
Applications of Optimal Homotopy Asymptotic
Method (OHAM) to Tenth Order Boundary

Value Problem

Qayyum Shah(B)

Department of Basic Sciences, University of Engineering and Technology Peshawar,
Peshawar 25000, KP, Pakistan

qayyumshah@uetpeshawar.edu.pk

Abstract. The aim of this paper is to apply the Optimal Homotopy Asymptotic
Method (OHAM), a semi-numerical and semi-analytic technique for solving linear
and nonlinear Tenth order boundary value problems. The approximate solution of
the problem is calculated in terms of a rapidly convergent series. Two bench mark
examples have been considered to illustrate the efficiency and implementation of
the method and the results are compared with the Variational Iteration Method
(VIM). An interesting result of the analysis is that, the OHAM solution is more
accurate than the VIM. Moreover, OHAM provides us with a convenient way to
control the convergence of approximate solutions. The obtained solutions have
shown that OHAM is effective, simpler, easier and explicit.
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1 Introduction

In this paper, it is observed that the OHAM is a powerful approximate analytical tool
like HAM (Homotopy Asymptotic Method) that is simple and straight forward and does
not require the existence of any small or large parameter as does traditional perturbation
method. OHAMhas been successfully applied to a number of nonlinear problems arising
in the science and engineering by various researchers [3–5, 10–16, 18, 20, 34–36]. Shah
et al. [17–19] have investigated the behavior through graphical representation. Whilst
Khan et al. [1, 2] discussed flow between rotating stretchable disks. What’s more, Khan
et al. [1] found that when both the discs rotate in the same sense then the fluid in the disks
rotateswith an angular velocity.Khan et al. [3] discussedDynamicswithCattaneo–Chris-
tov heat and mass flux theory of bioconvection Oldroyd-B nanofluid. Notwithstanding,
Khan et al. [1–3] further explored that the their study provides the best solutions and it
has been proved that its solution is close to exact solution. Khan et al. [4] discussedRotat-
ing flow assessment of magnetized mixture fluid suspended with hybrid nanoparticles
and chemical reactions of species. Rasheed et al. [5] discussed Computational analysis
of hydromagnetic boundary layer stagnation point flow of nano liquid by a stretched
heated surface with convective conditions and radiation effect. Mohmand et al. [25–28]
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scrutinized oscillating and porous, and flow with heat transfer effect as well as vibratory
flow. Usman et al. [6] discussed Computational optimization for the deposition of bio-
convection thin Oldroyd-B nanofluid with entropy generation. Khan et al. [7] explored
Lorentz forces effects on the interactions of nanoparticles in emerging mechanisms with
innovative approach. Khan et al. [8] analyzed Solution of magnetohydrodynamic flow
and heat transfer of radiative viscoelastic fluid with temperature dependent viscosity
in wire coating analysis. Khan et al. [9] investigated A Framework for the Magnetic
Dipole Effect on the Thixotropic Nanofluid Flow Past a Continuous Curved Stretched
Surface. Khan et al. [10] studied Analytical solution of UCM viscoelastic liquid with
slip condition and heat flux over stretching sheet: Galerkin Approach. Shah et al. [17–
19] have explored the transient flow, with unsteady stretching surface and accompanied
by Soret and Dufour effects. Khan et al. [1–4] have discussed solution through tables.
Khan et al. [11] discussed Mechanical aspects of Maxwell nanofluid in dynamic system
with irreversible analysis. Khan et al. [12] studied Numerical simulation of double-layer
optical fiber coating using Oldroyd 8-constant fluid as a coating material. Khan et al.
[8, 10, 12] have also discussed heat and heat transfer. Shah et al. [13, 18] analyzed
Gravity Driven Flow of an Unsteady Second Order Fluid as well as Heat transfer rate
of the fluid at the belt is also calculated. Khan et al. [14] discussed Investigation of wire
coating using hydromagnetic third-grade liquid for coating along with Hall current and
porous medium. Khan et al. [15] studied Analytical Solution of the MHD Viscous Flow
over a Stretching Sheet byMultistep Optimal Homotopy Asymptotic Method. Fiza et al.
[16] explored Modifications of the multistep optimal homotopy asymptotic method to
some nonlinear KdV-equations. Shah et al. [17] discussed The ADM solution of MHD
non-Newtonian fluid with transient flow and heat transfer. Shah et al. [18] studied the
Heat transfer and hydromagnetic effects on the unsteady thin film flow of Oldroyd-B
fluid over an oscillating moving vertical plate. Shah et al. [19] explored forSoret and
Dufour effect on the thin film flow over an unsteady stretching surface. Khan et al. [20–
22] discussed for Mechanical aspects of Maxwell nanofluid in dynamic system with
irreversible analysis as well as the impact of emerging parameters involved in the solu-
tions are discussed through graphs on the velocity and temperature profiles in detail.
Khan et al. [21] researched on the investigation of Wire Coating using Hydromagnetic
Third-Grade Liquid for Coating along with Hall Current and Porous Medium. Khan
et al. [22] discussed the Analytical Solution of UCMViscoelastic Liquid with Slip Con-
dition and Heat Flux over Stretching Sheet: The Galerkin Approach. Mohmand et al.
[23] discussed the Engineering Investigations of Dufour and Soret effect on MHD heat
and mass transfer with radiative heat flux in a liquid over a rotating dick. Mohmand
et al. [24] explored the Engineering applications and analysis of vibratory motion fourth
order fluid film over the time dependent heated flat plate. Mohmand et al. [25] ana-
lyzed for Time dependent Oldroyd-B liquid film flow over an oscillating and porous
vertical plate with the effect of thermal radiation. Mohmand et al. [26] studied Time
dependent second grade fluid between two vertical oscillating plates with heat transfer
effect. Mohmand et al. [27] investigated the Vibratory motion of fourth order fluid film
over a unsteady heated flat. Mohmand et al. [28] discussed Engineering applications
and analysis of vibratory motion fourth order fluid film over the time dependent heated
flat plate. Mohmand et al. [29] explored for Heat transfer and hydromagnetic effects on
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the unsteady thin film flow of Oldroyd-B fluid over an oscillating moving vertical plate.
Shah et al. [30] discussed Soret and dufour effect on the thin film flow over an unsteady
stretching surface. Likewise Khan et al. [20] have also discussed about the Brownian
motion and thermophoresis with thermal radiation and buoyancy effects are encoun-
tered in the governing equations. The oscillating parallel plates were discussed by Shah
et al. [13]. Shah et al. [17–19] have also explored some more properties of fluids. Simi-
larly, Fiza et al. and Khan et al. [16, 21] have discussed flow through numerical results
(Runge-Kutta method). Rasheed et al. [31] and Shah et al. [30] have discussed fluid flow
through shooting technique and numerical approach. Moreover, flow of Oldroyd-B fluid
over an oscillating was discussed by Shah et al. [29]. LikewiseMohmand et al. [28] have
discussed time-dependent heated plate. Moreover, Rasheed et al. [32, 33] have discussed
the fluid flow. To this end, Khan et al. [2] have investigated pressure distribution and
entropy generation rate and then their solution through HAM approach. Moreover, Khan
et al. [3–5] Darcy–Forchheimer law is used to study heat and mass transfer flow and
microorganisms motion in porous media as well as flow of Maxwell nanofluid induced
by two parallel rotating disks were analyzed. Furthermore Rasheed et al. [31–33] have
discussed fluid motion with thermal analysis. Shah et al. [34] have also discussed MHD
flow. Khan et al. [1–4] have analyzed the fluid motion through graphs. Similarly, Shah
et al. [17–19] have also investigated the MHD fluid motion through graphs. Likewise,
Khan et al. [7–12] have also discussed fluid flow through graphs and found excellent
harmony with the already published works. Shah et al. [34] & [35] have scrutinized
a mathematical and computational analysis of MHD fluid with heat source effect and
the chemically reactive Casson fluid to add knowledge to the existing one. As regard
to the validity solution of PDEs one can consult the research done by Khan et al. [36].
Similarly, Shah [37] has discussed the fluid motion through the treatment of OHAM.
This paper is organized as follows. First, we formulate the problem. Then, we present
basic principles of OHAM. The OHAM solution is also given. After that, we analyze
the comparison of the solution using OHAM with existing solution of VIM and DTM.
Last but not the least, drew the conclusion.

2 Formulation of the Problem

In the present paper, thirteen-order boundary value problems are solved using OHAM.
The following thirteen-order boundary value problems are considered

u(13)(x) = f (x, u(x)), a ≤ x ≤ b
u(i)(a) = Ai,

u(j)(b) = Bj

⎫
⎬

⎭
(1)

where for i = 0,1, 2, 3, . . . , 6 and j = 0,1, . . . , 5 A′
is and B′

js are finite real constants.
Also f(x, u(x)) is a continuous function on [a, b].

3 Fundamental Mathematical Theory of OHAM

Consider the differential equation of the following form:

A(u(x)) + f (x) = 0, x ∈ � (2)
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B(u, ∂u/∂x) = 0, x ∈ � (3)

whereA is a differential operator, u(x) is an unknown function, and x and t denote spatial
independent variable, � is the boundary of � and f(x) is a known analytic function. A
can be divided into two parts: L and N such that:

A = L + N (4)

L is the linear part of the differential equationwhich is easier to solve, andN contains
the nonlinear part of A.

According to OHAM, one can construct an optimal homotopy φ(x, p) : �×[0,1] →
R which satisfies:

H (φ(x, p), p) = (1 − p){L(φ(x, p)) + f (x)} − H (p){A(φ(x, p)) + f (x)} = 0, (5)

where the auxiliary function H(p) is nonzero for p �= 0 and H(0) = 0. Equation (5) is
called optimal homotopy equation. Clearly, we have:

p = 0 ⇒ H (φ(x, 0), 0) = L(φ(x, 0)) + f (x) = 0, (6)

p = 1 ⇒ H (φ(x, 1), 1) = H (1){A(φ(x, p)) + f (x)} = 0, (7)

Obviously, when p = 0 and p = 1 we obtain φ(x, 0) = u0(x) and φ(x, 1) = u(x)
respectively. Thus, as p varies from 0 to 1, the solution φ(x, p) approaches from u0(x)
to u(x), where u0(x) is obtained from Eq. (5) for p = 0:

L(u0(x)) + f (x) = 0, B(u0, ∂u0/∂x) = 0. (8)

Next, we choose auxiliary function H(p) in the form

H (p) = p1C1 + p2C2 + . . . (9)

To get an approximate solution, we expand φ(x, p,Ci) by Taylor’s series about p in
the following manner,

φ(x, p,Ci) = u0(x) +
∑∞

k=1
uk(x,Ci)p

k , i = 1, 2, . . . (10)

Substituting Eq. (10) into Eq. (5) and equating the coefficient of like powers of p, we
obtain Zeroth order problem, given by Eq. (8), the first and second order problems are
given by Equations. (11–12) respectively and the general governing equations for uk(x)
are given by Eq. (13):

L(u1(x)) = C1N0(u0(x)),B(u1, ∂u1/∂x) = 0 (11)

L(u2(x)) − L(u1(x)) = C2N0(u0(x))+
C1[L(u1(x)) + N1(u0(x), u1(x))],B(u2, ∂u2/∂x) = 0

(12)
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L(uk(x)) − L(uk−1(x)) = CkN0(u0(x)) + ∑k−1
i=1 Ci

[L(uk−i(x))
+Nk−i(u0(x), u1(x), . . . , uk−i(x))

]
, k = 2, 3, . . .B(uk , ∂uk/∂x) = 0

, (13)

where Nk−i(u0(x), u1(x), . . . , uk−i(x)) are the coefficient of pk−i in the expansion of
N (φ(x, p)) about the embedding parameter p.

N (φ(x, p,Ci)) = N0(u0(x)) +
∑

k≥1
Nk(u0, u1, u2, . . . , uk)p

k (14)

It should be underscored that the uk for k ≥ 0 are governed by the linear equations
with linear boundary conditions that come from the original problem, which can be
easily solved.

It has been observed that the convergence of the series Eq. (10) depends upon the
auxiliary constants C1,C2, . . . . If it is convergent at p = 1, one has:

ũ(x,Ci) = u0(x) +
∑

k≥1
uk(x,Ci) (15)

Substituting Eq. (15) into Eq. (1), it results the following expression for residual:

R(x,Ci) = L(ũ(x,Ci)) + f (x) + N (ũ(x,Ci)) (16)

In actual computation k = 1, 2, 3, . . . ,m.

If R(x,Ci) = 0 then
∼
u (x,Ci) is the exact solution of the problem. Generally it

doesn’t happen, especially in nonlinear problems.
For the determinations of auxiliary constants, Ci = 1, 2, . . . ,m, there are different

methods like Galerkin’s Method, Ritz Method, Least Squares Method and Collocation
Method. One can apply the Method of Least Squares as under:

J (Ci) = ∫ba R2(x,Ci)dx (17)

∂J

∂C1
= ∂J

∂C2
= . . . = ∂J

∂Cm
= 0 (18)

The mth order approximate solution can be obtained by these constants so obtained.
The constants Ci can also be determined by another method as under:

R(h1;Ci) = R(h2;Ci) = . . . = R(hm;Ci) = 0, i = 1, 2, . . . ,m. (19)

at any time t, where hi ∈ �.
The more general auxiliary function H(p) is useful for convergence, which depends

upon constants C1,C2, . . . can be optimally identified by Eq. (18) and is useful in error
minimization.

4 Solution of the Problem via OHAM

In this section we will apply OHAM to a linear boundary value problem and non-linear
boundary value problem. Example 1: The linear thirteen-order BVP, is considered as

u(13)(x) = cosx − sinx, 0 ≤ x ≤ 1, (20)
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Subject to the boundary conditions,

u(0) = 1, u(1) = cos(1) + sin(1),
u(1)(0) = 1, u(1)(1) = cos(1) − sin(1),
u(2)(0) = −1, u(2)(1) = −sin(1) − cos(1),
u(3)(0) = −1, u(3)(1) = −cos(1) + sin(1),
u(4)(0) = 1, u(4)(1) = cos(1) + sin(1),
u(5)(0) = 1, u(5)(1) = cos(1) − sin(1),
u(6)(0) = −1,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(21)

The exact solution of the problem is,

u(x) = cosx + sinx. (22)

According to above equation, we have

L(u(x)) = u(13)(x);N (u(x)) = 0; and f (x) = −cosx + sinx; (23)

5 Comparison of OHAM Solution with VIM Solution

Comparison of absolute error of OHAM with VIM in Table 1.

Table 1. Shows the comparison of absolute error of OHAM with VIM [10]

x Exact OHAM Abs: Error in present
method

Abs: Error in VIM

0 1.00000 1.00000 0.00000 0.00000

0.1 1.105170918 1.10517 4.32987 × 10–14 4.17444 × 10–14

0.2 1.221402758 1.2214 2.44249 × 10–14 2.64144 × 10–12

0.3 1.349858808 1.34986 5.99520 × 10–15 2.99314 × 10–11

0.4 1.491824698 1.49182 1.44329 × 10–14 1.67101 × 10–10

0.5 1.648721271 1.64872 2.64677 × 10–13 6.30955 × 10–10

0.6 1.8221188 1.82212 1.02807 × 10–12 1.84757 × 10–9

0.7 2.013752707 2.01375 8.95284 × 10–13 4.47866 × 10–9

0.8 2.225540928 2.22554 6.89315 × 10–12 9.21592 × 10–9

0.9 2.459603111 2.4596 2.60871 × 10–11 1.58906 × 10–8

1 2.718281828 2.71828 3.41771 × 10–12 2.09057 × 10–8
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6 Conclusion of the Current Analysis

In the above table, it is clearly observed that OHAM is better than VIM and give won-
derful results of Tenth order boundary value problems for both linear and nonlinear.
Therefore, we conclude that OHAM is reasonably good method for any type of T order
boundary value problem. Below Fig. 1: represents the exact solution of the Tenth order
nonlinear boundary value problem, while Fig. 2: shows the OHAM solution of the Tenth
order nonlinear boundary value problem.

.
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x

1.5
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Fig. 1. Exact Solution
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Fig. 2. OHAM Solution
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