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Abstract This work studies experimentally the aerodynamic drag reduction (DR) 
of a high-speed maglev train (HSMT) model based on artificial intelligence (AI) 
control, following our successful campaign on the DR of Ahmed bodies. A highly 
streamlined 3-car HSMT model is used, and the Reynolds number Re is 4.0 × 105 
based on the square root of the model cross-section. The aerodynamic drag of the 
model is measured using two force balances. More than 90 steady jets are deployed 
on the tail car, in which the dependence of DR on their blowing angles and blowing 
ratios is documented for each jet. The individual jets produce a maximum DR of 7% 
and a maximum net power saving of 4%. Seven spatially distributed jets are selected 
and an AI control system (Zhang et al. in Artificial intelligence control of a low-drag 
Ahmed body using distributed jet arrays. J Fluid Mech 963 [6]) is deployed to find the 
best strategies to combine the seven jets in terms of their blowing ratios. Both DR and 
control power input are incorporated in the cost function. The AI control discovers 
forcing that creates a DR of 10%. Furthermore, the net power saving reaches about 
5% given a DR of 6%. 
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1 Introduction 

The State Council of China has announced its ambitious plan to raise the speed of 
high-speed trains (HSTs) to 400 km/h and even 600 km/h. One of the obstacles for 
such HSTs to be commercially viable is the rapidly rising aerodynamic drag with 
train speed. There have been a great number of attempts, as reported in the litera-
ture, on the aerodynamic drag reduction of HSTs using various passive techniques, 
e.g., aerodynamic shape optimizations [1, 2], vortex generator [3] and non-smooth 
surface [4]. These investigations have achieved a great success. However, when 
shaping vehicle bodies has reached or approached its optimum, it is active control 
that can potentially reduce aerodynamic drag significantly further. This has been 
demonstrated by our recent campaign on the active DR of Ahmed bodies [5, 6], in 
which the optimal combinations of actuations achieved maximum DRs of 32% and 
21% for the high and low-drag regimes, respectively, based on the artificial intelli-
gence (AI) control. Active DR, especially AI-based, for a high-speed train has been 
rarely studied. Note that both Ahmed bodies and HST tail car are critical geometries, 
i.e. the bluff body geometries that exhibit sharp flow transition when changing one of 
the geometrical parameters [7, 8]. One may naturally surmise that the knowledge we 
have gained from the study of Ahmed bodies might be to a certain extent applicable 
for HSTs. This work aims to address this issue and to develop an AI-based active 
DR technique, following our strategies deployed for the DR of Ahmed bodies, for a 
high-speed maglev train using combined steady jets. 

2 Experimental Details 

Experiments are conducted in a closed-circuit wind tunnel with a test section of 
1.0 m high, 0.8 m wide and 5.6 m long. Experimental setup is schematically shown 
in Fig. 1. A 1/20 scaled highly streamlined three-car maglev HST model is examined, 
which has an overall length of 1.8 m, a width of 0.184 m and a height of 0.21 m. The 
Reynolds number Re investigated is 4.0 × 105 based on the square root of the model 
cross-section area. The model is supported by two cylindrical posts mounted on the 
head and tail trains. The other end of each supporting post is connected to a force 
balance, which is fixed on an aluminum plate mounted on a fixed frame outside and 
isolated from the wind tunnel. The total aerodynamic drag of the model is captured 
from the two force balances. Sixty pressure taps, connected to two pressure scanners, 
are distributed on the tail car to measure the surface pressure distribution.



AI-Based Drag Reduction of a High-Speed Train Using Distributed Jets 75

Fig. 1 Schematics of experimental setup 

3 Results and Discussion 

Over 90 different steady blowing actuations are investigated in Open-loop control 
experiment. Nevertheless, only twelve of them can achieve drag reduction. These 
actuations, referred to as Si (i = 1, 2, …, 12), are distributed in four specific areas 
(Fig. 2a), denoted as Ai (i = 1, 2, …, 4). The actuation outlet is 1 mm in width 
and 23–42 mm in length. The blowing angles θ si of Si are defined with respect 
to the streamwise direction. The net power saving S is calculated by (ΔFU∞ − 
0.5ρQSiV 2 Si − psiAsiVsi)/FD U∞, where ΔF is the reduced drag under control, QSi is 
the flow rate of Si, VSi is the jet exit velocity, psi is the mean static pressure of Si, 
Asi is the outlet area of Si, and FD is the drag of the baseline flow. Positive value of 
DR or S represents drag reduced or power saved. Open-loop control results indicate 
that individual actuation S1, distributed in area A3 with θ s1 = 105°, can produce a 
maximum DR of 7% but S is only −5%. Under this control, the surface pressure 
has been greatly increased as shown in Fig. 3a. The variation of surface pressure
ΔCp = Cp,ctr − Cp,un, where Cp,ctr represents surface pressure under control and 
Cp,un represents surface pressure in baseline flow. As the pressure taps get closer to 
the tail nose, ΔCp increase gradually. Cp1, the pressure taps in the symmetry plane 
and is closest to the tail nose, increases about 80%. ΔCp10 and ΔCp17 are 16% and 
13%, respectively. It indicates that the jet from actuation S1 weaken the longitudinal 
vortices above those two surfaces. While, the surface pressure recovers only in the 
area not far from the jet. Pressure taps away from S1 remain consistent between 
baseline flow and controlled flow. When blowing angle of S1 is adjusted to θ s1 = 
90°, S can achieve 4% when DR = 6%.

The AI control system, consisting of the sensing (force balances), actuations 
(blowing jets) and control (linear-genetic-programming-algorithm-based controller) 
units as well as the plant, is used to find the optimal blowing ratios of seven actuations 
with a view to maximizing the DR and S. Unsupervised learning of the optimal 
control is converged after 10 generations. Each generation consists of 100 samples. 
Each sample is tested for 40 s to estimate the cost J (J = − ΔF –  C*S  + 0.4), which 
C = 0.1 is the weighted constant aiming to teach control units the importance of 
power saving. A lower J denotes a better control effect. The learning curve is shown 
in Fig. 4, in which the square symbol represents the minimum cost Jn (the subscript
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Fig. 2 a The areas A1 – A4 for the arrangement of actuations. b Measurement locations Cp1 
– Cp23 of surface pressure 

(a) (b) 

Fig. 3 Variation in Cp1 − Cp23 under the optimal control of a S1; b the most efficient control

‘n’ denotes the generation number) in each generation. Although the 100 samples of 
first generation are generated randomly, the AI system achieves the minimum cost 
J1 = 0.32 corresponding to a DR of 8%, which is slightly larger than the maximum 
DR produced by the individual S1 in the open-loop control experiment. As it evolves 
to the fourth generation, the cost declines to J4 = 0.31 and achieves a DR = 8%. 
The cost of fifth generation keeps decreasing to J5 = 0.3 and achieves a DR = 9%.
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Fig. 4 Learning curve of AI control based on TGP 

The costs of 7–10th generation remain unchanged and converge to an optimal cost 
Jopt = 0.29. The optimal combination can produce a DR of 10%. 

Nevertheless, there is nearly no net power saving under the optimal combination. 
Based on analysis of the data generated from the learning process, a most efficient 
combination is found to yield a maximum S of 5%, with a DR of 6%. This sacrifice 
in DR which results in an increasement in S is achieved by cutting down the blowing 
ratios of actuations. Specifically, the input power of the most efficient combination 
is only 20% of that of the optimal combination. The surface pressure variation under 
this most efficient combination is shown in Fig. 3b. The largest ΔCp appears at side 
surface, which may be connected to the weakening of the pair of longitudinal vortices 
formed at the lateral sides of the tail. Under optimal power saving combination, the 
pressure surface is recovered not only near the actuation, but also at far upstream 
area. Thus, the combination achieves a considerable DR with a very low input energy. 

4 Conclusions 

An extensive investigation on the active DR of a HSMT model using distributed 
jets has been conducted. In the open-loop control experiment, over 90 actuations, 
deployed at different locations of the tail car, had been investigated, in which the 
dependence of DR on their θsi and blowing ratio has been examined. The individual 
jet may achieve a maximum DR of 7% and a maximum net energy saving S of 
4%. The surface pressure recovers greatly in the symmetry plane and slightly in the 
side surfaces. The pressure taps in the symmetry plane and nearest to tail nose can 
achieve aΔCp of 80%. With seven jets blowing simultaneously, an AI control system
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is deployed to find the best strategies in terms of their blowing ratios to maximize 
the DR of the model with the net power saving considered. An optimal strategy has 
been found to achieve DR = 10% after 10 generations of the learning process, though 
without net power saving. It is found that a small sacrifice in DR may achieve a much 
larger S. The most efficient control achieves S = 5% with a DR of 6%. The surface 
pressure recovers most in the side surface under this control. Work is under way to 
unveil the altered wake structures or the DR mechanisms under the optimal and the 
most efficient controls. 
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