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Abstract. This article presents the results of studies demonstrating the influence
of nonlinear effects of laminar flowunder vibrational harmonic effects onfluidflow
and heat transfer. The paper summarizes the results of research on the influence
of vibrations in various fluid flow problems. The effect of periodic oscillations
on the symmetrization of an asymmetric flow in a diffuser, on Rayleigh-Bernard
convection and on the wide of boundary layers in various single crystal growth
processes are shown.
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1 Introduction

During vibrational action on continuous media, their anomalous nonlinear peculiarities
and resonant properties may manifest themselves [1–3]. Nonlinear peculiarities of the
moving under vibration action are manifested not only in liquids, but also in the move-
ment of bulk granular media [2]. The study of the effects of vibrations on liquid media
has been carried out since the works of M. Faraday (1831) and L. Rayleigh (1883).
Vibrational control of the heat exchange in the melt is more energy-efficient and simpler
than controlling the melt flow by changing the gravitational or magnetic field. Therefore,
the study of vibration effects on the hydrodynamics of the melt is an actual task. Reviews
of works on vibrational convective flow can be found in [3–6]. Many theoretical papers
[1–6] and experimental papers [7–10] have been devoted to the study of vibrations.

This paper presents and summarizes the results of mathematical modeling of the
following problems: on flow symmetrization in a flat diffuser, on Rayleigh-Benard con-
vection, and on the hydrodynamics of melt and heat and mass transfer in the processes
Bridgman and Czochralski of crystal growth [10–18]. The results of numerical modeling
have shown also that vibrations can reduce the thickness of dynamic and temperature
boundary layers and increase the temperature gradient at the crystallization front, which
can intensify heat and mass transfer and the rate of crystal growth [10–16]. The fact
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of increasing the crystal growth rate up to four times under vibrational action on the
crystal was discovered experimentally in [7], which is an experimental confirmation of
an increase in the temperature gradient at the crystallization front. The paper [17] shows
the change in the beginning time and in structure of Rayleigh-Benard convection under
vertical vibrations in a long-confined layer heated from below (the Rayleigh-Benard
problem with vibration of the heated wall).

The study of the problem symmetrization of asymmetric fluid flows by means of
vibration action on the flow is also important in a lot off applications, for example, in
mechanical engineering for fuel injection in engines, as well as in biomedicine when
creating new technologies and methods for the precise targeted delivery of drugs to the
necessary areas of organs in human treatment. This paper presents the results on the
symmetrization of the flow in a flat diffuser (for (Jeffery-Hamel problem [19–23]) using
two technique of vibration action.

2 Mathematical Model

Themathematical model is based on the numerical solution of a system of non-stationary
planar 2D Navier-Stokes equations for natural convection of an incompressible liquid
in the Boussinesq approximation (1–3):

∇ · u = 0 (1)

ρ0du/dt + ∇p = ∇ · (ρ0ν∇u) − ρ0gβ(T − T0)ez (2)

ρ0cV dT/dt = ∇ · (kT∇T ) (3)

where traditional notation is used. The problems were considered for flat cases or for
conditions of axial symmetrywith orwithout rotation. Therefore, for a cylindrical coordi-
nate system r, θ, z, then u, v,w are radial, circumferential and axial velocity projections,
ν, kT are kinematic viscosity, heat conduction coefficients, β is the buoyancy coefficient,
T0 is a reference temperature, ρ0 is a reference density, g – acceleration of gravity oppo-
site directed to the vertical coordinate axis (z). The boundary conditions were as follows:
for velocity - no friction on a free surface, no slip condition on solid surfaces and setting
the velocity of the vibrator or moving at the vibrating wall (on law y(orz) = Asin(2π ft)
with a frequency f and an amplitude A, Revibr = A22π f/ν – is vibration Reynolds num-
ber); for temperature - were conditions of the first kind or thermal insulation conditions
and at the crystallization interface, either the crystallization temperature or the Stefan
condition with latent heat release was set.

The results presented in this paper were obtained using different numerical methods:
the finite-difference scalar method, the fully implicit matrix finite-difference and the
finite element methods [24, 25]. The good accuracy of numerical results was confirmed
by comparison with experimental data and comparison of numerical results obtained by
various numerical models.



658 A. Fedyushkin

3 Result and Discussion

3.1 Symmetrization of Fluid Flow in a Flat Diffuser by Vibrational Effect

The problem of the flow of a viscous incompressible liquid in a flat diffuser in the
approximation of flow symmetry was solved by the authors of [19, 20]. It is known
that when the Reynolds number increases above the critical Re* number, the flow loses
symmetry, staying steady state and laminar. [21–23]. This article shows two methods
of symmetrization of the asymmetric flow of a viscous incompressible liquid in a flat
diffuser using periodic vibration action: 1 - from the side of the input stream, 2 - from
the side of the walls of the diffuser. The research was carried out based on solving the
complete two-dimensional Navier-Stokes equations for an incompressible fluid (1, 2)
for case g = 0. The harmonic effects of vibration effects (in the form of Asin(2π ft),
where A and f are the amplitude and the frequency of the changing velocity) on velocity
are considered.

The Problem Statements. The laminar flow of a viscous incompressible fluid driven.

Fig. 1. Scheme of the computational domain for a flat diffuser: a) it is details of domain near the
inlet and outlet of the diffuser; b) the numerical region with mesh (β = 4◦,L = 0.495 m).

Through a channel bounded by two flat walls inclined towards each other at a small
angle β is considered. In this paper we consider flat diffuser bounded by two arcs (“input”
and “output” boundary) with the one center (Fig. 1a). The geometry of the mathematical
model was chosen to be able to compare our results with the results of well-known
works [19–22]. Geometric model of the diffuser is as follows: opening angle isβ = 4◦,
of an arc the input boundary has the form lin(rin=0.005m) where r is calculated by
formula r2 = x2 + y2 (Fig. 1). The initial conditions aret = t0 = 0,V (t0) = 0,P = 0.
The velocity scale is chosen by the velocity Vin and the Reynolds numbers are defined as
Re = Rein= Vinlin/ν, Revibr = Aflin/ν, ydimless = y/r sin (β/2), Vx_dimless = Vx/Vx_in,
Vy_dimless = Vy/Vx_in.

The Fluid Flows in the Diffuser Without Vibrations. The results for the case asym-
metric fluid flows (Re = 279) in the diffuser without vibration effects are presented in
Fig. 2 [23]. The results coincide with results of paper [22].
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Fig. 2. The isolines and the profiles in vertical cross- sections of horizontal component Vx of
velocity vector for the case of asymmetrical steady state fluid flows (Re = 279).

Symmetrization of the Fluid Flow in the Diffuser Due to the Effect of Vibration
on the Inlet Velocity. The effect of a periodic vibrational disturbance V = Vin + A
sin(2πf) (f = 10 Hz, A = 0.1 m/s Revibr = 2.4) on the basic flow with Re = 279 are
presented in Fig. 3.

Fig. 3. The isolines of the averaged longitudinal component of the velocity meanVx, (the isolines
of themeanVx velocity near the entrance to the diffuser are shownbelow) (a), the profiles of the lon-
gitudinal component of themean_Vx velocity (b) for caseVin= 11.7m/s,A = 0.1m/s, f = 10Hz
(Re = 279, Revibr = 2.4)

Comparison of the results in Fig. 2 and Fig. 3 shows that the effect of vibrations
(Revibr = 2.4), even at amplitudes less than 1% of the velocity Vin (Re = 279) can lead
to symmetrization of the fluid flow in the diffuser.

Symmetrization of the Fluid Flow in the Diffuser Due to the Effect of Vibration
From the Walls. An example second approach of symmetrization of the fluid flow
velocity in a flat diffuser by vibration action along normal to the walls of the diffuser
according to the harmonic lawVn =Asin(2πf) with a small amplitudeA and a frequency
f is shown in Fig. 5. In Fig. 4 mean_Vx – is the time-average velocity profiles for Re =
279, A = 0.001 m/s, f = 10 Hz (Revibr = 0.02) are shown.
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Fig. 4. The isolines and the profiles of time average velocity (mean_Vx) for fluid flow in a flat
diffuser with vibration action from the walls of the diffuser for Re = 279, A = 0.001m/s, f =
10Hz (Revibr = 0.02).

The results of numerical simulation have shown two ways of symmetrization of
asymmetric laminar flows of viscous incompressible fluid in a flat diffuser: the first -
due to a weak periodic effect on the flow velocity at the entrance to the diffuser and
the second – due to vibration action from the walls of the diffuser. It is shown that the
impact of vibration, even at amplitudes less than 1% of the velocity Vin, can lead to the
symmetrization of the fluid flow in the diffuser.

3.2 The Effect of Controlled Vibrations on Rayleigh-Benard Convection

The problem of convective flow in a horizontal layer heated from below is called the
Rayleigh-Benard (R-B) problem. This problem has a threshold character of the occur-
rence of natural convection, which is determined by the critical Rayleigh number. R-B
problem was considered for a horizontal layer with free top boundary with an aspect
ratio of 1:10 and the Prandtl number Pr= 1 in a gravity field with specified temperatures
on horizontal walls and with thermally insulated vertical walls. The results of numerical
simulation presented in Fig. 5 show the influence of the lower horizontal wall oscillations
on the structure of the convective flow in the Rayleigh-Benard problem. The number of
Rayleigh-Benard rollers decreases from 10 to 9 during vertical harmonic vibrations of
the lower wall (on law y = Asin(2π ft) with a frequency f = 10 Hz and an amplitude A
= 10–4 m, Revibr = A22π f/ν = 0.007), which indicates a decrease in the wave number
of the periodic convective structure.

The simulation results also showed the possibility of a significant decrease in the
critical Rayleigh number for the occurrence of R-B convection under vibration action.
The time of occurrence and establishment of the quasi-stationary regime of convective
flow is also significantly reduced. A decrease in the critical Rayleigh number and the
time of occurrence of Rayleigh-Benard convection due to vertical vibrations of the lower
wall was also shown in paper [17] (Fig. 6). This is important for boiling processes [18].
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Fig. 5. Pictures of isolines of the stream function and isotherms with and without vibrations of
the lower wall with Revibr = 0.007, Ra = 4 · 103, Pr = 1.

Fig. 6. The dependences of the maximum values of the stream function on time (Ra = 4 ·
103, Pr = 1): a) – without vibrations; b) – with vertical vibrations of the bottom wall with
Revibr = 0.007[17].

3.3 The Effect of Vibrations in Crystal Growth Processes

Bridgman model. The calculation results were carried out for the following geometric
configurations of crucibles for Bridgman method with submersible vibrators for a fixed
flat and variable calculated shape of the crystallization front shown in Fig. 7. The area
under consideration has the following dimensions: R = 1.6 10–2; H = 3.2 10–2; rvibr =
4 10–3; h1 = 8 10–3; h2 = 8 10–3; δ =10–3 (m) where R is the radius of the ampoule, H
is the height of the ampoule, h1 is the distance between the vibrator and the solid-liquid
interface, h2 is the thickness of the vibrator (the distance between its lower and upper
surfaces), the gap δ (the distance between the vibrator and the side wall of the crucible.
The following variants with size values A = 5 10–4 and 10–4 m, f = 0–100 (Hz) are
calculated. The effect of vibrations on temperature boundary layers are shown in Fig. 8.

MELT

CRUCIBLE

GAP

CRYSTAL

MELT

SEED

Vibrator

r

z

0

h 1

 R

h 2

H

���

 " crystal"

melt

vibrator

melt

rvibr

a)                                        b)

Fig. 7. The geometrical schemes for
Bridgman crystal growth model with
submerged vibrator, a) for Stefan problem, b)
model with fixed flat shape of the melt-crystal
interface

Fig. 8. a) - Isotherms in the melt (Pr = 5.43)
(on the right – without vibrations, on the
left – with vibrations Revibr = 200), b) -
temperature profiles (r = 0.75) (line
1 – without vibrations, 2 – with vibrations)
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TheEffect ofVibrations on theShape of theCrystallizationFront. Using themethod
of solving the Stefan problem described in [25], for the Bridgman method with a sub-
merged vibrator (Fig. 9), a simulation of convective heat transfer was performed in order
to determine the effect of vibrations on the shape of the crystallization front.

Fig. 9. The effect of vibrations on the shape of the front crystallization: a), b) – stream function
in the melt of NaNO3, (a) without vibrations - f = 0; b) - with vibrations A = 10–4 m, f = 50 Hz),
c), d) – water-ice interface, c) – without vibrations, f = 0, d) – with vibrations, A = 10–4 m, f =
30 Hz)

Czochralski Model with Submerged Vibrator. The scheme of the computational
domain is shown in Fig. 10. The computational domain is a square with sides L =
H = 3 cm crystal with a diameter of d = 1cm and immersed into the melt to a depth
of 1mm, the vibrator has a diameter of 0.8 cm and thickness 1mm. It is assumed that
the immersed vibrator is located under the crystal at a distance h. Irregular grid with
refinement near the solid walls and the corners of the vibrator and the crystal were used
in the calculations. The vibrator makes translational oscillatory movements along the
vertical axis of the crystal according to the law: y = y0+Asin(2π ft), with frequency f
and small amplitude A = 10–4 m, y0 is initial location of vibrator.

The isotherm and structure of the averaged flow is presented in Fig. 11(a, b). It is
showing how the vibrating immersed activator leads to the mixing of the entire volume
of the melt. In Fig. 11c presents temperature profiles on vertical cross section (on axis)
that show the effect of vibration on the temperature boundary layer and the temperature
gradient near the crystal-melt interface (Pr= 7; Revibr = 1500; h/d= 0.5, A= 4 10–4 m,
f = 20 Hz).
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Fig. 10. Scheme of
the computational
domain

Fig. 11. Isotherms temperature: a) – without vibration, b) with
vibrations, c) temperature profiles on the axis section: curve 1- is without
vibration, curve 2 - is with vibration. (Pr = 7, Revibr = 1500, Ra = 0).

4 Conclusion

It is possible to symmetrize the flow of viscous liquid in a flat diffuser using the effects
of weak harmonic vibration from the inlet side or from the walls of the diffuser. It is
also shown that the vibration effect can change the structure and time of occurrence of
Rayleigh –Benard convection. This is important for boiling processes. By controlling the
vibration effect on the convective fluid flow, the thickness of the boundary layers can be
reduced. For the Bridgman model, it is shown that the surface of the crystallization front
can be made flatter by means of vibration action. This is of fundamental importance in
crystal growth and for controlling temperature gradients to control the kinetics and rate
of crystal growth through vibration.
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