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Abstract This work aims to conduct a parametric study on the flow induced vibra-
tion of an isolated elastic cylinder in axial flow. The cylinder with both ends fixed 
is free to vibrate in the lateral directions. Large eddy simulation and a two-way 
coupling CFD-CSM scheme are used to capture the turbulent flow and fluid–struc-
ture interaction, respectively. It has been found that the root-mean-square vibration 
amplitude Arms 

* of the cylinder exhibits a considerable dependence on a number 
of parameters, including dimensionless flow velocity U (= 0.65–6.98), turbulence 
intensity Tu (= 0.7–6.0%), integral length scale Lw 

* (= 0.2–1.28) of the incident 
flow and cylinder length-to-diameter ratio L* (= 20–43). It has been found from 
empirical scaling analysis that Arms 

* = f 1(U , Tu, Lw 
*, L*) may be reduced to Arms/ 

L = f 2(U eff ), where f 1 and f 2 are different functions and the scaling factor U eff is 
interpreted as the effective Reynolds number. Several interesting inferences can be 
obtained from the scaling law. 
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1 Introduction 

The study of flow-induced vibration (FIV) on cylindrical structures subjected to 
axial flow is of both fundamental and practical importance because this vibration, 
albeit small in magnitude, may induce structural fretting, fatigue and even failure of 
nuclear reactors. In practice, axial incident flow is always turbulent. It has been exper-
imentally found that structural response is sensitive to initial flow conditions [1–4]. 
For example, Modarres-Sadeghi et al. experimentally found the vibration ampli-
tude of an elastic cylinder increases with increasing dimensionless flow velocity 
U (= U∞L(ρ f Ac/EI)1/2, where U∞, ρ f , L, Ac and EI are the free-stream velocity, 
fluid density, length and cross-sectional area of the cylinder and the corresponding
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flexural rigidity, respectively) [2]. In addition of U , turbulence intensity Tu and inte-
gral length scale Lw 

* are also two important parameters that characterize turbulent 
flow conditions. The asterisk denotes normalization by the cylinder diameter D in 
this paper. Note that Lw = u 

u'2

∫ τ0 
0 u(t)u(t + τ)d τ , where τ 0 corresponds to the 

first zero crossing of auto-correlation function [5]. Wang et al. also experimentally 
observed that the vibration amplitude of the cylinder at high Tu = 2.9% is signifi-
cantly increased compared with its counterpart at low Tu = 0.7% [3]. However, the 
information on how the characteristic flow parameters (e.g., Lw 

* and Tu) affects flow-
induced-vibration of the structures is very scarce in the literature. This motivates us 
to conduct a systematic parametric study on how the fluctuating vibration amplitude 
of an isolated elastic cylinder Arms 

* may vary with the characteristic parameters, 
including U , Tu, Lw 

* of incident flow as well as with cylinder length-to-diameter 
ratio L*. Given  Arms 

* = f 1(U , Tu, Lw 
*, L*), one may naturally beg the question: could 

we find a physically meaningful scaling factor ζ so that Arms 
* = f 2(ζ )? There is no 

doubt that such a scaling law, if unveiled, can be of great significance to engineering 
applications. 

2 Computational Detail 

An elastic cylinder with a diameter D = 25 mm and length L = 20D is immersed 
in a tubular axial flow (see Fig. 1). The two ends of the cylinder are fixed, i.e., 
the displacements of the grid nodes on these ends are zero. Note that the definition 
of coordinate system is shown in Fig. 1. The  z-axis that aligned along the axis of 
the undeformed cylinder and the x-axis are defined as the lateral and the streamwise 
directions, respectively, with their origin at the center of the left surface of the cylinder 
(see Fig. 1). Apparently, z = 0 and 20D denote the upstream and downstream ends 
of the cylinder, respectively (Fig. 1). The cylinder is perfectly straight without any 
deformation initially (see Fig. 1) and may vibrate freely in the x–y plane under fluid 
forces. Axial incident flow is confined by a cylindrical wall, which is of the same 
length as the cylinder with a diameter of 12D. The velocity-inlet and pressure-outlet 
boundary conditions are adopted as the flow boundary conditions on the inlet and 
outlet of flow domain, respectively. 

Fig. 1 Schematic of an 
elastic cylinder model
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To simulate the interactions between the structure and its surrounding flow field, 
the dynamic equation of the cylinder and the governing equations of fluid flow are 
solved iteratively, which are given by 

M /̈d + K/d = /F(t) (1) 

∇ · /u = 0 (2)  

ρf 
∂/u 
∂t 

+ ρf

)
/u − /̂u

)
· ∇/u = −∇p + μ∇2/u (3) 

where M, K, /̈d , /d and /F(t) are mass matrix, stiffness matrix, nodal acceleration 
vector, nodal displacement vector and load vector acting on the cylinder, respectively;
/u, /̂u and p are the fluid velocity vector, moving mesh velocity vector and pressure, 
respectively. 

The typical two-way coupling based on Ansys workbench is used to compute 
flow filed, Eqs. (2)–(3) and structural dynamics, Eq. (1), via iterations between the 
flow and structure solvers. The flow field imposes the forces on the cylinder to solve 
the cylinder displacement. The deformation of the cylinder updates its surrounding 
flow field, and subsequently, the flow field imposes new forces on the cylinder in the 
next iteration. The force and displacement are communicated on the fluid–structure 
interaction (FSI) surface (Fig. 1). The size of timestep Δ t is 0.005 s. There are 
8–12 coupling iterations per timestep. In order to capture the small-scale turbulent 
structures, the large eddy simulation (LES) is adopted along with Smagorinsky–Lilly 
subgrid scale model. The Smagorinsky constant Cs is 0.1. The second-order implicit 
method and a bounded central differencing scheme are adopted for time and space 
discretization, respectively. A comparison between experimental and numerical data 
and mesh independence have been made in our previous work [4]. 

3 Results and Discussions 

Figure 2 illustrates that Arms 
* varies with U , Tu, Lw 

* and L*. It is found that these four 
parameters produce a pronounced effect on Arms 

*. Clearly, Arms 
* increases gradually 

with increasing U (Fig. 2a). In Fig. 2b, given U = 2.75 and Lw 
* = 0.94–1.08, the 

Arms 
* grows from 0.017 to 0.035 with Tu increasing from 2.9 to 6.0%. The higher-

intensity turbulence would penetrate into the shear layers around the elastic cylinder, 
interacting and destabilizing the shear layers around the cylinder. More small-scale 
eddies appeared in the vicinity of the elastic cylinder at high Tu [3]. These eddy-
structures cause an increase in the flow fluctuations near the cylinder wall and lateral 
force on the cylinder, which account for the large Arms 

*. It is also observed from 
Fig. 2b that given same Tu, Arms 

* increases with Lw 
*. For instance, given U = 2.75
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and Tu = 6.0%, Arms 
* rises from 0.007 to 0.035 with Lw 

* increasing from 0.26 to 
0.94. At a large Lw 

*, the eddy-separation occurs from the cylinder-wall. The elastic 
cylinder absorbs energy from the excited flow field, causing the large Arms 

*. As a  
result, it is clear that given Tu, the  Lw 

* has a non-negligible effect on flow field and 
thus on the vibration of the cylinder. It is surprisingly found that when Lw 

* = 0.6 
or 0.76, the Arms 

* at Tu = 6.0% and U = 2.75 is comparable to that at Tu = 2.9% 
and U = 6.55 (Fig. 2b). Therefore, we might consider the high Tu effect on Arms 

* as 
an additional U , so as to establish a quantitative equivalent relationship between Tu 

and U . As such, the scaling factor with the physical meaning may be obtained (as 
shown in Fig. 3). 

An empirical scaling analysis has been performed to determine the intrinsic rela-
tionship between Arms 

* and the four characteristic parameters. As demonstrated in 
Fig. 2a, for different L* (= 43 and 20), the growth trend of relationship Arms 

* with U 
resembles, i.e., nearly linear. Therefore, L* might be considered for rescaling Arms 

*. 
It has been found that given Tu, the rescaled Arms 

*/(L*), i.e., Arms/L, collapses well 
for different L* (not shown). This implies that Arms 

* = f 1(U , Tu, Lw 
*, L*) could be

Fig. 2 Dependence of rms vibration amplitude of the cylinder Arms 
* on a U and b Lw * 

Fig. 3 Dependence of Arms/ 
L on scaling factor U eff 



Parametric Study and Scaling of Axial-Flow-Induced Cylinder Vibration 133

reduced to Arms/L = f 2(U , Tu, Lw 
*), where f 1 and f 2 are two different functions. 

Similarly, by replotting Fig. 2b, the dependence of Arms/L on Lw/L at U = 2.75 (not 
shown) further allows us to rescale Arms/L via a new abscissa variable Tu(Lw/L). 
As such, the function f 2 could be further reduced to f 3(U , Tu(Lw/L)). It is known  
that cylinder amplitude exhibits a linear correlation with flow conditions and critical 
U for buckling, i.e., U crb [6]. Subsequently, the function f 3 could be reduced to 
f 4(Tu(Lw/L)U /U crb). 

Figure 3 shows the scaling law of Arms/L. It is surprisingly found that all the 
scattered data of Arms/L collapse well once the scaling factor U eff = EF × U /U crb, 
instead of Tu(Lw/L)U /U crb, is used as the abscissa, where EF is defined as Tu(Lw/L)/ 
[Tu(Lw/L)]ref. Subscript ref indicates the reference case where Tu is small, presently 
0.7%, thus EF ≥ 1. Now, the U eff is physically interpreted as the effective Reynolds 
number that treats non-zero Tu or Lw 

* effect on Arms 
* as an addition of U . Note that 

U is directly proportional to Reynolds number in this paper. As shown in Fig. 3, all  
Arms/L data are least-squares fitted to a curve, that is, the function f 4 is now reduced to 
Arms/L = f 5(U eff ). A departure of calculated/experimental data from the prediction 
of the curve is ascribed to differences in flow conditions between calculations and 
measurements. For instance, calculation is made under rather ideal conditions with 
a ‘clean’ environment but measurements are not, often associated with experimental 
uncertainties. Interesting inference can be made from the scaling law. Clearly, Arms/L 
increases non-linearly with U eff , even though all U , Tu, Lw 

* changes. For instance, 
the Arms/L substantially increases from 1.7 × 10−3 to 2.7 × 10−3 as U eff increases 
from 2.75 to 3.45 (Fig. 3). Note that the two U eff = 2.75 and 3.45 corresponds to 
(U , Tu, Lw 

*) = (2.75, 6.0, 0.92) and (6.10, 5.0, 0.64), respectively. 

4 Conclusions 

Numerical investigation has been carried out on the dependence on four parameters 
(i.e., U , Tu, Lw 

* and L*) of the flow-induced vibration amplitude Arms 
* of an isolated 

elastic cylinder in axial flow. This work leads to following conclusions. 

1. The Arms 
* exhibits a strong dependence on U , Tu, Lw 

* and L*. It has been found 
that, given the same Tu, Arms 

* may vary with  Lw 
* and vice versa, suggesting that 

both the turbulence level and its time or length scale of incident flow produce a 
pronounced effect on Arms 

*. 
2. Empirical scaling analysis has been performed based on the experimental and 

numerical data. It has been found that Arms 
* = f 1(U , Tu, Lw 

*, L*) may be reduced 
to Arms/L = f 2(U eff ). The scaling factor U eff is physically interpreted as the 
effective Reynolds number that treats non-zero Tu or Lw 

* effect as an addition to 
the Reynolds number U . Based on the scaling law, it is interestingly found that 
Arms/L increases nonlinearly with U eff .
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