
Chapter 12 
Correlation Tests in R: Pearson Cor, 
Kendall’s Tau, and Spearman’s Rho 

12.1 Introduction 

Correlation (Cor) is a statistical procedure or method used by researchers or the 
data analysts to evaluate the strength or degree of relationship between two variables 
(continuous or categorical) (Privitera, 2023; Schober & Schwarte, 2018). Statisti-
cally, the correlation test can be defined as a “bivariate analysis” that measures the 
strength of association or relationship between two variables or datasets and the direc-
tion of the relationship (see Chap. 6, Sect. 6.2.9). The result of the test (usually for 
linearity or strength of association) between the datasets or data points (depending on 
the type of correlation method being used or applied and usually determined through 
the p-values: where p ≤ 0.05) means that a high correlation statistics indicates that 
the variables or data being measured have a strong relationship between each other. 
On the other hand, a weak correlation (p > 0.05) signifies that the variables are barely 
(insignificantly) related or associated. 

Thus, with correlated datasets, it is assumed that a change in the magnitude of one 
variable is statistically associated with a change in the magnitude of another variable 
that it is being measured against, be it in the same direction (positive correlation) 
or in the opposite direction (negative correlation) (Akoglu, 2018; Privitera, 2023; 
Schober & Schwarte, 2018). 

According to Akoglu (2018), the correlation (relationship, association) between 
the two specified variables is denoted by the letter r and quantified through a number, 
that varies between −1 and +1 (denoting the negative and positive correlations, 
respectively). Whereby, a value of zero (0) implies that there is no correlation between 
the variables, and a value of one (1) denotes an absolute (perfect) correlation. There-
fore, whereas r represents the direction of the correlation, a positive r signifies that 
the measured variables are certainly (positively) related, while a negative r signi-
fies that the measured variables are inversely (negatively) related. Statistically, the 
strength of the correlation increases both from 0 to+1, and from 0 to−1, respectively 
(Akoglu, 2018).
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There are three main types of correlation analysis commonly applied by the 
researchers, in theory. These are (i) Pearson product–moment correlation, (ii) 
Kendall’s tau correlation, and (iii) Spearman’s rho correlation (Akoglu, 2018; 
Brossart et al., 2018; Hauke & Kossowski, 2011; Puth et al., 2014; Schober & 
Schwarte, 2018; Wang et al., 2019; Zar,  2014). 

Pearson correlation (also known as Pearson product–moment correlation coeffi-
cient) is described as a parametric test that measures the strength of linear association 
(linear trend) that exists between two continuous variables. Statistically, the method 
(Pearson correlation, denoted by r) draws a “line of best fit” through the two datasets 
or variables by establishing how far away the two data points are to the drawn line 
(model) of best fit. 

Mathematically, to apply the Pearson’s statistics by measuring the two quantities 
or variables X and Y on each of N individuals in order to produce a data set of X1, 
Y 1, …,  XN , YN (Puth et al., 2014), the formula to calculate the correlation coefficient 
is given as: 
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whereby 

N the number of pairs of scores
∑xy the sum of the products of paired scores
∑x the sum of x scores
∑y the sum of y scores
∑x2 the sum of squared x scores
∑y2 the sum of squared y scores 

Just like many of the other existing types of parametric procedures or statis-
tical methods (see Chap. 4), the Pearson’s product–moment correlation coefficient 
requires the assumption that the relationship between the variables is linear and is 
measured on an interval (continuous) scale. Thus, the researchers or data analysts 
must check that the following below assumptions are met before applying or using 
the Pearson correlation. 

Pearson’s Correlation Assumptions 

• Independence: the drawn dataset or sample must be independent to each other. 
• Linearity: the two tested variables should be linearly related to each other, e.g., 

when plotted in a graph should result in a moderately straight line. 
• Normality: the dataset must be normally distributed, i.e., should produce a bell-

shaped graph when the means of the samples are plotted. 
• Homoscedasticity or equality of variances must be present. 

Furthermore, on the other hand, Kendall’s tau correlation (also known as Kendall 
rank correlation coefficient) is a non-parametric test (i.e., an alternative to Pearson’s
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correlation) mainly used by the researchers to measure the strength of dependence 
between two categorical or ordinal variables. According to Couso et al. (2018), the 
method (Kendall’s tau) can be applied as an efficient and robust way of identifying 
monotone relationships between two data sequences, although when applied to digital 
data (e.g., discrete or discontinuous format), the high number of ties could produce 
inconsistent results due to quantization. 

Theoretically, the Kendall’s tau (τ ) statistics symbolizes the degree of agreement 
between two specified “ordinal” variables by indicating how similarly the two vari-
ables order a set of individuals or data points (Brossart et al., 2018). Thus, mathemat-
ically, the following formula is used to calculate the value of Kendall’s tau statistics 
or rank correlation coefficient: 

Kendall’s tau (τ ) = 
C − D 
C + D 

or 
nc − nd 

1 
2 n(n − 1) 

whereby 

nc number of concordant, i.e., ordered in the same way. 
nd Number of discordant, i.e., ordered differently. 

With the Kendall’s tau statistic, commonly calculated through pairwise compar-
ison; a value of τ (X,Y ) = +1 means that the data points for the two (ordinal) variables 
(X and Y ) are ordered in exactly the same way, i.e., occupies the same rank posi-
tion. While on the other hand, a value of τ (X,Y ) = −1 implies that the data points 
for the two variables are ordered in exactly the opposite way, with one data point 
occupying the first rank in one variable and the last rank in the other variable. Accord-
ingly, a value of τ (X,Y ) = 0 indicates that there is no relationship in the way or order 
that the two variables are ranked considering the data points, thus, are independent 
(Brossart et al., 2018). 

In the same vein or similar manner, just like the Kendall’s tau correlation, 
Spearman’s rho correlation (also known as Spearman rank correlation coefficient) is 
another type of non-parametric (i.e., alternative to Pearson correlation) test used by 
the researchers to measure the degree of association between two (ordinal) variables. 
The method can also be applied for interval or ratio datasets provided the datasets 
are found to be distribution-free. Mathematically, the following formula is used to 
calculate the value of the Spearman’s rho statistics or rank correlation coefficient: 

Spearman’s rho (ρ) = 1 − 
6
∑(

d2 
i

)

n
(
n2 − 1

)

whereby 

n number of data points of the two variables (x and y). 
di rank difference of element “n”, i.e., difference between the corresponding 

statistics of order of x – y.
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The only difference between the Spearman’s rho versus Kendall’s tau method 
is that while the Spearman’s rho (ρ) statistics or results are calculated through the 
“ordinary least squares”, the Kendall’s tau (τ ) statistics is calculated through the 
“pairwise comparison” of all the data points (Brossart et al., 2018). Thus, whilst 
the Kendall’s tau (τ ) statistics are based on “concordant and discordant pairs”, the 
Spearman’s rho (ρ) statistics are based on “deviations”. 

It is also noteworthy to mention that Spearman’s rho (ρ) method is much more 
sensitive to error and handling discrepancies in data samples than the Kendall’s tau 
(τ ) method, which, on the other hand, are more accurate with smaller sample sizes 
than the Spearman’s rho (ρ). 

In any case, a lot of the time the interpretations of the two methods (Kendall’s 
tau and Spearman’s rho) are very similar, thus, tend to invariably lead to the same 
inferences or statistical results. 

Also, unlike Pearson correlation, both methods (Kendall’s tau and Spearman’s 
rho) do not require the available data or sample to meet the assumption that the 
relationship between the considered variables is linear (i.e., when plotted does not 
necessarily need to result in a moderately straight line), or normally distributed (i.e., 
distribution-free), nor does it require the measurement scale of the variables to be 
represented on a continuous or interval scale. 

Table 12.1 is a summary of the differences and similarities between the Pearson 
cor, Kendall’s tau, and Spearman’s rho Correlation tests including the conditions that 
are required to perform the different tests, which the authors will be demonstrating 
using R in the next sections (Sect. 12.2 and 12.3) of this chapter.

In the next sections of this chapter (Sects. 12.2 and 12.3), the authors will be 
demonstrating to the readers how to conduct the Pearson cor, Kendall’s tau, and 
Spearman’s rho correlation tests in R, harmoniously. We will illustrate the different 
steps to performing the three types of tests in R using the following steps outlined in 
Fig. 12.1.

12.2 Pearson Correlation Test in R 

Pearson correlation measures the strength of linear association (correlation) that 
exists between two “continuous” variables. Thus, it calculates the effect of change 
(be it positive or negative) in one variable when the other variable changes. 

By default, the hypothesis for testing whether there is a correlation (measure of 
linearity or association) between the two given set of (continuous) variables is; IF 
the p-value of the test is less than or equal to 0.05 (p ≤ 0.05), THEN we assume 
that there is a statistically significant strong relationship between the two analyzed 
variables and that this is not by chance (H1). ELSE IF the p-value is greater than 0.05 
(p > 0.05) THEN we can conclude that there is no significant relationship between 
the two variables, and any observed association could only have occurred by chance 
(H0).
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Table 12.1 Differences and similarities between the Pearsoncor, Kendall’s tau, and Spearman’s 
rho correlation tests and assumptions 

Pearson Kendall’s tau Spearman’s rho 

Data sample should be 
independently drawn from the 
population 

Data sample should be 
independently drawn from the 
population 

Data sample should be 
independently drawn from the 
population 

Used for continuous 
(intervalor ratio) datasets 

Used for categorical (ranked 
or ordinal) datasets. Although 
can also be applied to 
intervalor ratio datasets 

Used for categorical (ranked or 
ordinal) datasets. Although can 
also be applied to intervalor 
ratio datasets 

Data sample or observations 
must be normally distributed, 
i.e., bell-shaped 

Data samples are 
distribution-free, thus, are not 
normally distributed, i.e., 
skewed 

Data samples are 
distribution-free, thus, are not 
normally distributed, i.e., 
skewed 

Calculated by measuring the 
“average weight” of the two 
variables (i.e., covariance of 
the two variables divided by 
the product of their standard 
deviations) 

Calculated through the 
“pairwise comparison” of the 
data points based on 
concordant and discordant 
pairs 

Calculated through “ordinary 
least squares” based on 
deviations 

Described as parametric test 
for linearity or relationship 
between two variables 

Non-parametric test for 
strength of dependence 
between two variables 

Non-parametric test to measure 
the degree of association 
between two variables

Interpret Check and interpret the results of the analysis 

Visualize Plot and graphically visualize the data and results for comparison 
and interpretation or export for use 

Analyze Conduct Pearson cor, Kendall's tau, and Spearman's rho tests in R 
using the supported method; cor.test( ), shapiro.test( ) 

Data Import and inspect the dataset for analysis 

R Packages Install and Load the required R packages for data manipulation and 
visualization; “devtools”, “ggpubr” 

Fig. 12.1 Steps to conducting the Pearson cor, Kendall’s tau, and Spearman’s rho correlation tests 
in R
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Download 

Fig. 12.2 Example of CSV file download (Source https://people.sc.fsu.edu/~jburkardt/data/csv/ 
csv.html) 

Here, the authors will demonstrate to the readers how to conduct the Pearson 
correlation test in R using the cor.test( ) function in R. We will do this using the 
steps outlined in Fig. 12.1. 

To begin, Open RStudio and Create a new or Open an existing project. Once 
the user has the RStudio and an R Project opened, Create a new R Script and name 
it “PearsonCorrDemo” or any name the user may preferentially choose (see Chap. 1 
and 2 if the user needs to refresh on how to do this step). 

Now, we are going to download an example file or dataset that we will use to 
demonstrate the Pearson correlation test (the users are welcome to use any dataset 
or format if they wish to do so). 

As  shown in Fig.  12.2, download the example CSV dataset named “trees.csv” 
via the following source: https://people.sc.fsu.edu/~jburkardt/data/csv/csv.html and 
save the file on the users’ local machine or computer. *** The users can also access 
the list of example datasets used in this book at the following repository (https://doi. 
org/10.6084/m9.figshare.24728073) to download the example CSV file. 

Once the user has successfully downloaded and saved the example file 
(trees.csv) on the computer, we can proceed to conduct the Pearson Correlation 
test in R.

https://people.sc.fsu.edu/%7Ejburkardt/data/csv/csv.html
https://people.sc.fsu.edu/%7Ejburkardt/data/csv/csv.html
https://people.sc.fsu.edu/%7Ejburkardt/data/csv/csv.html
https://doi.org/10.6084/m9.figshare.24728073
https://doi.org/10.6084/m9.figshare.24728073
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Step 1 

Step 2 

Step 3 (Corr Test) 

Fig. 12.3 Steps to conducting Pearson correlation test in R 

# Step 1—Install and Load the Required R Packages and Libraries 

Install and Load the following R packages and libraries (see Fig. 12.3, Step 1,  
Lines 3–9) that will be used to call the different R functions, data manipulations, and 
graphical visualizations for the Pearson Correlation test. 

The syntax and code to install and load the required R packages and libraries are 
as follows: 

# Step 2—Import and Inspect the Example Dataset for Pearson Correlation 
Analysis 

As illustrated in Step 2 in Fig. 12.3 (Lines 12–17), import the dataset named 
“trees.csv” that we downloaded earlier and store this as an R object named 
“PCorr.data” in R (the users are welcome to use any name they may choose if 
they wish to do so).
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Fig. 12.4 Example of CSV dataset imported and stored as R object in R 

Once the user has successfully imported the dataset, you will be able to view the 
details of the trees.csv dataset as shown in Fig. 12.4 with 31 observations and 4 
variables in the data sample. 

The syntax and code to import and save the data in R is shown below: 

# Step 3—Conduct Tests for Assumptions and Analyze Data 

Now that we have successfully imported the example dataset and stored this in an R 
object we called “PCorr.data”, we can proceed to analyze the data. 

As defined in Fig. 12.3 (Step 3, Lines 20–36), first we will conduct the tests of 
assumptions (data normality) (see: Lines 22–24) as discussed earlier in Sect. 12.1 by 
using the shapiro.test( ) method, and then perform the Pearson Correlation test if 
all the necessary conditions to conduct the test are met using the cor.test( ) function 
in R, respectively (see: Fig. 12.3, Step 3, Lines 26–36).
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Also, as defined earlier in the Introduction section (Sect. 12.1); 

• Pearson’s correlation statistics checks whether there exists a linear relationship 
between two independently sampled variables or data. 

• The targeted variables must be continuous data type. 

To illustrate the above defined tests using the example dataset we stored as 
“PCorr.data” in R (see: highlighted columns in Fig. 12.4): 

1. We will test whether there exists a relationship (correlation) between the 
Girth..in. and Height..ft. variables of the trees example data? (two-tailed test). 

2. Also, we will check whether the correlation (if there exist any) is a positive or 
negative (direction) correlation? (one-tailed test). 

The syntax and code to performing the above tests in R is as shown in the codes 
below (see: Fig. 12.3, Step 3, Lines 20–36): 

# Test for Assmp: Shapiro-Wilk's test for normality 

shapiro.test(PCorr.data$Girth..in.)      

shapiro.test(PCorr.data$Height..ft.) 

# Pearson Correlation test where data is Continuous (Two-tailed) 

PearsonCorr.test <- cor.test(PCorr.data$Girth..in., 
PCorr.data$Height..ft., method = "pearson") 

PearsonCorr.test 

# Pearson's test for Positive Correlation (One-tailed) 

PearsonCorr.test2 <- cor.test(PCorr.data$Girth..in., 
PCorr.data$Height..ft., method = "pearson", alternative = "greater") 

PearsonCorr.test2 

# Pearson's test for Negative Correlation (One-tailed) 

PearsonCorr.test3 <- cor.test(PCorr.data$Girth..in., 
PCorr.data$Height..ft., method = "pearson", alternative = "less") 

PearsonCorr.test3 

Useful Tips 

• The users should always use the alternative = “greater” and 
alternative = “less” options to specify the “positive” and “negative” 
(direction) correlation tests (one-tailed), respectively.
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Once the user has successfully run the codes as defined in the Step 3 in Fig. 12.3 
(Lines 20–36); they will be presented with the results of the “tests for assumptions” 
and the “Pearson Correlation” tests in the Console as shown in Fig. 12.5a and b, 
respectively. 

In Fig. 12.5a, we conducted the test for assumption (data normality) necessary for 
the Pearson correlation test or parametric methods. This is done in order to determine 
if the targeted variables (i.e., Girth..in. and Height..ft.) are fitting and valid for the 
test (Pearson correlation, a parametric test) (see Chap. 4).

As highlighted in the figure (Fig. 12.5a); we can see that the normality test by 
using the Shapiro–Wilk’s method shapiro.test( ), where we assume a value of p 
> 0.05 is normal, shows that the distribution of the two variables (Girth..in. and 
Height..ft.) are normal, with Girth..in. variable showing a significant value of 
p-value=0.08893 (W=0.94117) and Height..ft. showing significant value 
of p-value=0.4034 (W=0.96545), respectively. 

Therefore, with the necessary conditions met, we proceeded to conduct the 
“Pearson Correlation” as defined in the Step 3 (Fig. 12.3) and the results reported in 
Fig. 12.5b. 

As  shown in Fig.  12.5b, the authors performed the Pearson’s correlation tests by 
considering the two variables (Girth..in. and Height..ft.). We stored the results of the 
tests in an R objects named “PearsonCorr.test” for  the  two-tailed analysis, 
and “PearsonCorr.test2” and “PearsonCorr.test3” for  the  one-tailed 
analysis, respectively. 

# Step 4—Plot and Visualize Correlation Between the Targeted Variables 

Another great way to check whether there is a relationship (correlation) between the 
two specified variables is by plotting them as graph. By so doing, the users will be 
able to visualize the “linear line” between the variables. 

As described in Fig. 12.6 (Step 4, Lines 39–45) and the resultant scatterplot in 
the same figure (Fig. 12.6); the authors applied the ggscatter( ) function in R to 
visualize the relationship between the two variables “Girth..in.” and “Height..ft.” 
as contained in the example dataset we stored as “PCorr.data” in R.

The syntax and code used to plot the graph is as shown below, and the chart or 
scatterplot represented in Fig. 12.6. 

# Step 4 - Visualize Correlation between the two variables 

ggscatter(PCorr.data, x = "Girth..in.", y = "Height..ft.", 

add = "reg.line", conf.int = TRUE, 

cor.coef = TRUE, cor.method = "pearson", 

xlab = "Girth (inches)", ylab = "Height (ft)", 

main = "Correlation between Tree Girth and Height") 

)
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Fig. 12.5 a Results of test for data normality displayed in the Console in R. b Results of Pearson 
correlation tests displayed in the Console in R
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Fig. 12.6 Plot representing correlation (relationship) between two variables in R using the 
ggscatter( ) function

# Step 5—Results Interpretation (Pearson Correlation) 

The final step in the Pearson’s correlation analysis is to interpret and understand the 
result of the test. 

By default, the hypothesis for conducting the test (Pearson Correlation) by consid-
ering the two continuous variables “Girth..in.” and “Height..ft.” (see: Fig. 12.5b) 
is as follows; 

Two-Tailed Pearson Correlation 

• (H1) IF the p-value of the test is less than or equal to 0.05 (p ≤ 0.05), THEN we 
can assume that there is a correlation between the two variables (Girth..in. and 
Height..ft.). Thus, the population correlation coefficient (ρ) /= 0. Meaning that 
the population correlation coefficient is not 0, therefore, we can assume that a 
non-zero correlation exist between the “Girth..in.” and “Height..ft.” variables. 

• (H0) ELSE IF the p-value is greater than 0.05 (p > 0.05) THEN we can say that 
there is no correlation between the two variables. Therefore, ρ = 0. Meaning 
that the population correlation coefficient is 0, therefore, there is no association 
(correlation) between the two variables.
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One-Tailed Pearson Correlation 

• (H1) IF the p-value of the test is less than or equal to 0.05 (p ≤ 0.05), THEN we 
can statistically assume that either ρ > 0, i.e., the population correlation coefficient 
is greater than 0, thus, a positive correlation may exist. 

OR 
ρ < 0, i.e., the population correlation coefficient is less than 0, thus, a negative 

correlation may exist between the two variables (Girth..in. and Height..ft.). 
• (H0) ELSE IF the p-value is greater than 0.05 (p > 0.05) THEN we can conclude 

that there is no correlation between the two variables. Therefore, ρ = 0. Meaning 
that the population correlation coefficient is 0, thus, there is no association 
(correlation) between the two variables. 

> PearsonCorr.test <- cor.test(PCorr.data$Girth..in., 
PCorr.data$Height..ft., method = "pearson") 

> PearsonCorr.test 

Pearson's product-moment correlation 

data:  PCorr.data$Girth..in. and PCorr.data$Height..ft. 

t = 3.2722, df = 29, p-value = 0.002758 
alternative hypothesis: true correlation is not equal to 0 

95 percent confidence interval: 

0.2021327 0.7378538 
sample estimates: 

cor 

0.5192801) 

As shown in the above result and gathered in the outcome of the Pearson correla-
tion (two-tailed) test for the example dataset (PCorr.data) represented in Fig. 12.5b; 
the meaning of the results of the cor.test( ) method we applied by testing the relation-
ship between the Girth..in. and Height..ft. variables (stored in an R object we called 
“PearsonCorr.test”) can be explained as a list containing the following: 

• Statistics: t = 3.2722 that denotes the value of the Pearson correlation 
statistics. 

• Parameter: df = 29 which signifies the degrees of freedom for the test 
statistics. 

• p-value:p-value = 0.002758 is the p-value (significance levels) of the test. 
• Confidence interval: Conf.Int(95%, 0.2021327 0.7378538) repre-

sents the confidence interval for the correlation assumed to be appropriate to the 
specified alternative hypothesis. 

• Sample estimates: cor = 0.5192801 is the value of the population correla-
tion coefficient (ρ). 

Statistically, the p-value of the Pearson correlation test (PearsonCorr.test) 
we conducted is p = 0.002758 (see Fig. 12.5b). As we can see, the value is
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significantly less than the scientifically acceptable significance levels (p ≤ 0.05). 
Therefore, we reject the H0 and accept H1 by concluding that there is a signif-
icant relationship (correlation) between the two sets of variables (Girth..in. and 
Height..ft.) in the dataset (two-tailed test). 

Furthermore, as shown in the next results of the Pearson correlation test presented 
below and in Fig. 12.5b, done for the “one-tailed” correlation tests, therein; 

• We also checked whether the correlation, if any? (in this example case, yes— 
see result of the correlation described above) is a “positive” or “negative” 
(direction) correlation, respectively. The results of this particular test (one-
tailed) were stored in R objects we called “PearsonCorr.test2” and 
“PearsonCorr.test3”, respectively. 

> > PearsonCorr.test2 <- cor.test(PCorr.data$Girth..in., 
PCorr.data$Height..ft., method = "pearson", alternative = "greater") 
> PearsonCorr.test2 

Pearson's product-moment correlation 

data:  PCorr.data$Girth..in. and PCorr.data$Height..ft. 
t = 3.2722, df = 29, p-value = 0.001379 

alternative hypothesis: true correlation is greater than 0 

95 percent confidence interval: 
0.2585047 1.0000000 

sample estimates: 

cor 

0.5192801 

> PearsonCorr.test3 <- cor.test(PCorr.data$Girth..in., 
PCorr.data$Height..ft., method = "pearson", alternative = "less") 

> PearsonCorr.test3 

Pearson's product-moment correlation 

data:  PCorr.data$Girth..in. and PCorr.data$Height..ft. 

t = 3.2722, df = 29, p-value = 0.9986 

alternative hypothesis: true correlation is less than 0 

95 percent confidence interval:
-1.0000000  0.7095126 

sample estimates: 

cor 
0.5192801 

As reported in the above results of the “one-tailed” tests for positive 
correlation (PearsonCorr.test2, p=0.001379), and negative correlation 
(PearsonCorr.test3, p=0.9986); we can see based on the p-values of the 
“direction test” as it is called (significant levels, p ≤ 0.05); that the correlation
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we found between the two variables “Girth..in” and “Height..ft.” (two-tailed, 
PearsonCorr.test, p=0.002758) (see Fig.  12.5b) was a “positive” directed 
correlation or association (PearsonCorr.test2, p=0.001379). 

12.3 Kendall’s Tau and Spearman’s Rho Correlation Tests 
in R 

Kendall’s tau and Spearman’s rho correlation (non-parametric equivalents or alter-
natives to the Pearson correlation) measures the strength of dependence or degree of 
association between two categorical or ordinal variables. In this statistical settings, 
the methods are used when the dataset the researcher or data analyst wants to inves-
tigate or analyze violates the assumptions of the parametric counterpart (Pearson), 
e.g., non-normally distributed data samples or existence of ordinal data type, etc. 

Just like Pearson correlation test, the methods (Kendall’s tau and Spearman’s rho) 
also can be used to calculate the level of change (be it positive or negative) in one 
variable when another variable changes. 

By default, the hypothesis for testing whether there is correlation (measure of 
strength of dependence or degree of association) between the two specified set of 
(categorical or ordinal) variables is; IF the p-value of the test is less than or equal to 
0.05 (p ≤ 0.05), THEN we can assume that there is a statistically significant strong 
dependence or association between the two analyzed variables, and that this is not 
by chance (H1). ELSE IF the p-value is greater than 0.05 (p > 0.05) THEN we can 
say that there is no significant dependency or association between the two variables, 
and any observed dependency or association could only occur by chance (H0). 

Here, the authors will demonstrate how to conduct the Kendall’s tau and 
Spearman’s rho correlation tests in R using the cor.test( ) function. We will do 
this following the same steps we have outlined in Fig. 12.1. 

To start, Create a new R Script and name it “Tau.Rho.Demo” or any name the 
user may preferably choose. 

Now, let’s proceed to download an example dataset or file that we will use to 
demonstrate the two tests (Kendall’s tau and Spearman’s rho) (*** the users are 
welcome to use any dataset they may want to use provided the dataset are in the right 
format and type, and they can follow the example codes provided by the authors 
accordingly). 

As shown in Fig. 12.7, download the example .dta dataset named “lifeexp.dta” 
through the following source: https://www.stata-press.com/data/r8/u.html and save 
the file on the computer or local machine (*** the example file can also be downloaded 
via the following repository by the authors: https://doi.org/10.6084/m9.figshare.247 
28073).

Once the user has successfully downloaded and saved the example file on 
the computer, we can proceed to conduct the Kendall’s tau and Spearman’s rho 
correlation tests using R.

https://www.stata-press.com/data/r8/u.html
https://doi.org/10.6084/m9.figshare.24728073
https://doi.org/10.6084/m9.figshare.24728073
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Fig. 12.7 Example of (.dta) sample file download (Source https://www.stata-press.com/data/r8/u. 
html)

# Step 1—Install and Load the Required R Packages and Libraries 

Install and Load the following R packages and libraries (see Fig. 12.8, Step 1,  
Lines 3–9) that will be used to call the different R functions, data manipulations, and 
graphical visualizations for the Kendall’s tau and Spearman’s rho Correlation tests.

The syntax and code to install and load the R packages and libraries are as 
follows: (***Note: if the reader have practiced and implemented the previous 
example in Sect. 12.2, then you may not need to re-install the following R pack-
ages again. New readers that may have directly visited this section will need to 
install and load the following packages and libraries as described below.) 

install.packages("devtools") 
install.packages("ggpubr") 

library(devtools) 
library(ggpubr)

https://www.stata-press.com/data/r8/u.html
https://www.stata-press.com/data/r8/u.html
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Step 1 

Step 2 

Step 3A (Assmp.) 

Fig. 12.8 Steps used for conducting Kendall’s tau and Spearman’s rho correlation tests in R

# Step 2—Import and Inspect the Example Dataset for Correlation Analysis 

As defined in Step 2 in Fig. 12.8 (Lines 12–17); import the dataset named 
“lifeexp.dta” that we downloaded earlier, and store this in an R object named 
“Tau.Rho.data” in R (the users are welcome to use any name of choice if they 
wish to do so). 

Once the user has successfully imported the example dataset, they will be able to 
view the details of the dataset (lifeexp.dta) as shown in Fig. 12.9 with 68 observations 
and 6 variables in the data sample.

The syntax and code for importing and attaching the file in R are as shown below:
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Fig. 12.9 Example of a .dta dataset imported and stored as an R object in R

# Step 3—Conduct Tests for Assumptions and Analyze Data 

Now that we have imported the example dataset and stored this in an R object we 
named “Tau.Rho.data”, we can proceed to analyze the data. 

As defined in Step 3A in Fig. 12.8 (Lines 20–30), we will first conduct the test of 
assumptions (e.g., data normality, and factorization of ordinal data type, etc.), and 
then perform the Kendall’s tau and Spearman’s rho tests (Step 3B, Fig. 12.10, Lines 
32–57), if all the necessary conditions are met, by using the cor.test( ) function in R.

As defined earlier in the Introduction section (Sect. 12.1); 

• The Kendall’s tau and Spearman’s rho correlation statistics checks whether 
there exists a dependency or association between two independently sampled 
variables. 

• The targeted variables should be categorical or ordinal data type.
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Step 3B (Corr. Test) 

Fig. 12.10 Conducting Kendall’s tau and Spearman’s rho correlation tests in R

To illustrate the two tests (Kendall’s tau and Spearman’s rho) using the example 
dataset we stored as “Tau.Rho.data” in R (see: highlighted columns in Fig. 12.9): 

1. We will test whether there exists a dependency or association (correlation) 
between the “region” and “lexp” variables in the example (Tau.Rho.data) life 
expectancy data (two-tailed test). 

2. Then, we will also test whether the correlation (if there exist any) is a positive or 
negative (direction) correlation (one-tailed test). 

The syntax to performing the above tests in R is as shown in the codes provided 
and described below (see: Fig. 12.10, Step 3B, Lines 32–57):
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# Test for Assmp: Shapiro-Wilk's test for normality 

Tau.Rho.data %>% 

group_by(region) %>% 

summarise(`W Stat` = shapiro.test(lexp)$statistic, 

p.value = shapiro.test(lexp)$p.value) 

# Convert the Region (Ordinal) variable to numeric vector 

Tau.Rho.data$region <- as.numeric(Tau.Rho.data$region) 

str(Tau.Rho.data) 

# Method 1 

# Kendall's tau Correlation test where data is Ordinal (Two-tailed) 

Tau.Corr.test <- cor.test(Tau.Rho.data$region, Tau.Rho.data$lexp, method 
= "kendall") 

Tau.Corr.test 

# Kendall's tau test for Positive Correlation  (One-tailed) 

Tau.Corr.test2 <- cor.test(Tau.Rho.data$region, Tau.Rho.data$lexp, 
method = "kendall", alternative = "greater") 

Tau.Corr.test2 

# Kendall's tau test for Negative Correlation  (One-tailed) 

Tau.Corr.test3 <- cor.test(Tau.Rho.data$region, Tau.Rho.data$lexp, 
method = "kendall", alternative = "less") 

Tau.Corr.test3 

# Method 2 
# Spearman's rho Correlation test where data is Ordinal (Two-tailed) 

Rho.Corr.test <- cor.test(Tau.Rho.data$region, Tau.Rho.data$lexp, method 
= "spearman", exact=FALSE) 

Rho.Corr.test 

# Spearman's rho test for Positive Correlation  (One-tailed) 

Rho.Corr.test2 <- cor.test(Tau.Rho.data$region, Tau.Rho.data$lexp, 
method = "spearman", alternative = "greater", exact=FALSE) 

Rho.Corr.test2 

# Spearman's rho test for Negative Correlation  (One-tailed) 

Rho.Corr.test3 <- cor.test(Tau.Rho.data$region, Tau.Rho.data$lexp, 
method = "spearman", alternative = "less", exact=FALSE) 

Rho.Corr.test3
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Useful Tips and Information 

• The users should always use the alternative = “greater” and 
alternative = “less” options to specify the “positive” and “negative” 
(direction) correlation analysis (i.e., for one-tailed test), respectively. 

• Another important task the authors conducted which the users may need to do 
(depending on the readily available dataset) prior to performing the tests (Kendall 
or Spearman) was to factorize the targeted ordinal data type (e.g., region) into 
a numeric format (see: Fig. 12.8, Lines 28–30) before applying the cor.test( ) 
function or methods. 

***Note: For  Spearman’s rho test (Method 2), we included the R code 
exact=FALSE in the cor.test( ) function (see: Fig. 12.10, Lines 48, 52, and 56). 
This was done in order to handle the error “Cannot compute exact p-value with ties” 
when running the method (Method 2—see Fig. 12.10). This is owing to the fact that 
the Spearman’s rho method is much more sensitive to error and handling discrep-
ancies in data samples than the Kendall’s tau method, as we explained and pointed 
out earlier in Sect. 12.1). 

Once the user has successfully run the set of codes and analysis as defined in 
Steps 3A and 3B (Figs. 12.8 and 12.10, Lines 20–57), they will be presented with 
the results of the “tests for assumptions”, followed by the “Kendall’s tau” (method 
1) test, and then “Spearman’s rho” (method 2) tests in the Console in R as shown in 
Figs. 12.11a, b, and c, respectively. 

Consequentially, in Fig. 12.11a, the authors performed the test for assumption 
(data normality) for the Kendall’s tau and Spearman’s rho correlation analysis in 
order to determine if the selected or targeted variables “region” and “lexp” are  
suitable for conducting the two tests.

As highlighted in the figure (Fig. 12.11a), we can see that the normality 
test using the Shapiro–Wilk’s method or function—shapiro.test( ) (where we 
assume a value of p > 0.05 is normal) shows that the distribution of the two 
variables was not normally distributed, with p-values of the “region” variable 
(with three ranked groups) when analyzed against the “lexp” variable showing to 
be mostly non-normal values (p≤0.05) whereby the values of p-value=0.0203 
(W=0.938) for “Eur & C.Asia”, p-value=0.0538 (W=0.878) for “N.A”, and 
p-value=0.308 (W=0.914) for “S.A”, respectively. Therefore, we assume 
that the dataset or analyzed variables are not normally distributed, and a distributed-
free method such as the Kendall’s tau and Spearman’s rho correlation analysis will 
be suitable for analyzing the data sample. 

Thus, we proceed to conduct the “Kendall’s tau” and “Spearman’s rho” corre-
lation analysis as defined in Step 3B (Fig. 12.10, Lines 32–57) and the results are 
as presented in Figs. 12.11b and c, respectively. 

As shown in Figs. 12.11b, c, the authors performed the Kendall’s tau and 
Spearman’s rho tests by considering the two variables “region” and “lexp” in the 
example data (stored as Tau.Rho.data in R). 

• The results of the Kendall’s tau tests were stored in an R object 
we named “Tau.Corr.test” for  the  two-tailed analysis, and then
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“Tau.Corr.test2” and “Tau.Corr.test3” for  the  one-tailed analysis, 
respectively. 

• Accordingly, we stored the results of the Spearman’s rho tests in R 
objects we called “Rho.Corr.test” for  the  two-tailed analysis, and then 
“Rho.Corr.test2” and “Rho.Corr.test3” for  the  one-tailed analysis, 
respectively.

Fig. 12.11 a Results of test for data normality and factorization displayed in the Console in R. 
b Results of Kendall’s tau correlation tests displayed in the Console in R. c Results of Spearman’s 
rho correlation tests displayed in the Console in R
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Fig. 12.11 (continued)
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Fig. 12.11 (continued)

# Step 4—Plot and Visualize Correlation Between the Variables 

As previously illustrated earlier in Sect. 12.2, another way to check whether there is 
association or relationship (correlation) between two variables is by plotting them 
as graph. By so doing, the researcher or data analyst are able to visualize the linear 
line (correlation) between the two analyzed variables. 

As represented in Figs. 12.12a, b (see Step 4, Lines 60–74) and the resultant 
scatterplots in the same figures (Fig. 12.12a, b); the authors utilized the ggscatter( ) 
function to visualize the association or linearity between the two variables “region” 
and “lexp” as contained in the example data we stored as “Tau.Rho.data” in R.

The syntax and code we used to plot the graphs for both the Kendall’s tau (method 
1) and Spearman’s rho (method 2) correlation is as shown in the codes below, and 
the resultant charts are represented in Figs. 12.12a and b, respectively.
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Fig. 12.12 a Plot for Kendall’s tau correlation (test for dependency) between two variables in R 
using the ggscatter() function. b Plot for Spearman’s rho correlation (test for association) between 
two variables in R using the ggscatter() function
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# Step 5—Results Interpretation (Kendall’s Tau and Spearman’s Rho) 

The final step for the Kendall’s tau (method 1) and Spearman’s rho (method 2) 
correlation analysis is to interpret and understand the results of the tests. 

By default, the hypothesis for conducting the tests (Kendall’s tau and Spearman’s 
rho) by considering the analyzed variables “region” and “lexp” in this partic-
ular example (see: Fig. 12.11b, c) is; 

Two-Tailed Kendall’s Tau and Spearman’s Rho Correlation Test 

• (H1) IF the p-value of the tests is less than or equal to 0.05 (p≤0.05), THEN we can 
assume that there is a dependency or association between the two variables (region 
and lexp). Thus, the population correlation coefficient (ρ) /= 0. Meaning that the 
population correlation coefficient is not 0, and consequently, we can assume that 
a non-zero correlation exist between the “region” and “lexp” variables. 

• (H0) ELSE IF the p-value is greater than 0.05 (p > 0.05) THEN we can assume 
that there is no correlation (association) between the two variables. Thus, ρ = 0. 
Meaning that the population correlation coefficient is 0, and therefore, there is no 
association (correlation) between the two variables. 

One-Tailed Kendall’s Tau and Spearman’s Rho Correlation Test 

• (H1) IF the p-value of the test is less than or equal to 0.05 (p ≤ 0.05), THEN we 
can statistically assume that the value of ρ > 0, i.e., the population correlation 
coefficient is greater than 0, thus, a positive correlation exist between the two 
analyzed variables. 

OR 
ρ < 0, i.e., the population correlation coefficient is less than 0, thus, a negative 

correlation exist between the two variables (region and lexp).
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• (H0) ELSE IF the p-value is greater than 0.05 (p > 0.05) THEN we can conclude 
that there is no correlation between the two variables. Thus, ρ = 0. Meaning that 
the population correlation coefficient is 0, and therefore, there is no association 
(correlation) between the two variables. 

> Tau.Corr.test <- cor.test(Tau.Rho.data$region, Tau.Rho.data$lexp, 
method = "kendall") 

> Tau.Corr.test 

 Kendall's rank correlation tau 

data:  Tau.Rho.data$region and Tau.Rho.data$lexp 

z = -1.6415, p-value = 0.1007 
alternative hypothesis: true tau is not equal to 0 

sample estimates: 

       tau  
-0.1632955) 

> Rho.Corr.test <- cor.test(Tau.Rho.data$region, Tau.Rho.data$lexp, 
method = "spearman", exact=FALSE) 
> Rho.Corr.test 

Spearman's rank correlation rho 

data:  Tau.Rho.data$region and Tau.Rho.data$lexp 
S = 62860, p-value = 0.1024 

alternative hypothesis: true rho is not equal to 0 

sample estimates: 

rho 
-0.1997594) 

As shown in the results above which is the outcome of the Kendall’s tau (method 
1) and Spearman’s rho (method 2) correlation analysis (Two-tailed) for the example 
dataset (Tau.Rho.data) that we have reported in Fig. 12.11b, c; the meaning of 
the results of the cor.test( ) method or function that we implemented to test the 
association or dependency between the region and lexp variables (stored as R 
objects “Tau.Corr.test” and “Tau.Corr.test”) can be explained as a list 
containing the following: 

Method 1: Kendall’s Tau 

• Statistics: z = −1.6415 denotes the value of the Kendall’s tau correlation 
analysis. 

• p-value: p-value = 0.1007 is the p-value (significance level) of the test. 
• Sample estimates: tau = −0.1632955 is the value of the population 

correlation coefficient.



274 12 Correlation Tests in R: Pearson Cor, Kendall’s Tau, and Spearman’s Rho

Method 2: Spearman’s Rho 

• Statistics: s = 62860 signifies the value of the Spearman’s rho correlation 
analysis. 

• p-value: p-value = 0.1024 is the p-value (significance level) of the test. 
• Sample estimates: rho = −0.1997594 is the value of the population 

correlation coefficient. 

Statistically, we can see that the p-value of both tests, i.e., the Kendall’s tau 
(Tau.Corr.test, z=-1.6415, p=0.1007, method 1) and Spearman’s rho 
(Rho.Corr.test, s=62860, p = 0.1024, method 2) correlation analysis 
(Two-tailed) are conventionally the same (p=0.1) and greater than the stated or scien-
tifically acceptable significance levels (p ≤ 0.05). Therefore, we reject the H1 and 
accept H0 by supposedly concluding that there is no dependency or association 
(correlation) between the two sets of analyzed variables (region and lexp) in the  
example data (two-tailed test). 

Also, as shown in the next results reported below, and in Figs. 12.11b, c for the 
“one-tailed” correlation tests: 

• We checked whether the correlation, if any? (in this case, no) may be a positive 
or negative (direction) correlation by considering the outcomes or output of the 
Kendall’s tau and Spearman’s rho tests, respectively. 

Method 1: Kendall’s Tau Test for Positive or Negative Correlation (One-Tailed) 

> Tau.Corr.test2 <- cor.test(Tau.Rho.data$region, Tau.Rho.data$lexp, 
method = "kendall", alternative = "greater") 

> Tau.Corr.test2 

Kendall's rank correlation tau 

data:  Tau.Rho.data$region and Tau.Rho.data$lexp 

z = -1.6415, p-value = 0.9497 

alternative hypothesis: true tau is greater than 0 

sample estimates: 
tau 

-0.1632955 

> > Tau.Corr.test3 <- cor.test(Tau.Rho.data$region, 
Tau.Rho.data$lexp, method = "kendall", alternative = "less") 

> Tau.Corr.test3 

Kendall's rank correlation tau 

data:  Tau.Rho.data$region and Tau.Rho.data$lexp 

z = -1.6415, p-value = 0.05035 
alternative hypothesis: true tau is less than 0 

sample estimates: 

tau 

-0.1632955)
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Method 2: Spearman’s Rho Test for Positive or Negative Correlation (One-
Tailed) 

> Rho.Corr.test2 <- cor.test(Tau.Rho.data$region, Tau.Rho.data$lexp, 
method = "spearman", alternative = "greater", exact=FALSE) 

> Rho.Corr.test2 

Spearman's rank correlation rho 

data:  Tau.Rho.data$region and Tau.Rho.data$lexp 
S = 62860, p-value = 0.9488 

alternative hypothesis: true rho is greater than 0 

sample estimates: 
rho 

-0.1997594 

> Rho.Corr.test3 <- cor.test(Tau.Rho.data$region, Tau.Rho.data$lexp, 
method = "spearman", alternative = "less", exact=FALSE) 

> Rho.Corr.test3 

Spearman's rank correlation rho 

data:  Tau.Rho.data$region and Tau.Rho.data$lexp 

S = 62860, p-value = 0.05121 

alternative hypothesis: true rho is less than 0 
sample estimates: 

rho 

-0.1997594) 

As gathered in the above results for the “one-tailed” test for positive and nega-
tive correlation (direction test) for the Kendall’s tau (method 1) and Spearman’s rho 
(method 2) tests; we can see that the results of the direction test (one-tailed) based on 
the p-values or estimated significance levels, i.e., p ≤ 0.05, show that there is a nega-
tively directed correlation between the targeted variables (Tau.Corr.test3, p 
= 0.05035) and (Rho.Corr.test3, p = 0.05121), respectively. Indeed, 
this is also reflected in the outcomes of the two-tailed test results (see Fig. 12.11b, 
c), therein we found that the sample estimates or population correlation coefficient 
(ρ) is less than 0, (i.e. Kendall tau, ρ = −0.1632955) and (Spearman rho, ρ = 
−0.1997594), and thus, it can be said in addition to the fact that there was no 
correction or association between the two analyzed variables (region and lexp), that 
a negatively directed correlation exists between the two variables (region and lexp).
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12.4 Summary 

In this chapter, the authors covered and demonstrated to the readers how to conduct 
the three main types of Correlational Analysis in R. This includes the practical 
illustration of how to perform the Pearson cor, Kendall’s tau, and Spearman’s rho 
correlation tests using R. 

We illustrated how to conduct the Pearson correlation test, also known as the 
Pearson product–moment correlation coefficient in Sect. 12.2. While in Sect. 12.3, 
the chapter covered how to perform the Kendall’s tau and Spearman’s rho correlation 
tests. 

Also, the chapter covered in each of the above sections (Sects. 12.2 and 12.3) how  
to graphically plot or visualize the correlation between two specified variables and/ 
or the results of the correlational analysis. The content of the chapter also discussed 
in detail how to interpret and understand the results of the three main tests (Pearson, 
Kendall’s tau, and Spearman’s rho) in R. 

In summary, the main contents covered in this chapter include: 

• Pearson correlation (also known as Pearson Product–moment correlation coeffi-
cient) is a parametric procedure or statistical test of hypothesis used to compare 
the relationship that exists (linearity) between two sets of continuous (usually 
normally distributed) variables. 

• Kendall’s tau (also known as Kendall rank correlation coefficient) is described 
as a non-parametric procedure (distribution-free) or statistical test of hypothesis 
applied by the researchers to measure the strength of dependence or association 
between two categorical or ordinal variable types. 

• Spearman’s rho (also known as Spearman rank correlation coefficient) is equally 
described as non-parametric procedure (distribution-free) or statistical test of 
hypothesis applied by the researchers to measure the degree of association between 
two categorical or ordinal variable types. 

• Both the Kendall’s tau and Spearman’s rho correlation tests are considered as the 
non-parametric versions or alternative to the Pearson’s correlation test. 

When choosing whether to conduct a Pearson, Kendall tau, or Spearman’s rho 
correlation tests? The researcher or data analyst should: 

• Perform the “Pearson correlation” if the targeted variables come from an indepen-
dently sampled population, are normally distributed, in continuous data format, 
and shows or presents to be linearly related when plotted. 

• Perform the “Kendall’s tau or Spearman’s rho” tests if the targeted variables 
come from an independently sampled population, are distribution-free (i.e., non-
normally distributed), and in categorical or ordinal data format. Although it is 
noteworthy to mention that the two tests (i.e., Kendall’s and Spearman’s) can also 
be applied for discrete or interval datasets, as long as the dataset being analyzed 
has violated the test of assumptions such as data normality or homoscedasticity. 

• In any case (be it Pearson, Kendall’s tau, or Spearman’s rho); the researchers 
or data analyst can perform a “one-tailed” correlational analysis to determine
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the direction test (positive or negative) of the linear relationship or association/ 
dependency (if there exist any) between the analyzed variables. 
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