2, 10} {5, 7} GFD

{5, 8} {2, 10} {5, 8} GFD

{5, 10} {2, 6} {5, 10} GFE

{5, 10} {2, 7} {5, 10} GFE

{5, 10} {2, 8} {5, 10} GFE

{6, 10} {1, 2} {6, 10} EGF

{6, 10} {2, 5} {6, 10} EFG

{6, 10} {2, 9} {6, 10} EFG

{6, 10} {3, 5} {6, 10} EFG

{6, 10} {3, 9} {6, 10} EFG

{7, 10} {1, 2} {7, 10} EGF

{7, 10} {2, 5} {7, 10} EFG

{7, 10} {2, 9} {7, 10} EFG

{7, 10} {3, 5} {7, 10} EFG

{7, 10} {3, 9} {7, 10} EFG

{8, 10} {1, 2} {8, 10} EGF

{8, 10} {2, 5} {8, 10} EFG

{8, 10} {2, 9} {8, 10} EFG

{8, 10} {3, 5} {8, 10} EFG

{8, 10} {3, 9} {8, 10} EFG

{9, 10} {2, 6} {9, 10} GFE

{9, 10} {2, 7} {9, 10} GFE

{9, 10} {2, 8} {9, 10} GFE
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Abstract. Cloud computing is becoming more and more popular among
enterprises for high performance, accessibility from any device, removing
hardware and software dependencies and cost savings. However, shifting
sensitive information and infrastructure from trusted domain to pub-
lic cloud often leads to privacy concerns and security threats in sectors
like medical and finance. Functional encryption (FE) with access con-
trol is a promising cryptographic technique playing an important role in
fine-grained handling of encrypted data as well as preventing unautho-
rized access to encrypted data. Key-policy attribute based inner product
functional encryption (KP-ABIPFE) is a specific technique that enables
sender to encrypt message with respect to attributes and embeds access
policy into secret-keys with the aim that only a specific class of recipi-
ents would be able to obtain inner product on encrypted data they need
for their designated tasks. In this work, we provide an instantiation of
KP-ABIPFE based on simple and well-studied pairing based subgroup
decisional assumptions in composite order bilinear groups. Our design
uses dual system encryption technique of Waters from Crypto 2009. Our
scheme performs significantly better in terms of communication overhead
compared to the previous similar schemes in bilinear setting.

Keywords: Attribute based encryption · Key-policy setting · Inner
product functional encryption · Adaptive security

1 Introduction

With the advancement of modern technology, a growing tendency among system
users is to shift the load of storage as well as complicated computing tasks to
the cloud servers to save space, power and time. Consequently, there has been
a rise in industrial services hosted by cloud service providers, particularly from
large corporations like Microsoft, Google, and Amazon. However, fine-grained
access control on encrypted data is a major concern in cloud services pro-
vided to the users by third party producers through Internet. To fulfill this
demand, traditional public key encryption has been sophisticated over the years
into identity-based encryption, attribute-based encryption, searchable encryption,
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
K. Minematsu and M. Mimura (Eds.): IWSEC 2024, LNCS 14977, pp. 101–121, 2024.
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predicate encryption, and many more. All these techniques can be generalized
as a single novel notion called functional encryption (FE) [6] where decryption
keys are associated with functions. Particularly, given a ciphertext Enc(m) and
a secret key SKF corresponding to a function F , the user with secret key SKF

learns only F (m) and no other information related to message m. For example,
decrypting an encrypted picture with cropping key exposes only the cropped
version of the picture and no other information about the picture. This prop-
erty of FE is extremely useful in practical applications such as spam filtering on
encrypted mail, targeted advertising, data mining on encrypted medical record,
and privacy-preserving computations.

Inner product functional encryption (IPFE) [1] is a special case of FE that
enables computation of inner product on encrypted data. IPFE generates secret
keys SKy for randomly selected vectors y that can be utilized to decrypt cipher-
text CTx corresponding to vector x and retrive the inner product 〈x,y〉. As inner
product measures the weighted mean, IPFE can be directly applied in privacy pre-
serving statistical analysis. However, inherent issues in IPFE are that each secret
key leaks information and while encrypting a vector of length n, owning n number
of different secret keys enables the owner to fully retrieve the plaintext vector. To
prevent this inherent leakage, IPFE with more advanced functionalities should be
applied. IPFE with access control is one technique that embeds access policy in
secret key or encrypted data and allows decryptor to compute the desired inner
product only if access policy is satisfied. In particular, ciphertext-policy attribute
based inner product functional encryption (CP-ABIPFE) [9] embeds access policy
into ciphertext and issues secret keys to users corresponding to attribute set
so that one user with a particular attribute set can compute the inner product
on encrypted data if the attribute set satisfies the access structure mentioned
in the ciphertext. On the other hand, key-policy attribute based inner product
functional encryption (KP-ABIPFE) [16] embeds access policy into secret keys
and allows sender to encrypt message corresponding to an attribute set so that
one user can compute the inner product on encrypted data if the attribute set
satisfies the access structure mentioned in the secret key of the user. We describe
below two real life applications of KP-ABIPFE in medical and financial sector.

Suppose that a medicine company maintains some encrypted cancer patient
data, including some features of those who are going through trials of a new dis-
covered cancer medicine. The head of company wants to release a decryption key
that can be utilized by particular employees of the company such as a particular
team of cancer scientists and oncology researchers. The key can only reveal a
particular statistical analysis of patient variables that could be used to assess the
applicability of the medicine on a broader basis. But these statistics should not
be made public to all the employees and the secret key should not decrypt the
entire data collection for protecting privacy of the company. So, it is required to
embed a policy (specifying which employees are supposed to learn) and a par-
ticular vector (that will be applied to the data collection in order to calculate a
particular statistic) into a single key which can be issued to the desired employ-
ees. We consider another example of financial data access within a bank. The



ABIPFE in Key-Policy Setting from Pairing 103

bank manages encrypted customer data, including some informations of those
who have alleged against sensitive infomation leakage. The head of the bank
wants to produce a decryption key that can be utilized by particular employees
of bank such as officers in Risk Management department and staffs in Cyber
Security department. The key can only disclose a specific statistical analysis of
customer variables that could be used to prevent these type of attacks in future
to guarantee safety of all customers. But these statistics should not be published
to all employees and the secret key should not decrypt entire data set for welfare
of the bank. Therefore, we need to embed a policy and a specific vector into a
single key that can be provided to the intended employees.

A Naive Approach Towards Building KP-ABIPFE. Given the extensive
research on key-policy attribute based encryption (KP-ABE) and inner product
functional encryption (IPFE), the initial query that naturally comes into mind
is if it is possible to compose an existing KP-ABE scheme with an IPFE scheme
in a black box way to achieve the desired functionality. In the resulting scheme,
each ciphertext is associated with a set of attributes S and encrypts a vector
x. Each secret key SKP,y corresponds to an access policy P and a vector y.
Decryption recovers the inner product 〈x,y〉 if S satisfies the access policy P
(say, P(S) = 1). Otherwise, there should be no leakage regarding information
about x. Now, let us consider the technique of encrypting x via an IPFE and then
the produced ciphertext using KP-ABE. This naive solution is clearly vulnerable
to collusion attacks because if the outer ciphertext is decrypted, the inner one
does not depend anymore on ABE. For the sake of clarity, assume that we have
secret keys SKP0,y0 , SKP1,y1 and a ciphertext CTS,x encrypted under attribute
set S and vector x such that S satisfies the access policy P0 (i.e. P0(S) = 1)
and S does not satisfy the access policy P1 (i.e. P1(S) = 0). The naive solution
enables us to utilize SKP0,y0 to recover the original IPFE ciphertext which can
then be used with SKP1,y1 to obtain 〈x,y1〉. Note that the inner product 〈x,y1〉
can be recovered although P1(S) = 0. Hence, this naive approach is not secure
at all.

Related Work. In 2019, Chen et al. [9] first introduced the notion of CP-
ABIPFE and provided an instantiation based on the subgroup decisional prob-
lems [12] in composite order bilinear group. Their proposed construction was
proved to be secure against adaptive adversary. In 2020, Abdalla et al. [2] pro-
vided two instantiations of CP-ABIPFE based on the hardness of the decisional
Diffie- Hellman (DDH) problem in prime order bilinear group. Technically, one of
their constructions integrates the DDH-based IPFE of Agrawal et al. [3] with any
predicate encoding [18] and achieves security against selective adversary. They
introduced the notion of function encoding and combined it with the DDH-based
IPFE [3] to obtain their second construction that achieves security against adap-
tive adversary. However, these constructions are quite generic. In 2021, Pal et
al. [16] introduced the notion of KP-ABIPFE and provided an instantiation based
on the hardness of the learning with errors (LWE) problem. They combined the
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LWE-based IPFE of Agrawal et al. [3] with the LWE-based attribute based encryp-
tion of Boneh et al. [5] and achieved security against coselective adversary. In
2022, Luo et al. [13] came up with another LWE-based KP-ABIPFE that achieves
selective security. Technically, their construction integrates an existing matrix
embedding technique by Brakerski et al. [7] with the LWE-based IPFE of [3].
Concurrently, Nguyen et al. [14] proposed selective and adaptive secure KP-
ABIPFE schemes based on the hardness of the symmetric external Diffie-Hellman
(SXDH) problem and further extended their techniques in multi-client setting.
Technically, their instantiations exploit Dual Pairing Vector Spaces (DPVS) by
Okamoto-Takashima [15]. In 2023, Datta et al. [10] introduced the notion of
registered CP-ABIPFE that resolves the key-escrow issues in IPFE setting.

Technical Overview. Our KP-ABIPFE scheme constitutes a tuple of algo-
rithms (Setup, Encrypt, KeyGen, Decrypt). A trusted authority takes input the
attribute universe Uatt along with the vector length n (an integer) to produce
the master public key MPK and master secret key MSK. Utilizing MSK, the
trusted authority produces secret keys SKΓ, y corresponding to a pair (Γ , y)
where Γ is an access structure and y is a vector in Z

n
N for a composite integer N

(N = p1p2p3, product of three distinct primes). The encryptor employs MPK to
encrypt a plaintext vector x ∈ Z

n
N with respect to an attribute set S ⊆ Uatt and

generates the corresponding ciphertext CTx, S . A recipient possessing secret key
SKΓ, y can retrieve 〈x,y〉 from ciphertext CTx, S if S satifies the access structure
Γ . Our approach is to start with the key-policy attribute based encryption (KP-
ABE) scheme developed by Lewko et al. [11] for our KP-ABIPFE construction,
and show how to leverage it’s intrinsic algebraic structure to add an inner prod-
uct functionality. To be precise, the setup algorithm samples a n-length masking
vector β = (β1, β2, . . . , βn) instead of a single element β and publishes its encod-
ing [β]t in the target group as part of master public key MPK = (N, g1, gt =
e(g1, g1), {Qj = [βj ]t = g

βj

t }, {Ri = gri
1 }atti∈Uatt) where g1 is an element of

Gp1 . The encryption algorithm encrypts message vector x = (x1, x2, . . . , xn)
as [x + βs]t where s ∈ ZN randomly chosen and outputs ciphertext CT =
({Cj = [xj + βjs]t}j∈[n], C0, { ̂Ci}atti∈S). The key-generation algorithm splits
each βj into shares λz,j and puts the term g

yjλz,j

1 as a part of Gp1 component of
K

(1)
z,j and outputs secret key SK = ({K

(1)
z,j }z∈[l],j∈[n], {K

(2)
z,j }z∈[l],j∈[n]) where l is

number of attributes associated with policy in secret key. The decryption algo-
rithm performs

∏

j∈[n]

e(C0,K
(1)
z,j )/

∏

j∈[n]

e( ̂Cη(z),K
(2)
z,j ) and outputs

∏

j∈[n]

[syjλz,j ]t

for each z ∈ I = {z : η(z) ∈ S}. Also note that
∏

j∈[n]

C
yj

j = [xjyj + βjsyj ]t.

If S is an authorized set, a set of constants {wz}z∈I can be obtained so that
∏

z∈I

∏

j∈[n]

[syjwzλz,j ]t outputs [βjsyj ]t. Thus, the additional term can be cancelled

from
∏

j∈[n]

C
yj

j to recover [xjyj ]t. We prove the adaptive indistinguishability (Adp-

IND) security of our KP-ABIPFE protocol following the dual system encryption
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technique of Waters [17] in a setting where the adversary is not allowed to get
secret keys that can decrypt the challenge ciphertext. Ciphertexts and secret
keys of our scheme each are in two forms − normal and semi-functional. The
semi-functional keys are further divided into two types − type-1 and type-2.
Normal keys and normal ciphertexts are used in the scheme as well as in the
security proof whereas semi-functional keys and semi-functional ciphertexts are
used only in the security proof. We analyze the security of our construction fol-
lowing a sequence of games. The first game GReal is the original Adp-IND security
game and the next game G0 is exactly the same as the game GReal except the
fact that the challenge ciphertext is semi-functional. Assuming that the number
of secret key queries asked by the adversary is q, the game G0 is followed by
2q number of games namely Gk,1 and Gk,2 for k ∈ {1, 2, . . . , q}. In the game
Gk,1, the challenge ciphertext is semi-functional, the first k − 1 queried keys are
semi-functional of type-2, the k-th queried key is semi-functional of type-1 and
the later keys are normal. In the game Gk,2, the challenge ciphertext is semi-
functional, the first k queried keys are semi-functional of type-2, and the later
queried keys are normal. Thus in the game Gq,2, the challenge ciphertext is semi-
functional and all the secret keys are semi-functional of type-2. The last game
GFinal is the same as the game Gq,2 except the fact that the challenge ciphertext
is encryption of a random message and hence advantage of adversary in this
game is 0. We prove via Lemmas that these consecutive games (GReal, G0, G1,1,
G1,2, G2,1, G2,2, . . ., Gq,1, Gq,2, GFinal) are indistinguishable from each other
based on three subgroup decisional assumptions in bilinear group of composite
order.

Our Contribution. In this work, we provide construction of KP-ABIPFE with
short ciphertext in pairing based setting based on three simple and well-studied
subgroup decisional assumptions in composite order bilinear groups. We take
inspiration from the key-policy attribute based encryption (KP-ABE) scheme
developed by Lewko et al. [11] for our construction. Our work exploits dual
system encryption technique of Waters [17]. Although our technique uses com-
posite order bilinear groups, it could be adapted to prime-order groups using
the framework of Chen et al. [8] from the standard k-linear assumption. We
point out an issue in the security proof of existing adaptive CP-ABIPFE scheme
of Chen et al. [9] that also utilizes dual system encryption technique and sub-
group decision assumptions. They take n (n: vector length) many instances of the
underlying subgroup decision assumptions while proving security which makes
their assumption stronger and security of scheme weaker. We fix this by using
single instance of the underlying hardness assumption while analysing security
and achieves stronger security. We establish the following result.

Theorem 1. Assuming the subgroup decisional assumptions [12], our scheme
KP-ABIPFE = (Setup, Encrypt, KeyGen, Decrypt) is secure against adaptive
adversary.

We summarize below the comparison of our construction with the existing
similar schemes.
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Table 1. Comparison of predicate / function class, group elements in ciphertext and
security

Scheme P F |ct| Security

[2], Sect. 3.1 MSP;CP F IP,poly
n,p,MSP n+ 2d+ 2 Selective

[2], Sect. 3.2 roMSP;CP F IP,poly
n,p,roMSP 3nd+ 3d+ 2 Adaptive

[14] LSSS;KP F IP,poly
n,p,LSSS n+ 8d+ 4 Selective

[14] LSSS;KP F IP,poly
n,p,LSSS nd+ 2n+ 7d+ 3 Adaptive

[9] roMSP;CP F IP,poly
n,N,roMSP 2nd+ 2n Adaptive

Our work roMSP;KP F IP,poly
n,N,roMSP n+ d+ 1 Adaptive

P: largest predicate class, F : function class, |ct|: number of group
elements in ciphertext, CP: ciphertext-policy, KP: key-policy, d: num-
ber of attributes (needed by access structure in ciphertext for CP
case/associated with ciphertext for KP case), F IP,poly

n,N,roMSP = F IP ×
roMSP formed by F IP = {Fy : Z

n
N → ZN : x → 〈x,y〉 ∈ R(ZN )} and

roMSP of read once monotone span programs over attribute universe,
where n,N ∈ N, N is composite and |R(ZN )| = poly(logN), F IP,poly

n,p,MSP

= F IP × MSP formed by F IP = {Fy : Z
n
p → Zp : x → 〈x,y〉 ∈ R(Zp)}

and MSP of read once monotone span programs over attribute uni-
verse, where n, p ∈ N, p is prime and |R(Zp)| = poly(log p), F IP,poly

n,p,LSSS =

F IP×LSSS where LSSS are linear secret sharing schemes over attribute
universe

– As exhibited in Table 1, we observe that selective-secure instantiation of [14]
is almost as efficient as the selective-secure instantiation of [2], the adaptive-
secure instantiation of [14] is nearly three times as efficient as the adaptive-
secure instantiation of [2] and nearly two times as efficient the adaptive-
secure instantiation. We emphasize that our proposed adaptive-secure version
outperforms the adaptive-secure version of [14] in terms of |ct|. Even, our
scheme is more efficient than the existing selective secure versions of [2,14].

– As exhibited in Table 2, we achieve better storage compared to [9]. The master
public key size (|MPK|) of our design is O(n + |Uatt|) which is less than that
of [9] where |MPK| = O(n|Uatt|). The master secret key size (|MSK|) of [9] as
well as our design is O(n). In terms of the secret key size (|SK|), our scheme
is comparable to the work of [9] as |S| ≤ |Uatt| and l ≤ |Uatt|.

– As exhibited in Table 2, our adaptive-secure construction is as efficient as the
adaptive-secure version of [14] in terms of master secret key size |MSK| and
secret key size |SK|. However, master public key size (|MPK|) are more in our
design compared to that of [14].

– The scheme of Pal et al. [16], Luo et al. [13] achieves security against co-
selective and selective adversary respectively. On the other hand, our design
achieves security against adaptive adversary. Although these lattice based
schemes provide post-quantum security, the public key contains large matrix
and the secret key and ciphertext contain large vectors. In contrast, our pair-
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Table 2. Comparison of storage overhead

Scheme Storage

|MPK| |MSK| |SK|
[9] O(n|Uatt|) O(n) O(n|S|)
[14], Selective O(n) O(n) O(n+ l)

[14], Adaptive O(n) O(n) O(ln)

Our work O(n+ |Uatt|) O(n) O(ln)

|MPK| = master public key size, |MSK| = master
secret key size, |CT| = ciphertext size, |SK| = secret
key size, l = number of attributes in the access struc-
ture, n = length of the vector, |Uatt| = cardinality of
attribute universe Uatt, |S| = cardinality of attribute
set S

ing based design offers better storage, communication overhead and compu-
tation.

– The scheme of Datta et al. [10] is designed in the common reference string
model, uses key aggregation technique and issues helper decryption key. The
underlying setting is asymmetric prime order bilinear group and security
proof is in the generic group model. Our scheme, on the other hand, achieves
the security proof in the standard model under standard subgroup decision
assumptions.

2 Preliminaries

2.1 Notation

Let λ represents the security parameter and [n] stands for the set {1, 2, . . . , n}.
The notation x

u←− S is used to indicate that x is arbitrarily selected from the
set S. A function f : N → R is said to be negligible in n if it is O(n−c) for each
c > 0 and it is written as negl(n). We use the symbol ⊥ to represent null value
and 〈·, ·〉 to represent inner product of two vectors.

2.2 Access Structure and Linear Secret Sharing Scheme [4]

Definition 1. (Access Structure) Let P = {P1, P2, . . . , Pn′} represents a group
of parties. A collection Γ ⊆ 2P is called monotone if for all sets B,C ∈ 2P

fulfilling B ∈ Γ,B ⊆ C, we have C ∈ Γ . A monotone collection Γ ⊆ 2P \ ∅ of
non-empty subsets of P is a monotone access structure on P. The sets in Γ are
said to be authorized sets and the sets not in Γ are said to be unauthorized sets.
A set S is said to satisfy the access structure if S ∈ Γ .

Definition 2. (Linear Secret Sharing Scheme) Let p be a prime. A secret shar-
ing scheme Λ for a monotone access structure Γ over a group of parties P is
said to be linear over Zp if
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1. The shares of every party form a vector over Zp.
2. (Share generation). There exists a share generating matrix A for Λ with l rows

and n columns called the share generating matrix and a mapping η that links
each row of the matrix A to a party. For i ∈ [l], the i-th row Ai of A is marked
by a party η(i) where η : [l] → P. For the column vector u = (s, r2, . . . , rn)
where s ∈ Zp is the secret to be shared and r2, r3, . . ., rn are arbitrarily
chosen from Zp, Au is the vector of l shares of the secret s corresponding to
Λ. The share λi = (Au)i = 〈Ai,uT 〉 = Ai · u belongs to party η(i).

Reconstruction of Secret. As demonstrated in [4], any linear secret sharing
scheme (LSSS) enjoys the linear reconstruction property described as follows :
Let (A, η) be an LSSS for access structure Γ and S ∈ Γ be an authorized set.
Let I ⊂ [l] be a subset given by I = {i : η(i) ∈ S}. Then there are constants
{wi ∈ Zp}i∈I fulfilling

∑

i∈I

wiAi = (1, 0, . . . , 0). These constants {wi ∈ Zp}i∈I

can be found in time polynomial in the size of the share generating matrix A.
Thus if {λi}i∈I are valid shares of a secret s according to Γ , then we have
∑

i∈I

wiλi =
∑

i∈I

wiAi · u = (1, 0, . . . , 0) · u = s. An access structure Γ is called

LSSS-realizable if there exists an LSSS Λ = (A, η) implementing Γ where A is
an l×n matrix, η : [l] → P, P is the set of parties and Γ ⊆ 2P . For an authorized
set S ∈ Γ where Γ is LSSS-realizable, the rows of the matrix A marked by the
attributes in S hold the n-length vector (1, 0, . . . , 0) in their span modulo p. We
say that S ∈ Γ satisfies LSSS-realizable access structure Γ . On the contrary,
for an unauthorized set S /∈ Γ , the corresponding rows of A do not contain the
n-length vector (1, 0, . . . , 0) in their span modulo p.

2.3 Key-Policy Attribute-Based Inner Product Functional
Encryption (KP-ABIPFE)

A key-policy attribute-based inner product functional encryption (KP-ABIPFE)
for an attribute universe Uatt consists of the polynomial time algorithms KP-
ABIPFE = (Setup, Encrypt, KeyGen, Decrypt) satisfying the following require-
ments.

– Setup (1λ, Uatt, n) → (MPK,MSK): A trusted authority runs this algorithm on
input the security parameter λ, attribute universe Uatt, vector length n and
outputs a master public key MPK together with a master secret key MSK. It
publishes MPK and holds MSK secret to itself.

– Encrypt (MPK, S,x) → CTS, x: An encryptor on input the master public key
MPK, a collection of attributes S ⊆ Uatt, a plaintext vector x of length n,
generates the corresponding ciphertext CTS, x and publishes it.

– KeyGen (MPK,MSK, Γ,y) → SKΓ, y: The trusted authority runs this algo-
rithm taking input the master public key MPK, the master secret key MSK, an
LSSS-realizable monotone access structure Γ that is assigned by the trusted
authority to the user, a vector y of length n and generates the corresponding
secret key SKΓ, y.



ABIPFE in Key-Policy Setting from Pairing 109

– Decrypt (MPK,SKΓ, y,CTS, x) → 〈x,y〉/ ⊥: On input the master public key
MPK, a ciphertext CTS, x encrypted under a collection of attributes S ⊆
Uatt, the secret key SKΓ,y associated with LSSS- realizable monotone access
structure Γ and a vector y of length n, a decryptor recovers the inner product
〈x,y〉 or outputs ⊥.

Correctness. A KP-ABIPFE scheme is said to be correct if for (MPK,MSK) ←
Setup(1λ, Uatt, n), CTS, x ← Encrypt(MPK, S,x), SKΓ, y ← KeyGen(MPK,MSK,
Γ,y), it holds that

Decrypt(MPK,SKΓ, y,CTS, x) =

{

〈x,y〉 if S satisfies Γ

⊥ Otherwise

Security. We describe below the adaptive indistinguishability (Adp-IND) secu-
rity notion [9] of KP-ABIPFE which is modelled as a game played between a
challenger C and an adversary B.

– Setup: The challenger C executes the algorithm Setup to produce (MPK,
MSK) pair and provides MPK to the adversary B.

– Query phase 1: The adversary B asks for secret keys corresponding to
the access structure and vector pairs (Γ1,y1), (Γ2,y2), . . ., (Γq1 ,yq1) and C
returns the corresponding secret key SKΓi, yi

← KeyGen(MPK,MSK, Γi,yi)
for i ∈ [q1].

– Challenge: The adversary B sends two message vectors x�
0, x

�
1 and a collec-

tion of attributes S� subjected to the condition that for each i ∈ [q1], S� does
not satisfy access structure Γi. The challenger C arbitrarily chooses b ∈ {0, 1},
computes CTS�, x�

b
← Encrypt(MPK, S�,x�

b) and sends the challenge cipher-
text CTS�, x�

b
to B.

– Query phase 2: The adversary B asks for secret key queries corresponding
to the access structure and vector pairs (Γq1+1,yq1+1), (Γq1+2,yq1+2), . . .,
(Γq,yq) under the condition that for each i ∈ {q1 +1, . . . , q}, S� does not sat-
isfy the access structure Γi. Then, challenger C in turn returns the correspond-
ing secret key SKΓi, yi

← KeyGen(MPK,MSK, Γi,yi) for i ∈ {q1 + 1, . . . , q}.
– Guess: Finally, C outputs a guess b′ for b and wins the game if b′ = b.

The advantage of B in this game is defined as AdvAdp-IND
KP-ABIPFE,B(λ) =

∣

∣

∣

∣

Pr[b′ = b]− 1
2

∣

∣

∣

∣

A KP-ABIPFE scheme is said to be secure if AdvAdp-IND
KP-ABIPFE,B(λ) ≤ negl(λ).

2.4 Symmetric Bilinear Map and Subgroup Decision Assumptions

Definition 3. (Symmetric Bilinear Map) Suppose that G, Gt are multiplicative
cyclic groups of composite order N = p1p2p3 where p1, p2, p3 are distinct primes.
Let 1G and 1Gt

be the identity elements of G and Gt respectively. A symmetric
bilinear map e : G × G → Gt is a function such that the following conditions
hold.
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1. e(ga, hb) = e(g, h)ab for all g, h ∈ G and a, b ∈ ZN .
2. There exists g ∈ G such that e(g, g) is a generator of Gt.
3. Each group operation in G and Gt together with the bilinear map e can be

computed efficiently.

We assume that Gpi
stands for the subgroup of order pi in G for i ∈ [3] and

Gpipj
denotes the subgroup of order pipj in G for i �= j, i, j ∈ [3]. Observe that

if hi ∈ Gpi
and hj ∈ Gpj

for i �= j, then e(hi, hj) is the identity of Gt as shown
below. Let g be a generator of G. Then gp1p2 generates Gp3 , gp2p3 generates Gp1

and gp1p3 generates Gp2 . Hence, h1 ∈ Gp1 can be written as h1 = (gp2p3)β1 for
some β1 ∈ ZN and h2 ∈ Gp2 can be written as h2 = (gp1p3)β2 for some β2 ∈ ZN .
This in turn implies that e(h1, h2) = e(gp2p3β1 , gp1p3β2) = e(gβ1 , gp3β2)p1p2p3 =
e(gβ1 , gp3β2)N = 1Gt

as Gt is a group of order N .
We state below three assumptions that we will rely on to prove security

of our construction. Lewko et al. [12] first introduced these subgroup decision
assumptions and showed that these hold in the generic group model if finding a
nontrivial factor of the group order is hard. They constructed adaptively secure
hierarchical identity-based encryption [12] and adaptively secure attribute-based
encryption [11] under these assumptions.

Assumption 1 [12]: Let G be a bilinear group generator that outputs the tuple

BG = (N = p1p2p3, G, Gt, e). Let g1
u←− Gp1 , Y3

u←− Gp3 ,D =
(

BG, g1, Y3

)

, μ1
u←−

Gp1p2 , μ2
u←− Gp1 . Define distributions Db = (D,μb) for b ∈ {1, 2} containing

common component D and a challenge element μb. We say that Assumption 1
holds corresponding to the group generator G if no probabilistic polynomial time
adversary B can distinguish between the distributions D1 and D2. In other words,
there exists a negligible function negl(·) such that the advantage of any adversary
B in breaking Assumption 1 is negl(λ) where λ ∈ N is the security parameter.

That is, AdvAssumption1,G,B(λ) =
∣

∣

∣

∣

Pr[B(D,μ1) → 1]−Pr[B(D,μ2) → 1]
∣

∣

∣

∣

= negl(λ).

Assumption 2 [12]: Let G be a bilinear group generator that outputs the tuple
BG = (N = p1p2p3, G, Gt, e). Let g1, Y1

u←− Gp1 , Y2, Z2
u←− Gp2 , Y3, Z3

u←− Gp3 ,

D =
(

BG, g1, Y1Y2, Y3, Z2Z3

)

, μ1
u←− G, μ2

u←− Gp1p3 . AdvAssumption2,G,B(λ) =
∣

∣

∣

∣

Pr[B(D,μ1) → 1] − Pr[B(D,μ2) → 1]
∣

∣

∣

∣

= negl(λ).

Assumption 3 [12]: Let G be a bilinear group generator that outputs the tuple
BG = (N = p1p2p3, G, Gt, e). Let

g1
u←− Gp1 , Y2, Z2,X2

u←− Gp2 , Y3
u←− Gp3 , β, s

u←− ZN ,

D =
(

BG, gβ
1 Y2, Y3, g

s
1Z2,X2

)

, μ1 = e(g1, g1)βs, μ2
u←− Gt

AdvAssumption3,G,B(λ) =
∣

∣

∣

∣

Pr[B(D,μ1) → 1] − Pr[B(D,μ2) → 1]
∣

∣

∣

∣

= negl(λ).
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3 Our Construction

Our key-policy attribute-based inner product functional encryption KP-ABIPFE
= (Setup, Encrypt, KeyGen, Decrypt) for an attribute universe Uatt = {att1, att2,
. . ., attm} and a set of LSSS-realizable monotone access structures on Uatt works
as follows.

– Setup(1λ, Uatt, n) → (MPK,MSK): A trusted authority takes as input the
security parameter λ, attribute universe Uatt = {att1, att2, . . . , attm}, vector
length n and proceeds as follows.

• Runs bilinear group generator G to generate a symmetric bilinear map
e : G×G → Gt where G, Gt are multiplicative cyclic groups of composite
order N = p1p2p3 with 1G and 1Gt

the identity elements of G and Gt

respectively (Here p1, p2, p3 are distinct primes). Let Gpi
be the subgroup

of order pi for i ∈ [3] and T denote a subset of ZN defining polynomial
range for inner product value to be obtained after the decryption.

• Selects a random ri ∈ ZN for each attribute atti ∈ Uatt and chooses
arbitrarily g1 ∈ Gp1 and βj ∈ ZN for each j ∈ [n].

• Sets the master public key MPK and the master secret key MSK as MPK =
(N, g1, gt = e(g1, g1), {Qj = g

βj

t }j∈[n], {Ri = gri
1 }atti∈Uatt),MSK =

{{βj}j∈[n], Y3} where Y3 is a generator of Gp3 .
• Publishes MPK and holds MSK secret to itself.

– Encrypt(MPK, S,x) → CTS, x: Taking input the master public key MPK =
(N, g1, gt = e(g1, g1), {Qj = g

βj

t }j∈[n], {Ri = gri
1 }atti∈Uatt), an attribute set

S ⊆ Uatt and a message vector x = (x1, x2, . . . , xn) ∈ Z
n
N , an encryptor does

the following.
• Selects random s ∈ ZN for j ∈ [n] and computes Cj = g

xj

t Qs
j =

g
xj

t g
βjs
t , j ∈ [n], C0 = gs

1,
̂Ci = Rs

i = gris
1 , atti ∈ S extracting g1, gt,

{Qj}j∈[n] and {Ri}atti∈S from MPK.
• Sets CTS, x = ({Cj}j∈[n], C0, { ̂Ci}atti∈S) and makes it public.

– KeyGen(MPK,MSK, Γ,y) → SKΓ, y : The trusted authority takes as input
the master public key MPK = (N, g1, gt = e(g1, g1), {Qj = g

βj

t }j∈[n], {Ri =
gri
1 }atti∈Uatt), the master secret key MSK = {{βj}j∈[n], Y3}, an attribute vector
y = (y1, y2, . . . , yn) ∈ Z

n
N and a monotone access structure Γ realizable by

LSSS Λ = (A, η) where A is an l × n matrix and η associates every row z
of A to attribute η(z) ∈ Uatt. Let Iη(z) be the index of η(z), i.e. Iη(z) = k if
η(z) = attk ∈ Uatt. The trusted authority proceeds in the following manner.

• For each j ∈ [n], selects randomly (n − 1) elements β2,j , β3,j , . . . , βn,j ∈
ZN and sets the n-length column vector uj = (βj , β2,j , β3,j , . . . , βn,j) ∈
Z

n
N , j ∈ [n] where βj is extracted from MSK.

• For each row Az of A, z ∈ [l], arbitrarily chooses Vz,j ∈ Gp3 , r̂z,j ∈ ZN ,
Wz,j ∈ Gp3 for j ∈ [n] and computes K

(1)
z,j = g

yj(Az·uj)
1 R

r̂z,j

Iη(z)
Wz,j , K

(2)
z,j =

g
r̂z,j

1 Vz,j .

• Sets SKΓ, y = ({K
(1)
z,j }z∈[l],j∈[n], {K

(2)
z,j }z∈[l],j∈[n]).
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– Decrypt (MPK,SKΓ, y,CTS, x) → 〈x,y〉/ ⊥: The decryptor takes as input
the master public key MPK = (N, g1, gt = e(g1, g1), {g

βj

t }j∈[n], {Ri =
gri
1 }atti∈Uatt), a secret key SKΓ,y = ({K

(1)
z,j }z∈[l],j∈[n], {K

(2)
z,j }z∈[l],j∈[n]), and

a ciphertext CTS, x = ({Cj}j∈[n], C0, { ̂Ci}atti∈S) where y = (y1, y2, . . . , yn) ∈
Z

n
N , S ⊆ Uatt is the set of attributes associated with CTS, x and Λ = (Al×n, η)

is the LSSS corresponding to a monotone access structure Γ associated with
SKΓ, y. Let I = {z|η(z) ∈ S}. The decryptor executes the following steps.

• Verify whether S satisfies the access structure Γ (realizable by LSSS
Λ = (A, η)) by checking whether the n-length vector (1, 0, . . . , 0) ∈
Span{Az | η(z) ∈ S}, the span of the rows of the share generating matrix
A marked by the attributes in S. If not, outputs ⊥.

• Otherwise, finds constants wz ∈ ZN satisfying
∑

z∈I

wzAz = (1, 0, . . . , 0).

• For each z ∈ I = {z|η(z) ∈ S}, computes Bz =

∏

j∈[n]
e(C0,K

(1)
z,j )

∏

j∈[n]
e( ̂CIη(z) ,K

(2)
z,j )

• Recovers e(g1, g1)〈x,y〉 =

∏

j∈[n]
C

yj
j

∏

z∈I

Bwz
z

• Determines m ∈ T so that e(g1, g1)〈x,y〉 = e(g1, g1)m and outputs m.

Correctness. Note that
∏

j∈[n]

e(C0,K
(1)
z,j ) = e(C0,

∏

j∈[n]

K
(1)
z,j ) = {

∏

j∈[n]

e(gs
1, g

yj(Az·uj)
1 )}

∏

j∈[n]

e(gs
1,

R
r̂z,j

Iη(z)
)

∏

j∈[n]

e( ̂CIη(z) ,K
(2)
z,j ) =

∏

j∈[n]

e(Rs
Iη(z)

, g
r̂z,j

1 ), Bz =
∏

j∈[n]

e(g1, g1)syj(Az·uj)

∏

j∈[n]

C
yj

j = g
〈x,y〉
t

∏

j∈[n]

g
βjsyj

t ,
∏

z∈I

Bwz
z =

∏

z∈I

{
∏

j∈[n]

e(g1, g1)syjwz(Az·uj)} =

∏

j∈[n]

g
syjβj

t

∏

j∈[n]

C
yj

j

∏

z| η(z)∈S

Bwz
z

=

g
〈x,y〉
t

∏

j∈[n]

g
βjsyj

t

∏

j∈[n]

g
syjβj

t

= g
〈x,y〉
t

4 Security Analysis

Theorem 2. The key-policy attribute based inner product functional encryption
KP-ABIPFE = (Setup, Encrypt, KeyGen, Decrypt) presented in Sect. 3 is secure as
per the adaptive indistinguishable (Adp-IND) security model described in Sect. 2.3
provided Assumption 1, Assumption 2 and Assumption 3 on subgroup decision
problem holds.
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Proof. We refer the ciphertext CTS, x = ({Cj}j∈[n], C0, { ̂Ci}atti∈S) gener-
ated by KP-ABIPFE. Encrypt() and the secret key SKΓ, y = ({K

(1)
z,j }z∈[l],j∈[n],

{K
(2)
z,j }z∈[l],j∈[n]) generated by KP-ABIPFE. KeyGen() as normal ciphertext and

normal secret key respectively where

{Cj = g
xj

t Qs
j = g

xj

t g
βjs
t }j∈[n], C0 = gs

1, { ̂Ci = Rs
i = gris

1 }atti∈S (1)

{K
(1)
z,j = g

yj(Az·uj)
1 R

r̂z,j

Iη(z)
Wz,j}z∈[l],j∈[n], {K

(2)
z,j = g

r̂z,j

1 Vz,j}z∈[l],j∈[n] (2)

We define below semi-functional ciphertexts and semi-functional keys which
will be used in our security proof.

Semi-functional Ciphertext: Let us assume that h be a generator of Gp2 ,
c ∈ ZN be a random element and δi ∈ ZN be an arbitrary element for each
attribute atti ∈ S. Then the semi-functional ciphertext is defined as follows.

{Cj = g
xj

t g
βjs
t }j∈[n], C0 = gs

1h
c, { ̂Ci = Rs

i h
cδi = gris

1 hcδi}atti∈S (3)

Semi-functional Key: Semi-functional keys are defined into two forms - type-1
and type-2. Let vj ∈ Z

n
N be arbitrary vectors for j ∈ [n] so that vj ·(1, 0, . . . , 0) =

r̃j (say) is random and ρz,j = Az ·vj , z ∈ [l], j ∈ [n]. Also suppose that γz,j ∈ ZN

is randomly chosen for each z ∈ [l], j ∈ [n] and h is a generator of Gp2 . Then the
semi-functional key of type-1 is defined as

{K(1)
z,j = g

yj(Az·uj)
1 R

r̂z,j
Iη(z)

Wz,jh
ρz,j+γz,jδIη(z) }z∈[l],j∈[n], {K(2)

z,j = g
r̂z,j
1 Vz,jh

γz,j }z∈[l],j∈[n] (4)

and the semi-functional key of type-2 is defined as

{K
(1)
z,j = g

yj(Az·uj)
1 R

r̂z,j

Iη(z)
Wz,jh

ρz,j }z∈[l],j∈[n], {K
(2)
z,j = g

r̂z,j

1 Vz,j}z∈[l],j∈[n] (5)

When we use a type-1/type-2 semi-functional key to decrypt a semi-
functional ciphertext, we get

∏

j∈[n]

C
yj

j

∏

z∈I

Bwz
z

=
e(g, g)〈x,y〉
∏

j∈[n]

e(h, h)cr̃j

Thus in both cases we get an extra term
∏

j∈[n]

e(h, h)cr̃j .

A semi-functional key (Eq. 4 and 5) is said to be nominally semi functional
if vj · (1, 0, . . . , 0) = r̃j = 0 (where ρz,j = Az · vj) for each j ∈ [n]. Thus a
nominally semi-functional key of type-1 is

{K(1)
z,j = g

yj(Az·uj)
1 R

r̂z,j
Iη(z)

Wz,jh
ρz,j+γz,jδIη(z) }z∈[l],j∈[n], {K(2)

z,j = g
r̂z,j
1 Vz,jh

γz,j }z∈[l],j∈[n] (6)
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and a nominally semi-functional key of type-2 is defined as

{K
(1)
z,j = g

yj(Az·uj)
1 R

r̂z,j

Iη(z)
Wz,jh

ρz,j }z∈[l],j∈[n], {K
(2)
z,j = g

r̂z,j

1 Vz,j}z∈[l],j∈[n] (7)

where ρz,j = Az · vj with vj · (1, 0, . . . , 0) = r̃j = 0 for each j ∈ [n]. Note that
Eq. 6 and 7 are identical to Eq. 4 and 5 and the decryption is successful even if
we use a nominally semi-functional key to decrypt a semi-functional ciphertext.

To prove security of our construction, we utilize a sequence of games. Let us
suppose that q is the number of secret key queries asked by the adversary. The
game GReal is the original Adp-IND security game where the challenge ciphertext
and all queried secret keys are normal. The next game is G0 where all keys
happen to be normal, but the challenge ciphertext is semi-functional. In game
Gk,1, k ∈ [q], the challenge ciphertext happens to be semi-functional, the first
(k−1) keys happen to be semi-functional of type-2, the k-th key is semi functional
of type-1 and the later keys are normal. In game Gk,2, k ∈ [q], the challenge
ciphertext happens to be semi-functional, the first k keys happen to be semi-
functional of type-2 and the later keys are normal. (Note that, G0 is same as
G0,2 in terms of notation.) In game Gq,2, the challenge ciphertext happens to
be semi-functional and all keys are semi-functional of type-2. The final game is
GFinal where the challenge ciphertext happens to be encryption of an arbitrary
message which is not related to any of the two messages sent by the adversary
and all keys are semi-functional of type-2.

Note that the advantage of the adversary in the game GFinal is 0 as the
challenge ciphertext is encryption of a random message. Let AdvAdp-IND

G,B (λ) be
the advantage of a probabilistic polynomial time (PPT) adversary B in game
G. Then, the Theorem follows from Lemma 1–Lemma 4 below which prove that
these series of games are indistinguishable.

Lemma 1. Suppose Assumption 1 on subgroup decision problem holds corre-
sponding to the group generator G. Then, for any PPT adversary B, there
exists a negligible function negl(·) such that for all λ ∈ N, AdvAdp-IND

GReal,B (λ) −
AdvAdp-IND

G0,B (λ) = negl(λ).

Lemma 2. Suppose Assumption 2 on subgroup decision problem holds corre-
sponding to the group generator G. Then, for any PPT adversary B, there
exists a negligible function negl(·) such that for all λ ∈ N, AdvAdp-IND

Gk−1,2,B(λ) −
AdvAdp-IND

Gk,1,B (λ) = negl(λ).

Lemma 3. Suppose Assumption 2 on subgroup decision problem holds corre-
sponding to the group generator G. Then, for any PPT adversary B, there
exists a negligible function negl(·) such that for all λ ∈ N, AdvAdp-IND

Gk,1,B (λ) −
AdvAdp-IND

Gk,2,B (λ) = negl(λ).

Lemma 4. Suppose Assumption 3 on subhroup decision problem holds corre-
sponding to the group generator G. Then, for any PPT adversary B, there
exists a negligible function negl(·) such that for all λ ∈ N, AdvAdp-IND

Gq,2,B (λ) −
AdvAdp-IND

GFinal,B (λ) = negl(λ).
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4.1 Proof of Lemmas

Proof of Lemma 1. Let B be a PPT adversary such that AdvAdp-IND
GReal,B (λ) −

AdvAdp-IND
G0,B (λ) = ε where ε is non-negligible. We show below that it is possible

to construct a PPT adversary A that breaks Assumption 1 with non-negligible
advantage ε.

On input an instance (BG = (N, G, Gt, e), g1, Y3, μ) of Assumption 1, the
adversary A simulates either GReal or G0 using B as subroutine as follows. The
adversary A chooses arbitrary element βj ∈ ZN for j ∈ [n] and selects random
ri ∈ ZN for each atti ∈ Uatt. It sets the master public key MPK = (N, g1, gt =
e(g1, g1), {g

βj

t }j∈[n], {Ri = gri
1 }atti∈Uatt) and provides MPK to the adversary B.

It sets the master secret key MSK = ({βj}j∈[n], Y3) and replies to normal key
queries asked by A using MSK as described in the security model.

The adversary B provides two challenge vectors x�
0 = (x�

0,1, x�
0,2, . . .,

x�
0,n), x�

1 = (x�
1,1, x�

1,2, . . ., x�
1,n), and challenge attribute set S�. To create

the challenge ciphertext, the adversary A implicitly sets s so that gs
1 is the

Gp1 part of μ. The adversary A randomly selects b ∈ {0, 1} and forms the
challenge ciphertext CTS�, x�

b
= ({Cj}j∈[n], C0, { ̂Ci}atti∈S�) by setting {Cj =

g
x�

b,j

t e(g1, μ)βj }j∈[n], C0 = μ, { ̂Ci = μri}atti∈S� . It can be verified that if μ ∈ Gp1 ,
the ciphertext is a properly generated normal ciphertext given in eqn 1 and
hence A simulates GReal. Else, if μ ∈ Gp1p2 , the ciphertext is a properly gener-
ated semi-functional ciphertext given in eqn 3 and hence A simulates G0. Thus,
A can use the output of B to break Assumption 1 with non-negligible advantage
and the Lemma follows.

Proof of Lemma 2. Let B be a PPT adversary such that AdvAdp-IND
Gk−1,2,B(λ) −

AdvAdp-IND
Gk,1,B (λ) = ε where ε is non-negligible. We show below how to construct a

PPT adversary A that breaks Assumption 2 with non-negligible advantage ε.

On receiving an instance
(

(N, G, Gt, e), g1, gs
1Y2, Y3, Z2Z3, μ

)

of Assump-

tion 2, the adversary A simulates either Gk−1,2 or Gk,1 using B as a subroutine
in the following manner. The adversary A selects random element βj ∈ ZN for
each j ∈ [n], random ri ∈ ZN for each atti ∈ Uatt, computes the master public
key as MPK = (N, g1, gt = e(g1, g1), {g

βj

t }j∈[n], {Ri = gri
1 }atti∈Uatt) and sets the

master secret key MSK = ({βj}j∈[n], Y3). It provides MPK to the adversary B
and keeps MSK secret to itself. It also records ri for each atti ∈ Uatt in list Rand
for the simulation of ̂C components of the challenge ciphertext.

On receiving two challenge vectors x�
0 = (x�

0,1, x�
0,2, . . ., x�

0,n), x�
1 = (x�

1,1, x�
1,2,

. . ., x�
1,n) and challenge attribute set S�, the adversary A randomly selects b ∈

{0, 1} and forms the challenge ciphertext CTS�, x�
b

= ({Cj}j∈[n], C0, { ̂Ci}atti∈S�)

by setting {Cj = g
x�

b,j

t e(g1, gs
1Y2)βj }j∈[n], C0 = gs

1Y2, { ̂Ci = (gs
1Y2)ri}atti∈S� . This

has the same distribution as a semi-functional ciphertext given in Eq. 3 where
we implicitly set δi = ri modulo N . It follows from the fact that the value of ri
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modulo p1 is uncorrelated to the value of δi modulo p2 by the Chinese Remainder
Theorem, making distribution of ̂Ci identical to that in Eq. 3.

For generating key query on access structure Γ = (Al×n, η) and vector y, S�

should not satisfy Γ as described in the security model. The key queries of the
adversary B are simulated as follows by the adversary A.

– To answer the l-th normal key query where l > k made by B on an access
structure Γ = (Al×n, η) and a vector y = (y1, y2, . . . , yn), the adversary A
uses MSK and employs the algorithm KP-ABIPFE.KeyGen.

– For responding the l-th semi-functional key of type-2 query where l < k, the
adversary A selects arbitrary column vector uj ∈ Z

n
N for each j ∈ [n] such

that (1, 0, . . . , 0) ·uj = βj , arbitrary column vectors v′
j ∈ Z

n
N , random values

r̂z,j and arbitrary group members Wz,j , Vz,j ∈ Gp3 and computes {K
(1)
z,j =

g
yj(Az·uj)
1 R

r̂z,j

Iη(z)
Wz,j(Z2Z3)Az·v′

j }z∈[l],j∈[n], {K
(2)
z,j = g

r̂z,j

1 Vz,j}z∈[l],j∈[n]. If we
take Z2 = hc where h is a generator of Gp2 , we see that vj in our description of
semi-functional key corresponds to vj = cv′

j (hence ρz,j = Az ·vj = Az ·(cv′
j)).

– In response to the k-th key query of B on access structure Γ = (Al×n, η) and
vector y = (y1, y2, . . . , yn), the adversary A generates a key which is either
normal (as in Eq. 2) or nominally semi-functional of type-1 (as in Eq. 6 with
r̃j = 0 for each j ∈ [n]) subjected to the value of μ. It will be discussed later
that although this is a nominally semi-functional key of type-1, its distribution
is the same as that of a regular semi-functional key of type-1 given in eqn 4
from adversary’s point of view since this key cannot decrypt the challenge
ciphertext.
To answer the k-th key query, A selects arbitrary column vector vj ∈
Z

n
N for j ∈ [n] such that (1, 0, . . . , 0) · vj = 0 and arbitrary vectors

u′
j for j ∈ [n] such that (1, 0, . . . , 0) · u′

j = βj . Let us implicitly set
uj = y−1

j tvj + u′
j for j ∈ [n] where gt

1 is the Gp1 part of μ. The adver-
sary A chooses random values γz,j ∈ ZN , Vz,j ,Wz,j ∈ Gp3 and computes

{K
(1)
z,j = g

yj(Az·u′
j)

1 μAz·vj μ
γz,jrIη(z) Wz,j}z∈[l],j∈[n], {K

(2)
z,j = μγz,j Vz,j}z∈[l],j∈[n]

by extracting rIη(z) ∀attIη(z) ∈ Uatt from the list Rand maintained by A. Let
us set r̂z,j = tγz,j and use r̂z,j as modulo p1 value and γz,j as modulo p2
value.
− If μ ∈ G, then it can be verified that the k-th queried key
SKΓ,y = ({K

(1)
z,j }z∈[l],j∈[n], {K

(2)
z,j }z∈[l],j∈[n]) is a properly generated nom-

inally semi-functional key of type-1 (see Eq. 6). On the other hand, if
μ ∈ Gp1p3 , it can be similarly verified that the k-th queried key SKΓ,y =
({K

(1)
z,j }z∈[l],j∈[n], {K

(2)
z,j }z∈[l]) is properly generated normal key as in Eq. 2.

Claim: The distribution of k-th nominally semi-functional key of type-1 has iden-
tical distribution to that of a regular semi-functional key of type-1.

Proof of Claim. Note that attributes are used only once in the mapping η of
the matrix rows in each key. Let atti be an attribute that is not a member of
the challenge attribute set S�. We observe that δi = ri modulo N is not needed
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anywhere except the k-th secret key simulation because other semi-functional
keys are of type-2.

As the k-th key fails to decrypt the challenge ciphertext, the vector
(1, 0, . . . , 0) does not beong to the span of the rows of the corresponding matrix
A when restricted to rows z such that η(z) ∈ S�. It may be thought that this
holds modulo p2, otherwise N can be factored easily which is contrary to our
assumption. Hence, a vector w ∈ Z

n
N can be found which is orthogonal to the

above specified rowspace, but not orthogonal to (1, 0, . . . , 0) (modulo p2). We
fix a basis containing w. So, we can write vj = fjw + v′′

j modulo p2 where
fj ∈ Zp2 and v′′

j belongs to the span of other basis elements. Observe that
v′′

j does not leak any information about fj . As w is orthogonal to the above
specified rowspace, Az · w = 0. Thus the shares for rows z ( that is Az · vj)
with η(z) ∈ S� leaks information only about v′′

j . As w is not orthogonal to
(1, 0, . . . , 0), (1, 0, . . . , 0) · w �= 0. Hence, (1, 0, . . . , 0) · vj cannot be obtained
from v′′

j only and requires some knowledge about fj .
We now argue that information about fj cannot be obtained. The term fjw

can only occur in the equations of the form Az · vj + γz,jδIη(z) (δIη(z) = rIη(z)

modulo N) where η(z)’s are each unique attributes not present in the challenge
ciphertext. On the assumption that each γz,j is not congruent to 0 modulo
p2, each of these equations presents a new unknown δIη(z) that does not occur
anywhere else. Hence, the attacker cannot obtain any information about fj .

Thus, the value of (1, 0, . . . , 0) · vj = r̃j is information-theoretically hidden
provided none of γz,j values are 0 modulo p2. The probability that any of γz,j

values are 0 modulo p2 is negligible. Hence, the claim follows.
We see that if μ ∈ Gp1p3 , then the adversary A has generated Gk−1,2 per-

fectly. On the contrary, if μ ∈ G then A has generated Gk,1 perfectly. Thus, A
can use the output of B to break Assumption 2 with non-negligible advantage ε
and the Lemma follows.

Proof of Lemma 3. Let B be a PPT adversary such that AdvAdp-IND
Gk,1,B (λ) −

AdvAdp-IND
Gk,2,B (λ) = ε where ε is non-negligible. We construct below a PPT adversary

A that breaks Assumption 2 with non-negligible advantage ε.

Given an instance ((N, G, Gt, e), g1, Y3, g
s
1Y2, Z2Z3, μ) of Assumption 2, the

adversary A uses B as a subroutine and simulates either Gk,1 or Gk,2 as fol-
lows. The adversary A selects random element βj ∈ ZN for each j ∈ [n], ran-
dom ri ∈ ZN for each atti ∈ Uatt, computes the master public key as MPK =
(N, g1, gt = e(g1, g1), {g

βj

t }j∈[n], {Ri = gri
1 }atti∈Uatt), sets the master secret key

MSK = ({βj}j∈[n], Y3). It provides MPK to the adversary B and keeps MSK
secret to itself. It also records ri for each atti ∈ Uatt in a list Rand for the
simulation of ̂C components of the challenge ciphertext.

On receiving two challenge vectors x�
0 = (x�

0,1, x
�
0,2, . . . , x

�
0,n), x�

1 =
(x�

1,1, x
�
1,2, . . . , x

�
1,n) and challenge attribute set S�, the adversary A ran-

domly selects b ∈ {0, 1} and forms the challenge ciphertext CTS�,x�
b

=

({Cj}j∈[n], C0, { ̂Ci}atti∈S�) by setting {Cj = g
x�

b,j

t e(g1, gs
1Y2)βj }j∈[n], C0 =
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gs
1Y2, { ̂Ci = (gs

1Y2)ri}atti∈S� . Implicitly setting ri = δi modulo N and observing
the fact that the value of ri modulo p1 is uncorrelated to the value of δi mod-
ulo p2 by the Chinese Remainder Theorem, the distribution of this challenge
ciphertext is identical to that of a semi-functional ciphertext in Eq. 3.

The adversary B can make key query on access structure Γ = (Al×n, η) and
vector y subject to the fact that S� does not satisfy Γ (see the security model
of Sect. 2.3). The adversary A simulates the key queries as follows.

– In response to the l-th normal key query where l > k made by B on an access
structure Γ = (Al×n, η) and a vector y = (y1, y2, . . . , yn), the adversary A
uses MSK and employs the algorithm KP-ABIPFE.KeyGen.

– For answering the l-th semi-functional key of type-2 query (see eqn 5) where
l < k, the adversary A selects an arbitrary column vector uj ∈ Z

n
N for

each j ∈ [n] such that (1, 0, . . . , 0) · uj = βj , arbitrary column vectors
v′

j ∈ Z
n
N , random values r̂z,j and arbitrary group members Wz,j , Vz,j ∈ Gp3

and computes {K
(1)
z,j = g

yj(Az·uj)
1 R

r̂z,j

Iη(z)
Wz,j(Z2Z3)Az·v′

j }z∈[l],j∈[n], {K
(2)
z,j =

g
r̂z,j

1 Vz,j}z∈[l],j∈[n]. If Z2 = hc′
where h is a generator of Gp2 , then vj in

our description of semi-functional key in eqn 5 corresponds to vj = c′v′
j and

ρz,j = Az · vj = Az · (c′v′
j). Then the distribution of this key is the same as

that of a semi-functional key of type-2 given in eqn 5.
– For simulating the k-th key query of B on an access structure Γ = (Al×n, η)

and a vector y = (y1, y2, . . . , yn), the adversary A will generate a key which
is either semi-functional of type-1 as in eqn 4 or semi-functional of type 2
as in eqn 5 subject to the values of μ. The adversary A selects an arbitrary
column vector uj ∈ Z

n
N such that (1, 0, . . . , 0) · uj = βj for each j ∈ [n],

arbitrary column vector vj ∈ Z
n
N for each j ∈ [n]. The adversary A also

chooses arbitrary γz,j ∈ ZN , random Wz,j , Vz,j ∈ Gp3 for each z ∈ [l], j ∈ [n],
implicitly sets r̂z,j = tγz,j where gt

1 is the Gp1 part of μ and computes {K
(1)
z,j =

g
yj(Az·uj)
1 (Z2Z3)Az·vj μ

γz,jrIη(z) Wz,j}z∈[l],j∈[n], {K
(2)
z,j = μγz,j Vz,j}z∈[l],j∈[n].

We observe the following.

– If μ ∈ G, the k-th queried secret key SKΓ,y = ({K
(1)
z,j }z∈[l],j∈[n], {K

(2)
z,j }z∈[l],

j ∈ [n]) is a properly generated semi-functional key of type-1 as in Eq. 4 and
hence A simulates Gk,1.

– If μ ∈ Gp1p3 , it can be similarly verified that the k-th queried key SKΓ,y =
({K

(1)
z,j }z∈[l],j∈[n], {K

(2)
z,j }z∈[l],j∈[n]) is a properly generated semi-functional key

of type-2 as in eqn 5 and hence A simulates Gk,2. Thus, A can use the output
of B to break Assumption 2 with non-negligible advantage and the Lemma
follows.

Proof of Lemma 4. Let B be a PPT adversary such that

AdvAdp-IND
Gq,2,B (λ) − AdvAdp-IND

GFinal,B (λ) = ε

where ε is non-negligible. We describe below how to construct a PPT adversary
A that breaks Assumption 3 with non-negligible advantage ε.
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On collecting an instance ((N, G, Gt, e), g1, g
β
1 Y2, Y3, g

s
1Z2,X2, μ) of Assump-

tion 3, the adversary A simulates either Gq,2 or GFinal using B as a subroutine in
the following manner. The adversary A selects random αj ∈ ZN for each j ∈ [n],
random ri ∈ ZN for each atti ∈ Uatt, implicitly sets βj = βαj . The master
public key is set as MPK = (N, g1, gt = e(g1, g1), {e(g1, g

β
1 Y2)αj = e(g1, g1)βαj =

e(g1, g1)βj }j∈[n], {Ri = gri
1 }atti∈Uatt) and the master secret key is set as MSK

= ({βj}j∈[n], Y3). It provides MPK to the adversary B and keeps MSK secret
to itself. It also records ri for each atti ∈ Uatt in a list Rand1 and αj for each
j ∈ [n] in a list Rand2 for the simulation of C and ̂C components of the challenge
ciphertext.

On receiving two challenge vectors x�
0 = (x�

0,1, x
�
0,2, . . . , x

�
0,n), x�

1 =
(x�

1,1, x
�
1,2, . . . , x

�
1,n) and challenge attribute set S�, the adversary A ran-

domly selects b ∈ {0, 1} and forms the challenge ciphertext CTS�,x�
b

=

({Cj}j∈[n], C0, { ̂Ci}atti∈S�) by setting {Cj = g
x�

b,j

t μαj }j∈[n], C0 = gs
1Z2, { ̂Ci =

(gs
1Z2)ri}atti∈S� . This implicitly sets ri = δi modulo N . Note that the value of ri

modulo p1 is uncorrelated to the value of δi modulo p2 by the Chinese Remain-
der Theorem. Therefore, if μ = e(g1, g1)βs, then the challenge ciphertext CTS�,x�

b

becomes {Cj = g
x�

b,j

t e(g1, g1)βαjs}j∈[n], C0 = gs
1Z2, { ̂Ci = (gs

1Z2)ri}atti∈S� which
is a semi-functional encryption of x�

b (see Eq. 3). On the contrary, if μ is an
arbitrary element of Gt, the challenge ciphertext CTS�,x�

b
is a semi-functional

encryption of an arbitrary message and b will be information theoretically hidden
from the attacker.

The adversary B can make key query on access structure Γ = (Al×n, η) and
vector y where S� does not satisfy Γ as per the requirement of the described
security model. The simulation of B’s key query by adversary A are carried out
as follows.

− To generate semi-functional type-2 key for the queried access struc-
ture Γ = (Al×n, η) and vector y = (y1, y2, . . . , yn), the adversary A chooses
arbitrary column vectors vj ∈ Z

n
N , random values r̂z,j ∈ ZN and arbitrary

members Wz,j , Vz,j ∈ Gp3 . For each j ∈ [n], the adversary A also selects
the components u2,j , u3,j , . . . , un,j of uj = (u1,j , u2,j , . . . , un,j) randomly and
implicitly sets u1,j = βj = βαj so that (1, 0, . . . , 0) · uj = βj by setting

{K
(1)
z,j = g

yj(
n
∑

i=2
Az,iui,j)

1 (gβ
1 Y2)αjyjAz,1g

rIη(z) r̂z,j

1 X
Az·vj

2 Wz,j}z∈[l],j∈[n],K
(2)
z,j =

g
r̂z,j

1 Vz,j , z ∈ [l], j ∈ [n] where rIη(z) and αj are extracted from the lists Rand1
and Rand2 respectively and Az = (Az,1, Az,2, . . . , Az,n) is the z-th row of A.

It can be verified that the above generated key is a properly generated semi-
functional key of type-2 given in Eq. 5. Hence, A can use the output of B to
break Assumption 3 with non-negligible advantage and the Lemma follows.

5 Conclusion

In this work, we have provided a construction of an adaptively secure KP-ABIPFE
protocol based on simple subgroup decisional pairing based assumptions in com-
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posite order bilinear groups. We analyze the security of our scheme in the stan-
dard model using dual system encryption technique. Our design outperforms
previous similar schemes in terms of communication overhead.
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Floating-Point Arithmetic in Falcon
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Abstract. We show that there is a discrepancy between the emulated
floating-point multiplication in the submission package of the digital sig-
nature Falcon and the claimed behavior. In particular, we show that some
floating-point products with absolute values the smallest normal positive
floating-point number are incorrectly zeroized. However, we show that
the discrepancy doesn’t affect the complex fast Fourier transform in the
signature generation of Falcon by modeling the floating-point addition,
subtraction, and multiplication in CryptoLine. We later implement our
own floating-point multiplications in Armv7-M assembly and Jasmin and
prove their equivalence with our model, demonstrating the possibility of
transferring the challenging verification task (verifying highly-optimized
assembly) to the presumably more readable code base (Jasmin).

Keywords: Falcon · Floating-point arithmetic · Formal verification ·
CryptoLine

1 Introduction

Falcon [Pre+20] is one of the recently selected digital signatures for standard-
ization by the National Institute of Standards and Technology. Essentially the
signature is sampled with a probability approximated by floating-point numbers.
Since floating-point arithmetic is not always constant-time, [Por19] implemented
a series of constant-time floating-point arithmetic with software emulation. We
show that

– the emulated floating-point multiplication does not honor its behavior claimed
by [Por19];

– the discrepancy does not affect the complex fast Fourier transform in the
signature generation of Falcon; and

– how to prove the equivalence between emulated floating-point addition/sub-
traction/multiplication implementations.

Our source code is publicly available at
https://github.com/vincentvbh/Float_formal.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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2 Preliminaries

2.1 Falcon

Falcon is a lattice-based hash-and-sign digital signature based on fast Fourier
sampling over an NTRU lattice [Pre+20]. The NTRU lattice is determined by
four integer polynomials f, g, F,G satisfying

fG − gF = q mod (xn + 1)

where q = 12289 and n = 512, 1024. The lattice is generated by the basis B :=(
g −f
G −F

)
.

For the key generation, the four polynomials f, g, F,G form the secret key sk
and hence must have small coefficients, and the public key pk is the polynomial
h := gf−1 mod (xn + 1, q). See Algorithm 1 for an illustration.

For the signature generation, we generate a nonce r and hash it with the
message m. We then start sampling two small polynomials s1 and s2 satisfying
s1 + s2h = c mod (xn + 1, q) where c is the hash. The signature is defined as
(r, s2). Falcon adopts the so-called fast Fourier sampling based on a randomized
variant of fast Fourier nearest plane [DP16,Pre+20]. The idea essentially goes
as follows: We compute B̂ = FFT (B) and ĉ = FFT (c) with complex fast Fourier
transform, compute t =

(
− ĉF̂

q , ĉf̂
q

)
, construct the corresponding Falcon tree

T from the LDL decomposition of B̂B̂
∗
, and apply fast Fourier nearest plane

where the nearest plane part at the leaf level is replaced by a discrete Gaussian
sampling with secret center constructed serially from t and prior samples and
secret deviation constructed from T. We refer to Algorithm 2 for an overview
of the signature generation and [Pre+20, Algorithm 11] for a more detailed
explanation of the fast Fourier sampling.

For the signature verification, we compute s1 = c − s2h mod (xn + 1, q) and
accept the signature if || (s1, s2) ||2 is small enough (reject otherwise). See Algo-
rithm 3 for an illustration.

Algorithm 1: Falcon key generation from the reference implementation.
Outputs: a public key pk and a secret key sk
1: (f, g) = mkgauss() � Generate f, g from a discrete gaussian distribution.
2: (F, G) = solve_NTRU(f, g, xn + 1, q) � fG − gF = q mod (xn + 1)
3: h = gf−1 mod (xn + 1, q)
4: sk = (f, g, F, G)
5: pk = h
6: return pk, sk
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Algorithm 2: Falcon signature generation from the reference implementation.
Inputs: A message m and a secret key sk.
Outputs: A signature sig.
1: r ← {0, 1}320 uniformly � Salt.
2: c = HashToPoint (r||m)
3: ĉ = FFT(c)

4: B =

(
g −f
G −F

)

5: B̂ =

(
ĝ −f̂

Ĝ −F̂

)
= FFT(B)

6: T = ffLDL∗
(
B̂B̂

∗)
7: T = Normalize (T)

8: t =
(

−̂cF̂
q

, ĉf̂
q

)
� t = (ĉ, 0) B̂

−1

9: do
10: do
11: z = ffSampling (t,T)
12: s = (t − z) B̂
13: while ||s||2 >

⌊
β2

⌋
14: (s1, s2) = iFFT (s)
15: s = Compress (s2, 8 · sbytelen − 328)
16: while s == ⊥
17: sig = (r, s)
18: return sig

2.2 Fast Fourier Transform

Fast Fourier transform (FFT) is a popular approach in signal processing, poly-
nomial multiplication, and sampling. For a power of two n and the primitive
2n-th root of unity ω2n ∈ C, the negacyclic Cooley–Tukey FFT transforms the
polynomial ring C[x]/〈xn + 1〉 into

∏
i=0,...,n−1 C[x]/

〈
x − ω1+2i

2n

〉
in O(n log2 n)

operations in C up to the bitreversal permutation. In Falcon, since the input
coefficients are integers, [Por19] implemented an optimized variant of the com-
plex Cooley–Tukey FFT with C = R[z]/

〈
z2 + 1

〉
. They also approximated the

real number arithmetic by floating-point arithmetic in the signature generation.

2.3 Emulated Floating-Point Arithmetic

In Falcon, the real arithmetic in the signature generation is implemented as
floating-point arithmetic. We briefly review the IEEE 754 double-precision
floating-point specification.

A double-precision floating-point number is a 64-bit element consists of three
parts (most significant bits first): a 1-bit s for the sign, an 11-bit e for the biased
exponent, and a 52-bit m for the mantissa. We denote a floating-point number
as s|e|m with the sign s, the biased exponent e, and the mantissa m. When the
biased exponent satisfies 0 < e < 2047, the floating-point number corresponds
to the following real number:
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Algorithm 3: Falcon signature verification.
Inputs: a message m, a signature sig, and a public key pk = h

1: c = HashToPoint (r||m)
2: s2 = Decompress (s, 8 · sbytelen − 328)
3: if s2 == ⊥ then
4: reject
5: s1 = c − s2h
6: if || (s1, s2) ||2 >

⌊
β2

⌋
then

7: reject
8: accept

(−1)s 2e−1075
(
252 + m

)
.

We call such a floating-point number normal. In addition to the normal values,
we also have the following special values:

– e = 0, m = 0: This corresponds to a zero value. Notice that there are two zeros
±0 distinguished by the sign s.

– e = 0, m �= 0: This corresponds to the denormalized number (−1)s 2e−1074m.
– e = 2047, m = 0: This corresponds to an infinity. Notice that there are also

two infinities ±∞ distinguished by the sign s.
– e = 2047, m �= 0: This corresponds to a NaN (not-a-number) value.

In IEEE 754, “rounding to the nearest even” is adopted by default for rounding
the real number result to a floating-point number. In Falcon, the authors claimed
that infinites, NaNs, and denormalized numbers are not used and implemented
a set of functions emulating the elementary floating-point arithmetic where the
results are, according to their claim, correctly rounded for all normal values and
zeros with “rounding to the nearest even” rule [Por19, Section 3.3]. We show that
the latter doesn’t hold, but it doesn’t impact the complex fast Fourier transform
in the signature generation of Falcon.

2.4 CryptoLine

CryptoLine is a domain specific language for modeling straightline cryp-
tographic programs. It was introduced by [TWY17,PTWY18] for verifying
elliptic-curve arithmetic with assembly programs optimized “in the wild.” In
other words, assembly optimized programs were first delivered by experts in
assembly programming without considerations on verification, and verification
effort was later devoted to verifying the resulting programs. CryptoLine was
extended by [LSTWY19] for verifying elliptic-curve C implementations, and
by [FLSTWY19] for signed arithmetic. Recently, [Hwa+22] extended CryptoLine
with compositional reasoning for verifying large dimensional number-theoretic
transforms, and [LLSTWY23] extended CryptoLine with logical equivalence
checking for the stream cipher ChaCha20 [Ber08] and the cryptographic hash
functions SHA-2 and SHA-3.
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In CryptoLine, there are various instructions implementing basic arithmetic,
including signed/unsigned addition/subtraction/multiplication, logical/arith-
metic shift, bit-wise or/exclusive-or/and/not, bit-field splitting/concatenation,
signed/unsigned extension, and conditional move. These instructions effectively
capture the commonly used assembly instructions in cryptographic programs.
We translate the target assembly programs into strings of CryptoLine instruc-
tions, and argue the properties of the strings of CryptoLine instructions.

There are two classes of predicates in CryptoLine for modeling the proper-
ties of strings of CryptoLine instructions: the algebraic predicates and the range
predicates. An algebraic predicate is a conjunction of equations and modular
equations, and a range predicate is a boolean formula with comparisons, equa-
tions, and modular equations. We have the assertion assert and the assumption
assume annotations for imposing properties on the predicates. For an algebraic
predicate P and a range predicate Q, assert P && Q asks the backend to verify
P with the associated computer algebra system and Q with the associated SMT
solver, and assume P && Q adds P and Q to the corresponding backend tools.

Assertions are used alone for verifying properties, and assumptions are com-
monly used in conjunction with assertions for transferring predicates between the
backend tools. For example, we first verify an algebraic predicate P by imposing
assert P && true and pass it to the SMT solver by imposing assume true &&
P.

For verifying a program as a whole, we specify pre-conditions on the vari-
ables, insert the string of CryptoLine instructions translated from the target
program, annotate it with assertions and assumptions at proper locations, and
finally specify the post-conditions. The most difficult part is the insertions of
annotations, which, if ignored, results in non-responseness of the verification
process in our context.

2.5 Jasmin

Jasmin is a programming language serving as a vehicle correlating assembly
programs and their high-level abstractions. It was introduced by [Alm+17] for
verifying the memory safety and constant-timeness of elliptic-curve arithmetic
implementations. Jasmin was extended by [Alm+19] for verifying implemen-
tation correctness and the security of SHA3 implementations with EasyCrypt,
and [Alm+20] revisited the compiler, memory model, and EasyCrypt embedding
for verifying the ChaCha20 stream cipher, the Poly1305 message-authentication
code [Ber05], and the Gimli permutation [Ber+17]. Recently, [Alm+23] extended
Jasmin with function calls, pointers to the stack memory, and the system call
randombytes, and proved the implementation correctness of the key encapsula-
tion mechanism Kyber recently selected by the National Institute of Standards
and Technology as one of the to-be-standardized algorithms for post-quantum
cryptography.

Programmers write Jasmin programs with similar control of the computa-
tional flow as in assembly, and compile the programs into assembly programs
with the certified compiler jasminc. For verification purpose, we extract the
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Jasmin programs to EasyCrypt according to the Jasmin model in EasyCrypt,
and verify the desired properties with EasyCrypt. Compared to CryptoLine,
verification in EasyCrypt requires much more effort by explicitly applying var-
ious lemmas instead of simply imposing properties in a declarative fashion in
CryptoLine, but one can argue more properties in Easycrypt, for example, the
indifferentiability of SHA3 from random oracle as shown in [Alm+19].

3 Incorrect Zeroization

3.1 The Problem of Floating-Point Multiplication

We point out an incorrect zeroization in the emulated floating-point multiplica-
tions in Falcon. We illustrate the issue in the C reference implementation, and
our finding also applies to the Armv7-M assembly optimized implementation.

We briefly review the C reference implementation of the emulated floating-
point multiplication in the submission package of Falcon as follows:

1. The inputs are two 64-bit integers with each representing a double-precision
floating-point number.

2. Extract the mantissas and add them with 252 as if the floating-point inputs
are non-zero.

3. Compute the product of mantissas with radix-25 arithmetic.
4. Normalize the product to a 55-bit value.
5. Compute the exponent field as the sum of input exponent fields with a

corrective subtraction.
6. Compute the sign field as the exclusive-or of the input sign fields.
7. Zeroize the product if any of the input exponent fields is zero.
8. Zeroize the product if the resulting exponent is too small.
9. Zeroize the exponent field if the product is zero.

10. Assemble the sign field, exponent field, and the upper 53 bits of the 55-bit
product.

11. Increment the resulting floating-point as an unsigned 64-bit integer if the
55-bit product should be rounded.

The issue is that the zeroization due to the smallness of the exponent field
should be the last operation since the increment from rounding may results
in an exponent field that is slightly above the zeroization threshold. We refer
to Algorithm 4 for a more detailed illustration where the line in red (blue)
corresponds to the line in red(blue) of the above.

3.2 Extracting Witnesses

We show how to find inputs triggering the incorrect zeroization. For a floating-
point number with exponent field e and mantissa m, we find that if 1 ≤ e ≤ 1022,
1 ≤ m ≤ 252−2, and

⌊
2105

252+m

⌋ (
252 + m

) ≥ 2105−251, then a floating-point with

exponent field 1023 − e and mantissa
⌊

2105

252+m

⌋
leads to incorrect zeroization in
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Algorithm 4: Emulated C implementation (with some high-level syntax for the
irrelevant parts for readability) of floating-point multiplication in Falcon.
1: uint64_t xu, yu, zu, z;
2: uint32_t z0, z1, sticky, round;
3: int ex, ey, e, d, s;
4: xu = 252 | x & (252 − 1);
5: yu = 252 | y & (252 − 1);
6: z0 + z1 * 225 + zu * 250 = xu * yu;
7: sticky = ((z0 | z1) + 225 − 1 ) » 25; � sticky = 0 if z0 = z1 = 0, otherwise

1.
8: zu = zu | (uint64_t)sticky;
9: ex = (int)((x » 52) & (211 − 1));

10: ey = (int)((y » 52) & (211 − 1));
11: e = ex + ey - 2100;
12: (zu, e) = normalize(zu, e, 55, sticky);
13: s = (int)((x ˆ y) » 63);
14: d = ((ex + 211 − 1) & (ey + 211 − 1)) » 11; � d = 0 if ex = 0 or ey = 0,

otherwise 1.
15: zu = zu & (uint64_t)-d; � zu = 0 if d = 0, otherwise unchanged.
16: m = zu & ( ((uint32_t)(e + 1076) » 31) - 1); � m = 0 if e < −1076,

otherwise unchanged.
17: e = e + 1076;
18: e = e & -((int)(uint32_t)(m » 54) ); � e = 0 if m = 0, otherwise unchanged.
19: z = ( ((uint64_t)s « 63) | (m » 2) ) + ( (uint64_t)(uint32_t) e ) «

52;
20: round = (0xc8 » ((uint32_t)m & 7) ) & 1; � round = 1 if m & 7 = 3, 6, 7,

otherwise 0.
21: z = z + (uint64_t)round;
22: return (fpr)z; � fpr is defined as uint64_t.

Algorithm 4 where the correct result is a floating-point number with absolute
value the smallest normal positive floating-point number.

Recall that the issue of Algorithm 4 is that the product is zeroized due to the
smallness of the sum of exponents prior to the rounding at the end. We seek for
conditions triggering both lines (if-conditions are taken) while the floating-point
product is large enough after the rounding.

For simplicity, we first assume that the product of mantissas is an unsigned
105-bit integer (we will explain how this condition is satisfied shortly) so Line 12
changes nothing. We then choose e as the largest value, −1077, triggering Line 16
in Algorithm 4:

m = zu & ( ((uint32_t)(e + 1076) » 31) - 1).

This leads to the exponent fields ex = e and ey = 1023−e after tracing the code
(cf. Line 11). It remains to choose mantissas with a 105-bit product triggering
Line 20:

round = (0xc8 » ((uint32_t)m & 7) ) & 1.
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This leads to the mantissas xu = 252+m and yu =
⌊

2105

252+m

⌋
with an m satisfying

– 1 ≤ m ≤ 252 − 2, and
–

⌊
2105

252+m

⌋ (
252 + m

) ≥ 2105 − 251.

This implies that we have 255 − 2 or 255 − 1 after normalizing to a 55-bit value
(cf. Line 12), whose rounded value is 255 if we round it prior to the zeroization
in Line 16. Since the correct mantissa is 255, we have to increment the exponent
by 1, removing the need of zeroization from the smallness of the exponent.

Listing 1.2 is our program testing if we can find a floating-point number b
from the input floating-point number a whose floating-point product leads to an
incorrect zeroization in Algorithm 4, and Listing 1.1 is an auxiliary function.

Listing 1.1: Our C program testing if the input is small enough. We return 1 if
x is small enough, and 0 otherwise.

int test_smallness(fpr x){

fpr e = (x >> 52) & 0x7ff;
fpr m = x & 0xfffffffffffff;

if( (1 <= e) && (e <= 1022) )
if( (1 <= m) && (m <= 0xffffffffffffe) )

return 1;

return 0;

}

Listing 1.2: Our C program testing if there is an input leading to incorrect
zeroization. If we find a floating-point value such that its floating-point product
with a leads to incorrect zeroization, the floating-point value is stored in *b and
1 is returned. Otherwise, −1 is returned.

int retrieve_zeroization(fpr *b, fpr a){

uint64_t t;

__uint128_t a128 , b128 , t128;

if(test_smallness(a) == 0)
return -1;

a128 = (1ULL << 52) + (a & 0xfffffffffffff);
t128 = 1; t128 <<= 105;
b128 = t128 / a128;

if( a128 * b128 + (1ULL << 51) < t128)
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return -1;

t = ( 1023 - ((a >> 52) & 0x7ff) ) << 52;
t |= b128 - (1ULL << 52);
*b = t;

return 1;

}

3.3 An Example in Falcon

In Falcon, we need to approximate the real number 1√
2

for representing the

complex number e
πi
4 = 1√

2
+ i√

2
. The real number 1√

2
is approximated by the

floating-point number s|e|m = 0|1022|1865452045155277. Since 1 ≤ e ≤ 1022,
1 ≤ m ≤ 252 − 2, and

⌊
2105

252+m

⌋ (
252 + m

)
= 6369051672525772

(
252 + m

) ≥
2105 − 251, we know that if the other operand is the floating-point number
0|1|6369051672525772, the result is incorrectly zeroized. One can pass the
pair

(
1022 · 252 + 1865452045155277, 252 + 6369051672525772

)
as arguments of

the emulated floating-point multiplication in Falcon and compare the result with
the native floating-point multiplication to see the difference.

4 Is it Relevant to Falcon?

In previous section, we demonstrate that the emulated floating-point multipli-
cation doesn’t honor its claim where some non-zero floating-point numbers are
zeroized. An immediate question is its impact to Falcon implementations. Among
the functions in Falcon, we are interested in the complex FFT in the signa-
ture generation where the inputs are polynomials with integer coefficients in[−215, 215

)
. After going through the tests for all the floating-point constants in

the complex FFT, we find that 692 out of 2048 floating-point constants admit
floating-point operands leading to incorrect zeroization. Nevertheless, we model
the floating-point addition, subtraction, and multiplication in CryptoLine, and
show that all non-zero intermediate floating-point numbers have absolute values
lie in [

2−476, 227(252 + 605182448294568)
]
,

far away from triggering incorrect zeroizations.

4.1 Modeling with CryptoLine Instructions

We first model our own strings of CryptoLine instructions and start annotating
CryptoLine programs with assertions and assumptions to transfer predicates
between backend tools. The main difficulties are as follows:
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– When to declare statements that should be proved by the backend proof
systems?

– Which statements should be transferred between proof systems at a given
point?

We do not know of any systematic approaches resolving the two difficulties.
Nevertheless, we find the following constructions of intermediate symbols and
annotations sufficient for verifying the range:

1. Construct the 128-bit product r of mantissas with the long multiplication.
2. Split the input into radix-25 representation with bitfield arithmetic, verify the

correctness of the spliting with the SMT solver, and add the corresponding
algebraic identities to the computer algebra system.

3. Compute the multi-limb product, verify its algebraic correctness with r in
the computer algebra system, and add the corresponding boolean identities
to the SMT solver.

4. Verify the remaining operations (zeroization, rounding, assembling) entirely
with the SMT solver.

If we remove Steps 2. and 3., the SMT solver doesn’t return a result (it doesn’t
find an instance disproving the properties, but it doesn’t finish verifying over all
the possible inputs).

4.2 Range-Checking

We develop our own range arithmetic in C++ computing the pre- and post-
conditions to be verified. Once the pre- and post-conditions are computed for all
the possible floating-point additions/subtractions/multiplications, we verify the
correctness with CryptoLine. Typically, range-checking of floating-point arith-
metic focus on upper-bounding the floating-point errors1. However, we need to
derive non-trivial lower bounds of floating-point numbers for proving the non-
smallness of the absolute values of non-zero floating-point numbers.

For two non-negative floating-point numbers a.l ≤ a.u, we represent the
subset {0}∪ [a.l, a.u]∪ [−a.u,−a.l] as a structure with lower bound a.l and upper
bound a.u. Since the definition is symmetric for the positive and negative sides,
we only store the positive bounds, and update the positive bounds throughput
the entire computation. The zero values are included implicitly and we do not
store its existence (it always exists in all the ranges). The range arithmetic of
floating-point multiplication is straightforward as shown in Algorithm 5. For
the floating-point addition/subtraction with the ranges a and b, we distinguish
between two cases:

1 For example, Frama-C [CKKPSY12] only shows that the floating-point number is
upper-bounded by a floating-point number and lower-bounded by 0, which is use-
less for proving the non-smallness of the absolute values of non-zero floating-point
numbers.
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1. Case a∩ b = {0}: The upper bound is computed as the sum of upper bounds,
and the lower bound is defined as the minimum of the absolute values of the
differences between an upper bound and a lower bound from different ranges.
In other words, the lower bound is defined as min (|a.u − b.l|, |b.u − a.l|).

2. Case a ∩ b = t �= {0}: The upper bound is also computed as the sum of
upper bounds, and the lower bound is defined as the floating-point value
with mantissa 0 and exponent field 52 smaller than the exponent field of t.l,
since the smallest value occurs when subtracting two values with the real
value difference 2e−1075 where e is the smallest exponent field of the two and
choosing e as the exponent field of t.l results in a worse case analysis. Since we
have to shift the leading bit of mantissa to the 52-th bit position, the exponent
field is subtracted by 52 and the mantissa becomes 252. By the definition of
floating-point numbers, the leading bit of mantissa is stored implicity. This
is why we set the mantissa to 0 in the floating-point number representation.

Algorithm 6 is an illustration of the range arithmetic of floating-point addi-
tion/subtraction. After replacing all the floating-point arithmetic with the range
arithmetic in the FFT of Falcon, we transform all the input-output tuples into
pre- and post-conditions for the corresponding CryptoLine model. We then run
CryptoLine to verify the conditions. Our CryptoLine verification shows that

– All the range arithmetic are correct within our modeling of floating-point
addition, subtraction, and multiplication.

– All non-zero intermediate floating-point numbers have absolute values lie in
[
2−476, 227(252 + 605182448294568)

]

when the input coefficients of FFT are integers in
[−215, 215

)
.

Table 1 summarizes the verification time of the range conditions of floating-point
additions and multiplications in Falcon’s size-1024 complex FFT.

Algorithm 5: Range arithmetic of floating-point multiplication.
Inputs: a = (a.l, a.u) , b = (b.l, b.u)
Output: c = (c.l, c.u)

1: c.l = a.l · b.l
2: c.u = a.u · b.u
3: return c
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Algorithm 6: Range arithmetic of floating-point addition/subtraction.
Inputs: a = (a.l, a.u) , b = (b.l, b.u)
Output: c = (c.l, c.u)

1: t = a ∩ b.
2: if t = {0} then
3: (d0, d1) = (|a.u − b.l|, |b.u − a.l|)
4: c.l = min (d0, d1)
5: c.u = a.u + b.u
6: return c
7: c.u = a.u + b.u
8: s|e|m = t.l
9: c.l = s|(e − 52)|0

10: return c

Table 1. Verification time of range conditions for a size-1024 complex FFT with
C ∼= R[z]/

〈
z2 + 1

〉
and input polynomials drawn from Z∩ [−215, 215

)
. Floating-

point subtractions are regarded as floating-point additions in our interval arith-
metic. FP stands for “floating-point.”

Operation Number of instances Verification time (avr./total in seconds)

FP addition 767 0.297 886/228.478 732
FP multiplication 511 2.589 009/1 322.983 371

5 Equivalence Proofs

In this section, we briefly describe our implementations of floating-point multi-
plication and their equivalence proofs.

5.1 Our Implementations and The Claimed Behavior

Since there is a discrepancy between the emulated floating-point multiplications
in Falcon and the claimed behavior, we implement our own assembly implemen-
tation honoring the following rules:

– It rounds the values correctly by experiment.
– Its output range is always zeros or normal floating-point values by formal

verification. If the real number product is too small in absolute value, it
returns a zero. If the real number product is too large in absolute value, the
largest possible normal value is returned when the result is positive (smallest
possible normal value is returned in the negative case).

We start with the assembly implementation in Falcon, which is much more opti-
mized compared to the C reference implementation, and implement the above
rules. This ensures that the output range is always a zero or a normal floating-
point value when the inputs are zeros or normal floating-point values.
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Comparisons to [Por19]. In the emulated floating-point multiplications in Falcon
by [Por19], since the program does not handle infinities, one has to verify the
correctness within a certain input range avoiding infinity outputs. The former
forbids us to argue the correctness of the full range of zeros and normal floating-
point values.

In addition, we also implement an emulated floating-point multiplication in
Jasmin essentially following the more readable (but slower) C reference imple-
mentation. In the follow-up section, we explain how to verify the equivalences of
emulated floating-point multiplication implementations.

5.2 Equivalence Proofs in CryptoLine

We start with our CryptoLine model used for range-checking and add more
annotations. Essentially, the majority of the effort is still about verifying the
multi-limb arithmetic and transferring its correctness to the SMT solver. In
principle, whenever we issue a multiplication, we prove its correctness in the
computer algebra system, and add the corresponding boolean identities to the
SMT solver. We apply the idea to proving the equivalence of our CryptoLine
model and our assembly implementation, and the equivalence of our CryptoLine
model and our Jasmin implementation. See Table 2 for an overview of verification
time of the equivalences. Since equivalence is transitive, we have an equivalence
between our assembly optimized implementation and our Jasmin implementation
where the former is more optimized and the latter is more readable.

Table 2. Verification time of equivalence proofs between Armv7-M implemen-
tations and our CryptoLine model.

Programming langauge Verification time (in seconds)

Floating-point addition
Jasmin 53.946 560
Assembly 59.863 976
Floating-point multiplication
Jasmin 57.108 668
Assembly 5.333 913

6 Discussions

6.1 How the Discrepancy Was Found?

The core of this paper is about modeling floating-point addition, subtraction,
and multiplication with the domain specific language CryptoLine, and its appli-
cation in proving the lower bound and upper bound of non-zero intermediate
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floating-point numbers and the equivalences between implementations via soft-
ware emulation. The whole paper is written in a way with concise logical reason-
ing so readers can follow more easily. However, the true story of the discovery is
more disorganized than the story told in the paper.

The true story is that, we first wrote a model in CryptoLine and proved
its equivalence with the emulated floating-point multiplication by [Por19]. With
a much more readable model at hand, we were confounded by its correctness
since it was inconsistent with our understanding of floating-point arithmetic.
Our careful examinations eventually led to the C program extracting witnesses
with incorrect zeroization, in the sense that the results were different from the
native floating-point multiplication on our laptop and the emulated floating-
point multiplication by the Arm’s toolchain for Cortex-M4. After contacting the
author of [Por19], we knew that experimentally, there were no such floating-point
numbers but there was no formal proof. We later fixed our model, simplified it for
range-checking, and verified the absence of non-zero floating-point numbers with
absolute values the smallest normal positive floating-point number throughout
the complex FFT in the signature generation of Falcon. The model was finally
used for verifying the equivalence of implementations. We hope the true story
will give more insights on how to use the tools.

6.2 The Validity of This Paper After Recent Uses of Fixed-Point
Arithmetic

Recently, a fixed-point implementation for the complex FFT in the key gen-
eration was proposed by [Por23]. An immediate question is the validity of our
findings in the emulated floating-point arithmetic. We would like to stress that,
the roles of the complex FFTs are quite different in key generation and signature
generation.

Key Generation. We review the uses of complex FFT in the key generation of
Falcon as follows. We first generate short integer polynomials f and g, and solve
for integer polynomials F and G satisfying

fG − gF = q mod (xn + 1) .

Since the coefficients of F and G could be too large for efficient computation
for the follow-up computation, we need to reduce the bit-size of the pair (F,G)
with respect to the pair (f, g). This can be achieved by the Babai’s reduction:
we compute k =

⌊
Ff∗+Gg∗

ff∗+gg∗

⌉
and subtract (kf, kg) from (F,G) where f∗ :=

f0 − ∑n−1
i=1 fix

n−i is the adjoint of f =
∑n−1

i=0 fix
i. Obviously, if fG − gF =

q mod (xn + 1), then f (G − kg)− g (F − kf) = fG − gF = q mod (xn + 1) and
(F − kf,G − kg) is a valid solution for the NTRU equation. For the quotient
Ff∗+Gg∗

ff∗+gg∗ in Q[x]/〈xn + 1〉, we instead compute them with the aid of complex
FFT in C[x]/〈xn + 1〉. In [Por23], the author implemented the complex FFT
with scaled 64-bit fixed-point arithmetic and reduced the pair (F,G) several
times instead of reducing it once with high-precision complex FFT.
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Signature Generation. In the signature generation, the role of the complex FFT
is quite different. Essentially, the sampler in Falcon converts the sampling task
over the NTRU lattice into several one-dimensional sampling task and the com-
plex FFT is involed in this conversion. If one wants to replace the floating-point
FFT with scaled fixed-point arithmetic, one has to thoroughly revise the range
analysis of the scaling, potentially use a much higher precision, and revise the
security analysis from the implementational perspective. We have not seen effort
from the community deploying the scaled fixed-point arithmetic and analyzing
the accompanied security impact.

6.3 Possible Future Extensions

We briefly outline several possible future extensions of this paper.

Verifying Additional Constant-Time Emulations of Floating-Point Arithmetic.
This paper demonstrates the formal verification of the software emulation of
floating-point addition, subtraction, and multiplication with respect to our Cryp-
toLine model. Our approach extends to several interesting floating-point arith-
metic, including negation, halving and fused multiply-add/sub. Our approach
also applies to other rounding rules. As for the floating-point division, it will be
interesting to explore the formal verification of the bit-by-bit division by [Por19].

Applications to ffLDL∗ and ffSampling. In this paper, we verify the range of the
complex FFT computation with input integer polynomials. An immediate ques-
tion is the applicability of our verification approach to the operations ffLDL∗ and
ffSampling in the signature generation. For ffLDL∗, it is a straightline program
with floating-point divisions so we can only verify the computation once floating-
point division is verified. For ffSampling, it is built upon the one-dimensional
discrete Gaussian sampler with a rejection loop. Therefore, CryptoLine along
cannot verify this operation. We believe CryptoLine should be used as a plug-in
of formal verification tools handling the rejection loop.

6.4 Applications to Other Lattice-Based Schemes

Our formal verification approach applies to several digital signature schemes.
For ModFalcon [CPSWX20], since it also relies on the fast Fourier sampling
from [DP16], one needs to apply FFT in a similar fashion as in Falcon’s signature
generation. For Mitaka [Esp+22], there are two samplers proposed by [Esp+22]:
the hybrid sampler built upon the Gram-Schmidt orthogonalization with the
aid of complex FFT and the integer arithmetic friendly sampler built upon
the integral Gram decomposition by [DGPY20]. For the former, our verifica-
tion approach applies since one needs to apply complex FFT. For the latter,
integral Gram decomposition reduces to writing a positive integer as a sum
of four squared integers and the fastest know algorithms are the randomized
ones [PT18]. It seems difficult to find an unconditional deterministic algorithm
for the problem [PT18, Section 5]. Therefore, it is unclear to us whether the
integral version of Mitaka can be implemented securely and efficiently.
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Abstract. Since 1991, Schnorr has proposed methods using lattices for
solving the integer factorization problem whose hardness supports the
security of the RSA cryptosystem. In 2022, Yan et al. proposed a mod-
ification of Schnorr’s lattices and reported numerical experiments by
an optimization method using quantum computation. After that, Yam-
aguchi et al. reported that they succeeded in factoring RSA-type com-
posite numbers of at most 55 bits based on Yan et al.’s modification,
using classical annealing calculation. In this paper, we report experi-
mental results of integer factorization methods using lattices in classical
computing. Specifically, we analyze the structure of Schnorr’s lattices to
select suitable parameters and apply existing lattice algorithms for find-
ing smooth relations in the difference-of-squares method. We report the
running time of integer factorization using lattices for RSA-type com-
posite numbers of at most 90 bits and the success probability of finding
a smooth relation from a lattice. We also discuss the time complexity
of integer factorization methods using lattices based on experimental
results.

Keywords: integer factorization · lattice problems · lattice algorithms

1 Introduction

The RSA cryptosystem [15] is widely used as a public key cryptography, and its
security relies on the computational hardness of factoring a huge composite num-
ber. Since the publication of Shor’s quantum polynomial-time algorithm [21] for
the integer factorization problem, many works have been carried out to estimate
quantum resources required for factoring a composite number of cryptographic
size (see [6,7,12,13,23,25]). On the other hand, since 1991, Schnorr has pro-
posed methods in [16–19] that reduce the problem of finding smooth relations
in the difference-of-squares method, one of the classical integer factorization
methods, to the problem of finding approximate solutions of the closest vec-
tor problem (CVP) in a certain lattice. In 1997, it was reported in [14] that
it took about 3 hours to factor a composite number of 58-bit using lattices by
block-reduction and pruned enumeration algorithms. Long after that, a trial
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experiment for Schnorr’s methods using lattices by Ducas [3] suggests that the
success probability of finding a smooth relation in a lattice decreases as the size
of the composite number to be factorized increases, and thus such methods are
less effective than the quadratic sieve and the number field sieve methods for
factoring a composite number of cryptographic size (see also [4]). In contrast,
Yan et al. [26] modified Schnorr methods and applied the Quantum Approximate
Optimization Algorithm (QAOA), one of the optimization methods using quan-
tum computation, to search approximate solutions of CVP in modified lattices.
They also claimed that it is possible to search smooth relations using modified
lattices with a small number of O(m/ log m) qubits for the bit-size m of a com-
posite number to be factorized. Furthermore, for some composite numbers of
at most 48 bits, they succeeded in finding several relational expressions in the
difference-of-squares method using a quantum computer and QAOA. After that,
Yamaguchi et al. [24] verified the feasibility of Yan et al.’s method by experi-
ments to estimate that more qubits than O(m/ log m) are required for factoring
a composite number of m bits. It is also reported in [24] that they succeeded in
factoring RSA-type composite numbers of at most 55 bits using classical anneal-
ing calculation instead of QAOA.

In this paper, we report experimental results of integer factorization methods
using lattices in classical computing. In particular, we use Yan et al..’s modified
lattices for experiments. We first analyze the structure of Schnorr’s lattices to
select suitable parameters of Yan et al..’s lattices for factoring a composite num-
ber. For experiments, we apply Kannan’s embedding method [8] for Yan et al..’s
lattices to transform approximate CVP into approximate SVP. For implemen-
tation, we reduce a basis of a lattice by the LLL algorithm [9] and then collect
smooth relations by enumeration of short vectors in the lattice. We report exper-
imental results for factoring RSA-type composite numbers of at most 90 bits (cf.,
implementation results in [14,18,24,26] for factoring composite numbers of at
most 58 bits). In particular, we show experimental results on the success prob-
ability of finding a smooth relation extracted from a short vector in a lattice.
Furthermore, we discuss the time complexity of integer factorization methods
using lattices based on experimental results.

Notation. Let N,Z,Q,R denote the set of natural numbers, the ring of integers,
the fields of rational numbers and real numbers, respectively. For z ∈ R, let �z�
denote its rounded value to the nearest integer. We write row vectors (resp.,
matrices) in bold lower-case (resp., capital) letters as u (resp., A). We denote
by u� (resp., A�) the transpose of u (resp., A). For u = (u1, . . . , um), v =
(v1, . . . , vm) ∈ R

m, let 〈u,v〉 denote the inner product defined by
∑m

i=1 uivi. Let
‖u‖ denote the Euclidean length defined by ‖u‖ =

√〈u,u〉.

2 Preliminaries: Lattices and Lattice Algorithms

In this section, we summarize the basics of lattices and typical lattice algorithms,
which shall be used later (see [2,11,27] for details).
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2.1 Lattices and Their Bases

For two positive integers d,m with d ≤ m, the set of all integral linear combina-
tions of d linearly independent vectors b1, . . . , bd ∈ R

m

L = L(b1, . . . , bd):=

{
d∑

i=1

xibi : xi ∈ Z, 1 ≤ i ≤ d

}

is called a lattice in R
m. The set (resp., number) of linearly independent vectors

spanning L is called a basis (resp., the rank) of L. We call that L is of full-rank
when d = m. For a matrix B, we call it a basis matrix of L if the rows of B gives
a basis of L. For such B, we simply write L = L(B). There are infinitely many
bases of a lattice of rank d ≥ 2. For two matrices B,C, they are basis matrices
of the same lattice if and only if there exists a unimodular matrix T satisfying
C = TB. The volume of a lattice L is defined by

vol(L):=
√

det (BB�)

for a basis matrix B of L, independent of the choice of basis matrices. In partic-
ular, it holds vol(L) = |det(B)| when L is of full-rank. The length of the shortest
non-zero vector in L is denoted by λ1(L). Minkowski’s first theorem shows that
it holds λ1(L) <

√
dvol(L)

1
d for any lattice L of rank d.

2.2 Lattice Problems

Lattice problems are algorithmic problems involving lattices. Below we introduce
two famous lattice problems; the shortest vector problem (SVP) and closest vec-
tor problem (CVP):

Definition 1 (SVP). Given a basis of a lattice L, it asks us to find the shortest
non-zero vector in L, that is, a lattice vector s in L such that ‖s‖ = λ1(L).

Definition 2 (CVP). Given a basis of a lattice L and a target vector t, it asks
us to find a lattice vector v in L closest to t.

It is proven that CVP is at least as hard as SVP (e.g., see [10] for a proof).
However, from a practical point of view, both problems are considered equally
hard due to Kannan’s embedding method [8] that can transforms CVP into SVP.

2.3 Lattice Algorithms

Here we summarize algorithms solving lattice problems, which shall be used in
our experiments. Before presenting them, we recall the Gram-Schmidt orthogo-
nalization of a lattice basis. The Gram-Schmidt vectors of a basis {b1, . . . , bd}
of a lattice L in R

m are defined recursively by

b∗
1:=b1, b∗

i :=bi −
i−1∑

j=1

μijb
∗
j , μij :=

〈bi, b
∗
j 〉

‖b∗
j‖2

(i > j)
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for 2 ≤ i ≤ d. Then we have 〈b∗
i , b

∗
j 〉 = 0 for any i �= j. For each 1 ≤ k ≤ d, we

also define the orthogonal projection map

πk : Rm −→ 〈b∗
k, . . . , b∗

d〉R, πk(v):=
d∑

i=k

〈v, b∗
i 〉

‖b∗
i ‖2

b∗
i (v ∈ R

m),

where 〈b∗
k, . . . ,b∗

d〉R is the R-vector space spanned by b∗
k, . . . , b∗

d. The lattice
spanned by projected vectors πk(bk), . . . , πk(bd) is called a projected lattice of
L, denoted by πk(L), whose rank is equal to d − k + 1.

Enumeration. It is a deterministic algorithm solving SVP exactly, whose time
complexity is exponential in the rank of a lattice. Given a basis {b1, . . . , bd} of
L, an enumeration algorithm (e.g., Schnorr-Euchner’s algorithm [20]) is based
on a depth-first tree search for an integer combination (v1, . . . , vd) such that
s = v1b1 + · · · + vdbd is the shortest in L \ {0}, where 0 denotes the zero vector.
With the Gram-Schmidt information of the basis, it can be written as

s =
d∑

i=1

vi

⎛

⎝b∗
i +

i−1∑

j=1

μijb
∗
j

⎞

⎠ =
d∑

j=1

⎛

⎝vj +
d∑

i=j+1

μijvi

⎞

⎠ b∗
j .

It follows by the orthogonality of Gram-Schmidt vectors that for every 1 ≤ k ≤ d,
the projected vector πk(s) has length

‖πk(s)‖2 =
d∑

j=k

⎛

⎝vj +
d∑

i=j+1

μijvi

⎞

⎠

2

‖b∗
j‖2.

Given a search radius R > 0, from d inequalities ‖πk(s)‖2 ≤ R2 for 1 ≤ k ≤ d,
we can construct an enumeration tree of depth d, whose nodes at depth d−k+1
correspond to the set of all vectors in πk(L) of length less than R.

The LLL Algorithm. It is currently known as the most famous lattice basis
reduction, which finds a basis of a lattice with short and nearly-orthogonal basis
vectors. Such a basis is said good or reduced, and most lattice problems are easier
to be solved with a more reduced basis. For example, an enumeration algorithm
runs more efficiently on a more reduced basis. Let {b1, . . . , bd} be a basis of a
lattice L with Gram-Schmidt coefficients μij ’s and vectors b∗

k’s. We say the basis
LLL-reduced for a constant 1

4 < δ < 1 if it satisfies the following two conditions:

(i) (Size-reduced) |μij | ≤ 1
2 for any j < i.

(ii) (Lovász’ condition) δ‖b∗
k−1‖2 ≤ ‖πk−1(bk)‖2 for all 2 ≤ k ≤ d.

The first basis vector of an LLL-reduced basis satisfies both ‖b1‖ ≤ α
d−1
2 λ1(L)

and ‖b1‖ ≤ α
d−1
4 vol(L)

1
d with α = 4

4δ−1 . Given any basis {b1, . . . , bd} of L, the
LLL algorithm [9] repeatedly performs size-reduction as bi ← bi − �μij�bj and
swaps adjacent basis vectors bk−1, bk that do not satisfy Lovász’ condition until
it finds an LLL-reduced basis of L. Its time complexity is polynomial in d.
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Babai’s Nearest Plane Algorithm. It is an algorithm to find an approximate
solution of CVP, whose time complexity is polynomial in the rank of a lattice.
Specifically, given a basis {b1, . . . , bd} of a full-rank lattice L and a target vector
t, it finds a unique lattice vector v in L such that the difference vector v − t
has the form

∑d
i=1 xib

∗
i (xi ∈ R) with |xi| ≤ 1

2 for all 1 ≤ i ≤ d (see [1]). This
implies that it can find a lattice vector in L closer to t on a more reduced basis.
For example, on an LLL-reduced basis with δ = 3

4 , it outputs a lattice vector v
in L satisfying

‖v − t‖2 ≤ 2ddist(L, t)2, (1)

where dist(L, t) = minu∈L ‖u− t‖ denotes the minimum distance between t and
any lattice vector u in L.

3 Integer Factorization Methods Using Lattices

In this section, we summarize integer factorization methods using lattices. For
an integer N to be factorized, their basic framework is to build a congurence of
squares modulo N by collecting smooth relations, as in the quadratic sieve and
the number field sieve methods. Below we recall the basic framework and then
present Schnorr’s method (referencing [19] mainly) for finding smooth relations
using lattices and its modification by Yan et al. [26].

3.1 Basic Framework: Difference-of-Squares Method

Here we describe the difference-of-squares method to factorize a composite num-
ber N . Below we define several notions used in the method.

Definition 3 (factor base). For every k ∈ N, let pk denote the k-th smallest
prime (for example, p1 = 2, p2 = 3, p3 = 5). We also let p0 = −1 for convenience.
For each � ∈ N, we call the set P�:={p0, p1, p2, . . . , p�} a factor base.

Definition 4 (p�-smooth). For a factor base P�, an integer M is p�-smooth
if any prime factor of M does not exceed p�. Such an integer can be factorized
in the form M =

∏�
j=0 p

ej

j with ej ∈ Z≥0.

Definition 5 (p�-smooth relation pair). For a factor base P� and an integer
N to be factorized, a pair of integers (u, v) is called a p�-smooth relation pair
if u and u − vN are both p�-smooth. In this case, we can write

u =
�∏

j=0

p
ej

j , u − vN =
�∏

j=0

p
e′

j

j (ej , e
′
j ∈ Z≥0). (2)

Furthermore, if gcd(u,N) = 1, then it holds

�∏

j=0

p
e′

j−ej

j =
u − vN

u
≡ 1 (mod N). (3)

After this, we assume that any p�-smooth relation pair satisfies gcd(u,N) = 1.
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Let N be a composite number (of RSA type). To factorize N , the difference-of-
squares method attempts to find a pair (X,Y ) of two different integers satisfying
X2 ≡ Y 2 (mod N). Since the square difference X2 − Y 2 = (X + Y )(X − Y ) is
a multiple of N , prime factors of N may be distributed into X + Y and X − Y .
Then we can find prime factors of N from values of gcd(X ± Y,N). Below we
show the overall procedure of the difference-of-squares method for factoring N :

1. (Finding smooth relations) We fix a factor base P� and find #P� + 1 = � + 2
different p�-smooth relation pairs (ui, vi) with 1 ≤ i ≤ � + 2. (In the next
subsection, we will present methods for finding smooth relation pairs using
lattices.) Similarly to Eq. (2), we express each (ui, vi) in the form

ui =
�∏

j=0

p
ei,j

j , ui − viN =
�∏

j=0

p
e′

i,j

j (ei,j , e
′
i,j ∈ Z≥0).

2. (Linear algebra) From the p�-smooth relation pairs (ui, vi) for 1 ≤ i ≤ � + 2,
we construct the matrix A =

(
e′
i,j − ei,j

)

1≤i≤�+2, 0≤j≤�
of size (�+2)×(�+1).

We consider the F2-linear mapping

ϕ : F�+2
2 −→ F

�+1
2 , t �−→ tA mod 2,

whose kernel has dimension dim ker ϕ = �+2−dim imϕ ≥ 1. Therefore there
exists a non-trivial vector t = (t1, t2, . . . , t�+2) in kerϕ. This means that we
have

∑�+2
i=1 ti(e′

i,j − ei,j) ≡ 0 (mod 2) for all 0 ≤ j ≤ �. Then we set

X:=
�∏

j=0

p
mj

j with mj =
1
2

�+2∑

i=1

ti(e′
i,j − ei,j) ∈ Z.

It follows by Eq. (3) that we have

X2 =
�∏

j=0

p
∑�+2

i=1 ti(e
′
i,j−ei,j)

j =
�∏

j=0

�+2∏

i=1

(
p

e′
i,j−ei,j

j

)ti

=
�+2∏

i=1

⎛

⎝
�∏

j=0

p
e′

i,j−ei,j

j

⎞

⎠

ti

≡ 1 (mod N).

In other words, when we set Y = 1, we have X2 ≡ Y 2 (mod N). If X �≡ ±1
(mod N), then p = gcd(X ± 1, N) may be a prime factor of N .

3.2 Finding Smooth Relation Pairs Using Lattices

In [16–19], Schnorr proposed methods to find smooth relation pairs using lattices
Here we show Schnorr’s lattices and their modification by Yan et al. [26].



148 A. Sato et al.

Schnorr’s Lattices. Let N > 0 be a composite number to be factorized. With
the first n primes p1, p2, . . . , pn and a precision parameter c ∈ R>0, we consider
the n × (n + 1)-matrix

Bn,c =

⎛

⎜
⎜
⎜
⎝

b1
b2
...
bn

⎞

⎟
⎟
⎟
⎠

:=

⎛

⎜
⎜
⎜
⎝

f(1) 0 · · · 0 N c ln p1
0 f(2) · · · 0 N c ln p2
...

...
. . .

...
...

0 0 · · · f(n) N c ln pn

⎞

⎟
⎟
⎟
⎠

, (4)

where f is a permutation of the set
{√

ln p1,
√

ln p2, . . . ,
√

ln pn

}
. (Here ‘ln x’

is the logarithm of a positive number x with base of Napier’s constant e. In
contrast, we shall use ‘log x’ with base of 2 later.) We also set the vector

t:=
(
0 0 · · · 0 N c lnN

) ∈ R
n+1 (5)

of length n + 1. We write b1, . . . , bn for the n rows of Bn,c as in Eq. (4), and let
Ln,c:=L(b1, . . . , bn) denote the lattice spanned by them, that is, Ln,c = L(Bn,c).
We correspond each lattice vector b =

∑n
i=1 eibi in Ln,c with e1, . . . , en ∈ Z to

the pair (u, v) of relatively prime pn-smooth integers defined by

u:=
∏

ei>0

pei
i and v:=

∏

ei<0

p−ei
i . (6)

We denote b ∼ (u, v), which satisfies the inequality

‖b‖2 =
n∑

i=1

e2i f(i)2 + N2c ln2
(u

v

)

≥
n∑

i=1

|ei| ln pi + N2c ln2
(u

v

)
= ln(uv) + N2c ln2

(u

v

)
.

In particular, the equality holds if and only if ei ∈ {0,±1} for all 1 ≤ i ≤ n,
namely, uv is square-free. Similarly, for the distance between b and t, we have

‖b − t‖2 =
n∑

i=1

e2i f(i)2 + N2c ln2
( u

vN

)
≥ ln(uv) + N2c ln2

( u

vN

)
. (7)

We let z = u−vN
vN ∈ Q. Since u, v are both pn-smooth integers and thus their sizes

are at most O(pn) = Õ(n), we expect |z| < 1 with high probability when n � N

such as n = O(log N). Then we apply the Taylor form ln(1+x) =
∑∞

i=1
(−1)i−1

i xi

for −1 < x ≤ 1 to roughly estimate

ln2
( u

vN

)
= ln2(1 + z) ≈

∣
∣
∣
∣
u − vN

vN

∣
∣
∣
∣

2

(8)

by ignoring the terms of zi for i ≥ 2 in ln(1 + z). When we take c > 0 such that
ln(uv) � N2c, we have

‖b − t‖2 � N2c ln2
( u

vN

)
≈ N2c

∣
∣
∣
∣
u − vN

vN

∣
∣
∣
∣

2

(9)
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from Eqs. (7) and (8). (In other words, c is a parameter that adjusts the weight
of the right-hand equation of (7). Schnorr sets c = 1

n+1 in [19].) Therefore, if
the distance between b and t is sufficiently small, the absolute value of u − vN
should be sufficiently small and it might be pn-smooth. This implies that the
problem of finding a pn-smooth pair (u, v) such that |u − vN | is also pn-smooth
can be reduced to the problem of finding an approximate solution of CVP on
the lattice Ln,c with the target vector t. Furthermore, we can generate many
different lattices Ln,c by replacing the diagonal elements of the left-part square
matrix of Bn,c to find many pn-smooth relation pairs.
Yan et al.’s Modification. For Schnorr’s lattice basis (4), Yan et al. [26]
replaced

√
ln pi and N c ln pi by �i/2� and �10c ln pi�, respectively, to generate

the integer matrix

B′
n,c:=

⎛

⎜
⎜
⎜
⎝

g(1) 0 · · · 0 �10c ln p1�
0 g(2) · · · 0 �10c ln p2�
...

...
. . .

...
...

0 0 · · · g(n) �10c ln pn�

⎞

⎟
⎟
⎟
⎠

, (10)

where g is a permutation of the set {�i/2� (i = 1, 2, . . . , n)}. With the modifica-
tion, they also set the target vector

t′:=
(
0 0 · · · 0 �10c ln N�) ∈ Z

n+1 (11)

alternative to Eq. (5). We let L′
n,c:=L(B′

n,c). Similarly to Eq. (6), we correspond
each lattice vector in L′

n,c to the pair of relatively prime pn-smooth integers.
Then for every b′ ∈ L′

n,c with b′ ∼ (u, v), we roughly have

‖b′ − t′‖2 � 102c

∣
∣
∣
∣
u − vN

vN

∣
∣
∣
∣

2

like Eq. (7) when we take c > 0 such that ln(uv) � 102c. Therefore the value
|u − vN | is sufficiently small if ‖b′ − t′‖ is sufficiently small. Different from
Schnorr’s methods, Yan et al. relaxed the condition of finding smooth relations.
Specifically, they searched lattice vectors b′ in L′

n,c with b′ ∼ (u, v) such that
|u−vN | is p�-smooth for some large � such as � = O(n2). This relaxation enables
us to increase the success probability of finding smooth relations. On the other
hand, it requires us to collect #P� + 1 = � + 2 smooth relations for factoring N .

4 Analysis of the Structure of Schnorr’s Lattices

In this section, we shall analyze the structure of Schnorr’s lattices Ln,c =
L(Bn,c). To analyze Ln,c, we expand its basis matrix Bn,c using the target
vector t to construct a square matrix of size n + 1 as

B̄n,c:=
(
Bn,c

t

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

f(1) 0 · · · 0 N c ln p1
0 f(2) · · · 0 N c ln p2
...

...
. . .

...
...

0 0 · · · f(n) N c ln pn

0 0 · · · 0 N c ln N

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (12)
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We let L̄n,c:=L(B̄n,c) denote the expanded lattice, spanned by the rows of B̄n,c.
It is a full-rank lattice of rank n+1. We give the following result on the distance
between Ln,c and t. (It is a generalization of [26, Proposition 1 in Appendix B].
See also [26, Proposition 2].)

Proposition 1. Let N be a positive integer for generating Schnorr’s lattice Ln,c,
and m = �log N� its bit-size. Let b denote the closest vector in Ln,c to the target
vector t. We assume that the difference between b and t is the shortest non-zero
vector in the expanded lattice L̄n,c. Then we have the followings:

(1) In case of n + 1 ≈ 2c ln N = O(m), we have ‖b − t‖2 = O(m).
(2) In case of n + 1 ≈ 2c lnN

ln(lnN) = O(m/ ln m), we have ‖b − t‖2 = O(m2).

Proof. Set λ = λ1(L̄n,c). Then we have λ = ‖b−t‖ by assumption, and thus it is
sufficient to show λ2 = O(m) and O(m2) in two cases (1) and (2), respectively.
We apply Minkowski’s first theorem for L̄n,c to obtain the inequality

λ2 < (n + 1)vol(L̄n,c)
2

n+1 .

It follows from the construction of B̄n,c (see Eq. (12)) that we have

vol(L̄n,c)2 = N2c ln2 N

n∏

i=1

f(i)2 = N2c ln2 N

(
n∏

i=1

ln pi

)

.

We may assume
∏n

i=1 ln pi = O(1) from settings of n (that is, we consider two
cases of n = O(m) and O(m/ log m)), and thus we may have

λ2 = O
(
(n + 1)

(
N2c ln2 N

) 1
n+1

)
.

In case of n + 1 ≈ 2c ln N , since N
2c

n+1 ≈ N
1

ln N = O(1), we have

λ2 = O (ln N) = O(m).

Similarly, in case of n + 1 ≈ 2c lnN
ln(lnN) , since N

2c
n+1 ≈ N

ln(ln N)
ln N = lnN , we have

λ2 = O

(
ln2 N

ln(lnN)

)

= O(m2).

This completes the proof. ��
Remark 1. With the same notation as in Proposition 1, when n+1 ≈ 2c lnN

k ln(lnN) for

an integer k ≥ 1, we have ‖b− t‖2 = O(mk+1) since N
2c

n+1 ≈ N
ln(lnk N)

ln N = lnk N.

We give the following lemma on the size of |u − vN | for a lattice vector b
in Ln,c with b ∼ (u, v). (If |u − vN | = O(p�) for some positive integer �, then
|u − vN | can be p�-smooth with some probability.)
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Lemma 1. With the same notation as in Proposition 1, if ‖b − t‖2 = O(mk)
and 1 ≤ v ≤ Nc−1p�

mk/2 with b ∼ (u, v) for two positive integers k, �, then we likely
have |u − vN | = O(p�).

Proof. It follows by Eq. (9) that we roughly have

O(mk) = ‖b − t‖2 � N2c

∣
∣
∣
∣
u − vN

vN

∣
∣
∣
∣

2

≥ N2c−2mk

N2c−2p2�
|u − vN |2 =

mk

p2�
|u − vN |2.

Therefore we likely have |u − vN | = O(p�). ��

5 Experiments for Integer Factorization Using Lattices

In this section, we report implementation results for integer factorization using
lattices on classical computing. Since it is easy to handle integer lattices for
implementation, we use Yan et al.’s modified lattices L′

n,c to collect smooth rela-
tions for factoring a composite number N . We also select appropriate parameters
(n, c, �) based on the analysis of Schnorr’s lattices in the previous section.

5.1 Strategy and Implementation

Let N be a composite number of RSA-type to be factorized. In our experiments,
we apply Kannan’s embedding method [8] to find approximate solutions of the
closest lattice vector in L′

n,c = L(B′
n,c) to the target vector t′ (see Eqs. (10) and

(11) for B′
n,c and t′, respectively). Specifically, we build the (n + 1) × (n + 2)-

matrix

B̄′
n,c:=

(
B′

n,c 0�

t′ 1

)

to consider the lattice L̄′
n,c:=L(B̄′

n,c) spanned by the rows of the matrix. Then
every lattice vector b′ in L′

n,c close to t′ is embedded in the form

(t′, 1) − (b′, 0) = (t′ − b′, 1)

as a short vector in the expanded lattice L̄′
n,c. Therefore we search approximate

solutions of the non-zero shortest lattice vector in L̄′
n,c of the above form. To do

so, we first reduce the basis matrix B̄′
n,c of L̄′

n,c by the LLL algorithm. (We did
not use the BKZ algorithm [20] since we handled lattices of ranks less than 40 in
our experiments. See the parameter n in Table 1.) After that, we apply a variant
of the enumeration algorithm [5, Algorithm 2]. To determine an enumeration
radius, we apply Babai’s nearest plane algorithm for t′ over an LLL-reduced
basis of L′

n,c to obtain an approximate solution v′ of the closest lattice vector in
L′

n,c to t′. Then we set R = ‖t′ − v′‖ as an enumeration radius. In other words,
we search all lattice vectors b′ in L′

n,c satisfying ‖t′ − b′‖2 + 1 ≤ R2. For such
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every b′, we compute the pn-smooth relation pair (u, v) with b′ ∼ (u, v) (see
Eq. (6) for construction of (u, v)) to check whether |u − vN | is p�-smooth or not
for a fixed positive integer �. We collect more than �+2 pairs of (u, v) such that
|u − vN | is p�-smooth by shuffling the diagonal elements of the left-part square
matrix of B̄′

n,c until we factorize N .
We implemented the method described above in C++ programs with the NTL

library [22]. (We used g++ compiler with -O3 option.) Specifically, we used the
NTL library function for the LLL algorithm with the default reduction parameter
δ = 0.99. In our implementation, we used the ZZ class in the NTL library for
integral entries of any lattice basis B and the RR class for floating point numbers
on Gram-Schmidt information of B. In particular, we used the default setting
of RR for high precision (150-bit precision). For enumeration, we did not use
any pruning since we wanted as many short lattice vectors as possible, and
not just the non-zero shortest one. In contrast, we aborted the enumeration
process after we collected an amount of short lattice vectors (e.g., 30 million
vectors). Such abort could occur in an unlucky case where an enumeration radius
is extremely big. (It is most likely to happen on high-rank lattices, as Babai’s
bounding inequality is exponential. See Eq. (1).) This empirical threshold made
the enumeration process terminate in a shorter time even in unlucky cases, with
a significant speed-up of up to 33% for factoring a composite number of 65-bit
(untested on bigger numbers).

5.2 Selection of Parameters

Here we set three parameters (n, c, �) for experiments. (Recall that two param-
eters n, c are for the lattice L′

n,c or L̄′
n,c, and � for a factor base P�.) From the

analysis of Proposition 1, we consider two cases of n = O(m) and O(m/ ln m)
for the bit-size m of a composite number N to be factorized. (Note that the
analysis in the previous section is applicable for Yan et al.’s lattice L′

n,c since it
is just a modification of Schnorr’s lattice Ln,c.)

Case of n = O(m). This case is similar to Schnorr’s original setting in [19].
We estimate from the case (1) of Proposition 1 that there exists a lattice vector
b′ in L′

n,c satisfying ‖b′ − t′‖2 = O(m). From the same discussion as in Lemma 1
for Yan et al.’s lattices L′

n,c, we should take c and � so that 10c−1p� � √
m to

obtain a p�-smooth relation pair (u, v) from b′ ∈ L′
n,c. For our experiments, we

set c = 5.0 and � = 2n with an enough margin. (Cf., Schnorr took c = 1
n+1

and � = n in [19] for his lattices Ln,c with N c−1pn � √
m from Lemma 1.) In

addition, we write n in the form �am�, and choose a suitable constant a > 0
from our preliminary experiments for several N of around m = 40, 45, and 50
bits. Specifically, we set a = 0.55, which determines n = 22 (resp., 24 and 27)
for m = 40 (resp., 45 and 50).

Case of n = O(m/ lnm). This case was handled by Yan et al. in [26]. In this
case, we estimate from the case (2) of Proposition 1 that there exists a lattice
vector b′ in L′

n,c satisfying ‖b′ − t′‖2 = O(m2). Similarly to the above case, we
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need to set c and � so that 10c−1p� � m to obtain a p�-smooth relation pair from
b′ ∈ L′

n,c. We set c = 5.0 and � = 2n2 like in [26]. (Yan et al. [26] set the same
�, but took c between 1.5 and 10.) We also write n in the form �bm/ ln m�, and
choose a suitable constant b > 0 from our preliminary experiments for several N
of around m = 45, 50, and 55 bits. Specifically, we set b = 2.3, which determines
n = 18 (resp., 20 and 21) for m = 45 (resp., 50 and 55).

Remark 2. For factoring a composite number of m-bit, an optimal rank param-
eter n depends on lattice algorithms. From preliminary experiments with LLL
and full enumeration, an appropriate value of n is quite limited for each m, and
an optimal n is likely to be around the above setting in both cases of n = O(m)
and n = O(m/ log m) for our experiments. In contrast, when using pruned enu-
meration or sieving, we could find short vectors efficiently in a high-rank lattice
and thus a higher n could be optimal like implementation reports in [14,18].

5.3 Experimental Results

In Table 1, we summarize experimental results on the average running times of
factoring composite numbers N of RSA-type using lattices L̄′

n,c with parameters
(n, c, �) selected in the previous subsection. (We conducted experiments on a
single core of Intel Xeon Gold 5222 CPU @ 3.80 GHz with 32 GByte memory.)
For each m in Table 1, we randomly selected 5 composite numbers N of RSA-
type with bit-size m and conducted experiments for factoring those numbers N .
For each instance, we show the success probability of finding a p�-smooth relation
pair extracted from a short vector in a lattice L̄′

n,c in Table 1. (As described in
Subsect. 3.2, we shuffle the diagonal elements of the left-part square matrix of
B′

n,c, defined in Eq. (10), to generate different lattices L̄′
n,c = L (

B̄′
n,c

)
, in which

some short vectors can generate p�-smooth relation pairs.) In Fig. 1, we plot
the success probabilities of finding a p�-smooth relation pair in Table 1, along
with approximation curves by exponential regression in each case of O(m) and
O(m/ ln m).

Discussion. According to Table 1, the case of n = O(m/ ln m) is more efficient
than the case of n = O(m). In particular, in the case of n = O(m/ ln m), we
succeeded in factoring RSA-type composite numbers N of m = 90 bits using
lattices L̄′

n,c of rank n + 1 = 32 within 83.3 h ≈3.5 d in average. (Cf., imple-
mentation results in [14,18,24,26] for factoring composite numbers of at most
58 bits. In particular, Schnorr [18] used his lattices Ln,c of rank n = 90 for a
composite number of 47-bit. It was also reported in [14] that it took about 3 h to
succeed in factoring a composite number of 58-bit using lattices of rank 160 by
block-reduction and pruned enumeration algorithms.) It is related to the success
probability of finding a p�-smooth relation pair from a lattice. Specifically, in
the case of n = O(m) with � = O(n), only vectors in L̄′

n,c close to the shortest
can generate p�-smooth relation pairs, and thus the success probability is very
low, seen from Table 1. In contrast, the case of n = O(m/ ln m) with � = O(n2)
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Table 1. Experimental results on the average running times of factoring composite
numbers N of RSA-type using lattices L̄′

n,c with parameters (n, c, �) selected in Sub-
sect. 5.2 (“Probability” means the success probability of finding a p�-smooth relation
pair extracted from a short vector in a lattice L̄′

n,c)

Bit-size m of N
(m=�logN�)

Case of n = O(m) Case of n = O(m/ lnm)

n = �0.55m�, c = 5.0, � = 2n n = �2.3m/ lnm�, c = 5.0, � = 2n2

n Probability Total Time n Probability Total Time

45 24 1.1% 2.8min 18 23.7% 6.5 s

50 27 0.35% 25.2min 20 17.3% 32.2 s

55 30 0.13% 1.7 h 21 11.5% 1.4min

60 33 0.028% 9.2 h 23 6.6% 5.1min

65 35 0.006% 58.3 h 24 4.8% 14.2min

70 38 < 0.001% > 3 days 26 2.2% 57.5min

75 – – – 27 1.6% 2.2 h

80 – – – 29 0.75% 8.3 h

85 – – – 30 0.43% 23.5 h

90 – – – 31 0.17% 83.3 h

relaxes the condition of finding p�-smooth relation pairs from short lattice vec-
tors. It is the main factor that we succeeded in factoring composite numbers of
at most 90 bits using lattices. (In experiments, we only used the LLL algorithm
to reduce lattice bases. For high lattice ranks such as n ≥ 30, the BKZ algo-
rithm [20] might be available for reducing lattice bases more to speed up the
total processing.) On the other hand, we see from Fig. 1 that in both cases of
n = O(m) and n = O(m/ ln m), the success probability p of finding a smooth
relation pair from a lattice decreases exponentially in the bit-size m of N . Note
that the probability p depends only on the form of lattices, regardless of lattice
algorithms. It implies that an exponential number of lattices L̄′

n,c are required
to collect smooth relation pairs for factoring N , and thus the time complexity of
integer factorization using lattices L̄′

n,c is exponential in the size of N . In fact,
average running times in Table 1 increase exponentially with the bit-size m of N
for large m in both cases of O(m) and O(m/ ln m).

Remark 3. For factoring a composite number N of bit-size m, we might be able
to use other parameter settings such as n = O

(
m/ lnk m

)
for integers k ≥ 2.

Then we need to roughly set � = O(mk+1) since the minimum squared distance of
a vector in Schnorr’s lattice to the target vector t is estimated as O(mk+1) from
Remark 1. In other words, we need to prepare O(mk+1) primes in the difference-
of-squares method for factoring an m-bit composite number N . It could be very
costly to generate such a large amount of primes for large m.

Remark 4. In the above experiments, we used an enumeration algorithm to
investigate the success probability p of finding a smooth relation from a lat-



Experimental Analysis of Integer Factorization Methods Using Lattices 155

Fig. 1. Plots of the success probabilities of finding a p�-smooth relation pair in Table 1
for factoring m-bit composite numbers, along with approximation curves by exponential
regression in each case of O(m) and O(m/ ln m)

tice. In contrast, sieving is useful to generate a huge number of short lattice
vectors and is asymptotically faster than enumeration. Hence sieving is more
efficient than enumeration to collect smooth relations for factoring a large com-
posite number N using lattices. However, the probability p depends only on a
lattice, not lattice algorithms. Therefore, even when using a sieve algorithm, the
time complexity of factoring N using lattices would behave exponentially in the
size of N like in Table 1.

6 Conclusion

We reported experimental results of integer factorization methods using lattices
proposed by Schnorr in [16–19]. Specifically, we implemented Yan et al.’s modifi-
cation [26] for experiments by LLL and full enumeration on classical computing.
We selected suitable parameters based on analysis of the structure of lattices
to succeed in factoring RSA-type composite numbers of at most 90 bits using
lattices (cf., implementation results in [14,18,24,26] for factoring composite num-
bers of at most 58 bits). On the other hand, in Fig. 1, we showed experimental
results on the success probability p of finding a smooth relation extracted from a
short vector in a lattice. Figure 1 shows that the success probability p decreases
exponentially in the bit-size of a composite number N to be factorized. It implies
that it requires an exponential number of lattices to collect smooth relations for
factoring N . Therefore the complexity of integer factorization methods using
lattices must be exponential in the size of N , since the success probability p
depends on the form of lattices, regardless of lattice algorithms in classical and
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quantum computing. Hence, as suggested by Ducas [3] in his trial experiment, for
a composite number N of cryptographic size, lattice-based integer factorization
methods cannot outperform existing methods such as the quadratic sieve and
the number field sieve methods, whose time complexities are sub-exponential in
the size of N .

Acknowledgements. This work was supported by JST CREST Grant Number
JPMJCR2113, Japan.
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Abstract. Code-based cryptography is a type of post-quantum cryp-
tography, relying on the complexity of the syndrome decoding problem
for its security. Information set decoding (ISD) is a well-known method
for solving the syndrome decoding problem, based on an algorithm pro-
posed by Prange in 1962. In 1989, Stern introduced a partitioning called
zero window to Prange’s method and realized a faster ISD. In 2023, Guo-
Johansson-Nguyen proposed a method to apply the sieving method to
ISD, which is known as a fast method for solving shortest vector prob-
lems. In this study, we propose a method that introduces the zero win-
dow for ISD using the sieving method and evaluate its computational
complexity. The proposed method reduces the time complexity by up
to approximately 10 bits compared to the original sieving method for
128-bit secure parameters of the Classic McEliece cipher under memory-
saving conditions.

Keywords: Code-based cryptography · Syndrome decoding problem ·
Information Set Decoding · The sieving method

1 Introduction

RSA cryptography and elliptic curve cryptography, widely used today, can be
broken by a quantum computer. Therefore, post-quantum cryptography has been
studied extensively. Code-based cryptography relies on the difficulty of comput-
ing vectors with specific weights of linear codes, and various schemes have been
proposed, including the McEliece [13], Niederreiter [15], and Alekhnovich’s [2]
Cryptosystems. Among them, the code-based cryptographs BIKE [3], HQC [14],
and Classic McEliece [9] are finalists in NIST’s post-quantum cryptography stan-
dardization project [1]. For more information on code-based cryptography, please
refer to [18].

The security of code-based cryptography relies on the computational com-
plexity of the syndrome decoding problem (SDP). Information set decoding
(ISD) is a method for solving SDP. ISD solves SDP by partitioning the parity
check matrix, followed by permutation and Gaussian elimination, thereby con-
straining the search space. ISD is characterized by its approach to partitioning
the parity check matrix and subsequent solving methods.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
K. Minematsu and M. Mimura (Eds.): IWSEC 2024, LNCS 14977, pp. 158–176, 2024.
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Initially proposed by Prange [16], ISD exhibits an asymptotic time com-
plexity of Õ(20.121n) and polynomial spatial complexity. Stern further enhanced
ISD by introducing the zero window to Prange’s partitioning method, achiev-
ing an asymptotic time complexity of Õ(20.117n). Subsequently, May-Meurer-
Thomae [12], developed a method with an asymptotic time complexity of
Õ(20.112n) and Becker, Joux, May, and Meurer [6] introduced a method achiev-
ing Õ(20.102n) complexity, Both-May [8] developed a method with a complex-
ity of Õ(20.095n). In 2023, Guo-Johansson-Nguyen [11] introduced the sieving
method to ISD. According to Ducas-Esser-Etinski-Kirshanova [10], the asymp-
totic complexity of the sieving method is Õ(20.117n), surpassing that of Both-
May’s algorithm. However, for the 128-bit security parameter of the aforemen-
tioned code-based cryptography, the actual computational complexity of the
sieving method is evaluated to be smaller than that of Both-May’s method in a
memory-constrained environment.

Contribution. In this paper, we apply the sieving method to other ISD. Specif-
ically, we integrate the sieving method into Stern’s algorithm, which shares the
same equation form after partitioning. The most memory-consuming part of the
sieving method is the storage of vectors in a list, which is called the memory size
in this paper. By combining this approach with Stern’s method and shortening
the vector length, the list size is reduced, leading to more efficient spatial com-
putation. However, Stern’s method requires more iterations due to its imposition
of stronger assumptions on the weights of the vectors to be solved compared to
the original sieving method. Consequently, our proposed method reduces time
complexity by up to 10 bits in memory-constrained environments.

Notations. The n-dimensional vector space on F2 is denoted by F
n
2 . The vector

x ∈ F
n
2 is denoted as x = (x1, . . . , xn). F

n×m
2 denotes the set of n × m matrices

on F2. For a vector x ∈ F
n
2 and i = 1, . . . , n, x[i] := (x1, . . . , xi). The symbol

0k denotes a k-dimensional vector in which all elements are 0. For A ∈ F
n×m
2 ,

let A[i] be a submatrix formed by taking the first through the ith columns of
A. GLn(F2) represents the set of n-th invertible matrices over F2. Pn is the set
of n × n permutation matrices. We endow F

n
2 with the standard bilinear form:

〈x,y〉 :=
∑n

i=1 xiyi(x,y ∈ F
n
2 ). Binomial coefficients are denoted as

(
n
k

)

.

2 Syndrome Decoding Problem (SDP)

In this section, we explain the SDP, which forms the basis for the security of
code-based cryptography.

First, we introduce the concept of a linear code. An [n, k] linear code C over
F2 is a k-dimensional linear subspace of an n-dimensional vector space over F2.
A linear code C can be expressed by a generator matrix G defined as follows.
Let C be an [n, k] linear code, and let G be a generator matrix of C. A linear
code C can also be represented by a parity check matrix H defined as follows.
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Let C be an [n, k] linear code. The parity check matrix of C, H ∈ F
(n−k)×n
2 ,

is defined as a matrix that satisfies the following equation:

C = Ker(H) = {x : Hx = 0}.

Then, we explain how to construct the McEliece cryptosystem [13], a public
key encryption scheme based on linear codes. In the McEliece cryptosystem, the
secret key consists of three matrices: the generator matrix G of the [n, k] linear
code, a permutation matrix P ∈ Pn, and a invertible matrix S ∈ GLk(F2). We
set G′ := SGP as the public key. To encrypt a message m ∈ F

k
2 the sender

computes c := mG′ + e, where e ∈ F
n
2 is a randomly chosen vector, known as

the error vector, with Hamming weight wtH(e) = t. Therefore, in the McEliece
cryptosystem, the decryptor needs to find e ∈ F

n
2 , x ∈ F

k
2 such that wtH(e) = t

and c = xG′ + e from the received ciphertext c and the public key G′.
The decryption process involves solving e ∈ F

n
2 and x ∈ F

k
2 such that

wtH(e) = t and c = xG′ + e from c and G′. Here, we define H ′ as the parity-
check matrix corresponding to G′. Then, c = xG′ + e ⇔ cH ′T = eH ′T . From
this observation, we define the SDP as follows.

Problem 1 (Syndrome Decoding Problem (SDP)). Let k ≤ n be positive integers.
Given H ∈ F

(n−k)×n
2 , s ∈ F

n−k
2 , and t ∈ N, the problem of finding e ∈ F

n
2 such

that wtH(e) = t and eHT = s is called the Syndrome Decoding Problem.

If SDP is solved, McEliece cryptosystem is no longer secure, so the security of
cryptosystems is based on the hardness of SDP. SDP has been proven to be NP-
complete by Berlekamp, McEliece, and Van Tilborg [7], on which the security of
code-based cryptography relies. Therefore, improving the techniques for solving
the computational hardness of SDP is a fundamental research question.

3 Information Set Decoding (ISD)

ISD is a method that solves the SDP more efficiently than the exhaustive search.
In this section, we explain ISD by Prange [16] and by Stern [17].

3.1 Prange’s Algorithm

Prange [16] proposed the first ISD algorithm in 1962. Let us explain the principle.
From wtH(e) = t, there exists P ∈ Pn such that

eP = (0k e1) (1)

where e1 ∈ F
n−k
2 . By using Gaussian elimination, we can compute U ∈

GLn−k(F2) and H ′ ∈ F
(n−k)×k
2 such that UHP = (H ′ In−k). Then, we can

transform eHT = s as follows: sUT = (eP )(UHP )T = (0k e1)(H ′ In−k)T =
e1. Here, wtH(sUT ) = t is a necessary and sufficient condition for Eq. (1) to be
satisfied. Prange’s algorithm searches for P that satisfies Eq. (1) by trial and
error. The algorithm proceeds as in Algorithm 1.
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Algorithm 1: Prange’s algorithm

Input: H ∈ F
(n−k)×n
2 , s ∈ F

n−k
2 , t ∈ N

Output: e ∈ F
n
2 s.t. wtH(e) = t, eHT = s

1 while true do
2 Randomly pick a matrix P ∈ Pn;
3 Calculate U ,H ′ s.t. UHP = (H ′ Ik);

4 s′ ← sUT ;
5 if wtH(s′) = t then
6 return (0k s′)P −1;
7 end if

8 end while

3.2 Stern’s Algorithm

Stern’s algorithm improves Prange’s algorithm by introducing a new partition of
matrices, known as the zero window [17]. In this paper, we follow the definition
of Stern’s algorithm in [18]. It solves an SDP by transforming it into an SDP
with smaller Hamming weights, making it faster than Prange’s algorithm. Stern’s
algorithm takes parameters �, p ∈ N, where 0 ≤ � ≤ n− k and 0 ≤ 2p ≤ t. Given
wtH(e) = t, there exists a matrix P ∈ Pn such that for some e1 ∈ F

k
2 and

e2 ∈ F
n−k−�
2 :

(0� e1 e2) = eP ,

where wtH(e1) = 2p,wtH(e2) = t−2p. For arbitrary P ∈ Pn, by using Gaussian
elimination, we can compute U ∈ GLn−k(F2), H ′ ∈ F

�×(k+�)
2 ,

H ′′ ∈ F
(n−k−�)×(k+�)
2 such that

UHP =
(∗ H ′ O

∗ H ′′ In−k−�

)

.

Then, (eP )(UHP )T = sUT holds. By defining

(s1 s2) := sUT =
(
0� e1 e2

)
⎛

⎝
∗ ∗

H ′T H ′′T

0 In−k−�

⎞

⎠ ∈ F
�
2 × F

n−k−�
2 ,

we can represent s1, s2 as

e1H
′T = s1, (2)

e1H
′′T + e2 = s2. (3)

Subsequently, by solving for e1 satisfying Eq. (2) and wtH(e1) = 2p, we can
obtain e2 = e1H

′′T + s2. If wtH(e1H ′′T + s2) = t − 2p, then (0� e1 e1H
′′T +

s2)P−1 becomes the solution to the original SDP. The algorithm proceeds as in
Algorithm 2.
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Algorithm 2: Stern’s Algorithm

Input: H ∈ F
(n−k)×n
2 , s ∈ F

n−k
2 , t ∈ N

Output: e ∈ F
n
2 s.t. wtH(e) = t, eHT = s

1 while true do
2 Take a random matrix P ∈ Pn;

3 Let
(
0� e1 e2

)
:= eP (e1 ∈ F

k
2 , e2 ∈ F

n−k−�
2 );

4 Calculate U ∈ GLn−k(F2) s.t. UHP =

(∗ H ′ O
∗ H ′′ In−k−�

)
;

5 for e1 s.t. e1H
′T = s1 do

6 e2 ← e1H
′′T + s2;

7 if wtH(s2 − e1H
′′T ) = t − 2p then

8 return (0� e1 e2)P
−1;

9 end if

10 end for

11 end while

4 Sieving Method

Guo-Johansson-Nguyen [11] proposed a sieving style ISD [11], which we call the
sieving method. In this section, we provide a brief review of this method. In this
section, we use the following notation. To represent a Hamming sphere, we use
the notation Sn

r , where Sn
r := {e ∈ F

n
2 | wtH(e) = r}.

4.1 Algorithm

First, we outline the general approach. The sieving method takes parameters
�, p ∈ N. While Stern’s algorithm solved the problem by transforming SDP
into SDP for smaller Hamming weight through matrix partitioning, the idea
of the sieving method is to speed up solving SDP for small Hamming weights
by repeatedly updating a list of candidate solutions. The sieving method first
partitions e and H as follows. Let P ∈ Pn. Then, using U ∈ GLn−k(F2),
H ′ ∈ F

�×(k+�)
2 , H ′′ ∈ F

(n−k−�)×(k+�)
2 , e1 ∈ F

k+�
2 , e2 ∈ F

n−k−�
2 , we can express:

(
e1 e2

)
= eP ,

(
H ′T H ′′T

O In−k−�

)

= UHP .

Under this partition, similar relations to Eq. (2) and Eq. (3) hold.
Let us explain the principle of the sieving method. In an SDP with a parity-

check matrix H ∈ F
�×(k+�)
2 , eHT = s represents a collection of � linear equations

over F2. The principle idea is to recursively construct a list of vectors that satisfy
the first i equations for i = 0, 1, . . . , �.

Here, let us assume the existence of a list Li ⊂ {
e ∈ Sk+�

2p | e(HT )[i] ∈
{s[i],0i}

}
. Our aim is to construct a list Li+1 ⊂ {

e ∈ Sk+�
2p | e(HT )[i+1] ∈
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{s[i+1],0i+1}
}

from Li. In essence, we need to generate sufficient vectors in
Li+1 from those in Li.

In the sieving method, Li+1 is constructed in two ways:

– For each e ∈ Li, if e(HT )[i] ∈ {s[i],0i}, then e(HT )[i+1] ∈ {s[i+1],0i+1}
can be considered to hold with a probability of 1/2 because an additional
condition based on one equation over F2 is imposed on e. In this case, e is
added to Li+1.

– For each combination of two vectors u,v ∈ Li satisfying wtH(u + v) = 2p,
if (u + v)(HT )[i] ∈ {s[i],0i}, then (u + v)(HT )[i+1] ∈ {s[i+1],0i+1} can be
considered to hold with a probability of 1/2. In this case, u + v is added to
Li+1.

In these two ways, Li+1 can be constructed from Li. By randomly selecting
several vectors from Sk+�

2p and denoting them as L0, repeating the operations
described above allows us to construct L� from L0, thereby solving the SDP
with a smaller Hamming weight.

In the original paper [11], the algorithm for constructing L�, which is a list
containing some e ∈ F

k+�
2 satisfying eH ′T = s, is called Sieve Syndrome Dec

(Algorithm 4). Also, the entire algorithm that transforms the original SDP into
a SDP with smaller Hamming weight and solves it using Sieve Syndrome Dec is
called Full ISD (Algorithm 3).

To implement Merge Set, Guo, Johannson, and Nguyen [11] used a function
named Find Collision that enumerates the combinations of vectors v,u ∈ L such
that v + u ∈ Sk+�

2p .

4.2 Parameter Selection

Following, we explain the constraints on the parameters M , �, and z. The size M
of L0 is chosen such that when constructing Li from Li−1, |Li−1| ≈ |Li|. Among
the vectors contained in Li−1, we can assume that half of them satisfy eHT

[i] ∈
{0, s[i]}. Therefore, it is sufficient if

∣
∣
{
v + u | v,u ∈ Li−1,v + u ∈ Sk+�

2p

}∣
∣ ≈

M/2. Let q be the probability that the sum of the two randomly chosen vectors
from Li−1 has a Hamming weight of 2p. Assuming that the vectors in Li−1 are
independently and uniformly distributed, we have:

q =
(

2p
p

)(
k + � − 2p

p

)(
k + �
2p

)−1

Furthermore, the number of pairs of vectors contained in Li−1 is approximately
M2/2. However, the vectors in Li−1 are not independent, which may result in
overlapping sum vectors. To evaluate this overlapping on the formula, let δ be

the probability of obtaining a new vector, then
δ · M2 · q

2 · 2
≈ M

2
, where the left-

hand side is the number of elements of Li obtained from the sum of the two
vectors in Li−1. Thus, we have

M ≈ 2
δ · q

. (4)
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Algorithm 3: Full ISD

Input: H ∈ F
(n−k)×n
2 , s ∈ F

n−k
2 , t ∈ N, parameters �, p ∈ N

Output: Vector e ∈ Sn
t s.t. eHT = s

1 while true do
2 Take a random P ∈ Pn;

3 Calculate U ∈ GLn−k(F2),H
′,H ′′ s.t. UHP =

(
H ′ O
H ′′ In−k−�

)
;

4 (s1 s2) ← sUT (s1 ∈ F
�
2, s2 ∈ F

n−k−�
2 );

5 L ← Sieve Syndrome Dec(H ′, s1, 2p);
6 for e1 ∈ L do
7 if wtH(e1H

′′T + s2) = t − 2p then
8 return (e1 e1H

′′T + s2)P
−1;

9 end if

10 end for

11 end while

Algorithm 4: Sieve Syndrome Dec

Input: H ∈ F
�×(k+�)
2 , s ∈ F

�
2, 2p ∈ N, M ∈ N

Output: L ⊂ {e | e ∈ Sk+�
2p , eHT = s}

1 Make a list L0 ⊂ Sk+�
2p such that |L0| = M ;

2 for i = 1, . . . , � do
3 Li ← {

e ∈ Li−1 | e(HT )[i] ∈ {s[i],0i}
}
;

4 Li ← Li ∪ Merge Set(Li−1);

5 end for

6 return
{
e ∈ L� | e(HT )[�] = s[�]

}
;

Algorithm 5: Merge Set

Input: H ∈ F
(k+�)×�
2 , s ∈ F

�
2, i ∈ N,

L ⊂ {
e ∈ F

n
2 | e(HT )[i−1] ∈ {s[i−1],0i−1}

}
, p′, p′′ ∈ N

Output:
{
x + y | x,y ∈ L,wtH(x + y) = 2p, (x + y)(HT )[i] ∈ {s[i],0i}

}

1 M ← ∅;
2 for v ∈ Find Collision(L, p, p′, p′′) do
3 if v(HT )[i] ∈ {s[i],0} then
4 M ← M ∪ {v};
5 end if

6 end for
7 return M;

Here, let N be the set of e satisfying eHT = s. Since N is the set of vectors
satisfying � equations out of k + �, we can estimate:

|N | ≈
(

k + �
2p

)

2−�.
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Since L� is a set of vectors satisfying eH ∈ {0, s}, the number of vectors satisfy-
ing eH = s can be considered to be M/2. Additionally, it is desirable for L� to

contain almost all vectors in N . Therefore, the condition is
M

2
≥

(
k + �
2p

)

2−�,

which implies

M ≥
(

k + �
2p

)

2−(�−1). (5)

Based on Eqs. (4) and (5), M and � can be determined. In particular, M is the
size of the list used in the sieving method, representing the space complexity of
the sieving method.

4.3 Complexity

Guo, Johansson, Nguyen [11] also calculated the time complexity of the entire
algorithm as follows. The probability that wtH(e1) = 2p holds for a single P ∈
Pn is given by:

Prsuccess :=
(

k + �
2p

)(
n − k − �

t − 2p

)(
n
t

)−1

After selecting P , the following three calculations are performed: (i) We try to
find U such that UHP for given H and P . (ii) Syndrome Dec is performed to
create a list of candidate solutions. (iii) Checks for the existence of a solution
to the list by calculating, for all vectors in the list, whether each satisfies the
conditions for a solution. The time complexity of (i), (ii), (iii) is denoted by
CGauss, CSyndrome Dec, Csolution check, respectively. Given that the expected value
of the number of iterations is 1/Prsuccess, the following proposition holds.

Proposition 1 The time complexity of Full ISD (Algorithm 3) is given by
1

Prsuccess
(CGauss + CSyndrome Dec + Csolution check).

According to the original paper [11], CSyndrome Dec is estimated using the
following preposition with parameter p′, p′′ ∈ N which satisfy p′ + p′′ = p (6).

Proposition 2 We have

CSyndrome Dec = � · M ·
(

2p +
(

2p
p

)

clabel +
(

2p − p′′

p′

)

+ 4(p + log M)
)

. (6)

Here, the first term in the parentheses is the time complexity for Step 3 of
Algorithm 4, the second and third terms are the time complexity of Find Collision,
and the fourth term is the time complexity for checking for duplicates of the
obtained vectors.

Next, Csolution check is estimated as follows. The time complexity for comput-

ing wtH(s2 − v(H ′′)T ) is 2p(n − k − �). Additionally, there exist
(

k + �
2p

)

2−�

vectors e1 satisfying e1H
′T = s1. Hence, we obtain the following proposition.

Proposition 3 We have Csolution check = 2p(n − k − �)
(

k + �
2p

)

2−�.
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5 Proposed Method

The proposed method combines the advantages of both Stern’s algorithm and the
sieving method, noting that both methods solve the SDP by transforming it into
one for smaller Hamming weights. This section introduces the proposed method,
which integrates the zero window into the sieving method. Furthermore, we
explain the algorithm while comparing it with the sieving method and conduct
computational complexity evaluation.

5.1 Observation

In Stern’s algorithm and the sieving method, the expressions after partitioning
the matrix (Eq. (2), (3)) have the same form. Therefore, the partitioning used
in Stern’s ISD can be applied to the sieving method. In this study, we propose
introducing zero window Stern used into the partitioning of H and e used in
the sieving method, as shown in Fig. 1. This reduces the number of vectors held
in the list and thus reduces the space complexity. In particular, in memory-
constrained environments, it is possible to reduce the time complexity compared
to the original sieving method while utilizing the same amount of memory.

Fig. 1. Introducing zero window

5.2 Algorithm

The algorithm of the proposed method is outlined below. The main difference
from the algorithm of the sieving method, as explained in Sect. 4, lies in the
introduction of the zero window during the partitioning of the matrix in Step 2.

1. Choose a matrix P ∈ Pn randomly.
2. Calculate U ∈ GLn−k(F2),H ′ ∈ F

�×(k+�−z)
2 ,H ′′ ∈ F

(n−k−�)×(k+�−z)
2 such

that UHP =
(∗ H ′ O

∗ H ′′ In−k−�

)

.

3. Let (s1 s2) ← sUT (s1 ∈ F
�
2, s2 ∈ F

n−k−�
2 ).
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4. Set L ← Sieve Syndrome Dec(H ′, s1, 2p).
5. For each e1 ∈ L, if wtH(e1H ′′T + s2) = t − 2p, output

(0� e1 e1H
′′T + s2)P−1.

6. If no solution is found, return to Step 1.

Here is a detailed explanation of each step of the overview: First, in Step 1, begin
by selecting the n-th permutation matrix P randomly, similar to the sieving
method. Next, in Step 2, using Gaussian elimination, find U ∈ GLn−k(F2),H ′ ∈
F

�×(k+�−z)
2 ,H ′′ ∈ F

(n−k−�)×(k+�−z)
2 such that UHP =

(∗ H ′ O
∗ H ′′ In−k−�

)

. In

Step 3, apply the same elimination performed on H to s. In Step 4, using
Sieve Syndrome Dec, obtain a list L of e1 ∈ F

�
2 such that e1H

′T = s1 and
wtH(e1) = t. Finally, in Step 5, for each element of L, compute the corresponding
e2 and check if there exists e that completes e. If not, return to the beginning
and repeat the calculation in Step 6.

The main difference from the sieving method relies the introduction of the
zero window during matrix partitioning in Step 2, resulting in changes to the
column numbers of H ′ and H ′′, as well the change from � + k to � + k − z.
In particular, for z = 0, proposed method is consistent with original method.
The subsequent flow is similar to the sieving method in Sect. 4, but the length
of the vectors saved in the list in Sieve Syndrome Dec changes to k + � − z.
Therefore, it can be expected that the space complexity of the sieving method
will be significantly improved due to the reduction in list size. When represented
in pseudocode, the algorithm becomes like Algorithm 6. The difference from the
original sieving algorithm (Sect. 4) is that the size of J changes from k + � to
k+ �−z in the second line. Consequently, the number of columns of H ′ and H ′′

changes to k + � − z. Also, in the sixth line of Sieve Syndrome Dec, the length of
vectors saved in the list changes from k + � to k + � − z.

5.3 Computational Complexity Evaluation

In this subsection, similar to the complexity estimation of the sieving method in
Sect. 4, we estimate the computational complexity of the proposed method and
compare it to the original sieving method.

First, we examine the change in space complexity. With the introduction of
the zero window, the size of L0 in Algorithm 6 is estimated by

M =
2
δq

=
2
δ

(
k + � − z

2p

)(
2p
p

)−1 (
k + � − 2p − z

p

)−1

, (7)

where q is the probability that the sum of the two randomly chosen vectors from
Li−1 in Algorithm 6 is of Hamming weight 2p. As demonstrated in Sect. 6, when
z > 0, the proposed method’s space complexity derived here is smaller than that
of the original sieving method.

Next, we consider the change in time complexity from Proposition 1.
In the proposed method, the function Sieve Syndrome Dec is executed simi-

larly, so the above equation also holds true for the proposed method. However,



168 N. Yoshiguchi et al.

Algorithm 6: Full ISD with zero window

Input : H ∈ F
(n−k)×n
2 , s ∈ F

n−k
2 , t ∈ N, parameters �, p, z ∈ N

Output: Vector e ∈ F
n
2 such that wtH(e) = t, eHT = s

1 while true do
2 Take a random P ∈ Pn;

3 Calculate U ∈ GLn−k(F2), H
′ ∈ F

�×(k+�−z)
2 , H ′′ ∈ F

(n−k−�)×(k+�−z)
2 such

that UHP =

(∗ H ′ O
∗ H ′′ In−k−�

)
;

4 (s1 s2) ← sUT (s1 ∈ F
�
2, s2 ∈ F

n−k−�
2 );

5 L ← Sieve Syndrome Dec(H ′, s1, 2p);
6 for e1 ∈ L do
7 if wtH(e1H

′′T + s2) = t − 2p then
8 return (0z e1 e1H

′′T + s2)P
−1;

9 end if

10 end for

11 end while

with the change in M , CSyndrome Dec varies. Additionally, the success rate of
matrix partitioning Prsuccess is given by:

Prsuccess =
(

k + � − z
2p

) (
n − k − �

t − 2p

) (
n
t

)−1

. (8)

Furthermore, we have

Csolution check = 2p(n − k − �)
(

k + � − z
2p

)

· 2−�.

Note that CGauss is the same in both the proposed method and the original
method, since the size of n, k, � is fixed as input. With this, we have calcu-
lated M , Prsuccess, CSyndrome Dec, and Csolution check in the proposed method.
Let time(�, p, z) denote the time complexity corresponding to parameters �, p,
and z, and space(�, p, z) denote the space complexity. Here, space(�, p, z) is equal
to M in Eq. (7). Then, we have the following proposition:

Proposition 4 The space and time complexity of the proposed method (Algo-
rithm 6) are given by

space(�, p, z) =
2
δ

(
k + � − z

2p

)(
2p
p

)−1 (
k + � − 2p − z

p

)−1

time(�, p, z) =
1

Prsuccess
· (CGauss + CSyndrome Dec + Csolution check).

6 Experiment

In this section, based on the computational complexity evaluation results from
the previous section, we numerically compare the computational complexity
of [11] and the proposed method.
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6.1 Parameters

We conducted decryption experiments on three schemes of Classic McEliece,
HQC, and BIKE. Their specific values of 128-bit secure parameters are (n, k, t) =
(3488, 2720, 64), (35338, 17669, 132), (24646, 12323, 134), respectively [4,11].

Following Guo-Johansson-Nguyen [11], we set clabel = 2 and δ = 2/3. We
set p′ = 0 in Eq. 6 as CSyndrome Dec is minimized when p′ = 0 in the model
evaluating space complexity as M .

6.2 Experimental Results

First, we present the results of experiments on Classic McEliece in the top
plots of Figs. 2 and 3. For the computational complexity of the original siev-
ing method [11], we plot space(�, p, z) and time(�, p, z) while varying �, p, and
z within the ranges 0 ≤ � ≤ n − k, 0 ≤ p ≤ �t/2
, and z = 0. For the com-
putational complexity evaluation of the proposed method, we plot space(�, p, z)
and time(�, p, z) while varying �, p, and z within the ranges 0 ≤ � ≤ n − k,
0 ≤ p ≤ �t/2
, and 0 ≤ z ≤ k + � − 3p, respectively. Points plotted in this
manner are shown in Fig. 2.

Furthermore, based on these results, we plot the minimum achievable time
complexity at a fixed space complexity. The results are shown in Fig. 3. Note that
for the computation of CGauss, we use the Method of Four Russians. According
to Bard [5], when the number of rows is greater than the number of columns,
the time complexity for Gaussian elimination of a matrix with a rows and b

columns (a > b) is O
(

18ab2−8b3

4 log b

)
. The Gaussian elimination used in this method

is performed up to the (n−k−�)-th row instead of the (n−k)-th row. Substituting
a = n and b = n − k into the equation and multiplying by n−k−�

n−k to account for
the early termination of computation, we obtain:

CGauss =
(n − k − �)(n − k)(5n + 4k)

2 log(n − k)
.

This formula is used in the numerical experiments. Subsequently, similar exper-
iments were conducted for BIKE (in the middle plots of Figs. 2 and 3) and HQC
(in the bottom plots of Figs. 2 and 3). Since the values of n, k, and t differ
from those of Classic McEliece, the ranges of parameters �, p, and z also differ.
Figures 2 and 3 use logarithmic scales for both the horizontal (space complex-
ity) and vertical axis (time complexity), ranging from [0, 52.5] and [140, 180],
respectively.

Table 1 compares the time computations of the conventional and proposed
methods in tabular form for several memory quantities.
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Table 1. Comparison of time complexity between original and proposed method (Clas-
sic McEliece: (n, k, t) = (3488, 2720, 64), BIKE: (n, k, t) = (35338, 17669, 132), HQC:
(n, k, t) = (24646, 12323, 134))

210 vectors 215 vectors 220 vectors

Classic McEliece original [11] 173.0 160.0 149.7

proposed §5 161.5 155.0 149.7

BIKE original [11] 174.9 162.0 162.0

proposed §5 168.4 162.0 156.8

HQC original [11] 174.2 161.3 161.3

proposed §5 168.7 161.3 158.2

6.3 Discussion

In Fig. 2, the achievable computational complexity using the original sieving
method is represented by black dots, while that with the proposed method is
represented by red dots. The black dots are aligned along several lines, each
corresponding to different values of p. Additionally, the columns of red dots
extending from each black dot toward the upper left indicate that increasing z
results in a decrease in space complexity and an increase in time complexity.
The space complexity of the original sieving method varies significantly with
the value of p, but the introduction of the zero window increased the degree of
freedom, filling in the gaps. As a result, time complexity was improved by up to
10 bits.

We aim to identify the region where the introduction of the zero win-
dow improves the time complexity. For example, when p = 2, consider
points A (space(�A, 1, 0), time(�A, 1, 0)), B (space(�B , 2, 0), time(�B , 2, 0)), and
C (space(�C , 2, zC), time(�C , 2, zC)), where �A, �B , �C , and zC are parameters.
If the value of p is the same, smaller values of � result in smaller time and space
complexities. Therefore, �A, �B , and �C are the smallest � values at each point

that satisfy M ≥
(

k + � − z
2p

)

· 2−(�−1). Furthermore, as the time complexities

of points A and C are equal, time(�C , 2, zC) = time(�A, 1, 0) holds true. From
Fig. 3, it can be observed that in the interval [space(�C , 2, zC), space(�B , 2, 0)],
the introduction of the zero window improves the time complexity. Similar con-
siderations can be made for other values of p.
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Fig. 2. Possible ranges of time (vertical axis) and space (horizontal axis) computational
quantities for parameter (k, �, z). (Top plot: Classic McEliece, Middle plot: BIKE, Bot-
tom plot: HQC)
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Fig. 3. Comparison of time with and without zero window (red: proposed method,
black: original method) [11]) (Top plot: Classic McEliece, Middle plot: BIKE, Bottom
plot: HQC) (Color figure online)
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6.4 Decryption Experiment

To investigate and compare the distribution of time complexity associated with
actual decoding, we implemented both the original (Algorithm 3) and proposed
(Algorithm 6) methods using Python 3.10 and conducted decoding experiments.
In this section, we provide an overview of the experiments and the results.

Parameters. We set the code word length n, the dimension of the linear code k,
and the Hamming weight of the solution t to (n, k, t) = (120, 60, 17) as the SDP
parameters defined in Problem 1. In this paper, the memory size M is defined by
the number of vectors to be included in the list to be used in Sieve Sindrome Dec
(Algorithm 4), was set to 27.5.

Experimental Settings and Results. The original method requires (�, p)
and the proposed method requires (�, p, z) as parameters. We used the algorithm
parameters that minimize the expected time complexity for (n, k, t) set above.
For the original method, the parameter (�, p) that minimizes the time complexity
was determined to be (�, p) = (7, 1) by estimating the parameter using the
Proposition 1. The parameters (�, p, z) that minimize the time complexity for
the proposed method were also determined using Proposition 4, and (�, p, z) =
(13, 2, 9) was obtained.

Under this setup, we randomly generated SDP instances H and s and per-
formed experiments. The problem instances were generated using the code from
the code-based challenges (https://decodingchallenge.org/). The experiment was
conducted 1000 times. We plotted the relationship between the number of itera-
tions of the main loop of Algorithm 3, 6 and the time required, shown in Fig. 4.
We also illustrated the distribution of actual time required in Fig. 5.

Discussion. For both the original (Algorithm 3) and the proposed (Algorithm
6) methods, Fig. 4 shows the results of plotting the relationship between the
number of iterations of the main loop (Step 1 of Algorithm 3, 6) and the time
required. As can be seen from Fig. 4, the dots representing both the original and
the proposed methods appear to lie on a straight line passing through the origin.
These points on the same line maintain a consistent ratio between the time taken
and the number of iterations, i.e., the number of loops in the Step 1 of Algorithm
3 and 6. This alignment suggests that the time required per iteration remains
constant across the experiments. Comparing the gradient of the straight lines,
it can be seen that the time required per iteration is longer for the proposed
method. This is because we used a larger parameter p for the experiment of the
proposed method. Consequently, this increases the computational complexity of
the Merge Set operation (Step 4 of Algorithm 4), leading to a larger CSyndrome dec

as defined in Eq. (6).
We also illustrate the distribution of actual time required in Fig. 5. It can be

seen that both the original and proposed methods appear to follow a distribution
similar to the geometric distribution. In the sieving method, the computation

https://decodingchallenge.org/
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Fig. 4. Relationship between time and the number of iterations in Step 1 of Algorithms
3 and 6 with (n, k, t = 120, 60, 17).

Fig. 5. Time distribution for Algorithms 3 and 6 with (n, k, t = 120, 60, 17).
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in Step 2 of Algorithm 3 and 6 is repeated by randomly choosing the permu-
tation matrix P . Consequently, the distribution of the number of iterations is
considered to follow a geometric distribution. Specifically, the probability that
the number of iterations is i is Prsuccess(1−Prsuccess)i−1, so as mentioned in Sub-
sect. 4.3, the expected number of iterations is 1/Prsuccess. Figure 5 also shows
that the proposed method solves the SDP in less time. With the introduction
of the zero window, the spatial computational complexity M given by Eq. (7)
decreases, allowing for a larger p selection. This larger p value increases Prsuccess
as given in Eq. (8) leading to fewer iterations required for solving the SDP.

7 Conclusion

In this paper, we studied the difficulty of the sieving method for solving the
SDP used in code-based cryptography. Specifically, we introduced an algorithm
aimed at enhancing the efficiency of the sieving method by incorporating the
zero window approach used in Stern’s ISD. We provided several formulas to
estimate the time and space complexity of our method and compared them to
those of the sieving method. Additionally, we conducted numerical comparisons
to demonstrate that our proposed method can achieve up to a 10-bit reduction
in time complexity, particularly in memory-constrained environments, compared
to original methods with similar memory usage. Furthermore, we implemented
our proposed sieving method and observed that, under fixed parameters, the
time required to solve the SDP was faster and exhibited a similar geometric
distribution as the original method.

Future challenges include further accelerating the sieving method. For exam-
ple, exploring partitioning methods for the parity-check matrix and error vector
other than those used in this study, and introducing the LSH/F method [10],
known to accelerate the sieving method, are some of the tasks. Another future
task is to conduct experiments in a larger memory environment than what was
done in this study. Furthermore, a comparison of time complexity with other ISD
methods in a memory-constrained environment is also an issue to be addressed
in the future.
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Abstract. WordPress is the world’s most popular content management system,
developed as an open-source software with many plugins. However, since these
plugins are developed and released by anyone, they may have security problems.
Web applications need to be designed and developed in consideration of possible
race conditions that may occur when multiple processes access shared resources
at the same time, but race conditions aren’t paid much attention by developers and
may result in vulnerability. This vulnerability is known to cause problems such
as unauthorized data access, database inconsistency, and file content corruption
by an attacker who intentionally creates a race condition. It is also considered
that this vulnerability is not as well-known as XSS and SQLi. In this paper, we
investigate the race condition vulnerabilities in WordPress plugins. Based on the
results of this survey, we discuss the trends and causes of these vulnerabilities, as
well as countermeasures for them.

Keywords: Race Condition · TOCTOU ·WordPress ·Web Security

1 Introduction

WordPress is the most popular content management system in the world [1]. It uses PHP
and MySQL and was developed as an open-source software. WordPress.org provide
many themes and plugins to change the exterior and add some functionality to the
website. The extensibility and flexibility of these themes and plugins are a feature of
WordPress. However, plug-ins can be developed by anyone, and sometimes have security
problems.

In 2022 and2023years, race conditionvulnerabilitieswere ranked in theCWETop25
Most Dangerous Software Weaknesses, an annual ranking of dangerous vulnerabilities
published by MITRE [2, 3]. Recently, the Japan Security Operations Group (ISOG-J), a
security organization, and PortSwigger, a security vendor, have published documents and
learning content on how to investigate race condition vulnerabilities in web applications,
and the vulnerabilities has been drawing increasing attention [4, 5].

Race condition vulnerability is a problem in which multiple processes access the
same resource, causing unexpected processing. This vulnerability causes problems such
as unauthorized data access, database inconsistencies, and file corruption.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
K. Minematsu and M. Mimura (Eds.): IWSEC 2024, LNCS 14977, pp. 179–194, 2024.
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There is a type of race condition vulnerability called TOCTOU (Time-Of-Use Time-
Of-Check). TOCTOU is a problem in which unexpected processing is caused by the
difference between the state of data at the time of validation and at the time of use. It
is attracting increasing attention, with the release of OWASP’s TimeGap Theory about
TOCTOU [6].

The vulnerabilities caused by these race conditions are difficult to investigate due to
the nature of the business logic, and the actual situation is not yet clear. It is considered
that when compared to well-known vulnerabilities in web applications such as XSS
(Cross-Site-Scripting) and SQLi (SQL injection), race condition vulnerabilities have
not been widely acknowledged by developers and have not received sufficient attention.
The same can be said for WordPress plug-ins. Based on this, we conduct a survey on
race condition vulnerabilities in WordPress plug-ins. To the best of our knowledge, this
is the first survey on race condition vulnerabilities in WordPress plug-ins. In this paper,
we report the survey results and describe the results of our analysis. We also discuss the
causes of the vulnerabilities and countermeasures against them based on the trends of
the vulnerabilities revealed by the analysis.

2 Race Condition Vulnerabilities

Race condition vulnerabilities result from situations in which multiple independent pro-
cesses or threads can simultaneously access a shared resource and modify its state to
produce inappropriate results. An example of a race condition vulnerability is CVE-
2016-7098. This is a race condition vulnerability in wget that allows other processes to
access files downloaded bywgetwhilewget ismaking anHTTP connection, bypassing
access list restrictions. In this vulnerability, independent processes include the process
executing wget and other processes, shared resources include those downloaded by
wget, and state changes include references to files that should not be accessible. As
described above, since race condition vulnerabilities are deeply related to the logic of
the program, it is difficult to conduct an exhaustive investigation and detect them [7,
8]. Besides, compared to other well-known vulnerabilities such as XSS and SQLi, race
condition vulnerabilities are not well known to developers, and it is considered that
sufficient countermeasures against race condition vulnerabilities have not been widely
adopted.

This vulnerability is classified as “Concurrent Execution using Shared Resourcewith
Improper Synchronization (‘Race Condition’)” (CWE-362) in the CWE classification
published by MITRE [9].

2.1 Race Conditions in Web Applications

Race Condition vulnerabilities are also known to occur in web applications. Often
web applications are conceived as a set of scripts that query and update an underlying
database.However, even thoughmulti-process execution is common inweb applications,
developers often design and developwithout considering this. It is also often ignored that
the DBMS (Data Base Management System) that manages data on the server is a shared
resource that can be accessed by multiple script instances simultaneously [10]. Based
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on these facts, an attacker can induce a race condition by sending multiple simultaneous
requests to access the shared resource.

Inweb applications, there is a case inwhich anunauthorizeduse of a coupon exceeded
its limit as an event caused by a race condition vulnerability [11]. There are also other
cases of over-booking due to the concentration of reservations on accommodation sites
[12].

2.2 TOCTOU

TOCTOU (Time-Of-Check Time-Of-Use) is a specific kind of race condition vulnerabil-
ity described above, in which unexpected processing is caused by the difference between
the data state at the time of validation and the time of use. The TOCTOU vulnerability
is a specific type of race condition vulnerability with more restrictive conditions. This
vulnerability is classified as “Time-of-check Time-of-use (TOCTOU) Race condition”
(CWE-367) in the CWE classification published by MITER [13].

As the name suggests, this is a vulnerability that causes problems due to the difference
between the state at the time of check and the state at the time of use, and it is known
that it tends to be introduced in the following types of processes –

• Processing related to remittance
• Processing related to coupons
• rocesses related to login
• Processes related to reservations

All of the race condition vulnerabilities mentioned in this paper belong to TOCTOU.
In this section, we give an overview of TOCTOU using the case of hotel reservations

as an example. Figure 1a shows the process flow in the case of a normal system, and
Fig. 1b shows the process flow in the case of TOCTOU. As a precondition, assume that
only one hotel room is left to be reserved. Normally, a user makes a hotel reservation
through a reservation site. If the room is available and can be reserved, the reservation
is made. On the other hand, when TOCTOU exists, the flow is as shown in Fig. 1b. As
a condition for the problem to occur, consider the case where multiple users make hotel
reservations at almost the same time.User A anduser B send their reservation requests
almost simultaneously. As the next process, the server checks whether the reservation is
available or not, but since the process takes place in a short period of time, both users
satisfy the condition that the reservation is available. Then, user A and user B make
their reservations. However, since both users satisfy the availability conditions in the
last availability check, the reservations are made in duplicate.
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 (a)         (b) 

Fig. 1. Processing of a hotel booking system. (a) The process as expected by the developer. (b)
The behavior in the presence of insufficient synchronization. There is a possibility of duplicate
reservations that are not intended by the developer.

3 Survey on Race Condition Vulnerabilities in WordPress Plug-ins

3.1 Target WordPress Plug-ins

In this section, we describe the survey targets. Plug-ins that satisfy the following con-
ditions were selected for this study. First, the plug-ins must be downloadable from the
official WordPress page. Second, the number of active installations must be more than
10,000, because the plug-ins are still maintained, and we consider the impact if vul-
nerabilities are found. Third, the functionality is available free of charge. Fourth, the
plug-ins should provide limiting functions, such as a limit on the number of attempts.
Based on these conditions, we searched for plug-ins by using keywords such as “login”,
“shopping” and “eCommerce” on the official WordPress page and conducted a survey
of the applicable plug-ins.

In this paper, we surveyed 76 plug-ins and categorized them according to their
functionality. Plug-ins with few similar functions are placed in the “others” category.
The following six categories were used.

• Login plug-ins
• Reservation plug-ins
• Voting/Rating plug-ins
• eCommerce plug-ins
• Membership plug-ins
• Others

3.2 Survey Method

In this survey, in order to investigate whether vulnerabilities actually exist and whether
they can have adverse effects, we install the target plug-ins in our hosted WordPress
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and test them before analyzing the code. The application’s behavior is then checked
to determine whether a vulnerability exists. Since race condition vulnerabilities in web
applications require sending requests coordinated in milliseconds and sending multiple
HTTP requests in a single HTTP pipeline, we use tools specialized for diagnosis to
investigate [14]. As tools for conducting the investigation, we used the web proxy Burp
Suite Community Edition and its extension Turbo Intruder. Turbo Intruder is a tool
developed to investigate race condition vulnerabilities [15]. Bywriting a dedicated script
in Python, Turbo Intruder provides the functions necessary to investigate race condition
vulnerabilities that send multiple requests in a short period of time.

We used docker to host WordPress to build the investigation environment. The
software versions used are WordPress 6.4.1, PHP 8.0, and MySQL 8.0.

In our survey, to identify vulnerabilities, we analyzed the differences between suc-
cessful responses to normal requests and responses to requests that failed due to exceed-
ing the limit. In the case that when a site receives duplicate requests, it normally returns
a response with a status of 200 for one request and responses in the 400s for the other
requests. Also in this case, if multiple requests are sent to this site in a short time period,
one might observe that two or more responses with a status of 200 are returned. This
means that two or more requests were successfully completed, indicating the presence
of the vulnerability. In the other case that the length of the response varies depending
on the success or failure of the request, this characteristic may be used to identify the
vulnerability. Furthermore, when the presence or absence of a vulnerability cannot be
determined from the response alone, one can directly check the database to see if any
values have been exceeded due to duplicate requests.

An overview of the investigation is shown in Fig. 2.

Fig. 2. Survey Overview
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3.3 Analysis Results

We present the results of this survey. As mentioned above, the plug-ins that were found
to be vulnerable are categorized according to their functions.

Login Plug-ins. They provide functions to prohibit access to the login page after a
certain number of failed login attempts in order to prevent login attacks. Of the 17 plug-
ins surveyed in this category, 10 were found to be vulnerable. Due to a race condition
vulnerability in the login plug-in, if multiple login attempt requests are sent once, the
plug-in fails to count the number of attempts and multiple requests are counted as one
attempt. We have confirmed that multiple login attempts are possible in this survey. As
for the impact, it is considered that the attacker may gain an advantage by disabling or
relaxing some restrictions on login attempts, which may lead to brute-force attacks.

Booking Plug-ins. They provide functions for making hotel and event bookings. Of
the 16 plug-ins surveyed in this category, 6 were found to be vulnerable. The vulner-
abilities were found in functions such as reservation limits and coupons that provide
discounts. The race condition vulnerabilities were found to cause the reservation limit to
be exceeded or the maximum number of coupons to be used to be exceeded. The impact
of the race condition vulnerability is that the maximum number of reservations can be
bypassed, and coupons can be used beyond the maximum number of coupons. Also,
when the access to the reservation is concentrated, it may lead to unexpected behaviors
such as double booking.

Voting/Rating Plug-ins. They provide functions for rating products and voting. Of
the 21 plug-ins surveyed in this category, 6 were found to be vulnerable. Many of the
plug-ins in this category provide a function that limits the number of votes and ratings
to one per user. We have confirmed the existence of a race condition vulnerability in
these functions, which allows users to vote and rate multiple times. The impact of this
vulnerability is that it may lead to process tampering such as exceeding voting and rating
limits.

eCommercePlug-ins. They provide functions for building e-commerce sites, inventory
management, and payment to sell products. Of the 14 plug-ins surveyed in this category,
2 were found to be vulnerable. In many cases, plug-ins in this category were not found
to be vulnerable. This is because most of the plug-ins are provided as an extension of the
plug-ins with sufficient countermeasures. The functions that were found to be vulnerable
include inventory management and coupons that provide discounts. The race condition
vulnerability causes the purchase of more products than the number of items in stock
or the maximum number of coupons to be used to be exceeded. The impact of the race
condition vulnerabilities is the purchase of products that exceed the number of items in
stock and the unauthorized use of coupons that exceed themaximumnumber of coupons.
In addition, the concentration of access at the time of purchase may lead to unexpected
behavior, such as inconsistencies in inventory processing (Table 1).

Membership Plug-ins. They provide functions for building membership registration,
subscriptions to blogs, and coupons for discounts on subscriptions. Of the 4 plug-ins
surveyed in this category, 3 were found to be vulnerable. We have confirmed that the
Race condition vulnerability allows the coupon usage limit to be exceeded. The impact
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Table 1. Result of this survey

Category Number of survey subjects Number of bugs

Login 17 10

Booking 16 6

Voting/Rating 21 6

eCommerce 14 2

Membership 4 3

Others 4 2

Total 76 29

of the race condition vulnerabilities is that coupons may be used beyond the maximum
number of times they can be used at the time of subscription to the membership.

Others. In this category, we mention plug-ins that could not be classified into the
aforementioned categories. The race condition vulnerabilities found in plug-ins other
than those in the categories mentioned above include plug-ins that issue invitation codes
and plug-ins that give out points. In these plug-ins, we confirmed that the race condition
vulnerabilities cause bypassing of the number of times the invitation code can be used
and bypass the coupon limit.

4 Analysis on Race Condition Vulnerabilities in WordPress
Plug-ins

In this section, we discuss the characteristics of the code of plug-ins in which vulner-
abilities have been discovered. Through the analysis of code containing race condition
vulnerabilities, we can classify them into two patterns: the case that code utilizes API
functions provided by WordPress, and the case that code directly manipulates SQL
statements using wpdb.

4.1 Case: Use of WordPress Functions

We discuss the case where API functions provided by WordPress are utilized. This was
particularly found in login plug-ins and in the implementation of coupon functionality.
These functions are paired with one that retrieves stored data and another that updates
it.

We illustrate this case with an example where the get_user_meta and
update_user_meta functions are used, which are particularly found in many imple-
mentations. According to the WordPress developer documentation, get_user_meta
is a function to retrieve the value set in a user’s meta field and update_user_meta
is a function to update the value set in the user’s meta field [16, 17]. Both functions
are used to retrieve and update meta field values by manipulating SQL in the internal
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Table 2. The functions related to retrieval and update data provided by WordPress.

Name Function

get_user_meta Retrieves user meta field for a user

update_user_meta Updates user meta field based on user ID

get_option Retrieves an option value based on an option name

update_option Updates the value of an option that was already added

get_post_meta Retrieves a post meta field for the given post ID

update_post_meta Updates a post meta field based on the given post ID

process. The other functions shown in Table 2 also provide the same functionality, only
the target data is different.

Figure 3 shows an example of code with a race condition vulnerability caused by
the function related to retrieval and update data provided by WordPress. In this code,
the value obtained by get_user_meta is stored in $val, and the executability is
determined based on this value. If the value of $val is less than 1, the executable
condition is satisfied, so the value is updated by update_user_meta and the number
of attempts is counted. If this process is performed multiple times with a very short
interval, the value stored in $val may overlap. In this situation, there are more cases
than expected where multiple sessions satisfy the condition in the conditional branching
process. This is caused by a time lag, called a race window, between the acquisition of
the value by get_user_meta and the update of the value by update_user_meta.

Figure 5a shows the process flowwhen the race condition vulnerability is triggered in
the code in Fig. 3. In Fig. 5a (1), multiple sessions executeget_user_meta for a short
period of time to obtain values and store them in $val. At this time, the value stored in
the variable is a duplicate value. Next, in (2), based on the acquired values in (1), check
whether they satisfy the conditions of executability. Since the same value is stored in
$val in multiple sessions, both Session A and Session B satisfy the condition of
executability. Finally, in (3), the value is updated by update_user_meta. However,
this function does not update the value if the value after the update is the same as the value
before the update. As a result, only the first processed update_user_meta updates
the value. This behavior causes problems such as incorrect counting in processes that
limit the number of attempts.

One reason this pattern of vulnerability is frequently observed is the ease of using
API functions provided by WordPress for creating plug-ins. Additionally, it is possible
that the potential for race conditions was not adequately consideredwhen these functions
were employed.

4.2 Case: Use of SQL Statements

We discuss the case where wpdb functions are utilized to manipulate SQL. This was
often found in the implementation of voting/rating plug-ins. Wpdb is an API provided
byWordPress for database operations that has a function for the direct execution of SQL
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Fig. 3. Example of a vulnerable code used the functions by WordPress

Fig. 4. Example of a vulnerable code used wpdb.

Fig. 5. (a) A process flow used the functions provided by WordPress. (b) A process flow used
wpdb.

[18]. By using it, SQL can be directly executed. The plug-ins were implemented in such
a way that SQL is executed with SELECT statements to retrieve values, and UPDATE
statements to update values. In the case of this pattern, as in the previous section, the
vulnerability is caused by the difference in timing between the acquisition and use of
values. Figure 4 shows an example of code with a race condition vulnerability caused by
wpdb function. In this code, the value obtained by executing a SELECT statement using
wpdb is stored in $val, and the executability is determined based on this value. If the
executable condition is met, an UPDATE statement is executed using wpdb to update the
value, and the number of attempts is counted. Figure 5b shows the process flowwhen the
race condition vulnerability is triggered in the code in Fig. 4. In (1), multiple sessions
execute SELECT statements in a short period of time to obtain values and store them in
$val. Currently, the value stored in the variable is a duplicate value. Next, in (2), based
on the acquired values in (1), checks whether the executable condition is satisfied. Since
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the same value is stored in $val in multiple sessions, both Session A and Session
B satisfy the condition. Finally, in (3), the UPDATE statement is used to update the
value, and the value is added the number of times it passes the condition because it is
an update using only the SQL statement. This is different from the pattern in which the
WordPress function described above is used. The reason why many implementations of
this pattern were observed is considered to be that the development was not conducted
with consideration of the occurrence of a race condition.

5 Countermeasures

We discuss effective countermeasures against the two patterns that cause the vulnerabil-
ities described in the previous section. Since the race condition vulnerability is caused
by a time gap between read and update operations when multiple operations access a
shared resource simultaneously, and the integrity of the shared resource fails to be main-
tained during the sequence of operations. This can be solved by ensuring that the Web
server processes only one client request at a time. However, this method significantly
degrades the performance of the web application. Therefore, it is necessary to consider
a countermeasure that allows concurrent execution while still maintaining security.

Asmentioned before, vulnerabilities arise due to the time difference between the read
and update processes. To solve this problem, it is necessary to maintain the integrity of
the shared resources by prohibiting other processes from accessing the shared resources
when one process is reading and updating values to the shared resources. We propose
countermeasures at both the database and application levels.

5.1 Database-Level Countermeasures

Wepropose a database-level countermeasure using exclusive lockwith theFORUPDATE
clause of SQL. Exclusive lock allows us to restrict concurrent access to specified
columns. This method can be used by adding a FOR UPDATE clause to the SQL state-
ment used to retrieve the value. However, we confirm that the countermeasure is not
sufficient when only the FOR UPDATE clause is added. MySQL is commonly used as
a database in WordPress. The default specification of MySQL is to enable the auto-
commit function, which executes a single SQL statement as a single transaction [19].
This causes read and update to be processed as separate transactions. Therefore, even
if exclusive lock is performed using the FOR UPDATE clause, the locking time is not
sufficient and the same value may be obtained before the database is updated. To solve
this problem, it is necessary to perform get and update operations in the same transac-
tion. As mentioned above, the autocommit function is enabled by default in MySQL.
Therefore, in order to process multiple SQLs in a transaction, it is necessary to explicitly
write START TRANSACTION at the start transaction and COMMIT at the end of the
transaction.

Figure 6 and Fig. 7 show code that implements an exclusive lock using the FOR
UPDATE clause. In this code, after starting a transaction, this code performs read and
write operations in a transaction. Note that it is impossible to modify only using the API
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Fig. 6. Example of a fix using FOR UPDATE for vulnerable code that is used the functions
provided by WordPress

Fig. 7. Example of fixing vulnerable code that is used wpdb using FOR UPDATE

functions provided by WordPress shown in Table 2. Therefore, API functions such as
get_user_meta to retrieve values are replaced with wpdb function to modify.

Figure 8 shows the process flow of the codes in Fig. 6 and Fig. 7. In the process (1),
Session A and Session B try to retrieve values at the same time, but Session B
does not retrieve values at this time because of the transaction in Session A, and a
wait occurs. After the update process of Session A is completed, the requested value
.

is returned in Session B, and then Session B is processed. This ensures consis-
tency in the shared resources of each session processing and allows the race condition
vulnerability to be fixed.

5.2 Application-Level Countermeasures

We propose an application-level countermeasure using PHP’s flock function [20].
Since this method does not use transactions, it can be used for database-independent
processing.We have confirmed that this method is widely used to fixWordPress plug-ins
with race condition vulnerabilities.

Figure 9 shows the code modified with the flock function. By using the flock
function to file lock before and after read and update operations on a shared resource, it is
possible to prevent multiple sessions from accessing the shared resource simultaneously.

Figure 10 shows the flow of the codes in for Fig. 9. The file is opened in process
(1) and the file lock is acquired in process (2), but because Session A locks the file,
Session B cannot lock the file and a wait occurs. Session A reads and updates the shared
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Fig. 8. A process flow modified by FOR UPDATE

resource, and then releases the file lock. Session B then releases the waiting state and
performs subsequent processing.

Fig. 9. Example of fixing vulnerable code using flock function.

We also have confirmed that the countermeasure using the flock function does
not work correctly when you use some functions provided by WordPress to retrieve
values, such as get_user_meta function. This is due to the cache feature pro-
vided by those functions. These functions internally use cache-related functions such as
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Fig. 10. A process flow modified by flock function

wp_cache_get function [21]. Under conditions where a race condition vulnerability
exists, the code that uses the flock function to fix the vulnerability has a cache lifetime
that is long enough to allow retrieval of the stored value from the cache with multiple
accesses within a short period of time. To solve this problem, it is necessary to change
to retrieving values by wpdb.

5.3 Note

Wediscussed the database-level modificationmethod using theFORUPDATE clause and
the application-level modification method using the flock function. It is important to
select those corrective measures according to the situation. Note that when we reported
the vulnerabilities, we observed some cases where full database locks were used, but
it is important to note that other functions may be affected. Therefore, when using an
exclusive lock of shared resources by SQL and file lock by flock function, excessive
locking should be avoided so that other processes are not affected. As a side note, we
have not mentioned semaphore andmutex as countermeasures in this paper because they
require the installation of extension modules.

6 Related Work

While there is a growing interest in race condition vulnerabilities, detailed studies have
not been conducted because they are difficult to detect due to their nature and the business
logic involved. We show two highly relevant studies to our research: one proposes a
new attack method for race condition vulnerabilities, and the other proposes a dynamic
framework for detecting server-side request race conditions.
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Single-Packet Attack. James [22] proposed a single-packet attack against the race
condition vulnerability in web applications that can be attacked with higher accuracy.
The proposed method combines multiple requests into a single packet for simultaneous
transmission and minimizes the time delay between requests. Comparing the single-
packet attack method with the conventional attack method, the former method causes
requests to arrive at the server side almost simultaneously, while the latter method only
sends a sequence of requests within a short period of time, and the timing of arrival of
requests at the server side is randomdue to delays and other reasons. Therefore, the single
packet attack is a more reproducible attack against the race condition vulnerability. This
method is implemented in Turbo Intruder, an extension of the Burp Suite used in this
study.

RaqRacer. Zhengyi et al. [23] proposed a dynamic detection framework called
ReqRacer for various web applications, including WordPress, which was the subject of
our research in this study, and conducted a study to collect and analyze 157 server-side
request races. ReqRacer is a dynamic framework designed to detect atomicity violations.
Specifically, ReqRacer first monitors HTTP requests when a web application is executed
on a server, and collects data such as access to shared resources and dependencies among
requests. Then, based on the collected data, a dependency graph is constructed to model
the “happens-before” relationship between HTTP requests, and by identifying concur-
rency among requests, requests that may cause a race condition are identified. It then
verifies whether the identified requests cause a race condition by reordering the requests
and executing them.

7 Conclusion

In this paper, we investigated 76 WordPress plugins for race condition vulnerabilities.
As a result, we found race condition vulnerabilities in 29 evaluations. The vulnerabil-
ities are likely to be introduced when functions are used to retrieve and update values
related to metadata and options, which are shared resources provided by WordPress,
and when SQL is directly executed to retrieve and update values in the database. As a
countermeasure, it is necessary to ensure consistency in processing so that there is no
difference in the state at the time of getting and updating values from shared resources.
As concrete countermeasures, we have discussed using SQL transaction and exclusive
lock and exclusive processing by the flock function.

Plug-in developers need to be aware of secure-by-design by carefully considering
the design of the logic of their programs. Additionally, when implementing important
processes, it is necessary to take the utmost care for mixing race condition vulnerability
and to pay attention to whether it is acceptable to use functions provided by WordPress.

In this study, we have focused on plug-ins with more than 10,000 active installations,
but it is also necessary to investigate other plug-ins. Additionally, since plugins are
classified arbitrarily, an objective classification method should be considered. For this
purpose, we are considering using tools such as RaqRacer to conduct a comprehensive
survey of plug-ins that may have race condition vulnerabilities [23]. In the future, we
will measure the request interval at which attacks succeed and investigate the specific
conditions and logic for successful attacks because the request interval for a successful
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attack was not measured at this time. We also need to investigate the race condition
vulnerabilities of systems and frameworks other than WordPress.

The vulnerabilities identified in this study have been reported to Patchstack and
Wordfence, both of which are CVE Numbering Authorities (CNAs) and accept the
reports of WordPress plugin vulnerabilities, as well as to the plugin developers, and are
being addressed in turn [24, 25]. Some of them are publicly available, e.g., CVE-2023-
6109 [26].
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Abstract. Consumer IP cameras are now the most widely adopted solu-
tion for remote monitoring in various contexts, such as private homes or
small offices. While the security of these devices has been scrutinized,
most approaches are limited to relatively shallow network-based anal-
yses. In this paper, we discuss a methodology for the security analysis
and identification of remotely exploitable vulnerabilities in IP cameras,
which includes static and dynamic analyses of executables extracted from
IP camera firmware. Compared to existing methodologies, our approach
leverages the context of the target device to focus on the identification of
malicious invocation sequences that could lead to exploitable vulnerabil-
ities. We demonstrate the application of our methodology by using the
Tenda CP3 IP camera as a case study. We identified five novel CVEs,
with CVSS scores ranging from 7.5 to 9.8. To partially automate our
analysis, we also developed a custom tool based on Ghidra and rhabdo-
mancer.

1 Introduction

This paper discusses the application of a classical methodology for conducting
in-depth security analysis with a focus on consumer IP cameras. IP cameras are
popular IoT devices, and their cybersecurity has been scrutinized by the scien-
tific community in recent years. Related works [11,12] have already identified
several vulnerabilities, but their analysis has mainly focused on network traffic.
The discussed methodology takes an in-depth approach and requires physical
disassembly of the device. While this attacker model may seem more powerful
than the one used in related literature, we argue that it is more realistic and
allows for the identification of a higher number of more relevant software vul-
nerabilities. Consumer IP cameras are inexpensive, making it easy for attackers
to purchase one or more devices to experiment on. Moreover, our results demon-
strate that this kind of analysis enables attackers to extract sensitive information
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and devise attack strategies that can be weaponized against other IP cameras of
the same make and model, even without physical access. The adopted method-
ology comprises five main steps.

The first step involves gathering information from open and public sources
related to the IP camera under analysis. This step does not require the camera
itself and can be performed by checking public data records from the FCC ID
Search web service [7]. This information proves to be extremely useful, as it often
includes high-resolution pictures of the printed circuit boards, which can be used
to identify diagnostic and programming interfaces. Additionally, valuable infor-
mation can be obtained from firmware repositories. Depending on the camera
manufacturer and model, it is often possible to download a copy of the firmware
from official or unofficial repositories. This step may enable an attacker to focus
on a limited number of IP cameras that are more likely to exhibit interesting
vulnerabilities.

The second step requires physical access to a specimen of the IP camera
under analysis. Within this step, the camera is disassembled to gain physical
access to the inner printed circuit board. The primary objective is to visually
inspect it and identify one or more vulnerability surfaces that enable direct and
low-level interaction with the camera. In our experience, it is highly likely to
identify internal USB ports that have no external connectors, as well as simpler
debugging and diagnostic interfaces based on standard JTAG or UART proto-
cols. Having physical access allows us to connect and probe these interfaces to
confirm that they are active and explore the related attack surfaces. At this step,
it is usually possible to interact with the bootloader and potentially gain access
to a command-line interpreter as a privileged user.

The third step begins by extracting the firmware deployed on the IP camera.
This task can be accomplished either by exploiting low-level read access to the
memory of the IP camera through a diagnostic interface or by physically con-
necting an external reader to the memory chip soldered to the PCB. In some
cases, a chip-off might be necessary, although it has not been required in our
experience. The extracted firmware is then subjected to common static analysis
procedures aimed at identifying relevant partitions, configuration files, scripts,
executable files, and cryptographic material.

The fourth step complements the static analysis of the firmware with a
dynamic analysis of the network behavior of the IP camera under test. The
peculiarity of our approach is that, instead of applying a general approach for
static analysis we focus on the main services exposed on the network by the
device, thus considering its use-case scenario. By considering the classical usage
scenario of the target device, we demonstrate how existing classical tools for
static analysis can be tweaked to quickly identify vulnerabilities exposed by the
target device, thus preventing the security researcher to manually analyze dif-
ferent potential sources of vulnerabilities that wouldn’t lead to exploits.

The fifth and final step builds upon the information gathered in the previous
steps to perform a detailed reverse-engineering process of all executables that
implement services available from the network. To partially automate this com-
plex step, we developed a novel tool based on Ghidra [14] and rhabdomancer [13]



Finding and Exploiting Vulnerabilities on IP Cameras 197

that identifies the functions responsible for handling data received from net-
work connections, builds the invocation sequence list and correctly identifies the
thread responsible for each invocation sequence. This allows security researchers
to quickly analyze the whole function call sequence of a target network handler
to identify potential vulnerabilities in its code, thus helping them to demonstrate
potential exploits and identify possible mitigation.

In this paper, we demonstrate the effectiveness of the proposed methodology
by focusing on a popular consumer IP camera, the Tenda CP3, as a use case.
Our analysis has already led to the publication of five new CVEs, two of which
have a CVSS score of 7.5 and the remaining three have a CVSS score of 9.8.

1.1 Related Work

The scientific literature already contains several research papers focusing on
the cybersecurity of IoT devices, IP cameras, and video surveillance systems.
However, most of this work limits itself to network-based security analysis, either
by sniffing and analyzing network traffic or by interacting with exposed network
services. Notable contributions in this field include the analysis of the attack
surface of IP-based surveillance systems [10], as well as wide-ranging analysis of
IoT devices [12] and the exposed network services of IP cameras belonging to a
given nation [3]. These papers demonstrate that connected IoT devices present
many vulnerabilities; however, in many cases, the analysis is limited to relatively
simple scanning and probing activities.

Other papers more related to our proposal focus on the in-depth analysis of
network communications of a given IP camera [1,4]. In particular, the authors
of [4] managed to exploit network-based attacks, such as Man-in-the-Middle, to
eavesdrop on and interact with network communications between the IP cam-
era (a TP-Link Tapo C200) and other devices on the same local network, thus
identifying three novel vulnerabilities. We remark that these papers only based
their analysis on network interactions, without identifying relevant vulnerabili-
ties (such as remote code execution) that require an in-depth reversing of exe-
cutables extracted from the firmware of IP cameras.

In relevant related work, Shwartz et al. [16] perform firmware extraction from
16 different IoT devices, with the final goal of extracting and cracking passwords
that would allow remote access to the compromised devices. They demonstrate
the effectiveness of their approach, as well as the widespread vulnerability related
to password management of IoT devices, by creating a modified version of the
Mirai botnet that utilized these passwords to compromise vulnerable devices.
The authors discuss the possibility of conducting a more comprehensive static
analysis and reverse engineering of the analyzed devices but do not undertake
these tasks themselves.

On the other hand, this paper introduces a methodology for the security
analysis of consumer IP cameras, demonstrated through the examination of the
Tenda CP3 as a case study, and the development of a novel tool. To our knowl-
edge, this is the first paper to delve into such an in-depth analysis of IP cameras.
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1.2 Outline

The remainder of this paper is organized as follows. Section 2 presents the IP
camera that we use to demonstrate the application of our analysis methodol-
ogy, while Sect. 3 presents the detailed analysis of the firmware extracted from
our device. Section 4 analyses and describes the two main programs responsi-
ble to handle all external connections to the camera, demonstrating a practical
method to identify potential vulnerability and to design their related exploit.
Finally, Sect. 5 highlights the main strengths of this work and describes future
development.

2 Analysis of the Tenda CP3 IP Camera

In this section, we present the analysis of the Tenda CP3 connected camera and
provide details of the hardware platform. Although we had full access to the
IP camera during our analysis, our primary focus was on outlining the steps
necessary for gathering as much information as possible using OSINT sources
and firmware analysis. Consequently, we describe a methodology that could be
applied not only to other IP cameras but also to various IoT devices.

2.1 Hardware Analysis

The Tenda CP3 connected camera is based on a single PCB platform to which
the lens and all extension PCBs are connected. We conducted an analysis of
the camera’s internals using its FCC ID, a unique identifier required for devices
transmitting over radio frequencies in the United States. Upon locating the FCC
ID on one of the labels attached to the camera, we entered its value into the FCC
ID search form available on the Federal Communications Commission website.
The FCC ID of the Tenda CP3 cameras is V7TCP3, with V7T representing the
grantee code (i.e., Shenzen Tenda Technology Co., Ltd.) and CP3 being the
product code assigned by the grantee. By examining the internal pictures of the
V7TCP3 product (Fig. 1) we identified the main components of the main PCB.

The Tenda CP3 is equipped with a Fullhan FH8626 V100 System on Chip
designed for HD IP cameras, capable of multi-stream encoding in H.264 format
at 1080p resolution and 15 frames per second. Additionally, it features a Real-
tek 8188FTV Network Interface Controller, providing support for 802.11b/g/n
2.4GHz connectivity. On the top side of the main PCB, we also identified a
UART serial interface, indicated by the two tx and rx pads located at the top of
the image, as well as a flash chip (partially visible on the left side of the picture).

2.2 UART Serial

After the initial hardware analysis, we decided to access the internals of the
camera available to us to verify the information found via OSINT. Although the
labels tx and rx were not printed on the PCB found inside our device, all the
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Fig. 1. Internal pictures of the Tenda CP3 accessed via the FCC ID public repository.

other components and their locations were exactly the same. We proceeded by
connecting to the UART serial interface using a USB TTL adapter and minicom
configured with a baud rate of 115200 (8N1).

During the first boot of the device we only connected to the tx pad of the
UART interface with the rx pin of our USB TTL adapter to log the output of
the system boot process. After analyzing the recorded log of the boot process, we
identified several useful information about the bootloader (U-Boot 2010.06-dirty,
with the possibility to interrupt the autoboot process by pressing ‘E’), the OS
(a Linux-3.0.8 ARMv7 Linux Kernel Image), the number and mapping of the
partitions on the spi flash, the name of some demons and applications started
by the system (one of them being telenetd), and some configurations saved by
the device, including the configured WiFi credentials printed in clear.

We then connected the tx pin of our USB TTL adapter to the rx pad of the
PCB to interrupt the autoboot sequence, only to encounter a password-protected
login prompt. Later, we will discuss how the password was recovered to access
the U-Boot console.

CVE-2023-30354: Physical access and WiFi credentials disclosure - Tenda
IP Camera CP3 does not defend against physical access to U-Boot via the
UART; the Wi-Fi password is shown, and the hard coded boot password can
be inserted for console access.

Base Score: 9.8 Critical
Vector: CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

2.3 Firmware Extraction and Analysis

We extracted the firmware from the SOIC8 chip by directly connecting to the
pins of the chip via a dedicated clip, as depicted in Fig. 2. We took care to isolate
the processor from the flash memory to prevent any modifications during the
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firmware extraction procedure, thus enabling us to work with the corresponding
image of the data found on the flash memory.

Fig. 2. Firmware extraction procedure.

We extracted the firmware image using the flashrom utility [8], and we mod-
ified the permissions on the saved image to be read-only. Additionally, we com-
puted a fresh checksum of the saved flash image to ensure that we always had a
clean image available.

After obtaining the firmware image, we manually extracted the partitions
described in the boot process, resulting in 6 different files (one for each partition).
Here, we provide a high-level analysis of the content of the partitions extracted
from the flash image:

– bootstrap and uboot-env: partitions containing the configuration of the
bootstrap and uboot environment;

– uboot: partition containing the uboot bootloader of the device;
– kernel: partition containing the root file system of the device. The root file

system is stored in a compressed format.
– data: partition containing the user data used by the applications being exe-

cuted on the device. This partition is formatted in a jff2 file system.
– app: partition containing the file system on which all scripts, applications and

configuration file of the Tenda CP3 IP camera. This partition is formatted in
a squashfs file system
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3 Detailed Analysis of the Tenda CP3 System

The detailed analysis of the Tenda CP3 camera combines both dynamic and
static analysis on the content of the app partition of the extracted firmware
image. Specifically, we are primarily interested in mapping all services being
executed on the camera that accept any incoming traffic, and in enumerating
interesting files found in the app partition of the camera via the firmwalker util-
ity [6]. These files include UNIX configuration files (such as /etc./passwd and
/etc./shadow files), bash scripts, and all executable files found in the partition.

In this section, we present the results of the analysis of the UNIX configu-
ration files, the service mapping, and the bash scripts responsible for the ini-
tialization of the system. In Sect. 4, we provide a detailed analysis of the main
programs found active on the camera.

The scripts used the steps outlined below are available on GitHub [2].

3.1 UNIX Configuration Files

We identified several different configuration files available in the app partition
of the extracted file system. While some configuration files are related to the
behavior of the applications executed by the system at start up (more on this
in Sect. 3.3), by examining certain well-known strings in the text files, we were
able to identify two extremely interesting files.

The first file is ap mode.cfg (located at the root directory), which contains
the default configuration for the access point exposed by the device while in
configuration mode. This includes the interface label, the SSID type and prefix,
the default IP address (192.168.55.1), DHCP range, and default password in
plain text.

The second file is shadow (also located at the root directory), which serves
as a modified version of the /etc./shadow file found in all UNIX systems that
will be copied in the /etc. folder at start up (see Sect. 3.3). The shadow file
contains a single user (root) and the hash (generated with descrypt) of the
password associated with the root user. Since the length of the hash is limited to
only 13 bytes, we attempted to reverse-engineer the password via a brute-force
attack, eventually succeeding in recovering it. The recovered password has a
length of 8 characters and is likely generated following a pre-defined scheme used
by the vendor. Upon successful authentication with the recovered credentials via
UART shell, we were also able to access the U-Boot shell after a couple of easy
and intuitive modifications to the password.

3.2 Service Mapping

We conducted a network mapping on our device to identify all services accepting
incoming traffic from external hosts. This mapping was performed from both an
external attacker’s perspective (e.g., by mapping the ports from a host connected
to the same network as the device) and by accessing the internal shell of the
camera (made possible by the recovered password found in Sect. 3.1) to identify
the services handling incoming traffic.
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External Mapping Report. We performed the external mapping using the
nmap utility [9] to identify all listening ports accepting both TCP and UDP con-
nections. The results of the network mapping procedure indicate that the cam-
era is accepting telnet connections on port 23/TCP, rtsp (Real-Time Streaming
Protocol) connections on port 8554/TCP, and exposes other unknown services
on ports 843/TCP, 1300/TCP, 6688/TCP, 8699/TCP, 9876/TCP, 3702/UDP,
5012/UDP, 5683/UDP, and 19966/UDP.

We were able to access the camera via the telnet protocol using the root cre-
dentials recovered in the previous step, and via rtsp using the default credentials
associated with the service, stored in plain text in the ap mode.cfg configuration
file. It is worth noting that these credentials are hard-coded and identical in all
IP cameras from the same vendor, and cannot be modified via the corresponding
smartphone application. Therefore, by accessing a network where a camera from
the same vendor as the one used in our analysis is installed, anyone can access
its live video stream using the same set of credentials.

CVE-2023-30351: Remote access via hard-coded credentials - Tenda IP
Camera CP3 was discovered to contain a hard-coded default password for
root which is stored using weak encryption. This vulnerability allows attack-
ers to connect to the TELNET service (or UART) by using the exposed
credentials.

Base Score: 7.5 High
Vector: CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

CVE-2023-30352: RTSP feed access via hard-coded credentials - Tenda IP
Camera CP3 was discovered to contain a hard-coded default password for
the RTSP feed.

Base Score: 9.8 Critical
Vector: CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

Internal Mapping Report. Following the mapping of services accepting
incoming connections from outside the device, we exploited the previously found
access via telnet to discover other potentially interesting services running on the
device that could lead to further vulnerability findings. Initially, we analyzed the
processes active on the device after gaining root access through the exploited tel-
net service. We found that only slightly more than 50 processes were active on
the device, many of which were observed starting as system processes via the
UART serial interface logs.

Upon observing the list of active threads on the device, we discovered that
the vast majority were spawned from two different applications, namely noodle
and apollo, which were also found in our copy of the flash memory in the app
partition.

We then proceeded with the identification of processes associated with
the open ports found in the external network mapping. The results of the
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netstat command highlighted that the telnet connection is managed by inetd
(as expected), while all other connections are managed by either noodle or apollo.
Specifically, noodle listens on ports 843/TCP, 1300/TCP, and 5012/UDP, while
apollo serves all other ports, including 8554/TCP (RTSP). Since these two bina-
ries serve as the main entry points for any external connection (including com-
munication with the vendor’s servers and the vendor’s application), we will focus
on their analysis in Sect. 4.

3.3 Bash Scripts

We analyzed the content of the bash scripts found in the /etc./init.d folder,
which contains 5 different scripts:

– S01udev: responsible for creating some system folders and run the udevd
demon and to start the udevstart program;

– S02init rootfs: responsible for mounting the data file system partition;
– S03network: responsible for configuring the network interface;
– S04app: responsible for mounting the app file system, initializing different

applications, and starting the noodles application;
– rcS: responsible for executing all the scripts found in the /etc./init.d folder

starting with the S[0-9][0-9] regex expression.

Since the S04app script is the most interesting initializing script, we decided
to analyze it in detail to recreate the entire initialization process of the appli-
cations being executed on the device and to find any potential vulnerabilities.
The S04app script invokes another script (chk ver.sh) that is responsible for
updating any script found in the /usr/bin folder with newer versions found in
the /app folder, if available. While it is possible to exploit this script to over-
write system applications with another file with the same name placed in the
/app folder, it is worth noting that obtaining access to the system is necessary
to perform this exploit. Given that the only user available on the device is the
root user, the process of modifying a script is trivial and of little interest in our
case study.

The S04app then proceeds to invoke three hard-coded scripts (patch.sh,
sys init.sh, and app init.sh) from the /app directory, if available. Unfortu-
nately, in both our device and flash image, we were unable to locate these scripts,
as they are most likely related to the installation of a patch downloaded from
the vendor’s website.

After executing the noodles application, the S04app script identifies and
mounts the SD card on the /mnt/sd mount point. If the SD card is mounted
correctly, it then executes another script (iu.sh), which appears to be an update
script. Upon further analysis, the iu.sh script copies the content of a file named
Flash.img found in the root directory of the SD card to a temporary working
folder (/home) and proceeds by copying its content to replace the entire flash
memory. It is worth noting that since the entire system boot process does not
check the integrity of the loaded flash image, it is possible to overwrite the system
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simply by inserting a properly formatted SD card with the malicious firmware
image, without the necessity of accessing the device through the network.

CVE-2023-30356: Missing support for Integrity Check - Tenda IP Cam-
era CP3 was discovered missing Support for an Integrity Check, allowing
attackers to update the device with crafted firmware.

Base Score: 7.5 High
Vector: CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:N

4 Binary Analysis: Noodles and Apollo

In this section, we present a detailed analysis of the two main binaries responsible
for managing network connections on the Tenda CP3 camera, namely noodles
and apollo. The primary objective of the analysis presented in this section is
to outline the methodology we adopted in identifying vulnerabilities that could
potentially allow for remote code execution on the device.

Our analysis is based on the reverse-engineered representation of the two
binaries obtained with Ghidra [14], upon which we applied a customized version
of the rhabdomancer script [13] to identify insecure functions handling external
connections (recv, recvfrom, and recvmsg). Rhabdomancer is a Ghidra script
designed to assist with vulnerability research tasks based on a candidate point
strategy against software written in C/C++. It locates all calls to potentially
insecure functions (the candidate points), which can be used to find insecure
input access to the process. Additionally, we developed a tool on top of rhab-
domancer that automates the entire process of reconstructing the function call
sequence from the main function to the specified entry points [2], enabling us
to easily map all the threads of the two processes to the different ports they
use. Subsequently, we proceeded with a manual analysis to identify potential
security vulnerabilities and design exploits to achieve remote code execution on
our device.

4.1 The Noodles Binary

By executing our modified version of the rhabdomancer script, which specifi-
cally targeted functions relevant to our analysis (primarily recv, recvfrom, and
recvmsg), we identified three candidate points in the decompiled binary. These
points were labeled as FUN 00014e68, FUN 0001fc14, and FUN 00012b7c.

FUN 00014e68. This function is referenced in 5 other functions within the noodles
binary. We will refer to these different invocations using the memory addresses
of our reversed binary for simplicity.

1. 0x00011b04. The first reference is inside the main function, and is related to
a socket listening on port 1300 (one of the ports already identified in the previous
analysis step). In this invocation, FUN 00014e68 is used to receive commands
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from the client, as confirmed by the string receive cmd from client<%d>:
<%s> len = %d \n found a couple of instructions later. The available commands
(hard-coded in the binary) through this interface include some suspicious strings
like ELFEXEC, DOWNLOAD, and SYSTEM.

2. 0x000123bc. The second reference to our target function is inside the
FUN 00012110 function, which is referenced by 3 other functions: FUN 000128a0
(invoked by the main function after the ELFEXEC command is received),
FUN 00014674 (invoked by the main function after the DOWNLOAD command is
received), and FUN 000147ac (invoked by the main function after the UPGRADE
command is received). Upon further investigation, we confirmed that these ref-
erences are all related to the previously discussed functionalities, and they can
be used to trigger the execution of different scripts available on the camera.

3. 0x0001272c. The third reference is found inside two different functions:
FUN 000146e4 (invoked by the main function after the UPLOAD command is
received) and FUN 00014748 (invoked by the main function after the FLASHDUMP
command is received). While via the former invocation it is possible to upload a
specific file to the camera, by exploiting the latter invocation we demonstrated
that it is possible to remotely upload a modified version of the firmware that will
be copied to the flash memory on the next restart. This enables the exploitation
of the vulnerability identified in Sect. 3.3 (CVE-2023-30356) without requiring
physical access to the camera to upload a modified firmware version on the SD
card.

4. 0x00013cbc. The fourth reference is found inside the function FUN 00013c30,
which happens to be the policy thread spawned by the function FUN 00013df4
(directly called in the main function). The policy thread is listening on port 843,
accepts a fixed string (policy-file-request), and responds with a fixed XML
structure.

5. 0x000144f8. The final reference is found inside FUN 000143c0, which
is another function associated with the management of external commands
accepted by noodles. Specifically, this function is called upon the reception of
the SYSTEMEX command, which has already been exploited by other researchers
in CVE-2023-23080 to achieve remote code execution.

FUN 0001fc14. The second function containing a recv invocation is referenced
only once in function FUN 0001d2c8 in the noodles binary. However, this latter
function is referenced three times.

The first reference (FUN 0001d2c8) is related to some WiFi connection tests
and extends up to the main function (invoked after receiving a SYSTEM command
containing the STATUS keyword). We analyzed the entire activation graph of
this invocation, composed of 6 different functions, and established that this set
of functions is used to test the status of a known WiFi SSID by the camera on
system boot.

The second reference (FUN 0001d1f8) is also related to WiFi communication
and is also invoked indirectly by the main function after a SYSTEM command



206 D. Stabili et al.

is received. However, this second function accepts a different system command
(SCAN ) and performs a network scan on the wlan0 (hard-coded) network inter-
face.

The third reference (FUN 0001d3b0) is once again related to WiFi commu-
nication and invoked via the SYSTEM handler of the main function. This time,
the function accepts a SCAN RESULTS command and prints the output of the
last saved network scan on the serial interface. We remark that all three of these
handlers return the same value (<SYSTEMEX ACK>ok</SYSTEMEX ACK>), which is
the default response for any successful connection via the SYSTEM command.
Additionally, we note that all of these commands are vulnerable to remote code
injection, and that any received command is executed on the device with root
privileges without requiring authentication.

FUN 00012b7c. The third function containing a recvfrom function is actually the
multicast thread spawned by the main function and attached to port 5012/UDP.
The multicast thread is configured to accept two commands, namely YGMP SVR
and YGMP CMD.

Upon reception of the former command, noodles opens different configuration
files to read the current settings of the device, which are then returned as an
XML structure to the caller. These settings include the IP and MAC addresses
of the camera, its serial number, the value encoded in the QR Code, the hardware
version, and other information.

The latter command (YGMP CMD), however, is far more interesting in the scope
of our work, as it allows unauthenticated remote code execution on the camera by
sending a formatted XML payload. In particular, the payload accepts 3 different
tags for parsing: TARGET, MAC, and CMD. Although the content of both
TARGET and MAC are apparently not used except in some printing functions,
the content of the CMD tag is compared to the reboot string. If the strcmp
returns 0, the FUN 00016ea8 function is called with the argument /app/bin/cmd
reset; otherwise, the content of the CMD tag is passed directly to the same
function.

Upon further inspection, we verified that the FUN 00016ea8 function is a
simple wrapper for the system function, with the arguments passed to the func-
tion being forwarded directly to system without proper sanitization. This allows
unauthenticated remote code execution on the camera by simply passing a com-
mand different from reboot.

CVE-2023-30353: Unauthenticated RCE - Tenda IP Camera CP3 allows
unauthenticated remote code execution via an XML document.

Base Score: 9.8 Critical
Vector: CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

We emphasize that by following the described methodology, which is based
on the analysis of the recv functions and their activation path, we were able
to find all handlers for incoming connections managed by the noodles appli-
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cation. Furthermore, we demonstrated how to exploit these handlers to obtain
unauthenticated RCE with root privileges on the device.

4.2 The apollo Binary

We employed the same methodology applied on the noodles binary to analyze the
apollo binary. In particular, we want to remark that the vanilla rhabdomancer
script on the whole apollo binary resulted in more than 128000 candidate points,
while our tool returned less than 100 points, which we further reduced with a
simple duplicate removal of different points on the same function calls.

The apollo binary utilizes 65 different threads to perform various tasks based
on commands received from 7 different ports. Each of these threads eventually
leads to one or more of the 25 recv functions. These functions containing the
recv calls are solely responsible for managing incoming data, while the parsing
of the received data structure is handled by the calling functions.

After thorough analysis, we successfully mapped each thread to a specific
port listened to by the apollo process and identified the exposed functionalities.

– 3702/TCP exposes ONVIF [15] discovery, notification and hello threads as
required by the ONVIF Core Specification [3 threads];

– 6688/TCP: exposes an HTTP server [3 threads];
– 8554/TCP: exposes the RTSP service, which is used to access the camera

video and audio [2 threads]
– 8699/TCP: exposes a set of threads related to manage different functional-

ities of the camera [52 threads];
– 9876/TCP: exposes the yserver TCP handler for incoming connections [3

threads];
– 5683/UDP: exposes the COAP (COnstrained Application Protocol [5])

functionalities [1 thread];
– 19966/UDP: exposes the yserver UDP handler for incoming connections [1

thread].

We proceeded with a more in-depth analysis of the main handler of port
8699/TCP (ut cmd server init) due to the significant number of threads
directly associated with this port. We discovered that this connection is utilized
for direct communication with the user application within the same network or
via cloud services when in a different network. It accepts all possible commands
that the user can provide through the application interface.

The incoming packets are handled by a dedicated thread (ut rcmd server
proc) and then passed to a parser function to identify the received command
(FUN 0007cb00). In this function, the parser only checks that the received com-
mand starts with the character ! and then proceeds to compare the remainder
of the received string with hard-coded commands. If the received string matches
one of the commands, then a thread is spawned and the desired function is exe-
cuted on the camera. We identified 148 different commands (147 plus the help
command, which returns the description of all the other commands), which are
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mapped to 50 different threads. As an example, the audio output proc man-
ages various functionalities related to recording audio from the microphone (e.g.,
audio vol in, used to set the audio input volume, or capture audio, used to cap-
ture audio from the microphone) and setting different speaker parameters. Mean-
while, functionalities related to playing audio on the camera are managed by
the audio output proc (e.g., loop audio and play audio). However, if the string
received by the ut rcmd server proc thread and parsed by the FUN 0007cb00
function is not recognized as one of the commands directly managed by the
process, the system function is executed by passing the remaining string as the
only parameter. By supplying a correctly formatted string to the service, we
were able to achieve another instance of unauthenticated remote code execution
on the camera.

Finally, we note that we also identified potential exploits on the other ports
handled by the apollo process. While the methodology presented in this paper
has proven effective in identifying vulnerabilities on our device, we emphasize
that the process of behavior reconstruction (i.e., the detailed analysis presented
on the noodles binary) and the subsequent crafting of exploits to verify a security
vulnerability still heavily rely on human skill and experience.

5 Conclusions

This paper analyzes the process of vulnerability discovery on a consumer IP
camera to demonstrate the effectiveness of the approach in the identification of
security vulnerabilities. The methodology comprises five steps:

1. gathering relevant information from open sources;
2. physical access to a IP camera specimen aiming at identifying low-level attack

vectors;
3. firmware extraction and static analysis of the whole file system, including

configuration files, scripts and executables;
4. dynamic analysis of the network behavior, aiming at identifying all remote

attack surfaces (such as open TCP and UDP port) of the connected IP cam-
era;

5. in-depth reversing of all executables that implement network-facing services.

We provide a detailed example of the application of the proposed methodol-
ogy by applying it on the widespread Tenda CP3 IP camera as a relevant use
case. Our methodology allowed us to identify five new CVEs with a CVSS score
ranging from 7.5 to 9.8.

We remark that the proposed methodology differs from the approaches that
are commonly proposed in many related works, which only perform network-
based analysis and fall short from executing a complete reversing of relevant
executables.

To partially automate our approach we also developed a novel tool [2] based
on Ghidra and rhabdomancer that is able to identify the functions managing
incoming connection, to reconstruct their call tree from the main function for a
fast identification of critical points in large binary executables.
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Responsible Disclosure

Before publication of this work we contacted Shenzen Tenda Technology Co.,
Ltd. (May 2023) and disclosed our initial findings to them. We informed their
representative that we had discovered several vulnerabilities in one of their prod-
ucts and mutually agreed to proceed with the responsible disclosure procedure
once the CVE IDs for the vulnerabilities were assigned. We obtained 5 CVE IDs
(out of the 7 initially requested, with 2 CVE IDs covering two vulnerabilities
each) at the beginning of June 2023, and promptly reached out to their repre-
sentative. As of time of submission of the camera ready of this work (July 2024),
all details of our findings have been shared with the Tenda representative, who
also assured that a patch resolving all these vulnerabilities is currently being
developed and will be available in the next months.

Acknowledgments. This work was partially supported by project SERICS
(PE00000014) under the MUR National Recovery and Resilience Plan funded by the
European Union - NextGenerationEU.
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1 Introduction

Ransomware, often classified as cryptoviruses, poses a significant threat to cyber-
security through its use of unauthorised encryption processes to render data inac-
cessible. Complications like ransomware attacks can also emerge when organi-
sational files stored on shared systems are inadvertently encrypted by employ-
ees using legitimate cryptographic tools, creating situations that resemble ran-
somware activities, particularly when decryption keys are mismanaged or lost.
Presently, machine learning (ML) techniques are at the vanguard of ransomware
detection, employing predictive models that discern behaviour characteristics of
ransomware. These models analyse patterns such as distinctive API calls, sys-
tem library interactions, and file system dynamics, including the frequency of
file read and write operations. Although these methodologies demonstrate effi-
cacy against known ransomware types, they encounter limitations in identifying
novel, characterised strains of ransomware. The evolving nature of ransomware
enables it to mimic the behaviour of benign software, thereby challenging the
sustained accuracy and effectiveness of ML detection models.

The relentless evolution of ransomware introduces substantial challenges in
its detection, as adversaries refine their tactics to engineer ransomware that
closely imitates the behaviour of legitimate software. This deceptive similarity
significantly complicates the task of ML systems in distinguishing between mali-
cious and benign programs. Emerging methodologies, such as unsupervised learn-
ing and anomaly detection, offer potential advancements in identifying a typical
behaviour pattern without relying exclusively on predefined threat databases.
These approaches indicate a prospective paradigm shift in the methodologies
employed for ransomware detection, enhancing the ability to detect novel threats
that evade traditional detection frameworks. Despite the promising advances in
ML techniques, the complexity and adaptability of ransomware necessitate fur-
ther innovations in detection and prevention strategies. This need has lead us to
developing the Digital Immunity Module (DIM), a targeted solution designed to
address the unique challenges posed by modern ransomware.

This paper presents the Digital Immunity Module (DIM), an innovative
framework designed to safeguard data at the file-system level from unauthorised
encryption, with applicability to networked and cloud-based environments. DIM
proactively intervenes by scrutinising and manipulating file write operations,
thereby markedly impeding the encryption process through the expansion of
data blocks, which in turn disrupts ransomware activities and enhances attack
traceability. This approach underscores the enhancement of resilience against
ransomware, especially targeting novel and adaptive variants, by concentrating
on the protection of remotely stored critical data. Utilising a custom FUSE
(Filesystem in Userspace) file system, DIM thoroughly monitors and controls
data transfers between endpoints and network storage, actively identifying and
mitigating malicious encryption attempts. This strategy not only fortifies the
security of files on network and cloud storage but also supports organisational
cybersecurity policies that emphasise the protection of critical data assets over
endpoint device data. As a result, the implementation of DIM represents a signif-
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icant shift in how cybersecurity defences are conceptualised and applied within
organisational frameworks.

The structure of this paper is organised as follows: In Sect. 2, we review
related work and provide the necessary background. Section 3 is dedicated to a
detailed description of the DIM concept. In Sect. 4, we elaborate on the exper-
imental setup, evaluation methods, and assess the efficacy and performance of
DIM. Section 5 engages in a comparative analysis of DIM with state-of-the-art
solutions. Finally, Sect. 6 summaries our findings and outlines future research
directions.

2 Related Works and Background

File System-Oriented Solutions: This section compares our purpose-built
model with related storage-level works that use file system features to detect and
prevent ransomware operations. We highlight the differences between our app-
roach and most existing results, focusing on the I/O patterns analysis. Kharraz
et al. in [19] focuses on analyzing the behavior of ransomware attacks from a file
system perspective, describing common characteristics of ransomware attacks
by investigating their file system activity. The authors developed a minifilter
driver to monitor I/O requests generated by the I/O manager on behalf of user-
mode processes to access the file system. They analyzed the file system activity
of multiple ransomware samples, identified their attack strategies, and catego-
rized the malicious activities. One such category involves encryption mecha-
nisms, mainly composed of customized and standard cryptosystems. The paper
provides insights into the encryption process, other malicious activities, and how
a malicious process interacts with the file system during a ransomware attack.

ShieldFS [9] builds upon the work of [19], introducing a forward-looking
file system that can prevent the harmful effects of ransomware attacks on data
in a transparent manner. ShieldFS proposes to achieve this through automatic
detection and transparent file recovery capabilities at the file system level. The
detection system designed by the authors is based on entropy analysis involving
write operations, frequency of read, write, and folder-listing operations, disper-
sion of per-file writes, the fraction of files renamed, and file-type usage statistics.
ShieldFS then looks for indicators of cryptographic primitives and scans the
memory of any process considered “potentially malicious”, searching for traces
of typical block cipher key schedules.

UNVEIL [18] is a system that employs a file system monitor with direct
access to data buffers involved in I/O requests, providing complete visibility into
all file system modifications. UNVEIL’s monitor establishes callbacks on all I/O
requests to the file system generated by any user-mode process. For performance
reasons, the system aims to set only one callback per I/O request while main-
taining comprehensive visibility into I/O operations. UNVEIL analyzes access
patterns in I/O traces, which include sequences of user-mode processes, avail-
able files, I/O operations, and the entropy of read or write data buffers. It iden-
tifies distinctive I/O fingerprints for file locker ransomware samples by detect-
ing repetitive I/O access patterns indicative of a ransomware strategy to deny
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access to user files. Additionally, UNVEIL computes the entropy of read and
write requests to and from the same file offset, which is a common indicator
of crypto-ransomware behavior. This pattern arises when ransomware reads the
original file data, encrypts it, and then overwrites it with the encrypted version.
However, this approach is not universally adopted across modern ransomware
families and variants. Shannon entropy is used for this computation, assuming
a uniform random distribution of bytes in a data block.

Paik et al. [27] proposed a method for detecting ransomware in flash-based
storage, involving an access-pattern-based detector coupled with a buffer man-
agement policy designed for solid-state drives (SSDs). This method monitors
read and write operations at the same location to identify instances where ran-
somware encrypts and then overwrites original files. However, its effectiveness
may be limited if the read-write buffers on the SSD are small, and it may not
always detect ransomware if the malicious software doesn’t store files at the same
location.

Baek et al. [2] introduced the SSD-Insider method, designed to detect and
protect NAND flash-based SSDs from ransomware attacks. This approach scru-
tinizes unique attributes of I/O requests, such as block address, size, and type,
to detect the presence of ransomware. It employs an Iterative Dichotomiser 3
(ID3) based binary decision tree for detailed analysis of these characteristics. The
authors also propose an innovative Flash Translation Layer (FTL) design capa-
ble of restoring infected files by leveraging the delayed deletion feature inherent
to NAND flash. Despite its ingenuity, this method incurs significant additional
overhead on the SSD system.

Non-File System Oriented Solutions: This section reviews various ran-
somware detection and mitigation strategies, ranging from rule-based frame-
works to those that use machine learning (ML) techniques. The focus of these
strategies is on vigilant monitoring of process behaviors, meticulous analysis of
network traffic, and scrupulous examination of system calls to detect any signs
of suspicious or anomalous activities. These activities encompass various aspects
such as OS log entries [8], changes to the Windows Registry [28], arbitrary file
modifications [29], and the entropy of files [17,20,28].

The literature also discusses various machine learning approaches [4], includ-
ing detection based on API/System Calls [30], file I/O operations [9], and net-
work traffic features. These features include the average packet size, the number
of packets exchanged between the host and other machines, and the source or
destination IP addresses contained within packet headers [10].

Several research studies have explored process actions, referring to the event
sequences occurring while a program or application runs. Researchers have also
used process mining techniques to identify file system metrics and conducted
Ransom Note Analysis to study instances of ransomware attacks [3,14,18].
Despite the advancement in detection techniques, recent ransomware variants
such as DoppelPaymer, Sodinokibi, Hades, Ryuk, and Conti continue to pose
significant challenges, including business disruption, data loss, reputational dam-
age, remediation costs, and legal liabilities. These challenges primarily arise due
to frequent changes in ransomware behavior, complicating the detection process.
We have summarized related work in Table 1.
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Table 1. Summary of ransomware detection techniques.

Detection techniques Reference

Behaviour Based [1,12,15,17,18,29,30]
I/O Request Packer Monitoring [2,9]
Network Traffic Monitoring [5,6,10,24,26]
Storage Level [2,9,27]
Opcode-Bytecode Sequences [3]
Process mining identifying file system metrics [22]
Ransom Note Analysis [18]
File and Binary Entropy checking [17,20,28]
API Call [13]
File types extension analysis [29]
Others (Autonomous Backup and Recovery SSD) [23]
Others (Windows Registry, log files, sdhash) [3,8,11,14,28,29]

3 Digital Immunity Module

This section introduces the concept and approach of our proposed Digital Immu-
nity Module (DIM). The primary role of DIM is to actively prevent ransomware
from encrypting files under its protection. DIM focuses on file security with two
main objectives: (1) Identify DIM-protected files undergoing encryption, and (2)
Prevent malicious encryption of DIM-protected files.

Encryption Detection – Shannon Entropy Approach: to achieve
its objectives, DIM needs to effectively distinguish between encrypted
and unencrypted files. Unencrypted files can be text files (such as
PDFs, Microsoft Word documents, and LaTex files), multimedia files (like
images, music, and videos), and other commonly used formats. We pro-
pose using Shannon’s entropy concept as a natural method to differenti-
ate between these file types. Consider a random variable X representing n
events x1, . . . , xn, with each event xi occurring with a probability P (xi).
In this context, entropy is defined as follows:

H(X) = −
n∑

i=1

P (xi) log2 P (xi). (1)

We consider the events of our random variable X to be characters of the
Unicode standard, including non-printable ones. Entropy is a useful measure to
gauge the randomness of a file’s content. High entropy is indicative of random-
ness, whereas redundant (correlated) content results in low entropy. To calculate
the entropy H(f) of a file f = {x}N

1 with N characters from X, we count the
occurrences �x of each character x in f , as follows:

H(f) = −
∑

x∈f

�x

N
log2

�x

N
,
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where �x
N denotes the probability of character x occurring in file f . For instance,

consider a file f = {aaaaaaaaa}. Here, �a = 9, N = 9, and thus �a
N = 1, leading

to H(f) = 0. Another file f ′ = {aeaieou!}, with varied occurrences, will have
H(f ′) = 2.5.

Each type of unencrypted file, treated as a source of symbols/characters,
is assumed to have a specific probability distribution characterizing its source
program. For sufficiently long files f generated by a PDF source, for example,
the probability of a symbol x can be approximated by its occurrence �x in f :

P (x) ≈ �x

N
,

where N is the total number of characters in file f . Thus, H(f)PDF = HPDF ,
where H(f)PDF is the entropy of f generated by a PDF source and HPDF is the
entropy of the PDF source. However, this approximation is ineffective for “short”
files. Since sources of unencrypted files typically generate byte characters, the
maximum entropy Hmax of a file equals 8 bits, occurring when source characters
are uniformly distributed.

Entropy of Encrypted Files: We expect sufficiently long encrypted files to
have entropy levels approaching Hmax. Cryptographically robust encryption typ-
ically produces cryptograms that are virtually indistinguishable from truly ran-
dom sequences. To test this hypothesis, we conducted experiments on various
file types. Initially, we measured the entropy of a representative sample for each
specific file type. Then, we encrypted these samples using three different open-
source encryption tools: AESCrypt, GnuPG, and Challenger, and repeated the
entropy measurement. The results, depicted in Table 2, confirm with high confi-
dence that a file f is encrypted if its entropy H(f) satisfies 7.99 < H(f) ≤ 8.

However, it is important to remember that compressed files can also exhibit
entropy values near Hmax, which necessitates careful interpretation in such cases.

Table 2. Entropy of encrypted and un-encrypted files

File Format Unencrypted Challenger GnuPG AESCrypt

.pptx 7.90786434941 7.99993409023 7.99992547868 7.99992691156

.bmp 6.38231379202 7.99994411725 7.99969271027 7.99994075204

.jpg 7.96841466702 7.99969969991 7.99972370710 7.99964407683

.docx 7.82881687843 7.99564129666 7.99531941975 7.99383985158

.pdf 7.85009879424 7.99998526860 7.99997917863 7.99998576992

.xlsx 7.93289273016 7.99846117766 7.99844636333 7.99869412812

.png 7.98653176951 7.99983209472 7.99978322342 7.99982432301

.tex 4.81546551317 7.99832884790 7.99416858853 7.99793348066

.sql 5.14310355930 7.99991774345 7.99949416462 7.99992064505

The above observations lead to the following conclusions: (a) Entropy can
be used to characterize redundancy in files generated by specific applications,
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such as PDF creators, Microsoft Word, and PowerPoint. The entropy of plain or
unencrypted files typically falls below 7.99. (b) Encrypted files generally exhibit
a uniform probability distribution of characters, resulting in an entropy close to
Hmax. However, a notable caveat is that compressed files may also display high
entropy values, necessitating distinct consideration.

Measuring Entropy in Practice: Calculating file entropy typically requires
fetching the entire file from the HDD into RAM, which is both computation-
ally expensive and time-consuming, especially for large files. Detection processes
that are time- and computation-intensive have proven inefficient in dealing with
ransomware attacks. This inefficiency arises from the rapid pace at which ran-
somware can encrypt target files once an attack is initiated.

A practical solution involves determining a ‘minimum threshold length of
bytes’ whereby a portion of the target file can be used to approximate its entropy.
This approximation aims to yield a value that closely mirrors the file’s actual
entropy, enabling DIM to make rapid decisions about potential encryption. To
test this approach, we used 436 PDF documents containing historical Federal
Reserve projections of the U.S. economy, commonly referred to as Greenbook
projections (or Board of Governors Datasets). These documents consist of text,
tables, and graphs. Our experiments suggest that setting a minimum threshold
length of 25,000 bytes achieves an acceptable confidence level for approximating a
file’s entropy. The entropy approximation for 15,000 bytes is presented in Table 3,
and for 25,000 bytes in Table 4, using the Greenbook PDF Dataset encrypted by
specified ransomware. The bold values in Table 4 indicate the threshold value of
7.99. Note that only a subset of the files is displayed in this table.

Table 3. The first 15000 bytes of the file are read and the entropy is computed.

File Name Total File Entropy GandCrab locked OFFWHITE az3zg avdn eswasted WNCRY

GS-1966-01-11.pdf 7.7787168 7.98654117 7.9871808 7.98838185 7.98779854 7.98884194 7.9877807 7.98771588
GS-1966-02-08.pdf 7.7957867 7.98679319 7.98813517 7.98663561 7.98738209 7.98744374 7.98915027 7.98577155
GS-1966-03-01.pdf 7.71154378 7.98849562 7.98780239 7.98756999 7.98761761 7.98670168 7.9885083 7.98640685
GS-1966-03-22.pdf 7.70743395 7.98853245 7.98775498 7.98745479 7.98805904 7.98589657 7.98739649 7.98965494
GS-1966-04-12.pdf 7.70909013 7.9864649 7.98792679 7.98629035 7.98944624 7.98654917 7.98642588 7.9882894
GS-1966-05-10.pdf 7.71872743 7.9873719 7.98942611 7.9889985 7.98769273 7.98756768 7.98744401 7.98777511
GS-1966-06-07.pdf 7.71313681 7.98778132 7.98508746 7.9872488 7.98805607 7.9876873 7.98932451 7.98676996
GS-1966-06-28.pdf 7.7869504 7.98654693 7.98843465 7.98801858 7.98777954 7.98756831 7.98874163 7.98857874
GS-1966-07-26.pdf 7.78627432 7.98702218 7.9866608 7.98770975 7.98996563 7.98626002 7.98707602 7.98900321
GS-1966-08-23.pdf 7.72829092 7.98679314 7.98909114 7.98884781 7.98636617 7.9893225 7.98484725 7.9857893

Entropy of Compressed Files: JPEG files: Compressed files like JPEGs,
which employ lossy compression, inherently have high entropy due to the reduc-
tion of character redundancy in image files. For our experiments, we utilised the
INRIA Holidays JPG dataset [16], comprising 812 JPG images occupying 1.1GB
of storage. The entropy of each file in this dataset was calculated, revealing that
the highest entropy value, 7.95245506, was derived from the initial 25, 000 bytes
of a file. Notably, although JPG files exhibit high entropy values, they are not
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as high as those of encrypted files. This difference is attributed to non-uniform
character distribution probabilities in JPG files. For example, the Null (or 00)
character is the most frequent in most JPG files, while in others, the nbsp (or
255) character predominates.

Table 4. The first 25000 bytes of the file are read and the entropy is computed.

File Name GandCrab locked OFFWHITE az3zg avdn eswasted WNCRY

GS-1966-01-11.pdf 7.99338252 7.99245514 7.99215868 7.99127136 7.99254762 7.99140233 7.9928472
GS-1966-02-08.pdf 7.99100436 7.99313812 7.99253868 7.99211495 7.99210098 7.99252393 7.99172881
GS-1966-03-01.pdf 7.9922206 7.99283364 7.99205808 7.99274639 7.99110681 7.99350538 7.9923769
GS-1966-03-22.pdf 7.99364135 7.99293043 7.99278268 7.99234747 7.99238042 7.9919224 7.99362411
GS-1966-04-12.pdf 7.9920972 7.99251146 7.9917135 7.99382699 7.99163157 7.99097479 7.99184339
GS-1966-05-10.pdf 7.99399683 7.99291601 7.99391016 7.99315747 7.99326597 7.99235577 7.99343543
GS-1966-06-07.pdf 7.99248154 7.99199274 7.99239283 7.99317553 7.99241421 7.99336579 7.99261136
GS-1966-06-28.pdf 7.99300174 7.99353394 7.99285691 7.99322543 7.99293433 7.99270476 7.99301798
GS-1966-07-26.pdf 7.9931377 7.99344906 7.99250657 7.99272543 7.99232356 7.99183047 7.99371094
GS-1966-08-23.pdf 7.99218428 7.99356795 7.99311067 7.99240853 7.99295244 7.9921548 7.99167112

TIFF Files: TIFF file compression uses adaptive dictionary algorithms, like
LZW compression. Our experiments aimed to explore the statistical properties of
TIFF files. We used a sample of 87 TIFF images from a medical database, specif-
ically the OME-TIFF dataset. The results showed that the highest file entropy
was 5.20967171, significantly lower than the Hmax value of 8. This outcome sug-
gests a non-uniform probability distribution of characters in TIFF images. For
example, the Null character frequently appears with the highest probability in
these files.

High-performance compression algorithms, such as those used in TAR and
ZIP applications, effectively reduce character redundancy to the extent that the
file entropy approaches Hmax. This resemblance creates a significant challenge
in distinguishing compressed files from those encrypted by ransomware, partic-
ularly if entropy is the sole characteristic under consideration. To address this
issue, user applications and DIM can negotiate an acceptable level of compression
quality. This can be achieved by slightly skewing the byte probability distribu-
tion, thereby introducing a small redundancy ε. Consequently, the file entropy is
adjusted to H(f)− ε, where H(f) represents the entropy of the compressed file.
The introduced redundancy ε should be minimal to avoid compromising com-
pression quality, yet substantial enough to enable DIM to differentiate between
compressed and encrypted files.

Distribution of Symbols in Encrypted Files: In encrypted files, characters
behave as if they are random, making it impossible to extract any sensitive infor-
mation from them. Essentially, any two adjacent characters should be regarded
as independent random variables X and Y , where X does not reveal any infor-
mation about Y and vice versa. Consequently, characters in encrypted files tend
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Fig. 1. The Standard Deviation (σ) of PDF, JPG, and TIFF files was computed
from the first 25 kilobytes (KB) of each file. Sub-Figure (a) illustrates that sym-
bols in unencrypted files appear loosely distributed, whereas in encrypted files,
symbols are more uniformly distributed (b) and (c)

Table 5. Average Confidence Interval of the first 25000 Bytes of 8010 encrypted
and 1335 unencrypted files. The data set is encrypted by six different ransomware
families.

Encrypted files Unencrypted files
Lower bound Mean Upper bound Lower bound Mean Upper bound

Confidence Interval 99% 96.02748789 97.65625 99.31896542 35.4255017 97.65625 159.8869983
Confidence Interval 95% 96.38530503 97.65625 98.92719497 50.43465809 97.65625 144.8778419
Confidence Interval 90% 96.590831 97.65625 98.721669 58.07091603 97.65625 137.241584
Confidence Interval 85% 96.72440466 97.65625 98.58809534 63.03380651 97.65625 132.2786935
Confidence Interval 80% 96.8330564 97.65625 98.4794436 66.84643556 97.65625 128.4660644

to follow a uniform probability distribution. To test this theory in the context of
ransomware encryption, we selected six prevalent ransomware variants and used
them to encrypt a collection of three datasets: Greenbook projections, INRIA
Holidays, and OME-TIFF. We then computed the standard deviations of char-
acters for the first 25 kilobytes (KB) of each encrypted file.

Figure 1 shows the distribution of symbols in both unencrypted and
ransomware-encrypted files, confirming that characters in encrypted files are
indeed uniformly distributed. Additionally, Table 5 presents the confidence inter-
vals for both encrypted and unencrypted files, calculated for the first 25 KB of
the 8010 encrypted and 1335 unencrypted files, corresponding to confidence lev-
els ranging from 99% to 80%.

Ransomware with Low Entropy: Modern ransomware variants achieve
higher throughput and lower latency by employing parallel threads, allowing
them to fetch data from the HDD and encrypt it concurrently without wait-
ing for other threads to complete. A notable example of such ransomware is
Dharma (also known as CrySIS), which has been active since 2016. With over
a hundred different versions, our analysis reveals that this multi-threaded ran-
somware encrypts eight files simultaneously. Additionally, it writes 256 KB of
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the null character at the start of image files (like JPG and TIFF), likely to
circumvent encryption detection through entropy analysis. This insertion of null
bytes effectively lowers the entropy values of files. To counteract this, we employ
a sliding window technique while reading the initial 25 KB of a file to detect
encryption. The specifics of this sliding window technique are explained in the
following section.

Context Triggered Piecewise Hashing: Similarity-preserving hashing, also
known as fuzzy hashing, has been used in malware analysis [21]. In this study, we
propose employing fuzzy hashing to detect buffers containing malicious content.
Consider a collection of files F = {f1, f2, . . . , fm}, with each file fm requiring a
finite set of buffers {b1, b2, . . . , bn}, where each buffer bn is 4096 bytes in size. Let
fhash(fm(bn)) represent the hashing signature (digest) of the bn buffer contents
of fm. Algorithm 1 computes similarity-preserving hash signatures for all files in
the collection F stored on the HDD. This approach allows us to: (1) Detect files
with correct similarity-preserving hash signatures before writing them to the
HDD. (2) Identify padding data added by ransomware to reduce file entropy. (3)
Make it difficult for ransomware to predict which buffers (hash signatures) DIM
uses to identify encrypted contents. (4) Determine if ransomware has deleted
and rewritten all buffers of a file, indicating that the original file is irreversibly
damaged and no ransom should be paid. (5) Update buffers’ fuzzy signatures
after each legitimate file write operation. (6) Distinguish existing files from new
ones, even if the new files exhibit high entropy (such as ZIP or encrypted files).

4 Experimental Setup for DIM Efficacy and Performance
Evaluation

To validate the DIM concept, a proof-of-concept setup was created to assess its
efficacy and performance. The system consists of a Dell desktop with an Intel
Core i7-4770 CPU @ 3.40GHz, 16 GB RAM, and 4 cores with 8 logical pro-
cessors. It hosts two virtual machines on a VMware hypervisor, each configured
with 4 GB RAM and 4 processor cores. The VMs run on Ubuntu 20.04 Desktop
and Windows 10 Education N. The first VM, representing a typical ransomware
target, runs Windows 10, chosen for its prevalence in ransomware attacks due
to its widespread use. The second VM uses Ubuntu with Samba (SMB protocol)
to simulate network storage, protected by DIM, and contains a shared folder
with 1335 files of various types, including PDF, JPG, and TIFF. This setup is
designed to evaluate DIM’s potential in a controlled environment that mimics
real-world conditions.

A key component of our setup is the FUSE (Filesystem in Userspace) frame-
work. FUSE is widely used, with at least 100 different FUSE-based file systems
available online. It has two main components: a kernel module and a user-level
daemon. Once the kernel module is loaded, it registers with the Linux Virtual
File System (VFS) as a FUSE file system driver, enabling the creation of file
systems in user space rather than kernel space. FUSE is popular for custom file
system development.
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Algorithm 1 collects buffers at random for files and computes their fuzzy hash-
ing signatures. There is a collection of fuzzy signatures for each file that exists
on storage.
1: Input: F = {f1, f2, . . . , fm} {#All files on HD}
2: Output: Collection of all files fuzzy signatures
3: FuzzyCollection[] {#Global}
4: files[] ← fm

5: bn := 4096
6: n := 1
7: for fm in files do
8: {#7 buffers need for entropy}
9: Random ← range(1, 7)
10: Read fm :
11: while Not EOF do
12: temp ← read fm(bn) {# Read file 4096 }
13: if n = Random then
14: FuzzyCollection := fhash(temp)
15: break
16: end if
17: n := +1
18: end while
19: Closefm

20: n := 1
21: end for

Several FUSE-based file systems have been developed by various vendors,
such as Google Cloud Storage FUSE and s3fs-fuse. The FUSE kernel module,
integrated into the Linux kernel, serves as an intermediary for specific file systems
implemented by different user-level daemons. When a user application accesses a
FUSE file system, the Linux VFS directs the request to the FUSE kernel driver.
This driver creates a FUSE request, adds it to a queue, and typically pauses the
requesting process while the request is processed. The user-level FUSE daemon
retrieves the request from the kernel queue via /dev/fuse and handles it [31].
FUSE is also available for Windows systems under the name WinFsb.

DIM Pass-Through Module for Encryption Detection: (Question: Where
can DIM be embedded in a resilient system?) To address this question, we devel-
oped a pass-through module that interfaces with the FUSE file system. This
module is designed to intercept and examine the read/write buffers within the
network share file that is under DIM protection. It has all necessary permis-
sions to manipulate files, including access, chmod, open, create, read, and write,
making it a fully functional file system.

Three principal directories A ⇔ B ⇔ C interact with the pass-through
module. Directory A contains all files but is not directly accessible to users.
Directory B, configured as a shared mounting point (user-level daemon) with the
Samba protocol, is accessible to users over the network. Directory C is located in
the user environment. Note that while both A and B are on the Ubuntu VM, C
resides on the Windows VM, representing the user’s machine. When a process,
initiated by a user or ransomware, opens or writes to a file, the module inspects
the file’s write buffers.

(Next question: How can DIM detect and identify encrypted write buffers,
regardless of the encryption algorithm used?) The pass-through module inspects
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all write buffers of files originating from directory C. It determines whether the
contents of a buffer are encrypted before these contents are written to the HDD.
Our analysis shows that at least 25 KB of a file is needed to compute reliable
file entropy. To achieve this, the module reads seven buffers (each 4096 bytes) to
identify encrypted content and calculates the file’s entropy, standard deviation,
and confidence interval.

Consider a scenario where ransomware reads a 100 KB file, encrypts its con-
tents, and stores it in memory, i.e., the buffer cache. The system then writes
these encrypted bytes to the HDD using a default block size, which in this case
is 4 KB. Let Ω = {b1, b2, . . . , bn} represent a collection of n buffers. The pro-
cess of encryption detection employed by the pass-through module is outlined in
Algorithm 2.

Algorithm 2 identifies encrypted buffers. It reads seven buffers (chosen at random)
to determine whether their signatures belong to the fuzzy hashing collection. It also
measures the entropy of the seven buffers.
1: Input: An encrypted buffer bi ∈ {b1, b2, ..., bn}
2: Input: Cumulative buffer byte[] Buffers
3: Input: n the number of encrypted buffers arrived
4: i := 0
5: for n := 1 to 7 do { # Count for 7 buffer arrivals}
6: temp := FuzzyHash(bn)
7: { # From Fuzzy }
8: for item ← FuzzyCollection[i] do
9: Compare := FuzzyHash.compare(temp, item)
10: { # No match at FuzzyHash}
11: if Compare = 0 then
12: i := i + 1
13: end if
14: if i = length of FuzzyCollection[] then
15: {#the file is new}
16: i := 0
17: break
18: end if
19: end for
20: Insert bn to Buffers[] {#Accumulate buffers}
21: end for
22: X := H(Buffers[b1, .., b7])
23: if (X ≥ 7.99) & (no match in FuzzyCollection) then
24: buffers are encrypted...
25: start expanding buffers...
26: break
27: else
28: write buffer to HDD if conditions are not met
29: end if

DIM Encoding Expansion Module: Compression is a process that assigns
shorter bit encodings to more probable symbols, while less probable symbols
receive longer bit encodings [25]. There’s extensive literature on coding schemes
for lossless compression, such as Huffman, arithmetic, the Lempel-Ziv family
(refer to [25]), and the asymmetric numeral system (ANS) [7], which has been
found to be up to 30 times faster than earlier methods.
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How can DIM Obstruct the Functionality of Ransomware? Compression is not
only crucial for shortening transmission times, saving storage space, and acceler-
ating encryption, but it also presents an interesting defensive mechanism against
ransomware. When symbol occurrences in a file do not adhere to expected sta-
tistical distributions, compression can inadvertently expand the file. This expan-
sion, typically undesirable, can be leveraged as a defense against ransomware.
For instance, if DIM is requested by ransomware to store an encrypted file on
the HDD, DIM can apply a compression algorithm using non-uniform symbol
statistics, potentially derived from or similar to the file before encryption. This
DIM-induced compression expands the file, thereby occupying the ransomware
encryption engine. The extent of this expansion can be regulated by altering sym-
bol probabilities, growing significantly when more frequent symbols are assigned
very low probabilities. In theory, this expansion can reach sizes of gigabytes
(GBs) or even terabytes (TBs), effectively slowing down the ransomware encryp-
tion engine without needing to locate the elusive ransomware process. This delay
facilitates the triggering of an alarm for system or human intervention. Increas-
ing symbol probabilities could potentially disable the ransomware functionality
through excessive I/O load or insufficient storage on a DIM-controlled volume.

The primary function of the encoding expansion module is to engage a
ransomware encryption engine by supplying it with an ever-expanding bit-
stream. To demonstrate this, we developed a simple algorithm that transforms
a stream of uniformly distributed symbols (as in an encrypted file) into an
exceedingly long bitstream. Suppose ransomware requests to write an encrypted
file to a victim’s HDD. Before proceeding, let’s define some notations. Let
C = Δ = {c1, c2, . . . , cm} represent a collection of characters (Unicode). For a
sequence S = (s1, . . . , sn), where si ∈ Δ, |S|ci denotes the number of occurrences
of ci in S. The probability of occurrence of ci in S is given by P (ci) =

|S|ci
n .

Algorithm 3 operates within the interval [0, 1) of real numbers. As the set C
expands, the interval needed to represent it decreases, while the number of bits
required to specify the interval increases. Symbols {c1, c2, . . . , cm} from the set of
encrypted symbols reduce the interval size in accordance with their probabilities.
The algorithm is designed to allow error-free decoding, even when the expansion
encoding module has encoded unencrypted symbols. To ensure this, we enhanced
the precision of the symbol distribution range table.

Let’s consider two examples to illustrate the algorithm. For a set of ran-
dom unencrypted symbols {a, e, i, n, t}, arithmetic encoding is demonstrated in
Table 6. Each symbol s is allocated a unique interval, the length of which is pro-
portional to the symbol’s probability. Suppose our encoding expansion module
receives the sequence (e, a, i) of symbols. Upon encountering the first symbol e,
the module narrows the initial interval [0, 1) to [0.2, 0.5). For the second symbol
a, it proportionally shortens the current interval [0.2, 0.5) to [0.2, 0.26). The lower
interval bound is ps1(low)

, while the upper interval bound is ps1(low)
+ ps0 · ps1 .

For the final symbol i, the current interval [0.2, 0.26) is further narrowed to
[0.23, 0.236). The lower interval bound becomes ps1(low)

+ps1 ·ps2 , and the upper
interval bound is (ps1(low)

+ ps1 · ps2) + p0 · p1 · p2. Ultimately, the module stores
the lower bound 0.23 as the encoding of the sequence (e, a, i).



226 A. Mahboubi et al.

Algorithm 3 Buffer encryption expansion encoding module.
Input: C = {c1, c2, ..., cm} be a sequence of n random encrypted symbols
1: Initialize: precision := 1000000
2: Initialize: S[] := null
3: Initialize: Sci

[] := 0

4: for (n := 0 to C.length) do
5: key := C[n]
6: Sci

[key]+ = 1

7: if (key not in S[]) then
8: S[]+ = C[n]
9: end if
10: end for
11: low := 0
12: high := 1/Sci

[key]

13: for (key in sorted S[]) do
14: cdf_range[key] := [low, high)
15: low := high
16: { # increasing bitstream exponentially.}
17: high := high + ( 1

Sci
[key]precision

)

18: end for
19: {# Compute probability distribution function (pdf)}
20: for (key in sorted S[]) do
21: pdf [key] := 1

Sci
[key]

22: end for
23: LowerBound := 0
24: UpperBound := 1
25: while (there are still symbols in S[] to encode) do
26: CurrentRange := UpperBound − LowerBound
27: UpperBound := LowerBound + (CurrentRange ∗ cdf_range[key])
28: LowerBound := LowerBound + (CurrentRange ∗ cdf_range[key − 1])
29: {#Update the probability tables}
30: for (key in sorted pdf) do
31: pdf [key] := 1

Sci
[key]

32: end for
33: for (key in sorted cdf_range) do
34: pdf [key] := [low, high)
35: low := high;
36: end for
37: end while
38: {# write repeat encoded LowerBound.}
39: ∏i=1000

LowerBound

Table 6. Example of fixed normal symbols distribution range model.

Symbols Probability Range
S psn ps(low) ps(high)

a ps0 ← 0.2 [0.0, 0.2)
e ps1 ← 0.3 [0.2, 0.5)
i ps2 ← 0.1 [0.5, 0.6)
n ps3 ← 0.3 [0.6, 0.9)
t ps4 ← 0.1 [0.9, 1.0)

Now, consider a sequence of symbols {x, y, z, k, !,Space}. Let’s assume the
probability distribution of these symbols is detailed in Table 7. Figure 2-A depicts
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the probability density function range table with a precision of 15, as outlined
in Algorithm 4. We also present the result of expanding encrypted symbols
S = {x, y, z, k, !,Space}, which are 6 bytes in length. Using a precision of 500,
the compression output increases to 672 bytes, as shown in Fig. 2-B. A larger
precision can inflate the compression output to file sizes on the order of gigabytes
(GB). We tested a precision of one million, which expanded a 5-byte file into a
10-GB file before the system crashed-an outcome potentially beneficial during
a ransomware attack. In theory, it’s possible to expand a short file into a much
larger one, potentially on the order of terabytes (TB).

Algorithm 4 computes encoding table with higher precision with the longer bitstream.
1: Precision: 15
2: Input: S = [x, y, z, k, !, Space]
3: Initialize: Sci

[] {# Algorithm 4 defines it}
4: low := 0
5: high := 1/Sci

[key]

6: for (key in sorted S[]) do
7: cdf_range[key] := [low, high)
8: low := high
9: high := high + ( 1

Sci
[key]precision

)

10: end for

Table 7. Probability density function range table for each symbol with equal
distribution probability (p0, · · · , p5 = 0.166667).

Symbols Probability Range ← 1/|S|
S ps pslow pshigh

Space p0 [0.000000, 0.166667)
! p1 [0.166667, 0.333334)
k p2 [0.333334, 0.500001)
x p3 [0.500001, 0.666668)
y p4 [0.666668, 0.833335)
z p5 [0.833335, 1.000000)

Recovery of Corrupted Files: Modern ransomware variants overwrite origi-
nal files upon encryption, deleting the originals and saving encrypted copies to
storage. DIM addresses this by storing files being accessed in a secure temporary
directory, protecting them from immediate encryption. This module reads file
buffers and compiles statistics to facilitate file recovery. If the files are unen-
crypted, DIM deletes the temporary directory; if they are encrypted, it retains
the directory to recover the files. This design ensures minimal impact on HDD
storage and computational load, providing an effective defense against current
and future ransomware tactics without focusing on the specific coding of the
ransomware.
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Fig. 2. Left: The probability density function range table with precision of 15.
Right: Manipulating the PDF range table at a 500 precision level increases input
from 6 to 672 symbols.

Fig. 3. CPU starvation resulting
from the manipulation of the prob-
ability density function range table
(precision of 100,000) during a
ransomware attack, permitting the
expansion of buffers without termi-
nating the overwriting process by the
ransomware.

Fig. 4. CPU and memory starva-
tion resulting from the manipulation
of the probability density function
range table (precision of 10,000,000)
during a ransomware attack, killing
the malicious process.

Evaluation and Results: We gathered a substantial collection of ransomware
variants, totaling 1,182 instances across multiple families, from databases like
VirusShare, MalwareBazaar, and Kaggle. We selected 100 executable variants
from 75 different families for repeated testing against our Defense Mechanism
(DIM). The effectiveness of DIM in preventing file encryption was evaluated
against a dataset comprising 32.6 GB and 11,928 different file types. Our app-
roach to halt ransomware involves inducing CPU and memory resource star-
vation by manipulating the probability density function (PDF) to significantly
increase resource demands, as shown in Figs. 3 and 4, leading to ransomware pro-
cess termination depicted in Figs. 5a and 5b. DIM analyzes file buffers using a
sliding window technique, effectively detecting encryption, particularly for com-
plex variants like Dharma, by extending its analysis to more windows.

False Positive and False Negative Evaluation: DIM’s file expansion strat-
egy effectively combats ransomware by transforming small files into significantly
larger ones, stopping encryption and facilitating recovery in cases of false positive
detections. Our evaluations reveal no false negatives with the latest ransomware
variants. The entropy of encrypted data usually exceeds 7.99, with DIM ensur-
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ing effective file protection on shared drives as well. Resource usage analysis
shows that DIM maintains minimal CPU usage during idle states, with consis-
tent performance under load, detailed in Fig. 7. A video demonstration of DIM’s
capabilities is available here .

5 Comparison and Discussion

Existing ransomware detection models, focusing on system-level I/O behav-
iors, face significant challenges, including high false positives due to similari-
ties between ransomware and legitimate applications like file compressors and
backup software, leading to unwanted disruptions [2,9,19,27]. These models also
suffer from performance overhead, particularly when monitoring high I/O oper-
ations, which affects system performance and user experience [9,27]. Addition-
ally, ransomware can employ evasion techniques like memory mapped I/O or
fileless attacks, complicating detection [2,9]. Traditional approaches are gener-
ally reactive, providing a window for ransomware to inflict damage [18,27], and
struggle with scalability in large environments [2,9,19]. In contrast, DIM uti-
lizes a FUSE file system with a statistical analysis approach via sliding windows
to identify encryption activities, effectively reducing false positives and elimi-
nating false negatives during ransomware tests. Despite causing some delays in
file system operations, DIM does not interrupt benign activities and adapts to
detect evasion techniques in real-time. Its scalability and responsiveness make it
suitable for large-scale deployments and capable of adapting to new ransomware
tactics [19,27].

6 Conclusion, Limitations and Future Work

This paper presents the Digital Immunity Module (DIM), which effectively coun-
ters encrypted buffers in file systems using real-time analysis and inverse arith-
metic coding. Tested against 75 ransomware families, DIM had no false negatives
and provided recovery options for false positives. It protected data against Black
Basta ransomware’s encryption techniques. Future work will enhance anomaly
detection in file encryption using online machine learning to minimize entropy
and handle Base-64 encoding, with early tests showing a 33.33% increase in file
size for lowered entropy. Findings support the efficacy of online learning classi-
fiers in detecting statistical anomalies, leading to further development of a hybrid
model.
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A Resource Overload and Process Termination Approach

Fig. 5. Comparison between two scenarios.

B Sliding Approach and CPU Overheard Analysis

Figure 6 illustrates the sliding windows concept of the DIM, which utilizes this
technique to effectively manage ransomware activities. This method is particu-
larly effective in detecting ransomware’s attempts to obfuscate its presence by
inserting characters that artificially reduce entropy.

Fig. 6. DIM uses sliding windows to
deal with ransomware, which may
insert characters to reduce entropy.

Fig. 7. The results illustrate the
server CPU overhead (DIM) during
file transfers between a client and a
server.
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Abstract. Large language models, including ChatGPT, have become
widely available and have been used in various fields. This study attempts
to create malicious software using ChatGPT-4 with minimal coding effort
to demonstrate that they can be created even by non-expert security
professionals. We also show whether obfuscating the source code of the
created malicious software can reduce the malware detection rates by
security analysis tools.
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1 Introduction

The advent of deep learning has revolutionized the field of artificial intelligence.
A significant milestone was the breakthrough victory of Krizhevsky et al.’s model
in the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [1].
This achievement led to a surge of research in deep learning for image recognition,
speech recognition, and natural language processing.

Among these, the emergence of large language models (LLMs) has been a
major advancement in natural language processing, with ChatGPT reaching over
one hundred million users by 2023. The release of ChatGPT-41 in March 2023
marks a leap forward in artificial intelligence technology. It possesses significantly
enhanced comprehension and response capabilities compared to previous models,
enabling it to provide high-precision answers to a wide range of questions. It is
now used in various fields, and its potential looks like limitless.

However, the advancement of LLMs also has negative aspects. One of them is
the potential for malicious software to be created using the advanced generative
capabilities of ChatGPT-4. Pa Pa et al. demonstrated the feasibility of creating
malwares by injecting the jailbreak prompts into ChatGPT [2].

While previous research [2] has shown that researchers with advanced secu-
rity skills can create malwares by jailbreaking ChatGPT, the OpenAI’s ethical
guidelines prohibit malicious activities such as malware creation. Therefore, the
aims of this study were to create malicious software by instructing ChatGPT-4
1 https://chatgpt.com/.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
K. Minematsu and M. Mimura (Eds.): IWSEC 2024, LNCS 14977, pp. 234–243, 2024.
https://doi.org/10.1007/978-981-97-7737-2_13
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without jailbreaking, and to investigate whether it was possible to create sophis-
ticated malicious software even without being a skilled security professional.
Additionally, this study examines whether obfuscating the source code of the
created malicious software can reduce the malware detection rates by security
analysis tools.

1.1 Ethical Considerations

The purpose of this study was to demonstrate the possibility of generating mali-
cious software with minimal coding effort using ChatGPT. The prompts we
used to create our malicious software were designed to contribute to a broader
discussion with a generalized approach.

We adhere to the Checklist for ethical considerations in cybersecurity
research2. It should be stated clearly that our research does not endorse the
use of ChatGPT or similar techniques for the purpose of creating malicious soft-
ware. We recognize the ethical implications associated with such actions and
strongly advocate the responsible use of AI techniques in security research. Our
focus is on exploring the potential use of these tools to promote the understand-
ing of LLMs and the effective use of technology, not on compromising security
or privacy.

1.2 Organization

The remainder of this paper is organized as follows. Section 2 discusses previous
research on malware generation using ChatGPT. Section 3 and Sect. 4 describe
the overview of the created malicious software and the procedures for their cre-
ation using ChatGPT-4. Section 5 evaluates the behavior of the created malicious
software and investigates the impact of source code obfuscation on the results
of security analysis tools. Finally, Sect. 6 summarizes the study and discusses
future work.

2 Related Works

According to the OpenAI’s ethical guidelines, the prompts instructing the cre-
ation of malware are rejected. However, several studies have reported success-
fully creating malware using ChatGPT-4. The methods used in previous studies
can be categorized into two types: (1) creating malware with jailbreak, and (2)
creating malware without jailbreak.

(1) Creating malware with Jailbreak [2–5]. The Jailbreak involves bypass-
ing the system’s inherent limitations and constraints to enable functionalities
or actions that are typically unavailable. This method has been successful in
prompting ChatGPT to generate the source codes for malware by the following
techniques:
2 https://www.iwsec.org/csec/ethics/checklist.html.

https://www.iwsec.org/csec/ethics/checklist.html
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– DAN (Do Anything Now) Technique:
This method commands ChatGPT forcefully. It involves giving clear and
absolute instructions to trigger the jailbreak.

– SWITCH Technique:
This method causes the jailbreak by prompting ChatGPT to take opposite
actions (switching on/off) in scenarios where it would normally refuse to
respond.

– CHARACTER PLAY Technique:
This method lets ChatGPT to play a specific character. Defining a character
and demanding responses consistent with that character’s setting triggers the
jailbreak.

(2) Creating malware without Jailbreak [6,7]. This method generates a
source code for each function separately and then concatenates them to create
a malware without violating the OpenAI’s ethical guidelines. Even if ChatGPT
refuses to create a malware, the functions that compose a malware are not against
the ethical guidelines, so their creation is not rejected.

3 Overview of the Malicious Software Implementation

Kramer introduced that malware was software that harmfully attacks other soft-
ware [8]. In this study, we use malicious software to denote software which harm
data processed on a target’s computer. This study describes the overview of
the malicious software and the procedures used for attacks employing them. We
develop the following three types of malicious software in Python code without
jailbreak:

1 Hashing User Files
2 Steganography
3 Extraction and Auto-Execution

3.1 Hashing User Files

This malicious software hashes all files in ‘Desktop’, ‘Downloads’, ‘Documents’,
and ‘Pictures’ directories on Windows OS, including their subdirectories, and
deletes the original files. The structure of this program is shown in Fig. 1.

The file access is based on relative paths starting from the home directory,
allowing attacks without prior knowledge of the target’s computer username.
The desktop.ini file, a hidden file in Windows OS defining folder display settings
and behavior, is excluded from operations to prevent alerting the target. Hashing
and deleting this file would invalidate the settings, changing the display names
from Japanese to English, which might reveal the malware’s presence.
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Fig. 1. Structure of Hashing User Files

3.2 Steganography

This program embeds malicious software into an image file to conceal it. Two
types of steganography program were developed: (A) Steganography by Append-
ing Data at the End of an Image and (B) LSB Steganography.

In the former program, the malicious software and the image file are con-
catenated by appending the malicious software’s binary data directly at the end
of the image’s binary data. This program is fast and does not require size cal-
culations for the image file and the malicious software. However, the concealed
data can be easily discovered upon binary analysis.

The latter program converts the malicious software into a bitstream and
replaces the least significant bits of each pixel in the image file with the malicious
software’s bitstream. This program makes data discovery more challenging upon
image analysis, though it is significantly slower and requires the image size to
exceed the size of malicious software.

3.3 Extraction and Auto-Execution

This software extracts the malicious software embedded in an image file and con-
figures it for auto-execution. The structure of this program is shown in Fig. 2.
This malicious software creates the folder named ‘sample’ in the target’s com-
puter home directory. After creating the folder, this program extracts the mali-
cious software from the image file and places it in the folder. After placing the
malicious software in the folder, this program ensures its automatic execution
every system startup by rewriting the registry data.

3.4 Attack Procedure

The attack procedure is organized by the following four steps:

1 Python script conversion to executable files
2 Embedding malicious software using steganography
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Fig. 2. Structure of Extraction and Auto-Execution

3 Icon disguise for enhanced deception
4 Malicious software distribution

Python Script Conversion to Executable Files. The attacker utilizes PyIn-
staller to transform the Python codes for “Hashing User Files” and “Extraction
and Auto-Execution” into executable files (EXEs). The onefile option creates
a single executable, incorporating all required libraries and dependencies. This
option eliminates the need for a pre-installed Python environment on the target’s
computer. The noconsole option prevents a conspicuous console window from
appearing when the malicious software is executed, thus reducing the likelihood
of detection by the target.

Embedding Malware Using Steganography. The attacker employs the
steganography program to conceal the malicious software in the prepared image
file.

Icon Disguise for Enhanced Deception. Using tools like the Icon Wizard3

and the Resource Hacker4, the attacker masks “Extraction and Auto-Execution”
with an enticing icon and filename (e.g., disguised as a PDF file) to increase the
chances of the target executing it.

Malicious Software Distribution. The attacker delivers the malicious
software-embedded image file and the disguised “Extraction and Auto-
Execution” to the target. Upon receiving them, if the target inadvertently exe-
cutes the disguised “Extraction and Auto-Execution”, the following occurs:

– The folder named ‘sample’ is created in the target computer’s home directory.
– The embedded malicious software is extracted from the image file.
– The malicious software is configured to automatically execute upon every

system startup.
3 https://www.naporitansushi.com/iconwizard/.
4 https://resource-hacker.softonic.jp/.

https://www.naporitansushi.com/iconwizard/
https://resource-hacker.softonic.jp/
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4 Malicious Software Implementation Using ChatGPT-4

4.1 Methodology

We employ ChatGPT-4 as an assistive tool in the malicious software development
process. The workflow is as follows:

1 Functional Decomposition: The malicious software capabilities are broken
down into discrete, implementable functions.

2 Prioritization: The functions are prioritized based on criticality and feasi-
bility.

3 Iterative Development: The Python code for each function is generated
using ChatGPT-4. Feedback and code refinements if necessary.

4 Functionality Expansion: Subsequent functions are added and enhanced
using a similar iterative approach.

4.2 System Architecture

In this study, we establish a controlled environment with two distinct roles: the
attacker and the target. Two virtual machines (VMs) running Windows 11 are
constructed using VirtualBox to simulate these roles. The system architecture
is illustrated in Fig. 3.

Fig. 3. System Architecture

Implementing and assessing the malicious software are conducted on the
attacker’s computer. While WinSCP/OpenSSH were used to transfer the mali-
cious software in this study, realistic attack scenarios often leverage less conspic-
uous methods like an email or a cloud storage.
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4.3 Example: Hashing User Files

Due to space limitations, this paper introduces the implementation of “Hashing
User Files” as an example. The core functionalities are listed below.

1 Hashing Files: This function calculates cryptographic hashes (e.g., SHA-
256) of all files in user-specified directories ‘Desktop’, ‘Downloads’, ‘Docu-
ments’, and ‘Pictures’.

2 Original File Deletion: This function deletes the original files without user
warnings after successful hashing.

3 Supporting Relative Paths: This function supports the target directories
using relative paths from the user’s home directory.

4 Recursive Subdirectory Processing: This function applies hashing and
deleting all files in subdirectories.

5 Error Handling: This function manages the errors such as file access errors,
path errors, and other potential runtime exceptions.

6 Exclusion Handling: This function excludes the specific files (e.g., ‘desk-
top.ini’) based on predefined criteria.

The prompts for “Hashing User Files” are shown in Table 1. The results are
respectively illustrated in Fig. 4 and Fig. 5.

Table 1. Prompts for each function

Functions Prompt for each function

Hashing Files Create a Python program to hash files in the
Desktop, Downloads, Documents, and Pictures
directories.

Original File Deletion Add the function to delete the original files
after hashing them.

Supporting Relative Paths Please specify the path as a relative path,
starting from the user’s home directory.

Recursive Subdirectory Processing Add a function to recursively perform the same
process on subdirectories in the directory.

Error Handling Strengthen the error handling.

Exclusion Handling Exclude the desktop.ini file from being
processed.

5 Evaluation and Discussion

In this section, we evaluate the malicious software and investigate their detec-
tion rates using the security analysis tools. Furthermore, we examine whether
obfuscating the source code of the malicious software reduces their detection
rates when reanalyzed with security analysis tools.
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Fig. 4. Prompt for filehashing Fig. 5. The result of file hashing prompt

5.1 Hashing User Files

When this program is executed on the target’s computer, it is confirmed that
all files in ‘Desktop’, ‘Downloads’, ‘Documents’, and ‘Pictures’ including sub-
directories are hashed. After hashing, it is confirmed that the original files are
deleted.

5.2 Extraction and Auto-Execution

The icon-disguised “Extraction and Auto-Execution” and the steganography-
treated image file are transferred to the target’s computer. This program creates
the folder named ‘sample’ in the home directory where the malicious software is
extracted as ‘test.exe’. Restarting the target’s computer triggers the automatic
execution of “Hashing User Files”.

5.3 Malware Analysis

The created malicious software were uploaded to the Hybrid Analysis5 for both
static and dynamic analysis. The results revealed that the executable file format
“Hashing User Files” and “Extraction and Auto-Execution” were detected as
malware in both static and dynamic analysis. The results are shown in Fig. 6.
However, the Python codes for “Steganography” evaded all tools, not detected
as malwares and assessed as programs without any security risk.

These results suggest that the security analysis tools might apply stricter
detection criteria to executable files than to Python codes. Additionally, the lack
of digital signatures might have influenced the results. Normally, the commercial
5 https://www.hybrid-analysis.com/.

https://www.hybrid-analysis.com/
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Fig. 6. Results by Hybrid Analysis

software is digitally signed, ensuring it comes from a trusted source and is free
from viruses or malware. The malicious software created in this study did not
have digital signatures, which might have impacted the results.

5.4 Source Code Obfuscation

Following the malicious software analysis, we investigate whether obfuscating
the source codes of “Hashing User Files” and “Extraction and Auto-Execution”,
which were deemed threats and high security risks in both static and dynamic
analysis, reduces their detection rates in static analysis. The obfuscations were
performed using PyObfuscator6 and PyArmor7, followed by conversion into
executable files to evaluate for reduced detection rates.

– PyObfuscator: We used level 6 (Base64 encoding of the entire source code)
for obfuscation. Subsequently, the codes were converted into the executable
files for evaluation experiments and malware analysis. Despite functioning
correctly, the malware detection rates by the security analysis tools did not
change.

– PyArmor: The source codes were compiled into bytecode and subjected to
irreversible transformation. After conversion into executable files, the evalu-
ation experiments and malware analysis were conducted. Similar to PyOb-
fuscator, PyArmor did not reduce the malware detection rates in security
analysis tools.

6 Conclusion

This study has demonstrated the feasibility of creating malicious software using
ChatGPT with minimal coding effort by non-expert security professionals. How-
ever, the executable files were detected as malicious by the security analysis tools,
indicating the inability to create advanced malware that can evade these tools.
Additionally, attempts to reduce the detection rate in static analysis through
6 https://pypi.org/project/PyObfuscator/.
7 https://pypi.org/project/pyarmor/.

https://pypi.org/project/PyObfuscator/
https://pypi.org/project/pyarmor/
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source code obfuscation using PyObfuscator and PyArmor were not successful
in this study.

To evade malware detection in dynamic analysis, one potential method is
adding sleep variables to the malicious software’s source code, delaying its oper-
ation, and causing sandbox-based analysis to terminate prematurely. For evad-
ing static analysis, repeatedly applying tools like PyObfuscator and PyArmor
to make the source code analysis more challenging can be considered.

Future work will be to apply our methods to other LLMs, such as Gemini8,
and compare the results obtained with ChatGPT-4.
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Abstract. Cyber threats have become increasingly sophisticated and
prevalent, posing significant risks to cloud environments. Designing a
robust threat model is essential to effectively defend cyber threats in the
cloud. Modeling cyber threats using game theory can help the defender
to select optimal strategies against the attacks and can help the defender
to make effective decisions to mitigate the attack’s impact. In this paper,
we model a cyber threat strategy in which the attackers can utilize var-
ious methods to launch attack effectively. Then, we present a Markov
game model to evaluate the efficiency of different attacker’s strategies
against cyber defense from attacker’s perspective in a cloud system sce-
nario. We then conduct experiments based on CVSS metrics to quantify
the outcomes of this zero-sum game model for both attack and defense
strategies such as the shortest attack path, random, and greedy attack.

Keywords: Security modeling · Markov Games · Cyber threats ·
Cloud computing · Attack models

1 Introduction

A resilience cyber defense system should be able to defend against different
strategies of cyber attacks, such as adaptive attacks [4]. Game-theoretic models
have been extensively applied to cybersecurity problems and have shown to be
very effective in the evaluation of defensive systems and addressing the security
of networks and systems [2,3]. In this initial paper, we model advanced attack
strategy in which an attacker can leverage subtle techniques to estimate the
shortest attack path in a networked model [6]. We then propose a cloud system
and attack model based on an Attack Graph (AG) representing the states of
the game. We then define a zero-sum Markovian game model that captures the
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capabilities of the attacker and defender. In this case, the attacker can choose
the actions that exploit the real-world vulnerabilities reported in the Common
Vulnerabilities and Exploits (CVEs) through National Vulnerability Database
(NVD). Then, the defender’s actions are modeled based on a dynamic defense
consisting of the placement of detection systems such as Intrusion Detection
System (IDS) to the hosts in the cloud. We design the rewards of this game
by leveraging the widely used Common Vulnerability Scoring Systems (CVSS)
values such as attack impact and exploitability. This helps the defender to select
appropriate strategies using the limited number of monitoring actions for each
state of the game. The defender action is the placement of an IDS in a host in
the cloud to monitor and detect any prospective threats. The main contributions
of this paper are as follows:

• We propose a graph-based attack model for a cloud system and model an
attack scenario in which attacker is able to find the shortest attack path.

• We define a Markov game model that can evaluate the effectiveness of defense
mechanisms against different attack strategies. We quantify the resulting zero-
sum game parameters based on CVSS values.

• We offer the formal mathematical definitions for the proposed game model.
We also determine the probabilistic values of the states of the game. Finally,
we clearly formalize, analyze, and quantify actions and states transition prob-
abilities for the game model based on three different attacker’s strategies.

The rest of the paper is organized as follows. The related work is given in
Sect. 2. Section 3 discusses the cybersecurity threat model. In Sect. 4, we define
the necessary concepts, definitions, mathematical notations, and propose our
Markovian game model. In Sect. 5, we evaluate our proposed game model and
provide numerical results. Finally, we conclude the paper in Sect. 6.

2 Related Work

Various cyber attack techniques have been proposed in the literature that lever-
age different techniques to discover the fastest, shortest, cheapest, or more effi-
cient attack paths in a networked system using attack graphs, such as Deep
Learning [6] and so forth. Finding the attack path from source to target in a
graphical attack model is an important capability for the attackers [7]. This
enables the attacker to reach the target with minimum effort and cost. Game
theory, Markov processes, and neural networks have long been applied to study
network security [2]. Alpcan and Basar [1] proposed a security game between
attacker and IDS in the sensor network. They modeled their solution based on a
finite Markov chain, Markov decision process, and Q-learning. In [5], the authors
proposed a novel generative adversarial network anomaly detection scheme using
a min-max game played locally on each device and collaboration between devices
using the Nash equilibrium and Machine Learning models. In [3], the authors
proposed the game-theoretic models based on the attack graph for cyber decep-
tion. Their method could capture the players’ uncertainties using the dynamic
game models.
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Fig. 1. (a) The cloud-model including 10 VMs in different hosts (servers). (b) Attack
graph model corresponding to the cloud-model.

Table 1. VMs vulnerabilities information (|V | is the number of vulnarabilities and e
is the maximum exploitability of all vulnerabilities for a host)

VM Current Host |V | e Impact VM Current Host |V | e Impact

vm1 h1 4 0.53 10 vm6 h3 1 0.45 9

vm2 h2 3 0.55 8 vm7 h3 1 0.43 10

vm3 h2 3 0.51 8 vm8 h4 1 0.43 9

vm4 h2 3 0.49 8 vm9 h4 1 0.43 10

vm5 h2 2 0.47 9 DB h5 1 0.43 10

3 Cybersecurity Threat Model

3.1 Cloud System and Threat Model

We modeled a cloud system consisting of 10 Virtual Machines (VMs) distributed
in five different physical servers or hosts in the cloud. We assume that only the
VMs vm1 and vm2 are connected to the internet and they are the entry point
of the cloud. The cloud model is demonstrated as in Fig. 1. Each VM has a
number of vulnerabilities associated with the Operating System (OS) it uses as
in Table 1. Thus, the attack model can be represented as a directed attack graph.
Let AG = (V,E) be a graph, where V is a set of all the nodes and E is a set
of all the edges. The aim of the attacker is to obtain the shortest attack path
(SAP) which is a path between two nodes without considering the weight of the
attack path. Note that the weight of the edges determines the exploitability (e)
of the connected VM based on Table 1.

We assume that an intelligent attacker can analyse the target system and gain
valuable information about the system, targets, and attack paths. We assume
that the attacker can leverage methods to estimate the shortest attack path in
the modeled cloud system. The shortest attack path for the cloud model, Fig. 1b.
We assume that the attacker can estimate the shortest path attack from the entry
point of the system (i.e., Internet) to the target (DB) in the cloud. The attacker
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can exploit the vulnerabilities existing on each host with the probabilities defined
based on the CVSS metrics. However, for each attack step in an attack path,
the attacker incurs some expenses such as costs and time (Table 2).

4 A Game-Theoretic Analysis of Attacks Strategies

4.1 Game Model Definition

Markovian Game Model. We model the attacker and a defender scenario as a
two-player zero-sum Markov game leveraging the information in the cloud model
and corresponding AG represented in Fig. 1b. Moreover, the transition from
each state and consequently the corresponding reward for each state depends on
players’ actions for that specific state (this also can be modeled based on previous
states and actions which are beyond the scope of this paper). We formally define
a zero-sum Markov Game model based on obvious Markovian assumption and
explain how each of these parameters are obtained in our cloud model. A Markov
game for two players can be defined by a tuple (S, AA, AD, T, R) where,

• S = {s0, s1, s2, . . . , sr} denoted the finite states of the game where in here
|S| = max(len(api ∈ AP )).

• AA = {aA
0 , aA

1 , aA
2 , ...} is the attacker’s set of actions. The defender can have

a set of actions as DA = {aD
0 , aD

1 , aD
2 , ...}.

• T = (s, aA, aD, s′) is a States’ transition where the current state s ∈ S is
changed to s′ ∈ S upon the actions come from both attacker and defender
respectively. However, each transition has a probability denoted by tp(T ).

• RA(s; aA; aD) is the reward obtained by attacker if in state s, attacker and
defender take the actions aA and aD respectively. However, based on the
zero-sum game definition, the reward can be negative if the attacker choose
a wrong action (−RA(s; aA; aD)).

Reward Function. To quantify reward values we use the important variables
such as the impact of an attack and cost of defense (Cdef ), we used CVSS metrics
that provide the Impact (I) for a specific VM (Ivmi

), Exploitability Scores (e),
and other relevant metrics. Ivmi

is a metric that computes the damage imposed
to the VM by computing all impacts on the resources through an attack. For
instance, Ivm4 = 8 is the attack impact value on the VM vm4 based on the
related impact metrics of vulnerabilities in CVSS represented in Table 1. The
rewards matrix for attackers is formulated as Eq. 1.

RA
aA,aD=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if aA ⊂ Ø
Cdef if aA ⊂ Ø, aD �⊂ Ø
Ivmi

+Cdef if aA=E(vmi), aD �⊂ Ø, vmi /∈ H(ids)
Ivmi

if aA=E(vmi), aD ⊂ Ø
-(Ivmi

-Cdef ) if aA=E(vmi), aD �⊂ Ø, vmi ∈ H(ids)

(1)
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Table 2. Payoff matrix formalization based on aA, aD for the game states s0–s4

s0: Initial State (no exploit)

A/D No-act Def-h1 Def-h2

No-att 0, 0 Cdef , −Cdef Cdef , −Cdef

E(vm1 ∈ h1) Ivm1 , −Ivm1 −(Ivm1 − Cdef ), Ivm1 − Cdef Ivm1 + Cdef , −(Ivm1 + Cdef )

E(vm2 ∈ h2) Ivm2 , −Ivm2 Ivm2 + Cdef , −(Ivm2 + Cdef ) −(Ivm2 − Cdef ), Ivm2 − Cdef

s1: Transition State (vm2 ∈ h2 exploited)

A/D No-act Def-h3 Def-h2

No-att 0, 0 Cdef , −Cdef Cdef , −Cdef

E(vm4 ∈ h3) Ivm4 , −Ivm4 −(Ivm4 − Cdef ), Ivm4 − Cdef Ivm4 + Cdef , −(Ivm4 + Cdef )

E(vm5 ∈ h2) Ivm5 , −Ivm5 Ivm5 + Cdef , −(Ivm5 + Cdef ) −(Ivm5 − Cdef ), Ivm5 − Cdef

s2: Transition State (vm5 ∈ h2 exploited)

A/D No-act Def-h3 Def-h4

No-att 0, 0 Cdef , −Cdef Cdef , −Cdef

E(vm7 ∈ h3) Ivm7 , −Ivm7 −(Ivm7 − Cdef ), Ivm7 − Cdef Ivm7 + Cdef , −(Ivm7 + Cdef )

E(vm9 ∈ h4) Ivm9 , −Ivm9 Ivm9 + Cdef , −(Ivm9 + Cdef ) −(Ivm9 − Cdef ), Ivm9 − Cdef

s3: Transition State (vm9 ∈ h4 exploited)

A/D No-act Def-h3 Def-h5

No-att 0, 0 Cdef , −Cdef Cdef , −Cdef

E(vm6 ∈ h3) Ivm6 , −Ivm6 −(Ivm6 − Cdef ), Ivm6 − Cdef Ivm6 + Cdef , −(Ivm6 + Cdef )

E(DB ∈ h5) IDB , −IDB IDB + Cdef , −(IDB + Cdef ) −(IDB − Cdef ), IDB − Cdef

s̄4: Final State (DB exploited)

H(ids) is a function that returns the host in which ids has been located. For
instance, if the defender locates the IDS in Host h4, then H(ids) returns h4. As
the game is a zero-sum game the reward for the defender is as Eq. 2.

RD
aA,aD = −1 ∗ RA

aA,aD (2)

As stated earlier, the formulation of the reward function is based on CVSS
values and mainly the impact of the attack on a targeted VM. If the defender
and the attacker do not take any action such that aA ⊂ Ø, aD �⊂ Ø both get
zero rewards. Moreover, if the attacker doesn’t attack (no-att) while the defender
places the IDS to any host in the cloud to secure any hosts, the defender incurs a
cost for the defense (−Cdef ) and gets a negative reward. However, if the attacker
attacks on a VM vmi while the defender place the IDS to detect attacks on
the host in which the targeted VM vmi is located such that vmi ∈ H(ids),
then the defender gets the reward for avoiding the attack impact on that VM
(Ivmi

), but as the defender incurs some costs for the defense the total reward of
successful defense is formulated as Ivmi

− Cdef . For instance, suppose that the
cost of defense is 2 units (for both successful and unsuccessful defense). Then, if
attacker exploits VM vm1 and defender put IDS on the host h1 (vm1 ∈ h1), the
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Table 3. Payoff Matrix quantifying based on zero-sum game and CVSS values

s0: Initial State (no exploit) s2: Transition State (vm5 ∈ h2 exploited)

A/D No-act Def-h1 Def-h2 A/D No-act Def-h3 Def-h2

No-att 0, 0 2, −2 2, −2 No-att 0, 0 2, −2 2, −2

E(vm1 ∈ h1) 10, −10 −8, 8 12, −12 E(vm7 ∈ h3) 10, −10 −8, 8 12, −12

E(vm2 ∈ h2) 8, −8 10, −10 −6, 6 E(vm9 ∈ h4) 10, −10 12, −12 −8, 8

s1: Transition State (vm2 ∈ h2 exploited) s3: Transition State (vm9 ∈ h4 exploited)

A/D No-act Def-h3 Def-h2

No-att 0, 0 2, −2 2, −2 No-att 0, 0 2, −2 2, −2

E(vm4 ∈ h3) 8, −8 −6, 6 10, −10 E(vm6 ∈ h3) 9, −9 −7, 7 11, −11

E(vm5 ∈ h2) 9, −9 11, −11 −7, 7 E(DB ∈ h5) 10, −10 12, −12 −8, 8

defender gains a total reward of 7 which is as RD = Ivm1 − Cdef = 9 − 2 while
the attacker is penalized by −7 unit. In contrast, if the attacker attacks on a
VM vmi while the defender place the IDS to detect attacks on the host in which
the targeted VM vmi is not located such that vmi /∈ H(ids), then the defender
gets the penalty for wrong defense and incurs the impact of the attack on that
VM plus the cost of wrong defense which is −(Ivmi

+ Cids) while the attacker
reward would be as Ivmi

+Cids based on the zero-sum definition. For instance, if
attacker exploits VM vm1 and defender put IDS on the host h2 (vm1 /∈ h2), the
defender gets a negative reward of -11 which is as the sum of the impact of attack
on that VM and the cost of defense as RD = −1 ∗ (Ivm1 + Cdef ) = −1 ∗ (9 + 2).
Then, the attacker gets rewards of 11 which is RA = −RD. Lastly, if the attacker
attacks on a VM and the defender takes no action then the attacker gains the
reward for the successful attack which is equivalent to the impact of the attack
on exploited VM vmi as RA = Ivmi

while the defender gets a negative reward
as RD = −Ivmi

. A normal-form zero-sum reward matrix for the four states of
the game in the Markov game is shown in Table 3 which is quantified based on
the CVSS values and the reward function formulation explained before.

States, Actions and Transitions. The Markov model of the proposed game
is illustrated in Fig. 2 that captures the transitions and associated probabilities
in which the attacker tries to find the shortest attack path to exploit DB.

States. It represents the state attacker/defender currently have in the cloud over
different preformed actions. We extract the information from the shortest path
in the cloud attack graph to define the states. For instance, for the attacker,
initial state s0 = (Host;User), if the successful execution of the exploit of VM
vm2 is performed by the attacker E(vm2), the attacker can transition to another
state s1 = (H1;Attacker).

Actions and State Transitions. Based on the system model represented in Fig. 1b,
the attacker has at most three possible actions in each state and can choose
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no attack (no-att or Ø) or attack to another adjacent VM by exploiting the
vulnerabilities of targeted VM. Thus, for each state the maximum actions can
be defined as Max(Deg(vmi ∈ H))+1 = 3. For instance, in s0, the action space
for the attacker can be as aA

0,s0
= Ø, aA

1,s0
= E(vm1), aA

2,s0
= E(vm2). Similarly,

the defender has its own possible actions to defend (Def) hosts. For instance,
the defender can perform no defense (No-act or Ø). All possible actions for the
defender in state s0 is as aD

0,s0
= Ø, aD

1,s0
= D(h1), aD

2,s0
= D(h2).

5 Player Strategies and Numerical Evaluation

We assume that the defender uses Uniform Random Strategy (URS) where the
defender selects the actions aD

s ∈ DA based on a uniform probability distribution
over its possible actions in the corresponding state. The decision-making process
can be viewed as randomization that chooses the next valid state based on a
specific probability distribution over states sq ∈ S, then choosing the next host
for IDS placement from a uniform distribution to become specific instances of
randomization. We choose URS as the baseline of the defender’s strategy.

The actions for attackers and defender are considered separately for each
state. For instance, the attacker action space in the initial state S0 is as
AA,s0 = {aA

0,s0
, aA

1,s0
, aA

2,s0
} where aA

0,s0
= Ø which indicates the attacker takes

no action/attack (No-att) to avoid detection, aA
1,s0

= E1 which implies that the
attacker exploits VM vm1 (note that E(vmi) is shortly denoted as Ei that means
exploiting of ith VM), and aA

2,s0
= E2 which means exploiting of VM vm2 or

E(vm2). The probability of attack access through considering all possible actions
for each state sj , denoted as p(ASsj

), can be defined as the Eq. (3). This means
the attacker can launch a successful attack by taking only one successful action
in that state (note that the action No-att is not considered as a successful attack
action).

p(AS)sq
= 1 −

∏

aA
j,sq

∈AA,sq−{Ø}

(
1 − e(aA

j,sq
)
)

(3)

Note that e(aA
j,sq

) is the probability of attack success by taking the specific
action aA

j in a state sq which is the exploitability of the targeted VM based on
Table 1. For instance, exploiting of vm1 is an action of the attacker aA

1,s0
= E1,

then e(aA
1,s0

) is e(E1) = e(vm1) = 0.53.
Now we define the probability that the attacker chooses a specific action aA

z

in a current state Sq as Eq. (4).

p(aA
z,sq

) =
e(aA

z,sq
)

∑
aA
j,sq

∈AA,sq

(
e(aA

j,sq
)
) (4)
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For instance, the probability that attacker takes action aA
1,s0

in state s0 which
means that the attacker prefers to exploit vm1 (denoted as p(aA

1,s0
) or p(E1)) is

calculated as:

p(aA
1,s0

) =
e(aA

1,s0
)

e(aA
1,s0

) + e(aA
2,s0

)
=

e(E1)
e(E1) + e(E2)

Based on the above equation, the result of p(E1) is as 0.53
1.08 ≈ 0.49. Similarly,

the probability of the attacker choose the second action p(E2) is computed as
p(aA

2,s0
) = p(E2) ≈ 0.51.

We then define the transition probability for attackers only for a specific
attack action (aA

z ) as Eq. (6).

τ(aA
z,sq

) =

{
p(aA

z,sq
).e(aA

z,sq
) if aA

z,sq �⊂ Ø

1 − ∑
aA
j,sq

∈AA,sq

(
p(aA

j,sq
).e(aA

j,sq
)
)

otherwise
(5)

For instance, the τ(aA
2,s0

) = τ(E2) = 0.51 ∗ 0.55 = 0.28 which is the product
of the probability that the attacker choose action aA

2,s0
and the attack success

probability of the related attack action e(aA
2,s0

). We then assume that the prob-
ability of defender’s actions for each state of the same are uniformly distributed.
Thus, the transition probability for defender only for a specific defend action
(aD

z ) for the state sq is defined as:

τ(aD
z,sq

) =
1

|DA,sq
| , (6)

where |DA,sq
| is the numbers of actions for defender. For instance, if the defender

has three actions such as no action (no-act), defend host h1, and defend host
h2, then τ(aD

2,s0
) = τ(D2) ≈ 0.33. Note that D2 ∈ DA indicates the defend of

host h2 (placement of IDS in host h2). Now we define the transition probability
based on both attacker’s and defender’s actions as Eq. (7).

tp(s, aA
z , aD

z , s′) = τ(aA
z,s).τ(aD

z,s) (7)

For example, the transition probability for T0,1 = (s0, aA, aD, s1) can be
computed as:

tp(T0,1) = tp(s0, aA, aD, s1) = τ(E2).τ(D2) ∪ τ(E2).τ(Ø)

which yields p(T0,1) ≈ 0.18. Similarly, the transition from state s0 to s0 can be
defined as T0,0 = (s0, aA, aD, s0) and its probability is computed as:

tp(T0,0) = tp(s0, aA, aD, s0) = τ(Ø).τ(Ø) ∪ τ(Ø).τ(D1)
∪τ(Ø).τ(D2)

(8)

Figure 2 illustrates the Markovian model transition including transition prob-
ability distribution for different states of the game based on the shortest attack
path described in Sect. 3.



252 H. Alavizadeh et al.

Fig. 2. Markov model of the game with finite states and deterministic probabilities
based on the shortest attack path.

Fig. 3. Comparing the results of the (a) defender’s utility and (b) the probability of
attack success, against various attacks’ strategies.

Numerical Results. Table 4 compares different policies such as random πr(s) or
greedy policy πg(s) alongside with SAP strategy. It can be observed that the
cumulative attack utility denoted by UA

π(s) is the highest for SAP policy π∗(s)
that is 45. The attacker reaches target in state s3. However, if the attacker follows
different strategies such as a random strategy or a greedy strategy, the attacker
can gain less cumulative utility in state s3 as UA

πr(s) and UA
πg(s) for random and

greedy policies respectively. Moreover, the attacker cannot exploit the target in
state s3 in both random and greedy strategy. The defender’s utility based on the
attacker’s successful strategies is presented in Fig. 3a. The vertical axis shows
the defender’s utility based on each state of the game according to the attacker’s
action and strategies. As it can be seen, the SAP strategy incurs more utility
loss to the defender in the final state s3 of the game compared to both random
and greedy strategies. Figure 3 illustrates the probability of attack success based
on different state of the Markov model. Based on the Fig. 3, the SAP attack
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Table 4. Game states probabilities and utilities for three different attack strategies:
best SAP policy π∗(s), random πr(s) and greedy exploit policy πg(s).

Game State Transition tp PAS UA
π(s) Target

π∗(s): s0
e(E2)−−−→ s1

e(E5)−−−→ s2
e(E9)−−−→ s3

e(DB)−−−−→ s4

s0
π∗(s)−−−→ s1 T0,1 0.18 4.8 × 10−4 10 ✗

s1
π∗(s)−−−→ s2 T1,2 0.15 2.7 × 10−3 21 ✗

s2
π∗(s)−−−→ s3 T2,3 0.14 1.8 × 10−2 33 ✗

s3
π∗(s)−−−→ s4 T3,4 0.14 1.4 × 10−1 45 ✓

πr(s): s0
e(E1)−−−→ s1

e(E4)−−−→ s2
e(E6)−−−→ s3

e(E8)−−−→ s4
e(DB)−−−−→ s̄5

s0
π(s)−−−→ s1 T0,1 0.17 2.6 × 10−4 12 ✗

s1
π(s)−−−→ s2 T1,2 0.15 1.6 × 10−3 22 ✗

s2
π(s)−−−→ s3 T2,3 0.14 1.1 × 10−2 33 ✗

s3
π(s)−−−→ s4 T3,4 0.28 7.8 × 10−2 42 ✗

πg(s): s0
e(E2)−−−→ s1

e(E4)−−−→ s2
e(E5)−−−→ s3

e(E9)−−−→ s4
e(DB)−−−−→ s̄5

s0
π(s)−−−→ s1 T0,1 0.18 1.6 × 10−4 10 ✗

s1
π(s)−−−→ s2 T1,2 0.16 0.9 × 10−4 20 ✗

s2
π(s)−−−→ s3 T2,3 0.15 5.6 × 10−3 31 ✗

s3
π(s)−−−→ s4 T3,4 0.14 3.7 × 10−2 43 ✗

policy yields the highest chance of attack success while the greedy strategy has
the lowest rate in the state s3. However, note that if the defender opts a correct
action to correctly place defensive mechanism in any state, the states of the game
goes to blocked state as represented in Fig. 2 and the defender win the game.
The defender has a high chance of winning by deploying defensive strategy in
the hosts of the cloud holding the VMs in a shortest attack path.

6 Conclusion

This paper first discusses different attack strategies against a cloud model includ-
ing shortest attack path in an attach graph. We then formulized a zero-sum
Markov Game model to evaluate different attack strategies. Our proposed model
can further help the defender to make appropriate decision to mitigate the attack
impact by placing the IDS in an appropriate cloud’s host. The initial results of
this paper show the potential of Markov game theory models for strengthen-
ing the decision-making to encounter the capabilities of cyber threats and find
optimized defense strategies.
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1 Introduction

In our interconnected and digitalized world, cybersecurity is of utmost impor-
tance, impacting our society and technological infrastructure. As technology
advances rapidly, cyber threats become more sophisticated, emphasizing the need
for strong defense systems to combat these evolving challenges.

With the recent advancements in Machine Learning and Deep Learning,
researchers are increasingly turning to these techniques to reinforce computer
systems against complex attacks. The abundance of data in network environ-
ments makes Deep Learning an attractive approach to uncover hidden patterns
within malicious communications occurring in the network. The emergence of
Graph Deep Learning and Graph Neural Networks (GNNs) has generated sig-
nificant interest in fields where interconnected data is prevalent. Cybersecurity
researchers have notably adopted these graph-based models to detect attacks
in network data [2,21,25], which inherently possess interconnected structures.
Consequently, multiple variants of message-passing GNNs [11] have been suc-
cessfully applied to diverse network datasets, including network flows, packets
and authentication logs, to detect specific attacks such as DDoS attacks [5,18]
and Botnet attacks [21,38], relying heavily on labeled training examples. How-
ever, the reliance on numerous labeled attacks presents significant challenges for
real-world scenarios, as reliable labels are often difficult to obtain from enterprise
networks. Furthermore, training a model to detect specific attacks in a supervised
manner inherently limits its ability to generalize to unseen attacks [8]. Conse-
quently, researchers are increasingly exploring unsupervised and self-supervised
techniques that do not require pre-labeled attacks [2]. While these methods are
effective at detecting anomalies and unusual events, their application to attack
detection can result in a high number of false positives, particularly in highly
imbalanced real-world data. The model might struggle to distinguish between an
actual attack and an unprecedented but benign action, such as a first-time SSH
connection between two hosts, in the absence of labeled attack data for training.

Therefore, we encounter a dual trade-off between the complexity of obtaining
a multitude of labeled attacks and the requirement of having some labels to effec-
tively distinguish between anomalies and attacks. To address this trade-off, we
propose a viable solution using Few-Shot Learning (FSL), employing a minimal
number of labeled examples in conjunction with the Self-Supervised Learning
(SSL) loop. Motivated by this idea, we introduce Few Edges Are Enough (FEAE),
a GNN-based detection system that leverages FSL to more accurately identify
attacks while relying on only a very small number of labeled examples. FEAE
employs contrastive learning along with a few-shot aware reconstruction-based
objective, allowing it to cluster similar unlabeled attack edges while requiring
only few malicious edges.

This paper introduces the following contributions:
– We propose FEAE, which, to the best of our knowledge, is the first approach

that leverages GNNs with few-shot learning and hybrid SSL for network
attack detection. Other similar works typically rely on either supervised, self-
supervised, or fully unsupervised methods.
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– We introduce a few-shot aware reconstruction loss that successfully integrates
the knowledge of few-shot malicious samples within the self-supervised train-
ing of the GNN encoder. This capability allows the model to directly cluster
various attack families within the embedding space, enabling the downstream
decoder to distinctly separate them from benign activities.

– We evaluate the detection capabilities of FEAE on two well-known network
datasets and across a variety of attack families.

The main achievement of this research reveals that the performance of fully-
supervised methods can be approached or even exceeded by using merely one
few-shot malicious edge per attack family. This result is encouraging as it reduces
the need for extensive labeling and reliance on noisy dataset labels.

The paper is organized as follows: Sect. 2.2 presents some background knowl-
edge and related works. Section 3 introduces the architecture of FEAE. Section 4
presents the model configurations, used datasets and baselines, along with a per-
formance analysis of FEAE. Section 5 benchmarks the performance of the model
compared to the baselines and discusses future research directions, whereas
Sect. 6 concludes this work.

2 Background

We introduce the background knowledge and essential definitions in Sect. 2.1,
and present related works in Sect. 2.2.

2.1 Definitions

Network Graph. Networks can be inherently represented using graph struc-
tures. We define a network graph as a type of graph where nodes represent hosts
characterized by their IP addresses, and edges represent network flows, typically
associated with features obtained through monitoring tools. Mathematically, a
graph is represented as G = (V,E), where V denotes the set of nodes (or hosts),
and E denotes the set of edges (or events) that connect pairs of nodes within
the set V . Network graphs are represented in memory as adjacency lists of shape
(2, |E|), constructed from netflow logs by creating an edge between any pair of
connected nodes and integrating optional flow features as edge attributes.

Graph Neural Networks. Graph Neural Networks (GNNs) [27,34] are a class
of neural networks designed to operate on graph-structured data. They leverage
the graph structure along with integrated features to learn robust structural
representations of nodes and edges. GNNs iteratively aggregate and transform
node features from their neighbors, enabling tasks such as the detection of mali-
cious nodes and edges in network graphs [2,37], provenance graphs [8,14] or
code-based graphs [3,4,9].

Graph Self-supervised Learning. Graph Self-Supervised Learning (Graph
SSL) aims to learn node and edge representations using the graph structure
itself as label, eliminating the need for manually labeled data [20]. A promi-
nent approach is graph contrastive learning [1,36], which generates multiple
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augmented views {Gi} of a graph G and trains a model f to maximize the
mutual information between the representations f(Gi) and f(Gj) of these views
for positive pairs (i, j), while minimizing it for negative pairs generated through
augmentation methods.

Few-Shot Learning. Few-shot learning (FSL) aims to train models that per-
form well with only a limited number of labeled instances per class [29,33]. Given
a support set S = {(xi, yi)}ki=1 with k labeled examples per class, the goal is
to accurately classify instances in a query set Q. Unlike traditional supervised
learning, which requires a large labeled dataset, FSL leverages the few available
examples to generalize across new tasks.

2.2 Related Works

Since the emergence of Graph Neural Networks (GNNs) across various disci-
plines, these methods have demonstrated significant efficacy in the domain of
network attack detection. Consequently, there has been a substantial increase in
research efforts dedicated to this area.

E-GraphSAGE [22] is a model inspired by GraphSAGE [12], specifically
designed for edge-level tasks on network graphs. The message-passing function
has been adapted to incorporate edge features before updating the node embed-
dings, with edge embeddings obtained by concatenating connected pairs of nodes.
Due to its simplicity and remarkable performance, this model has become a fun-
damental building block for numerous other works.

In another study [17], authors introduced an improvement to E-GraphSAGE
by implementing a pre-sampling step before training. This technique reduces
graph size, enhancing scalability, and has shown slight performance improve-
ments on the UNSW-NB15 dataset [23].

Another innovative approach, E-ResGAT [7], operates on a line graph instead
of an edge-attributed graph. Consequently, the detection task transforms into a
node classification problem, where edges and their features are converted into
nodes. The GAT model [31] serves as the GNN encoder to derive node embed-
dings, and residual connections are incorporated for propagating original edge
features. To achieve greater scalability, the authors propose a neighbor sampling
strategy, which uniformly samples neighboring nodes during aggregation.

Beyond these advancements, E-GraphSAGE has also been adapted into a
self-supervised method known as Anomal-E [6]. Anomal-E utilizes the same
graph structure but does not require any labels during the training of the GNN
encoder. Deep Graph Infomax (DGI) [32] is employed to generate embeddings for
positive and negative graph samples, maximizing local-global mutual informa-
tion by comparing embeddings to a summarized version of the graph. Negative
graphs are created using a corruption function, involving shuffling all edges.
E-GraphSAGE functions as the encoder and is trained in a self-supervised man-
ner to distinguish between positive and negative edges. Following training, edge
embeddings are classified using an Isolation Forest (IF) [19], using all benign
embeddings as the training set. We elaborate further in Sect. 3 on the challenges
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posed by the requirement of all these benign labels in the classifier and how FSL
can mitigate this problem.

Authors in [30] introduce a few-shot malicious IoT traffic detection system
based on a GNN. This method visualizes binary traffic flows as color images
and extracts features of nodes using a GCN model [16]. By employing FSL, the
model is trained to generalize and detect new types of attacks with minimal
labeled samples. The evaluation demonstrates that this approach achieves high
F1 scores on a dataset containing benign traffic and six different types of attack,
outperforming traditional detection methods.

3 Design of FEAE

In this section, we provide a comprehensive overview of our proposed FEAE model.
Section 3.1 outlines the challenges associated with current models and introduces
the innovative solutions implemented in FEAE. Section 3.2 offers a comparative
analysis with other state-of-the-art approaches. Sections 3.3 to 3.6 detail the
technical design and implementation of the model.

3.1 Intuition

Our proposed framework leverages a GNN-based SSL method enhanced with
FSL for the detection of network attacks, such as Distributed Denial of Service
(DDoS), brute force, and botnets. The primary objective of our framework is
to achieve high precision in detecting these attacks using minimal labeling. To
this end, the input network flow data are first converted into a large graph
representation, where nodes correspond to hosts, identified through their IP
addresses, and edges represent the network flows. This graph is enriched with
additional flow features, such as the count of packets within a Netflow record
and the mean packet size, represented as a vector of edge features.

FEAE comprises three key components illustrated in Fig. 1: (i) the GNN
encoder, (ii) the SSL module, and (iii) the few-shot decoder.

The GNN encoder, presented in Sect. 3.4, is designed to compute node and
edge embeddings that capture the intrinsic relationships between hosts by lever-
aging the graph topology and the flow features within the network. It operates by
training in a self-supervised manner through the SSL module, which ensures that
the generated embeddings preserve the original network structure and semantics.

The SSL module, introduced in Sect. 3.5, employs hybrid self-supervised
strategies, making use of both contrastive-based and reconstruction-based objec-
tives. The contrastive objective is designed to differentiate between original (pos-
itive) and augmented (negative) edges, while the reconstruction objective, com-
bined with few-shot samples, aims to produce dissimilar embeddings for benign
and malicious edges identified in the few-shot context, also called malicious few-
shot edges. The training of the encoder is conducted end-to-end with the SSL
module, enabling the generation of embeddings that are aware of the topology
and features associated to malicious activity.
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Lastly, the few-shot decoder is trained separately on the learned edge embed-
dings. It uses a supervised learning approach focused on edge classification and
takes advantage of the few-shot labels related to network attacks. The design of
the decoder is explained in Sect. 3.6.

Fig. 1. Overall architecture of FEAE.

3.2 Comparison with Other Works

Other SSL techniques, such as Anomal-E [6], necessitate the inclusion of both
benign and attack samples to train the GNN encoder, and exclusively benign
samples to train the Isolation Forest decoder. This indirectly leads to a super-
vised learning paradigm as it requires prior identification of which samples are
benign or malicious. In contrast, our few-shot approach requires only a minimal
number of malicious samples, thereby obviating the need for identifying benign
samples beforehand.

Moreover, fully self-supervised or unsupervised approaches primarily serve
as anomaly detection mechanisms rather than cyberattack detection sys-
tems [2,10,15,24]. The lack of training labels prevents these models from accu-
rately differentiating between legitimate cyberattacks and false positive anoma-
lies. Conversely, models trained solely under supervised conditions may become
excessively tailored to the attack patterns observed during training, limiting
their generalizability to unseen attacks. Therefore, FSL is proposed as a bal-
anced intermediary, merging the advantages of both paradigms to enhance the
precision in detecting diverse network attacks.

3.3 Notations

The subsequent sections of this paper will elaborate on each of the components
within FEAE using the scientific notations summarized in Table 1.
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Table 1. Notations

E Training edges

X Training edges’ features

k Number of selected few-shot edges in each attack family

m Number of attack families

E Few-shot edges (benign and malicious)

Emal Few-shot edges (only malicious)

YE Few shot edges’ labels

H Positive edge embeddings matrix

˜H Negative edge embeddings matrix

3.4 GNN Encoder

In this paper, we propose a simple and lightweight GNN encoder to per-
form message-passing between nodes in the network graph. Our proposed GNN
encoder first computes node embeddings by leveraging the flow numerical flow
features attributed to neighboring edges. Precisely, each node aggregates its
neighboring edge features in such a way that both the local neighborhood topol-
ogy and the flow features are captured. Formally, we compute the aggregation
of neighboring edges such that:

hN (u) =
∑

v∈N (u)

euv, u ∈ N, (1)

where euv denotes the feature vector of the edge (u, v), N (u) represents the
neighboring nodes of node u, and hN (u) represents the sum aggregation u’s
neighboring edges. We employ here a sum aggregation as it offers interesting
injective capabilities. As detailed in the original Graph Isomorphism Network
(GIN) paper [35], the sum aggregation is characterized by its injectivity concern-
ing node features, meaning that a unique combination of features will produce
a distinctive sum. Through the use of a similar sum aggregation on the neigh-
boring edge features, the model effectively preserves a greater amount of the
structural features within the graph when contrasted with other aggregations
like the mean or maximum.

Following the aggregation of node features, these features are then processed
by a linear layer with activation function, as described by the following formula:

hu = σ
(
hN (u)Wagg

)
, (2)

where hu represents the embedding of node u, σ is the ReLU activation function,
and Wagg is a trainable weight matrix.

Following the calculation of node embeddings, our objective is to generate
specific edge embeddings from these node representations. These edge embed-
dings are intended for the subsequent identification of network attacks, charac-
terized here by malicious edges. To achieve this, embeddings from each pair of
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connected nodes are concatenated. This concatenated output is then multiplied
by a distinct trainable matrix, which aims to learn edge embeddings given the
concatenated source and destination node embeddings.

huv = [hu, hv]Wedge, (3)

where [,] designates the concatenation operation and Wedge is the edge-level
trainable matrix.

Our experiments have shown that a single-layer of this GNN encoder yields
superior results in learning representations from positive and negative edges
during the self-supervised phase.

3.5 SSL Module

The SSL technique employed to train the edge encoder plays a crucial role in
obtaining meaningful embeddings, essential for effective classification by the few-
shot decoder. To address this, we propose a hybrid SSL objective that merges
contrastive- and reconstruction-based losses. By integrating both methods, the
model gains the ability to distinguish between positive edges and negatively
augmented edges, while maximizing the reconstruction error for the malicious
few-shot edges. This hybrid approach enhances the discriminative power of the
embeddings and contributes to the overall detection performance.

Contrastive-Based Loss. The recent success of contrastive learning in net-
work intrusion detection [2,6] and many other domains [20], motivated us to
adopt it in the SSL training. Deep Graph Infomax (DGI) is the first attempt to
apply contrastive learning to graphs, aiming to maximize the mutual information
between patch and global representations of the original graph while minimiz-
ing it with negative augmentations. Initially designed for node-level tasks, DGI
leverages node features when creating node embeddings. However, Anomal-E
has demonstrated the successful application of DGI to edge-level tasks, utilizing
edge features. In this version, an edge-level encoder such as E-GraphSAGE, com-
putes the edge embeddings for the original graph G and its negatively augmented
version G̃:

H = enc(G), (4)

H̃ = enc(G̃), (5)

where H and H̃ correspond to the edge embedding matrix for the original graph
and its negative augmentation, respectively. Graph G̃ is defined by G̃ = A (G)
with A an augmentation function that generates a modified version of G. The
edge embeddings will then be compared to a compact version of the original
graph to measure the similarity. This compact version, also known as global
summary, is represented by a single vector s that preserves global graph infor-
mation, achieved through a readout function given by:

s = σ (R(H)) , (6)
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where R is the mean readout operation and σ is the sigmoid function. For each
edge in both the original and augmented graphs, the local-global similarity is
measured by calculating the dot product between the corresponding edge and the
global summary. Additionally, a weight matrix W is utilized during training to
either maximize or minimize these similarities. The sigmoid activation function
σ is then applied to convert the similarity scores into probabilities, indicating
whether the input edge is positive or negative:

D (Huv, s) = σ (HuvWs) , (7)

D(H̃uv, s) = σ
(
H̃uvWs

)
, (8)

where D is called the discriminator function, which returns the probability of
an edge being either positive or negative, whereas Huv and H̃uv respectively
represent the positive and negative embeddings for the edge uv.

Ultimately, the encoder is trained using the Binary Cross-Entropy (BCE)
loss function on the positive and negative edges:

LDGI = − 1

|E|+ | ˜E|
∑

uv∈E

EG [logD (Huv , s)] +
∑

uv∈ ˜E

E
˜G

[

log
(

1−D
(

˜Huv, s
))]

, (9)

where |E| and |Ẽ| represent the number of edges in the positive graph and
negative graph, respectively. The loss is optimized by comparing the probabilities
of positive and negative edges to all-ones and all-zeros vectors. Minimizing this
loss enables the model to learn to distinguish between original and fake edges,
thus producing meaningful edge embeddings that preserve the original graph
information. These embeddings can be used as valuable input vectors for the
downstream task, which here is a few-shot classifier.

Reconstruction-Based Loss. While the contrastive-based loss method effec-
tively learns edge representations through self-supervision, it overlooks the
potential of leveraging the few-shot labeled samples available in the FSL con-
text. Recognizing the value of these limited labeled edges, we introduce a
novel loss function intended to capitalize on these few labeled instances dur-
ing the SSL phase. Our goal is to create distinct embeddings specifically for the
labeled few-shot examples. To achieve this, we propose an approach inspired
by reconstruction-based SSL methods, where we aim to reconstruct edge fea-
tures from edge embeddings, thereby ensuring that the embeddings of few-shot
labeled edges can be easily identified in embedding space. Formally, given an
edge embedding Huv, the reconstructed edge feature of (u, v) is defined as:

X̂uv = σ (HuvWrec) (10)

where σ is the sigmoid function and Wrec is a weight matrix with same output
dimension as the number of original edge features. The Mean Squared Error
(MSE) loss is used to measure the reconstruction error between the reconstructed
and the original edge features. We specifically divide this problem in two separate
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Fig. 2. Illustration of the few-shot aware reconstruction-based loss. a) The GNN
encoder first compiles features from the local neighborhood edges to produce edge
embeddings. Here, red edges represent malicious few-shot edges, whereas green edges
symbolize non-few-shot edges, presumed to contain a high rate of benign edges. b) The
SSL module leverages the few-shot edges by maximizing the loss associated with these
malicious events. This action compels the encoder to create dissimilar edge embeddings
for the malicious few-shot edges, ensuring they are easily distinguishable from benign
edges. c) The loss function is also designed to minimize the loss for all non-malicious
edges. (Color figure online)

loss functions Lfew and Lfew, which correspond to the reconstruction loss of the
few-shot and non-few-shot examples, respectively:

Lfew =
∑

uv∈Emal

(
Xuv − X̂uv

)2

, (11)

Lfew =
∑

uv∈E\Emal

(
Xuv − X̂uv

)2

, (12)

where Emal is a set of k malicious edges selected among each of the m attack fam-
ilies present in the dataset, E\Emal is the set of remaining (unlabeled) non-few-
shot edges, and Xuv represents the original features of edge (u, v). As illustrated
in Fig. 2, our aim is to maximize the reconstruction loss of the k ∗ m malicious
few-shot edges while simultaneously minimizing the reconstruction loss of the
other non-few-shot edges. This dynamic of maximizing loss for a few malicious
instances while minimizing loss for many benign edges fosters the creation of
edge embeddings that are distinctively separable in the embedding space. This
separation is achievable provided the dataset exhibits significant imbalance, with
the majority of edges being benign, thereby statistically ensuring that non-few-
shot edges predominantly consist of benign examples.
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The resulting loss function presented in Eq. 13, integrates the contrastive-
based and reconstruction-based objectives presented previously:

LFEAE = LDGI + αLfew − βLfew (13)

where LDGI is the loss from DGI presented in Eq. 9. α and β are trade-off coef-
ficients to balance the reconstruction error of few-shot and non-few-shot exam-
ples. We recommend to set α < β, particularly when the dataset contains a
significant number of malicious edges. Indeed, Lfew should be controlled by α to
avoid minimizing the reconstruction error of unlabeled malicious edges present in
the non-few-shot edges E\Emal. Conversely, special attention should be directed
towards maximizing Lfew over the malicious few-shot edges, as they have a more
significant impact than all other unlabeled edges.

3.6 Few-Shot Decoder

The decoder is responsible for the classification of the edge embeddings computed
by the encoder and the SSL module; therefore, its training is separate from theirs.
It consists of a 2-layer Multi-Layer Perceptron (MLP) trained using BCE in a
supervised manner on the few-shot edge embeddings. The decoder outputs a
prediction ŷ for every edges such that:

ŷ = σ (MLP (H)) , (14)

where σ is the sigmoid function. To mitigate overfitting on the malicious few-shot
edges, we introduce a new set E that supplements Emal such that Emal ⊂ E , by
randomly selecting benign edges from the dataset while attempting to maintain
the same class distribution. However, in the few-shot scenario, information on
labels and their distribution is considered unavailable. As a result, we only select
a fixed percentage of benign edges, which varies based on the original dataset
distribution. For datasets recognized to be highly imbalanced, primarily consist-
ing of benign samples, as exemplified in this paper, we assume the selection of
random edges as the benign few-shot edges for the encoder.

The decoder is trained over all edges in E by computing the BCE loss between
the prediction ŷ and the actual few-shot label such that:

LDEC =
∑

uv∈E BCE (ŷuv,yuv)
|E| , (15)

where |E| represents the number of select few-shot edges and yuv ∈ YE denotes
the label of an edge (u, v), which is set to a malicious label if (u, v) ∈ Emal and
a benign label otherwise.

4 Experiments

In this section, we present the configuration and datasets used to evaluate FEAE,
along with a comprehensive evaluation of the model using different numbers of
few-shot edges and comparing it against multiple baselines. We also discuss the
scalability of the proposed method.
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4.1 Configurations and Datasets

The FEAE architecture consists of one encoder layer, described in Sect. 3), trained
for a maximum of 600 epochs, with early stopping set to 150 epochs. For all
experiments, we utilized the sum aggregation method, as it provided better per-
formance than the mean aggregation, which led to smoother embeddings. Both
the encoder and SSL module were implemented with a hidden size of 128 neu-
rons. To train the encoder, we used a learning rate of 0.001 with the Adam
optimizer. Additionally, we applied a weight decay of 0.0001 to the optimizer to
better control large gradients generated by the sum aggregation. Regarding the
SSL module, the trade-off parameters α and β were set to 0.2 and 0.8, respec-
tively, and 5% of edges in E were randomly selected as benign samples to create
E , the full set of selected few-shot edges. The few-shot decoder was trained for
a maximum of 4000 epochs, and we applied early stopping at 1500 epochs. We
used the Adam optimizer for training, setting the learning rate to 1 × 10−3 and
the weight decay to 1 × 10−5.

Our experiments were conducted on two network datasets [26] commonly
used in GNN-based detection methods [2].

NF-CSE-CIC-IDS2018-v2. This dataset is a Netflow version of the original
CSE-CIC-IDS2018 dataset [28], containing approximately 18.9 million network
flows. Among these flows, around 12% correspond to attack samples, which are
divided into 6 attack families including BruteForce, Bot, DoS, DDoS, Infiltration,
Web attacks.

NF-UNSW-NB15-v2. Also converted to Netflow format, this version of the
UNSW-NB15 dataset [23] comprises 2.3 million flows, with attack samples
accounting for 4% of the dataset, distributed across 9 attack families including
Fuzzers, Analysis, Backdoor, DoS, Exploits, Generic, Reconnaissance, Shellcode,
Worms.

Both datasets have been standardized using the Netflow format to facilitate
ease of use and benchmarking across different detection methods. They offer 43
standardized network flow features [26] such as the duration of a flow or the
number of packets and bytes within a flow, which we employed as edge features
in our experiments. Similar to the approach used in Anomal-E, we used only 10%
of each dataset for scalability concerns, with 70% used as the train set and 30%
as the test set. The GNN encoder and SSL module are trained end-to-end on a
graph containing both benign and malicious edges. Subsequently, the few-shot
decoder is trained separately using these embeddings to classify edges.

The forward and backward steps were performed on an NVIDIA Tesla V100
GPU with 32 GB of memory and an Intel Xeon Gold 6148 CPU with 20 cores
and 60 GB of memory. The FEAE architecture along with the different baseline
models were developed in PyTorch using the DGL library.

4.2 Baselines

To evaluate the performance of FEAE, we conducted a benchmark using multiple
GNN baselines that follow different learning paradigms.
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Supervised Baselines. We introduced four supervised baselines to compare
the performance of fully-supervised and few-shot approaches. The first baseline
chosen was E-GraphSAGE, as detailed in Sect. 2.2. This model is foundational for
malicious edge classification in network graphs. The remaining three baselines-
LineGAT, LineGCN, and LineSAGE-are adaptations of the GAT, GCN, and
GraphSAGE models, respectively, applied to a line graph [13]. Given that these
GNNs are originally designed for node features, their direct application to scenar-
ios leveraging edge features is impractical. To accommodate this, we converted
each edge into a node within a line graph, thus framing it as a node-classification
problem where edge features are embodied within nodes. A comparable app-
roach employing a line graph was also utilized in E-ResGAT. However, the com-
plex architecture of this model precluded experiment replication due to memory
exhaustion, even when employing the sampling strategy recommended in the
original publication. For E-GraphSAGE, a single layer configuration with 128
hidden neurons yielded best results, whereas all line graph-based baselines were
implemented with two layers, each comprising 128 hidden neurons.

Benign-Supervised Baselines. We propose multiple variants of the Anomal-
E model, as it is the main framework leveraging self-supervised learning to detect
network attacks using flow features. Anomal-E consists of the E-GraphSAGE
model as the encoder, DGI as the SSL module, and an Isolation Forest (IF) as
the decoder. Anomal-E falls under the benign-supervised category as it requires
knowledge of all benign edges to train the IF classifier. We evaluate two variants
of this model, using different positive and negative augmentations in the SSL
training. Findings in [1] reveal that employing different augmentation techniques
for the positive and negative graphs can improve the prediction accuracy. DGI
and Anomal-E both use the original graph as the positive graph and the original
graph with randomly permuted edges as the negative graph. However, using dif-
ferent augmentations can improve detection performance of such self-supervised
techniques depending on the underlying dataset. Consequently, we propose a
variant of this baseline denoted as aug1 that uses the same random edge permu-
tation as the negative graph, but builds a positive graph by randomly dropping
30% of the nodes along with all connected edges. This augmentation aims to
simulate a graph with fewer hosts while conserving the same topology between
the remaining hosts.

Few-Shot Baselines. Given the absence of established few-shot GNN base-
lines for attack detection, we introduce a modified version of Anomal-E. In this
adaptation, the IF classifier is substituted with the few-shot classifier from FEAE.
The SSL module incorporating DGI remains unaltered to enable a direct com-
parison with the SSL module employed in our methodology. Moreover, we assess
two variations of FEAE: one adheres to the same positive and negative data aug-
mentations as used in DGI, while the other applies the augmentation discussed
earlier. This decision to use a single attack edge among several potential edges
aims to circumvent the need for extensive labeling and analysis of attacks within
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Fig. 3. FEAE performance with respect to k. Setting k = 0 indicates that only benign
edges are used for training, without any labeled malicious edge.

the training set by analysts, who may not have prior knowledge of the specific
edges involved in the attack. Consequently, this approach results in the use of 6
labeled malicious edges for the NF-CSE-CIC-IDS2018-v2 dataset and 9 labeled
malicious edges for the NF-UNSW-NB15-v2 dataset.

4.3 Experimental Results

Evaluation with Respect to k. The effectiveness of FEAE across the two
presented datasets, with respect to varying k values, is showed in Fig. 3. Here,
k denotes the count of malicious few-shot edges per each attack family used
in training both the SSL module and the few-shot decoder. Additionally, we
compare the performance to the supervised variants of FEAE that leverage all
available supervised examples for training. The evaluation metrics chosen for this
analysis are the precision and the macro F1-score, presented in Eq. 16. The F1
metric is particularly suitable as it provides a balanced measure of the precision
and recall across all classes, which is crucial in imbalanced datasets where attack
events are significantly less frequent than benign events.

F1 = 2 × precision × recall
precision + recall

(16)

This metric takes into account both false positives and false negatives, providing
a comprehensive evaluation that is particularly valuable in scenarios where class
distributions are skewed.

On the NF-CSE-CIC2018-v2 dataset, the results in the figure indicate a
remarkable 96.40% F1-score with only k = 1, and the performance further
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improves to 97.65% with k = 4. This demonstrates the ability of the few-shot
aware reconstruction loss function to learn effective representations using a min-
imal number of malicious labels.

For the NF-UNSW-NB15-v2 dataset, a 92.60% F1-score is reached starting
from k = 1, and the performance remains nearly linear for k > 1.

In the two outlined scenarios, employing merely one or two malicious samples
within this model’s framework suffices to reach performance levels comparable to
those of fully supervised baselines, which leverage the entirety of available labels.
To guarantee a detailed evaluation, the ensuing sections will detail a comparative
analysis against various baseline models.

Evaluation Against Baselines. The experimental results are summarized in
Table 2, highlighting the performance of the different approaches described in
Sect. 4.

Table 2. Performance benchmark between FEAE and other baselines.

Data Model NF-CSE-CIC-IDS2018-v2 NF-UNSW-NB15-v2

F1 Precision Time F1 Precision Time

A, X, Y E-GraphSAGE 96.02 98.82 0.31 95.35 92.49 0.32

A, X, Y LineGAT 93.84 96.84 4.3 95.33 91.81 14.2

A, X, Y LineGCN 89.29 95.42 0.43 95.35 91.83 0.58

A, X, Y LineSAGE 94.94 97.10 1.00 95.90 93.11 2.08

A, X, Yben Anomal-E (IF) 94.46 96.86 85.1 91.14 85.78 9.2

A, X, Yben Anomal-E (IF) + aug1 96.53 98.84 81.3 87.38 84.13 7.9

A, X, Yfew Anomal-E (Few-Shot) 95.3 97.28 24.5 92.47 86.42 1.45

A, X, Yfew FEAE 96.40 99.05 19.6 92.64 87.69 1.22

A, X, Yfew FEAE + aug1 97.44 98.71 18.4 92.64 87.69 1.19

Data refers to the input data required to train a specific Model. The first group
of baselines represents supervised approaches, whereas the second group represents
benign-supervised methods (with Yben corresponding to all benign labels) and the last
group is dedicated to the few-shot baselines (with Yfew corresponding to the malicious
few-shot labels). Time corresponds to the overall training time in minutes, to reach the
score of the corresponding baseline. For both datasets, the performance is measured
using the macro F1 score and the Precision over 5 iterations, with the notation mean
± standard deviation

On the NF-CSE-CIC-IDS2018-v2 dataset, the variant of FEAE employing
the augmentation strategy variant achieves the highest performance. This result
demonstrates the effectiveness of FSL methods on this dataset, as it surpasses the
results of fully supervised approaches by using merely one label per attack fam-
ily. Additionally, FEAE exhibits enhanced performance compared to Anomal-E
in the few-shot scenario, highlighting the capabilities of the hybrid SSL objec-
tive incorporated in FEAE. For a deeper insight into the learning mechanisms
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Fig. 4. Left: Some edge embeddings produced by Anomal-E. Note that the few-shot
edges are just for comparison as they are not leveraged in the original Anomal-E.
Right: Edge embeddings generated by FEAE.

of the model, we direct attention to Fig. 4, which illustrates 5000 edge embed-
dings produced by the encoder within FEAE. On the left are embeddings from
E-GraphSAGE trained with DGI in Anomal-E, highlighting the model’s ability
to separate positive and negative edges without specifically focusing on attack
edges (purple). On the right, FEAE’s embeddings using DGI’s augmentations are
displayed, offering insights into its differentiation strategy. In the case of Anomal-
E, the model successfully separates positive and negative edges without giving
special attention to attack edges (denoted in purple). Furthermore, attack edges
do not naturally cluster within a common region in the embedding space since
the loss function does not specifically enforce this clustering. However, when
examining the FEAE edge embeddings, we observe a distinct cluster of attack
edges, including the labeled few-shot edges used during the encoder training. By
directly clustering these attack edges in the SSL training, FEAE assists the down-
stream classifier in more effectively distinguishing between benign and malicious
edges. Furthermore, in the embeddings from Anomal-E, attack edges do not
aggregate into a unified region within the embedding space, due to the absence
of a specific requirement in the loss function for such clustering. In contrary, the
FEAE edge embeddings exhibit a notable clustering of attack edges. This cluster
encompasses the few-shot labeled edges used during the training of the encoder.
By directly clustering these attack edges in the SSL training phase, FEAE suc-
cessfully clusters benign and malicious edges, which facilitates the classification
by the downstream decoder.

On the NF-UNSW-NB15-v2 dataset, the observed performance surpasses
that of Anomal-E but falls short of the results achieved by supervised base-
lines. This suggests that the model may not have been optimally trained on this
dataset. It underscores the need for further experimentation and exploration of
SSL methodologies specific to this dataset.
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The experiments also highlight the importance of using different graph aug-
mentations, as these techniques lead to an improvement of up to 1% in the
F1-score for FEAE and up to 2% for Anomal-E. However, we also notice that one
augmentation pair may not perform well on both datasets, suggesting that this
strategy requires a prior understanding of the underlying data to be applied.

4.4 Scalability

The FEAE model demonstrates a significant reduction in computation time com-
pared to the computationally intensive IF classifier used in Anomal-E baselines.
Indeed, the IF classifier used in Anomal-E accounts for a significant portion
of the computational time, thus serving as a primary bottleneck. Furthermore,
experimental evidence suggests that the integration of few-shot examples within
the learning process reduces the total number of training epochs, as an extended
training on the few-shot examples may induce overfitting. This effectively reduces
training time compared to fully self-supervised methods like Anomal-E.

Despite their advantages, both FEAE and Anomal-E incur higher computa-
tional costs than simpler supervised GNN models, which benefit from simpler
end-to-end training. Indeed, self-supervised models based on DGI are inevitably
slower than the supervised ones, which do not require any SSL module. Nonethe-
less, the trade-off between computational expense and the ability to efficiently
handle few-shot scenarios with FEAE justifies its application, particularly in the
cybersecurity domain where dataset labeling is scarce.

5 Discussion

This section discusses the advantages, limitations and research directions of FEAE
and FSL methods for network attack detection.

5.1 Benefits of Few-Shot Learning

The conducted experiments have demonstrated the interesting capability of
detecting attacks using only one malicious example per attack class through
few-shot learning. In a real-world scenario, this labeling strategy could reduce
the reliance on benign-supervised methods, which require the assumption of
training the model solely using benign examples. However, it is often challeng-
ing to ensure that the labeled examples are genuinely benign, which can be a
costly and time-consuming process. Few-shot learning, on the other hand, offers
a promising alternative, as it requires only a small number of labeled malicious
examples to be effective. Furthermore, using graphs in network attack detection
offers a significant benefit: cybersecurity analysts can leverage the predictions
of the FEAE model to approximate the initial structure of an attack graph. This
is achieved by gathering and analyzing the edges that FEAE identifies as mali-
cious. Through this process, analysts can gain insights into the attack’s topology
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and understand how different nodes (potentially representing users, servers, end-
points, or other network entities) are interconnected in a malicious campaign.
This capability not only aids in understanding the attack but also in devising
targeted countermeasures by revealing the path of the attack within the network.

5.2 Limitations and Further Works

A limitation of FEAE and similar few-shot learning approaches is their depen-
dency on requiring some malicious activity data, which may not exist in the
historical data of many enterprise networks. To address this challenge, future
research might focus on integrating malicious activities from synthetic sources
or datasets with known malicious content into real-world datasets. Such an
approach could reduce the necessity for labeling, as labels from these enriched
datasets would suffice. This strategy not only promises to alleviate the labeling
burden but also verifies that the performance of the model remains unaffected by
new attack types. Moreover, exploring the influence of flow features on prediction
accuracy and conducting studies on datasets limited to topological data, devoid
of additional features, could provide deeper insights into the model’s operational
dynamics in varied environments.

Moreover, substantial effort should be dedicated to enhancing the scalability
of such models, especially when dealing with large graphs that may undergo
structural changes over time. As networks evolve and grow, the model’s ability
to adapt and handle dynamic structures efficiently becomes crucial. Research
into developing scalable approaches for few-shot learning on large and dynamic
graphs would greatly benefit practical deployment in real-world environments.

6 Conclusion

In this study, we undertake the first analysis of applying few-shot learning to
network-based attack detection with GNNs. Through the introduction of the
FEAE architecture and the conducted experiments, it has been demonstrated
that merely one labeled attack example per attack family is sufficient to achieve
competitive detection capabilities when compared to fully-supervised or benign-
supervised approaches. These encouraging results open up exciting possibilities
for reducing the reliance on fully supervised methods and addressing the chal-
lenges of limited labeled data in the field of attack detection. The integration of
few-shot learning in attack detection represents a promising research direction,
offering more efficient solutions that can adapt well to real-world scenarios.
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Abstract. Modern real-time communication (RTC) depends on efficient
audio and video compression to minimize bandwidth requirements. While
the codecs are certainly up to the task, the combined effect of live data,
lossy compression, and length-preserving encryption leads to the pos-
sibility of leakage: the lengths of encrypted packet sequences can leak
information about the underlying, unencrypted data. In this work, we
measure leakage in real-world RTC platforms and analyze whether infor-
mation is recoverable. We survey a range of real-world RTC platforms
(along with various configurations of each platform) for their propensity
to leak data through encrypted packet lengths. We then conduct an in-
depth study on Zoom and collect 268,392 network traces amounting to
over 786.8 h of recorded media. We use this data to train models to auto-
matically recover information from packet lengths. This is achieved by
leveraging existing action recognition datasets, along with a new dataset
of virtual meeting recordings. We train neural networks for action recog-
nition over encrypted packet lengths rather than the source data itself.
We find that under certain conditions, our models significantly outper-
form random selection, in effect quantifying leakage for the given learning
problem.

Keywords: Information leakage · Real-time communication ·
Measurement

1 Introduction

Internet-based communication is more prevalent than ever. As a result of
the COVID-19 pandemic, audio and video conferencing tools saw unprece-
dented growth [25]. Real-time communication (RTC) platforms have been widely
adopted for corporate use, healthcare visits, recreational purposes, and beyond.
In other words, the data handled by RTC platforms has ballooned in size and
sensitivity, and platform security is paramount. For instance, conversation confi-
dentiality is particularly critical given the prevalence of telehealth. If information
about the plaintext can be extracted in any way, the consequences for compliance
(e.g., HIPAA) would be severe.
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Current Security Practices. The usual defense mechanisms include encrypting
data at rest and in transit. Encryption of static data in transit is usually straight-
forward because the plaintext is entirely known. Encryption is more challenging
when the plaintext is dynamic or freshly streamed, as is the case in RTC. This
problem is compounded by codecs that exaggerate information leakage through
packet lengths. In fact, such attacks are known to be theoretically feasible in
specific codec and encryption configurations in both the audio [1,27,30,31] and
video [2,10,19] domains.

These attacks are possible because encrypting data as it comes produces
burst patterns [19] that reveal bits of information about the plaintext. Even
more concerning, our formal notions of security break down in the streaming
setting. Standard security definitions assume the plaintext and ciphertext are
the same length: this is clearly violated if the plaintext is not entirely known at
the time of encryption.

In standard secure encryption, the adversary chooses two plaintext messages
m1 and m2 such that |m1| = |m2| and receives the encryption of one of them.
The adversary’s goal is to determine which message was encrypted. Alternative
security notions exist such as “real-or-random”-style definitions where the adver-
sary instead distinguishes between an encryption of a chosen m and a random
string of the same length. Another variant is simulation-based security, where
security is implied by the existence of an efficient simulator that produces the
same distribution of ciphertexts as the real encryption scheme. Critically, all of
these definitions require that the ciphertext length is the same as the plaintext
length, which does not hold in the streaming setting.

In the RTC context, the direct composition of variable bit rate (VBR)
encoded data and length-preserving encryption (LPE) (say, the Advanced
Encryption Standard [5]) is known to be particularly devastating. Prior work
has demonstrated that under simulated conditions, the language spoken in a
conversation [31], the identity of speakers [1], and even transcript extraction
[27,30] is possible from only network-level data (i.e., encrypted packets) under
VBR encoding and LPE.

Our Work. In this project, we initiate the study of real-world RTC leakage. We
ask the following question:

Can we extract information about the underlying plaintext from ciphertext
packets produced by live RTC applications?

Our key approach toward answering this question is to emulate pairwise
RTC communication exactly: we set up real RTC calls upon which we perform
our experiments. This (re)produces the network packets that the RTC platform
would generate if the communication occurred naturally. We do this by spoofing
both the audio and video devices in software and feeding the pre-recorded media
into the respective devices. From the RTC client’s perspective, it is as if the audio
and video comes live from a recording device (i.e., microphone or camera). This
means the packets we capture are genuine encrypted packets from a given RTC
platform and the source data of our choosing. While our emulation is exact for
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pairwise communication, we use the same setup to analyze data that involves
more than two participants: we discuss the implications of this in addition to
the setup’s limitations in Sect. 3.2.

1.1 Our Contributions

We explore the possibility of leakage through packet lengths—for the question
above, we find that the answer is “yes”: we can extract information about plain-
text data from sequences of ciphertext packets. Our contributions include:

1. Semi-automated packet collection pipeline. We first develop a semi-
automated data collection framework to repeat our experiments across dif-
ferent datasets and platforms. We gathered 268,392 network traces (capture
files) across 7 datasets and 9 platforms, amounting to over 786.8 total hours
(334.6 GiB) of raw packet data.

2. Characteristic analysis. Using the data gathered from our pipeline, we
provide a heuristic security analysis for nine major RTC platforms (listed in
Table 1). We stress test each platform (under specific settings) with high- and
low-entropy synthetic data to evaluate the audio and video codecs’ responses.
The test results serve as an indicator of each platform’s vulnerability to audio
and video leakage. Ultimately, we select Zoom for targeted analysis due to the
video codec’s response to our tests (see Fig. 2), coupled with the platform’s
widespread use. Refer to Sect. 4 for more detail about the characteristic anal-
ysis experiment.

3. Information leakage analysis. We focus on Zoom for in-depth leakage
analysis along two lines of investigation:
(a) How well can we classify human actions from existing ML datasets

streamed over Zoom? The relevant datasets are HMDB51 [13], UCF101
[22], Charades [20], and Something-Something [9]. For each dataset, we
find that standard neural networks (LSTM, GRU) trained on the dataset
learn non-trivial information from packet sequences. The largest advan-
tage over random (i.e., the most leakage) we measure is 27.3% test accu-
racy over 101 classes (vs. baseline of 0.99%) (see Table 2). Note that with
strong security, one should not be able to use packet lengths to gain any
classification advantage.

(b) How well can we classify natural video conferencing data on Zoom? We
scraped public recordings of work calls from YouTube, re-streamed them
over Zoom, and collected the encrypted packets. We use this custom
dataset to again train standard neural networks (LSTM, GRU) to pre-
dict classes on unseen data. In this case, the classifier is trained to assign
a class out of: screen sharing, single participant speaking, and a gallery
view of all participants. Again, we identified leakage was present: we were
able to obtain test accuracy of 65.23% (vs. baseline of 33%).
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2 Background

Using Packet Lengths for Fingerprinting. Prior work has shown fingerprinting
is possible for video-based encrypted streams. We refer the reader to Sect. 6.1, a
survey of major fingerprinting applications. These attacks are made possible by
a varying bitrate. Previously, video fingerprinting was conducted on platforms
that use Dynamic Adaptive Streaming over HTTP (DASH) [10,14,19] or HTTP
adaptive streaming (HAS) [2]—these protocols are optimized for one-way data
streaming. This is often appropriate for applications with a public or readily-
accessible stream source such as YouTube, Netflix, or Twitch. A malicious actor
observing the network could launch the following attack: Say the actor wishes
to know whether her target is watching Video A, Video B, or Video C. She can
observe the sequence of encrypted packets delivered to her own machine when
viewing or streaming each source herself. Then, to spy on her target, she can
compare the known packet sequences to the target’s current network activity and
deduce whether it matches A, B, C, or none. This fingerprinting attack functions
for two key settings that we define below: public-static and public-dynamic.

Public-static. In this setting, e.g. a YouTube video [19], the source data is both
public and static. Public data implies the attacker has the ability to produce
encrypted packet sequences for the source data, i.e., she has access to the raw
fingerprint of each video of interest. Static data implies the fingerprint is stable:
it does not change over time. Once a fingerprint is obtained, the attacker can
simply look for it “in the wild.”

Public-dynamic. In this setting, e.g. a Twitch stream [11], the source data is
still public, but it is now dynamic. The attacker can still access raw fingerprints
by viewing the livestream herself, thereby observing the live encrypted packet
sequence (fingerprint). The dynamic setting is more difficult because the attacker
must now monitor her targets and the source data simultaneously.

Private-dynamic. In both scenarios above, it is relatively straightforward to
launch a fingerprinting attack given the publicly accessible source data. In this
paper, we tackle a harder variant of the problem under the private-dynamic
setting: we attempt to learn information from encrypted packets without know-
ing what source produced it. Intuitively, private data changes the problem from
matching exact fingerprints to clustering similar fingerprints: since the attacker
is no longer able to view the target data herself, she must now learn from similar
media to make predictions about encrypted data she has not seen before.

We set out to tackle this classification task in the private-dynamic setting
over RTC platforms.

3 Experimental Pipeline

Terminology. Throughout the paper, we use the following terms. Dataset refers
to a collection of source files: for example, the UCF101 dataset contains a source
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Fig. 1. High-level overview of our end-to-end evaluation pipeline. Synthetic data
depicts our high- and low-entropy multimedia. Action recognition depicts the ML
datasets that we transformed for our leakage study. Natural depicts our custom Zoom
conferencing dataset and requires an extra inference step to generate labels.

v Kayaking g22 c03.mp4. Each source within each dataset is streamed over an
app, where an app is a configuration of an RTC platform specified in Table 1.
For example, zoom-auto for Zoom with automatic noise cancelling enabled.

Overview. We designed and implemented a semi-automated end-to-end pipeline
to collect and analyze encrypted packets from an array of RTC platforms for
our experiment. The pipeline is extendable to any RTC platform that runs a
desktop operating system. We describe the primary components of the pipeline
at a high level and refer the reader to Fig. 1 for a visual overview.

(1) Dataset preparation. The first step is preprocessing input datasets. This
ensures that (a) metadata is consistent across different datasets and (b)
multimedia is encoded efficiently for the experimental environment. This
step is omitted from Fig. 1 for brevity.

(1.1) Automatic labeling. Our natural dataset consisting of recordings of real
meetings requires an additional processing step: a purpose-built neural
network is used to automatically break up and label long network captures
into manageable labeled chunks. This is represented by “Fine-tuned CaFo”
and “Data Processor 1” in Fig. 1.

(2) Encrypted packet streaming and capturing. For a given RTC plat-
form, automated scripts stream and capture encrypted packets for each
source in each dataset. This is performed between two distinct physical
devices over a wireless network. This step is depicted by the “Streamers”
and “Capturers” in the middle section of Fig. 1.

(3) Encrypted packet processing. Once all encrypted packets are captured,
various filters are applied to de-noise and normalize network captures such
that packets unrelated to the RTC platform are removed, and RTC-related
packets are signal-processed to emphasize bitrate changes (i.e., emphasize
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burst patterns). At this point, the data is ready for analysis. This step is
represented by “Data Processor 2” in Fig. 1.

(4) Model training. We train DL models to perform specific classification
tasks depending on the input dataset. We use the training results to com-
pare leakage across platforms for each dataset. The model’s ability to learn
(measurable via validation loss) is correlated with leakage. This step is rep-
resented by “Trained Model(s)” in Fig. 1.

3.1 RTC Platform Selection

Table 1. Summary of RTC platforms evaluated. Version numbers represent the earli-
est version used—applications were kept up-to-date through our data gathering period.
The protocol for a given platform comes from public documentation. If none was avail-
able, we leave the cell blank. The audio and video codec columns are not exhaustive:
only primary and default codecs listed. Namely, some platforms support other legacy
codecs such as G.711 and G.722. We exclude these for brevity. Smaller platforms have
limited documentation regarding codec support. Note that Satin is a superset of Opus.

Capturer Version Streamer Version Protocol Audio Codec Video Codec

Discord Stable 147045 (6ba38a9) Stable 147045 (6ba38a9) DTLS-SRTP [26] Opus H.264

Google Meet Unknown Unknown DTLS-SRTP [8] Opus VP9, VP8 (screen sharing)

Jitsi Meet 2.0.7648 2.0.7648 Custom SFrame [4] Opus VP8 (default), VP9, H.264

Microsoft Teams 1.0.0.22073101005 1.0.0.22073101005 DTLS-SRTP [15] Satin (Opus) H.264

Signal 5.58.0 production 5.58.0 production Custom SFrame [6,24] Opus VP8

Cisco WebEx 42.9.0.23494 42.9.0.23494 Custom SFrame [3] Opus H.264, AV1

Wickr Windows v5.106.15 build 1 Linux v5.106.14 build 1 — Opus —

Wire Version 2022.06.30.13.51 Version 2022.06.30.13.51 DTLS-SRTP [28] Opus —

Zoom Version 5.11.10 (4400) Version 5.11.1 (6602) DTLS-SRTP [33] Opus H.264

We cast a large net over a wide range of RTC platforms as presented in
Table 1. These platforms were selected for their popularity (e.g. Zoom) and/or
their focus on security (e.g. Signal). Recall we define different configurations of
the same RTC platform as an app, and consider them independently in the exper-
iment. We do not tweak or constrain the operation of any RTC platform beyond
what can be achieved through the honest “Settings” interface. In particular, we
assess each platform for settings with direct impact on audio or video band-
width, such as noise cancellation or VBR/CBR toggles. Overall, we streamed
over 786.8 h of multimedia during the experiment, resulting in 334.7 GiB worth
of network packets.

3.2 Automated Packet Collection

We define two entities: the Streamer machine and Capturer machine. The
Streamer is responsible for streaming encrypted multimedia data to the Cap-
turer, whose job is to capture the relevant packets. For a given app, Streamer
and Capturer join a “call.” The Streamer’s job is to spoof the video and audio
devices (i.e., the native microphone and webcam feed) with custom multimedia.
The Capturer’s job is to capture the packets generated by the spoofed data.



Information Leakage Through Packet Lengths in RTC Traffic 283

Streamer. We developed a custom OBS Studio [21] script for the Streamer
device. OBS, armed with the script, allows us to feed the desired video media
through a virtual webcam and control it systematically. For audio, we use the
PulseAudio sound server on Linux to reroute system monitoring audio into a vir-
tual microphone, meaning audio playback (such as the OBS playback) is rerouted
into the virtual microphone. The script is written in Python and coordinates with
a Capturer-side program using asyncio and websockets. The Streamer signals
to the Capturer when to capture packets (i.e., once streaming starts) and sends
relevant metadata. For each app, we establish a connection between the Streamer
and Capturer to perform automated packet collection for every dataset.

Capturer. In tandem with OBS on the Streamer side, a corresponding headless
program runs on the Capturer side to automate packet collection. It is a Python
program that listens for signals from the Streamer to start or stop capturing
packets. It additionally receives metadata to allow the Capturer script to appro-
priately label captures. The program captures network packets using the tshark
command line tool from the Wireshark [29] suite.

Experimental Procedure. Before we started the experiments, we installed a fresh
copy of Ubuntu 22.04 on both the Streamer and Capturer machines along with
our tooling. We then do the following for each app and dataset combination:

1. Upload the relevant dataset sources to the Streamer device.
2. Pair the two devices over the RTC platform of choice, i.e., place them in a

call. If the dataset has one stream (only audio or only video), mute the unused
channel.

3. Start the capturer script on the Capturer device.
4. Run the OBS script on the Streamer device. Ensure that OBS’s virtual camera

is the default webcam and that system sound is in monitor mode, guaran-
teeing the RTC platform will use the virtual inputs. This begins the capture
process. It will run automatically until all sources in the dataset have a cor-
responding network capture.

Limitations. The primary goal of our emulation setup is to reproduce genuine
packets for selected source data. While the emulation is accurate for all action
recognition datasets, there are limitations with our Zoom conferencing dataset.

First, our data collection pipeline only supports unidirectional data stream-
ing, i.e., streaming from a single source device to a single destination device. In a
real Zoom call between two participants, data is bidirectional and each individual
stream is selectively forwarded. We claim the unidirectional setup is sufficient due
to the following approximation: for two media streams A and B where encode(x)
returns the size of x’s encoding in bits and ⊕ denotes side-by-side (i.e., stacked)
concatenation, if |(encode(A) + encode(B)) − encode(A ⊕ B)| < δ for a suffi-
ciently small δ (meaning the encoder doesn’t have “too many” opportunities to
compress both streams together), then encode(A)+encode(B) ≈ encode(A⊕B).

To reproduce a bidirectional and selectively forwarded RTC stream in a uni-
directional manner, we mix the streams by concatenating them “side-by-side”.
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By the approximation above, we are still able to measure burst patterns so long
as the burst signal of any one stream is not completely eliminated by reencoding:
the bidirectional case corresponds to the LHS, and our unidirectional (mixed)
setup corresponds to the RHS.

Second, many of the Zoom recordings that we use are from calls that involve
more than two participants. Since our setup only involves two devices, it is an
imperfect reproduction. However, we claim this discrepancy is minimal due to
the same reasoning as above–only this time, we mix more than two streams.

In summary, our collection architecture is faithful to packets produced by
server mixing: as long as the mixing approach does not eliminate the burst signal
of any one stream, the burst contribution of any individual stream is measurable
through packet lengths. However, other architectures exist, such as selective
forwarding. We leave it to future work to design and implement a collection
framework that is closer to these architectures. This, we expect, should allow for
more accurate measurement of leakage through packet lengths.

4 Phase 1: Platform Leakage Characteristic Analysis

The goal of Phase 1 is to identify real-world RTC platforms that are likely to
leak significant information through packet lengths. Suppose we have two videos:
Video A and Video B. The key idea is: if no information is leaked from encrypted
packet lengths, then the total packet size from streaming A then B should be
equal to that of streaming B then A. We formalize this idea and systematically
evaluate a wide range of RTC platforms.

Media Generation. Many prior works studied length leakage in an idealized
setting [1,27,30,31]—they analyzed the output of (mostly audio) codecs under
chosen conditions. On real RTC platforms, we do not have fine-grained control
over codec choice, codec parameters, or how codec payloads are encrypted. In
Phase 1, we analyze the packets produced by live RTC applications by leveraging
synthetic data (as opposed to genuine media input such as webcam footage or
microphone capture) designed to test various aspects of the underlying codecs.
For both audio and video media, we generate extreme synthetic data that makes
use of (a) minimal entropy data (a white background for video and silence for
audio) and (b) maximal entropy data (uniformly random video and audio). We
use this data to empirically measure the codec’s response to rapidly changing
bitrates. This is done by concatenating high entropy data and low entropy data
(and vice versa). At the point of concatenation, the media codec is “shocked”
by a rapid change in bitrate and its response can be measured. The codec goes
through an adjustment period in which it optimizes itself for the new bitrate
data—this optimization process can leak information. That is, the fact that
bitrate has rapidly changed says something about the underlying plaintext.

Let Hmedia
t denote the H ∈ {U,W}-entropy media file of duration t seconds

and type media ∈ {audio, video}. Note that U denotes maximum entropy (uni-
formly random) media and W denotes minimum entropy (white or silent) media.
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Let Hmedia
t ‖ H ′media′

t′ denote the head-to-tail concatenation of two media files.
The ‖ operator preserves order. Then, for media ∈ {audio, video}, we specify our
synthetic data accordingly:

U := Umedia
120 UWUW := Umedia

30 ‖ Wmedia
30 ‖ Umedia

30 ‖ Wmedia
30

W := Wmedia
120 WUWU := Wmedia

30 ‖ Umedia
30 ‖ Wmedia

30 ‖ Umedia
30

UW := Umedia
60 ‖ Wmedia

60 WU := Wmedia
60 ‖ Umedia

60

Later in the paper, we drop media when it is inferable from context.
All synthetic audio sources were encoded with WAV [12] – a lossless audio

codec. All synthetic video sources were encoded with VP9 [18] in lossless
mode with FFmpeg using the following configuration: ffmpeg -i {input} -c:v
libvpx-vp9 -lossless 1 -async 1 {output}

Data Collection. We set up pairs of RTC devices to programatically stream the
synthetic datasets over the nine RTC platforms mentioned in Table 1 following
the procedure described in Sect. 3.2.

For each platform, we tested the following apps (different configurations of
the same RTC platform):

1. discord-noise-supp: Discord with Krisp noise suppression enabled.
2. google-meet-(noise-canc|no-canc): Google Meet with noise cancellation

enabled and disabled, respectively.
3. jitsi-meet: Jitsi Meet with performance setting at highest quality.
4. signal: Signal with default configuration.
5. teams: Microsoft Teams with default configuration.
6. webex: Cisco WebEx with default configuration.
7. wickr-(TCP|nonTCP): Wickr with TCP mode enabled and disable, respec-

tively. Note that TCP disabled means that UDP mode is used.
8. wire-(agc|no-agc)-(cbr|vbr): Wire with automatic gain control turned

on (off), CBR enabled (disabled), and VBR disabled (enabled), respectively.
9. zoom-(low|med|high|auto): Background noise filtering set to low, med,

high, and auto.

For all platforms, we enable HD video and preserve aspect ratios when possible.

Results. With the captured packets for each app, we are able to see the total
length of data transmitted over the network and measure the magnitude of
information loss from the codec’s compression. This is shown in Fig. 2.

Recall that we expect a horizontal line for an app if it does not leak any
information through its encrypted packets. Examining Fig. 2 more closely, we
can see two categories of lines:

1. Relatively stable lines for the majority of apps, which indicates low leakage.
Additionally, these apps have total bandwidth close to their mean bandwidth
over the four UW, WU, UWUW, and WUWU sources. At best, signal has
all four bandwidth values within 0.51% of its mean in the audio setting, and
wire-agc-cbr has all four within 0.10% in the video setting.
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Fig. 2. Total bandwidth measurements for various permutations of high-and low-
entropy audio (left) and video (right) over a range of RTC apps. The expectation
for an app with zero leakage is a perfect horizontal line. Refer to the “Data collection”
paragraph in Sect. 4 for app descriptions.

2. Jagged lines for a handful of apps. These indicate higher leakage and suggest
the apps are compressing data in an asymmetrical, lossy fashion.
(a) Among the jagged lines, it is common that sources prefixed with U result

in larger-than-expected total packet lengths, indicating that it takes con-
siderable time for the codec to adjust between high and low bitrate data.
In the audio setting, jitsi-meet and teams exhibit this pattern, deviat-
ing by 46% and 55% from their respective means. In the video setting, all
zoom variations exhibit this pattern: even the flattest zoom line deviates
from the mean by 37%, and the others even moreso. In general, the audio
graph is more stable than its video counterpart, which is expected due to
the larger amount of data transferred over video. This further emphasizes
the effect of codec sensitivity.

(b) In jitsi-meet audio and zoom-auto video, we see that UW and WU have
significant bandwidth magnitude differences, whereas we see relatively
equal bandwidth totals for UWUW and WUWU. This suggests the codec
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may be able to better adapt when there are repeated bitrate shocks (three
bitrate transitions rather than one).

(c) There are a few outlying, less-pronounced jagged lines in the video graph
which do not exhibit the pattern described above: wickr-nonTCP and
wire-agc-vbr. The largest difference from the mean across all apps was
86% for wire-agc-vbr.

Next, we discuss the effect of different settings across the apps. We tested
each setting with all other parameters held equal.

1. Background noise reduction. We see a large average bitrate reduction for
Google Meet in the audio setting when noise cancellation is enabled: the total
packet length mean across the four audio sources was 8.13 MB vs. 0.73 MB.
Similarly, Zoom decreases in bandwidth as noise filtering strength increases.
Notably, the bandwidths of zoom-auto and high were close (124.20 MB vs.
129.49 MB respectively), suggesting that, given the choice, Zoom automati-
cally selects the high noise filtering preset for our synthetic data. zoom-med
used 389.93 MB of bandwidth and zoom-low used 1,162.32 MB total band-
width. The results are shown in the dominant google-meet-no-canc line over
its noise-canc counterpart, as well as the increasing order of zoom-high, med,
and low. These observations suggest the noise filters are effective—on both
platforms, the respective filters are able to detect the presence of uniform
noise and remove it from the signal.

2. TCP vs. UDP. Compared to Wickr with TCP enabled, we expect Wickr
over UDP to reduce total bandwidth since the platform does not need to spend
as much bandwidth for non-payload packets. We find the audio setting is
consistent with this expectation: UDP uses less data (1,896.46 MB) than TCP
(2,104.48 MB). However, in the video setting, we saw the opposite effect: UDP
used 28,240.65 MB vs. 18,314.24 MB for TCP. We conjecture the UDP option
may support a larger maximum bitrate, and the uniform video streaming
would likely reach the limit.

3. CBR vs. VBR. Wire enables users to toggle between CBR and VBR—
it was the only RTC platform that provided such a control. In the audio
setting: (a) With AGC enabled, switching from VBR used 1,343.67 MB vs.
CBR’s 505.45 MB. (b) With AGC disabled, bandwidth costs are relatively
unchanged: 1,324.75 MB for VBR vs. CBR’s 1,342.19 MB. In the video
setting: (a) With AGC enabled, switching from VBR to CBR significantly
reduces bandwidth costs: from 31,388.27 MB to 23,676.94 MB, respectively.
This was unexpected since AGC should, in theory, have no effect on the
amount of transmitted data. We again conjecture that another variable may
have been at play. (b) With AGC disabled, bandwidth costs are relatively
unchanged with 24,371.11 MB for VBR and 24,594.48 MB for CBR.

4. Automatic gain control vs. manual gain control. We tested the effect of
automatic gain control (AGC) for audio on Wire under both VBR and CBR
conditions. Examining the data from Item 3 along the AGC axis, we observe
that in the VBR case, toggling AGC had little to no effect on bandwidth:
both VBR with and without AGC used on the order of 1,300 MB bandwidth.
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However, in the CBR case, turning AGC on reduced total bandwidth from
1,342.19 MB for CBR without AGC to 505.45 MB with AGC.

Our findings from Phase 1 show us the magnitude of leakage in the video
setting is far larger than the that of the audio setting. Hence, we focus on video
for our Phase 2 analysis since it is easier to measure burst patterns. Zoom exhibits
the strongest indication of leakage in the video setting, so we proceed with
targeted leakage analysis on this platform.

5 Phase 2: Learning from Lengths

We focus on Zoom for video-based analysis and begin Phase 2 to thoroughly
assess the information leakage. We measure leakage by training neural networks
to see whether and how much they can learn from encrypted packet lengths
alone: if they perform better than random, leakage is present.

5.1 Experimental Setup

Media Generation and Data Collection. We use a range of well-studied action
recognition datasets in addition to a custom dataset containing labeled Zoom
conference recordings. They are:

1. HMDB51: Kuehne et al. [13] manually annotated around 7,000 video segments
of movies and YouTube clips in 2011. They were classified into 51 categories
that represent common verbs such as “jump,” “run,” and “sit” to name a few
examples.

2. Something-Something V2 (S-S): Goyal et al. [9] curated a dataset designed to
help neural networks learn about trivial physical phenomena in 2017. Their
database contains over 100,000 video clips classified into 174 classes. Each
class is a descriptive English caption. For example, “Pushing a green chili so
that it falls off the table.”

3. UCF101: Soomro, Zamir, and Shah [22] compiled a dataset of 101 action
classes. It contains over 13,000 distinct clips totaling to around 27 h of video
data. The data is user-uploaded footage to YouTube. It includes varying cam-
era motions and background footage per class.

4. Charades: Sigurdsson et al. [20] annotated 9,848 common daily human
actions. The authors claim the actions are not commonly found in public
sources such as YouTube because they are mundane actions. The videos are,
in general, longer than the other action recognition datasets; their average
length is about 30 s.

5. Conferencing: In addition to using existing datasets, we also construct a new
dataset consisting of recorded conference calls over Zoom. We scraped the
data from YouTube and labeled it automatically using a fine-tuned Trans-
former model [32]. We defined three scenarios that are likely to cover all
frames of an active Zoom call, i.e., the call is always in one of the three
scenarios. In particular, we labeled instances of screen sharing, participants
speaking, and gallery view of all participants.
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Classification Tasks. For the existing action recognition datasets, we attempt
the same action recognition task for which the dataset was designed, except we
perform it over encrypted packets that form the dataset’s training instances. For
our custom Conferencing dataset, the goal is to classify the meeting scenario for
a given timeframe. We design three unified neural net architectures to perform
classification over encrypted packets. We retrain each model for each specific
dataset and classification problem.

5.2 Model Architecture and Training

We use sequence-to-one models to classify sequences of video packet lengths.
Specifically, we use three different encoders, each with a recurrent architecture,
to embed the packet sequences of varying lengths. Each encoder then generates
a fixed-length embedding of the packet sequence for input to a classifier that
predicts the label for the video sequence.

Capture Processing. We filter the captures to retain only the packets that travel
from the Streamer to the Capturer over UDP. We throw away packets that do
not originate from the known IP addresses of the Streamer or Capturer.

Our goal is to train on sequences of packet length data. Let S = {(pi, ti)|i =
0, . . . , n} denote the (n + 1)-long sequence of (packet length, timestamp) pairs
corresponding to a single label, i.e., it is a single training instance. Rather than
training on sequence S directly, we instead train on S′ = {(δpi

, δti)|i = 1, . . . n}
where δpi

= pi − pi−1 and δti = ti − ti−1 respectively. We do this to assist the
model in learning generic patterns among network traces and prevent it from
memorizing specific sequences of packets for a given arrival sequence. We find
this approach improves performance on unseen data and reduces overfitting.

Preparing the Conferencing Dataset for Training. We use 20-shot fined-tuned
CaFo [32], a state-of-the-art low-shot image classifier, to automatically label
frames spaced one second apart in long Zoom recordings. The Zoom recordings
(often greater than 30 min) are much longer than media from other datasets
(less than 1 min), so we algorithmically split up long packet captures into smaller
chunks. The quality of the chunks relies on the quality of CaFo’s predictions.
While fine-tuned CaFo had perfect test accuracy on 294 hand-labeled frames
from our dataset, misclassifications are still possible. These errors would prop-
agate to the final model—to minimize their effect, we look for long contiguous
sections of the same CaFo-assigned class and drop sections that are below a
threshold. This is a heuristic filter based on the relative stability of a Zoom
conference call: each class (e.g., screen sharing) is likely to last for many frames
(seconds to minutes). In practice, we drop all frames that are not in a contigu-
ous section of at least 5 s—the probability that the model misclassifies all frames
in the section is low. Another option for mitigation would be to increase the
number of shots when fine-tuning CaFo, but we found this to be unnecessary.
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Models. We explored three different model architectures for the encoder:

1. LSTM with Attention. This model uses an encoder with two stacked
LSTM layers. After reading in the entire sequence, all the hidden states of the
second LSTM are passed to an attention layer to generate a weighted mean
that better captures the entire sequence. This is used as the embedding of S′

and is fed into the classifier.
2. LSTM. This model also uses two stacked LSTM layers for the encoder. We

drop the attention layer described above.
3. GRU. This model replaces the two stacked LSTM layers with two stacked

GRU layers.

GRUs have a simpler architecture, so they have faster training time and less
memory usage. However, they generalize worse than LSTMs, and we wanted
to see how their performance compares. Finally, attention has been shown to
improve performance, especially in long sequences, as it enables the model to
focus on relevant parts of the sequence when making predictions.

Each encoder reads in one element of S′ at a time, and takes in its δp and δt
values as features. Each classifier consists of a single feed-forward layer followed
by the final output layer, corresponding to the set of classes. The size and number
of layers for both models were tuned via a hyperparameter sweep. All models
were implemented and trained with PyTorch [16].

For each model and dataset, we use 80% for training, 10 for validation, and
10 for test. We train the entire model end-to-end with the Adam optimizer, a
learning rate of 3e-4, and a batch size of 64. We save the model with the best
validation loss and evaluate it on the test set.

5.3 Results

Table 2. Maximized datasets have been optimized for the number of training instances
at the cost of distinct classes. S-S (relabeled) denotes an alternative labeling for the
S-S dataset—it groups similar motion labels into larger sets. Baseline performance is
the expected performance for a classifier that assigns classes randomly (i.e. the inverse
of the number of classes). This is the best possible performance if there is no leakage.
We define advantage as the difference between baseline performance and test accuracy.

Table 2 shows each model’s performance on each dataset. The baseline per-
formance shown in the table is computed from 1

classcount . This baseline is the
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expected performance for a random assignment of classes, i.e., no leakage. We
study performance via an advantage measure: the difference between the model’s
performance and random class assignment—the higher the advantage is, the bet-
ter the model is relative to its baseline. Of our three models, LSTM with Atten-
tion performed the best across the board, with the exception of Conferencing
where LSTM was better by a slim margin. This suggests the attention mecha-
nism is useful in identifying which parts of the packet sequence are learnable.

Action Recognition Results. Our models outperform the baseline for most
datasets, with accuracy improvements up to 26.31% more than that of the base-
line for UCF101. For UCF101, we report test accuracy of 27.30%—the baseline
action recognition model in the original paper [22] achieved 44.5% in 2012 when
trained on the unencrypted data. While performance on the unencrypted data
is likely to be much higher than 44.5% with current ML techniques, it is strik-
ing that we are able to achieve more than half of the original performance on
encrypted data. We hypothesize the high performance is due to a combination of
(a) the dataset’s higher-than-average resolution and (b) the diversity of move-
ment across the classes (e.g., soccer juggling vs. playing cello). This diversity
would manifest as different signatures in the packet sequences, making it eas-
ier to classify. Higher resolution data may have the effect of emphasizing the
signature.

Next, we describe two methods of boosting training instances that slightly
improved the advantage measure for some datasets:

1. One approach is to create maximized variants of certain datasets. Let Nc

denote the number of training instances for class c ∈ C, where C is the set of
all classes in a given dataset. Without maximizing, we balance the training set
by taking minc∈C Nc training instances from each class. With maximizing, we
take a subset D∗ ⊆ C of classes such that D∗ maximizes |D| ·mind∈D Nd over
all possible subsets D ⊆ C. That is, D∗ is constructed by removing classes
from C until the total number of training instances in the balanced dataset
is maximized over all possible subsets D ⊆ C.

2. We also saw advantage improvements after simplifying class labels based on
class similarity. For example, the S-S dataset has many classes of the form
“Holding X...” and “Holding Y...”—we truncate these classes to their root
verb, in this case “Holding.”

We observe negligible performance gain for the Charades and S-S datasets.
We hypothesize this low performance is attributed to two key factors:

1. These datasets are highly unbalanced to begin with. They have a lot of classes
and high variation between the number of samples for each class. However,
with some boosting of these datasets (maximizing and relabeling), perfor-
mance gain improves to a degree—this suggests there may be a lack of data.
Boosting improved performance the most with the LSTM with Attention
model. After maximizing Charades and S-S, we measure advantage improve-
ments from 0.52% to 1.60% for the former, and 0.32% to 3.52% for the lat-
ter. After relabeling S-S, we see an advantage improvement from 0.32% to
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2.99%. After maximizing the relabeled S-S dataset, we see an even larger
advantage increase: from the aforementioned 0.32% (for pure dataset), 3.52%
(maximized only), and 2.99% (relabeled only), to the maximized, relabeled
dataset’s 10.80%. As expected, we find that more data leads to better perfor-
mance and believe that further improvements are tractable.

2. These datasets consist of highly similar videos: whereas the UCF101 and
HMDB51 datasets have highly varied movements and backgrounds (e.g., as
mentioned before for UCF101, soccer juggling vs. playing cello), the Charades
and S-S datasets have near-identical movements with a static background
(e.g., “Holding something next to something” vs. “Holding something in front
of something”). We are able to learn when there are distinguishable burst
patterns for each class; this holds for UCF101, HMDB51, and our Zoom
conferencing dataset. On the other hand, it is difficult to learn when the
classes are too similar.

Zoom Conferencing Results. Our custom Conferencing dataset had the low-
est number of distinct classes (3), and we were able to achieve test accuracy
of 65.23% (advantage of 31.90% over random) from 67 epochs of training. As
mentioned previously, this relatively strong performance can be attributed to
the distinct burst patterns across the screen sharing, single participant, and
gallery view classes. We also had 438.12 h of Zoom conferencing data for three
classes at our disposal–the most hours across the least classes among all our
datasets. We believe model performance can be improved with a full emulation
(See Section Sect. 3.2).

6 Related Work

We provide an overview of audio- and video-based fingerprinting in addition to
relevant cryptographic works.

6.1 Fingerprinting

Fingerprinting tasks generally involve two stages: First, a dataset is constructed
from label-trace pairs of known data. Second, this dataset is leveraged by a model
to map labels in new packet traces (not contained in the original dataset) to the
known dataset. This is effectively a constrained form of ML classification. Impor-
tantly, fingerprinting is designed to identify new traces to known labels (e.g.,
a website), not to perform predictive tasks. We section fingerprinting literature
into a number of key subareas: audio-stream, voice-command, video-stream, and
website fingerprinting (WF).

Audio Stream Fingerprinting. Wright et al. [31] showed in 2007 that VBR-
encoded VoIP traffic leaks the language of the underlying plaintext. Their clas-
sifier leverages packet lengths and was able to extract a range of language-based
information from encrypted traffic. In subsequent work, Wright et al. [30] further
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showed that VBR-encoded VoIP traffic directly leaks fragments of the plaintext.
They were able to identify specific phrases from a standard speech corpus (i.e.,
a closed set of phrases) with an average accuracy of 50%, but greater than 90%
for certain phrases.

White et al. [27] extended the phrase identification techniques of Wright et
al. [30], showing that we can extract approximate transcripts without making
closed set assumptions. They take a bottom-up approach, first identifying specific
phonemes, then reconstructing words, and finally reconstructing sentences. Note
their approach only works for the VoIP configuration analyzed in their paper,
namely speech-specific VBR-encoded audio over SRTP.

Backes et al. [1] showed how to recover the identity of speakers participating
in encrypted voice communication. They exploited the fingerprint produced by
certain speakers and the times at which their voice would activate. In essence,
speaker-specific speech patterns were reflected in how often their voice activated
for a given voice activity detection (VAD) algorithm. This work again relies
on speech-specific codecs and makes closed set assumptions. In particular, they
analyzed the output of Speex (the codec) directly and did not simulate the
encryption step that would happen in practice. They addressed the latter point
by stating that LPE preserves length except for a constant offset, so the analysis
of plain packets is equivalent to that of real traffic. In practice, their claim may
not always hold: for example, the encryption algorithm may pad short inputs up
to a minimum length.

Video Stream Fingerprinting. Schuster, Shmatikov, and Tromer [19] were able
to fingerprint video footage over a range of DASH streaming platforms. They
observed that the bitrate produced by DASH when streaming a video encoded
activity in source data, i.e., a “burst pattern.” The burst pattern of a video was
found to be a strong fingerprint, meaning ML models can be trained to recognize
a video’s fingerprint “in the wild” with reasonable robustness against different
streaming platforms and environmental variance. The authors made heavy use
of CNNs in their models.

In a similar pursuit, Gu et al. [10] also proposed a video identification method
for network streaming over DASH traffic. The key difference in their approach
was using a bespoke, bitrate-based feature extraction technique. This added
robustness to their models.

Li et al. [14] took video fingerprinting a step further, showing that it is pos-
sible over sniffed Wi-Fi traffic (i.e., packets obtained “from the air”) as opposed
to packets obtained directly at the IP layer. They used MLP- and RNN-based
models that could identify streamed YouTube videos from a closed set. They
compared their results to prior on-the-wire attacks that used CNNs, showing
performance was roughly the same with about three-times-lower computation
power and time.

More recently, Bae et al. [2] studied video identification attacks in the context
of HAS over Long Term Evolution (LTE) networks. They showed an unprivileged
device with the ability to broadcast radio signals can identify, with accuracy up
to 98.5%, that a mobile user is watching a known video. Their attack relies on
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CNNs trained on features extracted from LTE traces, so it is highly coupled to
LTE network architecture.

6.2 Cryptography

Tezcan and Vaudenay [23] showed that in general, hiding message lengths
is impossible for arbitrary message distributions. They proved that an
exponentially-long padding is needed to ensure a negligible distinguisher advan-
tage.

LHE attempts to overcome this impossibility. Paterson, Ristenpart, and
Shrimpton [17] introduce a length-hiding parameter that is specified at encryp-
tion time. Naturally, it determines the amount of padding to be used for the
encryption step. LHE is considered secure if for challenge messages m0 and m1,
it holds that 0 ≤ ||m0| − |m1|| ≤ Δ where Δ depends on the length-hiding
parameter.

Importantly, LHE does not solve the problem of how to choose the length-
hiding parameter in practice. Gellert et al. [7] explore the possibility of auto-
matically updating the length-hiding parameter in LHE. They proposed new
security definitions to capture the leakage through message lengths. Their def-
initions allowed them to quantify the effectiveness of various countermeasures
(such as padding) for specific plaintext distributions. They found that even a
2–5% bandwidth overhead from padding significantly reduced the effectiveness
of fingerprinting attacks for known message distributions.

7 Conclusion

We empirically study leakage in the RTC context by measuring the learnability of
neural networks on encrypted packets. In our results, we observe a spectrum upon
which some video sources are more learnable than others: those that have well-
defined classes with clear differences (burst patterns) lead to more measurable
leakage. In these cases (HMDB51, UCF101, S-S relabeled and maximized, and
Conferencing), our models outperform random by a non-negligible advantage.
On the other hand, we were unable to learn on the datasets with highly similar
classes (Charades, S-S).

Disclosure of Interests. We do not believe there is an urgent need for changes to

Zoom or other platforms. However, our work is important to consider for future design

choices in RTC. We have notified Zoom of our findings and will assist however needed.
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Abstract. This paper presents a comprehensive review and further
development of the anonymization and re-identification attack meth-
ods proposed during the international anonymization competition, iPWS
Cup 2023, which was a part of IWSEC 2023. The primary contribu-
tions of this research are threefold: (1) Proposing the minimum frequency
attack method against “Yamaoka anonymization,” which has increased
the complexity of previous anonymization competitions. (2) Introducing
a straightforward yet robust anonymization method that combines over-
lapped record swapping with the addition of noise while enhancing data
protection. (3) The effectiveness and practicality of the aforementioned
methods have been demonstrably assessed through extensive experimen-
tation.
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1 Introduction

PETs (Privacy Enhancing Technologies) have received significant attention
across research, practice, and policy domains for their role in ensuring the
secure use of personal data while preserving privacy. For instance, the G7
Data Protection and Privacy Authorities highlight that PETs may help enti-
ties/organizations to integrate the necessary data protection safeguards into
various data processing activities [1]. The US White House’s Privacy-Preserving
Data Sharing and Analytics Strategy Report also states that PETs will require
close international collaboration on technology standards, norms, and R&D [2].

Anonymization is recognized as a fundamental technical approach for PETs.
However, the emergence of advanced and potent re-identification and attribute
inference attacks has made achieving high privacy and utility in anonymization
ever more challenging. In such a context, the anonymization competition iPWS
Cup 2023 [3] took place last year as part of IWSEC 2023. The iPWS Cup 2023
was designed to identify effective anonymization methods and cultivate exper-
tise by engaging each team in practical anonymization and subsequent attack
simulations.
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This paper reviews and further develops the anonymization and re-
identification attack methods proposed in the iPWS Cup 2023. The iPWS Cup
was first held in 2023 as an international version of the anonymization compe-
tition PWS Cup [4], which has been conducted in Japan since 2015. Since the
PWS Cup began, a countermeasure against “Yamaoka anonymization” has been
an issue for the rule designers every year. Re-identification attacks typically rely
on similarities between the original and anonymized data. Yamaoka anonymiza-
tion, which shuffles records within the original dataset, aims to disguise these
similarities with randomization. While this method can defend against basic
re-identification attacks and retains statistical utility due to preserving the orig-
inal data distribution, it is insufficient for practical anonymization as it merely
shuffles the original data.

We propose a minimum frequency attack against Yamaoka anonymization,
alongside a novel anonymization method based on overlapped record swapping
with noise addition. Furthermore, the efficacy of both methods has been exper-
imentally validated through comprehensive experimentation.

2 iPWS Cup

2.1 Overview

The iPWS Cup 2023 (iPWS Cup for short) consists of two parts: an anonymiza-
tion phase and an attack phase as described below.
– Anonymization phase

1. The organizer distributes the original data B(i) to each participating team
(called the anonymizer) i.

2. Each anonymizer i creates anonymized data C(i) from B(i) and submits
it to the organizer.

– Attack phase
1. The organizer randomly samples a certain number of records from C(i)

and distributes the sampled data D(i) along with B(i) to each participat-
ing team (called the attacker) j.

2. Each attacker j conducts a re-identification attack on D(i) and submits
E(i,j) to the organizer.

Each participating team assumes dual roles as both anonymizer and attacker.
As anonymizers, they enhance the data’s anonymity and utility described in
Sects. 2.2 and 2.3. Concurrently, as attackers, they execute a re-identification
attacks aimed at compromising the anonymity of data anonymized by the other
teams.

The original data B(i) provided to anonymizer i comprises 3,985 records,
including two numerical attributes (age, BMI value) and eight categorical
attributes. In practice, ten sets of candidate B(i) are distributed and the
anonymizer i can select one to anonymize from a fairness perspective. The k-th
record of anonymized data C(i) corresponds one-to-one to the k-th record of
B(i) (i.e. the record of the same person), and the attacker guesses the correspon-
dence from B(i) and randomly sampled data D(i) of C(i), which is called the
re-identification attack. Please refer to [5] for more details.
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2.2 Anonymity

Let E(i,j) be the result of the attacker j estimating the sequence X(i) of row
indices in B(i) corresponding to D(i). Here, X(i) represents the correct mapping
or row indices, as determined by organizer, linking D(i) to B(i). The success
rate of the re-identification attack on D(i) by attacker j, αi,j , is defined as the
number of matched rows in X(i) and E(i,j) divided by the number of rows in
D(i), |D(i)|. The anonymity of C(i) against the attacker j is evaluated as 1−αi,j .
As a result, the privacy score of C(i) is quantified as

PS(i) = 1 − max
j

αi,j . (1)

2.3 Utility

In the iPWS Cup, the utility of C(i) is evaluated based on the maximum dif-
ference value of age in each record of B(i) and C(i), Δage(i), the maximum dif-
ference value of BMI value in each record, Δbmi(i), the maximum discrepancy
number of eight category attribute values in each record, Δcat(i), the maximum
difference value for each element of the cross tabulation table, Δrate(i), the
maximum difference value for each element of the covariance matrix, Δcor(i),
and the maximum difference value for each element of the odds ratio, Δor(i).
Define Δ(i) = (Δage(i),Δbmi(i),Δcat(i),Δrate(i),Δcor(i),Δor(i)). Suppose that
all elements of Δ(i) are normalized to a value between 0 and 1. Then the utility
score of C(i) is quantified as

US(i) =

⎛
⎝ ∏

u∈Δ(i)

(1 − u)

⎞
⎠

1/6

. (2)

Hereafter, a superscript for anonymizer i and attacker j (e.g., (i)) may be omitted
for simplicity.

In the iPWS Cup, Δage, Δbmi, and Δcat are included in the utility score
as a countermeasure to Yamaoka anonymization, which involves insufficiently
anonymizing datasets through simple record shuffling, to ensure a reduced
overall score for such data. In practice, however, several teams submitted the
anonymized data using Yamaoka anonymization with (almost) Δrate = Δcor =
Δor = 0 and small Δage, Δbmi, Δcat values.

3 Proposed Method

In this section, we present the anonymization method and re-identification
attack tequnique that we utilized in the iPWS Cup. In particular, the proposed
re-identification attack is regarded as an effective measure against Yamaoka
anonymization.
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3.1 Re-identification Attack

Each attacker knows B, D and Δ. Using the values of Δage, Δbmi, and Δcat,
the candidate records in B corresponding to each record in D can be narrowed
down. If there are k candidates, the expected probability of a successful attack
is 1/k.

The similarity between the two records, SR, follows the measure used in the
iPWS Cup. That is,

SR =
(

1 − min(δage, 20)
20

)
×

(
1 − min(δbmi, 20)

20

)
×

(
1 − δcat

8

)
(3)

where δage and δbmi are the difference of the age values and bmi values respec-
tively, and δcat is the Hamming distance of the cat 1 to 8 values. The SR takes
values between 0 and 1. If two records are identical, SR = 1, indicating the
highest level of similarity. Conversely, if δage ≥ 20, δbmi ≥ 20 or δcat = 8,
then SR = 0, resulting in a utility score of zero. The basic re-identification
attack described above can be easily avoided when multiple candidate records
are present. In particular, Yamaoka anonymization is effective in this situation.

The proposed algorithm is shown in Algorithm 1. MinElement in line 2 is
a function that returns the index u of a set with minimum elements greater
than 1 for S1, . . . , Sm. MinFreq in line 3 is a function that returns the element
cu,∗ ∈ Su of the minimum frequency except bu in S1, . . . , Sm. In the iPWS Cup,
Algorithm 1 achieved the highest success rate in re-identifying the anonymized
data using Yamaoka anonymization among the participating teams, with success
rates ranging from 11% to 22%.

3.2 Anonymization

Our anonymization method is detailed below.

1. Set bk ∈ B as the initial value ck ∈ C.
2. Determine the values of Δage,Δbmi,Δcat while considering their impact on

utility.
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3. For each record ck in C, randomly select one record in B satisfying

δage ≤ Δage,

δbmi ≤ Δbmi,

δcat ≤ Δcat (4)

and replace ck with the selected record.
4. Repeat the process by randomly selecting a record from C and randomizing

it to satisfy Eq. (4) and increase utility.

For step 2, the larger the values of Δage,Δbmi,Δcat, the more records in B
satisfying Eq. (4), the more anonymity is expected. However, there is a trade-off,
as utility decreases. Therefore, appropriate values must be chosen to maintain
a good balance between anonymity and utility. Through this step, we carefully
determine the number s of k such that |Sk| = 1, where the sole record in Sk is
deemed high risk. Consequently, the probability that t records with |Sk| = 1 are
included in D can be estimated from the hypergeometric distribution

f(t) =

(
s

t

)(|B| − s

|D| − t

)

(|B|
|D|

) (5)

where |B| is the number of records in B (= 3, 985) and |D| is the number of
records in D (= 300). Our strategy was to identify values of Δage,Δbmi, Δcat
that would make the probability of t ≥ 20 sufficiently small based on Eq. (5). We
chose (Δage,Δbmi,Δcat) = (0.15, 0.27, 0.375) where the probability of t ≥ 20
was about 0.544%.

3.3 Summary of the iPWS Cup

The result of the iPWS Cup is available to the public [6].
In summary, out of the 10 teams, it is evident that Teams 06, 08, and 10

performed Yamaoka anonymization, as indicated by their Δrate, Δcor, and Δor
values being close to zero. Our team, 04, successfully attacked Teams 06 and 08
using the proposed attack method against Yamaoka anonymization, whereas the
other participating teams encountered considerable difficulties.

In terms of the Privacy Score, although our team tied for second place, the
leading team exhibited significantly higher Δage, Δbmi, and Δcat values com-
pared to our team. This indicates that the leading team sacrifices more utility
than we do, ultimately leading to our team’s victory in the overall score.

The effectiveness of our anonymization method will be assessed in an exper-
imental setting in the next section.
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4 Experimental Results

4.1 Extension Experiment for the iPWS Cup

To assess our anonymization method, we have implemented our anonymization
method presented in Sect. 3.2 and a Yamaoka anonymization algorithm for com-
parative experiments, shown in Algorithm 2. Cand in line 2 is a function that
returns all candidate records in B satisfying Eq. (4) for bk. Rand in line 6 is a
function that returns an element except bu randomly from Su.

Figure 1 shows the result. The “noise size” in the top and bottom axes indi-
cates the number of times step 4 of our anonymization method has been per-
formed. The “baseline” and “our strategy” refer to the results of Algorithm
2 and our anonymization method, respectively. In this experiment, B(8) and
(Δage,Δbmi,Δcat) = (0.15, 0.2, 0.375) of Team 08 was used. To mitigate the
effects of randomization, three sets of anonymized data were generated, and the
utility and privacy scores were calculated as the averages of these sets.

Figure 1 illustrates that Algorithm 2 has a high utility score of 0.85 before
adding noise, but a low privacy score of approximately 0.915. As noise is incre-
mentally added, there is a gradual increase in the privacy score, while the utility
score declines significantly. In contrast, our anonymization method begins with a
relatively high privacy score even before the addition of noise, though its initial
utility score is inferior to Algorithm 2. However, as noise is introduced, both the
utility and privacy scores slowly increase. Notably, our anonymization method
consistently achieves a superior privacy score, and with a slight addition of noise,
our utility score surpasses that of Algorithm 2.
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Fig. 1. Comparison between Yamaoka anonymization and ours.

4.2 Additional Experiments

We further evaluated the privacy level of our method using TAPAS1 (a Toolbox
for Adversarial Privacy Auditing of Synthetic Data) [7]. TAPAS is an open-
source software (OSS) that implements several typical attacks against synthetic
data. Many of the attacks implemented in TAPAS can be applied to generic
anonymized data, not just synthetic data. To the best of our knowledge, it is one
of the best OSS tools for experimentally assessing the security of anonymized
data. TAPAS takes a target anonymization code, an evaluation dataset, and
some parameter values as input, generates a large amount of anonymized data
to be attacked, and outputs various privacy scores.

In TAPAS, some attack types, attack methods, and attacker’s knowledge
of the original data can be selected for the threat modeling. Attack types
include Membership Inference Attack (MIA). Attack methods [8] are seven types
of attacks, ClosestDistanceMIA, ClosestDistanceAIA, LocalNeighbourhoodAttack,
ShadowModellingAttack, GroundhogAttack, ProbabilityEstimationAttack, Synthet-
icPredictorAttack including recent research findings. Attacker’s knowledge of the
original data consists of ExactDataKnowledge, where all the original data is
known, or AuxiliaryDataKnowledge, where the data is restricted.

We introduce an example of the TAPAS attack procedure using MIA. First,
d records are sampled from the input dataset, and a dataset D+ containing the
target record t and a dataset D− not containing it are set up. Then, for each
D+,D−, m, and n anonymized datasets are generated for training and testing,
respectively. Note that the training data has been used to build a generative
model for the attack. In Experiment 2 of [7], d = 500, m = 1, 000 and n = 2, 500

1 https://github.com/alan-turing-institute/tapas.

https://github.com/alan-turing-institute/tapas
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are selected. A target record t is sampled from d records in the input dataset (in
general, the more specific the data, the more likely it is to be attacked).

Next, an attack is attempted to generate a model from m training
anonymized datasets and identify n testing datasets. The attack is based on
the attack methods and the knowledge of the original data. The result of the
attack is given as the proportion of D− correctly identified (true positive rate :
TP), the proportion incorrectly identified (false negative rate : FN = 1 − TP),
the proportion of D+ correctly identified (true negative rate: TN) and the pro-
portion incorrectly identified (false positive rate: FP = 1−TN). Finally, TAPAS
outputs the accuracy of prediction, privacy gain [9], AUC, ROC curve and so
on.

Figures 2, 3 and 4 show the results for MIA using TAPAS, where the number
of noise additions is 0, 100, and 300. For simplicity, noise is only added for eight
categorical data. We set (d,m, n) = (500, 100, 100) for the number of sampled
data, d, training datasets, m, and testing datasets, n, and selected ExactData-
Knowledge as an attacker’s knowledge of the original data. Note that the impact
of 100 and 300 noise additions is relatively large because the data is sampled to
d = 500. We used the original data B(8) and the attack methods 1 to 8 in the
TAPAS below.

– GroundhogAttack: It is a variant of the shadow modeling attack using a random
forest classifier over simple features extracted from datasets proposed in [9].
The shadow modeling attack trains a set classifier from D+,D− to predict
membership or the sensitive attribute for the sensitive data.
1. NaiveGroundhog, 2. HistGroundhog, 3. CorrGroundhog, 4. LogisticGroundhog

– ClosestDistanceMIA: It is a membership inference attack that uses the minimal
distance between the target record and records in the anonymized dataset B
as score s(B, x) = −miny∈B distance(x, y).
5ClosestDistance − Hamming, 6DirectLookup, 7ClosestDistance − L2

– ProbabilityEstimationAttack: It is a membership inference attack that uses a
density estimator fit to the anonymized data. The score used by the attack
is the density estimated at the target point. 8KernelEstimator

The number of noise additions generally increases the privacy level, however,
our method is not always correct because it adds noise in a way that increases
the utility. Figures 2, 3 and 4 show the change in privacy levels due to noise
addition. The graphs on the right in the figures represent the ROC curve, where
the greater the difference between the true positive rate (TP) and the false
positive rate (FP), the more significant the attack. Attacks 3, 4, and 8 appear to
be relatively successful attacks in Fig. 2. However, whether they are significant
attacks or not needs to be determined by appropriate criteria, which is an issue
for the future. On the other hand, Fig. 3 seems that the noise additions don’t
reduce the privacy level, but rather improve it, as shown in Fig. 1. Figure 4, where
noise is added 300 times, shows that Attacks 2, 4, and 8 are relatively effective.
In Sect. 4, noise was added during evaluation using our attack method, however,
it is necessary to add noise during evaluation with other attack methods, such
as the attack methods implemented in TAPAS.
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Fig. 2. Privacy level of our method for MIA from TAPAS (0 noise additions).

Fig. 3. Privacy level of our method for MIA from TAPAS (100 noise additions).

Fig. 4. Privacy level of our method for MIA from TAPAS (300 noise additions).
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5 Conclusion

This paper proposed novel approaches to anonymization and re-identification
attack methods within the context of the iPWS Cup 2023 competition. The
proposed methods contribute to the field of PETs and address challenges associ-
ated with Yamaoka anonymization. The introduction of the minimum frequency
attack method provides a new perspective in overcoming the previous challenges
of re-identification attacks against Yamaoka anonymization. Additionally, the
proposed overlapped record swapping with the noise addition method offers a
straightforward yet robust approach to anonymization. These methods have been
assessed, demonstrating potential in advancing the secure use of personal data
while preserving privacy. As the demand for robust PETs increases, these con-
tributions pave the way for further research and development in this domain.
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