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10.1 Benzothiophene 

10.1.1 Introduction 

Because of their unique pharmacological and biological characteristics, heteroaro-
matic chemicals play crucial roles in identifying and advancing novel therapeutic 
candidates [1]. For many years, these substances have been utilized as anti-fungal, 
anti-oxidant, anti-bacterial, anti-inflammatory, anti-cancer, and anti-parasitic medi-
cations [2–5]. Benzothiophene has traditionally been produced using intramolecular 
cyclization and Claisen rearrangement processes. For instance, the intramolecular 
cyclization process of O-alkinylthioanisoles allowed for the regioselective synthesis 
of benzothiophene [6]. A recently described approach uses a Lewis acid cata-
lyst to synthesize benzothiophene and dibenzothiophene from thiophenes and 2, 
5-dimethoxy-THF [7]. 

Well-known candidates for heteroaromatic chemicals are benzothiophene and 
thiophenes, which are utilized in medications such as sertaconazole (1), raloxifene 
(2), and zileuton (3) (Fig. 10.1) [8–10]. Breast cancer patients are treated with ralox-
ifene. Furthermore, compared to tamoxifen, a well-known anti-cancer medication 
with comparable biological characteristics, raloxifene has fewer side effects [11].
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Fig. 10.1 Structure of sertaconazole 1, raloxifene 2, and zileuton 3 

10.2 Synthesis 

Several synthetic methods have been used and described to synthesize benzothio-
phene [12, 13]. Conventionally, 2-aryl benzothiophene (5) is produced using the 
widely recognized and applied domino cyclization/rearrangement reaction of a β-
keto sulfide (4) catalyzed by acid [14]. An alternative approach makes use of 
the Knoevenagel condensation of an S-benzyl ortho-acylthiophenol (8), which is 
produced in situ from an ortho-fluoroketone (6) and a benzyl thiol (7) [12, 13]. A 
palladium-catalyzed method using an intramolecular C–S coupling reaction of an 
aryl halide with a thioketone was described [14, 15]. Originally designed to produce 
benzofurans from thioketone oxygen analogs (9), the authors discovered that the 
same circumstances could also be used for sulfur compounds, yielding moderate-
to-good yields of fused benzothiophene (10). Recently, many theoretically distinct 
methods have been devised to break various bonds inside the benzothiophene ring 
(Scheme 10.1) [16–21].

10.2.1 Biological Activity 

10.2.1.1 Benzothiophene: Anti-microbial Agents 

Efforts have been made extensively over the last 10 years to create benzothiophene-
based compounds that exhibit outstanding therapeutic efficacy and are active on many 
clinically approved therapeutic targets. Substitution at the heterocyclic thiophene 
ring rather than the aromatic component seemed more critical for the anti-microbial 
property of benzothiophene derivatives. In their study, Petsom et al. synthesized 
benzothiophene derivatives containing quinazoline-4-one. They then examined the 
anti-bacterial properties of these derivatives against two types of bacteria: Gram-
positive ones, such as Bacillus subtilis (BS) and Staphylococcus aureus (SA), and 
Gram-negative ones, such as Escherichia coli (EA) and Pseudomonas aeruginosa 
(PA). Using a filter paper disc approach, the anti-fungal activity was evaluated against 
four distinct fungi: Aspergillus niger (AN), Candida pinnacle (CP), Candida albicans 
(CA), and Rhizopus oryzae (RO). The outcomes were compared with those of the stan-
dard medications, ampicillin and streptomycin. The effectiveness of compounds (13)
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Scheme 10.1 General approaches for preparing benzo[b] thiophene derivatives

and (14) against  B. subtilis and E. coli was demonstrated (Fig. 10.2) [22]. According 
to SAR research, benzothiophene’s third-position chloro substituent boosts its anti-
bacterial properties, and the attachment of fluoro and nitro groups in the phenyl 
groups linked to the quinazoline ring also enables anti-fungal properties [22].

Anti-microbial Activity of Benzothiophene Derivatives: Structural 
Requirements 
The benzothiophene nucleus has been discovered to have strong anti-microbial 
activity when substituted at all positions with various substituents; however, the 
first position is unsubstituted because it contains core sulfur. Benzothiophene’s hete-
rocyclic cores, such as oxadiazole, pyrazole, and thiazole, as well as groups like 
–CH2OH and –CO2CH3, boost the anti-microbial activity of the compound. The 
second position of the compound can be substituted with quinazoline and phenyl
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rings, including methoxy, methyl, and fluorine, or unsubstituted. In the same way, 
the substitutions for the pyrimidine, hydroxy group, and chloro group in the third 
position showed positive activity. Benzothiophene’s fourth position can be replaced 
or left unsubstituted; substituents with hydroxyl and halogen groups have strong anti-
bacterial properties. The benzo group connected to the first position of the benzimida-
zole core has also demonstrated anti-bacterial solid activity. The fifth or sixth position 
of the nucleus may be substituted with halogens or unsubstituted. For benzothiophene 
to show anti-bacterial action, it must contain nitro, halogens, and hydroxyl groups at 
positions 3, 4, and 6. It must also have fewer substituted benzothiophene at position 
7 (Fig. 10.3). 

10.2.1.2 Anti-cancer Agents 

A tumor is a solid mass of cells that develops when one or more cells lose their 
ability to control their growth. This condition is known as cancer. Although there 
is genetic variation in the illness, malignant cells will always undergo metabolic 
modification [23]. It is one of the most significant risks to human existence and 
has received extraordinary attention globally. The creation of successful anti-cancer 
therapies, which incorporate the use of radiation therapy, chemotherapy, and surgery, 
has been the subject of extensive research [24]. Scientists have concentrated on 
numerous facets of cancer biology to create novel, effective medications with these 
properties. When developing anti-cancer drugs, medicinal chemists paid close atten-
tion to benzothiophene derivatives. Two anti-cancer medications, arzoxifene (15) 
and raloxifene (16), are the product of modifications made to the benzothiophene 
nucleus (Fig. 10.4) [25]. Compared to raloxifene, arzoxifene is much more potent in 
preventing mammary cancer in rats that have been caused by the carcinogen nitroso
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Fig. 10.4 Benzothiophene-based anti-cancer drugs 

methyl ureave [25]. In postmenopausal women who have osteoporosis and high risk 
of breast cancer, raloxifene is used to treat osteoporosis and lower the risk of invasive 
breast cancer [26]. Perhaps more significantly, ongoing efforts have been focused on 
creating novel benzothiophene-based anti-cancer drugs targeting various enzymes 
and receptors. 

10.2.1.3 Anti-inflammatory and Analgesic Agents 

Many diseases have inflammation as their primary cause. An essential part of the 
immune system’s reaction of the human body to pathogens, wounds, or trauma is 
inflammation. While inflammation is not the direct cause of many conditions, it 
frequently exacerbates pain and suffering [27]. According to recent research, inflam-
mation plays a crucial role in infection and cancer but also in autoimmune diseases 
like multiple sclerosis, retinitis, psoriasis type I diabetes, atherosclerosis, rheuma-
toid arthritis, and Crohn’s disease [28, 29]. The use of nonsteroidal anti-inflammatory 
drugs (NSAIDs) in the treatment of several inflammatory disorders has proven to be 
highly beneficial. 

After reviewing the above discussion, we summed up the following strategy 
for boosting the compounds’ analgesic and anti-inflammatory properties: adding 
phenylthiosemicarbazide, semicarbazide, carbohydrazide, and pyrazole with p-
anisyl and p-chlorophenyl substitutions at the third and fifth positions. The benzoth-
iophene molecule exhibits good activity at the 3-position, where methyl and 
bromo replacements are introduced, leaving the remaining positions unsubstituted 
(Fig. 10.3). The anti-inflammatory and anti-nociceptive effects of compounds (17– 
19) were more potent than those of piroxicam (30% at 1 h, 25 mg/kg) at doses 
of 25 or 50 mg/kg. The action of semicarbazide (18), carbohydrazide (17), and 
phenylthiosemicarbazide (19) systems is more effective than that of carbohydrazide 
derivatives, according to SAR research (Fig. 10.5) [30].
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10.2.1.4 Anti-tubercular Agents 

One of the fatal infectious diseases that has added to humanity’s problems is tuber-
culosis (TB), a lung infection. Most tuberculosis cases are caused by Mycobacterium 
tuberculosis (Mtb), a pathogenic bacterial species of Mycobacterium [31]. Presently, 
8.9–9.9 million new and recurring cases of tuberculosis are reported annually, and 
one-third of the world’s population is afflicted with Mtb [26]. The current course of 
treatment involves a multi-drug regimen that must be followed for at least six months, 
but there is no assurance that the infection will be eradicated. Therefore, it is imper-
ative to create novel anti-tubercular medications with quick action against mycobac-
teria in the intracellular environment that are less toxic and successfully kill MDR 
strains [32]. Using thiazolidinones (20) and azetidinones (21), which have a benzoth-
iophene nucleus, Narute et al. conducted a quantitative structure–activity relationship 
(QSAR) analysis (Fig. 10.6) [33]. They concluded that the molecules bulky substi-
tution and high nucleophilicity nature are conducive to their anti-tubercular action 
[33]. 

10.2.1.5 Anti-HIV Agents 

Human immunodeficiency virus (HIV) infection causes the deadly disease known 
as acquired immune deficiency syndrome (AIDS). HIV infection impairs the body’s 
defenses, making people more vulnerable to other diseases [34]. Over 30 million
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Fig. 10.7 Benzothiophene as anti-HIV drugs 

people are thought to be infected with HIV globally, and treatment of the virus 
continues to pose a significant challenge. Therefore, it is still crucial to find and 
develop newer anti-HIV drug candidates to address the issues surrounding this illness. 
Bioisosteric substitution of the phenyl ring with heteroaromatic and polycyclic rings 
is revealed by SAR study: enhanced action when thiophene or benzothiophene (22) 
was substituted for phenyl. Compounds (23) and (24) exhibit enhanced cytotoxicity 
potency (Fig. 10.7) [31, 35]. Combined with decitabine, a mutagenic nucleoside 
possessing anti-HIV-1 properties, these compounds limit HIV-1 replication. 

10.2.1.6 Anti-diabetic Agents 

The most prevalent chronic illness in the modern world, diabetes mellitus (DM), is 
characterized by high blood glucose levels brought on by either an absolute or rela-
tive inefficiency of circulating levels of insulin [36]. DM is a serious health concern. 
Diabetes may eventually result in retinopathy, neuropathy, and nephropathy due to 
microvascular damage in essential tissues. There is still a great demand for better 
anti-diabetes medications even though there are currently around a dozen kinds of 
anti-diabetes medicines on the market [37]. Ipragliflozin, ASP1941, (25), a benzoth-
iophene derivative, is being researched to treat type-2 diabetes [38]. This section 
discusses compounds of benzothiophene, which show some anti-diabetic properties. 
Within the benzothiophene series, compound (26) exhibited good efficacy without 
any substitution, but compound (27) with fluorine substitution suppressed sorbitol 
accumulation in vivo (Fig. 10.8) [38, 39].

10.2.2 Conclusion 

The synthesis of a wide range of multi-substituted benzothiophene, which is chal-
lenging by conventional methods, was made possible by the broad scope of benzoth-
iophene synthesis and the adaptable C2-functionalizations. In summary, these 
molecules exhibit significant potential as effective active agents in medical chemistry.
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10.3 Dibenzothiophene 

10.3.1 Introduction 

Stenhouse first synthesized dibenzothiophene in 1870 by heating diphenyl sulfide 
in the presence of iron nails. This compound was mistakenly identified as an 
isomer of diphenyl sulfide [40, 41]. Gilman et al. reported the synthesis of diben-
zothiophene in 1938, employing AlCl3 as a catalyst and biphenyl and sulfur as 
raw ingredients [42]. Dibenzothiophene is a flexible aromatic tricyclic molecule 
with a sulfur base. Organic and medicinal chemistry is the fundamental building 
block of beneficial organic compounds, including pharmaceutical medications and 
biologically active chemicals. Materials chemistry is a significant component of 
functional materials like organic semiconductors [43]. Dibenzothiophene is flex-
ible heterocyclic sulfur-containing molecules typically essential to a wide range 
of significant organic substances, such as medicines, liquid crystals, photoactive 
chemicals, dyes, and conducting polymers (Fig. 10.9) [44–46]. Naphtho [2,3-
b]-naphtho [2',3':4,5] thieno[2,3-d] thiophene (DNTT) and benzo [1,2-b:5,4-b'] 
bis [1] benzothiophene (BBBT) are two examples of sulfur-containing conju-
gated benzoheterocyclic compounds that show promise as materials for thin-film 
transistors. 

Fig. 10.9 Benzo-fused 
thiophenes as organic 
electronics

S 

S 

BBBT 

(28) 

DNTT 

S 

S 

(29) 



10 Synthesis and Biological Evaluation of Some Polycyclic Aromatic … 281

10.3.2 Synthesis 

Owing to the thiophene motif’s vital role in a wide range of organic molecules across 
several sectors, several facile and effective synthesis techniques for dibenzothiophene 
have been developed recently. These techniques for creating dibenzothiophene and 
its derivatives include cyclizing C–S and C bonds to create a sulfur heterocycle with 
five members. 

10.3.2.1 Transition Metal-Free C–S Bond Formation 
for Dibenzothiophene 

10.3.3 C-X Cleavage for Dibenzothiophene Synthesis 

In 2006, Fanana’s group discovered that C-X cleavage for dibenzothiophene synthesis 
produced functionalized dibenzothiophene derivatives by treating 2-fluorophenyl 
2-iodophenyl thioether with 3.3 equiv. of t-BuLi. These derivatives then reacted 
with specific electrophiles (Scheme 10.2). An anionic cyclization on an aryl lithium 
intermediate tethered to benzyne is the process’s mechanism [47]. 

10.3.3.1 C-H Functionalization for Dibenzothiophene 

The Patel group disclosed a practical and effective process for generating unsym-
metrical dibenzothiophene derivatives in 2012 (Scheme 10.3) [48]. Intramolecular 
cyclization of biaryl sulfoxides with sulfuric acid under low-temperature condi-
tions yields dibenzothiophene with a very short reaction time. It is interesting to 
note that any position of dibenzothiophene can be reached by using this proce-
dure. For instance, this method makes it simple to manufacture 1-substituted 
dibenzothiophene, which is hard to acquire by direct substitution reaction on 
dibenzothiophene.
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Scheme 10.2 Dibenzothiophene-tethered aryllithiums via anionic cyclization 
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Scheme 10.4 Ullmann process with Cu catalyst for dibenzothiophene synthesis 

10.3.3.2 Transition Metal-Catalyzed C–S Bond Formation 
for Dibenzothiophene 

The Ullmann reaction of 2,2'-iodo substituted biphenyl with K2S producing diben-
zothiophene at 140 °C was reported by the Xi group in 2010. They developed a 
different one-pot process in 2013 for the very efficient preparation of dibenzothio-
phene [49]. This technique works well for building cyclic sulfur-containing molecular 
structures when 2,2'-iodine-substituted biphenyls are used as the substrate, and easily 
accessible, low-cost CS2 is used as the sulfur source (Scheme 10.4) [49]. 

10.3.3.3 Transition Metal-Catalyzed C–C Bond Formation 
for Dibenzothiophene 

Palladium-catalyzed double C–H bond activation of simple benzyl phenyl sulfox-
ides to produce dibenzothiophene (Scheme 10.5) [50]. Four hydrogen atoms are 
abstracted, and the products are created in a cascade reaction that is highly selec-
tive due to the reaction’s well-regulated order. By using the palladium catalyst at a 
15% molar ratio, this technique produced a range of dibenzothiophene derivatives in 
medium-to-good yields that were resistant to an extensive range of substrates. As a 
result, this approach has a significant innovative impact on organic synthesis [50].
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10.3.4 Conclusion 

Numerous techniques have been established for the synthesis of dibenzothiophene 
and its derivatives by the production of C–S bonds, which bases, acids, or other non-
metallic species can accelerate. Unfortunately, most of these techniques suffer from 
multi-step processes and pre-functionalization of synthesis precursors, making them 
neither environmentally friendly nor atom-economic. Transition metal-catalyzed 
coupling reactions have been a potent technique for synthesizing dibenzothiophene 
during the last ten years. For instance, it has been extensively documented that 
dibenzothiophene with a wide variety of functional groups at various positions can 
be synthesized by intramolecular C–H/S–H and C–H/C–S coupling processes, which 
are catalyzed by palladium and other transition metals. 

10.4 Thienothiophene 

10.4.1 Introduction 

Conversely, thienothiophenes (TTs), which are composed of two annulated thiophene 
rings, ultimately form the planar system, and their incorporation into a molecular 
structure has the potential to significantly enhance or modify the essential charac-
teristics of organic materials that are π-conjugated. Four main TT isomers differ 
from one another in the mutual orientation of the two cycles (Fig. 10.10) [51]. In 
comparison, thieno[3,4-b] thiophene (41) and the extremely unstable thieno[3,4-c] 
thiophene (42) are the least stable derivatives, whereas thieno[3,2-b] thiophene (39) 
and thieno[2,3-b] thiophene (40) are the most durable. The primary barrier to the
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simple manufacture of thienothiophene is the instability of the unsubstituted isomers 
(41) and (42). Furthermore, the obtained total yield, the number of reaction steps, 
and the availability of the employed starting materials are the primary determinants 
of a successful synthetic approach toward TTs (39) and (40). The procedure should 
follow stable intermediates and be simple to implement [52, 53]. 

10.4.2 Synthesis 

A four-step reaction is used in the first synthetic technique, which is shown in 
Scheme 10.6 [54–58]. 3-bromothiophene (43) was selectively lithiated at position 
2 using LDA. The generated lithium species was trapped by the reaction with N-
formylpiperidine or N, N-dimethylformamide (DMF). This resulted in aldehyde 
(44) [54–56]. It then underwent cyclization with potassium carbonate acting as 
a base and ethyl thioglycolate. The C=C and C–S bonds in (45) were formed 
in this stage. Ester (45) was hydrolyzed to carboxylic acid (46) using lithium or 
sodium hydroxide. The final decarboxylation process used Cu/quinoline or CuO/ 
N-methyl-2-pyrrolidone (NMP) [54]. This particular reaction sequence has a yield 
of approximately 50% overall. 
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Three primary reaction steps are involved in this approach, which likewise begins 
with 3-bromothiophene (43) (Scheme 10.7) [59, 60]. The lithiation of (43) and the 
subsequent reaction with elementary sulfur produced an in vivo thiolate intermediate. 
This intermediate further substituted a halogen atom in either potassium chloroacetate 
or bromoacetate to yield carboxylic acid (47). There are two methods for carrying 
out the cyclization that follows. The first is an acid-catalyzed (H2SO4) cyclization; 
the corresponding acyl chloride was initially synthesized by Leriche et al. and then 
subjected to the intramolecular Friedel–Crafts acylation [60]. NaBH4 or LiAlH4 

converted the ketone (48) produced to the intermediate alcohol (49) [59, 60]. By the 
following acid workup, alcohol (49) has (39). This series of reactions yields (39) out 
of the total 36% yield. 

Trimethylsilyl (TMS) acetylene and 3-bromo-2-iodothiophene (50) are selectively 
cross-coupled in the final six synthesis routes leading to TT (39) (Scheme 10.8) 
[61]. Di(iso-butyl) aluminum hydride (DIBAL) reduction and NBS bromination were 
applied to the TMS-terminated alkyne (51). Following its lithiation to (53), the resul-
tant dibromo derivative (52) underwent a reaction with bis(phenylsulfonyl)sulfide. 
(39) resulted from the last TMS-group elimination using tetrabutylammonium fluo-
ride (TBAF). The literature does not provide the yields of the specific chemical 
steps.

This procedure, which works with acetal (Scheme 10.9), uses acetal (56). 
In sodium ethanolate or potassium carbonate, the bromine atom in 1,1-
dimethoxyethylbromide was substituted by the beginning 2-sulphanylthiophene (55)
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Scheme 10.8 Sonogashira cross-coupling in the production of (39)

as an S-nucleophile. Using polyphosphoric acid (PPA) or phosphorous oxide, the 
generated acetal (56) was cyclized to (40) [62, 63]. This chemical sequence has a 
7% total yield. 

Scheme 10.10 depicts the one-step gas phase production beginning from 
allyl(thiophene-2-yl) sulfide (57) [64]. The radical (58) was produced by the thermal 
cleavage of the sulfide (57), and it then interacted with acetylene. The last stage 
involved the formation of the (thiophene-2-yl) vinyl sulfide radical (59), which at 
460 °C cyclized to produce thieno[2,3-b] thiophene (40) as a primary product with 
a 25% yield. 
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Scheme 10.9 Cyclization of acetal (56) 
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Scheme 10.10 Allyl(thiophene-2-yl) sulfide’s gas phase reaction to TT (40)
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10.4.3 Biological Activity 

Prominent biological activities of thieno[2,3-b] thiophenes include anti-microbial, 
analgesic, anti-inflammatory, and anti-proliferative properties; they also oppose 
α1-adrenoceptors and prevent cartilage degradation in articular diseases [65–71]. 
Nonetheless, because of the numerous uses for pyrazoles in the agrochemical and 
pharmaceutical industries and their analgesic, anti-pyretic, herbicidal, and anti-
inflammatory qualities, the preparation of pyrazoles continues to be of signif-
icant interest [72, 73]. Because of their strong biological activity, pyridazine 
compounds are frequently used as anti-bacterial, anti-tuberculosis, anti-cancer, and 
anti-hypertensive drugs [74–81]. 

10.4.4 Conclusion 

With a variety of therapeutic potentials, including anti-convulsant, anti-malarial, 
anti-bacterial, anti-mycobacterial, anti-depressant, anti-viral, anti-hypertensive, anti-
cancer, anti-inflammatory, and anti-oxidant properties, thiophene and its derivatives 
constitute a significant class of chemicals in the medical profession. 
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