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Preface 

The goal of scientific research is often to investigate a specific phenomenon or topic 
and find relationships that exist between the underlying variables or factors within 
the subject population to be able to draw conclusions. The statistical analysis is 
an important part of the scientific research, particularly in the social sciences. It 
involves the process of collecting and analyzing different data samples in order to 
identify patterns or trends that can be used to provide valuable insights into the 
research or draw conclusions. The procedure for performing the various statistical 
operations and data scrutiny is called Statistical Data Analysis. The researchers can 
use this procedure to test different hypotheses and make estimations about the studied 
populations. 

This book is written for statisticians, data analysts, programmers, researchers, 
teachers, students, professionals, and general consumers on how to perform different 
types of statistical data analysis for research purposes using the R programming 
language. R is an open-source software and object-oriented programming language 
with an integrated development environment (IDE) called RStudio for computing 
statistics and graphical displays through data manipulation, modeling, and calcu-
lation. R packages and supported libraries provide the users with a wide range of 
functions for programming and analyzing of data. Unlike many of the existing statis-
tical softwares, R has the added benefit of allowing the users to write more efficient 
codes by using command-line scripting and vectors. It has several built-in functions 
and libraries that are extensible and allow the users to define their own (customized) 
functions on how they expect the program to behave while handling the data, which 
can also be stored in the simple object system. 

For all intents and purposes, this book serves as both textbook and manual for R 
statistics, particularly in academic research, data analytics, and computer program-
ming targeted to help inform and guide the work of the R users or statisticians. It 
provides information about different types of statistical data analysis and methods, 
and the best scenarios for use of each case in R. It gives a hands-on step-by-step prac-
tical guide on how to identify and conduct the different parametric and non-parametric 
procedures vastly used in social science research. This includes a description of the 
different conditions or assumptions that are necessary for performing the various
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statistical tests, and how to understand the results of the different methods. The 
book also covers different data formats and sources, and how to test for reliability 
and validity of the available datasets used for research purposes. Different research 
experiments, case scenarios, and examples are explained in this book. It is the first 
book to provide a comprehensive description and step-by-step practical hands-on 
guide on how to carry out the different types of statistical analysis in R, particularly 
for research purposes with examples. Ranging from how to import and store datasets 
in R as objects, how to code and call the R methods and functions for manipulating 
the datasets and objects, factorization, and vectorization, to better reasoning, inter-
pretation, and storage of the results for future use, and graphical visualizations and 
representations. Thus, the congruence of Statistics and Computer programming for 
Scientific Research purposes. 

Structure and Organization 

The content of this book is organized into 13 chapters that are subdivided (classified) 
into two parts: Part I and Part II. 

The chapters in Part I—which covers Chaps. 1–6 focus on introducing the readers 
to the basic concepts of R programming and how to use data in R, particularly 
for research purposes. This includes introducing the readers to the norm of scien-
tific research and the different elements or components that form a typical research 
process. This part of the book is especially intended for readers who are new to the 
topic or require a refresher on their knowledge of the R topic or understanding of the 
different statistical methods and analysis in scientific research. The chapters in Part I 
prepare the users for easy and efficient use and application of the different statistical 
methods and analysis that are written in the remainder of chapters in Part II of the 
book. 

The chapters in Part II—which covers Chaps. 7–13 focus on the practical imple-
mentation of the different types of statistical data analysis for research using R. This 
part is meant for readers who have gained advanced knowledge of the topic, and may 
have the need for applying the various illustrated methods for their research use or 
data analysis problems. 

The content of the book has been structured in a way that it gives a hands-on 
step-by-step practical guide to the users on how to identify and conduct the different 
statistical tests and procedures for their research purpose. The users can make refer-
ences or choose to skip to the specific methods or chapters of interest based on their 
expert or individual needs. 

The following is a brief description of each of the chapters in this book:
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Part I 

Chapter 1 presents an introduction to the R programming language and RStudio 
software particularly for conducting statistical data analysis, graphical displays, 
modeling, and calculations. It covers the basic concept of R programming, and how 
the readers can be able to install and run their first R project. 

Chapter 2 explores the basic principles and concepts of data management and 
manipulation in R by discussing what are R objects, vectors, packages, and libraries, 
including graphs and data visualization methods using the RStudio IDE. It introduces 
the users to the different functions and methods for working with data in R. 

Chapter 3 introduces the readers to the main tests of data normality and relia-
bility using R. The most commonly used and frequently applied type of methods for 
research are described and illustrated in detail in this chapter. 

Chapter 4 explains the Parametric and Non-Parametric Tests for statistical data 
analysis, and the best scenarios for the use of each test. The chapter provides a guide 
for the readers on how to choose which test is most suitable for their specific research, 
including a description of the differences, advantages, and disadvantages of using 
the two types of tests. 

Chapter 5 describes what are dependent and independent variables for conducting 
research experiments. It introduces the readers to the different conditions for the use 
of the two types of variables in scientific research. The differences between the two 
variables (independent versus dependent) and examples of each use case scenario 
are also provided in this chapter. 

Chapter 6 provides the readers with information about the various types of statis-
tical data analysis methods used in scientific research and examples of best scenarios 
for the use of each method. 

Part II 

Chapter 7 introduces and explains to the readers how to run a linear and logistic 
regression analysis in R using RStudio. This statistical technique helps to estimate 
the association or dependency of the relationship between two variables. 

Chapter 8 provides the readers with guidelines on how to run the T-tests for evalu-
ating the mean of one or two groups of variables using R. The Independent samples, 
Paired sample, and One sample t-tests are explained and practically illustrated in this 
chapter. 

Chapter 9 provides detailed information on how to run the analysis of variance 
(ANOVA) test in R. This test helps to determine the mean differences that may exist 
in data samples. The One-way and Two-way ANOVA are explained and practically 
illustrated in this chapter.
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Chapter 10 explains and illustrates how to apply a Chi-squared (X2) analysis in 
R. The test is used to compare how expectations are linked with the actual observed 
experimental data. 

Chapter 11 explains and demonstrates how to analyze the effect of a variable 
over another using the “Mann-Whitney U” and “Kruskal-Wallis H” tests. These are 
non-parametric equivalents and alternatives to the Independent t-tests and ANOVA 
used for non-normally distributed dataset in the nominal or ordinal scales, otherwise 
referred to as distribution-free tests. 

Chapter 12 explains and illustrates how to conduct the three primary correla-
tional analyses in R which includes: Pearson cor, Kendall’s tau, and Spearman’s rho 
correlation tests. 

Chapter 13 explains and demonstrates how to perform the Wilcoxon test in R. This 
distribution-free test which is of two types (Signed-Rank and Sum-rank) and assumes 
that the data comes from two matched or dependent populations, are practically 
illustrated in this chapter. 

Data Availability: Link to the different example datasets used in the practical illus-
trations and statistical data analysis and computations in this book have been provided 
in the individual chapters where each of the specific datasets is used. In addition, 
the authors have uploaded the list of example datasets to the following repository: 
https://doi.org/10.6084/m9.figshare.24728073 for easy access and download for use 
and practice by the readers. 

Monterrey, Mexico Kingsley Okoye 
Samira Hosseini

https://doi.org/10.6084/m9.figshare.24728073
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Part I 
Fundamental Concepts of R Programming 
and Statistical Data Analysis in Research



Chapter 1 
Introduction to R Programming 
and RStudio Integrated Development 
Environment (IDE) 

1.1 What is R Programming Language? 

R is an open-source software or programming language for computing statistics 
and graphical displays through methods such as data manipulation, modeling, and 
calculation (Ihaka & Gentleman, 1996; Venables et al., 2020). In theory, it is a 
programming language developed by Ross Ihaka and Robert Gentleman in 1993 
(Ihaka & Gentleman, 1996), and is regarded as an implementation of the S and S-
Plus language that was originally developed at Bell Laboratories by Rick Becker, 
John Chambers and Allan Wilks (Becker et al., 1988). Practically, R packages and 
the several supported methods are available and are implemented using integrated 
developments environment (IDE) such as the RStudio (see Sect. 1.2). Technically, 
R provides a wide range of statistical and graphical techniques for programming 
and modeling: ranging from linear and nonlinear modeling techniques to statistical 
tests and analysis, predictive modeling such as clustering and classification, and time 
series analysis, etc. 

For research and data analytics purposes (see Fig. 1.1), R programming and statis-
tics (R Project, 2023) are performed and used in a series of steps that includes 
programming, transforming, discovering, modeling, and communication of the 
outputs or results (Wickham & Grolemund, 2017).

Whilst many existing statistical software, such as SAS (SAS Institute, 2023) 
and SPSS (IBM, 2022), provide the researchers or data scientists with a bounteous 
output from conducting the different statistical analyses or methods, R tends to give 
the analysts a minimal output by storing the results of the methods in an apt “object” 
for further functions or interrogations. 

Therefore, with R being an “object-oriented programming language” (Mailund, 
2017), the intermediate results are stored in objects that can be recalled, re-used, 
or manipulated by running other pre-defined functions or codes by pointing to the 
“object name”. In other terms, R is a functional and object-oriented programming
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Communicate Compute (compile and run) the codes - viewed as graph or reports 
with R Markdown or Applications to share with the scientific world. 

Model Wide array of tools and methods to capture the right tests or model 
for your data, are available 

Discover Investigate the available data, define (or refine) the hypothesis and 
methods to analyze them 

Transform Implement a collection of libraries designed specially for the primary 
purpose of statistical analysis, data analytics, or data science tasks 

Program Support sets of different clear and accessible programming tools and 
packages that can be used to compute and manipulate data 

Fig. 1.1 Conceptual overview of steps to using R programming for statistical data analysis in 
research

used to analyze datasets by running mathematical simulations, rearranging complex 
datasets into simpler and more useful formats and functions, etc. (Matloff, 2011). 

Among the many benefits of R in comparison to the other statistical tools and 
software includes (Douglas et al., 2020; Matloff, 2011): 

1. The capacity to write more efficient code using parallel method or vectorization, 
because of its programmable integrated environment that uses command-line 
scripting. 

2. The capability to define and customize the functions or codes (e.g., how the 
analysts expect the resultant models to behave) upon handling of the data. R has 
several built-in functions and libraries that are extendable (extensible) and allow 
the users to define their own (customized) functions or methods that can be stored 
in the simple object system. 

3. The capability to create artful (illustrative) graphs to visualize or have a 
conceptual overview of complex data characteristics and functions. 

4. The capacity to interface R language with other programs or softwares (e.g., C/ 
C++, Tableau, Python) for improved and better functionality or speed of data 
analysis. 

5. The capacity to find different packages that can be used to perform image manip-
ulation, textual data analysis or natural language processing, machine learning 
and classifications, etc. 

6. Troubleshooting of bugs (code) with an advanced level of debugging perfor-
mance. 

Other advantages of using R particularly as it concerns its technicality or 
conducting the different statistical data analysis discussed in this book, include 
(Venables et al., 2020):
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• It is built on a well-developed, simple, and effective programming language called 
“S and S-Plus” that supports user-defined recursive functions and conditionals 
loops.

• It consists of an effective data handling and storage facility with a wide range 
of coherent and integrated collections of intermediate tools (packages) and suite 
operators for statistical data analysis and calculating arrays and matrices.

• It supports different graphical facilities or functions for data manipulation and 
displays, either directly on the computer screen or storage as soft copy and hard 
copy on the machine. 

However, just like every other programming language, aside from the statistical 
power of the software, R has its own sets of limitations. R can be daunting for first-
time users and people who do not have prior programming knowledge or experience 
may find it difficult to use the software. Not necessarily because it is more difficult 
than other programming languages, but because the syntax is different from that of the 
many other existing languages. Also, R-supported methods or algorithms are spread 
across different packages, and in consequence, users with no prior knowledge of some 
of the packages might find it hard to implement the specific methods or algorithms. 
Thus, the authors has provided in the first part (PART I) of the book, the fundamental 
concepts of the R programming and statistical data analysis to guide the work of 
the readers. In addition, R commands give minimal consideration to the computer 
memory and management and use a lot of the computer physical memory to store 
the results of the methods as objects, which may be different from some of the other 
programming languages like Python (Python Software Foundation, 2023). Thus, it 
uses more computational power and memory. But, R is a continuously evolving 
language with newer versions and functionalities being developed, and therefore, 
much of the limitations will eventually fade away with fresher versions and future 
updates. 

1.2 RStudio Integrated Development Environment (IDE) 

RStudio is a “friendly front end to R language”. It allows the researchers and data 
scientists to practically implement the R packages, methods, and run the several lines 
of codes. By definition, “RStudio” is an Integrated development environment (IDE) 
designed to help researchers and analysts to be more efficient and productive with R 
(Rstudio, 2023). Typically, RStudio consists of a console, syntax-highlighting editor 
for direct code execution, and several sophisticated tools and functions for viewing 
the data history, visualization, troubleshooting of codes, and managing of the project 
workspace as the authors discuss more in detail later in this chapter. 

Just like R programming language, RStudio is free and open source (Rstudio, 
2023). Its graphical user interface (GUI) is logically systematized in a way that 
allows the users to clearly view the data tables and graphs, the source codes, and 
output/results of the codes, simultaneously.



6 1 Introduction to R Programming and RStudio Integrated Development …

The RStudio IDE offers the users with Import-Wizard features for importing 
files of different formats into the environment, e.g., comma-separated values (*.csv), 
Excel (*.xlsl), SAS (*.sas), SPSS (*.sav), and Stata (*.dta) file formats without having 
to write the codes. Also, just like many of the existing IDEs or GUIs that are used 
to execute different programming languages, RStudio has windows with multiple 
tabs, drop-down menus, and many customization options. And, it is available for 
Windows, Macintosh, and Linux operating systems (OS) (Rstudio, 2023). 

Among the many features and functionalities of RStudio IDE includes:

• a window that allows the user to write codes and view the results in real time.
• navigate through the files on the local machine or computer.
• check the details and history of the imported/analyzed data and variables.
• visualization of the results and plots (graphs, models) that are generated. 

The RStudio IDE can also be used for developing packages, modeling and writing 
of executable applications, and natural language and machine learning techniques, 
etc. 

It is important when working with R to know the difference between the “R 
language” and “RStudio” as covered already in this chapter (see Sects. 1.1 and 1.2). 
It is noteworthy, to always keep in mind that while “R” is a programming language 
that can practically be used to statistically compute and manipulate the different 
variables (data) and models. On the other hand, “RStudio” makes use of R language 
to develop and show the statistical programs/outputs. Thus, “RStudio allows the 
users to develop and edit programs using R”. Interestingly, R can be used without 
RStudio, but RStudio cannot be used without R. The user or researcher must first 
install R before they can install RStudio on their computer, as the authors cover in 
the next section of this chapter. 

1.3 Installing and Configuring R and RStudio Software 

This section of the chapter covers the different steps on how to download, install, 
and configure R and RStudio before using it for statistical data analysis or research 
purpose. 

1.3.1 Downloading and Installing R Language 

Installing R on the computer is very simple and easy. All the user need is to know 
which operating system (OS) they are using so that they can download the right 
software for installation on the computer system. 

The official site for downloading the R free software is via the following link: 
https://www.r-project.org/.

https://www.r-project.org/
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Fig. 1.2 Downloading R software 

When you visit the site, you will find different binary files for the different types of 
operating systems (OS) that the R software support, particularly the most common: 
Windows, Mac OS, and Linux. The latest versions of Linux distributions come 
with R by default. But for Windows and Mac OS, the user will need to download 
and install the software as follows: 

Go to https://www.r-project.org/ by entering the URL on the web browser and 
click on “download R” as shown in Fig. 1.2. 

When the user selects “download R”, they will be automatically directed to 
another page where they will be asked to select the Country from which they will 
be using R software, or yet the closest location to you if the country of location is not 
listed on the site. Navigate to the country of choice and click on any of the CRAN 
links under the country to proceed with the download process. CRAN is a network 
of ftp (file transfer protocol) and web servers around the world that store identical, 
up-to-date, versions of code and documentation for R. 

For example, as shown in Fig. 1.3, the user can navigate to Mexico (e.g., the 
authors of this book are affiliated with the country at the time of writing this book) 
and select https://cran.itam.mx/ to proceed with the downloading process. ***Note, 
it is recommended to always choose the closest CRAN link to you upon downloading 
the R software.

When the user clicks on the R CRAN binary distribution of their choice, they will 
be directed to a page where they can download the right version of R for the specific 
operating system (OS) they are using on the computer (see Fig. 1.4).

For example, as shown in Fig. 1.5 (or step 5), when the users click on Download 
R for (Mac) OS X, they will be directed to where they can then download the latest

https://www.r-project.org/
https://cran.itam.mx/
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Fig. 1.3 Country of location and nearest CRAN network for R download

Fig. 1.4 Downloading the right version of R for your operating system (OS)

version of R for Mac OS X. Same applies to the other types of operating systems 
(OS) such as Windows, if you are using the Windows operating system.

When the user clicks on the download link, the executable program (i.e., installa-
tion file) will be automatically downloaded on the computer. Navigate to the location 
where the downloaded file is stored on the computer and install it as every other 
application program, e.g., by double-clicking on the downloaded file. When you
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Fig. 1.5 Downloading the latest release of R for your operating system (OS)

double-click on the file, you will get a pop-up window as shown in Fig. 1.6a. Follow 
the steps illustrated in the figures (Fig. 1.6a, b, and c) by Clicking on Continue until 
you see the window that says you have successfully installed R software.

1.3.2 Downloading and Installing RStudio Software 

The next step after installing R on your computer, is to download and install the 
RStudio IDE that allows the users to use R. 

The official site for downloading the RStudio free software is via the following 
link: https://rstudio.com/ or https://posit.co/. 

As shown in Fig. 1.7, when you visit the RStudio website, you will find the down-
load link where the user can download the latest version of RStudio for their computer 
operating system (OS). ***Note that all the companies update their websites every 
now and then, and therefore, it may be likely that you find a different front-end 
display different from the one in Fig. 1.7, which the company uses at the time of 
writing this book. If you happen to find an updated website depending on when the 
reader is reading or using this book guide, just simply find where the download link 
is located on the website and follow the same steps or procedure discussed in this 
current chapter.

Click on the  “DOWNLOAD” menu (Fig. 1.7), and you will be directed to a page 
where you can download the RStudio software. Select the “Download” link for the 
“free version of RStudio Desktop” as shown in Fig. 1.8. Again, it is important to 
note that the web display is based on the time of writing this book. As you can see 
in the figure (Fig. 1.8), there are also paid versions of the software, but those are not 
covered in this topic.

https://rstudio.com/
https://posit.co/
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Fig. 1.6 a Installing R on the computer or local machine (step 1). b Installing R on the computer 
or local machine (step 2). c Successfully installing R on the computer or local machine (step 3)
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Fig. 1.6 (continued)

Fig. 1.7 Downloading RStudio software

When you have selected the free version of the software, then select the “right 
version of the Installer for your Operating System (OS)” as shown in Fig. 1.9.

For instance, as shown in Fig. 1.9, when the user clicks on the download link 
for the file “RStudio.dmg” (which is for the MacOS latest version at the time of 
writing this book), the executable program (Installer) will be automatically down-
loaded on the computer system. Navigate to the location where the downloaded 
(Installer program) file is stored on your computer or local machine, and install it as 
every other application program, e.g., by double-clicking on the downloaded file. 

When you double-click or run the file, you will get a pop-up window as shown in 
Fig. 1.10.
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Fig. 1.8 Downloading free version of RStudio software

Fig. 1.9 Downloading the right version of RStudio for your operating system (OS)
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Fig. 1.10 Installing RStudio on your computer (e.g., for MacOS) 

As illustrated in the figure (Fig. 1.10), same installation process applies to other 
types of OS (operating system) such as Windows if you are using the Windows OS. 
Double-click the Installation file to start up the executable file (Installer program). 
Then, click on Continue until you see the window that says you have successfully 
installed the RStudio software. 

Once you have completed the installation process, start the RStudio IDE by 
either opening the application from the list of programs on your computer or clicking 
on the desktop shortcut icon. You will be presented with a Window as shown in 
Fig. 1.11.

Congratulations! You are now set to run and execute your first R project in RStudio. 
Welcome to using R programming for statistical data analysis in research covered as 
the main objective of this book. 

The first time the users open RStudio, they will be presented with three windows 
by default, i.e., Window-1, Window-2, and Window-3 (see Fig. 1.11). The fourth 
window (Window-4) is hidden by default and is only displayed when the user 
executes a program or run a command, but the users can also open it by selecting the 
“File” drop-down menu, then New File, and then R Script or simply by importing 
a dataset into the environment, which the authors will cover in detail in the next 
section (Sect. 1.4) and chapter (Chap. 2) of this book. 

In Table 1.1, the authors outline the description and functions of the different tabs 
(component) of the R window or integrated development environment (IDE) (see 
Windows 1, 2, 3, and 4 in Fig. 1.11).
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Fig. 1.11 RStudio integrated development environment (IDE)

1.4 Running Your First R Project in R Using RStudio 

In this section of the chapter, the authors introduces to the readers steps on how to 
create or start an R Project in RStudio. RStudio Projects make it easier and straight-
forward for the users to distribute their work into different categories or contexts, with 
each having their own working directory in the workspace including the history and 
source code documents. It is important to keep in mind that R projects are associated 
with a “working directory” where the users can save their new or running projects, 
and also retrieve existing projects. 

Users can create an RStudio project in either a (i) brand-new directory, (ii) an 
existing directory where they already have R code and data, (iii) or by cloning a 
version control repository, e.g., from Git, GitHub or Subversion (see Fig. 1.13). 

To create a new R Project in RStudio, start RStudio (see description in the 
previous section—Sect. 1.3). Once you are logged in and have the RStudio window 
open (see Fig. 1.11), click on the “File” menu at the top left corner of the RStudio 
window and select the “New Project” button as shown in Fig. 1.12. You will be 
presented with a pop-up window as shown in Fig. 1.13.

Select the “New Directory” option and fill in the pop-up with your chosen 
preferred project_directory_name by following the steps illustrated in Figs. 1.14 
and 1.15.
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Table 1.1 Description of function of the different tabs (component) of R window (IDE) 

RStudio window Component/ 
menu 

Description/function 

Window-1 
(console) 

Console tab Results/output of the executed codes are displayed (printed) 
here. Also, further commands can be entered via the window 

Terminal tab Command line system that allows the user to quickly control 
or access the operating system and make changes 

Jobs tab Contains a list of open job(s) the system has currently 
running or pending in R 

Window-2 
(file explorer) 

Files tab File Explorer that allows the user to access the different files 
and folders stored on the hard drive (C: drive) 

Plots tab Plots/graphs visualizations are displayed (outputted) at this 
location 

Packages tab Contains a list of packages (libraries) that are installed in R 
on your system. Users can also install new packages or 
update the existing ones through the tab 

Help tab Search window for help on different R topics, functions, or 
packages, and output location for the help commands 

Viewer tab Advanced tab for local web content 

Window-3 
(file environment 
or history tab, 
e.g., objects, 
data) 

Environment 
tab 

Shows the list of interactive R objects that are loaded in the 
IDE 

History tab Contains a list of key codes that are entered and executed 
unto the Console 

Connection 
tab 

Tab through which the user can connect R to other external/ 
existing data sources or database 

Tutorial tab Location where users can access different tutorials and learn 
about the several R functions, data types/variables, and 
commands 

Window-4 
(code editor) 

Source/code 
tabs 

A built-in text editor where the user enters the codes and 
commands, and can also find the shortcuts to run and save 
the commands/codes

When finished click the “Create Project” button and you’re done! Congratula-
tions once more! You have created your new project in R. 

With the window and a console open, for instance, the authors named our project 
“MyFirstR_Project” in the directory as shown in Fig. 1.16, we are ready to run the 
R script, therein we can code and run the programs.

To create a “new R script” and run your new/written codes, select the “File” 
drop-down menu, then “New File”, and then “R Script” as shown in Fig. 1.17.

You will be presented with a new working window or editor where you can start 
writing your code (see Fig. 1.18).

Now let’s run some simple lines of code. As shown in Fig. 1.19 (see Steps 1 
and 2), write the example codes from Line 1 to Line 4 in the Editor and execute the 
codes using the “Run” button (see Fig. 1.19). Example R code: Line 1: x <- 3 + 5
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Fig. 1.12 Creating a new project in RStudio 

Fig. 1.13 New project wizard pop-up window
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Fig. 1.14 Selecting the project type 

Fig. 1.15 Creating a new R project and directory name

Line 2: x Line 3: print(x) Line 4: print(“I am ready to work with data in R and start 
conducting the different statistical analysis for my research”)

*Remember, start from Line 1 (e.g., by clicking anywhere in the line) before 
running the codes, or alternatively, follow the steps illustrated in Fig. 1.20 to run 
(execute) all the codes at once.
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Fig. 1.16 New R project created in RStudio

Fig. 1.17 Creating a new R script
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Fig. 1.18 New R script window with the source/code tab

Fig. 1.19 Writing and running R scripts example in RStudio
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Fig. 1.20 Running all the R script source code in RStudio editor 

When finished or run all applied, you will be presented with a screen similar to 
the one in Fig. 1.19. Well done! You have just created and run your first R project 
and R script in RStudio. 

Next, as you can see in Fig. 1.19, the R Script is named “Untitiled1” by default. 
We will save the R script with a name on the computer or workspace so that we can 
retrieve it anytime or when we want. 

As illustrated in Fig. 1.21, click on the  “File” drop-down menu and choose the 
“Save as” option.

You will be presented with a pop-up window as shown in Fig. 1.22. Enter your 
chosen or preferred script name, for example, “MyFirst-RScript”, and click the 
“Save” button to save the Script with the new name.

Now, take another look at the new window or screen (see Fig. 1.23), you will find 
that the “Untitiled1” script has now changed or saved as the new name “MyFirst-
RScript”. Also, you will notice that the updated/saved file has also been included 
and listed in the File Explorer window (Fig. 1.23).

1.5 Tips and Technical Guidelines 

Here, the authors provide further tips and other useful information the readers, partic-
ularly the first timers to R, can find as a technical guide in their journey with R covered 
in this book.
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Fig. 1.21 Saving untitled R script

Fig. 1.22 Saving the R script in RStudio

1.5.1 Tips About a New R Project 

When the user creates a new project in RStudio:

1. It creates a project file with .Rproj extension within the directory. This is used 
as a reference point to the computer file system or yet shortcut for opening the 
project directly from the file system.
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Fig. 1.23 Saved R script and file explorer

2. It creates another hidden directory named .Rproj.user for storing and handling 
the temporary files, e.g., auto-save or state of the window. 

3. It loads the new project unto RStudio and displays the name in the Projects 
toolbar (see top right side of main toolbar in Fig. 1.23). 

1.5.2 Opening Existing R Projects and R Scripts 

There are various ways to open an existing R project or R Script: 

1. By selecting the specific Project from the list of “Recent Projects” from the  
“File” drop-down menu. The same procedure applies to opening a specific R 
script by selecting “Recent Files” from the  “File” menu and selecting the R 
script name. 

2. By using the “Open Project” command from the “File” drop-down menu, and 
then browse the working directory and select an existing project file (.Rproj). 
Same procedure applies to opening a specific R script by selecting “Open File” 
from the “File” menu, and then browses the working directory and select an 
existing R file (.R). 

3. By double-clicking on the specific project/file from the list of files in the File 
Explorer tab/window.
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The following actions are performed when a new or existing project is opened in 
RStudio: 

1. It starts a new R session. 
2. It sources the .Rprofile file in the main directory of the project. 
3. The .RData file and .Rhistory file in the main directory of the project will be 

loaded in the Environment or History Tab. 
4. The R working (current) directory will be set to the current projects’ directory. 
5. Existing source codes (if any) will be loaded into the editor window. 
6. Other relevant settings and active tabs of the project will be restored to the original 

form when it was last saved or closed. 

1.5.3 Working with Multiple R Projects 

RStudio allows the users to simultaneously work with more than one project at once 
by opening an instance of each project on its own. 

1. The users can use the “Open Project in New Session” option from the “File” 
drop-down menu to do this. 

2. Or by opening multiple project files from the File Explorer or system file by 
double-clicking on the specific folder or file in each setting as required. 

1.5.4 Closing or Quitting R 

The following actions are performed when the user closes an active project or opens 
another project concurrently:

• The source codes in the editor window are saved so that you can re-open or restore 
them when next you open the closed project.

• All available .Rhistory and .RData will be stored on the project directory.
• Other relevant settings and active tabs of the project will be stored in their current 

form.
• The R session will be terminated. 

1.6 Summary 

In this chapter, the authors provided an introduction to the R programming language 
and RStudio software or IDE. It covered the basic concept of R programming, and 
how the readers can install and run their first project using R. The capacity to write 
more efficient code using parallel method or vectorization is one of the main features 
of the R software illustrated in this chapter, because of its programmable integrated
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environment (RStudio) that uses command-line scripting. We also showed the capa-
bility to define and customize the R functions or codes. R has several built-in func-
tions and libraries that are extendable (extensible) and allow the users to define their 
own (customized) functions or methods that are stored in the simple object system. 
In the next chapter (Chap. 2), the authors focus on introducing the readers to how 
to effectively work with Data in R. This includes understanding and learning how 
to create Objects, Vectors, and Factorization in R, to understanding how to install 
the R Packages and Libraries, and then presents some hands-on examples of Data 
Visualization methods and practices. 
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Chapter 2 
Working with Data in R: Objects, 
Vectors, Factors, Packages and Libraries, 
and Data Visualization 

2.1 Introduction 

In the previous chapter (Chap. 1), the authors introduced the readers to R program-
ming language and how to successfully install and configure R software and 
RStudio on the system ready for data analysis. In this chapter, we will illustrate 
how to start using R to work with data. 

R can be used to conduct various statistical data analysis and graphical repre-
sentations. The R integrated development environment (RStudio) has many built-in 
functions and packages that allow the users to perform different types of data anal-
ysis, and is also extensible due to the fact that it allows the users to define their own 
additional functions or methods. R has a simple object system that allows the user to 
type in data or codes directly into the R’s interactive console or source code editor. 
However, a lot of the time, the researchers or data analysts are more likely to have 
already an available data that they want to work with, for instance, in a file stored 
somewhere on their local machine or on the internet. 

Therefore, over the next sections of this chapter, the authors will be looking at 
some of the different methods and ways the users can get data into R for analysis 
and visualizations. 

2.2 Preparing RStudio and Script for Working with Data 
in R 

To start working with data in R, first, the user needs to create an “R Project” and “R 
Script” or open an existing one, as we have already discussed and demonstrated in 
Chap. 1 of this book. For the illustrations in this chapter, we will continue working 
with the “MyFirstR_Project” we created earlier in the chapter (see Sect. 1.4, 
Chap. 1). ***However, the users are also welcome to create a new project with
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Fig. 2.1 R project in RStudio 

a new name if they wish to do so. The “MyFirstR_Project” is only for illustration 
purposes. 

Once you have created and/or opened the existing R project, you will be presented 
with a screen similar to the one in Fig. 2.1. See Sect. 1.3.2 in Chap. 1 for description 
of the different tabs and functions of the RStudio windows. 

We will create a new “R Script” named “WorkingWithDataInR” for use in 
working with the different data, R functions, and packages that we will explain and 
practicalize in this chapter. 

As shown in Fig. 2.2, Click on the File menu, then select New File, and click on 
R Script.

Now, name the new R Script as “WorkingWithDataInR” or any name of your 
choice, using the “Save As” option from the File menu as described in Fig. 2.3.

Now, we are ready to start working with the different datasets explored in this 
chapter in R using the new Script. 

In the coming subsections, we will cover some of the different ways the users can 
generate data, upload their own data, and work with data in R.
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Fig. 2.2 Creating a new R script

Fig. 2.3 New R script
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2.3 Working with Data in R 

Here, the authors explain and demonstrate how the users can effectively work with 
data using R with some working examples. 

2.3.1 Pre-loaded Sample Data in R 

When you install R on the computer, by default, the installation comes with different 
types of datasets that the users can try out for testing, learning, or even research 
purposes. The users can explore some of the pre-loaded test data in R to see how the 
datasets are loaded, the different features, and what basic functions the users can run. 
Although for research purposes, those pre-defined datasets may not be necessarily 
useful especially, as in most cases, the researchers already have their own data that 
they want to analyze which we will cover in more detail in the subsequent sections. 

To view the list of the pre-loaded R sample datasets, type the following 
command: data( ) in the source code editor window and run the code as shown 
in Fig. 2.4. 

data() 

Fig. 2.4 Getting the list of pre-loaded sample data in R 
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Fig. 2.5 List of pre-loaded datasets in R 

You will be presented with a list of the pre-loaded datasets in R opened in a new 
tab as shown in Fig. 2.5. 

As shown in the figure (Fig. 2.5), we can see that R has a set of pre-loaded data 
in a package called “datasets”. Each with its own different features or variable types. 
The users can printout any of these datasets of their choice, e.g., to view the different 
fields or variables that are contained in them. 

For example, let’s use the print() function to display the first data on that list (see 
Fig. 2.5) named “AirPassengers” as shown in Fig. 2.6.

To do this, go back to the “WorkingWithDataInR” script by clicking on the 
corresponding R Script tab (see Fig. 2.6), and then type and run the following 
command: 

print(AirPassengers) 

As shown in Fig. 2.6, the results of the print() command are displayed in the 
Console, and we can view the features and/or characteristics of the “AirPassengers” 
data.
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Fig. 2.6 Exploring the different pre-loaded sample datasets in R

***You can follow the same method to view any of the data of your choice in the 
list. For instance, “HairEyeColour”, “LifeCycleSavings”, etc. (see Fig. 2.7).

print(HairEyeColor) 

print(LifeCycleSavings) 

2.3.2 Creating Your Own Data in R 

R has a set of functions that allows the users to create their own data (aside 
from importing their own data which the authors will cover in the next section— 
Sect. 2.3.3).
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Fig. 2.7 Viewing more data from the R sample “datasets” package

To illustrate how to create our own data in R, we will use the following R functions, 
concatenate: c( ), repeat: rep( ), and Scan: scan( ) to create a dataset with some 
variables as shown in Fig. 2.8 (i.e., StudentName, Gender, Campus, Region, Group, 
and Grade). Then, we will create a “dataframe” to hold and display those variables 
as contained in the data.

Note: A “dataframe” is organized with rows and columns, similar to a spreadsheet 
or database table such as the one represented in Fig. 2.8.
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Fig. 2.8 Example of a typical data and structure format

To create the following data shown in Fig. 2.8 in R, first, the user needs to create 
a vector that holds all the fields or variables in the data (StudentName, Gender, 
Campus, Region, Group, and Grade). 

Now in the “WorkingWithDataInR” Script, as shown in Fig. 2.9, create the 
aforelisted vectors (variables are described in the table in Fig. 2.8) using  the  
concatenate: c( ), repeat: rep( ), and Scan: scan() functions. 

Fig. 2.9 How to create your own data in R
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The following executed codes are provided in the command: how to create your 
own data in R (see: highlighted part in the Source Code Editor—Fig. 2.9, Lines 
6–24). 

# How to Create Your Own Data in R 

StudentName <- c("AB","BC","CD","DE","EF","FG","GH","HI","IJ","JK") 
Gender <- c("Male","female","Male","Male","Female","Female","Male","Female","Male","Female") 
Campus <- c("Monterrey","Cuidad Juarez","Tampico","Saltillo","Laguna","Chihuahua","Monterrey", 
"Tampico","Laguna","Monterrey") 
Region <- rep("North", 10) 
Group <- c(1, 2, 3, 2, 1, 3, 1, 3, 2, 1) 
Grade <- scan() 

# NOTE: when you run the SCAN function, enter the values in the CONSOLE view section 

# Run the next code to view the scanned values. 
head(Grade, 10) 

# Create a Dataframe called Students.ExampleData to hold all the variables 
Students.ExampleData <- data.frame(StudentName, Gender, Campus, Region, Group, Grade) 

# View the created dataset 
View(Students.ExampleData) 

When the user have typed and run the lines of code up to the Grade vector (Line 
13, Fig. 2.9), the different variables as contained in the table described in Fig. 2.8 
will be created. Also see Chap. 1, Sect. 1.4 on how to run selected lines of code. 

***Remember that you will need to input the values for the “Grade” in the Console 
tab view as pointed out in Fig. 2.9. When you enter the last value in the table, i.e., the 
10th value which is 98, press the Enter key again to store the values in the “Grade” 
vector. You will receive a message that says “Read 10 items” as shown in Fig. 2.10.

***Note: You can create the “Grade” vector using the method we used to create 
the other vectors, e.g., “Group” vector. The scan( ) method was only used to 
demonstrate the different functionalities the users can perform in R. 

Now, run the rest of the codes, i.e., Lines 18 to 24 (see Fig. 2.9). You will discover 
that the dataframe named “Students.ExampleData” as shown in Fig. 2.11, will be 
created and displayed in a new tab. The content of this data (Students.ExampleData) 
should be similar to the one represented in Fig. 2.8.

Useful Tips and Information: 

1. As illustrated in Fig. 2.11 (see: highlighted part in the Environment Tab), we can 
see that when we created the “Students.ExampleData” dataframe; the values 
are stored as an “R  Object” with details of the different variables type (e.g., 
Character, Number) and the number of observations (which the authors will 
discuss further in detail in the subsequent Sect. 2.4 of this chapter. 

2. As shown in the Source Code (see Fig. 2.9), Character or String values are 
coded or represented using quotation marks “ ”.  

e.g.     StudentName <- c("AB","BC","CD","DE","EF","FG","GH","HI","IJ","JK") 

3. Whereas, Number or Integer values are not coded using quotes. 

e.g. Group <- c(1, 2, 3, 2, 1, 3, 1, 3, 2, 1)
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Fig. 2.10 Using the scan( ) function in R

4. When using the repetition function: rep( ), the user also has to provide the number 
of times they want R to repeat the coded value. For instance, in the following 
example for the Region vector, the authors have requested the program to repeat 
“North” ten times. 

Region <- rep("North", 10) 

5. When using the scan( ) function, once the user enters the last value as required, 
they need to press the Enter key again to read the item to the corresponding 
vector, as pointed in Fig. 2.11. 

6. As we can see in Figs. 2.9 and 2.10 (and we will be using in many of the future 
codes in this book), the hash sign (#) is used to provide  “Pseudo Code”, i.e., 
codes that do not count or affect the different functional lines of code, but are 
used in the codes to provide comments that are basically used to explain the 
functions of the different corresponding codes.
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Fig. 2.11 “Students.ExampleData” dataframe created and stored in R

2.3.3 Import and Using External Data in R 

R has different functions and libraries devoted to reading and importing external 
files and formats into the Run-time environment, e.g., common.txt files (.csv) and 
Excel (.xlsx) files, STATA (.dta) and SPSS (.sav), etc. In this section, we will look at 
some of these functions and libraries, and how they are used to import datasets into 
R, and in the different contexts. 

2.3.3.1 Importing and Using .txt and .csv (Comma-Separated) Files 
in R 

For this example, we will import a.txt and.csv files from the local machine or 
computer, and store the imported datasets in an R object named “MyData.txt” and 
“MyData.csv”, respectively. 

To demonstrate this function in R, visit the following links (see Figs. 2.12 and 
2.13) and download the following datasets:

.txt file named “A-Rod”—https://dasl.datadescription.com/datafiles/ (Fig. 2.12), 
and. 

.csv file named “Import_User_Sample_en.csv”—(https://www.microsoft.com/ 
en-us/download/details.aspx?id=45485 (Fig. 2.13).

https://dasl.datadescription.com/datafiles/
https://www.microsoft.com/en-us/download/details.aspx?id=45485
https://www.microsoft.com/en-us/download/details.aspx?id=45485
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Fig. 2.12 Example of.txt file download. (Source https://dasl.datadescription.com/datafiles/) 

Fig. 2.13 Example of.csv file download. (Source https://www.microsoft.com/en-us/download/det 
ails.aspx?id=45485)

Store the downloaded files on your computer e.g., your Desktop location. Note, 
we will be pointing R to this location where this file is stored on the computer when 
running the commands. ***The user can store the files in any location on the system, 
provided they will point R to the correct location in the provided commands. The 
readers are welcome to use their own files if they wish to do so, or store the files 
in any location of choice on the computer***. The files and location used in the 
example described here in this chapter are for illustration purposes only. 

Once the user has downloaded and stored the files on the computer desktop, we  
can now import the files into the R environment. 

***Note: The example datasets can also be accessed via the following link or 
repository where the authors have uploaded all the example datasets used in this 
book: https://doi.org/https://doi.org/10.6084/m9.figshare.24728073. 

Useful Tips:

• The two files are named “a-rod-2016.txt” and “Import_User_Sample_en.csv” by 
default when the user download the files.

https://dasl.datadescription.com/datafiles/
https://www.microsoft.com/en-us/download/details.aspx?id=45485
https://www.microsoft.com/en-us/download/details.aspx?id=45485
https://doi.org/
https://doi.org/10.6084/m9.figshare.24728073
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Fig. 2.14 Importing an external .txt or .csv file into R 

• The users can rename the files if they want, but should remember to provide the 
new name and correct file path in the codes or command.

• If the user cannot manually specify the file path for files stored on the computer 
system, they can follow the following steps to do so; navigate to the folder where 
the files are stored on your computer, for instance, in our example case the desktop, 
and then “right click” on the specific file and select “Properties” (for Windows 
OS) to see the file path details, or select “Copy file path” for Mac OS. 

Now, let’s go back to the “WorkingWithDataInR” Script we created earlier, and 
input the commands shown in Fig. 2.14 (lines 27–33). 

As displayed in Fig. 2.14, the syntax to import the files into R are as follows: 

R_Object_Name <- read.csv("insert_filepath_for_txt_doc_here") 

R_Object_Name <- read.csv("insert_filepath_for_csv_doc_here", encoding = 
"UTF-8") 

For instance, in our example case, the authors have used the following command: 

# Importing an External .txt and .csv Data into R from the local machine 

MyData.txt <- read.csv("/Users/kingsleyokoye/Desktop/a-rod-2016.txt") 
View(MyData.txt) 

MyData.csv <-
read.csv("/Users/kingsleyokoye/Desktop/Import_User_Sample_en.csv", encoding 
= "UTF-8") 
View(MyData.csv)
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Fig. 2.15 Example of .csv and .txt data imported into R 

As shown and highlighted in Fig. 2.14, once the user has successfully imported the 
files, the R objects named “MyData.txt” and “MyData.csv” will be automatically 
created and used to store the imported files in the Environment Tab, with details of 
the different variable types and number of observations displayed there in R. 

Also, the user will be able to view the content of the files in the Editor window when 
they run the View( ) command, i.e., View(name_of_data)—see Fig. 2.14, or Type 
and Run the name of the data (object), i.e., “MyData.txt” or “MyData.csv” directly 
in the Console tab (see Fig. 2.15). 

Useful Tips:

• The read.csv( ) function assumes that your file has a header row, so by default, 
the first row is taken as the name of each column.

• However, in a situation whereby there is no label for each of the columns (which is 
often most likely not), the user can add the “header= FALSE” to the command (see 
code below). In such a situation, R will read the first line as data, not assuming 
a column header(s), done by automatically assigning a default column header 
names which the user can change afterward.

    MyData.txt <- read.csv("filepath_for_txt_doc”, header=FALSE)



2.3 Working with Data in R 39

2.3.3.2 Importing and Using Excel (.xlsx) File Extension in R 

Here, we will look at how to import or read .xlsx file (Excel) formats into R. In 
the previous section, we used a method that points (or references) R to the location 
where the files are stored on the computer. But for diversification or using different 
functions or method purposes, we will show another method that can allow the users 
to navigate (browse) to the location where the files are stored on the computer and 
directly choose the file they want, instead of specifying the location of the file in the 
code or program. 

The users can download an .xlsx file example from the following source: https:// 
www.wisdomaxis.com/technology/software/data/for-reports/ (users are welcome to 
use their own .xlsx file format if they wish to do so). Also, the example file can be 
accessed via the following repository (https://doi.org/https://doi.org/10.6084/m9.fig 
share.24728073) where the authors have uploaded all the example datasets used in 
this book. 

As shown in Fig. 2.16, download and save the file named “Data Refresh Sample 
Data.xlsx” on your computer desktop. 

Now, we will create an object named “MyData.xlsx” to hold and store this file 
when we import the dataset into R. As shown in Figs. 2.17 and 2.18, the syntax to 
import the file into R is as follows:

Fig. 2.16 .xlsx file download. (Source https://www.wisdomaxis.com/technology/software/data/ 
for-reports/) 

https://www.wisdomaxis.com/technology/software/data/for-reports/
https://www.wisdomaxis.com/technology/software/data/for-reports/
https://doi.org/
https://doi.org/10.6084/m9.figshare.24728073
https://doi.org/10.6084/m9.figshare.24728073
https://www.wisdomaxis.com/technology/software/data/for-reports/
https://www.wisdomaxis.com/technology/software/data/for-reports/
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Fig. 2.17 Importing .xlsx file example into R 

Fig. 2.18 Example of .xlsx data imported and stored as object in R 

library(readxl) 

MyData.xlsx <- read_xlsx(file.choose()) 

attach(MyData.xlsx) 

If you notice, this time we used a library named “readxl” that allows us to imple-
ment the method or function to read the .xlsx file, which the authors will cover in
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detail in the subsequent section (Sect. 2.4) on how to install and use R packages and 
libraries. 

Type the above lines of code (see Lines 35–45, Fig. 2.17) in the  
“WorkingWithDataInR” Script and Run the commands. 

As illustrated in Fig. 2.17, when you have initiated the “readxl” library (Line 38), 
and run the next line of code to read the file (Line 41); you will be prompted with a 
pop-up window that allows the user to browse (navigate) to where the file is kept or 
stored on the computer, e.g., in our example case, the desktop. 

Once you locate the file “Data Refresh Sample Data.xlsx” where it is stored 
on your computer, click on Open (see Fig. 2.17) to import the file, and then attach 
the file to the object called “MyData.xlsx” by running the rest of the code (Line 44 
attaches the file to the object name, and Line 45 allows the user to view the imported 
file). 

Now you have successfully read and attached the .xlsx file in R, you will be 
presented with a screen similar to the one in Fig. 2.18. You can also Type and Run 
the name of the data object (MyData.xlsx) directly in the Console tab to view the file 
details (Fig. 2.18), as we have covered earlier in the previous section. 

2.3.3.3 Importing and Using STATA (.dta) and SPSS (.sav) Files in R 

In this section, we will look at how to import other file formats such as STATA (.dta) 
and SPSS (.sav) file into R environment. In R, such files are termed as foreign or 
distant files, and R has a library called “foreign” which can be used to read such 
files. 

We will use another method of reading files (data) into R to do this, in order to 
continue to demonstrate the different ways the users can import datasets into R for 
analysis. 

For this example, we will point R to the “Folder” where the files are stored by 
setting the folder as the working directory, and then read the data we want by just 
specifying the file name. 

But first, let’s download an example of .dta (Stata) and.sav (SPSS) files. As shown 
in Figs. 2.19 and 2.20, go to the following URLs and download the files named:

“auto.dat”—https://www.stata-press.com/data/r8/u.html (Fig. 2.19). 
“HLTH1025_2016.sav”—https://lo.unisa.edu.au/mod/book/view.php?id=646 

443&chapterid=106604 (Fig. 2.20). 
***Note: the users can also directly access and download the example files from 

the following repository where the authors have uploaded all the example datasets 
used in this book: https://doi.org/https://doi.org/10.6084/m9.figshare.24728073. 

Once, the user has downloaded the .dta (Stata) and .sav (SPSS) files and saved 
them on the Desktop, go back to the “WorkingWithDataInR” Script, and enter the 
following codes (see highlighted part in Fig. 2.21, Lines 47–58).

https://www.stata-press.com/data/r8/u.html
https://lo.unisa.edu.au/mod/book/view.php?id=646443&chapterid=106604
https://lo.unisa.edu.au/mod/book/view.php?id=646443&chapterid=106604
https://doi.org/
https://doi.org/10.6084/m9.figshare.24728073
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Fig. 2.19 Stata (.dta) file download. (Source https://www.stata-press.com/data/r8/u.html) 

Fig. 2.20 SPSS (.sav) file download. (Source https://lo.unisa.edu.au/mod/book/view.php?id=646 
443&chapterid=106604)

library(foreign) 

setwd("Path_to_Folder") 

MyData.dta <- read.dta("auto.dta") 
View(MyData.dta) 

MyData.sav <- read.spss("HLTH1025_2016.sav") 
View(MyData.sav) 

As illustrated in Fig. 2.21, we installed a library called “foreign” and then used the 
set working directory function, setwd( ) to tell R where the files we will be importing 
are stored (i.e., which folder the user will be working from), in this authors’ example 
case, the computer desktop.

https://www.stata-press.com/data/r8/u.html
https://lo.unisa.edu.au/mod/book/view.php?id=646443&chapterid=106604
https://lo.unisa.edu.au/mod/book/view.php?id=646443&chapterid=106604
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Fig. 2.21 Importing .dta (Stata) and .sav (SPSS) file formats in R

Once the folder has been set (see Line 51, Fig. 2.21); for the rest of the code, you 
can see that we only need to specify the file_name as contained in the folder (in this 
case the desktop folder). 

When you successfully run the codes (Lines 54–58), the datasets “auto.dta” and 
“HLTH1025_2016.sav” will be imported and stored as object in R (see Fig. 2.21), 
and the user will be presented with a screen similar to the one displayed in 
Fig. 2.22, where they can explore the datasets and details, i.e., “MyData.dta” and 
“MyData.sav”.

Finally, the users can also export any of the data types we have created so far to 
the local computer by using the write.table( ) function. 

For example, to export the “MyData.dta” or “MyData.csv” data we have created 
to the “Desktop”, the authors have written the following command. 

write.table(MyData.dta, file = "/Users/kingsleyokoye/Desktop/MyData.dta”) 

write.table(MyData.csv, file = "/Users/kingsleyokoye/Desktop/MyData.csv", 
sep = ",", row.names = FALSE) 

***Note: Remember to write your specific own “file path” (e.g., to the “Desktop” 
used in our example) when writing the code, i.e., write.table(DataName, file = file_ 
path_to_folder). 

Over the next sections, the authors will explain some of the functionalities and 
methods we have implemented so far in R in detail, including the many other useful
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Fig. 2.22 Example of .dta (Stata) and .sav (SPSS) data imported in R

functions and components that we will be exploring or come across in the future 
chapters, particularly when conducting the different statistical data analysis in R in 
PART II of this book. 

2.4 R Objects 

Understanding how R objects are created, and values assigned to the objects is key 
to using R for programming or statistical data analysis. R is an “object-oriented 
programming language” (Mailund, 2017; Matloff, 2011) and so everything or tasks 
you perform in R is all about objects. 

To create an “object” in R, the user first needs to give the object a name so that 
R will know about this and then the user can use or manipulate this object anytime 
they want in the program using that name. Second, the user subsequently needs to 
assign a “value” or “values” to this object using the assignment operator “<–”. As 
illustrated in the example below, the assignment operator consists of a less than (<) 
and a minus or dash (–) sign typed together. 

For instance, a typical R object will be created as follows: 

my_object1 <- 234 
my_object2 <- c("east", "west", "north", "south") 
my_object3 <- read.csv("/Users/kingsleyokoye/Desktop/a-rod-2016.txt") etc 

As shown in the codes above, the authors created an object called “my_object1” 
and assigned it a value of the number “234” using the assignment operator (<–). In 
a natural language, we will read this command as “my_object1 gets 234 as value”.
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Same principle applies to my_object2 and my_object3, we can read this as “my_ 
object2 gets a combination of east, west, north, and south as values”. Whereas, “my_ 
object3 reads a file named a-rod-2016.txt from my computer desktop and assigns the 
values of this file to the my_object3”. 

In order to view the values of the R objects, the user simply needs to type the name 
of the object they want to view in the Console and run it, or use the View( ) function 
to execute this in the Editor window as the authors have used and illustrated in most 
of the example cases and tasks performed in the previous sections (see Section 2.3) of  
this chapter. For example, see the illustration in Fig. 2.23. 

Now that we are familiar with the concept of R objects, and have also practically 
created the following objects (my_object1, my_object2, my_object3); R will know 
about these objects and what information is contained in them (remember, you can 
view all the details of the different objects in the workbench through theEnvironment 
Tab—see Fig. 2.23). 

So, in practice, one can use those objects we have created anytime they want or 
further manipulate/extend the objects in the different tasks or analyses, as we will 
illustrate further in the coming sections. 

For example, as shown in Fig. 2.23 (Line 7), we create a fourth object called 
“my_object4” that will hold the following numbers: 234, 456, 789, 123, and then 
merge this object (my_object4) with the existing “my_object2” to create a new set 
of information or data called “my_object5” (see Fig.  2.23, Line 9).  

To do this, we first need to create the my_object4 as follows: 

my_object4 <- c(234, 456, 789, 123)

Fig. 2.23 Creating R objects 
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Then we will create “my_object5” by merging “my_object2” and “my_object4”. 

my_object5 <- c(my_object2, my_object4) 

Now, type “my_object5” in the Console to see the new information or data we 
have created. 

Output: 

> my_object5 
[1] "east"  "west"  "north" "south" "234"   "456"   "789"   "123" 

Furthermore, instead of merging the following two objects (my_object2, my_ 
object4) with different Character (chr) and Numerical (num) values; let’s create 
a dataframe that will assign each of the values (num) in my_object4 (i.e., 234, 
456, 789, 123) to the corresponding values (chr) in my_object2 (i.e., “east”, “west”, 
“north”, “south”) as a table using dataframe. 

To do this, we can use the following syntax (see Fig. 2.23, Line 11): 

my_object5 <- data.frame(my_object2, my_object4) 

Now, type “my_object5” in the Console to see the dataframe we have created 
and how we have structured and changed the characteristics of the resultant or 
corresponding object (Fig. 2.23). 

> my_object5 
my_object2 my_object4 

1       east        234 
2       west        456 
3      north        789 
4      south        123 

The user can also use the view( ) function to display the data through the “Source 
Code Editor” window. 

As illustrated in this section and examples so far, this is how R keeps track of all 
the objects the users create during the running or respective R sessions. 

2.5 R Vectors: Vectorization and Factorization 

Creating and working with “Vectors” in R can serve as a more organized way of 
handling too many or complicated R objects. As we demonstrated in the previous 
section (Sect. 2.4) e.g., with regards to how we created the “my_object5” in R. A  
lot of the time, when using R, the users will want to progress further or create more 
complicated R objects. Fortunately, R has a vast range of functions that can help the 
users do this. 

Basically, an R function or method can be referred to as an object that contains a 
series of instructions defined to perform a specific job.
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By default, R comes with over thousands of packages already defined to help the 
users in performing the different tasks, functions, or data analyses ( these are covered 
in the next Sect. 2.6 of this book). As soon as the users get conversant with R or the 
data analysis tasks in R become more advanced, they will find that in some cases they 
may or will need to define their own functions in order to perform some customized 
or additional/specific tasks that are tailored to their needs, goals or objectives. 

2.5.1 Creating and Working with Vectors in R 

Here, the authors will demonstrate what a simple function in R is; and how to 
create what is called the vectors, which is simply a type of R object but with same 
type (kind) or sequence of elements (components) contained in it. For illustra-
tion purpose, we can define a “vector” as a single column in an Excel spreadsheet 
in which the values are usually of the same type, e.g., either numbers or characters 
but not a mixture of both. We have covered some of these in the previous section 
(Sect. 2.3), but we will explain this in detail here. 

Note: 

1. A function in R is syntactically (always) followed by a pair of round brackets 
( ), i.e., functionName( ) even when there is nothing defined in between the 
brackets. 

2. The argument of a function are always placed inside the brackets ( ), and if there 
are more than one argument, are separated using commas. 

Keeping these views in mind, in order to demonstrate what a vector is, and how 
we can use the different functions in R to manipulate this. The first function we 
will look at is the concatenate function, i.e., c( ). This function is very useful when 
joining together a series or sequence of values and then storing the values (elements) 
in a data structure called the vector. 

To do this, let’s create a new Script or go to the “WorkingWithDataInR” script we 
have created in the previous examples, and type the following command as shown 
in Fig. 2.24.

My_Vector <- c(10, 25, 34, 45, 53, 67, 77, 80, 98, 100) 

In the example code above, the authors created an object called “My_Vector” 
and assigned it a value or some elements (i.e., 10, 25, 34, 45, 53, 67, 77, 80, 98, 100) 
using the concatenate function c( ). 

As the reader can see, the above vector is similar to the R objects (i.e., Student-
Name, Gender, Campus, Region, Group, and Grade) we have created when creating 
the Students.ExampleData in Fig. 2.11 (see Sect. 2.3.2). We can also use those 
objects define there in Sect. 2.3.2 to illustrate the further example functions to work 
with our vectors.
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Fig. 2.24 Creating and working with vectors in R

To illustrate the use of vectors in R, for example, we can calculate the mean, 
variance, standard deviation, and length (number of elements) in any of the listed 
objects (Grade, Group, Campus, My_Vector) using the mean( ), var( ), sd( ), and 
length() functions as shown in the following codes (see Fig. 2.24). 

mean(My_Vector)         # returns the mean of My_Vector object 

var(Grade)              # returns the variance of Grade 

sd(Group)               # returns the standard deviation of Group 

length(Campus)          # returns the length of Campus 

It is also important to mention that, in case the user wants to use any of the resulting 
values or output (e.g., the variance of the Grades) later in the individual or further 
analysis, then they can decide to assign this result or value to another object, e.g., 
called “Grade_variance” (see Code below, Fig. 2.24). 

Grade_Variance <- var(Grade) 

Grade_Variance 

Now, when the user type and run the “Grade_variance” object, as shown in Line 
27 in Fig. 2.24, same value or result for the command or function var(Grade) is 
returned.
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2.5.2 Understanding Sequence in Vectors 

R users can create a vector that contains a “regular sequence of values”, e.g., 
in ascending or descending order using the colon symbol “:” (see Lines 29–33, 
Fig. 2.24). 

my_Sequence <- 1:20     # creating sequence in ascending order 
my_Sequence 

my_Sequence2 <- 20:1    # creating sequence in descending order 
my_Sequence2 

The users can also use or experiment with other useful functions used to generate 
vectors, e.g., using the seq( ) and rep() functions. 

For example (see Fig. 2.25): 
One can use the seq() function to generate a series or order of numbers from 10 

to 20 in steps of 0.5, 

my_Sequence3 <- seq(from = 10, to = 20, by = 0.5)  # create sequence in Steps 
my_Sequence3 

or 
Use the rep() to replicate (repeat) a String (chr) value for a specified number 

of times, e.g., repeat the value “North” ten (10) times, as shown in the following 
command 

Region <- rep(“North”, times = 10) 
Region 

Likewise, the users can uniformly repeat elements of a series (see Fig. 2.25): 

my_Sequence4 <- rep(5:10, each = 3)   # repeats each element 3 times 
my_Sequence4 

or

Fig. 2.25 Sequence and repeating of elements in a vector 
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Repeat a non-sequential series e.g., using the previously defined “my_object2” 
object (see Sect. 2.3). 

my_object2_rep <- rep(my_object2, each = 2)    # repeats each element in 
my_object2 two times 

my_object2_rep 

2.5.3 Extracting and Replacing Elements in Vectors 

In R, the users can use the square bracket [ ] notation to extract elements or values 
from a vector, or use a combination of the square bracket [ ] notation along with 
the assignment operator <– to replace elements or values in a vector. This is known 
as “indexing” or “subscripting”. 

2.5.3.1 Extracting Elements (Values) in Vectors 

To extract values at a particular position in a vector, the user simply will type the 
position of the specified value inside the square bracket [ ]. For example, let’s use 
the “StudentName” and “My_Vector” objects we created earlier in the previous 
examples to do this (see Sect. 2.3.2 and 2.5.1). 

As shown in the commands below (see Fig. 2.26), we are going to extract the 4th 
value of the R object “StudentName” and the 7th value of the “My_Vector” object. 

Fig. 2.26 Extracting values in vectors in R
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StudentName[4]    # extracts the 4th value from StudentName 

My_Vector[7]      # extracts the 7th value from My_Vector 

Furthermore, the users can extract more than one value from a vector using the 
concatenation function c( ), e.g., in the code below the authors illustrates that we can 
extract the 2nd, 4th, and 9th values from the “StudentName” object (see Fig. 2.26). 

StudentName[c(2, 4, 9)]  # extracts the 2nd, 4th, and 9th values in StudentName 

or, 
Extract a range of values using the colon (:) notation, e.g., we can extract the range 

of values from the 2nd to the 6th value in the “My_Vector” object (see Fig. 2.26). 

My_Vector[2:6]   # extracts the 2nd to 6th values in My_Vector 

Interestingly, the user can also use a logical expression to extract values from 
vectors. For instance, in the “Grade” object we defined earlier (see Fig. 2.11, 
Sect. 2.3.2), we can check and extract the values which are greater (>) than 80 
by using the following command (see Fig. 2.26). 

Grade[Grade > 80] # extracts values greater than 80 from the Grade 

Here, what R has done is to return the values that fulfill or meet the given logical 
condition or expression. In this case, for the ten values contained in the Grade object 
(i.e., 85, 90, 80, 80, 95, 90, 97, 84, 86, 98) it uses the TRUE or FALSE bolean condition 
to calculate this. 

Type the following command to see how R does this: 

Grade > 80   
# R will assign the TRUE or FALSE values to the numbers in Grade and returns only 
the values that are TRUE 

[1]   85    90   80    80     95    90    97    84    86    98 
[1]  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE 

***For further practice and hands-on illustrations, the readers can also experiment 
with the: 

less than < sign 
greater or equal to >= sign 
less or equal to <= sign
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2.5.3.2 Replacing Elements (Values) in Vectors 

Now, let’s look at how to replace a value(s) in a vector in R. Users can replace 
(or change) the values or elements contained in a vector using the square bracket 
[ ]  notation along with the assignment operator <– in R. 

For illustration (see Fig. 2.27); let’s replace the 5th value in the “My_Vector” 
object (Sect. 2.5.1) from number “53” to number “100”. 

To do this, type the following command. 

My_Vector                # displays the current My_Vector object 

My_Vector [5] <- 100      # replaces the 5th value with 100 

My_Vector   # displays the current My_Vector after replacing the 5th value 

Interestingly, the users can even replace more than one value or replace based on 
some logical expression. 

For instance: 
Let’s replace the 3rd, 6th, and 9th values in the “Grade” object with 100. 

Grade[c(3, 6, 9)] <- 100      # replaces the 3rd, 6th, and 9th values in Grade 
with 100 

or, 
Replace the values in “My_Vector” object that are greater than or equals to 45 

with 100. 

My_Vector [My_Vector >= 45] <- 100     # replaces values in My_Vector that are 
greater than or equal to 45 with 100

Fig. 2.27 Replacing values in vectors in R 
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2.5.4 Vectorization in R 

As we can see and practiced in the previous section (Sects. 2.5.1–2.5.3), vectorization 
is an important method in R as this means that any referenced or defined function(s) 
will apply to all the values (elements) contained in the vector without having to apply 
the function(s) individually or separately on each element in the vector. 

Let’s take a look at the following example shown in Fig. 2.28; if we want to 
multiply each value in the “My_Vector” object by 10 (see Sect. 2.5.1), we will 
simply use the following command: 

My_Vector          # displays the current My_Vector object 

My_Vector * 10     # multiplies each value in My_Vector by 10 

For further illustrations, we can add, divide, or  multiply the values contained in 
two different (separate) vectors. 

For instance, let’s use the “My_Vector” and “Grade” objects (see Sects. 2.3.2 
and 2.5.1) to demonstrate this. Type and execute the following command, and inspect 
the results as shown in Fig. 2.28. 

My_Vector + Grade   # add the values in My_Vector with the corresponding values 
in Grade 

My_Vector / Grade      # divides the values in My_Vector with the corresponding 
values in Grade 

My_Vector * Grade # multiplies the values in My_Vector with the corresponding 
values in Grade

Fig. 2.28 Vectorization in R 
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2.5.5 Factorization in R 

Factors in R can be defined as a set(s) of data structure used for elements (or values) 
that take pre-defined states or a finite number of values, e.g., categorical, nominal, 
or continuous datasets. 

For example, let’s look at the “Gender” data field or variable in the earlier example 
Students.ExampleData dataset (Sect. 2.3.2, Fig.  2.11). 

> Gender 
 [1] "Male" "Female" "Male" "Male" "Female" "Female" "Male" "Female" "Male" "Female" 

The key point to note here is; while the values of the “Gender” variable are 
defined as Characters (categorical variable), i.e., “Male” and “Female”. However in 
many cases, these values are required to be stored as integers for R to be able to 
handle or compute them when conducting the different statistical data analysis or 
data visualizations, by associating them with unique integer values called “Factors”. 

The factor( ) command is used to create and modify factors in R. 
Now, let’s look at an example of how to do this. As shown in Fig. 2.29, particularly 

Line 90, type the following command to factor the “Gender” variable. 

class(Gender) # shows the class of the Gender variable 

Gender <- factor(c("Male", "Female", "Male", "Male", "Female", "Female", 
"Male", "Female", "Male", "Female"))  

class(Gender)      # displays the class of the Gender variable after 
Factoring

Fig. 2.29 Factoring in R (factorization) 
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When the above command is executed, by default, R will assign a number value 
of “1” to the level “Female” and “2” to the level “Male”. This is because the letter “F” 
comes before “M”, despite the fact that in the data or variable (Gender) the first value 
in the list is male. We can check these details using the levels ( ) function, or check 
the number of levels using the function nlevels() as shown below (see Fig. 2.29, 
Lines 94 and 95). 

levels(Gender) 

nlevels(Gender) 

Now, let’s try another method in factoring; the users can decide to set their own 
levels, rather than using the default assignment by R. To do this, type the following 
command:

   Gender <- factor(Gender, levels = 0:1, labels = c("Female", "Male")) 

In the above command, what the authors have done is to assign the level “0” to 
“Female” and “1” to “Male”. 

Note: Even though, R after factoring recognizes the “Gender” variable as a factor 
by assigning the levels 0 and 1 to the “Female” and “Male” values; the values still 
exist as String, except we decide to convert them into another form (e.g., numeric) 
which is completely another different task from the way R recognizes the values, as 
we will illustrate in the next section. 

2.5.5.1 Converting Factors into Other Data Types 

The users can convert a Numeric (num) or Character (chr) value to Factor, Factors 
to Numeric or Character values, vice and versa. The functions used to do this are as 
follows: as.numeric( ), as.factor( ), and as.character( ), respectively. 

To illustrate this, let’s take a look at the Students.ExampleData dataset (see 
Fig. 2.30). Type the following command to display the data:

str(Students.ExampleData) # display class or R object before converting 

Now, we will convert the following variables; 

“StudentName” (chr) variable - to Factor 
“Gender” (chr) variable - to Factor, and then - to Numeric (num) 

“Group” (num) variable - to Character (chr) 

Type the following command, as shown in Fig. 2.30.
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Fig. 2.30 Converting factors to other data types

Students.ExampleData$StudentName <- as.factor(Students.ExampleData$StudentName) 

Students.ExampleData$Gender <- as.factor(Students.ExampleData$Gender) 
Students.ExampleData$Gender <-
as.numeric(Students.ExampleData$Gender)[Students.ExampleData$Gender] 

Students.ExampleData$Group <- as.character(Students.ExampleData$Group) 

str(Students.ExampleData)     # display class after converting  

***Users can view the new updated dataset or information via the Environment 
Tab (upper right window) in R. Feel free to experiment and practice with the different 
datasets we have covered and currently have stored there as R objects. 

2.6 R Packages and Libraries 

By definition, “R packages” are a collection of functions, datasets, and other 
help and support files that are codified into a well-defined structure, so that the users 
can be able to download and install them in R for different data analysis, modeling, 
or visualization purposes (Douglas et al., 2020). When you first install R on your 
computer; by default, it comes with many standard packages that you will normally
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use to perform the different tasks or data analysis in R. Although, the more you 
become familiar and use R to perform more customized projects or applications, you 
will notice at some point that you may require or need to extend the capabilities of 
the R functions. This is where the users need to install some extra packages that are 
not already in R by default. 

The official repository to download R packages is through the CRAN reposi-
tory (https://cran.r-project.org/web/packages/) which can also be accessed via the 
RStudio environment. Although other sources exist such as GitHub: https://github. 
com/ (a website that hosts git repositories for all sorts of software and projects 
including R), and Bioconductor: https://www.bioconductor.org/ (that hosts a number 
of R packages oriented toward bioinformatics). 

There are two ways the users can install R packages from CRAN, 

1. Either, by installing the package(s) you want to install directly in R through the 
Console using the install.packages( ) function. 

2. Or, by directly visiting the CRAN website (https://cran.r-project.org/web/pac 
kages/), browse and download the specific package(s) you want to install, and 
then upload the downloaded file to RStudio or environment. 

Either way, we will demonstrate how the users can do this in R. 
For the first method, the users can make use of the install.packages( ) function to 

install the packages directly through the Console. For instance, if you want to install 
the packages named “abind” and “cluster”, you will need to type the following 
command as shown in Fig. 2.31 (make sure you have an internet connection to your 
system as the files will be downloaded and installed from the web):

install.packages("abind") 

install.packages("cluster") 

Additionally, but not necessarily in all cases, the users can confirm that any other 
additional packages (dependencies) that may be needed in order to install the selected 
package are also installed by using, for instance, the following code: 

install.packages("abind", dependencies = TRUE) 

Furthermore, once the user has installed any of the R package(s) on the computer 
system; by default the installed package(s) are not available to use immediately. 
Therefore, as shown in the 2nd step in Fig. 2.31, in order to use an installed package, 
the user will also need to run or load the package by using the library( ) function. For 
example, to use the installed packages “abind” and “cluster”, the user will need to 
run the following command: 

library(abind) 

library(cluster)

https://cran.r-project.org/web/packages/
https://github.com/
https://github.com/
https://www.bioconductor.org/
https://cran.r-project.org/web/packages/
https://cran.r-project.org/web/packages/
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Fig. 2.31 Installing R packages through the console

Now, let’s look at the second option on how to directly install R package(s) on your 
system by visiting the CRAN website (https://cran.r-project.org/web/packages/). 

There are two ways the users can do this. For the first method as shown in 
Fig. 2.32, you can visit the CRAN website via the browser, then browse and down-
load the specific package(s) you want to install, and then upload the downloaded file 
to RStudio.

The second method, as shown in Fig. 2.33, is to search for the R package(s) from 
the CRAN website via the Files/Packages Tab in RStudio.

As demonstrated in Fig. 2.33, when you click on the “Install” tab or button (see: 
Step 1), you will be prompted with a pop-up window where you can search for the 
specific package(s) you want to install on your system. Search and find the package(s) 
you want to install (see example in Fig. 2.34), then click on the “Install” button to  
install it. Also, remember to check the “Install dependencies” box (see Fig. 2.33) in

https://cran.r-project.org/web/packages/
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Fig. 2.32 The CRAN website to download R packages

Fig. 2.33 Installing R packages through the file/packages tab

order to confirm any other additional packages (dependencies) that may be required 
in order to fully install the selected R package.

Lastly, just like every other program or software, occasionally the users may be 
prompted or will want to update previously installed package(s) on the system in 
order to continue to get access to new functionalities or fixing of bugs. Users can 
use the update.packages( ) function to update (CRAN) packages already installed 
or are existing on the system library (see Line 14, Fig. 2.33). Alternatively, you can 
click the “Update” button on the File/Packages Tab (see Fig. 2.34) to perform this 
task. 

update.packages(ask = FALSE) 
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Fig. 2.34 Searching for R packages in RStudio

***Users can include the “ask = FALSE” argument to avoid being prompted to 
confirm each time, every package(s) that the system will be updating***. 

2.7 Plots and Data Visualization 

Apart from analyzing, modeling, and exploring datasets in R; it is also a great tool 
for creating almost any type of visualization or graph. Here, the authors take a look 
at some simple ways to visualize graphs or plot data in R. 

For instance, let’s explore the dataset we imported earlier in R called 
“MyData.xlsx” (see Sect. 2.3.3.2 and Fig. 2.35). 

str(MyData.xlsx)      # view data properties 

Fig. 2.35 Example dataset (MyData.xlsx) for plotting 
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Fig. 2.36 Simple plot in R 

Let’s plot some of the variables in this data using different R functions that can 
be used to visualize the dataset. This includes; plot( ), hist( ), and barplot( ), etc. 

Now, type and run the following codes in the source code editor and view the 
results as shown in Figs. 2.36, 2.37, and 2.38, respectively.

# Simple plot 
plot(MyData.xlsx$Profit) 

# Plotting Histograms 
hist(MyData.xlsx$`Unit Price`) 

# Plotting Barplots 
barplot(table(MyData.xlsx$`Ship Mode`)) 

Other Useful Tips:

1. When you use the plot( ) function, R usually uses its own default style to plot 
the graph, which a lot of time may be plotted as a Scatter plot. 

2. For hist( ) function, before you can plot other types of variable, e.g., Character 
(chr), you will need to convert the vector or factor to numeric (num) value as we 
have covered earlier in the previous section (see: Sect. 2.5.5) of this chapter. 

3. For barplot( ) function, if you want to plot a single variable, e.g., the “Shipping 
Mode” variable in the “MyData.xlsx” dataset, you will need to create a table to 
hold the values in the vector using the table( ) function.
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Fig. 2.37 Plotting histograms in R 

Fig. 2.38 Plotting BarPlots in R
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4. The “$” sign, for instance, in plot(MyData.xlsx$Profit)is used to tell the program 
which variable (value) to select from the specified data. 

Furthermore, one good thing about R is that it allows the users to define 
(customize) how they want to display the graphs or plots. 

For instance, as illustrated in the following figures (Figs. 2.39 and 2.40), the 
authors have used the following code to customize the histogram and barplot (see 
Figs. 2.37 and 2.38) to produce the information we want as more clearly and 
specific as defined by ourselves. 

# Customizing graphs in R 

hist(MyData.xlsx$`Unit Price`, 
     breaks = 20, xlim = c(0,510), ylim = c(0,10), col = "blue", 

main = "Histogram Plot for Shipping", xlab = "Unit Price for Shipping",
     ylab = "Item_Count") 

barplot(table(MyData.xlsx$`Ship Mode`), 
horiz = TRUE, 

  cex.names = 0.55, 
  las = 1, 

col = rainbow(3),
  xlim = c(0, 20),
  main = "Barplot for Shipping Data",
  xlab = "Shipping Count" 
) 

Fig. 2.39 Customizing histogram in R
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Fig. 2.40 Customizing barplot in R

Lastly, we will look at how to plot and compare relationships between variables 
(i.e., one variable vs another variable), particularly common among the researchers 
or data analysts when conducting different statistical analyses for research purposes 
or technical reports, for example. 

Let’s illustrate this using a package called “ggplot2” which is the latest upgraded 
version of the ggplot package and library at the time of writing this book, there may 
be other newer version in the subsequent future. The ggplot2 is an open-source data 
visualization package for the R statistical programming dedicated to the visualiza-
tion of data. It impressively improves the aesthetics and quality of the graphs by 
declaratively creating graphics, based on the Grammar of Graphics (GG). 

As an example, we will plot the “Unit Price” versus “Profit” variables in the 
“MyData.xlsx” data (see Sect. 2.3.3.2) using  the  ggplot2 package and library. 

First, download and install the “ggplot2” package (as explained earlier in the steps 
described in Sect. 2.6) (see Fig.  2.41).

install.packages("ggplot2") 

library(ggplot2) 

Once you have installed and run the library for the ggplot2, type and run the 
following command as shown in Fig. 2.41 (Lines 149–154).
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Fig. 2.41 Data visualization using the ggplot2 package and library

ggplot(MyData.xlsx, aes(x = `Unit Price`, y = `Profit`)) +

  geom_point(color= "navyblue", size = 2, alpha=.8) +

  geom_smooth(method = "lm") + 

  labs(x = "Unit Price for Shipping",

       y = "Profit for Shipping",

       title = "Plot comparing Unit Price vs Profit") 

***Now, the authors invite the readers and are confident that the readers can work 
with data in R and experiment with and plot the different data and variables we have 
covered so far in this chapter. 

2.8 Summary 

To summarize the content of this chapter; the authors covered how to work with 
data in R, including the different functions that R users can use to create or import 
data in RStudio for further analysis and visualizations. We looked at what R Vectors 
and Factors are. Then we covered how to install R packages and libraries for data 
analysis and manipulations or calculations. Lastly, we looked at different ways the 
users can plot or visualize the data and graphs in R. In the next remaining chapters in
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this Part I of the book, the authors will introduce the users to How to conduct the test 
of normality and reliability of data in R (Chap. 3), Choosing between parametric and 
non-parametric tests (Chap. 4), Understanding the difference between dependent and 
independent variables in research experiments and hypothesis testing (Chap. 5), and 
an Introduction to understanding the different types of statistical data analysis and 
methods (Chap. 6), as a foundation to introducing the readers to the topic of different 
types of statistical data analysis for research using R, which the authors presents in 
the second (Part II) of the book. 
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Chapter 3 
Test of Normality and Reliability of Data 
in R 

3.1 Introduction 

In scientific research and statistics, assessment of normality and reliability of data is 
commonly a good practice, and a lot of the time, a necessary test performed by the 
users before conducting the different statistical analysis and procedures. 

In theory, data normality tests are performed to assess if a data sample is well 
modeled by a normal distribution. In other words, the probability bell-shaped density 
curve described by its mean and standard deviation with the extreme values assumed 
to have no significant impact on the mean value (Mishra et al., 2019; Vaclavik et al., 
2020). The importance and relevance of these measurements and data distribution 
in determining the direction or type of research carried out by the researchers are 
discussed in detail in Chap. 4 of this book. The test for normality of data for research 
is a fundamental assumption and has a significant role in statistics (particularly 
in parametric tests), especially for the purpose of experimentation and testing, for 
instance, the researchers or analysts can test whether the hypothesis developed by 
them fulfills the underlying assumptions or not (Vaclavik et al., 2020). 

Some example of the most commonly used types of test for “normality” of data 
in the available literature include but to mention a few: Kolmogorov–Smirnov (K-S) 
and Shapiro–Wilk (S-W) tests, Lilliefors corrected K-S test, Anderson–Darling test, 
Cramer–von Mises test, D’Agostino skewness test, Anscombe–Glynn kurtosis test, 
D’Agostino–Pearson omnibus test, and Jarque–Bera test, (Ghasemi & Zahediasl, 
2012; ÖZTUNA et al., 2006; Peat & Barton, 2005; Thode, 2019), etc. 

On the other hand, the test for reliability of data or research instruments determines 
the extent (consistency of measures) to which the scales or variables (items) in 
the available data are capable of producing a reliable (coherent) result (de Barros 
Ahrens et al., 2020; Taber, 2018). The reliability and validity of data samples and 
size is a test mainly carried out by the researchers to demonstrate that the scales 
that have been construed or adopted in the questionnaires or research instrument are 
fit for the purpose of experimentation and analysis (Taber, 2018). Some example
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of the commonly used types of tests for the “reliability” of data samples in the 
literature includes: Cronbach’s alpha test (Taber, 2018; Tavakol & Dennick, 2011), 
Cohen kappa coefficient test (Carpentier et al., 2017), Exploratory Factor Analysis 
(EFA) (de Barros Ahrens et al., 2020; Goni et al., 2020), Principal Component Factor 
Analysis (PCA) (Isnainiyah et al., 2019), etc. 

It is noteworthy to mention that with large sample sizes (n > 30 or 40), the violation 
of the data normality or assumption should not necessarily be a concrete factor or 
problem when conducting statistical analysis for research especially the parametric 
methods (Elliott & Woodward, 2007; Ghasemi & Zahediasl, 2012; Mishra et al., 
2019; Pallant, 2007). In other words, the researchers can still use any of the parametric 
methods or procedures that they find fitting for their experiments or data analysis 
even when the data are not normally distributed (which a lot of the time are attributed 
to the non-parametric procedures) for the large enough sample sizes (n > 30 or 40) 
(Taber, 2018). 

Over the next sections of this chapter, the authors will introduce the readers 
to how to conduct the most frequently used types of test for data normality and 
reliability in the literature; Kolmogorov–Smirnov (K-S) and Shapiro–Wilk (S-W) 
tests for normality (Sect. 3.2), and Cronbach’s alpha test for reliability (Sect. 3.3) in  
R statistics (Rstudio, 2023). 

3.2 Test of Data Normality in R: Kolmogorov–Smirnov 
(K-S) and Shapiro–Wilk (S-W) Test 

Kolmogorov–Smirnov (K-S) and Shapiro–Wilk (S-W) tests are a great way to deter-
mine if variable(s) in a dataset are normally distributed. The default hypothesis for 
testing whether a given data is normally distributed is IF the p-value is greater than 
0.05 (p > 0.05) and the test statistics above 0.5, THEN normality is assumed, ELSE IF 
the p-value is less than or equal to 0.05 (p ≤ 0.05) THEN normality is not assumed. 

We will demonstrate how to conduct the data normality tests using the 
Kolmogorov–Smirnov (K-S) and Shapiro–Wilk (S-W) methods in R. We will do 
this in five steps as shown in Fig. 3.1.

To start, Open RStudio and Create a new project or you can open the existing 
example project we have created in the previous chapter (Chap. 1) called “MyFirstR_ 
Project.Rproj” which the authors will be using to illustrate the examples in this 
chapter. Once the user have the RStudio and R Project opened,Create a new RScript 
and name it “NormalityTestDemo” or any name of your choice (the readers can refer 
to Chap. 1 on how to do these steps). 

Now let’s download an example file that we will be using to demonstrate the 
Kolmogorov–Smirnov (K-S) and Shapiro–Wilk normality tests in R (***the readers 
are also welcome to use any pre-existing data or file format of their choice***). 

Visit the following link as shown in Fig. 3.2 and download the.csv file named 
“Sample CVS Files” and save this on your computer desktop: https://www.learni 
ngcontainer.com/sample-excel-data-for-analysis/#Sample_CSV_file_download.

https://www.learningcontainer.com/sample-excel-data-for-analysis/#Sample_CSV_file_download
https://www.learningcontainer.com/sample-excel-data-for-analysis/#Sample_CSV_file_download
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Interpret Check and interpret the results of the analysis 

Visualize Visualize the data using the graphical method for comparison and 
interpretation or export for use 

Analyze 
Check for normality of distribution using the Kolmogorov-Smirnov 
and Shapiro-Wilk methods in R; ks.test( ) and shapiro.test( ) 

Data Import and inspectthe dataset we want to check for assumpton of 
normality 

R Packages Install and Load any required R packages, e.g. "tidyverse" for data 
manipulation & visualization, "ggpubr" for easy data visualization 

Fig. 3.1 Steps to conducting Kolmogorov–Smirnov and Shapiro–Wilk tests in R

Fig. 3.2 Example of CSV file format download. (Source https://www.learningcontainer.com/sam 
ple-excel-data-for-analysis/#Sample_CSV_file_download) 

***Note: The example file is also available at the following repository where 
the authors have uploaded all the example files used in this book: https://doi.org/10. 
6084/m9.figshare.24728073 

Once the user has downloaded and saved the file named “sample-csv-file-for-
testing” on the local computer or desktop, we can proceed to conduct the analysis: 
Kolmogorov–Smirnov (K-S) and Shapiro–Wilk (S-W) tests for normality. 

Install and load the following R packages (“dplyr” and “ggpubr”) that we will 
be using to define or call the functions for the test. 

The syntax to install and load the “dplyr” and “ggpubr” packages are as follows 
(see Fig. 3.3).

https://www.learningcontainer.com/sample-excel-data-for-analysis/#Sample_CSV_file_download
https://www.learningcontainer.com/sample-excel-data-for-analysis/#Sample_CSV_file_download
https://doi.org/10.6084/m9.figshare.24728073
https://doi.org/10.6084/m9.figshare.24728073
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Fig. 3.3 Conducting Kolmogorov–Smirnov and Shapiro–Wilk tests in R 

# Step 1—Install and Load R Packages 

install.packages("dplyr") 

install.packages("ggpubr") 

library(dplyr) 

library(ggpubr) 

As demonstrated in Fig. 3.3, once you have installed and loaded the required R 
packages (see Step 1, Fig. 3.3); the next step is to import the dataset for analysis 
(Step 2—see command below). See also Chap. 2 for more detailed description on 
how to import datasets into RStudio environment.
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# Step 2—Import and Inspect Data for conducting the Normality Test 

MyTestData <- read.csv(file.choose()) 

attach(MyTestData) 

View(MyTestData) 

As defined in Step 2 (see Fig. 3.3), when you run the above codes (see Lines 
9–12) the user will be presented with a window through which they can navigate and 
choose the.csv file named “Sample CSV files” (Fig. 3.2) which we have downloaded 
earlier and stored on the desktop. 

Once completed, the data will be stored in an R object named “MyTestData” and 
the user will be able to see the details of the dataset (as shown in Fig. 3.4) with 700 
observations and 16 variables contained in the data sample. (*** remember you can 
use any name of your choice, but for learning purposes and examples described in 
this book, the authors recommend practicing with the example names and objects 
created/provided in this book***). 

Next, the imported dataset is ready to be analyzed. As defined in Fig. 3.3 (see Step 
3, Lines 14–20), we can now perform the Kolmogorov–Smirnov and Shapiro–Wilk 
normality tests. 

The syntax for performing the two tests in R is by using the following functions: 
ks.test( ) for Kolmogorov–Smirnov, and shapiro.test( ) for Shapiro–Wilk tests, 
respectively. 

As shown in the codes provided below, the authors used the methods, i.e.,ks.test( ) 
and shapiro.test( ) to check for normality of the distribution for the variables named 
“Units.Sold” and “Month.Number” in the  “MyTestData” dataset.

Fig. 3.4 Example of file or dataset imported in R 
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# Step 3—Analyze the Dataset 

ks.test(MyTestData$Units.Sold, "pnorm")   # Kolmogorov-Smirnov test 

ks.test(MyTestData$Month.Number, "pnorm") 

shapiro.test(MyTestData$Units.Sold)      # Shapiro-Wilk test 

shapiro.test(MyTestData$Month.Number) 

When the user has successfully run the tests (see Lines 14–20, Fig. 3.3), you will 
be presented with the results in the Console tab, similar to the one shown in Fig. 3.5. 

Furthermore, depending on the type of research or variables that are being consid-
ered or analyzed by the researchers or analysts (which the book will cover in Part 
II), the users can decide to check for the normality of distribution of all the variables 
in the dataset (e.g., MyTestData) all at once. 

***To do this, we must carry out an important step which is to inspect the dataset 
and ensure to convert the non-numeric variables to numeric form. 

As illustrated in Fig. 3.6, the users can use the str( ) function to view a full list of 
the different variable(s) names and types, including the total number of observations 
and the total number of variables (note: this information can also be viewed through 
the Environment Tab).

Fig. 3.5 Results of the Kolmogorov–Smirnov and Shapiro–Wilk tests for data normality displayed 
in the Console tab in R 
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Fig. 3.6 Converting non-numeric variables or factors to numeric form 

Based on the example data that we are working with (see: Figs. 3.2 and 3.4), 
the authors have implemented the following codes (Fig. 3.6) to convert the “non-
numeric (chr)” variables to “numeric (num)” form. (***Note: the readers can refer 
to Sect. 2.5.5 in Chap. 2 for more detailed description on how to create and perform 
the factorization procedures in R).
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# Converting non-numeric variables or factor to numeric form 

str(MyTestData)     # To view the Variables type 

MyTestData$Segment <- as.factor(MyTestData$Segment) 

MyTestData$Segment <- as.numeric(MyTestData$Segment) 

MyTestData$Country <- as.factor(MyTestData$Country) 
MyTestData$Country <- as.numeric(MyTestData$Country) 

MyTestData$Product <- as.factor(MyTestData$Product) 
MyTestData$Product <- as.numeric(MyTestData$Product) 

MyTestData$Discount.Band <- as.factor(MyTestData$Discount.Band) 
MyTestData$Discount.Band <- as.numeric(MyTestData$Discount.Band) 

MyTestData$Manufacturing.Price <- as.factor(MyTestData$Manufacturing.Price) 

MyTestData$Manufacturing.Price <-as.numeric(MyTestData$Manufacturing.Price) 

MyTestData$Sale.Price <- as.factor(MyTestData$Sale.Price) 

MyTestData$Sale.Price <- as.numeric(MyTestData$Sale.Price) 

MyTestData$Gross.Sales <- as.factor(MyTestData$Gross.Sales) 

MyTestData$Gross.Sales <- as.numeric(MyTestData$Gross.Sales) 

MyTestData$Discounts <- as.factor(MyTestData$Discounts) 

MyTestData$Discounts <- as.numeric(MyTestData$Discounts) 

MyTestData$Sales <- as.factor(MyTestData$Sales) 

MyTestData$Sales <- as.numeric(MyTestData$Sales) 

MyTestData$COGS <- as.factor(MyTestData$COGS) 

MyTestData$COGS <- as.numeric(MyTestData$COGS) 

MyTestData$Profit <- as.factor(MyTestData$Profit) 

MyTestData$Profit <- as.numeric(MyTestData$Profit) 

MyTestData$Date <- as.factor(MyTestData$Date) 
MyTestData$Date <- as.numeric(MyTestData$Date) 

MyTestData$Month.Name <- as.factor(MyTestData$Month.Name) 
MyTestData$Month.Name <- as.numeric(MyTestData$Month.Name) 

str(MyTestData) # To view the new and converted variables 
View(MyTestData)  

) 

Once the user has successfully converted the “chr” (character) variable(s) to 
“num” (number) (see Fig. 3.6), we can now run the Kolmogorov–Smirnov and 
Shapiro–Wilk normality tests for all the elements in the data by using, for instance, 
the lapply( ) command as demonstrated code below and results in Fig. 3.7.
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Fig. 3.7 Conducting Kolmogorov–Smirnov and Shapiro–Wilk normality tests for all elements 
(variables) in the data 

# Analyze all the variables in the dataset all at once 

lapply(MyTestData, ks.test, "pnorm") # Kolmogorov-Smirnov test for all variables 

lapply(MyTestData, shapiro.test) # Shapiro-Wilk test for all variables 

# Step 4—Visualize Data Normality as a Plot (Graphical Representation) 

Another important and useful way to visually check the normality of data in R 
is by plotting the distribution of the different variables by using, for instance, the 
“density plot” and “quantile–quantile plot” functions.
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Fig. 3.8 Density plot of the example dataset

To describe the different functions, the density plot (see Fig. 3.8) gives a visual 
judgment with respect to whether the distribution of the data is “bell-shaped” or 
“skewed”. The quantile–quantile plot (Q-Q plot) (Fig. 3.9) tends to draw a correlation 
between the specified sample and the normality of the distribution. The Q-Q plot also 
includes a reference line that is usually plotted or mapped at 45 degrees. Thus, each 
observation is plotted as a single dot, and the dots should form a straight line if the 
data is normal. 

To demonstrate to the readers how to do this, we will use the ggdensity( ) and 
ggqqplot( ) functions, which are supported by the “ggpubr” package (see Step 1), to 
visualize the normality of the example data (MyTestData), respectively. As shown in 
Figs. 3.8 and 3.9, we will be using the “Sales” and “Profit” variables in the example 
data (MyTestData) to demonstrate this. ***Also, feel free to try and plot the other 
variable(s) in the data using this particular example. 

The syntax and code for the two example plots using the ggdensity( ) and 
ggqqplot( ) functions are as shown below, and the results (distribution graph) are as 
represented in Figs. 3.8 and 3.9.
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Fig. 3.9 Quantile–quantile plot (Q-Q plot) of the example data

# Visualizing the normality of data in Graphical form 

ggdensity(MyTestData$Sales, main = "Distribution of Sales", 

xlab = "Sales ($)") 

ggdensity(MyTestData$Profit, main = "Distribution of Profit", 

xlab = "Profit ($)") 

ggqqplot(MyTestData$Sales, main = "gplot Distribution of Sales", 

xlab = "Sales ($)", ylab = "Marginal Mean") 

ggqqplot(MyTestData$Profit, main = "gplot Distribution of Profit", 

xlab = "Sales ($)", ylab = "Marginal Mean") 

Useful Tips and Information: 

1. The users can use the “Export” menu found there on the same Plot Tab (see: 
Figs. 3.8 and 3.9) to save the plot (graphics) as image or pdf file on the local 
computer for later or further use in presentations or write-up. 

2. Use the histogram function, hist( ) to experiment and view the distribution of the 
different variables. For example; hist(MyTestData$Sales).
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# Step 5—Results Interpretation for the Data Normality Test 

The last step in the data normality test or analysis is to interpret or understand the 
results of the test. By default, the null hypothesis for testing whether a dataset is 
normally distributed is IF the test statistics or value is greater than 0.5, and the p-
value greater than the 0.05 threshold (i.e, p > 0.05), THEN normality is assumed, 
ELSE IF p ≤ 0.05 THEN normality is not assumed. 

As shown in the example and results described below by using the variable 
called “Segment” in the example data (MyTestData); the following outputs D 
= 0.84134 and W = 0.89536 represents the value of the statistics for the 
Kolmogorov–Smirnov and Shapiro–Wilk tests, respectively. While the p-value < 
2.2e-16 (i.e., p = 0.00) which was found for both test, represents the significant 
level (referred to as p-values) of the corresponding tests. 

> lapply(MyTestData, ks.test, "pnorm") 

$Segment 

One-sample Kolmogorov-Smirnov test 

data:  X[[i]] 

D = 0.84134, p-value < 2.2e-16 

alternative hypothesis: two-sided 

> lapply(MyTestData, shapiro.test) 

$Segment 

Shapiro-Wilk normality test 

data:  X[[i]] 

W = 0.89536, p-value < 2.2e-16 

As reported in the second part of the highlighting in Fig. 3.7 and in the above 
results, we can see that the p-values for each of the variables or test (Kolmogorov: D 
= 0.84134; Shapiro: W = 0.89536) are less than 0.05 (p < 0.05) with the majority of 
them showing a p-value of p < 2.2e-16 (scientifically interpreted as p = 0.00). The 
number or value: 2.2e-16 is the scientific notation of 0.00000000000000022 which 
means that the values are fundamentally very close to zero. 

Therefore, with the above results, we can reject the null hypothesis (i.e., p > 0.05), 
and assume that the example dataset is not normally distributed. 

Also, it is important to mention to the readers that datasets which are normally 
distributed are expected to be “bell-shaped” when graphically represented, whereas
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non-normally distributed datasets are “skewed”. For example, as seen in Figs. 3.8 and 
3.9, we can see that the plots are not represented to be bell-shaped (skewed) (Fig. 3.8) 
or not on a 45 degrees straight line (Fig. 3.9), thus, affirming the statistical results the 
authors have interpreted earlier (see Fig. 3.7) which shows that the example dataset 
is not normally distributed. 

Useful Tips and Information: 

1. The Shapiro–Wilk normality test is sensitive and are typically appropriate for 
small sample sizes. 

2. Kolmogorov–Smirnov test is recommended for large sample sizes, for instance, 
samples greater than 100 (n > 100). 

3. Shapiro–Wilk test is widely recommended for data normality tests and tends to 
provide better statistical power than Kolmogorov–Smirnov test. It is based on the 
correlation between the data and the corresponding normal scores (Ghasemi & 
Zahediasl, 2012). 

4. Parametric procedures or analysis (which the authors will cover in the next 
chapter—Chap. 4) can still be conducted on large datasets (e.g., n > 30 or 40), 
regardless of whether the specified data violates the assumption of normality 
(Roscoe, 1975). However, for small sample sizes (n < 30) that appear to 
be non-normally distributed, the non-parametric procedures are scientifically 
recommended. 

5. In some situations, the users may get a warning message such as “ties should not 
be present for the Kolmogorov–Smirnov test” when conducting the Kolmogorov– 
Smirnov (K-S) test depending on the type of variable(s) being analyzed. K-S test 
assumes that the datasets are continuous (which in some cases are likely not) 
and therefore tends to generate a warning when it finds the presence of ties. 
Nonetheless, the diffident sums of parsing or rounding on the variables are still 
significantly effective on the calculated statistics, and as such are still theoretically 
estimated to be valid. 

3.3 Test of Data Reliability in R: Cronbach’s Alpha Test 

The Cronbach’s alpha, α (or coefficient alpha), test is one of the most commonly used 
method to determine if a dataset or instrument is reliable, for instance, for research 
purposes or the many other types of data analysis and computation. The test (α) is  
used by researchers to ascertain how closely related a set of item(s) in a dataset are 
as a group. 

By default, the general rule of thumb is that a Cronbach’s alpha (α) test result of 
0.70 and above is good and acceptable. Meaning that the results or conclusions drawn 
from analyzing the available data are assumed to be reliable for further analysis and/ 
or drawing scientific conclusions. 

Here, we will demonstrate how to conduct Cronbach’s alpha test in R. As described 
in Fig. 3.10, the authors will show two ways or methods of how to perform this test 
(Cronbach’s alpha) using the four defined steps in R:
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Interpret Check the results of the analysis 

Analyze Check for reliability of the data using two methods in R; alpha( ) 
and reliability( ) 

Data Import and inspectthe dataset that we wantto check for reliability 

R Packages Install and Load required R packages ("psych" and "umx") 

Fig. 3.10 Steps for conducting Cronbach’s alpha test in R 

Fig. 3.11 Example of CVS file download. Source https://www.picostat.com/dataset/eustockma 
rkets) 

Now, let’s start by creating a new R Script and name it “CronbachAlphaDemo” 
or any name the reader chooses. 

Once you have created the R Script, download the example file that we will use 
to demonstrate the Cronbach’s reliability test in R. 

As shown in Fig. 3.11, visit the following link (https://www.picostat.com/dataset/ 
eustockmarkets) and download the CVS file named “dataset-62794.csv” and save 
this on your computer desktop. (***the readers are welcome to use any file or format 
of choice, but for this example, the authors will be using the example CSV file***). 
The example dataset is also available for download at the following data repository: 
https://doi.org/https://doi.org/10.6084/m9.figshare.24728073.

https://www.picostat.com/dataset/eustockmarkets
https://www.picostat.com/dataset/eustockmarkets
https://www.picostat.com/dataset/eustockmarkets
https://www.picostat.com/dataset/eustockmarkets
https://doi.org/
https://doi.org/10.6084/m9.figshare.24728073
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Fig. 3.12 Cronbach’s alpha reliability test in R 

Once the file download is completed and the CSV file saved on the local machine 
or system, e.g., the user’s desktop, we can proceed to conduct Cronbach’s alpha 
reliability test by following the steps we have defined in Fig. 3.10. 

# Step 1—Install and Load the Required R Packages 

As shown in Fig. 3.12 (see Lines 3–9) Install and Load the necessary R packages 
(“psych” and “umx”) that we will be using to conduct Cronbach’s alpha test. 

The syntax to install and load the “psych” and “umx” packages are as follows:



82 3 Test of Normality and Reliability of Data in R

Fig. 3.13 Example of CSV dataset imported in R 

install.packages("psych") 

install.packages("umx") 

library(psych) 

library(umx) 

As shown in Fig. 3.12 (Step 1—Lines 5–9), once the user has the necessary 
packages installed and loaded, the next step is to import the dataset for analysis 
(Step 2: see code below). 

# Step 2—Import and Inspect Data 

MyTestData2 <- read.csv(file.choose()) 

attach(MyTestData2) 

View(MyTestData2) 

str(MyTestData2) # view Variables types 

As demonstrated in Fig. 3.12 (Step 2), when you run the commands (see Lines 
11–16) you will be presented with a window through which you can navigate and 
choose the.csv file named “dataset-62794” that we downloaded earlier and stored 
on the computer desktop. 

Once selected and successful, the data will be imported and stored in an R object 
defined as “MyTestData2” (***remember you can always use any name of your 
choice***). The users can see the details of the dataset highlighted in Fig. 3.13, with 
1860 observations and 4 variables in the data sample.
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***Note: Remember to Convert non-numeric variables to numeric if using a 
dataset that contains Character or Categorical values. Users can refer to Sect. 3.2 on 
how to do this task or Chap. 2 “Working with Data in R (see Sect 2.5.5)” for more 
details. 

# Step 3—Analyze the Data Reliability using Cronbach’s Alpha Methods 

Now we can proceed to analyze the imported dataset (stored as R object we named 
or defined as—MyTestData2) using the alpha( ) and reliability( ) functions in R. 

The syntax for performing the reliability tests in R using the two methods is as 
follows: 

# Method 1 

alpha(MyTestData2, check.keys=TRUE) 

# Method 2 

reliability(cov(MyTestData2)) 

Once the user have successfully run the codes (Lines 19–25), the user will be 
presented with the results of the tests in the Console, similar to the one illustrated in 
Fig. 3.14.

# Step 4–Results Interpretation for Cronbach’s Alpha Test 

The final step in the reliability of data analysis is to interpret the results of Cronbach’s 
alpha test. By default, the null hypothesis for testing whether a given dataset or 
instrument is reliable for research purposes or data analysis is IF α (coefficient alpha) 
is greater than or equal to 0.70 (α ≥ 0.70), THEN reliability of data is statistically good 
and scientifically acceptable, ELSE IF α is less than 0.70 (α < 0.70), THEN data 
reliable is questionable. It is also important to mention that these measures can vary 
based on different context scenarios or research experimental settings. 

As highlighted in the results we derived by using the example dataset (defined 
as MyTestData2) (see: Fig. 3.14), the statistics (reliability result) of the data is α 
= 0.95 (for Method 1) and α = 0.9494 (for Method 2) with std. alpha of 0.99 
(Method 1) and 0.9908 (Method 2), respectively. Therefore, we can accept the null 
hypothesis, i.e., α ≥ 0.70, and assume that the tested or analyzed dataset is reliable 
for any statistical analysis or research experiments. 

3.4 Summary 

In this chapter, the authors looked at the preliminary, yet, important tests that are 
conducted by the researchers when carrying out the experimentations or statis-
tical data analysis. This consists of the process of testing the available datasets for
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Fig. 3.14 Results of Cronbach’s alpha tests displayed in the Console in R

normality of distribution and reliability of the data sample for scientific research 
purposes. In theory, these tests (i.e., normality and reliability) are done to assess 
the extent to which the data is capable of producing coherent and assertive research 
results or conclusions. In Sect. 3.2, the authors demonstrated how to conduct the 
Kolmogorov–Smirnov and Shapiro–Wilk normality tests in R, which in comparison 
to the other mentioned types of tests, is the most commonly used method by the 
researchers to check the distribution of the data. In Sect. 3.3, we illustrated how to 
conduct Cronbach’s alpha reliability test using two different methods in R. In each 
case (Sect. 3.2 and 3.3), we discussed the meaning of the test statistics and how to 
interpret the results of the different tests (Kolmogorov–Smirnov, Shapiro–Wilk, and 
Cronbach’s alpha) in R.
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Chapter 4 
Choosing Between Parametric 
and Non-parametric Tests in Statistical 
Data Analysis 

4.1 Introduction 

Statistical data analysis and hypothesis testing in any type of research or data anal-
ysis usually fall under two likely categories: parametric and non-parametric tests. 
In scientific research, statistical methods are mainly used to conduct quantitative 
research or analysis. Thus, the hypothesis testing (be it parametric or non-parametric) 
is primarily designed and used to describe and interpret the “assumptions” that 
underlie the adopted statistical methods. In Chap. 6, the authors will expand on 
the different types of Statistical Methods and Analysis the researchers can perform 
particularly taking into account the parametric and non-parametric tests discussed in 
this current chapter. 

The decision to conduct parametric or non-parametric analysis largely depends 
on the type of data (see Chap. 5) the researchers intend to investigate or analyze 
(Stojanović et al., 2018). The different statistical approaches or procedures are 
followed based on the type of the available dataset (nominal, ordinal, continuous, 
discrete, number of independent versus dependent variables, etc.). Hopkins et al. 
(2018) note that when researchers collect data for hypotheses testing and the inves-
tigations to follow; they often refer to the underlying proportions, means, medians, 
or standard deviations, etc. as “parameters” to describe the general population in 
question. As a result, the researchers tend to predetermine those “parameters” from 
the collected sample (i.e., drawn from the population) by calculating the sample esti-
mates or quantification, otherwise referred to as “statistics”. Thus, statistical methods 
or analysis are applied to estimate the parameters (Hopkins et al., 2018). Likewise, 
Stojanović et al. (2018) note that making the right choice as to which statistical 
method or test to apply for the research strongly influences the extent and level of 
the data interpretation and impact.
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4.2 Parametric Versus Non-parametric Tests 

In this section, the authors focus on describing in detail what parametric and non-
parametric tests are, and when to choose between the two types of test in research 
experiments or hypothesis testing. 

4.2.1 Parametric Test 

Parametric tests are fundamentally used to make assumptions based on the distri-
butions that underlie the available data the researchers or analysts want to analyze 
(Hopkins et al., 2018; Turner et al., 2020). With the parametric tests, it is assumed 
that several conditions which are used to measure the validity and reliability of the 
test and results must be met. According to Turner et al. (2020), the term “parametric” 
refers to parameters of the resultant data (distribution) which assumes that the sample 
(mean, standard deviations, etc.) is normally distributed as illustrated in Fig. 4.1a. 

In the other setting (non-parametric), which the authors discuss in detail in the 
next section of this chapter (Sect. 4.2.2)—the data samples or population can appear 
to be not normally distributed (see: Fig. 4.1b and c), which in turn, implies the

Fig. 4.1 Normal versus non-normal data distribution, adapted from Antonopoulos and Kakisis 
(2019) 
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Fig. 4.2 Binomial distribution sample example, adapted from ScienceDirect (2019) 

application of statistical methods that support those types of data (otherwise referred 
to as non-parametric procedures). 

By definition, the term parametric can be referred to methods or procedures that 
assume specific types of distributions such as: the Binomial or Poisson distributions 
(Turner et al., 2020), as shown in Figs. 4.1a and 4.2. 

In theory, as gathered in Figs. 4.1a and 4.2; parametric tests are based on the 
presupposition that the analyzed or investigated datasets follow a normal “bell-
shaped curve” distribution of values (Antonopoulos & Kakisis, 2019; ScienceDirect, 
2019) often allied to the central limit theorem (Stojanović et al., 2018). According 
to the ScienceDirect (2019) source or topic on the parametric tests, a graphical 
representation of data drawn from a particular group of population (i.e., studied 
phenomenon) that appears to be closely or normally distributed will always come 
out as a typical bell-shaped curve (referred to as Gaussian distribution) in contrast 
to the non-parametric datasets that tend to be skewed, lumpy, with gaps scattered 
about, or having a few warts and outliers. 

In a nutshell, the standard conditions (or assumptions) that underlie the parametric 
tests are outlined as follows (Rana et al., 2016):

• The observations must be independent. The sampled data should not be associated 
to any factor that can potentially affect the outcome of the analysis.

• The observations should (necessarily) be drawn from a normally distributed 
population.

• The sample data is better represented by the mean or standard deviation.
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• The captured datasets should essentially be measured or represented on an interval 
or ratio scale. 

4.2.2 Non-parametric Tests 

Non-parametric tests are referred to as “distribution-free” statistical tests given the 
fact that the supporting methods assume that the readily available datasets follow a 
certain but not specified distribution (De Canditiis, 2019; Minitab, 2015; Rana et al., 
2016; Turner et al., 2020). The non-parametric tests are mostly applied to samples 
which are represented as nominal or ordinal data (Rana et al., 2016). Although, the 
test can also be conducted on interval and ratio datasets provided the data sample(s) 
in question do not follow a normal distribution. Therefore, a majority of the non-
parametric tests or methods can handle ordinal data, ranked data, etc., without being 
utterly affected by outliers (Derrick et al., 2020; Winthrop, 2019). The tests (non-
parametric) are applied with the emphasis that it does not require or demand for any 
given (specified) condition(s) to be met particularly with regards to the parameters 
of the population from which the sample is drawn. 

As illustrated earlier in Figs. 4.1b and c part, unlike the parametric tests (that are 
better represented in mean or standard deviations—see Fig. 4.1a), the non-parametric 
tests are most adequate or suitable when the said datasets in question are better 
represented by median (see: Fig. 4.1b and c). 

Furthermore, as gathered in Figs. 4.1b and c, non-parametric tests are grounded 
on the presupposition that the investigated or scrutinized datasets show a non-normal 
“skewed or uneven curve” distribution of values (Antonopoulos & Kakisis, 2019; 
ScienceDirect, 2019). 

In short definition, the authors outline the various common conditions (assump-
tions) that constitute the non-parametric tests as follows:

• When the analysis does not require any rigorous (stringent) assumptions to be 
met for the test or hypothesis testing process to follow.

• The observations should necessarily be drawn from a non-normally distributed 
population.

• The sampled data is better represented by the median.
• The captured datasets should essentially be measured on a nominal or ordinal 

scale. Although, in some settings, the methods (non-parametric) support the 
interval and ratio data provided they are non-normally distributed. 

In summary, the non-parametric tests are alternative to the parametric tests, espe-
cially for small sample sizes, whereby there is the presence of extreme asymmetries, 
skewness, and/or multimodality (Stojanović et al., 2018; Woodrow, 2014).
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4.3 Choosing Between Parametric and Non-parametric 
Test 

“…the type of dataset one has ready for the research or hypothesis testing will essentially 
determine the type of statistical method or data analysis that is applicable or fitting for the 
research…” (see Fig. 4.3). 

When statistically comparing the causes (based on the input variables) and 
effects (output variables) between different groups (sample composition) in a dataset, 
researchers have to choose whether to use the parametric or non-parametric statistical 
methods (le Cessie et al., 2020). For example, the suitability of a particular statis-
tical method when investigating the difference(s) between variables (e.g., nominal, 
ordinal, continuous, discrete, etc.) among different groups (e.g., independent or 
dependent) would necessarily depend on the distribution of the variables (e.g., normal 
versus non-normal) (see: Table 4.1).

In summary, when choosing the type of statistical method to apply for the research 
investigation (parametric versus non-parametric), one should consider among the 
many factors the following elements (Rana et al., 2016):

Fig. 4.3 Choosing between parametric and non-parametric tests 
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• Scale of measurement of the data, e.g., nominal, ordinal, interval, ratio, contin-
uous, discrete, etc.

• Distribution of the population, e.g., normal versus non-normal
• Homogeneity of variances, e.g., equal versus unequal variances
• Independence versus dependency of the drawn samples considering the variables. 

4.3.1 Types of Parametric Versus Non-parametric Tests 
in Statistical Analysis 

It is paramount to decide between the parametric and non-parametric tests, including 
all the assumptions associated with the different methods (as outlined in the previous 
section–Sect. 4.2 and Table 4.1) when choosing one above the other. 

Here in this section of the chapter, the authors outline and illustrate some of the 
most commonly used parametric tests in the available or current literature and their 
non-parametric equivalents (Table 4.1), with some examples of use case scenarios 
of each test presented in Sect. 4.3.2. 

In Table 4.1, the authors provided a list of the different parametric and non-
parametric tests, and the necessary conditions under which one should perform each 
test. 

4.3.2 Examples and Use Case Scenarios: Parametric Versus 
Non-parametric Tests 

Following the guideline listed in Table 4.1, the authors explain the different types of 
statistical tests using examples of some typical research scenarios: 

Parametric test (for Normally distributed data, Interval or Ratio, Large data 
sample size):

• Pearson’s Cor test (Correlation): determine if student’s grades (dependent 
variable) are increased or tend to increase in proportion to their study time 
(independent variable).

• t-test (One sample group): determine the Mean of the age of all students within 
a particular school or department.

• Independent sample t-test (Two groups of Independent variables): determine the 
Mean of all students within a particular school or department who are undergoing 
a specific teaching methodology (e.g., Hybrid model versus Traditional model of 
teaching).

• Paired sample t-test (Two groups of Dependent variables): determine the differ-
ence in the grades of students before (pre) versus after (post) undergoing the 
hybrid model of teaching.
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• One-way ANOVA (More than 2 groups (i.e., K > 2) of Independent variables): 
determine the Mean of all students within a particular school or department who 
are undergoing either the Hybrid model versus Traditional model versus Both 
(Hybrid and Traditional).

• Repeated measure ANOVA (More than 2 groups (i.e., K > 2) of Dependent 
variables): determine the Difference in the grades of students before versus after 
1st semester versus after 2nd semester of undergoing the Hybrid model of teaching. 

Non-parametric test (for Non-normally or distribution-free data, Nominal or 
Ordinal data, Small data sample size):

• Kendall´s tau or Spearman´s rho test (Correlation): determine if student’s 
grades (dependent variable) are increased in proportion to the teaching method-
ology adopted by the teachers.

• Chi-squared test (X2) (One sample group, 2 groups, and K groups (>2) of Inde-
pendent variables): determine the Differences between the observed and expected 
values or scores in male versus female students  ́ grade undergoing either the 
Hybrid model versus Traditional teaching model.

• Mann–Whitney U test (Two groups of Independent variables, ordinal data): 
determine the Median of all students within a particular school or department who 
are either undergoing the Hybrid model versus Traditional model of teaching.

• Wilcoxon signed-rank test (Two groups of Dependent ranked variables): deter-
mine the Difference in the grades of students before versus after undergoing the 
Hybrid model of teaching.

• Mc-Nemar´s test (Two groups of Dependent nominal or categorical variables): 
determine the Difference in number of students with good grades versus poor 
grades after 1st semester versus after 2nd semester of undergoing the hybrid 
model of teaching.

• Kruskal–Wallis H test (More than 2 groups (i.e., K > 2) of Independent ordinal 
variables): determine the Median of all students within a particular school or 
department who are undergoing the hybrid model versus Traditional model versus 
Both (Hybrid and Traditional).

• Friedman´s ANOVA (K groups i.e., > 2 of Dependent variables): determine the 
Difference in the grades of students before versus after 1st semester versus after 
2nd semester of undergoing the Hybrid model of teaching. 

***Note: the authors have provided a detailed/in-depth description of the different 
types of statistical data analysis and methods in Chap. 6 “Understanding the Different 
Types of Statistical Data Analyzes and Methods” (see Chap. 6).
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Table 4.2 Difference between parametric versus non-parametric test 

Parametric Non-parametric 

Existence of specific assumption(s) being made 
about the population in question 

There is no specific assumption(s) with regard 
to the population in question 

Information about the studied population is 
known 

There is no available information about the 
studied population 

Null hypotheses are developed based on the 
parameters or distribution of the population 

The Null hypotheses are developed 
independent of the parameters or distribution 
of the population 

The tests (parametric) apply to measuring just 
the variables and not their attributes 

The tests (non-parametric) are applicable to 
both the variables and their attributes, e.g., 
gender, marital status, etc 

The outcomes of the tests are more powerful 
and convincing when applicable 

The outcomes of the test are less powerful 
than the parametric tests 

The statistical tests and methods are grounded 
on the distribution of the available datasets 

The statistical tests and methods are arbitrary 

Cannot be applied for nominal data types, only 
interval or ratio 

Can be applied for nominal and ordinal data 
types 

Mostly used to measure Mean and Standard 
deviations 

Mostly used to measure MEDIANS 

Sampled datasets show a “bell-shaped” curve 
when graphically represented 

Sampled datasets show a “skewed or lumpy” 
curve when graphically represented 

4.4 Differences Between Parametric Versus 
Non-parametric Tests 

In this section, the authors outline some of the main differences between the 
Parametric and Non-parametric tests (Table 4.2): 

4.5 Advantages and Disadvantages of Parametric Versus 
Non-parametric Tests 

Some advantages and disadvantages of adopting or applying each of the tests 
(parametric versus non-parametric) are provided in Table 4.3 below.

4.6 Summary 

As a general rule of thumb in statistics, in situations whereby the variables are 
represented or measured on a continuous (or metric) scale, the “parametric tests” 
should be applied or conducted.
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Table 4.3 Advantages and disadvantages of using the parametric versus non-parametric tests 

Advantages (pro) Disadvantages (cons) 

Parametric Ensures that all components 
(population, parameters, 
assumptions) are compatible 
with one another 
Most useful when determining 
variations between groups of 
variables 
Can be easily applied and less 
complicated than the 
non-parametric methods 
Given that real information 
regarding the population is 
known, the confidence 
intervals are guaranteed 
Has more statistical power 
than other tests such as the 
non-parametric 

Mostly used only for quantitative datasets 
Data has to follow an approximate interval 
(normal) for the test to be applied 
Results may not be valid when it comes to 
small datasets or sample size 
They are not effective for ranked data or 
samples with outliers 
Since parametric tests are conducted based on 
pre-defined assumptions, it consequentially, 
allows one to make generalizations from a 
sample to the studied population 

Non-parametric Simple and easy to understand 
Methods are applicable for 
datasets with attributes, e.g., 
gender, marital status, etc 
Complicated sampling theory 
is not a problem 
No assumptions are made 
about the population 
Supports nominal data scales 

In statistical settings where parametric 
alternative is applicable, the non-parametric 
tests are less powerful 
Supported methods are less effective than the 
parametric tests in drawing reliable 
conclusions 
No current method for analyzing the 
association of variances in the underlying 
models

On the other hand, if the variable(s) are represented in nominal or ordinal (cate-
gorical) scale of measurement, the “non-parametric tests” should be considered or 
applied. 

Furthermore, the parametric tests assume that the analyzed data or sample distri-
bution is normally distributed (i.e., bell-shaped) and consists of related parameters 
in the population distribution by mean or standard deviations. 

On the other hand, the non-parametric tests make no assumption(s) about the 
shape (which are often skewed) or parameters of the population distribution by the 
median (Hopkins et al., 2018). 

Statistically, the parametric tests are generally more powerful than the non-
parametric methods. 

Different methods can be used to determine if the sampled datasets for the research 
are derivative from a normally distributed population. The most frequently used 
methods in the current literature are the Kolmogorov–Smirnov test, the Anderson– 
Darling test, and the Shapiro–Wilk test (Antonopoulos & Kakisis, 2019; LaMorte, 
2017; Stojanović et al., 2018), as discussed earlier by the authors in Chap. 3. 
According to LaMorte (2017), each test for normality of a data or sample is essen-
tially a goodness of fit test and consequentially compares the said dataset to quantiles
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of the normal and/or specified distribution. Thus, the default (null) hypothesis for 
each test is represented as H0; whereby the data is assumed to follow a normal 
distribution in comparison to the alternative hypothesis (H1) in which the data are 
assumed or may in reality not follow a normal distribution. In return, if the test 
turns out to be statistically significant, i.e., p < 0.05; with the value (statistics) of 
the normality test less than 0.5, then the readily available data is said to not follow 
a normal distribution (and as described earlier in this chapter, a non-parametric test 
would be best decided) (LaMorte, 2017; Stojanović et al., 2018). Thus, with the 
normality results (test statistics):

• When p < 0.5, then non-parametric test is best conducted.
• When p > 0.5, then parametric test is best conducted. 

Technically, there are many existing statistical tools that can be used to determine 
if the researchers’ datasets or samples are normally distributed, and consequently, 
perform either the parametric or the non-parametric procedures. Among the many 
existing tools includes statistical packages such as: R (Rstudio, 2023), SPSS Statis-
tics (IBM, 2023), STATA (Stata.com ©, 2023), SAS (Sas.com ©, 2023), Minitab 
(Minitab.com ©, 2023), MATLAB (MATLAB, 2023), Python (Python, 2023), etc. 
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Chapter 5 
Understanding Dependent 
and Independent Variables in Research 
Experiments and Hypothesis Testing 

5.1 What Are Variables in Scientific Research? 

Variables represent any quantifiable or measurable attributes in a given dataset. 
In theory, variable can be used to represent anything; ranging from some kind of 
phenomenon or entity one is trying to measure, to empirical study of events, ideas, 
subjects and objects or even time (Sarikas, 2020). 

There are different ways in which variables are defined depending on the context 
it is used or applied. 

In scientific research, “variable” can be defined as a measurable property or traits 
that changes (varies) or are affected as a result of the change across the experiment or 
hypothesis when testing. Perhaps, such properties or changes are captured regardless 
of whether the scientists or researchers are comparing the outcomes or relationships 
that exist among multiple groups of objects, multiple persons, or a single entity in 
an experimentation, e.g., performed over a period of time (Agravante, 2018). 

In mathematics, the opposite of “variable” is referred to as “constant”. Therefore, 
we assume that a variable is an entity or quantifiable object with an unknown value, 
thus, the concept for which its application for scientific research is drawn. 

Researchers often choose some kind of letters (annotations) to remind them of the 
quantities or parameters that are being measured or they are measuring (statistically 
represented). For example, in an equation, graph or linear regression model in which 
the “y"-axis or parameters can be defined as a function of “x”, i.e., f(x). It means 
that the value of y is dependent upon the value of x. Thus “x” and “y” values are 
described as the “variables”. In short definition, the term variable implies that the 
represented values or parameters can change over the course of a scientific experiment 
or hypothesis testing. 

Logically, variables and the associated attributes can also be allied to the concept 
of necessary condition analysis (NCA) (Dul, 2016). Dul (2016) emphasized on the 
logic and methodology of “necessary-but-not-sufficient” conditions to define the
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various processes or factors (e.g., measures of occurrences, features or characteris-
tics of objects, etc.) that can be used for hypothesis testing, thus, leading to some sort 
of expected outcomes (conclusions). In essence, when defining the concept of NCA 
in relation to scientific research and experiments, the authors note that a necessary 
determinant (i.e., variables) must be present for achieving an outcome (or drawing 
conclusions). Although Dul (2016) states that the presence of the determinants (vari-
ables) is not always sufficient to prove that outcome, but instead to suggest or support 
the conclusions. In other words, variables for research purposes can only be used to 
draw causal inferences. More importantly, the validity of the resultant inferences or 
conclusion is grounded on the level of adequacy of the proposed or supported theories, 
quality of the measurement and analysis process, the statistical data analysis method 
or hypothesis testing, and SMART research design adopted by the researchers or 
scientists (Dul, 2016; Stone-Romero, 2002; Tynan et al., 2020). 

Despite the fact that the necessary condition analysis (Tynan et al, 2020) is a  
theoretical method of its own in literature, it not only allows us to relatedly perform 
hypothesis testing through the underlying logic (indication) of necessity of X for Y 
in any statistical or rule-based analysis (e.g., IF – THEN statement or Association 
Rule Learning) (Okoye et al., 2014), but also the logic (NCA) can be grasped as 
an effective and efficient way to find relevant variables that must be leveraged or 
analyzed to support the occurring conclusions or hypothesis acceptance or rejection. 
Thus, variables are normally, in theory, represented as a group of items with several 
attributes or characteristics that can be combined (e.g., by adding or averaging) in 
order to obtain a concluding score for the said variables of interest or scrutiny (Dul, 
2016). 

Likewise, Tynan et al. (2020) note that although the NCA logic (in carrying out 
research experiments and hypothesis testing) enables the researchers to determine 
if the observed relations or association between the variables (e.g., independent 
versus dependent) (see: Sect. 5.1.1.1 and 5.1.1.2) are consistent with the “necessary-
but-not-sufficient relation or condition” rule. It states that such condition suggests 
that the results of the experimentations or hypothesis testing are only probable— 
but not guaranteed—given the high levels or reliability of the considered variables 
(Tynan et al., 2020). Moreover, the outcomes may sometimes consequently lead 
to re-consideration (re-examination) of other variables that may have been apriori 
dismissed or considered as being irrelevant in the analysis process. 

Theoretically, there are different types of variables, considering the 
diverse settings or context in which it is being used or applied. We note some of the 
examples to include: independent and dependent variables, intervening and moder-
ator variables, constant or controllable variables, extraneous or predictor variables, 
etc. (Agravante, 2018). For all intents and purposes, this book focuses on the most 
frequently named or used variable when conducting the scientific research and data 
analytics as follows:

• Independent variables, and
• Dependent variables.
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5.1.1 Types of Variables in Scientific Research 

Deciding if a variable influences other variable(s) is one of the main challenges or 
components of conducting some scientific research particularly the social science. 
This is owing to the fact that by establishing the effects or assertions from the exam-
ined variable(s), the investigators are able to accept or reject a hypothesis, and, in 
turn, create a new knowledge about the phenomenon that is being studied. 

In theory, variables can be either dependent or independent based on how the 
researcher(s) design or sets up the experiments or hypothesis. It is important to note 
that the research design (whether qualitative or quantitative) resolves to or leads to 
what variables are manipulated (independent) or are consequently measured/affected 
(dependent) as a result of that manipulation. The authors will discuss this in detail 
in the following subsections. 

5.1.1.1 Independent Variable 

Independent variable, otherwise referred to as themanipulated variable(s) represents 
the items or parameters being changed or manipulated by the researcher (Boyd, 2008; 
Shuttleworth & Wilson, 2008a, 2008b). According to Boyd (2008), an independent 
variable is expected to influence or at least be correlated with another variable (i.e., 
the dependent variable—see Sect. 5.1.1.2) in a data sample or scientific experiment. 
A lot of the time, the independent variable(s) are similarly referred to as the controlled 
variable as this is the variable(s) that are being decided (selected) or manipulated 
by the researchers in the experiment. In fact, an independent variable is considered 
“independent” because its distinctive attributes do not depend on the variation of 
other variables in a specific experiment or setup (Shuttleworth & Wilson, 2008a, 
2008b). Hence, an “independent variable” is the variable that its value or change is 
not affected by other variables in an experiment. 

Technically, as gathered in Fig. 5.1 (see more detail in Chap. 6); in linear regres-
sion models, x-axis (horizontal axis) is normally used to represent the independent 
variable in a graph or equation.

In principle, when we consider the graph (Fig. 5.1) which shows a linear relation-
ship between x and y, the value of y is represented as a function of x “f(x)”. Meaning 
that y, the dependent variable (see: Sect. 5.1.1.2) is dependent upon the value of x. 
Consequentially, the final outcome or result of the formula can be interpreted as: 
y depends on the x value (i.e., the independent variable) which can be changed or 
changes on its own. According to Sarikas (2020), a typical example of independent 
variables is studies or samples representing age and time. Basically, there is nothing 
the researcher or any likely factors could neither do to slow or speed up the time, nor 
decrease or increase the age. Thus, it can be said that the variables (x), e.g., age and 
time, are often independent of every other variable in scientific experiments.
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Fig. 5.1 Graph representing the independent (x) and dependent (y) variables

5.1.1.2 Dependent Variables 

As illustrated earlier in Fig. 5.1, y (i.e., vertical axis) is normally used to represent 
the dependent variable in a graph or equation. The authors highlighted in the figure 
(Fig. 5.1), how the independent variables (x) relates to the dependent variable (y). 
This is given that quite often either of the variables cannot be defined or discussed 
without referring to the other. Here, we explain the dependent variable in detail. 
Earlier on, we noted that in a typical experiment or hypothesis testing, the indepen-
dent variables represent the items or parameters that are being manipulated, and, in 
turn, (the effects) subsequently observed or recorded. By definition, those observed 
or recorded effects are referred to as the dependent variables (Cao, 2008; Shut-
tleworth & Wilson, 2008a, 2008b). According to Shuttleworth and Wilson (2008a, 
2008b), the dependent variables are often the hypothesized consequences (effects) as 
a result of manipulating the independent variable(s). Therefore, in a typical experi-
ment, the dependent variable is assumed to respond to the independent variable. Thus, 
in theory, the dependent variables are also referred to as the “response variables”. 
Cao (2008) states that the judgment to treat a variable as a “dependent” might not 
only mean that an independent variable predicts the said variable but also happens 
to cause (or effects) the dependent variable. 

5.1.1.3 Independent Versus Dependent Variables 

In the following figure (Fig. 5.2), the authors show that the independent variable is 
the variable the researchers change (or controls), and it is expected that it will have a 
direct effect on the dependent variable. Thus, the dependent variable is the variable
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Fig. 5.2 Relationship and condition between independent versus dependent variables 

being tested (or measured) during the experimentation, hence, as the name implies 
is “dependent” on the independent variable (McLeod, 2019). 

The illustration in Fig. 5.2 shows that the purpose of any typical research exper-
imentation or hypothesis testing should be focused on determining possible effects 
(influence) that leads to the dependent variable (DV) which may be caused by 
changing or altering (conditions) the independent variables (IV). 

Furthermore, the authors provides in Table 5.1 some of the distinctive features of 
the independent (IV) versus the dependent variables (DV) that may guide the work 
of the researchers in determining the different types or categories of variables when 
conducting their experiments.

In summary, the independent variable (IV) provides the “input” to the statistical 
test or hypothesis which is modified by the model or the adopted method(s) by 
the researchers to change the “output” (dependent variable, DV). Interestingly, Cao 
(2008) notes that to conclude whether the dependent variable (DV) is caused by the 
independent variable (IV); that it is important to establish the relationship between
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Table 5.1 Independent versus dependent variable 

Independent (IV) Dependent (DV) 

Manipulated variable Response variable 

X or horizontal axis Y or vertical axis 

What the researchers change or what changes 
on its own 

What is being studied or is being measured or 
determined 

Input of an experiment Output of an experiment 

Causes the variation Depends on the variation

the two variables based on some pre-defined criteria. For example, as the authors 
outline below:

• The two variables (independent versus dependent) must be correlated, thus, a 
change in one variable (mainly the independent variable) must be accompanied 
by a change in the other (dependent variable).

• The observed correlation between the variables (independent versus dependent) 
must be genuine and conform to the measures by validity. In other words, the resul-
tant relationship cannot be explained by other variables. Although the indepen-
dent variable can be one of many other factors that could influence the dependent 
variable.

• Causal relationships between the independent and dependent variables are 
typically probabilistic in nature rather than deterministic; meaning that such 
association will not always necessarily be true for every run test or case scenario.

• When considering the order or timing of occurrence, the dependent variable (DV) 
must follow the independent variable (IV). For instance, a researcher who seeks 
to determine how ones’ level of education influences ones’ level of academic 
performance or work production would necessarily show that changes in the latter 
(academic or work production) occurred after changes in the former (education 
level). 

5.1.2 Examples and Use Case Scenarios of Independent 
Versus Dependent Variables 

In the preceding section (Sect. 5.1.1), we described the different types of variables 
(independent and dependent) including the distinctive features or how to identify each 
type in a dataset or experiments. Here, in Table 5.2, the authors look at some examples 
or use case scenarios that can guide the researchers or statisticians in defining or 
establishing the differences between the two variables (IV versus DV) especially in 
the different research settings or domains that they (researchers, statisticians, data 
analyst) undergo.
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Table 5.2 Use case scenarios for identifying independent versus dependent variables 

Research scenarios Independent variable (IV) Dependent variable (DV) 

Study that focuses on 
determining the impact of a 
particular teaching/learning 
method 

• The teaching/learning 
method 

• Impact of the method 

Study that explores how 
much resources is invested 
to acquire some certain 
books for a library 

• How many books were 
acquired 

• Resources invested 

An experiment that tests if 
the changes in the location 
of a certain work 
environment affect the 
outputs or productivity 

• Change in locations • Whether the productivity is 
affected or not 

Sports experiment to 
determine if the number of 
hours spent training 
improves the athlete’s 
performance 

• Number of hours spent 
training 

• Athletes performance 

A researcher sets out to 
determine which type of 
educational model mostly 
supports the students in 
meeting their learning goals 

• The types of educational 
model 

• Level of support or meeting 
the students’ learning goal 

Medical experiment that 
focuses on determining how 
increase in the temperature 
of patients affects their 
response to treatment 

• Patient’s temperature • Response to treatment 

Agricultural research that 
seeks to establish how 
different factors (e.g., 
sunlight, water, etc.) affects 
the growth of certain plants 

• The different factors, 
sunlight, water, etc 

• How tall the plants grow 

A social science research 
that investigates how the 
level of ones’ education 
affects ones’ maturity or 
level of thought 

• Level of education • Level of thought 

5.2 Summary 

The relationship between the independent (IV) and dependent (DV) variables is the 
key foundation of most statistical data analysis or scientific tests. An ample under-
standing or identification of the independent versus dependent variables is paramount 
to having a good knowledge about the outcome or impact of the scientific research or
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how the experimentations are being done/conducted. In typical scientific research, 
the researchers can establish whether there is a significant correlation between the 
two variables (IV versus DV). In turn, the outcome of the procedures or methods 
(tests) enables the investigators to draw conclusions by either accepting or rejecting 
the pre-defined research hypothesis. 

Quite often, it can be anything from really cumbersome or easy to identify the 
independent (IV) and dependent (DV) variables for any research study or data sample. 
According to Sarikas (2020), an easy way to identify the independent or dependent 
variable during an experiment is: independent variables (IV) are what the researchers 
change or changes on its own, whereas dependent variables (DV) are what changes as 
a result of the change in the independent variable (IV). Thus, independent variables 
(IV) are the cause while dependent variables (DV) are the effect. 

Finally, it is important to remember that while some studies are likely to have 
one dependent variable (DV) and one independent variable (IV), it is also possible 
to have several of each type of the variables, i.e, more than one independent or 
dependent variables, in an experiment, as we will illustrate in Chapter 6 with some 
examples. Researchers might also want to learn or explore how variables in a single 
independent variable or factor affect several distinct dependent variables, or vice 
and versa (Cherry, 2019). 
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Chapter 6 
Understanding the Different Types 
of Statistical Data Analysis and Methods 

6.1 Introduction to Statistical Data Analysis 

This chapter provides the readers (e.g. researchers, data analysts, statisticians) with 
basic guidelines toward a comprehensive understanding of the different types of 
statistical data analysis and methods particularly for scientific research. This includes 
a description of when best to apply each particular type of analysis following our 
explanations of the prerequisites in statistical data analysis discussed in the previous 
chapters of the book (see Chaps. 4 and 5). Quite often, the researchers tend to choose 
the type of analysis for their work based on their expert knowledge or experience 
about the readily available tools and methods rather than considering the fact that in 
real practice, the type of analysis for any research work depends on the type of data 
that is collected and/or the variables being considered. 

To this effect, this chapter discusses in detail the different types of statistical 
data analysis methods to guide the work of the researchers and data analysts when 
carrying out their investigations. In addition, it provides some examples of use case 
scenarios for each of the methods being discussed. 

6.2 Statistical Data Analysis and Methods in Scientific 
Research 

Some of the most frequently applied methods used to carry out the statistical data 
analysis and hypotheses testing in literature are discussed here. Before we look at 
the different types of statistical methods, it is important for the researchers at all 
stages, particularly during the planning and design stage of their research, to bear in 
mind that the type of data analysis or method to be used depends on the type of data 
collected or the research design (see Chaps. 2 and 5).
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Fig. 6.1 Linear regression graph 

6.2.1 Linear Regression 

Linear regression (best known type is often referred to as ordinary least square— 
OLS) (Zdaniuk, 2014) is a statistical method used to estimate the “relationships 
between variables” (Kronthaler & Zöllner, 2021). The test includes different tech-
niques for modeling and analyzing the association between two or more variables. 
The linear regression is mostly applied when the focus is on the relationship between 
a dependent variable (DV) plus one or more independent variables (IV) (see Chap. 5). 

The linear regression analysis assumes that the data points generally, but not 
exactly, fall along a straight line as shown in Fig. 6.1 (Montgomery et al., 2012). 

Example of Use Case Scenario for Linear Regression: 

A setting where the linear regression analysis can be applied is when a dependent 
variable (e.g., the student’s grades) is expected to increase in proportion to their study 
time (independent variable). 

6.2.2 Logistic Regression 

The logistic regression is a type of statistical method used to predict the outcome 
of a categorical variable (dependent) as a function of the independent (predictor) 
variables (Connelly, 2020). The method is useful to model the probability of an 
event occurring as a function of other factors. The logistic test is mostly applied for 
machine learning and data prediction, otherwise referred to as a statistical method 
for measuring the likelihood of data at different intervals. 

In a logistic regression test (see Fig. 6.2), separation occurs when a linear combi-
nation of the predictors can perfectly classify part or all of the observations in the
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Fig. 6.2 Graphical representation of the linear regression versus logistic regression models 

sample (Ghosh et al., 2018). Consequentially, a finite maximum likelihood estimate 
of the regression coefficients tends to not exist. 

Linear Regression versus Logistic Regression: 

In the example shown in Fig. 6.2, it can be seen that while the linear regression 
analysis is used to estimate the relationships between variables; on the other hand, 
the logistic regression is very useful when classifying samples within a range or 
categories and tend to make use of different types of data to perform the classification. 

The logistic regression method can also be used to determine or assess what 
variables are useful for classifying the data samples. 

Example of Use Case Scenario of Logistic Regression: 

Consider a dataset containing information about students who are considered to 
have a learning difficulty. There are some certain features such as cognitive impair-
ment, visual impairment, mobility impairment, etc. that may be seen as the deter-
mining factors. Therefore, the data analysts or researchers’ task could be to find the 
correlation between those listed features and their dependencies on each other. 

Thus, for research purposes, the following questions can be answered using the 
logistic regression: 

• Are the cognitive impaired students more prone to be classified as students with 
learning difficulty? 

• What is the probability that a visually impaired student could have a relationship 
with students considered to have learning difficulties? 

• Does mobility impairment have any impact in classifying a student as having a 
learning difficulty? 

In essence, performing a logistic regression test using the above variables 
(features) will fit better to the available dataset in question. For instance, the analyst 
or researcher can make use of the regression (logistic) to build a predictive model 
for a new set of records that is capable of determining whether the students have a
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learning difficulty or not. However, in any case, the most important factor to note 
or consider in such type of analysis is the predictive accuracy of the resultant model. 

6.2.3 Linear-Log Model 

The estimated unit change in the dependent variable (DV) for a percentage change 
in the independent variable (IV) can be represented or calculated through the coef-
ficients in a linear-log model. Thus, if we use natural log values to represent the 
independent variables (x) and keep the dependent variable (y) in its original scale, 
the econometric specification is called a linear-log model (basically the mirror image 
of the log-linear model). 

The linear-log models are typically used when the impact of the independent 
variable (x) on the dependent variable (y) decreases as a result of an increase in 
the independent variable (in contrast to the linear regression analysis). The resultant 
models (or linear-log models) can sometimes correct for the lack of homoscedas-
ticity that is usually associated with the linear regression analysis, thus, it allows for 
heteroscedasticity in the residual distribution (Glick & Figliozzi, 2019). 

For instance, when the researcher estimates a linear-log regression, a number 
of outcomes for the coefficient on the x-axis tend to produce the most likely 
relationships, as described in Fig. 6.3. 

Where: 

• Part (a)—Fig. 6.3 shows a linear-log function where the impact of the independent 
variable is positive and 

• Part (b)—Fig. 6.3 shows a linear-log function where the impact of the independent 
variable is negative.

Fig. 6.3 Linear-log model graph 
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6.2.4 T-test 

The t-test is a type of inferential statistic used to determine if there is a significant 
difference between the means of two groups of a variable which may be related in 
some certain features or characteristics (Novak, 2020). The t-test is one of the many 
common tests used for the purpose of hypothesis testing in statistics or research exper-
iments. The method (t-test) can be regarded as one of the “multivariate” types of statis-
tical analysis technique used to analyze datasets that contain more than one group 
of variable, and the methods are especially valuable when working with correlated 
variables (Chatfield, 2018; Novak, 2020). 

The following formula is used to calculate the t-test: 

T = 
Variance between Groups 

Variance within Groups 

whereby 

• A non-trivial (large) T-value equals to different groups. 
• A trivial (small) T-value equals to similar groups. 

Example of Use Case Scenario for T-test: 

Consider a situation whereby a researcher is interested in whether men and women 
have different average heights. In a real-world scenario, it is not practically possible to 
measure the height of every man and woman across the globe. Instead, the researcher 
can decide to measure a selected sample of each, maybe, 500 men and 500 women 
in order to determine the average mean difference. The t-test will seek to determine 
whether that difference is probably a representative of a real difference between 
men and women in general, or, otherwise, whether the analysis is most likely a 
meaningless statistical hypothesis. Therefore, considering the scenario above one 
may ask: whether there were, in fact, no difference between the average heights in 
men and women? or focus on what are the chances that the randomly selected groups 
from those populations (men and women across the globe) will or will not be enough 
to accept the hypothesis. 

Limitations of the T-test 

• The results of inferential statistics, such as T-test, can only be applied to 
populations that resemble the sample in question or that is being tested. 

• In T-test analysis, the sample and population are expected to be normal in distri-
bution. Hence, most scores are often around the mean with fewer scores further 
out that may be resembling a bell curve. 

• Each group in T-test is expected to have about the same number of data point or 
distribution. In other words, measuring large and small groups together may give 
inaccurate results.
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• To perform a T-test, all data must be independent. Thus, the scores should not be 
influenced by each other. 

• The datasets used to perform T-test are approximately interval level or higher. In 
turn, each unit of measurement is considered to be about equal to any other unit. 

How to Resolve the Shortcomings with the T-test 

• Non-parametric tests, such as the Mann–Whitney U and Kruskal–Wallis H test 
can perform the same type of analysis as T-test, with just the added benefit of 
being able to be applied with non-normal distributions and ordered-level data. 
Even though these tests (i.e., Mann–Whitney U and Kruskal–Wallis H test, etc.) 
could also be considered less powerful in some settings, depending on the type 
of the analysis being done. 

6.2.5 Analysis of Variance—ANOVA (F-test) 

Researchers can make use of the ANOVA (short name for Analysis of Variance) 
test to determine the influence that an independent variable(s) has on the dependent 
variable in a regression study. With ANOVA F-test (which are regarded as one of 
the multivariate families of analysis), the datasets are split into two parts, namely, 
systematic factors and random factors (Chatfield, 2018; Christensen, 2020; Nibrad, 
2019). 

The analysis of variance (ANOVA) as the name implies is defined as a collec-
tion of models and their associated procedures, in which the variance is partitioned 
into certain components due to different explanatory variables. Similar to the T-test 
method, ANOVA also makes use of the variance between the groups and variance 
within the groups to calculate the ratio. Thus, the result of the ANOVA as shown in 
the following formula (i.e., F-statistic, also called the F-ratio) allows for the anal-
ysis of multiple groups of data to determine the variability between the samples and 
within samples. The researchers can make use of the ANOVA test results (F-test) to 
generate additional data or draw conclusions (facts) in alignment with the so-called 
regression models. For instance, with ANOVA tests, if there exists no real difference 
between the tested groups (also referred to as the null hypothesis) the result of the 
ANOVA’s F-ratio statistic will be close to 1. Thus, the larger the ratio, the more likely 
that the groups are different. 

The formula for ANOVA test is as follows: 

F = 
MST 

MSE 

where 

F = ANOVA Coefficient, 
MST = Mean sum of squares due to treatment, and 
MSE = Mean sum of squares due to error.
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Consequently, if most of the variation (ratio) is between groups, then the researcher 
or data analysts can considerably claim that there is probably a significant effect. On 
the other hand, if most of the variation is within the groups, then there is probably 
not a significant effect. 

Interestingly, the ANOVA analysis can be used to test for fuzziness in the datasets 
(Ahmed & Kilic, 2019). For instance, the one-way ANOVA (also referred to as a 
between-subject ANOVA or one-factor ANOVA) can help in determining statistical 
differences between the mean of continuous independent variables. Even though the 
method cannot tell which specific groups of data are significantly different from 
each other, rather, it just provides information that at least two of the groups are 
significantly different from each other (Ahmed & Kilic, 2019). 

Types of ANOVA and Use Case Scenarios: 

There are two main types of ANOVA analysis, namely, (i) one-way ANOVA, and 
(ii) two-way ANOVA (Christensen, 2020; Nibrad, 2019). 

(i) The One-way ANOVA test for between groups can be used when the researcher 
wants to test two groups to see if there is a difference between them. In order 
to conduct a one-way ANOVA analysis, the following six assumptions must be 
satisfied (Ahmed & Kilic, 2019): 

(1) The dependent variables must be continuous. 
(2) Independent variable(s) must consist of two or more categorical, indepen-

dent groups. 
(3) There should be no relationship between the observations in each group or 

between the groups themselves, i.e., independence of observations must 
hold. 

(4) There should be no significant outliers, which might have a negative effect 
on the one-way ANOVA, thus reducing the validity of the results. 

(5) Dependent variable should be approximately normally distributed for each 
category of the independent variable. Even though, one-way ANOVA only 
requires approximately normal data because it is quite “robust” to viola-
tions of normality, meaning that assumption can be a little violated and 
still provide valid results. 

(6) Homogeneity of variances must hold. 

(ii) The Two-way ANOVA can be with or without replication: 

• The Two-way ANOVA with replication is used for two groups where the 
members of those groups are doing more than one thing. For example, two 
groups of patients from different hospitals trying two different therapies. 

• The Two-way ANOVA without replication is used when the analyst has one 
group and is double-testing that same group. For example, a research exper-
iment testing one set of individuals before and after they take a particular 
medication to see if it works or not.
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Difference between ANOVA versus T-test: 

• T-test calculates the Mean. 
• ANOVA calculates the Ratio. 

Also, as shown in Fig. 6.4, a T-test analysis test two groups of variable, whereas 
ANOVA tests more than two groups to determine the differences or dependency of 
the variables. Thus, to conduct a test with three or more categories of variable, one 
must use an Analysis of Variance (ANOVA). 

Fig. 6.4 Flowchart showing the T-test versus ANOVA analysis
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6.2.6 Mann–Whitney U Test 

Mann–Whitney U test is a non-parametric equivalent to independent sample T-test. 
The test is used to compare whether there is a difference in the dependent variable for 
two independent groups of variable (McKnight & Najab, 2010), as shown in Fig. 6.5. 
For example, the probable effect of an exam-administration mode (the independent 
variable) over the test-takers’ scores (dependent variable) can be analyzed using the 
Mann–Whitney U test (Oz & Ozturan, 2018) provided the exam-administration mode 
is of two categories or group (e.g., online and paper based). Quite often, researchers 
interpret the Mann–Whitney U test by comparing the medians between the two 
populations. 

The formula to calculate the Mann–Whitney test is as follows: 

U1 = n1n2 + 
n1(n1 + 1) 

2
− R1 

U2 = n1n2 + 
n2(n2 + 1) 

2
− R2. 

where 

R1 = sum of the ranks for group 1 and 
R2 = sum of the ranks for group 2. 

It is important to mention that the Mann–Whitney U method functions by pooling 
the observations from the two samples into one combined sample. This is done by

Fig. 6.5 Description of Mann–Whitney U test 
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keeping track of which sample each observation comes from and then ranking them 
according to lowest to highest from 1 to R1 + R2, respectively. 

For instance, the Mann–Whitney U test has proved itself as one of the many multi-
variate tests that can combine the primary and mortality endpoints of a dataset into a 
single composite endpoint and can be analyzed through the ranking of those combined 
outcomes (Matsouaka et al., 2016). The testing of those combined endpoints can be 
performed as a weighted test where the optimal weights are determined by maxi-
mizing the power of the statistical analysis, perhaps, under a particular alternative 
hypothesis. 

Example of Use Case Scenario of Mann–Whitney U Test: 

Consider a students’ assessment system designed to determine the effectiveness of 
a new teaching program or strategy to improve the students’ learning outcome. To 
this effect, a total of n participants is selected randomly to undergo either the new or 
a previously existing program. The students are asked to take note of the record of 
the number of times they feel overwhelmed as a result of the assigned program over 
a specified period of time. The Mann–Whitney U test in this scenario can be used to 
determine: 

• If there is a difference in the number of times the students feel overwhelmed over 
the period of participating in the new program compared to those undergoing the 
previously existing program? 

• If so, are the observations statistically significant? 

6.2.7 Chi-Squared (χ 2) 

Chi-squared (χ2) statistics is a test that measures how expectations compare to the 
actual observed data (or model results) (McHugh, 2012). Datasets used in calculating 
a chi-squared statistic must be random, raw, mutually exclusive, drawn from inde-
pendent groups or population, and from a large enough sample size. For example, 
the results of tossing a coin 100 times meet these criteria. 

Chi-squared tests have proved effective and are often used in hypothesis testing 
for calculating new similarity distance measures, which is an important measure in 
the applications of image analysis, for instance, and statistical inference (Ren et al., 
2019). 

The formula for calculating the chi-square (χ2) statistics is as follows: 

x2 c = ∑
(Oi − Ei )

2 

Ei 

where

C = degrees of freedom, 
O = observed values(s), and
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Table 6.1 Example of a chi-squared (χ2) data distribution 

Present Absent Total—for each value (i.e., O and E) 

Female 18 (O) 
15 (E) 

7 (O)  
10 (E) 

25 

Male 42 (O) 
45 (E) 

33 (O) 
30 (E) 

75 

Total—for each value (i.e, O and E) 60 40 100 

E = expected values(s.) 

As gathered in Table 6.1, the numbers denoted with (O) represent the Observed 
value, O, whereas the numbers denoted with (E) represent the Expected value, E. 

Example of Use Case Scenario for Chi-squared (χ2): 

A chi-squared test can be applied to determine, for instance, the level of effect or 
impact that gender bias has on the students’ evaluation of teaching or expectations 
about the academic professors or performance. 

6.2.8 Kruskal–Wallis H Test 

The Kruskal–Wallis H test proposed by William Kruskal and W. Allen Wallis 
(Kruskal & Wallis, 1952) is a non-parametric method used to determine whether 
a group of data comes from the same population. The Kruskal–Wallis H analysis 
is identical (an alternative) to the ANOVA with the data replaced by categories or 
ordinal level data. Just in the same manner as the Mann–Whitney U test (but in this 
case for more than two groups of variables); the Kruskal–Wallis tests can be used to 
determine if there exist statistical differences between the independent observations 
based on the dependent variables (Veerasamy et al., 2018). 

In other words, the Kruskal–Wallis H test can be referred to as an extension of 
Mann–Whitney U test typically applied for three or more groups, as illustrated in 
Fig. 6.6.

The formula for computing the Kruskal–Wallis H test is as follows: 

H = 

⎛ 

⎝ 12 

n(n + 1) 

k∑
j=1 

R2 
j 

n j 

⎞ 

⎠ − 3(n + 1) 

where

K = number of comparison groups, 
n = total sample size, 
nj = sample size in the jth group, and
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Fig. 6.6 Kruskal–Wallis H test

Rj = sum of the ranks in the jth group. 

The following are the key features of the Kruskal–Wallis H test: 

• All n = n1 + n2 +  · · ·  +  nk measurements are jointly ranked (i.e., treated as one 
large sample). 

• One can also use the sums of the ranks of the k samples to compare the 
distributions. 

Example of Use Case Scenario of Kruskal–Wallis H Test: 

Please refer to the use case scenario of Mann–Whitney U test (Section 6.2.6), but in 
this situation used for three or more groups. 

6.2.9 Correlation 

Correlation is a bivariate analysis that measures the strength of association between 
two variables and the direction of the relationship (whether positive or negative). 

6.2.9.1 Kendall Rank Correlation 

The Kendall rank (also known as Kendall’s tau analysis) is a non-parametric test 
mostly used to measure the strength of dependence between two variables (Brossart 
et al., 2018). In theory, Kendall’s rank correlation coefficient can be applied as an 
efficient and robust way of identifying monotone relationships between two data
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sequences. Although when applied to digital data (i.e., discrete or discontinuous 
representation), the high number of ties can produce inconsistent results due to 
quantization (Couso et al., 2018). 

The formula for Kendall Rank Correlation is as follows: 

Kendall,s tau  = 
C − D 
C + D 

Spearman’s Rank Correlation 

Spearman rank (also known as Spearman’s rho analysis) is a non-parametric test 
that is mostly used to measure the degree of association between two variables 
(Wang et al., 2019; Zar,  2014). For example, the researchers can use Spearman’s rank 
correlation coefficient and multiple regression techniques to measure the relationship 
between some set of variables (Veerasamy et al., 2018). 

The formula for Spearman’s Rank Correlation is as follows: 

Spearman,s.rho = 1 − 
6
∑(

d2 i
)

n
(
n2 − 1

)

Kendall versus Spearman: 

As shown in Table 6.2 and the formula/calculations, an illustration of the difference 
between the Kendal tau and Spearman rho analysis is as follows (Hauke & Kossowski, 
2011):

When to use Kendall’s tau Analysis? 

• The distribution of Kendall’s tau analysis is most useful when the data analyst or 
researcher is interested in a test that has better statistical property. 

• The interpretation of Kendall’s tau test in terms of the probabilities of observing 
the agreeable (concordant) and non-agreeable (discordant) pairs is very direct. 

When to use Spearman’s rho Analysis? 

• Spearman’s rank correlation coefficient is the most widely used rank correlation 
coefficient analysis. 

In summary, quite often the interpretation of Kendall’s tau and Spearman’s rho 
rank correlation coefficient are very similar. Thus, both methods tend to invariably 
lead to the same inferences.
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Table 6.2 Kendall versus Spearman data distribution 

Kendall tau Spearman rho 

Teacher Student C D D D2 

1 2 10 1 1 1 

2 1 10 0 1 1 

3 4 8 1 1 1 

4 3 8 0 1 1 

5 6 6 1 1 1 

6 5 6 0 1 1 

7 8 4 1 1 1 

8 7 4 0 1 1 

9 10 2 1 1 1 

10 9 2 0 1 1 

11 12 0 1 1 1 

12 11 – – 1 1 

Kendall,s tau  = 
60 − 6 
60 + 6 

Kendall,s tau  = 
54 

66 
Kendall,s tau  = .818 

rho  = 1 − 
6

∑(
122 i

)

12
(
122 − 1

)

rho  = 1 − 
72 

1716 
rho  = .958 

Note: 
Kendall’s tau: Most of the time, the outcome of the Kendall’s tau correlation analysis is usually 
smaller values than Spearman’s rho correlation. The calculations are (i) based on concordant and 
discordant pairs, (ii) insensitive to error, and (iii) the p-values are more accurate with smaller sample 
sizes. 
Spearman’s rho: The outcome of Spearman’s rho test usually has larger values than Kendall’s 
tau test. The calculations are (i) based on deviations, (ii) much more sensitive to error, and (iii) 
discrepancies in data.

6.2.10 Wilcoxon Test (Signed-Rank and Rank-Sum) 

The Wilcoxon test, also referred to the Wilcoxon-signed-rank or Wilcoxon-rank-sum 
tests (Wilcoxon, 1945), is a non-parametric test and alternative version of the t-test 
(Rey & Neuhäuser, 2011). The test is mostly applied by the researchers to compare 
two dependent samples by testing whether the median values of the two groups differ 
significantly from each other. The resultant models assume that the data comes from 
two matched or dependent populations, following the same distribution through time 
or place (Hayes, 2023). The test can be applied to test the hypothesis that the median 
of a symmetrical distribution equals a given constant. And, as the name implies, and 
as with the many other non-parametric tests that we have already and previously 
described in this chapter (Chap. 6) and in Chap. 5, this distribution-free test is based 
on ranks (Rey & Neuhäuser, 2011). It is assumed that the independent variable in a
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Wilcoxon test is dichotomous, and the dependent variable is a continuous variable 
whose measurement is at least ordinal. 

The main types and summary of the Wilcoxon test include (Hayes, 2023): 

• The Wilcoxon test compares two paired or independent groups of variables and 
comes in two versions, (i) the rank-sum test, and (ii) signed-rank test. 

• The aim of the test is to determine if two or more sets of pairs in a data 
or variable are different from one another in a statistically significant manner. 

• Both tests (whether rank-sum or signed-rank) assume that the pairs in the data 
sample come from the same dependent populations. 

• Unlike t-test that calculates the mean difference of two groups of a variable, the 
Wilcoxon test is used to calculate the median difference between the two groups 
of variables. 

The signed-ranked version of the Wilcoxon test is calculated based on differences 
in the samples’ median scores but in addition to it taking into account the signs of the 
differences, thus, takes into consideration the magnitudes of the observed differences. 

As the non-parametric equivalent of the paired t-test, the signed-rank can be used 
as an alternative to the t-test when the population data does not follow a normal 
distribution. 

On the other hand, the Wilcoxon rank-sum test version is often used as the non-
parametric equivalent of the independent or two-sample t-test. 

The Wilcoxon rank-sum test is used to compare the median of two independent 
samples, while Wilcoxon signed-rank test is used to compare the median of two 
related (paired) samples. 

The value of z (test statistics) in a Wilcoxon test is calculated with the following 
formula: 

ZT = 
T − μT 

σT 

where 

• T = sum of values from calculating the ranges of differences in the sample. 

Example of Use case Scenario of Wilcoxon Test: 

The following type of research questions can be answered using the Wilcoxon test: 

• Are the test scores for students, e.g., 5th grade to 6th grade for the same group of 
students different from each other? 

• Are the learning performance of a particular group of students better in the 
morning or in the evening?
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6.3 Summary 

The type of research methodology or design one chooses to carry out the research 
investigations determines the type of data that is required for the research purpose, 
and vice and versa. This includes the means or procedures that will be applied for 
collecting the samples (data collection) as well as the type of analysis (statistical 
data analysis) that would be performed. The authors have provided the data type and 
method matching in Table 6.3 as a guideline for the researchers in the selection of 
the most appropriate or suitable statistical analysis/method based on the type of data 
or sample (i.e., independent versus dependent variable).

Overall, a more comprehensive guide on how to choose the best and suitable 
statistical data analysis method based on the type of data (see Chap. 4) or available  
statistical tools for the research investigations can also be found in the following 
sources: 

• NYU Elmer Homes Bobst Library (NYU Libraries, 2023) and 
• UCLA—Institute for Digital Research and Education (UCLA, 2023).
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Part II 
Application and Implementation 

of Advanced Methods for Statistical Data 
Analysis in Research Using R



Chapter 7 
Regression Analysis in R: Linear 
Regression and Logistic Regression 

7.1 Introduction to Regression Analysis 

Statistical data analysis methods or procedures are used by the researchers to test or 
scrutinize the collected data samples in order to determine if they should accept or 
reject the pre-defined research questions and hypothesis. Typically, the researchers 
or data analysts apply the (applicable) statistical methods and measurements to deter-
mine whether the assumptions or claims are scientifically (statistically) significant 
or not. 

In this chapter, the authors introduce to the readers how to conduct the Linear and 
Logistic Regression analysis using R. 

There are two main points to consider when conducting the regression analysis: 

• First is either to check if a predictor variable (often referred to as the independent 
variable) is good enough (significant levels) in predicting the effect (outcome) or 
response of a targeted variable (referred to as the dependent variable). 

• Or the second, which is to determine what variable(s), in particular, are the 
significant predictors of the outcome variable (dependent) in the case of multiple 
independent variables. 

Linear regression is one of the most commonly used types of regression analysis, 
especially in predictive and diagnostic analytics. It is used by the researchers to 
determine the relationship that exists among one targeted (dependent) variable and 
another one or more predictor (independent) variable(s). The method assumes that the 
relationships between the independent and dependent variables are linear. Therefore, 
a constant unit of change in one of the variables implies a constant unit of change 
in the other (Pal et al., 2019; Schmidt & Finan, 2018). This is done by finding 
the best (fitting) straight line (see Chap. 6), otherwise referred to as the regression 
line through the points calculated by Least Squares (LS) modus considering the 
scrutinized variables (Darlington & Hayes, 2016; Pal et al., 2019).
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The linear regression line is often represented as y = a + bx, where x is the 
predictor (independent) variable and y is the response (dependent) variable (see 
Chap. 6, Fig. 6.1). The slope of the line is denoted as b, whereas a represents the 
intercept (i.e., the value of y when x = 0). Thus, in theory, the basic formula or 
syntax for the linear regression test is defined as y = c + b*x, where y represents 
the estimated dependent variable score, c = constant, b = regression coefficient, and 
x representing the score on the independent variable. Consequently, the outcome 
of these regression estimates or formula is what the researchers use to explain the 
relationship between one targeted variable and another variable(s) (Kronthaler & 
Zöllner, 2021). 

Typically, there are two main types of linear regression tests or method which the 
authors will be illustrating in this chapter using R. These are 

(i) Simple linear regression which considers one dependent variable (interval or 
ratio) and one independent variable (interval or ratio or dichotomous) (Kaps & 
Lamberson, 2017). 

(ii) Multiple linear regression which considers one dependent variable (interval 
or ratio) and two or more (2+) independent variables (interval or ratio or 
dichotomous) (Olive, 2017). 

Logistic regression, on the other hand, (unlike the linear regression which uses 
continuous variables in its tests) is used when the dependent (targeted) variable is a 
categorical or dichotomous (binary) data, i.e., fits into one of two clear-cut categories. 
By definition, the “logistic regression” can be referred to as the statistical method or 
procedure that is used to analyze or explain the relationship between one dependent 
categorical (or binary) variable and one or more nominal, ordinal, interval, or ratio-
level independent variables (Connelly, 2020). With logistic regression the linearity 
of the dependent (i.e., response variable) and independent (predictor) variable(s) is 
measured using weights or coefficient (beta values). The only major difference of 
logistic regression from linear regression is that the output of the method (logistic) 
is modeled or represented as binary values, i.e., 0 or 1, rather than just numerical 
values. 

Therefore, the logistic regression equation can be defined as y = e^(b0 + b1*x) 
/ (1  + e^(b0 + b1*x)) where y is the predicted output (dependent variable score), 
b0 is the bias or intercept term, while b1 is the coefficient for the input value x (i.e., 
independent variable score). 

Logistic regression (an alternative to linear regression) is basically a method that 
provides means of using linear regression to solve problems that are not directly or 
commonly suitable for applying the linear regression procedures. 

There are three main types of logistic regression analysis which the authors will 
illustrate in R in this chapter. These are

(i) Binomial (binary) logistic regression which considers dependent variables that 
only have two possible types of 0 or 1. For instance, male or female, win or 
lose, pass or fail, etc. (Prasetyo et al., 2020). 

(ii) Multinomial logistic regression which considers dependent variables that have 
three or more (i.e., more than two levels) possible types but are not ordered.
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Interpret Interpret and check results oft he analysis 

Visualize Visualize results using graphical method for comparison and 
interpretation or exportf or other use 

Analyze Conduct regression analysis in R using the supported methods; lm( ), 
glm( ), multinom( ), and polr( ) 

Data Import and inspect datasetf or analysis 

R Packages 
Install and Load required R packages for data manipulation and easy 
visualization; "tidyverse", "ggpubr", "GGally", "aod", “mlogit”, “nnet”, 
“MASS”, “rms”, "DescTools", “manipulate”, “reshape2”, “ggplot2”, “arm”, 
"broom", “dplyr”, “effects” 

Fig. 7.1 Steps to conducting the linear regression and logistic regression analysis in R 

For instance, Place A vs Place B versus Place C (Austin & Merlo, 2017; Liang 
et al., 2020).

(iii) Ordinal logistic regression which considers more than two dependent variables 
but with ordered categories. For instance, Poor, Average, Good, Excellent, etc. 
(Fagerland & Hosmer, 2017; Liang et al., 2020). 

Over the next sections of this chapter, authors will describe and look at how to 
conduct the different types of the Linear Regression analysis (see Sect. 7.2) and 
Logistic Regression analysis (Sect. 7.3) in R statistics (Rstudio, 2020). 

In Fig. 7.1, the authors describe and illustrate the different steps, functions, and 
packages to performing the Linear and Logistic Regression tests in R as follows. 

7.2 Linear Regression Analysis in R: Simple Regression 
and Multiple Regression 

Linear regression is one of the most common scientific and widely used statistical 
method used to determine the relationship (linearity) that exists between a targeted 
variable (dependent or response variable) and another predictor variable (independent 
or explanatory variable). 

The default hypothesis for testing whether certain or particular variables are 
related (correlated) is IF the p-value is less than or equal to 0.05 (p ≤ 0.05), THEN 
correlation/relationship is assumed, ELSE IF the p-value is greater than 0.05 (p > 
0.05) THEN dependency or association is not assumed.
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The authors will demonstrate how to conduct the two most common types of 
linear regression analysis (simple regression and multiple regression) tests by using 
the lm( ) function or method in R. We will do this using the steps outlined in Fig. 7.1. 

To start, open RStudio and create a new or open an existing project. Once 
you have RStudio and a project opened, create a new RScript and name it 
“RegressionAnalysisTest” or any name the user chooses (refer to Chap. 1 on how 
to do these steps if required or needed). 

Now, let’s download an example dataset that we will use to demonstrate the regres-
sion analysis (**the users are welcome to use any dataset or format they choose—see 
Chap. 2 for a step-by-step guide on how to work with different data types and format 
in R). 

As shown in Fig. 7.2, download the example .dta file named “auto.dat” and 
save it on your local machine or computer (https://www.stata-press.com/data/r8/u. 
html). ***Note: the readers can also refer to the following repository (https://doi. 
org/https://doi.org/10.6084/m9.figshare.24728073) where the authors have uploaded 
all the example files used in this book if they wish to do so or not able to access the 
example file directly from the source page. 

Once the user has successfully downloaded and saved the file on the computer, 
we can proceed to conduct the linear regression analysis.

Fig. 7.2 Example of .dta file format download. (Source https://www.stata-press.com/data/r8/u. 
html) 

https://www.stata-press.com/data/r8/u.html
https://www.stata-press.com/data/r8/u.html
https://doi.org/
https://doi.org/
https://doi.org/10.6084/m9.figshare.24728073
https://www.stata-press.com/data/r8/u.html
https://www.stata-press.com/data/r8/u.html
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# Step 1—Install and load the required R packages 

Install and Load the following R packages (“tidyverse”, “ggpubr”, “GGally”). As 
shown and described in Fig. 7.3 (Step 1, Lines 3–11), the syntax to install and load 
the packages is as follows: 

install.packages("tidyverse") 

install.packages("ggpubr") 

install.packages("GGally") 

library(tidyverse) 

library(ggpubr) 

library(GGally) 

Fig. 7.3 Steps to conducting the simple and multiple linear regression in R 
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# Step 2—Import and Inspect Dataset for Regression analysis 

As illustrated in Fig. 7.3 (see Step 2), import the dataset named “auto.dta” which we 
have downloaded earlier on the local computer, and store this in an R object named 
“MyRegData” (the users can use any name they choose if they want). 

Once the user has successfully imported the dataset (see code below, Fig. 7.3, Lines 
13–17), they will be able to view the details of the auto.dta dataset as highlighted 
in Fig. 7.4 with 74 observations and 12 variables in the imported data sample. 

MyRegData <- read.dta(file.choose()) 
attach(MyTestData) 

View(MyTestData) 

# Step 3—Analyze the dataset 

Now that the user has imported the dataset and stored it in an R object we named or 
defined as “MyRegData”, we can proceed to analyze the data. 

As shown and explained in Fig. 7.3 (Step 3, Lines 19–29), we will conduct a 
Simple and Multiple Linear Regression analysis using the lm( ) function in R. 

Note: As defined in the introduction section (Sect. 7.1)—(see also Chap. 5 for a 
description of the dependent versus independent variables).

Fig. 7.4 The dataset example imported and stored as R object in RStudio 
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• Simple linear regression tests consider only one independent (predictor) variable, 
while 

• Multiple linear regression uses two or more independent variables. 

Therefore, to illustrate the two tests, we will use the following variables 
highlighted in the example dataset (MyRegData): 

• For simple linear regression, we will check the relationship that “weight” (inde-
pendent variable) has with the “price” (dependent variable) of the automobiles. 

• For the multiple linear regression, we will check the relationship that “price” 
(dependent variable) has with the following independent variables “weight”, 
“length”, and “gear_ratio”. 

The syntax to conduct the two tests (see Step 3) in R is shown in the code below 
(see Fig. 7.3, Lines 19–29): 

# Simple Linear Regression 
Simp.LRModel <- lm(price ~ weight, data = MyRegData) 
Simp.LRModel 

summary(Simp.LRModel) 

# Multiple Linear Regression 
Mult.LRModel <- lm(price ~ weight + length + gear_ratio, data = MyRegData) 
Mult.LRModel 

summary(Mult.LRModel) 

When the user has successfully run the commands (as described in Fig. 7.3, Step  
3, Lines 19 to 29), they will be presented with the results of the linear regression 
analysis in the Console similar to the ones we have reported in Figs. 7.5a and b.

As shown in Figs. 7.5a and b, we conducted the simple and multiple linear regres-
sion analysis using the following variables (price, weight, length, gear_ratio) which 
are in the right format (continuous or interval ratio) for conducting the regression 
analysis (parametric test— see Chap. 4), and stored the results of the tests in an R 
object we called or defined as “Simp.LRModel” and “Mult.LRModel”, respectively. 

# Step 4—Visualize linear relationship 

An additional and useful way to check the relationship that exists between a variable 
and another in R is by plotting them as graph which, we demonstrated in Chap. 2 in 
Sect. 2.7. In this way, the user can draw a correlation between the target or analyzed 
variables. 

To do this, we will use the following functions: plot( ), abline( ), ggplot( ), and 
ggpairs( ) to visualize the relationship (linearity) between the variables, as shown in 
Fig. 7.6 and the resultant plots in Figs. 7.7 and 7.8.

The syntax used for the example plots (see Step 4 in Fig. 7.6, Lines 31–42) is as 
shown below, and the results reported and described in Figs. 7.7 and 7.8.
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Fig. 7.5 a Result of simple linear regression analysis in R. b Results of multiple linear regression 
analysis in R
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Fig. 7.6 Visualizing linear relationship between two or more variables in R

# Simple Linear Regression 
plot(price ~ weight, data = MyRegData, main = "Linearity of variables") 

abline(Simp.LRModel, col= "blue") 

ggplot(Simp.LRModel, aes(x = weight, y = price)) + geom_point() + 
stat_smooth() 

# Multiple Linear Regression 
plot(Mult.LRModel)  

ggpairs(MyRegData[, c("price", "weight", "length", "gear_ratio")]) 

Note: When applying the scatter plot function plot(Mult.LRModel) which we 
used for the multiple linear regression analysis (see as pointed in Fig. 7.6), the user 
will be prompted in the Console to press or hit the Return button (Enter key) on the 
keyboard to view the different plotted graphs.
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Fig. 7.7 Example of simple linear regression graph in R using the plot( ) and abline( ) functions 

Fig. 7.8 Example of multiple linear regression graph in R using the ggpairs( ) function
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# Step 5—Results Interpretation 

The final step in the linear regression (simple and multiple) analysis is to understand 
and interpret the results of the tests for technical presentations or scientific use/ 
purposes. 

By default, the hypothesis for testing whether certain variables are related (corre-
lated) or not is: IF the p-value is less than or equal to 0.05 (p ≤ 0.05), THEN 
linearity is assumed, ELSE IF the p-value is greater than 0.05 (p > 0.05) THEN 
association (linearity) is not assumed. Thus, linear regression test results with p ≤ 
0.05 (lower p-values) indicates that the predictor variable (independent) is related 
to the response variable (dependent). Whereas results with p > 0.05 (high p-value) 
means that changes or a change in the predictor variable(s) are not associated with a 
change in the response variable. 

For example, as presented in the results below (coefficients) of the simple and 
multiple linear regressions which we reported in Figs. 7.5a and b, respectively; we can 
statistically conclude for the simple linear regression analysis that there exists a linear 
relationship between the “price” (dependent variable) and “weight” (independent 
variable) in the example dataset “MyRegData” with p-value of 7.416e-07 (p ≤ 
0.05), F = 29.42 (see Fig. 7.5a). Henceforth, we can confidently say or predict that 
an increase or decrease in the weight of the specified automobile will consequently 
lead to an increase or decrease in the price of the automobile, and vice and versa. In 
other words, the predictions are not construed as an event of chance, but are based 
on the statistical significance of the test. 

Coefficients: 

             Estimate  Std. Error  t value   Pr(>|t|)     

(Intercept)   -6.7074  1174.4296   -0.006    0.995     

 weight        2.0441     0.3768    5.424    7.42e-07 *** 

 F-statistic: 29.42 on 1 and 72 DF,  p-value: 7.416e-07 

Likewise, for the Multiple Linear Regression analysis (see: Fig. 7.5b), we 
can statistically conclude that in total (p = 2.684e-07, F = 14.13) the predictor 
or independent variables (i.e., weight, length, and gear-ratio) have a signifi-
cant relationship with “price” of the automobile. Although when we consider 
the differences among the individual (predictor or independent) variables, i.e., 
weight (p = 1.66e-05, t = 4.626), length (p = 0.00829, t = −2.717), and gear-
ratio (p = 0.07216, t = 1.826), we can also find that the gear_ratio (where 
p = 0.07216) (p > 0.05) does not necessarily share a significant relationship 
with the “price” of the automobile in comparison to the other analyzed vari-
ables (weight and length) that does share a linear relationship with the “price” 
of the automobile.
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Coefficients: 

            Estimate Std. Error  t value  Pr(>|t|)     

(Intercept) 3665.664    5614.375   0.653  0.51596     

 weight         5.665      1.224   4.626    1.66e-05 *** 

 length      -105.300     38.755  -2.717  0.00829 **  

 gear_ratio  1719.766    941.970   1.826  0.07216 . 

F-statistic: 14.13 on 3 and 70 DF,  p-value: 2.684e-07 

Accordingly, the above conclusions or interpretations of the results of the regres-
sion tests can also be visualized in the graphs represented in Figs. 7.7 and 7.8, 
respectively. 

Useful Tips: 

• The Pr(>|t|) or p-value (see Fig. 7.5a and b) is the probability that the user would 
get either a t-value as high (or higher) than the observed value(s) when the null 
hypothesis is true. In other words, when the coefficient is equal to zero or there 
is no relationship. Therefore, if the Pr(>|t|) is low, the coefficients are significant 
(i.e., significantly different from zero). Else if the Pr(>|t|) is high, the coefficients 
can consequently not come out to be significant. 

• We can interpret the t-value as the larger the value (t-value), the less likely that 
the coefficient is not equal to zero by chance. Thus, the higher the t-value, the 
better the results. 

• Standard Error is used to determine the distance between the point to the 
regression line in the model. 

• Lastly, another valuable way of establishing how well a regression model fits 
the observed data is through the value of the r-squared (R2). In most cases, an 
r-squared (R2) value of 0.5 and above are generally considered a better fit for the 
model. 

Other useful functions or components the users can subsequently experiment as 
per the regression analysis and for further useful information and interpretation of 
the results are as follows: 

• coefficients( ) computes the model coefficients. For example, in our example data 
coefficients(Simp.LRModel). 

• confint(NameOfModel, level = 0.95) computes the confidence interval for the 
model parameter, e.g., confint(Mult.LRModel, level = 0.95). 

• fitted( ) computes the predicted values, e.g., fitted(Simp.LRModel). 
• residuals( ) computes the residuals, e.g., residuals(Mult.LRModel). 
• anova( ) computes the analysis of variance table for the different variables, e.g., 

anova(Mult.LRModel). 
• anova(Model1, Model2) also we can compare the results of different regression 

models, e.g., in our example case anova(Simp.LRModel, Mult.LRModel).
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• vcov( ) computes the covariance matrix for the model parameters, e.g., 
vcov(Mult.LRModel). 

• influence( ) computes the regression diagnostics, e.g., influence(Simp.LRModel). 
• cor( ) computes the correlation coefficient between two specified variables, e.g., 

cor(Simp.LRModel). 

7.3 Logistic Regression Analysis in R 

Logistic regression (or logit models) is a great way to model the linear combination 
of categorical or dichotomous variables. 

Just as with the many other statistical methods or analysis, the default hypothesis 
for testing whether certain categorical or binary variables are related (correlated) is: 
IF the p-value is less than or equal to 0.05 (p ≤ 0.05), THEN association is assumed, 
ELSE IF the p-value is greater than 0.05 (p > 0.05) THEN association or relationship 
is not assumed. 

Here, the authors will demonstrate to the readers how to conduct the different 
types of logistic regression analysis (i.e., binominal, multinominal, and ordinal) tests 
using the glm( ), multinom( ), and polr( ) functions in R. We will show the readers 
the different computational procedures to conducting the three main types of logistic 
regression tests using the same steps we have outlined earlier in Fig. 7.1. 

Now, let’s download two example files that we will use to demonstrate the three 
different types of logistic regression analysis (the users are welcome to use any 
preexisting dataset or format so long as it meets the same criteria or type of variables). 

As shown in Fig. 7.9, download the example files named “TypeofCoverage.csv” 
and “VehChoicePrice.csv” from the following address (http://www.ub.edu/rfa/R/ 
regression_with_categorical_dependent_variables.html) and save the files on the 
computer.

***Note: The users can also directly access and download the example files from 
the following link or repository where the authors have uploaded all the example 
files used in the illustrations in this book: https://doi.org/https://doi.org/10.6084/m9. 
figshare.24728073. 

Once the user has downloaded the two CSV files and saved them on the local 
machine or computer, then we can proceed to conduct the logistic regression analysis. 

To start, create a new RScript and name it “LogisticRegressionTest” or any name 
the user chooses (please note that the name chosen by the authors are only used to 
create and store the R objects for manipulation in our examples). 

# Step 1—Install and load the required R packages 

Install and Load the following R packages and libraries, as shown in Fig. 7.10 (Lines 
3 to 31), which will be used to call the different R functions, data manipulations, and 
graphical visualizations for the logistic regression analysis.

“aod”, “mlogit”, “nnet”, “MASS”, “rms”, "DescTools", “manipulate”, 
“reshape2”, “ggplot2”, “arm”, "broom", “dplyr”, “effects”

http://www.ub.edu/rfa/R/regression_with_categorical_dependent_variables.html
http://www.ub.edu/rfa/R/regression_with_categorical_dependent_variables.html
https://doi.org/
https://doi.org/10.6084/m9.figshare.24728073
https://doi.org/10.6084/m9.figshare.24728073
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Fig. 7.9 Example of binary, multinominal, and ordinal data download. (source: http://www.ub.edu/ 
rfa/R/regression_with_categorical_dependent_variables.html)

Fig. 7.10 Installing R packages for logistic regression test and analysis

http://www.ub.edu/rfa/R/regression_with_categorical_dependent_variables.html)
http://www.ub.edu/rfa/R/regression_with_categorical_dependent_variables.html)
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The syntax and code to install and load the required R packages are as follows: 

install.packages("arm") 

install.packages("broom") 

install.packages("dplyr") 

install.packages("effects") 

library(aod) 

library(mlogit) 

library(nnet) 

library(MASS) 

library(rms) 

library(DescTools) 

library(manipulate) 

library(reshape2) 

library(ggplot2) 

library(arm) 

library(broom) 

library(dplyr) 

library(effects) 

install.packages("aod") 

install.packages("mlogit") 

install.packages("nnet") 

installed.packages("MASS") 

install.packages("rms") 

install.packages("DescTools") 

install.packages("manipulate") 

install.packages("reshape2") 

install.packages("ggplot2") 

# Step 2—Import and inspect example datasets for Logistic regression test 

As highlighted and described in Fig. 7.11 (Step 2, Lines 33–41) and the code below, 
import the two datasets named “TypeofCoverage.csv” and “VehChoicePrice.csv” 
and store this in R objects named “MyBinaOrdn.data” and “MyMultiNom.data”,
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Fig. 7.11 Importing data into R and storing them as R objects 

respectively (remember you are welcome to use any name of your choice if you wish 
to do so). 

MyBinaOrdn.data <- read.csv(file.choose()) 
attach(MyBinaOrdn.data) 

View(MyBinaOrdn.data) 

MyMultiNom.data <- read.csv(file.choose()) 
attach(MyMultiNom.data) 

View(MyMultiNom.data) 

Once successfully imported, the user will be able to view the details of the imported 
and stored files as highlighted and described in Fig. 7.12a and b.
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Fig. 7.12 a Example of dataset with categorical (binary) and ordinal variables imported in R. 
b Example of dataset with multinominal variable imported in R 

# Step 3—Data analysis and implementation of logistic regression model 

As explained in the introduction section (Sect. 7.1), the authors will illustrate how 
to conduct the three main types of logistic regression analysis. This includes
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(i) Binomial (binary) logistic regression which uses dependent variables that 
only have two possible types or categories of 0 or 1. 

(ii) Multinomial logistic regression uses dependent variables that have more than 
2 (i.e., 3 or more) possible categories but are not ordered. 

(iii) Ordinal logistic regression uses dependent variables that have 3 or more 
possible categories but with ordered categories. 

To demonstrate how to conduct the following tests or experiment using the 
example datasets “TypeofCoverage.csv” and “VehChoicePrice.csv” which we have 
stored or defined as R objects, “MyBinaOrdn.data” and “MyMultiNom.data”, in 
R, we will analyze the variables we have highlighted in the datasets (see highlighted 
columns in Figs. 7.12a and b). 

To do this, we will conduct the following test or hypothesis: 

• Binominal (binary) logistic regression: We will test the relationship that the 
following independent (predictor) variables—age (var = age), position (var = 
seniority), gender (var = men), and marital status (var = marital_S)—share 
with the type of coverage the customers of the insurance policies get (var = 
urban). Note that the var = urban is the binary dependent (response) variable: 
where we assume 1 = private and 0 = public). Data = MyBinaOrdn.data (stored 
as R object—see Fig. 7.12a). 

• Multinominal Logistic regression: We will test the relationship that the 
following independent (predictor) variables—age (var = age), gender (var = 
men), and price of policies (vars = price.C, price.M, price.F)—have with the 
type of vehicle the customer purchases or acquires (var = veh). Note that var = 
veh is the multinominal dependent (response) variable with three unordered levels 
C, M, and F. Data = MyMultiNom.data (see Fig. 7.12b). 

• Ordinal Logistic regression: We will test the relationship that the following 
independent (predictor) variables—age (var = age), position (var = seniority), 
gender (var = men), and marital status (var = marital_S)—share with the like-
lihood that the customers will buy the insurance policies (var = yord). Note that 
the var = yord is the ordinal dependent (response) variable with 3 ordered levels: 
where we assumed 0  = unlikely, 1 = somewhat likely, and 2 = very likely. Data 
= MyBinaOrdn.data (see Fig. 7.12a). 

As shown in the codes provided by the authors below (see Fig. 7.13, Step 3, Lines  
43 to 66), the syntax to performing the aforelisted tests (binominal, multinominal, 
and ordinal logistic regression) in R is as follows:
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Fig. 7.13 Binominal, multinominal, and ordinal logistic regression tests in R 

# Binominal (Binary) Logistic Regression 
BinomLogR.Model <- glm(urban ~ age + seniority + men + marital_S, data = 
MyBinaOrdn.data, family = "binomial") 

BinomLogR.Model  

summary(BinomLogR.Model) 

# Multinominal Logistic Regression 
MultNomLogR.Model <- multinom(veh ~ age + men + price.C + price.M + 
price.F, data = MyMultiNom.data, maxit=1e4) 

summary(MultNomLogR.Model) 

z <- 
summary(MultNomLogR.Model)$coefficients/summary(MultNomLogR.Model)$stan 
dard.errors # test scores 

z 

pvalue <- (1 - pnorm(abs(z), 0, 1)) * 2     # calculates p-values 

pvalue 
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# Ordinal Logistic Regression  
# first, factor dependent variable (var = yard) to ordinal data 

MyBinaOrdn.data$yord <- factor(MyBinaOrdn.data$yord, levels = 0:2, labels 
= c("unlikely", "somewhat likely", "very likely")) 

OrdnLogR.Model <- polr(yord ~ age + seniority + men + marital_S, data = 
MyBinaOrdn.data, Hess=TRUE) 

summary(OrdnLogR.Model) 

(ctable <- coef(summary(OrdnLogR.Model)))     ## calculate and store p 
values 

p <- pnorm(abs(ctable[, "t value"]), lower.tail = FALSE) * 2 

(ctable <- cbind(ctable, "p value" = p)) 

When the user has successfully run the codes or tests described in Step 3, Fig. 7.13, 
they will be presented with the results of the logistic regression models in the Console, 
which is similar to the ones the authors have reported in Figs. 7.14a, b, and c, 
respectively. 

As gathered and explained in the Figs. 7.14a, b, and c, we conducted a binom-
inal, mutinominal, and ordinal logistic regression analysis as defined in Step 3, 
and stored the results of the tests in R objects we called “BinomLogR.Model”, 
“MultNomLogR.Model” and “OrdnLogR.Model”, respectively.

# Step 4—Visualize the results of the logistic regression analysis 

As outlined in Fig. 7.1, another great way to check the relationship that exist between 
variables in R is by plotting them as graph. We will show how to plot the results of 
the logistic regression tests in R. 

To do this, we will use the coefplot( ), broom( ), plot( ), effects( ), and ggplot( ) 
functions to visualize the results. 

The syntax for plotting the respective graphs of the logistic regression tests or 
data is as shown in the codes below (see Fig. 7.15, Lines 68 to 86), and the resultant 
plots represented in Figs. 7.16a, b, and c, respectively.
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Fig. 7.14 a Result of binominal (binary) logistic regression analysis in R. b Result of the 
multinominal logistic regression test in R. c Result of the ordinal logistic regression test in R
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Fig. 7.14 (continued)

# Binominal Logistic Regression plot 
coefplot(BinomLogR.Model) 

# Multinominal Logistic Regression plot 
MN.LGraph <- broom::tidy(MultNomLogR.Model,conf.int=TRUE) 

MN.LGraph <- dplyr::filter(MN.LGraph, term!="(Intercept)") 

ggplot(MN.LGraph, aes(x=estimate, y=term, colour=y.level)) +  

            geom_point() + stat_smooth() + 

                 labs(x = "Estimate", 

                      y = "Coefficient", 

                      title = "Multinominal Linearity plot") 

# Ordinal Logistic Regression plot 
plot(Effect(focal.predictors = "age", OrdnLogR.Model)) 

plot(Effect(focal.predictors = "seniority", OrdnLogR.Model)) 

plot(Effect(focal.predictors = "men", OrdnLogR.Model)) 

plot(Effect(focal.predictors = "marital_S", OrdnLogR.Model)) 
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Fig. 7.15 Plotting the result of logistic regression analysis in R

# Step 5—Interpretation of the logistic regression analysis results 

The last step in our analysis is to interpret the different logistic regression models or 
methods in order to help the readers understand the results of the test. 

By default, the hypothesis for testing is: IF the p-value of the coefficients or 
estimate of linearity is less than or equal to 0.05 (p ≤ 0.05), THEN the output is 
assumed to be statistically significant, ELSE IF the p-value is greater than 0.05 (p > 
0.05) THEN the estimate of linearity is not significant. 

We explain the results as follows: 

(I). Binominal (Binary) Logistic Regression Result. 

Coefficients: 

             Estimate Std. Error z value Pr(>|z|)     

(Intercept) -0.829747   0.202472  -4.098 4.17e-05 *** 

age          0.008017   0.004013   1.998   0.0458 *   

seniority   -0.013980   0.007352  -1.902   0.0572 .   

men         -0.046601   0.105324  -0.442   0.6582     

marital_S    0.240502   0.114976   2.092   0.0365 *
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Fig. 7.16 a Binominal (binary) logistic regression plot example in R using the coefplot( ) function. 
b Multinominal logistic regression plot example in R using the broom( ) and ggplot( ) functions. 
c Ordinal logistic regression plot example in R using the plot( ) and effects( ) function

As highlighted in Fig. 7.14a and the above result, the coefficient value of -0.829747 
is the log(odds) estimate for the type of coverage the customers of the insurance 
policies are likely to get (i.e., var = urban, where we assume 1 = private and 
0 = public) when taking into account the estimates of the predictor variables (age,
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Fig. 7.16 (continued)

seniority, men, marital_S). This result can be interpreted to be statistically significant, 
with p-value of 4.17e-05 (p ≤ 0.05) and t-value (z) of -4.098. 

Also, when considering the coefficient of the log(odds ratio) for the predictor 
(explanatory or independent) variables, we can find that they are mostly also statis-
tically significant (var = age, p = 0.0458, z = 1.998), (var = seniority, p = 0.0572, 
z = -1.902), and (var = marital_S, p = 0.0365, z = 2.092), except for the gender 
variable (var = men, p = 0.6582, z = -0.442) that presented to be non-significant in 
the implemented model. 

Therefore, we can draw from the example data (data = MyBinaOrdn.data) that 
the gender of the customers is not a major predictor or are not associated to the type 
of insurance policies the customers will get based on the data or model (model = 
BinomLogR.Model), whereas the age, position, and marital status are associated to 
the type of insurance policies the customers are likely to get.
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(Ii). Multinominal Logistic Regression Result 

Coefficients: 

  (Intercept)   age        men       price.C     price.M     price.F 

F  -3.3970181 -0.01109275 0.4489337  0.005844063 0.10842161   0.00758254 

M   0.3193038 -0.03527947 0.7625370 -0.080968188 0.03704989  -0.01622789 

Z (t-value) 

  (Intercept)    age      men     price.C    price.M     price.F 

F   -7.667789 -1.191666 1.647599   0.2623833  1.7917982   0.5143455 

M    1.017105 -5.534002 4.161382  -2.5983245  0.8780926  -0.8178510 

> pvalue 

 (Intercept)    age        men     price.C   price.M    price.F 

F 1.754152e-14 2.333922e-01 9.943498e-02 0.793025943 0.0731653  0.6070105 

M 3.091036e-01 3.130057e-08 3.163278e-05 0.009367992 0.3798935  0.4134423 

As gathered in Fig. 7.14b and the result presented above, we calculated the 
log(odds ratio) or relationship that the following predictor (independent) variables 
age (var = age, z= -1.191666, p= 2.333922e-01), gender (var= men, z= 1.647599, 
p = 9.943498e-02), and price of the different policies (i.e., vars = price.C (z = 
0.2623833, p = 0.793025943), price.M (z = 1.7917982, p = 0.0731653), price.F 
(z = 0.5143455, p = 0.6070105) have with the type of vehicle the customer acquires 
(var = veh). Here var = veh is the dependent variable with three different unordered 
types or categories of C, M, and F, respectively. The coefficient value of -3.3970181 
is the log(odds) estimate predicted by the model with t-value (z) of -7.667789 and 
p-value of 1.754152e-14 (p ≤ 0.05) which presented to be statistically significant. 

Consequentially, considering the results of the implemented multinominal method 
(model = MultNomLogR.Model), we can say that the explanatory/predictor factors 
such as age and gender (see significant values above) contributes or are associated 
to the type of vehicle the customers acquire. Whereas the prices of the insurance 
policies (with non-significant value) are not associated or are not a major predictor 
of the type of vehicle the customers acquire based on the analyzed data (data = 
MyMultiNom.data). 

(iii). Ordinal Logistic Regression Results 

Coefficients: 

                       Value       Std. Error   t value    p value 

age                   0.0002583677 0.003639489 0.07099011 9.434056e-01 

seniority             0.0187270000 0.006619418 2.82910056 4.667903e-03 

men                   0.0500335068 0.097664462 0.51230003 6.084410e-01 

marital_S             0.1389112497 0.105481571 1.31692435 1.878640e-01 

unlikely|somewhat likely   0.3836373022 0.184478287 2.07957971 3.756410e-02 

somewhatlikely|verylikely 1.7171777571 0.188480311 9.11064796  8.189140e-20
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As shown in Fig. 7.14c and the result presented above, we estimated (predicted) 
the likelihood or log(odds) that a customer will buy the insurance policies (var = 
yord, ordered dependent variable with 3 levels where 0 = unlikely, 1 = somewhat 
likely, and 2 = very likely) taking into account the following predictor (independent) 
variables—age (var = age), position (var = seniority), gender (var = men), and 
marital status (var = marital_S). 

The coefficient values of the unlikely versus somewhat likely (z = 2.07957971, 
p = 3.756410e-02) and somewhat likely versus very likely (z = 9.11064796, p = 
8.189140e-20) appear to be statistically significant (p ≤ 0.05) with coefficient value 
estimations of 0.3836373022 and 1.7171777571, respectively. 

Moreover, we can see that the log(odds ratio) of the predictor variables are all 
statistically significant: (var = age, z  = 0.07099011, p = 9.434056e-01), (var = 
seniority, z  = 2.82910056, p = 4.667903e-03), (var = men, z  = 0.51230003, p = 
6.084410e-01), and (var = marital_S, z  = 1.31692435, p = 1.878640e-01). There-
fore, we can statistically say based on the analyzed example data (data = MyBi-
naOrdn.data) that the age, position, gender, and marital status of the customers are a 
major predictor or are associated with the possibility (likelihood) that a customer will 
buy the insurance policies based on the defined model (model = OrdnLogR.Model). 

*** the readers can refer to the further useful functions and information provided 
earlier at the end of Sect. 7.2 to experiment and explore more details and useful tips 
about the logistic regression analysis and results in R. 

7.4 Summary 

This chapter presents a hands-on example and experimentations on the use of R 
programming in conducting statistical analysis such as the Linear and Logistics 
regression test and analysis to the readers. It practically shows in detail how to 
conduct the different types of linear and logistic regression tests using R. 

In Sect. 7.2, the authors demonstrated how to perform the two main types of linear 
regression analysis, namely, 

(i) Simple linear regression which uses only one independent continuous variable. 
(ii) Multiple linear regression which uses two or more independent variables. 

In Sect. 7.3, we demonstrated how to conduct the three different types of logistic 
regression analysis, namely, 

(i) Binomial (binary) logistic regression which uses dependent variables that only 
have two possible levels or types of 0 or 1. 

(ii) Multinomial logistic regression which uses dependent variables that have 3 or 
more possible types but are not ordered. 

(iii) Ordinal logistic regression which uses dependent variables that have 3 or more 
possible types but with ordered categories.
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In addition, this chapter also covered and exemplified in detail how to plot or 
graphically represent the results of the different test and variables, including how 
to interpret and understand the results of both the linear regression and logistic 
regression analysis in R. 
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Chapter 8 
T-test Statistics in R: Independent 
Samples, Paired Sample, and One 
Sample T-tests 

8.1 Introduction 

T-test is one of the most widely used “parametric” procedures or statistical tests 
applied by researchers or data analysts to compare the means of two groups of 
independent variables or data (Kim, 2015; NCSS, 2020; Novak, 2020; Ramtin, 2023). 
It is classified as one of the inferential statistics or bivariate tests that can be used 
to determine whether there is a significant difference in the “mean” values between 
two groups of data samples. 

In practice, there are different types of t-tests that can be utilized to analyze the 
difference(s) in a mean between the targeted samples depending on the type of the 
available dataset or the kind of analysis that is being required/performed. In any of 
the individual cases, performing the t-test analysis involves determining three main 
properties or features (data values) of the samples being analyzed. This includes: 

(i) determining the mean difference, otherwise, referred to as the difference 
between the values of the underlying mean from or for each of the data 
sample(s). 

(ii) determining the standard deviation of each of the group(s) being analyzed, and 
(iii) determining the summary or number of the data values for each group. 

Therefore, supposing the researcher or users wants to check whether two samples 
have the same mean values, where the null hypothesis is given as H0: µ0 = µ1 (Xu 
et al., 2017); The formula for calculating the t-test is represented as follows: 

T = sample mean difference/sample standard deviation of the sample mean difference 

Typically, the main assumptions or conditions for conducting the T-test statistics 
are summarized as follows (Okunev, 2022; Ramtin, 2023): 

• The data should result in a bell-shaped distribution or curve (normally distributed) 
when plotted or graphically represented (see Chap. 3 in Part I). Although scientific
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evidence has shown that parametric procedures (see Chap. 4), such as the t-test 
discussed here, can still be performed for data sample sizes of above 30 (i.e., 
n > 30) regardless of whether the dataset that is being analyzed or measured is 
normally distributed or not (Adam, 2020; Roscoe, 1975). 

• The existence of a simple random sampling technique, in such a way that the 
sampled data is randomly selected as a representative (selected) portion of the 
total population from which the data was collected. 

• The scale of measurement for the data samples follows a continuous or ordinal 
scale and is independently sampled. 

• Homogeneity of variance is assumed. 

As a general rule of thumb, to arrive at a statistical or scientifically tested conclu-
sion about the data samples’ mean assumed to have a t-distribution (see Chaps. 3 and 
6 for more details) the available data sample is expected to meet certain conditions. 
Such as (i) satisfying the assumption of normality, (ii) whereby the two samples 
under consideration must be independently selected/sampled from the same popula-
tion, (iii) thus, independence of sample groups, and (iv) with equal variance (Kim, 
2015). 

In theory, there are three main types of t-tests that are commonly used in the 
current works of literature (Kim, 2015; Novak, 2020; Ramtin, 2023; Skaik, 2015; 
Xu et al., 2017). This includes. 

• Independent samples t-test (also referred to as Unpaired or Two-sample t-test): 
which compares the means for two independently sampled groups, where the two 
groups under consideration are independent of each other. 

• Paired sample t-test (also known as Dependent sample t-test): which compares 
the means of a sample collected from the same group or population but at different 
time or interval (e.g., pre and post test). 

• One sample t-test: which compares the mean of a single group of variables or 
data alongside a known mean, i.e., test whether the given sample mean is equal 
to the hypothesized data value (otherwise known as the test mean). 

In the remainder part of this chapter, the authors will be demonstrating to the 
readers how to conduct the three main types of T-tests (Independent, Paired, and One 
sample) in R. We will explain and illustrate the different statistical steps and main 
functions that are used to conduct the t-tests in R using the outlined steps in Fig. 8.1.

8.2 Independent Samples T-test in R 

Independent samples T-test (also known as “Unpaired” or “Two-sample” t-test) is 
used when the dataset the researchers or data analysts wants to investigate are of 
two samples or groups and are statistically independent. In essence, the two-sample 
t-test as the name implies is used to compare the mean of two independent groups 
of variables or data samples. It is the most common type of t-test in the current 
literature as it allows the researchers to compare the means of two distinctive sets
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Interpret Interpret and check the results oft he analysis 

Visualize Visualize the data and results using graphical method or plotf or 
comparison and interpretation including exportf or use 

Analyze Conductt he testf or assumptions and the T-tests in R using the 
supported methods; t.test( ) and var.test( ) 

Data Import and inspectt he datasetf or analysis 

R Packages Install and Load the required R packages for data manipulation and plot 
visualization; “tidyverse”, "ggpubr", “dplyr”, "car", "rstatix" 

Fig. 8.1 Steps to conducting the T-test analysis in R

of data randomly drawn from two different populations, and to determine if the 
difference (if any or found) could have occurred randomly by chance or not. 

By default, the hypothesis for testing whether there is a difference in mean of 
two specified (independent) data samples and whether this could supposedly occur 
by chance is; IF the p-value is less than or equal to 0.05 (p ≤ 0.05), THEN we can 
assume that the mean of the two sets of data or groups of variables/population in 
the sample is statistically different and that this is not by chance (H1), ELSE IF the 
p-value is greater than 0.05 (p > 0.05) THEN we presume that there is no difference 
in the mean of the two groups and any difference observed could only have occurred 
by chance (H0). 

We will demonstrate how to conduct the Independent (unpaired) sample T-test in 
R using  the  t.test( ) and var.test( ) functions in R. 

As defined in the previous section (Sect. 8.1), we will do this using the steps 
outlined in Fig. 8.1. 

To begin, Open RStudio and Create a new or open an existing project. Once 
the user have RStudio and an R Project opened, Create a new RScript and name 
it “IndSmpT-testDemo” or any name of choice (see Chaps. 1 and 2 on how to do 
these steps if needed). 

Now, let’s download an example data that will be used to demonstrate the Inde-
pendent (unpaired) and subsequently the Paired and One sample t-tests in R in this 
chapter. ***Note: the users are welcome to use any existing data or format they may 
wish to use for the analysis. The example dataset the authors use here are only for 
illustration purposes (the users can see Chap. 2 for a step-by-step guide on how to 
work with different data types and formats in R). 

As  shown inFig.  8.2, download the example csv data named “Choresterol_R.csv” 
from the following source: https://www.sheffield.ac.uk/mash/statistics/datasets and 
save it on the computer. ***Note: the readers can also refer to the following repository

https://www.sheffield.ac.uk/mash/statistics/datasets


162 8 T-test Statistics in R: Independent Samples, Paired Sample, and One …

Fig. 8.2 Example of csv data download for t-test. (Source https://www.sheffield.ac.uk/mash/statis 
tics/datasets) 

(https://doi.org/10.6084/m9.figshare.24728073) where the authors have uploaded all 
the example files and datasets used in this book if they cannot access the example files 
directly from the different source pages. 

Once the user have downloaded the example file and saved this on the local 
machine or computer, we can proceed to conduct the independent samples t-test.  

# Step 1—Install and Load the required R Packages 

Install and Load the following R packages and libraries (see Fig. 8.3, Step1, Lines 
3 to 16), which we will be using to call the different R functions, data manipulations, 
and graphical visualizations for the T-test analysis.

The code and syntax to install and load the required R packages are as follows: 

install.packages("tidyverse") 
install.packages("ggpubr") 
install.packages("car") 
install.packages("rstatix") 
installed.packages("dplyr") 

library(tidyverse) 
library(ggpubr) 
library(car) 
library(rstatix) 
library(dplyr) 
library(readxl)

https://www.sheffield.ac.uk/mash/statistics/datasets
https://www.sheffield.ac.uk/mash/statistics/datasets
https://doi.org/10.6084/m9.figshare.24728073
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Fig. 8.3 Steps to performing independent (unpaired) samples T-test in R

# Step 2—Import and Inspect the example dataset for the T-test Analysis 

As illustrated in Fig. 8.3 (Step 2, Lines 18 to 23), import the dataset named 
“Choresterol_R.csv” which the user have downloaded earlier and store this in an R 
object named “T_test.data” (the users can use any name of choice if they want). 

Once the user have successfully imported the dataset, you can view the details of 
the Choresterol_R.csv dataset as shown in Fig. 8.4 in R with 18 observations and 5 
variables (column) in the data sample. 

T_test.data <- read.csv(file.choose()) 

attach(T_test.data) 
View(T_test.data) 
str(T_test.data)

# Step 3—Conduct the tests for Assumptions and Analyze data 

Now that we have imported the dataset and stored it in an R object that we named 
“T_test.data”, we can proceed to analyze the data. 

As defined in Fig. 8.3 (see Step 3A, Lines 25 to 35), we will conduct the different 
tests of assumptions (data normality, homogeneity of variance, etc.) as mentioned 
earlier in Sect. 8.1, and then conduct the Independent Samples T-test if all the
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Fig. 8.4 Example dataset.csv imported and stored as an R object in R

necessary conditions are met, by using the var.test( ) and t.test( ) functions in R, 
respectively (see Fig. 8.5, Step 3B, Lines 37 to 47).

As defined earlier in the Introduction section (Sect. 8.1); 

• Independent Sample t-test compares the means for two independently sampled 
groups from two different populations whereby the two variables under consid-
eration are independent of each other. 

• The targeted grouping “independent” variable (x) is often a categorical or binary 
type, while the y variable must be numeric. 

To illustrate this test using the example dataset we stored as “T_test.data” in 
R (see: highlighted columns in Fig. 8.4): 

1. We will test whether the mean of the group A of the “Margarine” type or 
variable is equal to the mean of the group B of the “Margarine” considering 
the “Before” intervention variable contained in the dataset? (two-tailed test) 

2. Also, we will check whether the mean of the group A (Margarine) is less than 
the mean of group B (Margarine)? (one-tailed test) 

3. Then we will check whether the mean of group A (Margarine) is greater than 
the mean of group B (Margarine)? (one-tailed test).
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Fig. 8.5 Independent sample (unpaired) T-test in R

The syntax to conduct the defined tests and experiment in R (Fig. 8.5, Step 3A  
and 3B, Lines 25 to 47), are as shown in the codes below: 

Test of Assumption: 

# Assmp: Shapiro-Wilk normality test for Margarine type A 

with(T_test.data, shapiro.test(Before[Margarine == "A"])) 

# Assmp: Shapiro-Wilk normality test for Margarine type B 

with(T_test.data, shapiro.test(Before[Margarine == "B"])) 

# Assmp: F-test to test for homogeneity in variances. function var.test() 

homogeneity.ftest <- var.test(Before ~ Margarine, data = T_test.data) 

homogeneity.ftest 
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T-Test Analysis: 

# Independent (Unpaired) t-test where y is numeric and x is a binary 
factor (Two-tailed) 

IndSmp.Ttest <- t.test(Before ~ Margarine, data = T_test.data, 
var.equal=TRUE, paired=FALSE) 

IndSmp.Ttest 

# Test whether the Ave. of Margarine group A is less than the Ave. of 
Margarine group B (One-tailed) 

IndSmp.Ttest2 <- t.test(Before ~ Margarine, data = T_test.data, 
var.equal=TRUE, paired=FALSE, alternative = "less") 

IndSmp.Ttest2 

# Test whether the Ave. of Margarine group A is greater than the Ave. of 
Margarine group B (One-tailed) 

IndSmp.Ttest3 <- t.test(Before ~ Margarine, data = T_test.data, 
var.equal=TRUE, paired=FALSE, alternative = "greater") 

IndSmp.Ttest3 

Useful Tips: 

• The users must use the paired = FALSE option to specify the Independent 
Samples (unpaired) t-test. 

• The following function: paired = TRUE is used to specify the Paired 
(dependent) sample t-test (which the authors will cover in the next Sect. 8.3). 

• Users need to use the var.equal = TRUE option to specify equal variances 
or a pooled variance estimate for the t-test analysis. 

• Users must use the alternative = “less” and alternative = 
“greater” options to specify a “one-tailed” t-test. 

To continue in our illustrations, once the user have successfully run the codes as 
defined in Steps 3A and 3B (see Fig. 8.5, Lines 25 to 47), they will be presented 
with the results of the “tests for assumptions” and the “Independent sample t-test” 
in the Console as shown in Fig. 8.6a and b. 

In Fig. 8.6a, which represents the outcome of the Step 3A (Fig. 8.5, test of assump-
tions); we conducted the different assumptions for the t-test in order to determine if 
the analyzed dataset is fitting and/or valid for the test (Independent Samples t-test).

As highlighted in the figure (Fig. 8.6a), the normality test using Shapiro–Wilk’s 
method (where we assume a test statistics, W, greater than 0.5 and p-value greater 
than 0.05, i.e., p > 0.05, is normal) shows that the distribution of the two groups 
of the independent variable (A: whereby W = 0.91809, p-value=0.3767; and B: 
whereby W = 0.88503, p-value=0.1773 of “Margarine”) are normality distributed 
when measured against the “Before” variable which is the second targeted variable 
in our analysis. 

Thus: 

(Before[Margarine == "A"], p-value=0.3767) and 

(Before[Margarine == "B"], p-value=0.1773)  
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Fig. 8.6 a Results of normality and homogeneity of variance test displayed in the console in R. 
b Results of the independent samples (Two-sample) T-test in R
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Also, in the assumption test, we tested the homogeneity of variance for the two 
targeted variables (Before ~ Margarine) using  the  var.test( ) method; whereby we 
assume that a value of p > 0.05 indicates “equality in variance”. Consequently, as 
highlighted in Fig. 8.6a, we note that there is no difference in the variance for the 
two sets of analyzed variables withp = 0.2855. andF = 2.2004, respectively. 
Thus, we accept that the assumption of equality in variance is met. 

Therefore, with all necessary conditions met, we proceeded to conduct the “Inde-
pendent Samples T-test” as defined in Step 3B (Fig. 8.5) and the results are as reported 
in Fig. 8.6b. 

As shown in Fig. 8.6b, we performed the Independent Samples (Two-sample) 
t-test by considering the two variables (Before ~ Margarine). The results of the test 
are stored in R objects we called “IndSmp.Ttest” for  the  two-tailed analysis, 
and then “IndSmp.Ttest2” and “IndSmp.Ttest3” for  the  one-tailed analysis, 
respectively. 

# Step 4—Plot and visualize the mean differences for the independent groups 

Another way to check whether there is a difference in the mean of the two independent 
variables is by plotting them as graphs. By so doing, the users will be able to visualize 
the difference in the mean (if any) between the two variables. 

To do this, as defined in Step 4 in Fig. 8.5 (Lines 49 to 52) and the resultant boxplot 
represented in Fig. 8.7; the authors applied the ggplot( ) function in R to visualize 
the mean between the two groups of the independent variable “Margarine” (group 
A and group B) by taking into account the second target variable “Before” in the  
example data “T_test.data”. 

Fig. 8.7 Plotting and visualizing the mean differences for two groups of independent variables in 
R using the ggplot( ) function
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The syntax used in plotting the mean is shown below, and the results are repre-
sented in Fig. 8.7. 

# Visualize mean difference for the groups of independent variables 

ggboxplot(T_test.data, x = "Margarine", y = "Before",

       color = "Margarine", palette = c("dark red", "navy blue"), 

       ylab = "Before", xlab = "Margarine") 

# Step 5—T-tests Results Interpretation 

The last step for the Independent Samples t-test analysis or test is to understand and 
interpret the results of the method. 

By default, the hypothesis for conducting the t-test (Independent t-test) is; IF the 
p-value is less than or equal to 0.05 (p ≤ 0.05), THEN we assume that the mean of 
the two sets of data or groups of variables are statistically different and that this is 
not by chance (H1), ELSE IF the p-value is greater than 0.05 (p > 0.05) THEN we 
can presume that there is no difference in the mean of the two groups of variable/ 
population or that any difference observed may supposedly be by chance (H0). 

> IndSmp.Ttest <- t.test(Before ~ Margarine, data = T_test.data, 
var.equal=TRUE, paired=FALSE) 

> IndSmp.Ttest 

Two Sample t-test 

data:  Before by Margarine 

t = -1.3584, df = 16, p-value = 0.1932 

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval:

 -1.9062045  0.4173156 

sample estimates: 

mean in group A mean in group B 

       6.035556        6.780000 

As shown in the result reported above and gathered from the outcome of the 
Independent Sample (Two-sample) t-test for the example dataset (T_test.data) in  
Fig. 8.6b; the meaning of the results of the test by using the t.test( ) function which 
we applied for the (independent) two-tailed tests (Before ~ Margarine) and saved 
in an R object we called “IndSmp.Ttest” can be explained as a list containing 
the following: 

• Statistics: t = -1.3584 which denotes the value of the t-test analysis. 
• Parameter: df = 16 signifies the degrees of freedom for the t-test statistics. 
• p-value: p-value = 0.1932 is the p-value or significance levels of the test. 
• Confidence interval: Conf.Int(95%, -1.9062045 0.4173156) 

represents the confidence interval for the mean assumed to be appropriate to the 
specified alternative hypothesis. 

• Sample estimates: group A mean = 6.035556, group B mean = 
6.780000 which is the means of the two groups of population being compared 
considering the two variables (Before ~ Margarine).
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Statistically, the p-value of the Independent sample t-test (IndSmp.Ttest) is  
p=0.1932 (where p is expected at P ≤ 0.05). As we can see, the value is greater than 
the stated or acceptable significance levels (p ≤ 0.05). Therefore, we can conclude 
that there is no significant difference between the means of the two groups (A and B) 
of Margarine taking into account the Before variable or intervention in the dataset. 
In other words, the mean of the group A of the “Margarine” variable is equal 
to the mean of group B of the “Margarine” when analyzed against the “Before” 
intervention (two-tailed test). 

Furthermore, as shown in the next results presented below and reported in Fig. 8.6b 
for the “one-tailed” t-tests: 

– We checked whether the mean of the group A is less than the mean of the group 
B of the Margarine (IndSmp.Ttest2), and 

– Whether the mean of group A is greater than the mean of group B of the 
Margarine variable (IndSmp.Ttest3), respectively. 

> IndSmp.Ttest2 <- t.test(Before ~ Margarine, data = T_test.data, 
var.equal=TRUE, paired=FALSE, alternative = "less") 

> IndSmp.Ttest2 

Two Sample t-test 

data:  Before by Margarine 

t = -1.3584, df = 16, p-value = 0.09659 

alternative hypothesis: true difference in means is less than 0 

95 percent confidence interval:

-Inf 0.2123426 

sample estimates: 

mean in group A mean in group B 

       6.035556        6.780000 

> IndSmp.Ttest3 <- t.test(Before ~ Margarine, data = T_test.data, 
var.equal=TRUE, paired=FALSE, alternative = "greater") 

> IndSmp.Ttest3 

Two Sample t-test 

data:  Before by Margarine 

t = -1.3584, df = 16, p-value = 0.9034 

alternative hypothesis: true difference in means is greater than 0 

95 percent confidence interval:

 -1.701231       Inf 

sample estimates: 

mean in group A mean in group B 

       6.035556        6.780000 

As gathered in the above results of the one-tailed tests (IndSmp.Ttest2, 
where p=0.09659 and IndSmp.Ttest3, where p=0.9034); while we 
can see that there are no significant differences in the means of the two groups (i.e., 
the value of the p-value is above the threshold of p ≤ 0.05, and the mean for group 
A=6.035556 and group B=6.780000).
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On the other hand, the one-tailed test (IndSmp.Ttest2, p=0.09659) 
reveals that the mean of the group A (6.035556) is slightly less than mean of group B 
(6.780000), and likewise the mean of group A is not greater than the mean of group 
B for the other one-tailed test (IndSmp.Ttest3, p=0.9034), vice and versa. 

Thus, in summary, we can statistically conclude that the means of the group A is 
slightly less than and not greater than the means of the group B with mean sample 
estimate of A = 6.035556 and B = 6.780000, respectively. 

8.3 Paired (Dependent) Sample T-test in R 

Paired or Dependent Samples T-test is another type of statistical test used by the 
researchers to determine the mean difference between two sets of data or variables. 
But, in this case or scenario, the test is used to compare the means of a sample 
collected from the same group but at different time or interval. In other words, it is 
used when the researchers or data analyst are interested in knowing the difference in 
mean between two measures (e.g., pre and post tests) in a sample. 

To demonstrate the paired sample t-test, we will continue to use the same example 
dataset “Choresterol_R.csv” that we have downloaded and imported earlier in 
Sect. 8.2 that we stored as an R object named “T_test.data” (see: Fig. 8.4). ***The list 
of example datasets used in this book can also be directly accessed via the following 
link: https://doi.org/10.6084/m9.figshare.24728073 if the user needs to access the 
file again. 

To begin with conducting the Paired Sample t-test, create a new R Script and 
name it “PrdSmpT-testDemo” (the user may use any name of their choice). 

# Step 1—Load the required R Packages and Libraries 

Since we have previously installed the necessary R packages for our previous t-test 
analysis (see Sect. 8.2), we do not need to install the packages again, rather we just 
need to call or load the libraries for the necessary R packages as shown in the code 
below and in Fig. 8.8 (see Step1, Lines 3 to 10). ***Note: the only new R package 
that the authors have installed this time is the "PairedData” which have not 
been previously installed in the previous program. If the user have directly visited 
this particular section of the chapter or have previously exited and resumed R, then 
they may need to Install or re-install all the necessary R packages and libraries listed 
below (see: Chap. 2, Sect. 2.6, for further guidance if you require to do so) depending 
on the user’s case.

We will be using the paired( ) function when plotting the graphical display of the 
two paired variables or data.

https://doi.org/10.6084/m9.figshare.24728073
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Fig. 8.8 Conducting paired samples (dependent) T-test in R

install.packages("PairedData") 

library(tidyverse) 

library(ggpubr) 

library(car) 

library(rstatix) 

library(dplyr) 

library(PairedData) 

# Step 2—Inspect example dataset for Paired T-test Analysis 

As illustrated in Fig. 8.8 (Step 2), again since we will be using the already imported 
dataset (T_test.data) for our new analysis (see: Fig. 8.4), we do not need to import the 
data again rather we can view and/or check the data to make sure that the necessary 
variables we need or require for our analysis are in the data. This can be done by 
using the View( ) or str( ) commands as shown in the code below (Fig. 8.8, Lines 
12 to 15). 

View(T_test.data) 
str(T_test.data)
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***Note: the users can use the following code presented below to import and 
attach the example dataset if this is their first time or if they have exited R or directly 
visited this particular section of the chapter. The users that have continued from our 
previous analysis in Sect. 8.2 and can ignore using this command again and move 
straight to step 3. 

T_test.data <- read.csv(file.choose()) 

attach(T_test.data) 
View(T_test.data) 
str(T_test.data) 

# Step 3—Conduct tests for Assumptions and Analyze the data 

Now, as shown in Fig. 8.8 (Step 3A, Lines 17 to 25), we conducted the different 
necessary tests of assumptions (i.e., data normality and homogeneity of variance) in 
R for the selected items or variables (i.e., “After4weeks” and “After8weeks”—see 
Fig. 8.4) in our analysis for the paired sample t-test using the var.test( ) function, as 
defined earlier in Sect. 8.1. Then, we performed the Paired Sample T-test (Fig. 8.8, 
Step 3B, Lines 27 to 37) using the t.test( ) function. 

As defined earlier in the introduction section (Sect. 8.1); 

• Paired Sample T-test statistics compares the means for two sets of data from a 
single population but analyzed at different time intervals (e.g., pre and post test). 

• The targeted variables must be numeric. 

To illustrate this test or experiment (paired sample t-test) using the example dataset 
“T_test.data” (see: highlighted columns in Fig. 8.4): 

1. We will test whether the mean of the “After4weeks” variable is equal to the 
mean of the “After8weeks” variable after the intervention? (two-tailed test) 

2. Also, we will check whether the mean of the “After4weeks” is  less than the 
mean of the “After8weeks”? (one-tailed test) 

3. Then we will check whether the mean of the “After4weeks” is  greater than the 
mean of the “After8weeks”? (one-tailed test). 

The syntax to conduct the stated tests listed above in R (see Fig. 8.8, Step 3A and 
3B, Lines 17 to 37), are as shown in the codes below (see: Fig. 8.8):
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# Assmp: Shapiro-Wilk's normality test for the variables 

shapiro.test(T_test.data$After4weeks) 
shapiro.test(T_test.data$After8weeks) 

# Assmp: F-test to test for homogeneity in variances. function var.test()  

homogeneity.ftest_2 <- var.test(After4weeks, After8weeks, data = 
T_test.data) 
homogeneity.ftest_2 

# Paired T-test where the given variables must be numeric (Two-tailed) 
PairSmp.Ttest <- t.test(After4weeks, After8weeks, data = T_test.data, 
var.equal = TRUE, paired=TRUE) 
PairSmp.Ttest 

# Test whether Ave. mean of After4weeks is less than the Ave. mean of 
After8weeks (One-tailed) 
PairSmp.Ttest2 <- t.test(After4weeks, After8weeks, data = T_test.data, 
var.equal=TRUE, paired=TRUE, alternative = "less") 
PairSmp.Ttest2 

# Test whether Ave. mean of After4weeks is greater than the Ave. mean of 
After8weeks (One-tailed) 
PairSmp.Ttest3 <- t.test(After4weeks, After8weeks, data = T_test.data, 
var.equal=TRUE, paired=TRUE, alternative = "greater") 
PairSmp.Ttest3 

Useful Tip: 

• As shown in the codes above, the users always need to specify the paired = 
TRUE option when conducting the Paired sample t-test. 

Once the user have successfully run the codes as defined in the Step 3A and 3B 
(Lines 17 to 37) in Fig. 8.8, they will be presented with the results of the “tests for 
assumptions” and the “Paired Sample T-test” in the Console as shown in Figs. 8.9a 
and b, respectively. 

In Figs. 8.9a, which represents the outcome of the Step 3A (see: Fig. 8.8) for the  
paired t-test analysis, we conducted the different necessary assumptions tests for the 
t-test in order to determine if the available dataset and selected variables are valid to 
perform the test.

As highlighted in the figure (Fig. 8.9a), for the test of assumptions, the 
normality test using Shapiro–Wilk’s method in which we hypothetically 
assume that a score or statistics value, W, of above 0.5 (p-value expected 
at p > 0.05), and value of the homogeneity of variance of p-value > 
0.05, is normal and acceptable, shows that the distribution of the two 
sets of data (i.e., After4weeks: W=0.97687 where p-value=0.9121, 
and After8weeks: W=0.97733 where p-value=0.9183) are normality 
distributed and suitable for the paired t-test analysis. 

The homogeneity of variance for the two targeted variables using the var.test( ) 
method, whereby we assume that a value of p > 0.05 indicates equality in variance. 
As highlighted in Fig. 8.9a, we note that there is no difference in the variance for the 
two variables (After4weeks, After8weeks) with p-value=0.9376 and 
F=1.0393. Hence, we accepted the assumption that equality in variance is met.



8.3 Paired (Dependent) Sample T-test in R 175

Fig. 8.9 a Results of normality and homogeneity of variance test displayed in the console in R. 
b Results of paired sample (dependent) T-test displayed in console in R
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Accordingly, Fig. 8.9b is the result of the Paired Sample T-test analysis as defined 
in Step 3B in Fig. 8.8. 

As reported in Fig. 8.9b, we performed the Paired Sample t-test by considering 
the mean differences for the targeted variables (After4weeks, After8weeks). 
The results of the test were stored in R objects we called “PairSmp.Ttest” for  
the two-tailed analysis, and “PairSmp.Ttest2” and “PairSmp.Ttest3” for  
the one-tailed analysis, respectively. 

# Step 4—Plot and visualize the mean differences for the two paired samples 
or variables 

As defined in Fig. 8.8 (Step 4, Lines 39 to 42) and the resultant plot represented in 
Fig. 8.10, we graphically plotted and visualized the mean between the two paired 
groups of variables (After4weeks, After8weeks) in the example dataset “T_ 
test.data”. 

The code used to create or plot the mean of the two variables (After4weeks, 
After8weeks) is shown below, and the resultant graph is represented in Fig. 8.10. 

# Visualize mean differences for the paired groups of variables 

prdSample <- paired(After4weeks, After8weeks) 
plot(prdSample, type = "profile") + theme_bw() 

# Step 5—Results Interpretation for the paired sample t-test 

The final step for the “paired sample t-test” analysis is to understand and interpret 
the results of the test.

Fig. 8.10 Plotting the mean difference for two paired groups of variables in R 
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By default, the hypothesis for conducting the test (Paired t-test) is; IF the p-value 
is less than or equal to 0.05 (p ≤ 0.05), THEN we assume that the means of the two 
sets of variable or data are statistically different and that this is not by chance (H1), 
ELSE IF the p-value is greater than 0.05 (p > 0.05) THEN we presume that there is 
no difference in the mean of the two sets of data (H0). 

> PairSmp.Ttest 

Paired t-test 

data:  After4weeks and After8weeks 

t = 3.7809, df = 17, p-value = 0.001491 

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval: 

0.02774658 0.09780897 

sample estimates: 

mean of the differences 

             0.06277778 

As reported in the results above (see different components of the t-test explained 
in detail in previous Sect. 8.2); the t.test( ) function which we applied for the Two-
tailed Paired Sample (PairSmp.Ttest) t-test shows that there is a difference in the 
mean between the two sets of analyzed data (After4weeks, After8weeks). 
The p-value for the Two-tailed test was statistically found as p=0.001491, which 
is significantly less than the scientifically accepted levels (p ≤ 0.05). Therefore, we 
can statistically conclude that there is a significant difference between the means 
of the two sets of data (After4weeks, After8weeks) considering the two 
intervention periods. 

Furthermore, as gathered in the results reported below for the one-tailed t-tests 
(see: Figs. 8.8 and 8.9b); 

• We also checked whether the mean of the After4weeks variable is less than the 
mean of the After8weeks (PairSmp.Ttest2). 

• Then checked whether the mean of the After4weeks is greater than the mean of 
the After8weeks (PairSmp.Ttest3). 

> PairSmp.Ttest2 

Paired t-test 

data:  After4weeks and After8weeks 

t = 3.7809, df = 17, p-value = 0.9993 

alternative hypothesis: true difference in means is less than 0 

95 percent confidence interval:

-Inf 0.09166206 

sample estimates: 

mean of the differences 

             0.06277778
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> PairSmp.Ttest3 

Paired t-test 

data:  After4weeks and After8weeks 

t = 3.7809, df = 17, p-value = 0.0007457 

alternative hypothesis: true difference in means is greater than 0 

95 percent confidence interval: 

0.0338935       Inf 

sample estimates: 

mean of the differences 

             0.06277778 

In the results of the one-tailed t-tests, we can see that when we analyzed whether 
the mean of the “After4weeks” variable is less than the mean of the “After8weeks” 
that there was no significant difference (PairSmp.Ttest2, p=0.9993). But 
when we analyzed whether the mean of the “After4weeks” is  greater than the mean 
of the “After8weeks” that there was a significant difference (PairSmp.Ttest3, 
p=0.0007457). Therefore, it can be said from the tests that the mean of the 
“After4weeks” is greater and not less than the mean of the “After8weeks” which 
was statistically difference by a margin of 0.0627777 (see: mean of the differences) 
presented in both tests (one-tailed). 

Henceforth, in summary, we can statistically say that there was a significant change 
or variation in the mean of the targeted variables (After4weeks and After8weeks) 
over the period of the intervention or experiment based on the example dataset we 
stored as “T_test.data”. Perhaps, this result suggests a drop in the cholesterol levels 
of the participants across those periods, for instance. 

8.4 One Sample T-test in R 

One Sample T-test is the third type of t-test that is used in statistical analysis 
or by the researchers to compare the mean of a single group of variable or data 
alongside a known mean value. The test as the name implies (one sample t-test) is 
usually performed to determine whether the specified sample mean is equal to the 
“hypothesized” data value (otherwise known as the test mean). 

To demonstrate the One sample t-test, we will continue to use the same example 
dataset “Choresterol_R.csv” that we have stored as an R object we name “T_ 
test.data” in R (see: Fig. 8.4). 

To demonstrate the One sample t-test in R, create a new R Script and name it 
“OneSmpT-testDemo” (**remember the users can use any name they want provided 
reference to them are correctly made in the codes or program). 

# Step 1—Load the Required Libraries 

Again, since we have previously installed the necessary R packages in R for the 
previous t-tests we have looked into so far (see Sects. 8.2 and 8.3), we only need
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Fig. 8.11 Different steps to performing the one sample T-tests in R 

to load the necessary libraries as shown in the code below and in Fig. 8.11 (Step1, 
Lines  3 to 9).  

library(tidyverse) 

library(ggpubr) 

library(car) 

library(rstatix) 

library(dplyr) 

# Step 2—Inspect the example dataset for Analysis 

As illustrated in Fig. 8.11 (Step 2), the users do not need to import the example 
dataset again. Just inspect or view the data (if the user wish) to make sure to choose 
the correct variable that you would like to analyze or that are contained there in the 
data. Use the following R functions “View( ) or str( )” to view the details of the 
example dataset we named and stored as “T_test.data” (Fig. 8.11, Lines 11 to 14).
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View(T_test.data) 
str(T_test.data) 

***Note: the users can use the following code presented below to import and attach 
the example dataset if this is their first time or if they have exited R or directly visited 
this particular section of the chapter. The users that have continued from our previous 
examples and analysis in Sect. 8.2 and 8.3 can ignore using this command again and 
move straight to step 3. 

T_test.data <- read.csv(file.choose()) 
attach(T_test.data) 
View(T_test.data) 
str(T_test.data) 

# Step 3—Conduct the One Sample t-test 

As defined earlier in the introduction section (Sect. 8.1); 

• One Sample t-test is used to determine the mean of a particular (one) group 
of data or sample drawn from the same population compared against a standard 
mean value. For example, in our example dataset, we will analyze the mean value 
of the “After8weeks” variable across the data. 

• Note that the target variable must be numeric. 

As a general rule of thumb, the users are required to conduct the tests of 
assumptions before applying the t-tests. However, since we have performed the 
tests of assumptions for the “After8weeks” variable in the previous section (see: 
Sect. 8.3, Fig.  8.8, Step 3A, Line 21), we will skip this phase in this section and 
proceed directly with conducting the One sample T-test (Fig. 8.11, Step 3, Lines 16 
to 26). 

For the One Sample t-test: 

• We will check whether the mean effect of the cholesterol reduction for 
“After8weeks” variable is equal to the standard mean value of 5, for instance, 
from the look of our example data. In other words, whether the mean cholesterol 
reduction of “After8weeks” in the population is different from 5 (two-tailed) 

• Also, we will check whether the mean reduction in the cholesterol for 
“After8weeks” is  less than 5 (one-tailed test), and then 

• Test whether the mean reduction in cholesterol for the “After8weeks” is  greater 
than 5 (one-tailed test). 

The syntax to conduct the above-listed One sample t-tests (Fig. 8.11, Step 3) is  
presented in the codes below:
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# Step 3 - Conduct One sample t-test where Ho: mu=5 
OneSmp.Ttest <- t.test(T_test.data$After8weeks, mu=5, alternative = 
"two.sided" ) 
OneSmp.Ttest 

# Test whether the mean of After8weeks is less than 5 (One-tailed) 
OneSmp.Ttest2 <- t.test(T_test.data$After8weeks, mu=5, alternative = 
"less") 
OneSmp.Ttest2 

# Test whether the mean of After8weeks is greater than 5 (One-tailed) 
OneSmp.Ttest3 <- t.test(T_test.data$After8weeks, mu=5, alternative = 
"greater") 
OneSmp.Ttest3 

Note: mu represents the hypothetical mean assumed or anticipated by the 
researcher. For instance, in our case we chose 5 (mu = 5) based on the various 
likely fields contained in the dataset (see: Fig. 8.4). It is noteworthy to mention that 
the value of the mu can be changed usually based on the frequent data values or 
samples. 

Once the user have successfully run the codes (see Fig. 8.11, Step 3), you will 
be presented with the results of the One sample T-tests analysis in the Console as 
shown in Fig. 8.12.

As reported in Fig. 8.12, we conducted the One Sample t-test by comparing 
the mean of the “After8weeks” variable after cholesterol reduction in the example 
dataset we named “T_test.data” in R against a hypothesized standard mean 
value of 5 (mu = 5). The result of the tests was stored in R objects we called 
“OneSmp.Ttest” for  the  two-tailed analysis, and “OneSmp.Ttest2” and 
“OneSmp.Ttest3” for  the  one-tailed analysis, respectively. 

# Step 4—Plot and visualize the mean difference of the analyzed data 

As defined in Fig. 8.11 (Step 4, Lines 28 to 34) and the resultant boxplot (Fig. 8.13a) 
and Quantile–quantile plot (Fig. 8.13b); we utilized the various types of ggplot( ) 
functions in R to visualize the mean and/or relationship between the “After8weeks” 
variable and the standard mean values based on the example dataset “T_test.data”.

The code used for the mean boxplot using the ggboxplot( ) function, and quantile– 
quantile plot using the ggqqplot( ) function is as shown in the code below, and the 
results represented in Fig. 8.13a and b. 

# Visualize estimated mean difference for the sample data

  ggboxplot(T_test.data$After8weeks, 
          ylab = "After8weeks (values)", xlab = FALSE,
          ggtheme = theme_minimal()) 

ggqqplot(T_test.data$After8weeks, ylab = "Distribution after 8 
weeks",
         ggtheme = theme_minimal())
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Fig. 8.12 Result of one sample T-test displayed in the console in R

# Step 5—Interpretation of Result of One sample t-test 

The final step in the One sample t-test analysis is to understand and interpret the 
results of the test. 

By default, the hypothesis for conducting the test (One sample t-test) is; IF the 
p-value is less than or equal to 0.05 (p ≤ 0.05), THEN we assume that the mean 
of the single variable is statistically different from the standard mean score or value 
(H1), ELSE IF the p-value is greater than 0.05 (p > 0.05) THEN we can presume that 
there is no difference in the mean of the variable and the standard mean value (H0).
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Fig. 8.13 a Plotting estimated mean for single variable in R using the ggboxplot( ) function. 
b Quantile–Quantile plot for relationship between a single variable and the mean values in R using 
the ggqqplot( ) function
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> OneSmp.Ttest <- t.test(T_test.data$After8weeks, mu=5) # Ho: mu=5 

> OneSmp.Ttest 

One Sample t-test 

data:  T_test.data$After8weeks 

t = 2.9989, df = 17, p-value = 0.008073 

alternative hypothesis: true mean is not equal to 5 

95 percent confidence interval: 

5.230921 6.326857 

sample estimates: 

mean of x 

5.778889 

Accordingly, as gathered in the result of the One Sample T-test presented above; 
the p-value for the test (OneSmp.Ttest) is  p=0.008073 which is far less than 
the default significant levels of p ≤ 0.05. Therefore, we can statistically conclude that 
there is a significant difference between the mean of the After8weeks variable 
and the pre-defined standard mean value, where mu = 5(two-tailed). Thus, we 
reject the null hypothesis that the mean of the After8weeks is equal to 5 whereby 
the means sample estimate is equal to 5.778889. 

***meaning of the different elements or components of t-tests results have been 
explained in detail in the previous Sect. 8.2***. 

As gathered in the tests result presented below for the “one-tailed” one sample 
t-tests (see: Figs. 8.8 and 8.9b); 

• We also checked whether the mean of the After8weeks variable is less than the 
mean of the hypothesized value of 5, where mu=5 (OneSmp.Ttest2), and 
then 

• Checked whether the mean of the After8weeks variable is greater than the mean 
of the hypothesized value of 5, where mu=5 (OneSmp.Ttest3). 

> OneSmp.Ttest2 <- t.test(T_test.data$After8weeks, mu=5, alternative="less") 

> OneSmp.Ttest2 

 One Sample t-test 

data:  T_test.data$After8weeks 

t = 2.9989, df = 17, p-value = 0.996 

alternative hypothesis: true mean is less than 5 

95 percent confidence interval: 

     -Inf 6.230705 

sample estimates: 

mean of x  

 5.778889 
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> OneSmp.Ttest3 <- t.test(T_test.data$After8weeks, mu=5, alternative = 
"greater") 

> OneSmp.Ttest3 

 One Sample t-test 

data:  T_test.data$After8weeks 

t = 2.9989, df = 17, p-value = 0.004037 

alternative hypothesis: true mean is greater than 5 

95 percent confidence interval: 

 5.327073      Inf 

sample estimates: 

mean of x  

 5.778889 

From the results of the one-tailed tests above, we can see that when we analyzed 
whether the mean of the “After8weeks” variable is less than the hypothesized “stan-
dard mean of 5” (mu=5) that there was no significant value (OneSmp.Ttest2, 
p=0.996). But when we analyzed whether the mean of “After8weeks” is greater 
than the hypothesized “standard mean of 5” that there was a significant score or value 
(OneSmp.Ttest3, p=0.004037). This means that most of the values repre-
senting the analyzed single variable (After8weeks) for the different participants have 
a value greater than 5. 

8.5 Summary 

In this chapter, the authors illustrated how to conduct the three main types of T-tests 
(Independent, Paired, and One sample) analysis in R. In Sect. 8.2, we explained and 
illustrated to the readers how to perform the Independent samples (unpaired or Two-
sample) t-test. Section 8.3 covers how to conduct the Paired sample (Dependent) 
t-test. While in Sect. 8.4, we demonstrated how to perform the One sample t-test 
using R. 

Also, this chapter covered how to graphically plot the mean of the different 
analyzed variables in the data and/or results of the t-tests. We discussed in detail 
how to interpret and understand the results of the three main types of T-tests in R. 

To summarize the contents, the main topics covered in this chapter of the book 
are as follows: 

• t-test is one of the inferential (parametric) statistics that are used for hypothesis 
testing, and for determining the significant differences (where applicable) between 
the means of two independent groups of data or single variable in a given data 
sample. 

When choosing whether to conduct an Independent, Paired or One sample t-test? 
The researcher or data analyst should: 

• Perform the “independent sample t-test” if the groups come from two different 
populations (i.e., statistically independent). For example, two different categories



186 8 T-test Statistics in R: Independent Samples, Paired Sample, and One …

of people, thing, or place (gender: male and female, state: on and off, region: north 
and south, etc.). 

• Perform “paired sample t-test” if the targeted group or variable comes from a 
single population but is analyzed at different time intervals (e.g., longitudinal 
study or a pre and post test intervention for the same group of people or place). 

• Perform “one sample t-test” for one single group from the same population being 
analyzed against a standard mean value. For example, comparing the standard 
mean difference or effect of a particular teaching model on a specified group of 
students in a particular class with the average mean tested on sample estimate of 
5 scores. 

Additionally, the users will need to perform the “two-tailed test” statistics or 
calculation, if they only want to determine whether the mean of two data samples 
are different from one another. Whereas, on the other hand, they will also need to 
perform a “one-tailed test” if their goal includes also to determine whether the mean 
of a specific sample or variable is less than or greater than the mean of another 
variable or mean value, as the case may be. 
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Chapter 9 
Analysis of Variance (ANOVA) in R: 
One-Way and Two-Way ANOVA 

9.1 Introduction 

Analysis of variance (ANOVA), also known as F-test, is one of the inferential statis-
tical tests of hypothesis mostly applied by researchers or the data analysts to compare/ 
determine the differences in mean between data samples that are represented in 
more than two independent comparison groups (usually categorical or ordinal) and a 
continuous dependent variable (Connelly, 2021; Sullivan, 2020). The ANOVA statis-
tics can be regarded as an extension of the Independent Samples t-test (see: Chap. 8), 
that is mainly used when there are specifically two or more groups of independent 
variables(s) being compared against a continuous dependent variable. Therefore, 
ANOVA tests are only applicable when the data sample that is being analyzed is 
made up of more than two groups (i.e., a minimum of three) of an independent vari-
able(s). The main aim of using the tests (ANOVA) is to statistically examine the 
differences (variability) that may exist within the groups of the (independent) vari-
ables being compared, as well as, among the groups that are being compared. Thus, 
statistically ANOVA tests determine whether the means of the three or more groups 
of an independent variable(s) are different taking into account the influence (usually 
referred to as Between-subject effect) that they may have on the dependent variable. 
With ANOVA, researchers or data analysts can ascertain the statistical significance 
of both the main effects (the variation) and their interaction (i.e., between-subjects 
effects) based on the significant values, usually determined through the p-values 
(p ≤ 0.05). 

The formula for calculating ANOVA is explained as follows: it uses the F-test to 
determine whether the group means are equal by including the correct variances in 
the ratio (Connelly, 2021). In other words, the F-statistic is the ratio where: 

F = variation between sample means/variation within the samples 

Thus,
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F = MSE/MST 

where: 
F = ANOVA coefficient, MST = Mean sum of squares due to treatment, and 

MSE = Mean sum of squares due to error. 
There are two main types of ANOVA tests commonly used in the works of 

literature (Christensen, 2020; Guillén-Gámez et al., 2021; Nibrad, 2019). These are: 

• One-way ANOVA: used to compare the differences in mean between one (cate-
gorical or ordinal) independent variable and one (continuous) dependent variable, 
whereby the independent variable must have at least three levels, i.e., a minimum 
of three different groups or categories. 

• Two-way ANOVA: used to compare the differences in mean between two inde-
pendent variables (with three or more multilevel) and one (continuous) dependent 
variable. For example, it is used for examining the effects that two factors (inde-
pendent variables) may have on the population of the study (continuous dependent 
variable) simultaneously or all at the same time. 

Other types of ANOVA statistics or multivariate analysis are also used in the 
existing literature or statistical analysis, such as the multivariate analysis of vari-
ance (MANOVA) (Dugard et al., 2022; Okoye et al., 2022), analysis of co-variance 
(ANCOVA) (Kaltenecker & Okoye, 2023; Li & Chen, 2019), multivariate analysis 
of co-variance (MANCOVA) (Li & Chen, 2019; Okoye et al., 2023), etc. 

Just like many of the different types of parametric tests or statistical proce-
dures; the main “assumptions” or “conditions” that are necessary for performing 
the ANOVA tests both for research experiments or data analytics are summarized as 
follows (Connelly, 2021; Sullivan, 2020)—see Chap. 6, Sect. 6.2.5: 

• Independence of cases: there should be no relationship among the observations in 
each group or among the groups of the variables themselves, i.e., independence 
of observations must hold. 

• Normality of data: there should be no significant outliers, that might have a 
negative effect on the ANOVA test. The dependent variable should have an 
approximately normal distribution for each category of the target independent 
variable. 

• Homogeneity of variances: the variance among the groups must hold or should 
be approximately equal. 

• The independent variable(s) must consist of more than two independent groups 
or categories, i.e., a minimum of three groups or levels. 

• The independent variable(s) must be categorical or ordinal. 
• The dependent variable must be continuous. 

In the next sections of this chapter (Sects. 9.2 and 9.3); the authors will explain 
and demonstrate to the readers how to conduct the One-way and Two-way ANOVA 
tests in R. We will illustrate the different steps to performing the two tests using the 
following steps in R outlined in Fig. 9.1.
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Interpret Interpret and explain the results of the analysis 

Visualize Visualize data and the results using graphical method for 
comparison and interpretation or export for use 

Analyze 
Conduct the different test for Assumptions and the ANOVA tests in 
R using the supported methods; anova( ), aov( ), TukeyHSD( ), 
bartlette.test( ), leveneTest( ) 

Data Import and inspect the data for analysis 

R Packages Install and Load the required R packages for data manipulation and 
visualization; “tidyverse”, "ggpubr", “dplyr”, "rstatix", "car", "carData" 

Fig. 9.1 Steps to conducting the ANOVA test and analysis in R 

9.2 One-Way ANOVA Test in R 

One-way ANOVA is used when the dataset the researcher or analysts wants to inves-
tigate are made up of more than two groups of an independent variable and are 
statistically independent, and a continuous dependent variable. Thus, the One-way 
ANOVA test as the name implies, is statistically used to compare the differences in 
mean between one (categorical or ordinal) independent variable and one (contin-
uous) dependent variable, whereby the independent variable must have at least three 
levels, i.e., a minimum of three different groups or categories. 

By default, the hypothesis for testing whether there is a difference or variation in 
the mean of the more than two (> 2) specified groups of independent data or variable 
against the one dependent (usually continuous) variable is; IF the p-value of the test 
is less than or equal to 0.05 (p ≤ 0.05), THEN we assume that the mean of the groups 
of population (minimum of three) in the data sample are statistically different (i.e., 
varies) and that this is not by chance (H1), ELSE IF the p-value is greater than 0.05 (p 
> 0.05) THEN we can conclude that there is no difference in the mean of the groups 
and any difference observed could only occur by chance (H0). 

The authors will practically demonstrate to the readers how to conduct the One-
way ANOVA test in R using the anova( ), aov( ), and bartlette.test( ) functions. We 
will do this by using the outlined steps in Fig. 9.1. 

To begin with the illustration, Open RStudio and create a new or open an 
existing project. Once the user have RStudio and an R Project opened, Create a 
new RScript and name it “OneWayANOVADemo” or any name the user chooses 
(see: Chaps. 1 and 2).
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Now, download an example file that we will use to demonstrate the two types of 
ANOVA analysis (One-Way and Two-way). ***Note the users can use any dataset or 
format of their choice provided they are able to follow the different steps described 
in the code by the authors in the illustration). 

As shown in Fig. 8.2, download the example data named “Diet_R.csv” from the  
following source (https://www.sheffield.ac.uk/mash/statistics/datasets) and save it on 
your local machine or computer. ***Note: the readers can also refer to the following 
repository (https://doi.org/10.6084/m9.figshare.24728073) where the authors have 
uploaded all the example files used in this book to download the file. 

Once the user have downloaded the file and saved it on the computer, we can 
proceed to conduct the first ANOVA analysis (One-way ANOVA) in R. 

# Step 1—Install and Load the required R Packages and Libraries 

Install and load the following R packages and libraries (see Fig. 9.3, Step1, Lines 
3 to 11) that will be used to call the different R functions, data manipulations, and 
graphical visualizations for the One-way ANOVA test. 

The syntax and code to install and load the R packages and Libraries are as follows: 

install.packages("tidyverse") 
install.packages("ggpubr") 
installed.packages("dplyr") 

library(tidyverse) 
library(ggpubr) 
library(dplyr) 

# Step 2—Import and Inspect example dataset for Analysis 

As defined in Fig. 7.3 (Step 2, Lines 13 to 18); import the dataset named “Diet_R.csv” 
that we have downloaded earlier, and store this in an R object named “ANOVA_ 
Tests.data” (the users can use any name of their choice if they wish to do so).

Fig. 9.2 Example of file download for ANOVA test. (Source https://www.sheffield.ac.uk/mash/sta 
tistics/datasets)

https://www.sheffield.ac.uk/mash/statistics/datasets
https://doi.org/10.6084/m9.figshare.24728073
https://www.sheffield.ac.uk/mash/statistics/datasets
https://www.sheffield.ac.uk/mash/statistics/datasets
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Fig. 9.3 Steps to conducting one-way ANOVA test in R

Once the user have successfully imported the dataset in R, you will be able to 
view the details of the Diet_R.csv file as shown in Fig. 9.4 with 78 observations and 
7 variables in the sample data.

ANOVA_Tests.data <- read.csv(file.choose()) 

attach(ANOVA_Tests.data) 

View(ANOVA_Tests.data) 

str(ANOVA_Tests.data) 

# Step 3—Conduct the tests for Assumptions and Analyze the data 

To analyze the imported dataset that we stored as ANOVA_Tests.data (see Fig. 9.4). 
First, the authors will be conducting the different tests of assumptions, e.g., normality 
test and homogeneity of variance (see: Sect. 9.1), before performing the actual One-
way ANOVA analysis if the dataset in question meets or satisfies the necessary 
assumptions or test condition for the One-way ANOVA. 

The syntax and code for conducting the different tests of assumptions are presented 
below and highlighted in Fig. 9.3 (Step 3A, Lines 20 to 37):
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Fig. 9.4 Example of dataset imported and stored in RStudio environment as an R object

# Assmp1: Shapiro-Wilk normality test for Diet type 1 
with(ANOVA_Tests.data, shapiro.test(weight6weeks[Diet == "1"])) 

# Assmp1: Shapiro-Wilk normality test for Diet type 2 
with(ANOVA_Tests.data, shapiro.test(weight6weeks[Diet == "2"])) 

# Assmp1: Shapiro-Wilk normality test for Diet type 3 
with(ANOVA_Tests.data, shapiro.test(weight6weeks[Diet == "3"])) 

# Assmp2: Test for homogeneity in variances. Function bartlett.test() 
Hm_var <- bartlett.test(weight6weeks ~ Diet, data = ANOVA_Tests.data) 
Hm_var 

# Assmp3: Independent variable must be Factor (categorical variable) 
ANOVA_Tests.data$Diet <- factor(ANOVA_Tests.data$Diet) 
str(ANOVA_Tests.data) 

Once the user have successfully run the lines of codes defined in Step 3A (Fig. 9.3, 
Lines 20 to 37), they will be presented with the results of the “tests for assumptions” 
in the Console as shown in Fig. 9.5.

As highlighted in the results in Fig. 9.5; the  normality test using Shapiro– 
Wilk’s method shows that the distribution for majority of the different groups of 
“Diet” variable were normally distributed when considered against the target variable 
“weight6weeks”, assuming p-value of greater than 0.05, i.e., p > 0.05 and test statis-
tics, W, of value greater than 0.5 as the threshold whereby: (weight6weeks[Diet 
== “1”], W=0.96677, p-value=0.5884), (weight6weeks[Diet 
== “2”], W=0.87631, p-value=0.004003), (weight6weeks[Diet 
== “3”], W=0.95941, p-value=0.3584). Therefore, from the results, 
we can assume or proceed to conduct the One-way ANOVA (parametric) analysis
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Fig. 9.5 Result of tests for assumption prior to conducting the one-way ANOVA analysis in R

since the normality test and all the other necessary conditions are met. Moreover, it 
is important to mention that datasets which contains more than n > 40 samples or 
observations (see: Chap. 3) is considered also a scientifically acceptable sample size 
for conducting any type of the parametric tests in scientific research or statistical 
analysis purposes (Roscoe, 1975). 

Furthermore, in the second test of assumption, we tested the homogeneity of 
variance for the two targeted/analyzed variables (weight6weeks ~ Diet) using the 
bartlett.test( ) function in R; whereby we assume that a value of p > 0.05 indi-
cates “equality in variance”. As shown and highlighted in the results presented in 
Fig. 9.5, we can see that there are no difference in the homogeneity of variance for 
the two analyzed variables with p-value = 0.4784. Therefore, we accept that the 
assumption of equality in variance is met. 

Lastly, in the third assumption (Fig. 9.5), we converted the independent variable 
“Diet” with 3 levels (1, 2, and 3) to a factor format to represent categorical values— 
see Chap. 2 for more details on Factorization in R. 

With all the necessary conditions met, we can proceed to conduct the “One-way 
ANOVA” test using the anova( ), aov( ), and TukeyHSD( ) methods or function in
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Fig. 9.6 One-way ANOVA test in R using two different types of method or approach

R, as described in Step 3B (Fig. 9.6, Lines 39 to 52) and consequently in the outcome 
of the ANOVA test or results represented in Fig. 9.7. 

Note: as defined in the introduction section (Sect. 9.1); 

• One-way ANOVA test compares the differences in mean between one inde-
pendent variable (with three or more multilevel or groups) and one dependent 
(continuous) variable. 

• The targeted “independent” variable (x) is often a categorical or ordinal type, 
while the “dependent” variable (y) must be numeric. 

To demonstrate the One-way ANOVA using the example dataset we called 
“ANOVA_Tests.data” in R (see: highlighted columns and data in Fig. 9.4). 

• We will test whether the mean of the 3 groups of Diet (the independent variable) 
varies, and if so, which diet was best for losing weight taking into account the 
“weight6weeks” (dependent) variable.
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Fig. 9.7 Results of one-way ANOVA test in R

The syntax to performing this test in R is as shown in the codes below and in 
Fig. 9.6 (Step 3B, Lines 39 to 52). 

# Method1 
OneWay_test <- aov(weight6weeks ~ Diet, data = ANOVA_Tests.data) 
summary(OneWay_test) 

# Method2 
OneWay_Model <- lm(weight6weeks ~ Diet, data = ANOVA_Tests.data) 
anova(OneWay_Model) 

# Post-Hoc: which of the groups have differences in mean 
TukeyHSD(OneWay_test)          # Method1 

TukeyHSD(aov(OneWay_Model))     # Method2
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Fig. 9.8 Plot of the mean difference for the 3 groups of the independent variable versus the 
dependent variable in R using the ggplot( ) function 

As presented in Figs. 9.6 and 9.7, we conducted the One-way ANOVA test by 
considering the two variables (weight6weeks ~ Diet). We illustrated the ANOVA 
analysis using two different methods or functions in R; the aov( ) and anova( ) 
methods. Both methods (named Method1 and Method2, respectively) produced 
the same results (see Fig. 9.7) and are explained in detail in the Step 5 in the later 
part of this section. 

# Step 4—Plot and visualize the mean differences for the results or data 

As illustrated in Fig. 9.8 (Step 4, Lines 55 to 62), the authors used the ggplot( ) func-
tion in R to visualize the mean differences between the 3 groups of “Diet” (1, 2 and 
3) representing the independent variable by taking into account the “weight6weeks” 
(dependent variable) as contained in the analyzed data “ANOVA_Tests.data”. 

The syntax to plot the mean or results of the analyzed variables is as shown in the 
code below, and the resultant graph represented in Fig. 9.8.
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# Step 5—Results Interpretation (One-way ANOVA) 

The last step for One-way ANOVA analysis is to interpret and understand the results 
of the test. 

By default, the hypothesis for conducting the test (One-way ANOVA) is; IF the 
p-value of the test result is less than or equal to 0.05 (p ≤ 0.05), THEN we assume 
that the mean of the group (minimum of three levels or categories) of population in 
the data sample are statistically different (varies) and that this is not by chance (H1), 
ELSE IF the p-value is greater than 0.05 (p > 0.05) THEN we can conclude that there 
is no difference in the mean of the groups and any difference observed could only 
occur by chance (H0). 

> OneWay_Model <- lm(weight6weeks ~ Diet, data = ANOVA_Tests.data) 

> anova(OneWay_Model) 
Analysis of Variance Table 

Response: weight6weeks 
Df Sum Sq Mean Sq F value Pr(>F) 

Diet       2   29.8  14.921  0.1834 0.8328 

Residuals 75 6103.0  81.373  

As shown in the result of the test presented above (see: Fig. 9.7); the different 
component or meaning of the One-way ANOVA test and outcome can be explained 
as a list containing the following: 

• Statistics: F = 0.1834 which signifies the ratio or value of the analysis of 
variance test. 

• p-value: p-value = 0.8328 is the p-value or significance levels of the test. 

Statistically, as we can see from the results, the p-value (p=0.8328) is greater than 
the defined or acceptable significance levels (p ≤0.05). Therefore, we can statistically 
conclude that there is no difference between the means of effect of the different groups 
of “Diet” after the 6 weeks of intervention considering the “weight6weeks” variable. 

Also, to confirm the results of the One-way ANOVA test, a good practice by the 
researchers or statisticians is to check where the significant differences lies (if there 
was any). 

To show the readers how to carry out this post-hoc test in R supposing we found 
any significant difference which the authors will be explaining more in detail in other 
chapters of this book; we conducted a post-hoc test using the TukeyHSD( ) method 
by comparing the individual groups of diet against each other (see Fig. 9.7).
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> TukeyHSD(aov(OneWay_Model))    

Tukey multiple comparisons of means 

95% family-wise confidence level 

Fit: aov(formula = OneWay_Model) 

$Diet 

diff       lwr      upr     p adj 

2-1 -1.4898148 -7.540958 4.561329 0.8265896 

3-1 -1.0935185 -7.144662 4.957625 0.9023447 
3-2 0.3962963 -5.474175 6.266768 0.9857412 

As seen in the results above (see Fig. 9.7), we can see that there were no differ-
ences found between the subjects or comparisons for the 3 groups (group 2–1, 
p=0.8265896; group 3–1, p=0.9023447; group 3–2, p=0.9857412), 
respectively. Thus, also confirming the results of the One-way ANOVA analysis we 
have explained earlier in this section. 

9.3 Two-Way ANOVA Test in R 

Two-way ANOVA is used when the dataset the researchers or analyst wants to analyze 
consists of “two independent variables” (with more than two groups) that are statisti-
cally independent. Unlike the One-way ANOVA that considers only one independent 
variable, the Two-way ANOVA is applied to compare the effects or differences in 
mean between two independent variables (categorical or ordinal) against one depen-
dent (continuous) variable, whereby the independent variables must have at least 
three levels, i.e., a minimum of three different groups or categories. 

***It is also noteworthy to mention that ANOVA tests can be performed for 
independent variables with two groups (although it is best recommended to use the 
Independent Samples t-test in this type of scenario)***. 

By default, the hypothesis for testing whether there is a difference or variation in 
the mean of two specified groups of independent data samples (with three or more 
levels) against one dependent (usually continuous) variable is; IF the p-value of the 
test is less than or equal to 0.05 (p ≤ 0.05), THEN we can assume that the impact 
or mean effect of the groups (usually minimum of three groups) of population in 
the data sample are statistically different (varies) and that this is not by chance (H1), 
ELSE IF the p-value is greater than 0.05 (p > 0.05) THEN we can say that there 
is no effect or difference in the mean of the groups of variables and any difference 
observed could only occur by chance (H0). 

Let’s continue to use the Diet_R.csv data we imported earlier and stored as an 
object we called “ANOVA_Tests.data” in R (see: Fig. 9.4) to illustrate how to
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perform the Two-way ANOVA using the anova( ), aov( ) and leveneTest( ) functions 
in R. We will do this using the same steps we have previously outlined in Fig. 9.1. 
***Users can refer to the following repository to download the example file if they 
need to: https://doi.org/10.6084/m9.figshare.24728073. 

To begin, Create a new R Script in the current R project (this can be 
done by using the file menu option, see also Chaps. 1 and 2) and name it as 
“TwoWayANOVADemo”. 

# Step 1—Install and Load the required R Packages and Libraries 

Load the following R libraries (Fig. 9.9, Step1, Lines 3 to 7), that we will be using 
to call the different R functions, data manipulations, and graphical visualizations for 
the Two-way ANOVA analysis. 

Note: we did not need to repeat or re-install the required R packages again as this has 
already been previously installed in RStudio in the previous example in Sect. 9.2. 
However, if the user have directly visited this particular section for the first time or 
have previously exited or reinstalled R, then they may require to install or re-install 
the necessary R packages listed below again (see Chap. 2, Sect. 2.6 on how to install 
the R packages in RStudio). 

The syntax and code to run/load the required R Libraries are as follows:

Fig. 9.9 Steps to performing the two-way ANOVA test in R 

https://doi.org/10.6084/m9.figshare.24728073
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library(tidyverse) 
library(ggpubr) 
library(dplyr) 

***Note: for the leveneTest of assumption for homogeneity in variances (see 
Fig. 9.9, Step 3A, Assump: 3) by using the leveneTest( ) function, the user may 
also need or require to install the following additional highlighted R packages and 
libraries if they should encounter an error depending on the updated version of 
software installed. 

install.packages("rstatix") 

install.packages("car") 

library(rstatix) 

library(car) 

library(carData) 

library(tidyverse) 

library(ggpubr) 

library(dplyr) 

# Step 2—Inspect the example dataset for Analysis 

Since we have already imported the “Diet_R.csv” and stored the example data file 
in an R object named “ANOVA_Tests.data” (Fig. 9.3) in the previous example in 
Sect. 9.2, the users do not need to import the data again. Rather, as shown in Fig. 9.9 
(Step 2, Lines 9 to 12) you can view the dataset to inspect the different variables and 
confirm the items or variables we will be using to conduct the Two-way ANOVA 
test. 

The code to do this is as shown below (see Fig. 9.9, Step 2, Lines 9 to 12). 

View(ANOVA_Tests.data) 

str(ANOVA_Tests.data) 

***Note: In the event that the reader has exited or closed RStudio and returned 
back to this current section at a later time, or directly visited this section of the book 
or example, then the user would need to use the following code to attach the example 
file or re-read the data again, as the case may be: 

ANOVA_Tests.data2 <- read.csv(file.choose()) 

attach(ANOVA_Tests.data2) 

View(ANOVA_Tests.data2) 

str(ANOVA_Tests.data2) 

Also, one important data cleaning task that the authors would like to bring 
the readers’ attention to and to illustrate, which is a good practice in scientific research 
and statistics, is to remove the incomplete rows or data with NA otherwise referred 
to as empty cells (see Fig. 9.4). The incomplete datasets (NA) can be removed by
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using the na.omit( ) function in R. Moreover, the reason for cleaning this dataset is 
because we will be including the “gender” variable (see Fig. 9.4) in our analysis in 
this particular example or section. 

The syntax to remove the NAs or empty cells is as shown in the code below 
(Fig. 9.9, Step 2, Lines 14 to 16). 

# data cleaning to remove NA 

ANOVA_Tests.data2 <- na.omit(ANOVA_Tests.data) 

str(ANOVA_Tests.data2) 

***Note: as you can see, when the user have successfully run the codes, a new 
set of data “without the NAs” will be created, and we stored this new dataset in an 
R object we called “ANOVA_Tests.data2”. 

Now we can proceed to conduct the next steps in the Two-way ANOVA analysis 
using the new cleaned data (ANOVA_Tests.data2). 
# Step 3—Conduct tests for Assumptions and Analyze the data 

As a necessary procedure, as shown in Fig. 9.9 (Step 3A, Lines 18 to 32), we will 
conduct the different tests of assumptions (i.e., check the variable types and format, 
normality test, and homogeneity of variances) before performing the Two-way 
ANOVA test. 

The code to conduct the different tests of assumptions is presented below (see 
Fig. 9.9, Step 3A):  

# Assmp1: Independent variables must be Factor (categorical variables) 

ANOVA_Tests.data2$Diet <- factor(ANOVA_Tests.data2$Diet) 

ANOVA_Tests.data2$gender <- factor(ANOVA_Tests.data2$gender) 

str(ANOVA_Tests.data2) 

# Assmp2: Shapiro-Wilk normality test for distribution 

anv_model <- lm(weight6weeks ~ Diet * gender, data = ANOVA_Tests.data2) 

anv_resd <- residuals(object = anv_model) 

shapiro_test(anv_resd) 

# Assmp3: Test for homogeneity in variances. Function leveneTest() 

Hm_varTest <- leveneTest(weight6weeks ~ Diet * gender, data = 
ANOVA_Tests.data2) 

Hm_varTest 

Once the user have successfully run the codes as defined in the Step 3A above 
(Fig. 9.9, Lines 18 to 32), you will be presented with the results of the “tests for 
assumptions” in the Console in R as shown in Fig. 9.10.

As gathered in Fig. 9.10, in Assmp1: the authors have converted (factored) and 
ensured that the two Independent variables “Diet” and “gender” that we will 
be analyzing or using to illustrate the Two-way ANOVA analysis are stored or 
recognized as a Factor (categorical variable) in R. 

Also, we conducted a normality test in Assmp2 by using Shapiro–Wilk’s method 
to check the distribution of the data or targeted variables that we will be using to
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Fig. 9.10 Results of the different tests of assumptions prior to conducting the two-way ANOVA 
test in R

build the model. By assuming p-value of > 0.05 and test statistics value greater than 
0.5 as the acceptable threshold. We can see that the distribution of the variables is 
normal with test result of 0.976, and p-value=0.164. 

Lastly, in Assmp3: the authors tested the homogeneity of variance for the selected 
variables using the leveneTest( ) function, whereby we assume that a value of p > 
0.05 indicates “equality in variance”. Consequentially, as highlighted in the third 
assumption (Assmp3) in Fig. 9.10, we can see that there is no difference in variance 
for the analyzed variables with p-value=0.6012. 

Therefore, we can accept that all the necessary conditions to perform the Two-way 
ANOVA test are met. 

With all assumptions met, we can now proceed to conduct the “Two-way 
ANOVA” analysis using the anova( ), aov( ), and TukeyHSD( ) methods as defined 
in Fig. 9.11 (Step 3B, Lines 35 to 49), and the results of the Two-way ANOVA test 
reported in Figs. 9.12a and b.

As defined earlier in the introduction section (Sect. 9.1); 

• Two-way ANOVA is applied to compare the differences in mean between two 
independent variables and one dependent variable, whereby the independent 
variable(s) must have at least three or more levels or groups. 

• The targeted “independent” variable (x) is often a categorical or ordinal type, 
while the “dependent” variable (y) must be numeric.
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Fig. 9.11 Conducting Two-way ANOVA analysis in R using two different methods

To illustrate the Two-way ANOVA using the cleaned example dataset (Diet_ 
R.csv) which we have stored as “ANOVA_Tests.data2” in R.  

• We will test whether the weight lost after 6 weeks (“weight6weeks”) by the partic-
ipants was influenced by the “diet” and “gender” variables. In other words, we 
will check the effect that the “diet” and “gender” variables (the independent vari-
ables) have on weight lost after 6 weeks (“weight6weeks”) (dependent variable), 
and if so, where the differences may lie across the data. 

The syntax for conducting this above test in R is as shown in the codes below 
(Fig. 9.11, Step 3B, Lines 35 to 49). 

# Method1 
TwoWay_test <- aov(weight6weeks ~ Diet * gender, data = ANOVA_Tests.data2) 
summary(TwoWay_test) 

# Method2 
TwoWay_Model <- lm(weight6weeks ~ Diet * gender, data = ANOVA_Tests.data2) 
anova(TwoWay_Model) 

# Post-Hoc: which of the groups have differences in mean 
TukeyHSD(TwoWay_test)          # Method1 

TukeyHSD(aov(TwoWay_Model))     # Method2
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Fig. 9.12 a Result of two-way ANOVA (Method1) test in R with Post-Hoc test.b Result of two-way 
ANOVA (Method2) test in R with Post-Hoc test
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Fig. 9.13 Plot of the mean differences between the different groups of variables in the ANOVA 
model using the ggline( ) function in R 

As shown in Figs. 9.11, 9.12a, and b, we conducted the Two-way ANOVA anal-
ysis by considering the following variables (weight6weeks ~ Diet * gender). We 
illustrated this using two different ways or methods in R. As we can see, both methods 
(defined as Method1 and Method2) tend to produce the same results as shown in 
Figs. 9.12a and b, respectively. The results are explained in detail in the subsequent 
Step 5 in this section. 

# Step 4—Plot and visualize the mean differences for the ANOVA model 

As shown in Fig. 9.13 (Step 4, Lines 52 to 56), we used the ggline( ) function in R 
to visualize the mean differences that exist between the different groups of variables 
in the ANOVA model. 

The code for the ANOVA model is shown below, and the result presented in the 
graph in Fig. 9.13. 

ggline(ANOVA_Tests.data2, x = "Diet", y = "weight6weeks", color = "gender", 

add = c("mean_se", "dotplot"), 

palette = c("navy blue", "dark red"))
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# Step 5—Two-way ANOVA Results Interpretation 

The final step for the Two-way ANOVA analysis is to interpret and understand the 
results of the test. 

By default, the hypothesis for conducting the test (Two-way ANOVA) is; IF the 
p-value of the test is less than or equal to 0.05 (p ≤ 0.05), THEN we can assume that 
the mean of the groups (minimum of three levels or groups) of variables or population 
(of which are two independent variables) in the data are statistically different (varies) 
and that this is not by chance (H1), ELSE IF the p-value is greater than 0.05 (p > 
0.05) THEN we can conclude that there is no difference in the mean of the analyzed 
group of variables and any difference observed could only occur by chance (H0). 

> TwoWay_Model <- lm(weight6weeks ~ Diet * gender, data = 
ANOVA_Tests.data2) 
> anova(TwoWay_Model) 

Analysis of Variance Table 

Response: weight6weeks 

Df  Sum Sq Mean Sq F value    Pr(>F)    
Diet         2   81.23   40.62  1.3170    0.2745    

gender       1 2613.63 2613.63 84.7434 1.111e-13 *** 

Diet:gender  2   17.20    8.60  0.2788    0.7575    
Residuals   70 2158.92   30.84 

As shown in the outcome of the Two-way ANOVA tests, with the same similar 
results observed for the method 1 and method 2 (see: Fig. 9.12a and b); statistically, 
we can see that the weight lost by the participants after 6 weeks “weight6weeks” was  
not influenced by the Diet (p=0.2745). Also, the “weight6weeks” was not influ-
enced by the combination of the “Diet” and “gender” factors (Diet:gender) with 
p-value greater than the significance levels of p ≤ 0.05 (i.e., p-value=0.7575). 
However, we can see also that even though the combination of the variables 
(Diet:gender) does not have any significant effect on weight lost after 6 weeks, 
there were differences in mean (variation) for the genders (1 = male, 0 = female) 
variables when taking into account the weight lost after 6 weeks “weight6weeks” 
with p-value = 1.111e-13 (p ≤ 0.05). 

Therefore, it will be necessary and important to further conduct a post-
hoc test, as shown below, to determine where the significant differences lies 
(see: Figs. 9.12a and b).
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$ Diet:gender  
              diff        lwr       upr     p adj 
2:0-1:0 -2.7000000  -8.850465  3.450465 0.7914606 
3:0-1:0 -2.2252381  -8.272326  3.821850 0.8883977 
1:1-1:0 11.2714286   4.533932 18.008925 0.0000845 
2:1-1:0  8.2850649   1.728648 14.841482 0.0054367 
3:1-1:0 10.8880952   4.486489 17.289702 0.0000622 
3:0-2:0  0.4747619  -5.572326  6.521850 0.9999079 
1:1-2:0 13.9714286   7.233932 20.708925 0.0000008 
2:1-2:0 10.9850649   4.428648 17.541482 0.0000822 
3:1-2:0 13.5880952   7.186489 19.989702 0.0000005 
1:1-3:0 13.4966667   6.853406 20.139928 0.0000014 
2:1-3:0 10.5103030   4.050762 16.969844 0.0001392 
3:1-3:0 13.1133333   6.810982 19.415684 0.0000008 
2:1-1:1 -2.9863636 -10.096374  4.123647 0.8203237 
3:1-1:1 -0.3833333  -7.350844  6.584178 0.9999842 
3:1-2:1  2.6030303  -4.189536  9.395597 0.8702674 

As reported in the pairwise multiple comparisons test by using the TukeyHSD( ) 
method or function in R, we can see that most of the significant differences (p ≤ 
0.05) observed for the between-subjects effects were found mainly for the female 
gender group (0). 

Consequently, we can statistically conclude that the mean of weight lost 
after the 6 weeks (“weight6weeks”) by the participants varies by gender with 
p-value=1.111e-13 (p ≤ 0.05) but not influenced by Diet (p=0.2745). 

***Useful Tips: 

• The researchers or analysts can also analyze more than two independent vari-
ables. This is known as N-Way ANOVA, whereby N represents the number of 
independent variables the researcher or data analysts are testing against the one 
dependent (response) variable. For instance, in our example data (Fig. 9.4), the 
users can simultaneously analyze the influence or effects that the Diet, Gender, 
Age group, etc. have on the “weight6weeks” variable. 

9.4 Summary 

In this chapter, the authors practically demonstrate in detail how to perform the most 
commonly used type of ANOVA tests (One-way and Two-way) in R. 

In Sect. 9.2, it illustrates how to perform the One-way ANOVA test, while in 
Sect. 9.3 it looked at how to conduct the Two-way ANOVA analysis or test. 

The authors also covered how to graphically plot the mean differences or results 
of the ANOVA tests in R in this chapter, and then subsequently discussed how to 
interpret and understand the results of the tests in R.
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In summary, the main topics and contents covered in this chapter includes: 

• ANOVA (analysis of variance) is a statistical test of variance as the name implies 
or hypothesis used to compare the differences in means of data samples that 
are represented in more than two independent comparison groups or multilevel 
for the independent variable(s) (usually categorical or ordinal) and a continuous 
dependent variable. 

When choosing whether to conduct a One-way or Two-way ANOVA test? The 
researcher or data analyst should: 

• Perform the “One-way ANOVA” if the groups come from one independent variable 
(with a minimum of three groups) usually measured as categorical or ordinal 
values, and one dependent variable (continuous). 

• Perform the “Two-way ANOVA” if the targeted groups come from two independent 
variables (with a minimum of three groups) usually measured as categorical or 
ordinal values, and one dependent variable (continuous). 

• In either case (One-way or Two-way), the targeted “independent” variable (x) is  
often a categorical or ordinal type, while the “dependent” variable (y) must be  
numeric. 

Other types of the ANOVA statistics or “multivariate analysis” as they are called 
are also used in the existing literature or statistical analysis, such as the multivariate 
analysis of variance (MANOVA) (Dugard et al., 2022; Okoye et al.,  2022), analysis 
of co-variance (ANCOVA) (Kaltenecker & Okoye, 2023; Li & Chen, 2019), multi-
variate analysis of co-variance (MANCOVA) (Li & Chen, 2019; Okoye et al., 2023), 
etc. 
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Chapter 10 
Chi-Squared (X2) Statistical Test in R 

10.1 Introduction 

Chi-Squared (χ2) is a statistical test applied by researchers or data analysts to 
measure how expectations compares to actual observed data or results of a model 
(Biswal, 2023; Kishore & Jaswal, 2023). The test (Chi-squared) is mainly used to 
explain or determine whether there exists a relationship between “categorical” vari-
ables which must be raw data that are mutually exclusive and randomly drawn from 
independent populations and from a large enough sample size (Sayassatov & Cho, 
2020; Turhan, 2020). 

By default, the hypothesis for performing the Chi-squared (χ2) test is; IF the 
p-value of the test statistics is less than or equal to 0.05 (p ≤ 0.05), THEN we can 
assume that there exists a relationship between the targeted (categorical) variables 
and that this is not by chance (H1), ELSE IF the p-value is greater than 0.05 (p > 0.05) 
THEN we can say that there is no relationship (measure of independency) between 
the analyzed (categorical) variables or data. 

The formula for calculating the Chi-square (χ2) statistics is as follows (Biswal, 
2023; Kishore & Jaswal, 2023): 

X2 
c =

∑ (Oi − Ei )
2 

Ei 

where: 

c = Degrees of freedom 

O = Observed value(s) 

E = Expected values(s) 

Theoretically, there are two main types of analysis or test that can be performed using 
the Chi-squared (X2) statistics or method (Preacher, 2001; Turhan, 2020). These are:
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• Independence test: which is a test of “relationship” that allows the researcher or 
data analysts to compare two (categorical) variables to determine whether they 
are related or not. In this scenario, the researcher can apply the Chi-squared test 
to tell how likely or if by random (chance) the resultant relationship, usually 
determined through the p-value (p ≤ 0.05), can explain any difference found 
between the observed or actual (frequency) data and the expected data (McHugh, 
2012; Taneichi et al., 2020). 

• Goodness of fit test: is applied to determine whether a proportion of a data 
sample matches the larger population. In this scenario, the test (Chi-squared) 
allows the researcher to check how well the analyzed (drawn) sample matches 
the assumed (expected) characteristics or features of the larger population that the 
data is projected to represent (Cochran, 1952; Rolke & Gongora, 2020). Thus, 
if the analyzed data does not match or fit the assumed (expected) characteristics 
of the intended population, usually determined through the p-value (p ≤ 0.05), 
then the researcher may not consequentially want to utilize the drawn data sample 
to make any ample or definite conclusion about the studied/larger population in 
question. 

As a general rule of thumb, the following assumptions must be met in order to 
perform the Chi-squared (X2) statistics or analysis (Turhan, 2020): 

• The “observed” and “expected” observations must be randomly collected or 
drawn. 

• All the groups of items in the data must be independent. 
• None of the groups must contain very few items (e.g., not less than 10). 
• The data sample size must be large (at least n > 50). 

It is also important to mention, just like the many other versions of the non-
parametric statistical methods (see Chap. 4), that the Chi-squared (X2) test does not 
require the studied or analyzed dataset or sample to meet the “equality of variance” 
assumption among the groups of variables or yet “homoscedasticity” in the data 
(McHugh, 2012). 

In the next section of this chapter (Sect. 10.2), the authors will demonstrate how 
to conduct the Chi-squared (X2) test in R. Figure 1 is an outline of the different steps 
that we will apply in order to perform the test (Chi-squared) in RStudio. 

10.2 Chi-Squared (X2) Test in R 

As defined in the previous section (Sect. 10.1)—using the Chi-Squared (X2) test in  
R is a method that can be used to determine whether two categorical variables have a 
statistically significant correlation (association) between them. With the Chi-squared 
statistics, the two targeted variables must be categorized (e.g., sex, marital status, 
ethnicity, religious orientation, likelihood of events, etc.), and must be selected from 
the same population.
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Interpret Check and interpret the results of the analysis 

Visualize Plot and visualize the data and results using graphics for 
comparison and interpretation or export for use 

Analyze Conduct the Chi-squared (X2) test in R using the supported 
methods; chisq.test( ), assocstats( ) 

Data Import and inspect the dataset ready for analysis 

R Packages Install and Load the required R packages and libraries for data 
manipulation and visualization; “vcd”, “grid”, "ggpubr", “dplyr” 

Fig. 10.1 Steps to conducting Chi-squared (X2) test in R  

In this section, the authors will be practically demonstrating to the readers how 
to conduct the two types of tests (i.e., Independence, and Goodness of fit) in R. This 
will be done by using the Chi-squared (X2) function called chisq.test( ) in R. We 
will do this by following the steps outlined in Fig. 10.1. 

To begin, Open RStudio and Create a new or Open an existing project. Once 
the user have the RStudio and an R Project opened, Create a new RScript and name 
it “ChiSquare_Demo” or any name the user chooses (see Chap. 1 on how to do 
these steps if the user need to refresh on the topic). 

Once the user have created an R Script, now let’s download an example dataset 
that we will use to demonstrate the Chi-squared (X2) test (the users are welcome to 
use any dataset or format of their choice if they wish to do so). 

As shown in Fig. 10.2, download the example data (Sample CSV Files) named 
as “sample-csv-file-for-testing” from the following link (https://www.learningcont 
ainer.com/sample-excel-data-for-analysis/#Sample_CSV_file_download) and save 
the file on the local machine or computer.

Once the user have successfully downloaded and saved the example file (which is 
named as “sample-csv-file-for-testing” upon download) on the system or computer, 
we can proceed to conduct the Chi-squared (X2) analysis in R. 

# Step 1—Install and Load the required R Packages and Libraries 

Install and Load the following R packages and libraries (Fig. 10.3, Step1, Lines 3 
to 13) that we will be using to call the different R functions, data manipulations, and 
graphical visualizations for the Chi-squared (X2) test.

https://www.learningcontainer.com/sample-excel-data-for-analysis/#Sample_CSV_file_download
https://www.learningcontainer.com/sample-excel-data-for-analysis/#Sample_CSV_file_download
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Fig. 10.2 Example of CSV file download. Source https://www.learningcontainer.com/sample-
excel-data-for-analysis/#Sample_CSV_file_download. ***Note the users can also directly access 
the example file through the following link (https://doi.org/https://doi.org/10.6084/m9.figshare.247 
28073) where the authors have uploaded all the example files used in this book

Fig. 10.3 Conducting Chi-squared (X2) statistics in R 

The syntax and code to install and load the required R packages and libraries are 
as follows:

https://www.learningcontainer.com/sample-excel-data-for-analysis/#Sample_CSV_file_download
https://www.learningcontainer.com/sample-excel-data-for-analysis/#Sample_CSV_file_download
https://doi.org/
https://doi.org/10.6084/m9.figshare.24728073
https://doi.org/10.6084/m9.figshare.24728073
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install.packages("vcd") 
install.packages("grid") 
install.packages("ggpubr") 
installed.packages("dplyr") 

library(vcd) 
library(grid) 
library(ggpubr) 
library(dplyr) 

# Step 2—Import and Inspect the example dataset for Analysis. 

As defined in Fig. 10.3 (Step 2, Lines 16 to 21), import the example dataset named 
“sample-csv-file-for-testing” (Sample CSV Files) that we downloaded earlier, and 
store this in an R object named “Chisqd.data” (the users can use any name of 
choice if they wish to do so). 

The syntax for importing and attaching the example data file into R is as shown 
in the code below: 

Chisqd.data <- read.csv(file.choose()) 

attach(Chisqd.data) 

View(Chisqd.data) 

str(Chisqd.data) 

Once the data is successfully imported and stored in RStudio as an R object we 
called “Chisqd.data”, the users will be able to view the details of the file originally 
named “sample-csv-file-for-testing” (Sample CSV Files) as shown in Fig. 10.4 with 
700 observations and 16 variables in the data sample.

# Step 3—Conduct Chi-squared (X2) test (used for categorical variables only) 

Now we can proceed to analyze the imported dataset that we stored as Chisqd.data 
in the R environment (see: Fig. 10.4). 

As defined in the introduction section (Sect. 10.1); 

• Chi-squared (X2) statistics compares the relationship (correlation) between two 
sets of variables with two or more levels or independent groups. 

• The target variable(s) must be a “categorical” data type. 

To demonstrate how to perform the two main types of the Chi-squared (X2) test 
or analysis (i.e., Independence test, and Goodness of fit test), we will be using the R 
function called chisq.test( ) to conduct the following test in R: 

1. For the Independence test—we will test whether the two categorical variables 
“Segment” and “Discount.Band” in the imported dataset (see: Fig. 10.4) are  
related (correlated). 

2. For the Goodness of Fit test—we will check how the observed groups in 
the “Discount.Band” variable matches or is capable of fitting the expected 
population.
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Fig. 10.4 Example dataset imported and stored as an R object in RStudio

The syntax and code for performing the above Chi-squared (X2) tests in R is as 
shown in the codes below and represented in Fig. 10.5 (Step 3, Lines 24 to 52).

# Test 3(A): Independence test 
# First create Contingency (freq.) table for target variables 
(Observed) 
ChiSqd_Ind_table <- table(Chisqd.data$Segment, 
Chisqd.data$Discount.Band) 
ChiSqd_Ind_table 

# Perform Independence test 
ChiSqd_Ind_test <- chisq.test(ChiSqd_Ind_table) 
ChiSqd_Ind_test 

ChiSqd_Ind_test$expected    # Code to view the expected Table values 
# Test 3(B): Goodness of Fit test 
# Create Contingency (Freq.) table for target variable group
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Fig. 10.5 Chi-squared (X2) Test in R using the chisq.test( ) function

ChiSqd_GoFit_table <- table(Chisqd.data$Discount.Band) 
ChiSqd_GoFit_table 

# Check the proportion/freq. of the target variable (Observed prop.) 
prop.ChiSqd_GoFit_table <-
(ChiSqd_GoFit_table/sum(ChiSqd_GoFit_table)) 
prop.ChiSqd_GoFit_table 

plot(prop.ChiSqd_GoFit_table) # to visualize Expected prop. e.g 
(0.35, 0.25, 0.35, 0.05) 

# Perform Goodness of fit test 
ChiSqd_GoFit_test <- chisq.test(ChiSqd_GoFit_table, p = c(0.35, 0.25, 
0.35, 0.05)) 
ChiSqd_GoFit_test 

Note: by adding or running the $expected command along with the results of the 
chisq.test( ) function/method (see: Line 36, Fig. 10.5) returns a Contingency table 
that contains the expected counts which will or are considered to be “TRUE” under 
the null hypothesis (H0). 

Once the user have successfully run the codes or command (Step 3, Fig. 10.5), 
the user will be presented with the results of the method in the Console as shown in 
Figs. 10.6a and b, respectively. 

As shown in results of the Chi-squared tests in Figs. 10.6a and b; we conducted 
the “Independence” (Test 3(A)) and “Goodness of Fit” (Test 3(B)) tests in R using
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the Chi-squared (X2) method or function: chisq.test( ). This was illustrated by using 
the two categorical variables “Segment” and “Discount.Band” contained in the 
example dataset “sample-csv-file-for-testing” (Sample CSV Files) that we stored 
as R object named or defined as “Chisqd.data” in R. The results of the methods 
were stored as R objects which we called “ChiSqd_Ind_test” and “ChiSqd_ 
GoFit_test”, respectively (Figs. 10.6a and b). 

# Step 4—Plot and visualize the categorical variables and data relationships. 

In Fig. 10.7a (Step 4, Lines 57 to 62), the authors used the ggplot( ) function in 
R to visualize the relationship (correlation) between the two categorical variables 
“Segment” and “Discount.Band” in the example dataset named “Chisqd.data”. 

The syntax and code used to plot the correlation are shown below, and the 
resultant chart represented in Fig. 10.7a. 

# visualize association of the two categorical variables 

ggplot(Chisqd.data) + 

aes(x = Discount.Band, fill = Segment) + 

geom_bar() + 

scale_fill_hue() + 

theme_minimal() 

Additionally, in Fig. 10.7b (Step 4, Lines 65 to 71), we made use of the assoc-
stats( ) and mosaic( ) functions in R to plot the results of the Chi-squared Indepen-
dence test. Technically, the mosaic( ) method has the advantage of combining the 
Contingency table and the result of the Chi-square (X2) test of independence. 

The code used to plot the contingency table and the result of the Chi-squared test 
of independence is shown below, and the resulting chart represented in Fig. 10.7b. 

# Combine plot and statistical test 

assocstats(ChiSqd_Ind_table) 

mosaic(~ Segment + Discount.Band, 

direction = c("h", "v"), 

data = Chisqd.data, shade = TRUE, legend = TRUE, 

highlighting_direction = "right", 

main = "Chart Rep. Data plot and Chi-squared Result") 

# Step 5—Results Interpretation for the Chi-squared test. 

The final step for the Chi-squared (X2) test and analysis is to interpret and understand 
the results of the test/method. 

By default, the hypothesis for conducting the two main tests (Independence test, 
and Goodness of Fit test) by considering the selected categorical variables “Segment” 
and “Discount.Band” (see: Fig. 10.4) is as follows:
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Test of Independence: 

• (H1) IF the p-value of the test is less than or equal to 0.05 (p ≤ 0.05), THEN 
we can assume that the two variables are associated, thus, there is a relationship 
(correlation) between the two categorical variables. In other words, determining 
the value of one variable helps to predict the value of the other. 

• (H0) ELSE IF the p-value is greater than 0.05 (p > 0.05) THEN we can say that the 
two variables are not related, thus, there is no relationship (correlation) between 
the two categorical variables. Therefore, determining the value of one variable 
does not help to predict the value of the other, and vice and versa. 

> ChiSqd_Ind_test 

Pearson's Chi-squared test 

data:  ChiSqd_Ind_table 

X-squared = 26.825, df = 12, p-value = 0.008189 

Consequentially, as shown in the results of the test represented above (see: 
Fig. 10.6a); the meaning of the Independence Chi-squared (X2) test output can 
be explained as a list containing the following:

• Statistics: X2 (X-squared) = 26.825 represents the value of the correla-
tion test. 

• p-value: p-value = 0.008189 is the significance level of the test. 

Statistically, we can see from the reported result (p-value=0.008189) that 
the p-value is less than the slated significance level (p ≤ 0.05) deemed scientifically 
acceptable. Therefore, we reject the H0 and accept the H1 by statistically concluding 
that there is a significant relationship (correlation) between the “Segment” and 
“Discount.Band” variables in the analyzed data. 

Likewise, for the Goodness of Fit test we conducted to determine whether the 
observed group of the “Discount.Band” variable matches or is capable of fitting the 
expected population: 

Goodness of Fit test:

• (H1) IF the p-value of the test is less than or equal to 0.05 (p ≤ 0.05), THEN we 
assume that the observed group of the “Discount.Band” (categorical) variable 
does not match (i.e., varies or are not commonly distributed) and are not capable 
of fitting the expected population. In other words, the different groups in the 
“Discount.Band” variable are not the same and are not an expected representative 
(fits) of the studied population, and may consequently not be used to make ample 
conclusions about the studied population. 

• (H0) ELSE IF the p-value is greater than 0.05 (p > 0.05) THEN we can say that 
the observed group of the “Discount.Band” (categorical) variable match (i.e.,
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Fig. 10.6 a Results of the (Independence) Chi-squared (X2) test in R.  b Results of the (Goodness 
of Fit) Chi-squared (X2) test in R

fit or are commonly distributed) and are capable of representing the expected 
population. Thus, the different groups in the “Discount.Band” variable are an 
expected representative (fits) of the studied population and can be utilized to 
make conclusions about the studied population, vice and versa.
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Fig. 10.7 a Plot representing correlation (relationship) between two categorical variables using 
the ggplot( ) function in R. b Plot representing the Contingency table and the Chi-squared test of 
Independence using the assocstats( ) and mosaic( ) functions in R

> ChiSqd_GoFit_test 

Chi-squared test for given probabilities 

data:  ChiSqd_GoFit_table 
X-squared = 10.58, df = 3, p-value = 0.01423
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Accordingly, as shown in the Goodness of Fit test result presented above (see: 
Fig. 10.6b); we can see that the p-value (p-value = 0.01423) is less than 
the stated significance level (p ≤ 0.05). Therefore, we reject the H0 and accept H1 

by concluding that the different groups of the “Discount.Band” variable are not 
proportionate or commonly distributed (does not fit or vary), or are not an expected 
representative of the studied population. 

10.3 Conclusion 

In this chapter, the authors demonstrated how to conduct the two main types of Chi-
squared (X2) tests in R. This includes the “Independence” and “Goodness of Fit” 
tests covered in Sect. 10.2. 

Also, the chapter covers how to graphically plot the results of the Chi-squared 
tests and the Contingency table, and then discussed in detail how to interpret and 
understand the results of the test (Chi-squared) in R. 

In summary, the main contents covered in this chapter are as follows: 

• The Chi-Squared (X2) statistics measures how expectations compares to actual 
observed data or results of a model. It is mainly used to determine whether there 
exists a relationship (correlation) between two categorical variables. 

• The test of “Independence” checks the association between the two categorical 
variables, while 

• The “Goodness of fit” test checks if there is a significant difference between 
the observed frequency values and the expected frequency values for a specific 
variable. 

• In either case (Independence test or Goodness of Fit test), the researcher or data 
analyst must create a Contingency table, otherwise referred to as “frequency table” 
before applying the Chi-squared (X2) method. 
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Chapter 11 
Mann–Whitney U Test 
and Kruskal–Wallis H Test Statistics in R 

11.1 Introduction 

The likely effect of the independent variable(s) over a dependent variable can be 
analyzed or determined using the “Mann–Whitney U” and “Kruskal–Wallis H” tests. 
The two tests are used to determine if there exist statistically differences (significant 
levels usually measured through the p-values, where p ≤ 0.05) between the inde-
pendent observations in a given dataset based on the dependent variable or observa-
tion. In theory, the tests (Mann–Whitney U and Kruskal–Wallis H) are referred to 
as non-parametric procedures or methods used by the researchers or data analysts 
to statistically determine whether a group of data comes from the same popula-
tion by considering the effect of the independent variable on the dependent variable 
(Frey, 2018; le Cessie et al., 2020; MacFarland et al., 2016; McKight & Najab, 
2010; McKnight & Najab, 2010; Nachar, 2008; Okoye et al., 2022; Ortega,  2023; 
Ostertagová et al., 2014; Vargha & Delaney, 1998). 

Furthermore, just like many of the other types of the “non-parametric” procedures, 
the two tests (Mann–Whitney U and Kruskal–Wallis H) are usually applied when the 
data sample in question are not normally distributed (i.e., violates the assumption of 
t-distribution) or the data sample size is too small to conduct the parametric methods 
or procedures (see Chaps. 3 and 4). Thus, while the measurement to establish whether 
the independent groups of variables being analyzed comes from the same population 
via the “mean” for the parametric procedures, the non-parametric equivalents or 
tests (such as the Mann–Whitney U and Kruskal–Wallis H), on the other hand, are 
measured by considering the “median” (see Chap. 4). 

By definition, the Mann–Whitney U test, also known as the U test, is used to 
determine the differences in median between two groups of an independent variable 
with no specific distribution on a single ranked scale, and must be ordinal variable data 
type (McKnight & Najab, 2010; Ramtin, 2023). The test (Mann–Whitney) is often 
considered as the non-parametric version or equivalent of the Independent Samples
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t-test (a type of parametric test). Moreover, while the t-test (parametric) and Mann– 
Whitney U (non-parametric) tests may show to serve the same statistical purposes, 
due to the fact that they are both used to determine if there exists a statistically 
significant differences between the two groups of an independent variable. On the  
contrary, the Mann–Whitney U test is used with “ordinal” or “ranked” datasets that 
may have violated the assumptions of normality or small sample size, whereas, 
the t-test is used with “continuous” or “interval” datasets that happen to meet the 
assumptions of normality or large sample size (MacFarland et al., 2016). Therefore, 
the Mann–Whitney U test is most suitable when the data that is being analyzed 
by the researcher or data analyst is in ranked form, deviates from the acceptable 
t-distribution, or the probability that a randomly drawn member(s) of the first group 
(e.g., group A) of the population will exceed the second group (group B) of the 
population in a single independent variable or data (see: Chap. 6, Sect. 6.2.6). 

Mathematically, the result of applying the Mann–Whitney U test is a U-Statistic 
or formula represented as follows (Mann & Whitney, 1947; Nachar, 2008): 

U1 = n1n2 + 
n1(n1 + 1) 

2
− R1 

U2 = n1n2 + 
n2(n2 + 1) 

2
− R2 

where: 

R1= sum of the ranks for group 1 
R2 = sum of the ranks for group 2 
n1 = number of observations or participants for group 1 
n2 = number of observations or participants for group 2 

As seen in the formula above, it is noteworthy to mention that the Mann–Whitney 
U statistics involves pooling the observations from the two groups of samples (e.g., 
group A and group B) into one combined sample, done by keeping track of which 
sample each observation comes from, and then ranking them according to lowest to 
highest, i.e., from 1 to R1 + R2, respectively. 

On the other hand, the Kruskal–Wallis test, also referred to as  H test, is described as 
an extension of the two-grouped Mann–Whitney U test (McKight & Najab, 2010). 
Thus, the method (Kruskal–Wallis H) (see Chap. 6, Sect. 6.2.8) is used when the 
researcher is comparing the median of more than two groups (i.e., three or more cate-
gories) of independent samples (Ortega, 2023; Vargha & Delaney, 1998). Just like the 
Mann–Whitney U test, the Kruskal–Wallis H method uses ranked (ordinal) datasets, 
a powerful alternative (non-parametric version) to the One-way analysis of variance 
(ANOVA), and proves to be a suitable statistical method when the data sample in 
question deviates from the acceptable t-distribution or is not normally distributed 
(Ostertagová et al., 2014). 

Mathematically, the result of applying the Kruskal–Wallis test is an H-Statistic or 
formula represented as follows (Kruskal & Wallis, 1952; McKight & Najab, 2010):
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H =
(

12 

n(n + 1)
∑k 

j=1 

R2 
j 

n j

)
− 3(n + 1) 

where: 

k = number o f groups being compared or analyzed 

n = total  sample  si ze  

n j = sample  si ze  in  the  j th  group  

R j = sum o f  the ranks in the j th j th group 

As defined in the above formula, it is noteworthy to mention that with the Kruskal– 
Wallis H statistics, all of the n values or measurements (e.g., n = n1 + n2 + ... + nk ) 
are jointly ranked (i.e., are treated as one single sample), and one can use the sums 
of the ranks of the k samples to compare the distributions. 

Accordingly, in Table 11.1 the authors provide a summary of the differences and 
similarities between the Mann–Whitney U test and Kruskal–Wallis H test, including 
the different conditions that are necessary or required to performing the tests, which 
are practically demonstrated in R in the next sections of this chapter (Sects. 11.2 and 
11.3). 

Table 11.1 Differences and similarities between the Mann–Whitney U test and Kruskal–Wallis H 
tests and Assumptions 

Mann–Whitney U Kruskal–Wallis H 

Independent variable must be of two levels or 
groups, e.g., group A and group B 

Independent variable must be more than two 
levels or groups (i.e., three or more), e.g., 
group A, group B, group C, …group nth 

Used for Ranked or Ordinal datasets Used for Ranked or Ordinal datasets 

Dependent variable should be measured on an 
ordinal or continuous scale 

Dependent variable should be measured on an 
ordinal or continuous scale 

Data sample or observations are not normally 
distributed, i.e., skewed 

Data sample or observations are not normally 
distributed, i.e., skewed 

Data must be independent and randomly drawn 
from the population, i.e., no relationship 
should exist between the two groups or within 
each group 

Data must be independent and randomly drawn 
from the population, i.e., no relationship 
should exist between the groups (minimum of 
three or more groups) or within each group 

Measures or compares the “median”, unlike 
the parametric counterparts that compare the 
“mean” 

Measures or compares the “median”, unlike 
the parametric counterparts that compare the 
“mean” 

Non-parametric equivalent or version of the 
Independent sample t-test 

Non-parametric equivalent or version of the 
One-way ANOVA test
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Interpret Check and interpret the results of the analysis 

Visualize Visualize the data and results using graphics for comparison and 
interpretation or export for use 

Analyze 
Conduct the Mann Whitney U and Kruskal Wallis tests in R using 
the supported methods; wilcox.test( ), wallis.test( ), DunnTest( ), 
shapiro.test( ) 

Data Import and inspect the dataset ready for analysis 

R Packages 
Install and Load the required R packages for data manipulation and 
visualizations; “gmodels”, “cars”, “FSA”, “PMCMRplus”, “DescTools”, 
"ggplot2", “dplyr” 

Fig. 11.1 Steps to conducting Mann–Whitney U and Kruskal–Wallis H tests in R 

In the next sections of this chapter (Sects. 11.2 and 11.3), the authors will be 
demonstrating to the readers how to conduct the “Mann–Whitney U” and “Kruskal– 
Wallis H” tests in R, respectively. We will illustrate the different steps to performing 
the two tests in R by using the following steps as outlined in Fig. 11.1. 

11.2 Mann–Whitney U Test in R 

Mann–Whitney U test is used when the data the researcher or analysts wants to 
analyze are made up of two groups and are statistically independent. Statistically, 
the test is used to compare the differences in median between an ordinal independent 
variable, and an ordinal or continuous dependent variable; whereby the independent 
variable must have two (ranked) levels. As defined earlier in Sect. 11.1, the  test  
(Mann–Whitney U) is distribution free and has the powerful advantage of being 
used to analyze small sample sizes. 

By default, the hypothesis for testing whether there is a difference in the median of 
the two specified groups of independent data (ordinal) against the dependent (usually 
ordinal or continuous) variable is; IF the p-value of the test (Mann–Whitney U) 
is less than or equal to 0.05 (p ≤ 0.05), THEN we can assume that at least one 
sample of the two groups being analyzed comes from a population with a different 
distribution than the other, thus, the median of the groups of population (two groups) 
in the data sample are statistically different (varies), or yet in other words, that the 
first group are significantly larger than those of the second, or vice and versa, and 
that this is not by chance (H1). ELSE IF the p-value is greater than 0.05 (p > 0.05) 
THEN we can assume that there is no difference in the median of the two groups,
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thus, the two independent groups are homogeneous and have the same distribution 
(stochastically equal), and any observed difference could only occur by chance (H0). 

Here, we will be demonstrating how to perform the Mann–Whitney U test by 
using the wilcox.test( ) function in R. We will do this using the steps outlined in 
Fig. 11.1. 

To begin, Open RStudio and Create a new or Open an existing project. Once 
the user have the RStudio and an R Project opened, Create a new R Script and name 
it “MannWhitneyDemo” or any name the user chooses (see Chap. 1 if the readers 
need to refresh on this step or topic). 

We will download an example dataset that we will be using to demonstrate both 
the Mann–Whitney U test in this section (Sect. 11.2) and the Kruskal–Wallis H test 
in the next section (Sect. 11.3). ***Note: the users can use any dataset or format if 
they wish to do so***. 

As shown in Fig. 11.2, download the example data named “Sample CSV Files” 
from the following link (source: https://www.learningcontainer.com/sample-excel-
data-for-analysis/#Sample_CSV_file_download) if the user have not done so in the 
previous chapter (Chap. 10), and save the downloaded file on the computer. ***Also, 
the example dataset can accessed and downloaded via the following link (https://doi. 
org/https://doi.org/10.6084/m9.figshare.24728073) where the authors have uploaded 
all the example files used in this book. 

Once the user have successfully downloaded and/or accessed the example file on 
the computer, we can proceed to conduct the Mann–Whitney U test in R. 

# Step 1—Install and Load the required R Packages and Libraries 

Install and Load the following R packages and libraries (Fig. 11.3, Step1, Lines 
3 to 15) that will be used to call the different R functions, data manipulations, and 
graphical visualizations for the Mann–Whitney U test.

The syntax and code to install and load the R packages and Libraries are as follows:

Fig. 11.2 Example of CSV data sample and file download. Source https://www.learningcontainer. 
com/sample-excel-data-for-analysis/#Sample_CSV_file_download 

https://www.learningcontainer.com/sample-excel-data-for-analysis/#Sample_CSV_file_download
https://www.learningcontainer.com/sample-excel-data-for-analysis/#Sample_CSV_file_download
https://doi.org/
https://doi.org/
https://doi.org/10.6084/m9.figshare.24728073
https://www.learningcontainer.com/sample-excel-data-for-analysis/#Sample_CSV_file_download
https://www.learningcontainer.com/sample-excel-data-for-analysis/#Sample_CSV_file_download
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Fig. 11.3 Conducting Mann–Whitney U test in R

install.packages("gmodels") 
install.packages("car") 
install.packages("DescTools") 
install.packages("ggplot2") 
install.packages("dplyr") 

library(gmodels) 
library(car) 
library(DescTools) 
library(ggplot2) 
library(dplyr) 

# Step 2—Import and Inspect the example dataset for Analysis. 

As  shown in the Step 2 in Fig.  11.3 (Lines 18 to 27), import the example dataset named 
“sample-csv-file-for-testing” (Sample CSV Files) that we have downloaded earlier 
on the computer, and store this as an R object named “MWhitney_KWallis.data” 
in RStudio (***the users can use any name of choice if they wish to do so).
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The code for importing and storing of the example file in R is as shown below: 

MWhitney_KWallis.data <- read.csv(file.choose()) 
attach(MWhitney_KWallis.data) 

View(MWhitney_KWallis.data) 

str(MWhitney_KWallis.data) 

Once the user has successfully imported and stored the dataset in RStudio envi-
ronment, you will be able to view the details of the example file “sample-csv-file-for-
testing” (Sample CSV Files) named “MWhitney_KWallis.data” in the file environ-
ment as shown in Fig. 11.4 with 700 observations and 16 variables contained in the 
stored data sample (see data fragment in Fig. 11.4). 

Note: the authors have also perfomed an important step by converting the variable 
named “Year” with two levels or groups (i.e., 2013, 2014) (see: Figs. 11.3 and 11.4) to  
a Categorial (ordinal) variable as we will be using this to illustrate the Mann–Whitney 
U test (see code below—Step 2, Fig. 11.3). 

#Convert numerical variable to Factor (categorical/Ordinal) 
MWhitney_KWallis.data$Year<-as.factor(MWhitney_KWallis.data$Year) 

str(MWhitney_KWallis.data) 

Fig. 11.4 Example of CSV data imported and stored as an R object in RStudio 



232 11 Mann–Whitney U Test and Kruskal–Wallis H Test Statistics in R

# Step 3—Conduct Mann–Whitney U test (used for Categorical/Ordinal 
variable). 

With the example dataset stored and the targeted variables in categorical/ordinal 
scale, we can proceed to analyze the data which we have stored as MWhitney_ 
KWallis.data in R (see: Fig. 11.4). 

As defined earlier in the Introduction section (Sect. 11.1): 

• Mann–Whitney U test or statistics compares the median or distribution between 
two groups of an independent variable against a target dependent variable. 

• The targeted independent variable must be an “ordinal” data type. 
• The targeted dependent variable must be an “ordinal or continuous” data type. 

To demonstrate the Mann–Whitney U test using the wilcox.test( ) method in R: 

• We will test whether the median or distribution of the “Year” variable (indepen-
dent variable with two levels: 2013 and 2014) differ based on the “Units.Sold” 
(dependent variable) in the data. 

The syntax and code to conducting the above test (Mann–Whitney) in R is as 
shown in the code below and represented in Fig. 11.3 (Step 3, Lines 30 to 40). 

# Step 3 - Conduct Mann Whitney tests (categorical/Ordinal) 

#Test each group (e.g., Year in our case) for normality 

MWhitney_KWallis.data %>% 

group_by(Year) %>% 

summarise(`W Stat` = shapiro.test(Units.Sold)$statistic, 

            p.value = shapiro.test(Units.Sold)$p.value) 

# Perform Test 

MannWhitneyTest <-wilcox.test(Units.Sold ~ Year, data = 
MWhitney_KWallis.data, conf.int=TRUE) 

MannWhitneyTest 

As shown in the code above, we first conducted a data normality test (see Chap. 3) 
(estimated acceptable p-value > 0.05) by considering each group of the “Year” vari-
able before conducting the Mann–Whitney U test. This was done in order to confirm 
that the dataset does not meet the assumption of normality usually attributed to the 
Mann–Whitney U test (a non-parametric test), where: neither the 2013 (W=0.951, 
p=0.00000915) nor the 2014 (W=0.966, p=0.00000000141) groups of the Year vari-
able were normally distributed, otherwise the user would have preferably conducted 
the Independent sample t-test (parametric equivalent of the Mann–Whitney U) in the 
event that the data appear to be normally distributed. 

Once the user have successfully run the codes provided above (Step 3, Lines 30 
to 40, Fig. 11.3), the user will be presented with the results of the Mann–Whitney 
method in the Console as shown in Fig. 11.5.
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Fig. 11.5 Results of Mann–Whitney U test displayed in the Console in R 

To describe the test of assumptions, in Fig. 11.5, we conducted a normality 
test by considering the two groups (2013, 2014) of the “Year” variable against 
the “Units.Sold” variable using the shapiro.test( ) method or function in R. As 
highlighted in the figure (Fig. 11.5), the result of the assumption test shows that 
the dataset taking into account the two groups of the variable was not normally 
distributed (where a significant level is considered values whereby p > 0.05). 
Therefore, we can assume that the data meets the condition to perform the 
Mann–Whitney U test with Group A (2013) showing a normality test statistic of 
W=0.951, p-value=0.00000915, and Group B (2014) showing W=0.966, 
p-value=0.00000000141, respectively. 

Consequentially, we proceeded to perform the Mann–Whitney U test for the inde-
pendent variable “Year” (with two levels or group) against the dependent variable 
“Units.Sold” as contained in the dataset “sample-csv-file-for-testing” (Sample CSV 
Files) that we stored as an R object named “MWhitney_KWallis.data” in R. Accord-
ingly, the result of the Mann–Whitney U statistics was stored as an R object we 
named or defined as MannWhitneyTest (see: Fig. 11.5) which the authors will 
subsequently discuss in detail in Step 5 in this section. 

# Step 4—Plot and visualize the data distribution and results. 

In Fig. 11.6 (Step 4, Lines 43 to 50), the authors made use of the ggplot( ) function 
in R to display a boxplot of the distribution between the two groups (2013, 2014)
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Fig. 11.6 Plot representing the distribution of the two groups of Year variable broken down by 
Units.Sold using the ggplot() function in R 

of the “Year” variable against the “Units.Sold” as contained in the stored data 
“MWhitney_KWallis.data”. 

The syntax and code used to plot and visualize the distribution is as shown in the 
code below, and the resultant plot is represented in Fig. 11.6. 

# Step 4 - Visualize the Distribution of Data 

ggplot(MWhitney_KWallis.data, aes(x = Year, y = Units.Sold, fill = Year)) +

  stat_boxplot(geom ="errorbar", width = 0.5) +

  geom_boxplot(fill = "light blue") + 

  stat_summary(fun = mean, geom="point", shape=10, size=3.5, color="black") 
+ 

  ggtitle("Distribution (Median) of Units Sold by Year (2013 vs 2014)") + 

  theme_bw() + theme(legend.position="none") 

# Step 5—Results Interpretation (Mann–Whitney U). 

The final step for the Mann–Whitney U test and analysis is to interpret and understand 
the results of the test/method. 

By default, the hypothesis for conducting the test (Mann–Whitney) considering 
the analyzed variables “Year” and “Units.Sold” (see: Fig. 11.4) is;  

• (H1) IF the p-value of the test is less than or equal to 0.05 (p ≤ 0.05), THEN 
we can assume that there is a difference in the distribution of the two groups of



11.3 Kruskal–Wallis H Test in R 235

the “Year” variable (2014, 2014) taking into account the “Units.Sold”. Thus, the 
median of the two groups of population (2013, 2014) are statistically different 
(varies). 

• (H0) ELSE IF the p-value is greater than 0.05 (p > 0.05) THEN we can say 
that there is no difference in the median of the two groups. Thus, the two inde-
pendent groups (2013, 2014) are homogeneous and have the same distribution 
(stochastically equal) taking into account the “Units.Sold”. 

> MannWhitneyTest 

Wilcoxon rank sum test with continuity correction 

data:  Units.Sold by Year 

W = 42976, p-value = 0.2012 

alternative hypothesis: true location shift is not equal to 0 

95 percent confidence interval: 

 -253.00006   52.99996 

sample estimates: 

difference in location  

             -101.0001 

As shown in the results presented above (see: Fig. 11.5), the meaning of the 
Mann–Whitney U test statistics or output can be explained as a list containing the 
following: 

• Statistics: W (U-statistics) = 42976 which represents the value of the 
distribution test. 

• p-value: p-value = 0.2012 is the significance levels of the test. 

Statistically, we can see from the result that the p-value (p-value = 0.2012) 
is greater than the stated significance level (i.e., p ≤ 0.05). Therefore, we reject the 
H1 and accept H0 by concluding that there is no significant difference (i.e., groups 
distribution are stochastically equal) between the two groups (“2013” and “2014”) 
of the “Year” variable taking into account the “Units.Sold”. 

11.3 Kruskal–Wallis H Test in R 

The Kruskal–Wallis H test is an extension of the Mann–Whitney U test. Statisti-
cally, the same assumptions or test criteria apply for both tests (Mann–Whitney and 
Kruskal–Wallis) except that with the Kruskal–Wallis H test, the targeted independent 
variable must have more than two groups or categories (i.e., minimum of three or 
more levels). Therefore, the test is applied by the researchers to test and compare 
the hypothesis that the k (nth) groups (minimum of three) in a data sample have 
been obtained or drawn from the same population. It is noteworthy to mention that
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the Kruskal–Wallis test is regarded as an alternative (non-parametric version) to the 
One-way ANOVA (le Cessie, 2020; Ortega, 2023). Thus, the test (Kruskal–Wallis) 
is used or applied when assumptions such as the data normality have not been met 
or the sample size is too small to conduct the parametric test (One-way ANOVA). 

Just like the Mann–Whitney U test, by default, the hypothesis for testing whether 
there is a difference in the median of the k (nth) groups (minimum of three or more) of 
an independent data (ordinal) against the dependent (usually ordinal or continuous) 
variable is; IF the p-value of the test result (Kruskal–Wallis H) is less than or equal 
to 0.05 (p ≤ 0.05), THEN we assume that at least one of the groups (of the k 
(nth) categories or levels) (see Chap. 6, Sect. 6.2.8) being analyzed comes from 
a population with a different distribution, and therefore, we can then further perform 
a multiple comparison (Post-Hoc) test to determine where the significant difference 
may lie across the data. In other words, we can assume that the median of the groups 
of population, k (nth), in the data sample are statistically different (varies), and that 
this is not by chance (H1). ELSE IF the p-value is greater than 0.05 (p > 0.05) THEN 
we can say that there is no difference in the median of the k (nth) groups (three or 
more). Thus, the k (nth) independent groups are homogeneous and have the same 
distribution (i.e., are stochastically equal), and any difference observed could only 
occur by chance, and therefore in this scenario, there will be no need to further 
perform a multiple comparison (Post-Hoc) test (H0). 

Here, the authors will be demonstrating to the readers how to perform the Kruskal– 
Wallis H test using the kruskal.test() function in R. We will do this using the steps 
outlined earlier in Fig. 11.1. 

To begin, Create a new RScript and name it “KruskalWallisDemo” or any name 
of your choice. 

Also, we will continue to use the same example dataset “sample-csv-file-for-
testing” (Sample CSV Files) that we have stored earlier as an R object named 
“MWhitney_KWallis.data” to illustrate the Kruskal–Wallis H test. ***The users 
can also access and download the example dataset via the following link: https://doi. 
org/https://doi.org/10.6084/m9.figshare.24728073. 

# Step 1—Install and Load the required R Packages and Libraries 

Install and Load the following R packages and libraries (Fig. 11.7, Step1, Lines 
3 to 12) that will be used to call the different R functions, data manipulations, and 
graphical visualizations for the Kruskal–Wallis H test.

The syntax to install and load the necessary R packages and Libraries are as 
follows:

https://doi.org/
https://doi.org/
https://doi.org/10.6084/m9.figshare.24728073
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Step 1 

Step 2 

Step 3 

Fig. 11.7 Steps to conducting Kruskal–Wallis H test in R

install.packages("FSA") 

install.packages("PMCMRplus") 

library(FSA) 

library(PMCMRplus) 

library(DescTools) 

library(ggplot2) 

library(dplyr) 

***Note: as you can see in the code above (see highlighted part) and in Fig. 11.7, 
we only installed the additional R packages "FSA” and "PMCMRplus” that will 
be required to perform the Kruskal–Wallis H test, as we have previously installed the 
other required R packages in R in the previous section or example (see Sect. 11.2). 
Therefore, we only needed to just load the libraries for the already installed pack-
ages (i.e., DescTools, ggplot2, dplyr) (see: Lines 10 to 12, Fig. 11.7). 
***Note: the users may need to install or re-install the above packages, if necessary, 
for instance, in the event they have not practiced the previous example in the previous
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section (Sect. 11.2), or have directly visited this particular section. Please refer to 
Chap. 2 (Sect. 2.6) on how to install R packages or a refresher on the topic. 

# Step 2—Import or Inspect the example dataset for Analysis. 

As shown in Fig. 11.7 (Step 2, Lines 15 to 22), since we have already imported and 
stored the example dataset “sample-csv-file-for-testing” (Sample CSV Files) as an  
R object we named “MWhitney_KWallis.data”, we only need to view or inspect 
the data to make sure we have the variables want to analyze listed there (see: Code 
below and Fig. 11.8). 

View(MWhitney_KWallis.data) 

str(MWhitney_KWallis.data) 

# Factor target variable to assign levels 

MWhitney_KWallis.data$Country <-as.factor(MWhitney_KWallis.data$Country) 

str(MWhitney_KWallis.data)

IV 

DV 

Fig. 11.8 Example of suitable variables for conducting the Kruskal–Wallis H test displayed in R 
(IV = Independent Variable, DV = Dependent Variable) 



11.3 Kruskal–Wallis H Test in R 239

Note: if the user have directly visited this specific section or have exited and re-
opened RStudio, then, they may need to use the following code below to upload and 
re-attach the data from their local machine or computer, as the case may be: 

MWhitney_KWallis.data <- read.csv(file.choose()) 
attach(MWhitney_KWallis.data) 

View(MWhitney_KWallis.data) 

str(MWhitney_KWallis.data) 

Once the user have successfully loaded, inspected, and completed the data conver-
sion (see Step 2, Lines 15 to 22, Fig. 11.7); you will see in the Environment Tab or 
Console that the variable named “Country” has been factored with 5 levels or groups 
(see: highlighted part in Fig. 11.8) as we will be using this variable (Country) to 
illustrate the Kruskal–Wallis H test (i.e., that requires minimum of three levels of an 
independent variable as a condition to conduct the test). 

# Step 3—Conduct Kruskal–Wallis H test (Ordinal data). 

With all the necessary conditions and data format met, we can proceed to analyze 
the selected variables as highlighted in Fig. 11.8. 

As defined earlier in the Introduction section (Sect. 11.1): 

• Kruskal–Wallis H test or statistics compares the median or distribution between 
three or more groups of an independent variable against a targeted dependent 
variable. 

• The targeted independent variable must be an “ordinal” data type. 
• The targeted dependent variable must be an “ordinal or continuous” data type. 

To demonstrate to the readers how to conduct the Kruskal–Wallis H test by using 
the kruskal.test( ) and dunnTest( ) method or functions in R: 

• We will test whether the median or distribution of the “Country” (independent 
variable with 5 levels) differ based on the “Units.Sold” (dependent variable)—see 
Fig. 11.8. 

The syntax for conducting the above test (Kruskal–Wallis) in R is as shown in the 
code below, and as represented in Fig. 11.7 (Step 3, Lines 25 to 39).
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# Step 3 - Conduct Kruskal Wallis test (Ordinal data)  

#Test each group (e.g., Country in this case) for normality 

MWhitney_KWallis.data %>% 

group_by(Country) %>% 

summarise(`W Stat` = shapiro.test(Units.Sold)$statistic, 

            p.value = shapiro.test(Units.Sold)$p.value) 

# Perform Test 

KruskalWallisTest <- kruskal.test(Units.Sold ~ Country, data = 
MWhitney_KWallis.data) 

KruskalWallisTest 

# Dunn's Test (Kruskal Wallis Post-Hoc test) - using "bonferroni" method 

PostHocTest <- dunnTest(Units.Sold ~ Country, data = 
MWhitney_KWallis.data, method="bonferroni") 

PostHocTest 

***Note: As defined in the code above; the authors first conducted a normality test 
by considering each group (five groups) of the “Country” variable before conducting 
the Kruskal–Wallis H test. This was done in order to confirm that the data does not 
meet the assumption of normality which is commonly a prerequisite to performing 
the Kruskal–Wallis H test (non-parametric test) (see: Chaps. 3 and 4). 

Once the user have successfully run the codes (Step 3, Lines 25 to 39, Fig. 11.7), 
they will be presented with the results of the assumption test and method in the 
Console as represented in Fig. 11.9.

As presented in Fig. 11.9, we conducted a normality test considering the 
five groups of the “Country” variable (Canada, France, Germany, Mexico, 
United States of America) by taking into account the “Units.Sold” using the  
shapiro.test( ) function in R. As highlighted in the figure (Fig. 11.9), the result 
of the assumption test shows that the dataset considering the five groups of 
the “Country” variable against the “Units.Sold” was not normally distributed 
(whereby significant level is considered values where p > 0.05). Therefore, 
we assume that the data or targeted variables met the condition to perform 
the Kruskal–Wallis test with Group A (Canada): showing a normality test 
statistic of W=0.980, p-value=0.0403; Group B (France): W=0.966, 
p-value=0.00162; Group C (Germany): W=0.958, p-value=0.000300; 
Group D (Mexico): W=0.945, p-value=0.0000240, and Group E (United 
States of America): W=0.947, p-value=0.0000369, respectively. 

Therefore, we proceeded to conduct the Kruskal–Wallis H test considering the 
independent variable “Country” (with five groups) against the dependent variable 
“Units.Sold” as contained in the example dataset (MWhitney_KWallis.data). Conse-
quentially, we also performed a post-hoc test using the DunnTest( ) function in R
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Fig. 11.9 Results of Kruskal–Wallis H test and Post-Hoc test displayed in the Console in R

adjusted with the “bonferroni” method. This is due to the fact that the test (Kruskal– 
Wallis) results came out significant (p ≤ 0.05) as we will discuss in detail in Step 5 
(Results Interpretation). 

Accordingly, the results of the Kruskal–Wallis H test and statistics were stored 
as an R object we called KruskalWallisTest, and the post-hoc test stored as 
PostHocTest, respectively (see: Fig. 11.9). 

# Step 4—Plot and visualize the data distribution (outliers) and results. 

In Fig. 11.10 (Step 4, Lines 42 to 49); we utilized the ggplot( ) function in R to 
display a boxplot of the distribution (outliers) for the five groups of the “Country” 
variable (i.e., Canada, France, Germany, Mexico, United States of America) plotted 
against the “Units.Sold”. As shown in the figure (Fig. 11.10), the difference in the 
distribution also confirms the significant difference we found in the H test statistics 
(Step 3) as explained in detail in the next Step 5.

The syntax and used to plot or visualize the distribution of the data or outliers is 
as shown in the code below, and the resultant chart is represented in Fig. 11.10.
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Fig. 11.10 Plot representing the distribution of the five groups of the independent variable broken 
down by Country using the ggplot() function in R

# Step 4 - Visualize the Distribution of data or outliers 

ggplot(MWhitney_KWallis.data, aes(x = Country, y = Units.Sold, fill = 
Country)) +

  stat_boxplot(geom ="errorbar", width = 0.5) +

  geom_boxplot(fill = "grey") +

  stat_summary(fun = mean, geom="point", shape=10, size=3.5, color="black")+

  ggtitle("Boxplot of distribution (median) of Units.Sold by Country") +

  theme_bw() + theme(legend.position="none") 

# Step 5—Results Interpretation (Kruskal–Wallis H). 

The final step for the Kruskal–Wallis test and analysis is to interpret and understand 
the results of the test. 

By default, the hypothesis for conducting the test (Kruskal–Wallis) considering 
the two variables “Country” and “Units.Sold” (see: Figs. 11.8 and 11.9) is:  

• (H1) IF the p-value of the test is less than or equal to 0.05 (p ≤ 0.05), THEN we 
can assume that there is a difference in the distribution of the groups (Canada, 
France, Germany, Mexico, United States of America) of the “Country” variable 
taking into account the dependent variable “Units.Sold”. Thus, the median of 
the individual group of population (Canada, France, Germany, Mexico, United 
States of America) are statistically different (varies). Hence, we would consider 
to further perform a multiple comparison (Post-Hoc) test to determine where the 
significant differences may lie across the data or groups or variables.
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• (H0) ELSE IF the p-value is greater than 0.05 (p > 0.05) THEN we can conclude 
that there is no difference in the median of the five groups of the independent 
variable taking into account the dependent variable “Units.Sold”. Thus, the five 
groups of the independent variable (Canada, France, Germany, Mexico, United 
States of America) are homogeneous and have the same distribution (i.e., are 
stochastically equal). And, if this was the case, then we do not need to further 
conduct a post-hoc test. 

> KruskalWallisTest 

Kruskal-Wallis rank sum test 

data:  Units.Sold by Country 

Kruskal-Wallis chi-squared = 16.613, df = 4, p-value = 0.002298 

As shown in the results of the test presented above (see: Fig. 11.9); the meaning 
of the Kruskal–Wallis H test statistic or output can be explained as a list containing 
the following: 

• Statistics: X2 (H-statistics) = 16.613 which represents the value of 
the distribution test. 

• Degrees of freedom: df = 4 is the degree of freedom for the k (nth) groups of 
the independent variable. 

• p-value: p-value = 0.002298 is the significance level of the test. 

Statistically, we can see from the reported result that the p-value is less than the 
stated significance level (significance, p ≤ 0.05). Therefore, we reject H0 and accept 
H1 by concluding that there is a significant difference between the five groups of the 
“Country” variable (Canada, France, Germany, Mexico, United States of America) 
taking into account the “Units.Sold”. 

Consequently, having found a significant difference for the analyzed variable 
or group of countries (p-value=0.002298), we do not know which one or 
where among the countries the differences may lie. Therefore, a post-hoc (multiple 
comparison) test needs to be conducted, in this case, in order to establish this fact or 
variations.
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> PostHocTest 

Dunn (1964) Kruskal-Wallis multiple comparison 

p-values adjusted with the Bonferroni method. 

                           Comparison          Z     P.unadj      P.adj 
1                     Canada - France  0.4524596 0.650937914 1.00000000 
2                    Canada - Germany  3.1843581 0.001450754 0.01450754 
3                    France - Germany  2.7318985 0.006297054 0.06297054 
4                     Canada - Mexico  2.9265064 0.003427925 0.03427925 
5                     France - Mexico  2.4740468 0.013359221 0.13359221 
6                    Germany - Mexico -0.2578517 0.796521335 1.00000000 
7   Canada - United States of America  1.1847881 0.236101243 1.00000000 
8   France - United States of America  0.7323285 0.463968099 1.00000000 
9  Germany - United States of America -1.9995700 0.045546714 0.45546714 
10  Mexico - United States of America -1.7417183 0.081557752 0.81557752 

As gathered in the above results of the post-hoc (multiple comparison) test 
using the DunnTest( ) method adjusted with the “Bonferroni” method in R 
(see Fig. 11.9); we can now see where among the individual countries (Canada, 
France, Germany, Mexico, United States of America) the statistical differences 
we observed lies. For example, we can see that the difference in distribu-
tion was exceptionally observed for Canada-Germany (Z=3.1843581, 
P.unadj=0.001450754, P.adj=0.01450754; Canada-Mexico 
(Z=2.9265064, P.unadj=0.003427925, P.adj=0.03427925). 
France-Germany was also slightly significant with Z=2.7318985, 
P.unadj=0.006297054, P.adj =0.06297054, respectively. 

11.4 Summary 

In this chapter, the authors explained in detail and practically demonstrated to the 
readers how to conduct the two most commonly used types of non-parametric 
(or distribution free) tests (Mann–Whitney U and Kruskal–Wallis H) used by the 
researchers to compare the median of “non-normally” distributed data samples in 
R. In Sect. 11.2, we illustrated how to conduct the Mann–Whitney U test. While in 
Sect. 11.3 we looked at how to perform the Kruskal–Wallis H test using R. 

Also, the chapter covered how to graphically plot the median or distribution 
(outliers) of the two types of tests (Mann–Whitney U and Kruskal–Wallis H), and 
then discussed in detail how to interpret and understand the results of the tests in R. 

In summary, the main contents covered in this chapter includes: 

• Mann–Whitney (U-Statistics) test is a statistical test of hypothesis used to compare 
the distribution (in median) of data samples that are represented in “two indepen-
dent comparison groups” (usually in ordinal form) and an ordinal or continuous 
dependent variable. 

• Kruskal–Wallis (H-Statistics) test is, on the other hand, applied to compare the 
distribution (in median) of data samples that are represented in “three or more
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independent comparison groups” (ordinal form) and an ordinal or continuous 
dependent variable. 

• Mann–Whitney U test is the non-parametric version or alternative (equivalent) to 
the Independent Sample t-test. 

• Kruskal–Wallis H test is the non-parametric version or alternative (equivalent) to 
the One-way ANOVA test. 

When choosing whether to conduct a Mann–Whitney U test or Kruskal–Wallis H 
test? The researcher or data analyst should: 

• Perform the “Mann–Whitney U” test if the two groups come from a single inde-
pendently sampled population, and the distribution of the data sample has been 
statistically measured or determined to be non-normally distributed. 

• Perform the “Kruskal–Wallis H” test if the targeted independent variable has more 
than two groups (i.e., minimum of three or more categories), comes from or is 
drawn from a single independently sampled population, and the distribution of 
the data sample has been statistically measured or determined to be non-normally 
distributed. 

• Perform a post-hoc test (a multiple comparison test) if the result of the Kruskal– 
Wallis H statistics has shown or appeared to be significant (i.e., p ≤ 0.05). This is 
done in order to determine where the significant differences among the groups “k 
(nth)” (minimum of three groups of the independent variable) may lie across the 
data. 
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Chapter 12 
Correlation Tests in R: Pearson Cor, 
Kendall’s Tau, and Spearman’s Rho 

12.1 Introduction 

Correlation (Cor) is a statistical procedure or method used by researchers or the 
data analysts to evaluate the strength or degree of relationship between two variables 
(continuous or categorical) (Privitera, 2023; Schober & Schwarte, 2018). Statisti-
cally, the correlation test can be defined as a “bivariate analysis” that measures the 
strength of association or relationship between two variables or datasets and the direc-
tion of the relationship (see Chap. 6, Sect. 6.2.9). The result of the test (usually for 
linearity or strength of association) between the datasets or data points (depending on 
the type of correlation method being used or applied and usually determined through 
the p-values: where p ≤ 0.05) means that a high correlation statistics indicates that 
the variables or data being measured have a strong relationship between each other. 
On the other hand, a weak correlation (p > 0.05) signifies that the variables are barely 
(insignificantly) related or associated. 

Thus, with correlated datasets, it is assumed that a change in the magnitude of one 
variable is statistically associated with a change in the magnitude of another variable 
that it is being measured against, be it in the same direction (positive correlation) 
or in the opposite direction (negative correlation) (Akoglu, 2018; Privitera, 2023; 
Schober & Schwarte, 2018). 

According to Akoglu (2018), the correlation (relationship, association) between 
the two specified variables is denoted by the letter r and quantified through a number, 
that varies between −1 and +1 (denoting the negative and positive correlations, 
respectively). Whereby, a value of zero (0) implies that there is no correlation between 
the variables, and a value of one (1) denotes an absolute (perfect) correlation. There-
fore, whereas r represents the direction of the correlation, a positive r signifies that 
the measured variables are certainly (positively) related, while a negative r signi-
fies that the measured variables are inversely (negatively) related. Statistically, the 
strength of the correlation increases both from 0 to+1, and from 0 to−1, respectively 
(Akoglu, 2018).
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There are three main types of correlation analysis commonly applied by the 
researchers, in theory. These are (i) Pearson product–moment correlation, (ii) 
Kendall’s tau correlation, and (iii) Spearman’s rho correlation (Akoglu, 2018; 
Brossart et al., 2018; Hauke & Kossowski, 2011; Puth et al., 2014; Schober & 
Schwarte, 2018; Wang et al., 2019; Zar,  2014). 

Pearson correlation (also known as Pearson product–moment correlation coeffi-
cient) is described as a parametric test that measures the strength of linear association 
(linear trend) that exists between two continuous variables. Statistically, the method 
(Pearson correlation, denoted by r) draws a “line of best fit” through the two datasets 
or variables by establishing how far away the two data points are to the drawn line 
(model) of best fit. 

Mathematically, to apply the Pearson’s statistics by measuring the two quantities 
or variables X and Y on each of N individuals in order to produce a data set of X1, 
Y 1, …,  XN , YN (Puth et al., 2014), the formula to calculate the correlation coefficient 
is given as: 

Cor (r ) = N
∑

xy  − (∑
x
)(∑

y
)

/[
N

∑
x2 − (∑

x
)2

][
N

∑
y2 − (

∑
y)2

]

whereby 

N the number of pairs of scores
∑xy the sum of the products of paired scores
∑x the sum of x scores
∑y the sum of y scores
∑x2 the sum of squared x scores
∑y2 the sum of squared y scores 

Just like many of the other existing types of parametric procedures or statis-
tical methods (see Chap. 4), the Pearson’s product–moment correlation coefficient 
requires the assumption that the relationship between the variables is linear and is 
measured on an interval (continuous) scale. Thus, the researchers or data analysts 
must check that the following below assumptions are met before applying or using 
the Pearson correlation. 

Pearson’s Correlation Assumptions 

• Independence: the drawn dataset or sample must be independent to each other. 
• Linearity: the two tested variables should be linearly related to each other, e.g., 

when plotted in a graph should result in a moderately straight line. 
• Normality: the dataset must be normally distributed, i.e., should produce a bell-

shaped graph when the means of the samples are plotted. 
• Homoscedasticity or equality of variances must be present. 

Furthermore, on the other hand, Kendall’s tau correlation (also known as Kendall 
rank correlation coefficient) is a non-parametric test (i.e., an alternative to Pearson’s
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correlation) mainly used by the researchers to measure the strength of dependence 
between two categorical or ordinal variables. According to Couso et al. (2018), the 
method (Kendall’s tau) can be applied as an efficient and robust way of identifying 
monotone relationships between two data sequences, although when applied to digital 
data (e.g., discrete or discontinuous format), the high number of ties could produce 
inconsistent results due to quantization. 

Theoretically, the Kendall’s tau (τ ) statistics symbolizes the degree of agreement 
between two specified “ordinal” variables by indicating how similarly the two vari-
ables order a set of individuals or data points (Brossart et al., 2018). Thus, mathemat-
ically, the following formula is used to calculate the value of Kendall’s tau statistics 
or rank correlation coefficient: 

Kendall’s tau (τ ) = 
C − D 
C + D 

or 
nc − nd 

1 
2 n(n − 1) 

whereby 

nc number of concordant, i.e., ordered in the same way. 
nd Number of discordant, i.e., ordered differently. 

With the Kendall’s tau statistic, commonly calculated through pairwise compar-
ison; a value of τ (X,Y ) = +1 means that the data points for the two (ordinal) variables 
(X and Y ) are ordered in exactly the same way, i.e., occupies the same rank posi-
tion. While on the other hand, a value of τ (X,Y ) = −1 implies that the data points 
for the two variables are ordered in exactly the opposite way, with one data point 
occupying the first rank in one variable and the last rank in the other variable. Accord-
ingly, a value of τ (X,Y ) = 0 indicates that there is no relationship in the way or order 
that the two variables are ranked considering the data points, thus, are independent 
(Brossart et al., 2018). 

In the same vein or similar manner, just like the Kendall’s tau correlation, 
Spearman’s rho correlation (also known as Spearman rank correlation coefficient) is 
another type of non-parametric (i.e., alternative to Pearson correlation) test used by 
the researchers to measure the degree of association between two (ordinal) variables. 
The method can also be applied for interval or ratio datasets provided the datasets 
are found to be distribution-free. Mathematically, the following formula is used to 
calculate the value of the Spearman’s rho statistics or rank correlation coefficient: 

Spearman’s rho (ρ) = 1 − 
6
∑(

d2 
i

)

n
(
n2 − 1

)

whereby 

n number of data points of the two variables (x and y). 
di rank difference of element “n”, i.e., difference between the corresponding 

statistics of order of x – y.
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The only difference between the Spearman’s rho versus Kendall’s tau method 
is that while the Spearman’s rho (ρ) statistics or results are calculated through the 
“ordinary least squares”, the Kendall’s tau (τ ) statistics is calculated through the 
“pairwise comparison” of all the data points (Brossart et al., 2018). Thus, whilst 
the Kendall’s tau (τ ) statistics are based on “concordant and discordant pairs”, the 
Spearman’s rho (ρ) statistics are based on “deviations”. 

It is also noteworthy to mention that Spearman’s rho (ρ) method is much more 
sensitive to error and handling discrepancies in data samples than the Kendall’s tau 
(τ ) method, which, on the other hand, are more accurate with smaller sample sizes 
than the Spearman’s rho (ρ). 

In any case, a lot of the time the interpretations of the two methods (Kendall’s 
tau and Spearman’s rho) are very similar, thus, tend to invariably lead to the same 
inferences or statistical results. 

Also, unlike Pearson correlation, both methods (Kendall’s tau and Spearman’s 
rho) do not require the available data or sample to meet the assumption that the 
relationship between the considered variables is linear (i.e., when plotted does not 
necessarily need to result in a moderately straight line), or normally distributed (i.e., 
distribution-free), nor does it require the measurement scale of the variables to be 
represented on a continuous or interval scale. 

Table 12.1 is a summary of the differences and similarities between the Pearson 
cor, Kendall’s tau, and Spearman’s rho Correlation tests including the conditions that 
are required to perform the different tests, which the authors will be demonstrating 
using R in the next sections (Sect. 12.2 and 12.3) of this chapter.

In the next sections of this chapter (Sects. 12.2 and 12.3), the authors will be 
demonstrating to the readers how to conduct the Pearson cor, Kendall’s tau, and 
Spearman’s rho correlation tests in R, harmoniously. We will illustrate the different 
steps to performing the three types of tests in R using the following steps outlined in 
Fig. 12.1.

12.2 Pearson Correlation Test in R 

Pearson correlation measures the strength of linear association (correlation) that 
exists between two “continuous” variables. Thus, it calculates the effect of change 
(be it positive or negative) in one variable when the other variable changes. 

By default, the hypothesis for testing whether there is a correlation (measure of 
linearity or association) between the two given set of (continuous) variables is; IF 
the p-value of the test is less than or equal to 0.05 (p ≤ 0.05), THEN we assume 
that there is a statistically significant strong relationship between the two analyzed 
variables and that this is not by chance (H1). ELSE IF the p-value is greater than 0.05 
(p > 0.05) THEN we can conclude that there is no significant relationship between 
the two variables, and any observed association could only have occurred by chance 
(H0).
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Table 12.1 Differences and similarities between the Pearsoncor, Kendall’s tau, and Spearman’s 
rho correlation tests and assumptions 

Pearson Kendall’s tau Spearman’s rho 

Data sample should be 
independently drawn from the 
population 

Data sample should be 
independently drawn from the 
population 

Data sample should be 
independently drawn from the 
population 

Used for continuous 
(intervalor ratio) datasets 

Used for categorical (ranked 
or ordinal) datasets. Although 
can also be applied to 
intervalor ratio datasets 

Used for categorical (ranked or 
ordinal) datasets. Although can 
also be applied to intervalor 
ratio datasets 

Data sample or observations 
must be normally distributed, 
i.e., bell-shaped 

Data samples are 
distribution-free, thus, are not 
normally distributed, i.e., 
skewed 

Data samples are 
distribution-free, thus, are not 
normally distributed, i.e., 
skewed 

Calculated by measuring the 
“average weight” of the two 
variables (i.e., covariance of 
the two variables divided by 
the product of their standard 
deviations) 

Calculated through the 
“pairwise comparison” of the 
data points based on 
concordant and discordant 
pairs 

Calculated through “ordinary 
least squares” based on 
deviations 

Described as parametric test 
for linearity or relationship 
between two variables 

Non-parametric test for 
strength of dependence 
between two variables 

Non-parametric test to measure 
the degree of association 
between two variables

Interpret Check and interpret the results of the analysis 

Visualize Plot and graphically visualize the data and results for comparison 
and interpretation or export for use 

Analyze Conduct Pearson cor, Kendall's tau, and Spearman's rho tests in R 
using the supported method; cor.test( ), shapiro.test( ) 

Data Import and inspect the dataset for analysis 

R Packages Install and Load the required R packages for data manipulation and 
visualization; “devtools”, “ggpubr” 

Fig. 12.1 Steps to conducting the Pearson cor, Kendall’s tau, and Spearman’s rho correlation tests 
in R
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Download 

Fig. 12.2 Example of CSV file download (Source https://people.sc.fsu.edu/~jburkardt/data/csv/ 
csv.html) 

Here, the authors will demonstrate to the readers how to conduct the Pearson 
correlation test in R using the cor.test( ) function in R. We will do this using the 
steps outlined in Fig. 12.1. 

To begin, Open RStudio and Create a new or Open an existing project. Once 
the user has the RStudio and an R Project opened, Create a new R Script and name 
it “PearsonCorrDemo” or any name the user may preferentially choose (see Chap. 1 
and 2 if the user needs to refresh on how to do this step). 

Now, we are going to download an example file or dataset that we will use to 
demonstrate the Pearson correlation test (the users are welcome to use any dataset 
or format if they wish to do so). 

As  shown in Fig.  12.2, download the example CSV dataset named “trees.csv” 
via the following source: https://people.sc.fsu.edu/~jburkardt/data/csv/csv.html and 
save the file on the users’ local machine or computer. *** The users can also access 
the list of example datasets used in this book at the following repository (https://doi. 
org/10.6084/m9.figshare.24728073) to download the example CSV file. 

Once the user has successfully downloaded and saved the example file 
(trees.csv) on the computer, we can proceed to conduct the Pearson Correlation 
test in R.

https://people.sc.fsu.edu/%7Ejburkardt/data/csv/csv.html
https://people.sc.fsu.edu/%7Ejburkardt/data/csv/csv.html
https://people.sc.fsu.edu/%7Ejburkardt/data/csv/csv.html
https://doi.org/10.6084/m9.figshare.24728073
https://doi.org/10.6084/m9.figshare.24728073
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Step 1 

Step 2 

Step 3 (Corr Test) 

Fig. 12.3 Steps to conducting Pearson correlation test in R 

# Step 1—Install and Load the Required R Packages and Libraries 

Install and Load the following R packages and libraries (see Fig. 12.3, Step 1,  
Lines 3–9) that will be used to call the different R functions, data manipulations, and 
graphical visualizations for the Pearson Correlation test. 

The syntax and code to install and load the required R packages and libraries are 
as follows: 

# Step 2—Import and Inspect the Example Dataset for Pearson Correlation 
Analysis 

As illustrated in Step 2 in Fig. 12.3 (Lines 12–17), import the dataset named 
“trees.csv” that we downloaded earlier and store this as an R object named 
“PCorr.data” in R (the users are welcome to use any name they may choose if 
they wish to do so).
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Fig. 12.4 Example of CSV dataset imported and stored as R object in R 

Once the user has successfully imported the dataset, you will be able to view the 
details of the trees.csv dataset as shown in Fig. 12.4 with 31 observations and 4 
variables in the data sample. 

The syntax and code to import and save the data in R is shown below: 

# Step 3—Conduct Tests for Assumptions and Analyze Data 

Now that we have successfully imported the example dataset and stored this in an R 
object we called “PCorr.data”, we can proceed to analyze the data. 

As defined in Fig. 12.3 (Step 3, Lines 20–36), first we will conduct the tests of 
assumptions (data normality) (see: Lines 22–24) as discussed earlier in Sect. 12.1 by 
using the shapiro.test( ) method, and then perform the Pearson Correlation test if 
all the necessary conditions to conduct the test are met using the cor.test( ) function 
in R, respectively (see: Fig. 12.3, Step 3, Lines 26–36).
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Also, as defined earlier in the Introduction section (Sect. 12.1); 

• Pearson’s correlation statistics checks whether there exists a linear relationship 
between two independently sampled variables or data. 

• The targeted variables must be continuous data type. 

To illustrate the above defined tests using the example dataset we stored as 
“PCorr.data” in R (see: highlighted columns in Fig. 12.4): 

1. We will test whether there exists a relationship (correlation) between the 
Girth..in. and Height..ft. variables of the trees example data? (two-tailed test). 

2. Also, we will check whether the correlation (if there exist any) is a positive or 
negative (direction) correlation? (one-tailed test). 

The syntax and code to performing the above tests in R is as shown in the codes 
below (see: Fig. 12.3, Step 3, Lines 20–36): 

# Test for Assmp: Shapiro-Wilk's test for normality 
shapiro.test(PCorr.data$Girth..in.)      

shapiro.test(PCorr.data$Height..ft.) 

# Pearson Correlation test where data is Continuous (Two-tailed) 
PearsonCorr.test <- cor.test(PCorr.data$Girth..in., 
PCorr.data$Height..ft., method = "pearson") 

PearsonCorr.test 

# Pearson's test for Positive Correlation (One-tailed) 
PearsonCorr.test2 <- cor.test(PCorr.data$Girth..in., 
PCorr.data$Height..ft., method = "pearson", alternative = "greater") 

PearsonCorr.test2 

# Pearson's test for Negative Correlation (One-tailed) 
PearsonCorr.test3 <- cor.test(PCorr.data$Girth..in., 
PCorr.data$Height..ft., method = "pearson", alternative = "less") 

PearsonCorr.test3 

Useful Tips 

• The users should always use the alternative = “greater” and 
alternative = “less” options to specify the “positive” and “negative” 
(direction) correlation tests (one-tailed), respectively.
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Once the user has successfully run the codes as defined in the Step 3 in Fig. 12.3 
(Lines 20–36); they will be presented with the results of the “tests for assumptions” 
and the “Pearson Correlation” tests in the Console as shown in Fig. 12.5a and b, 
respectively. 

In Fig. 12.5a, we conducted the test for assumption (data normality) necessary for 
the Pearson correlation test or parametric methods. This is done in order to determine 
if the targeted variables (i.e., Girth..in. and Height..ft.) are fitting and valid for the 
test (Pearson correlation, a parametric test) (see Chap. 4).

As highlighted in the figure (Fig. 12.5a); we can see that the normality test by 
using the Shapiro–Wilk’s method shapiro.test( ), where we assume a value of p 
> 0.05 is normal, shows that the distribution of the two variables (Girth..in. and 
Height..ft.) are normal, with Girth..in. variable showing a significant value of 
p-value=0.08893 (W=0.94117) and Height..ft. showing significant value 
of p-value=0.4034 (W=0.96545), respectively. 

Therefore, with the necessary conditions met, we proceeded to conduct the 
“Pearson Correlation” as defined in the Step 3 (Fig. 12.3) and the results reported in 
Fig. 12.5b. 

As  shown in Fig.  12.5b, the authors performed the Pearson’s correlation tests by 
considering the two variables (Girth..in. and Height..ft.). We stored the results of the 
tests in an R objects named “PearsonCorr.test” for  the  two-tailed analysis, 
and “PearsonCorr.test2” and “PearsonCorr.test3” for  the  one-tailed 
analysis, respectively. 

# Step 4—Plot and Visualize Correlation Between the Targeted Variables 

Another great way to check whether there is a relationship (correlation) between the 
two specified variables is by plotting them as graph. By so doing, the users will be 
able to visualize the “linear line” between the variables. 

As described in Fig. 12.6 (Step 4, Lines 39–45) and the resultant scatterplot in 
the same figure (Fig. 12.6); the authors applied the ggscatter( ) function in R to 
visualize the relationship between the two variables “Girth..in.” and “Height..ft.” 
as contained in the example dataset we stored as “PCorr.data” in R.

The syntax and code used to plot the graph is as shown below, and the chart or 
scatterplot represented in Fig. 12.6. 

# Step 4 - Visualize Correlation between the two variables 

ggscatter(PCorr.data, x = "Girth..in.", y = "Height..ft.", 

add = "reg.line", conf.int = TRUE, 

cor.coef = TRUE, cor.method = "pearson", 

xlab = "Girth (inches)", ylab = "Height (ft)", 

main = "Correlation between Tree Girth and Height") 

)
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Fig. 12.5 a Results of test for data normality displayed in the Console in R. b Results of Pearson 
correlation tests displayed in the Console in R
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Fig. 12.6 Plot representing correlation (relationship) between two variables in R using the 
ggscatter( ) function

# Step 5—Results Interpretation (Pearson Correlation) 

The final step in the Pearson’s correlation analysis is to interpret and understand the 
result of the test. 

By default, the hypothesis for conducting the test (Pearson Correlation) by consid-
ering the two continuous variables “Girth..in.” and “Height..ft.” (see: Fig. 12.5b) 
is as follows; 

Two-Tailed Pearson Correlation 

• (H1) IF the p-value of the test is less than or equal to 0.05 (p ≤ 0.05), THEN we 
can assume that there is a correlation between the two variables (Girth..in. and 
Height..ft.). Thus, the population correlation coefficient (ρ) /= 0. Meaning that 
the population correlation coefficient is not 0, therefore, we can assume that a 
non-zero correlation exist between the “Girth..in.” and “Height..ft.” variables. 

• (H0) ELSE IF the p-value is greater than 0.05 (p > 0.05) THEN we can say that 
there is no correlation between the two variables. Therefore, ρ = 0. Meaning 
that the population correlation coefficient is 0, therefore, there is no association 
(correlation) between the two variables.
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One-Tailed Pearson Correlation 

• (H1) IF the p-value of the test is less than or equal to 0.05 (p ≤ 0.05), THEN we 
can statistically assume that either ρ > 0, i.e., the population correlation coefficient 
is greater than 0, thus, a positive correlation may exist. 

OR 
ρ < 0, i.e., the population correlation coefficient is less than 0, thus, a negative 

correlation may exist between the two variables (Girth..in. and Height..ft.). 
• (H0) ELSE IF the p-value is greater than 0.05 (p > 0.05) THEN we can conclude 

that there is no correlation between the two variables. Therefore, ρ = 0. Meaning 
that the population correlation coefficient is 0, thus, there is no association 
(correlation) between the two variables. 

> PearsonCorr.test <- cor.test(PCorr.data$Girth..in., 
PCorr.data$Height..ft., method = "pearson") 

> PearsonCorr.test 

Pearson's product-moment correlation 

data:  PCorr.data$Girth..in. and PCorr.data$Height..ft. 

t = 3.2722, df = 29, p-value = 0.002758 
alternative hypothesis: true correlation is not equal to 0 

95 percent confidence interval: 

0.2021327 0.7378538 
sample estimates: 

cor 

0.5192801) 

As shown in the above result and gathered in the outcome of the Pearson correla-
tion (two-tailed) test for the example dataset (PCorr.data) represented in Fig. 12.5b; 
the meaning of the results of the cor.test( ) method we applied by testing the relation-
ship between the Girth..in. and Height..ft. variables (stored in an R object we called 
“PearsonCorr.test”) can be explained as a list containing the following: 

• Statistics: t = 3.2722 that denotes the value of the Pearson correlation 
statistics. 

• Parameter: df = 29 which signifies the degrees of freedom for the test 
statistics. 

• p-value:p-value = 0.002758 is the p-value (significance levels) of the test. 
• Confidence interval: Conf.Int(95%, 0.2021327 0.7378538) repre-

sents the confidence interval for the correlation assumed to be appropriate to the 
specified alternative hypothesis. 

• Sample estimates: cor = 0.5192801 is the value of the population correla-
tion coefficient (ρ). 

Statistically, the p-value of the Pearson correlation test (PearsonCorr.test) 
we conducted is p = 0.002758 (see Fig. 12.5b). As we can see, the value is
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significantly less than the scientifically acceptable significance levels (p ≤ 0.05). 
Therefore, we reject the H0 and accept H1 by concluding that there is a signif-
icant relationship (correlation) between the two sets of variables (Girth..in. and 
Height..ft.) in the dataset (two-tailed test). 

Furthermore, as shown in the next results of the Pearson correlation test presented 
below and in Fig. 12.5b, done for the “one-tailed” correlation tests, therein; 

• We also checked whether the correlation, if any? (in this example case, yes— 
see result of the correlation described above) is a “positive” or “negative” 
(direction) correlation, respectively. The results of this particular test (one-
tailed) were stored in R objects we called “PearsonCorr.test2” and 
“PearsonCorr.test3”, respectively. 

> > PearsonCorr.test2 <- cor.test(PCorr.data$Girth..in., 
PCorr.data$Height..ft., method = "pearson", alternative = "greater") 
> PearsonCorr.test2 

Pearson's product-moment correlation 

data:  PCorr.data$Girth..in. and PCorr.data$Height..ft. 
t = 3.2722, df = 29, p-value = 0.001379 

alternative hypothesis: true correlation is greater than 0 

95 percent confidence interval: 
0.2585047 1.0000000 

sample estimates: 

cor 

0.5192801 

> PearsonCorr.test3 <- cor.test(PCorr.data$Girth..in., 
PCorr.data$Height..ft., method = "pearson", alternative = "less") 

> PearsonCorr.test3 

Pearson's product-moment correlation 

data:  PCorr.data$Girth..in. and PCorr.data$Height..ft. 

t = 3.2722, df = 29, p-value = 0.9986 

alternative hypothesis: true correlation is less than 0 

95 percent confidence interval:
-1.0000000  0.7095126 

sample estimates: 

cor 
0.5192801 

As reported in the above results of the “one-tailed” tests for positive 
correlation (PearsonCorr.test2, p=0.001379), and negative correlation 
(PearsonCorr.test3, p=0.9986); we can see based on the p-values of the 
“direction test” as it is called (significant levels, p ≤ 0.05); that the correlation
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we found between the two variables “Girth..in” and “Height..ft.” (two-tailed, 
PearsonCorr.test, p=0.002758) (see Fig.  12.5b) was a “positive” directed 
correlation or association (PearsonCorr.test2, p=0.001379). 

12.3 Kendall’s Tau and Spearman’s Rho Correlation Tests 
in R 

Kendall’s tau and Spearman’s rho correlation (non-parametric equivalents or alter-
natives to the Pearson correlation) measures the strength of dependence or degree of 
association between two categorical or ordinal variables. In this statistical settings, 
the methods are used when the dataset the researcher or data analyst wants to inves-
tigate or analyze violates the assumptions of the parametric counterpart (Pearson), 
e.g., non-normally distributed data samples or existence of ordinal data type, etc. 

Just like Pearson correlation test, the methods (Kendall’s tau and Spearman’s rho) 
also can be used to calculate the level of change (be it positive or negative) in one 
variable when another variable changes. 

By default, the hypothesis for testing whether there is correlation (measure of 
strength of dependence or degree of association) between the two specified set of 
(categorical or ordinal) variables is; IF the p-value of the test is less than or equal to 
0.05 (p ≤ 0.05), THEN we can assume that there is a statistically significant strong 
dependence or association between the two analyzed variables, and that this is not 
by chance (H1). ELSE IF the p-value is greater than 0.05 (p > 0.05) THEN we can 
say that there is no significant dependency or association between the two variables, 
and any observed dependency or association could only occur by chance (H0). 

Here, the authors will demonstrate how to conduct the Kendall’s tau and 
Spearman’s rho correlation tests in R using the cor.test( ) function. We will do 
this following the same steps we have outlined in Fig. 12.1. 

To start, Create a new R Script and name it “Tau.Rho.Demo” or any name the 
user may preferably choose. 

Now, let’s proceed to download an example dataset or file that we will use to 
demonstrate the two tests (Kendall’s tau and Spearman’s rho) (*** the users are 
welcome to use any dataset they may want to use provided the dataset are in the right 
format and type, and they can follow the example codes provided by the authors 
accordingly). 

As shown in Fig. 12.7, download the example .dta dataset named “lifeexp.dta” 
through the following source: https://www.stata-press.com/data/r8/u.html and save 
the file on the computer or local machine (*** the example file can also be downloaded 
via the following repository by the authors: https://doi.org/10.6084/m9.figshare.247 
28073).

Once the user has successfully downloaded and saved the example file on 
the computer, we can proceed to conduct the Kendall’s tau and Spearman’s rho 
correlation tests using R.

https://www.stata-press.com/data/r8/u.html
https://doi.org/10.6084/m9.figshare.24728073
https://doi.org/10.6084/m9.figshare.24728073
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Fig. 12.7 Example of (.dta) sample file download (Source https://www.stata-press.com/data/r8/u. 
html)

# Step 1—Install and Load the Required R Packages and Libraries 

Install and Load the following R packages and libraries (see Fig. 12.8, Step 1,  
Lines 3–9) that will be used to call the different R functions, data manipulations, and 
graphical visualizations for the Kendall’s tau and Spearman’s rho Correlation tests.

The syntax and code to install and load the R packages and libraries are as 
follows: (***Note: if the reader have practiced and implemented the previous 
example in Sect. 12.2, then you may not need to re-install the following R pack-
ages again. New readers that may have directly visited this section will need to 
install and load the following packages and libraries as described below.) 

install.packages("devtools") 
install.packages("ggpubr") 

library(devtools) 
library(ggpubr)

https://www.stata-press.com/data/r8/u.html
https://www.stata-press.com/data/r8/u.html
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Step 1 

Step 2 

Step 3A (Assmp.) 

Fig. 12.8 Steps used for conducting Kendall’s tau and Spearman’s rho correlation tests in R

# Step 2—Import and Inspect the Example Dataset for Correlation Analysis 

As defined in Step 2 in Fig. 12.8 (Lines 12–17); import the dataset named 
“lifeexp.dta” that we downloaded earlier, and store this in an R object named 
“Tau.Rho.data” in R (the users are welcome to use any name of choice if they 
wish to do so). 

Once the user has successfully imported the example dataset, they will be able to 
view the details of the dataset (lifeexp.dta) as shown in Fig. 12.9 with 68 observations 
and 6 variables in the data sample.

The syntax and code for importing and attaching the file in R are as shown below:
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Fig. 12.9 Example of a .dta dataset imported and stored as an R object in R

# Step 3—Conduct Tests for Assumptions and Analyze Data 

Now that we have imported the example dataset and stored this in an R object we 
named “Tau.Rho.data”, we can proceed to analyze the data. 

As defined in Step 3A in Fig. 12.8 (Lines 20–30), we will first conduct the test of 
assumptions (e.g., data normality, and factorization of ordinal data type, etc.), and 
then perform the Kendall’s tau and Spearman’s rho tests (Step 3B, Fig. 12.10, Lines 
32–57), if all the necessary conditions are met, by using the cor.test( ) function in R.

As defined earlier in the Introduction section (Sect. 12.1); 

• The Kendall’s tau and Spearman’s rho correlation statistics checks whether 
there exists a dependency or association between two independently sampled 
variables. 

• The targeted variables should be categorical or ordinal data type.
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Step 3B (Corr. Test) 

Fig. 12.10 Conducting Kendall’s tau and Spearman’s rho correlation tests in R

To illustrate the two tests (Kendall’s tau and Spearman’s rho) using the example 
dataset we stored as “Tau.Rho.data” in R (see: highlighted columns in Fig. 12.9): 

1. We will test whether there exists a dependency or association (correlation) 
between the “region” and “lexp” variables in the example (Tau.Rho.data) life 
expectancy data (two-tailed test). 

2. Then, we will also test whether the correlation (if there exist any) is a positive or 
negative (direction) correlation (one-tailed test). 

The syntax to performing the above tests in R is as shown in the codes provided 
and described below (see: Fig. 12.10, Step 3B, Lines 32–57):
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# Test for Assmp: Shapiro-Wilk's test for normality 
Tau.Rho.data %>% 

group_by(region) %>% 

summarise(`W Stat` = shapiro.test(lexp)$statistic, 

p.value = shapiro.test(lexp)$p.value) 

# Convert the Region (Ordinal) variable to numeric vector 
Tau.Rho.data$region <- as.numeric(Tau.Rho.data$region) 

str(Tau.Rho.data) 

# Method 1 
# Kendall's tau Correlation test where data is Ordinal (Two-tailed) 

Tau.Corr.test <- cor.test(Tau.Rho.data$region, Tau.Rho.data$lexp, method 
= "kendall") 

Tau.Corr.test 

# Kendall's tau test for Positive Correlation  (One-tailed) 

Tau.Corr.test2 <- cor.test(Tau.Rho.data$region, Tau.Rho.data$lexp, 
method = "kendall", alternative = "greater") 

Tau.Corr.test2 

# Kendall's tau test for Negative Correlation  (One-tailed) 

Tau.Corr.test3 <- cor.test(Tau.Rho.data$region, Tau.Rho.data$lexp, 
method = "kendall", alternative = "less") 

Tau.Corr.test3 

# Method 2 
# Spearman's rho Correlation test where data is Ordinal (Two-tailed) 

Rho.Corr.test <- cor.test(Tau.Rho.data$region, Tau.Rho.data$lexp, method 
= "spearman", exact=FALSE) 

Rho.Corr.test 

# Spearman's rho test for Positive Correlation  (One-tailed) 

Rho.Corr.test2 <- cor.test(Tau.Rho.data$region, Tau.Rho.data$lexp, 
method = "spearman", alternative = "greater", exact=FALSE) 

Rho.Corr.test2 

# Spearman's rho test for Negative Correlation  (One-tailed) 

Rho.Corr.test3 <- cor.test(Tau.Rho.data$region, Tau.Rho.data$lexp, 
method = "spearman", alternative = "less", exact=FALSE) 

Rho.Corr.test3
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Useful Tips and Information 

• The users should always use the alternative = “greater” and 
alternative = “less” options to specify the “positive” and “negative” 
(direction) correlation analysis (i.e., for one-tailed test), respectively. 

• Another important task the authors conducted which the users may need to do 
(depending on the readily available dataset) prior to performing the tests (Kendall 
or Spearman) was to factorize the targeted ordinal data type (e.g., region) into 
a numeric format (see: Fig. 12.8, Lines 28–30) before applying the cor.test( ) 
function or methods. 

***Note: For  Spearman’s rho test (Method 2), we included the R code 
exact=FALSE in the cor.test( ) function (see: Fig. 12.10, Lines 48, 52, and 56). 
This was done in order to handle the error “Cannot compute exact p-value with ties” 
when running the method (Method 2—see Fig. 12.10). This is owing to the fact that 
the Spearman’s rho method is much more sensitive to error and handling discrep-
ancies in data samples than the Kendall’s tau method, as we explained and pointed 
out earlier in Sect. 12.1). 

Once the user has successfully run the set of codes and analysis as defined in 
Steps 3A and 3B (Figs. 12.8 and 12.10, Lines 20–57), they will be presented with 
the results of the “tests for assumptions”, followed by the “Kendall’s tau” (method 
1) test, and then “Spearman’s rho” (method 2) tests in the Console in R as shown in 
Figs. 12.11a, b, and c, respectively. 

Consequentially, in Fig. 12.11a, the authors performed the test for assumption 
(data normality) for the Kendall’s tau and Spearman’s rho correlation analysis in 
order to determine if the selected or targeted variables “region” and “lexp” are  
suitable for conducting the two tests.

As highlighted in the figure (Fig. 12.11a), we can see that the normality 
test using the Shapiro–Wilk’s method or function—shapiro.test( ) (where we 
assume a value of p > 0.05 is normal) shows that the distribution of the two 
variables was not normally distributed, with p-values of the “region” variable 
(with three ranked groups) when analyzed against the “lexp” variable showing to 
be mostly non-normal values (p≤0.05) whereby the values of p-value=0.0203 
(W=0.938) for “Eur & C.Asia”, p-value=0.0538 (W=0.878) for “N.A”, and 
p-value=0.308 (W=0.914) for “S.A”, respectively. Therefore, we assume 
that the dataset or analyzed variables are not normally distributed, and a distributed-
free method such as the Kendall’s tau and Spearman’s rho correlation analysis will 
be suitable for analyzing the data sample. 

Thus, we proceed to conduct the “Kendall’s tau” and “Spearman’s rho” corre-
lation analysis as defined in Step 3B (Fig. 12.10, Lines 32–57) and the results are 
as presented in Figs. 12.11b and c, respectively. 

As shown in Figs. 12.11b, c, the authors performed the Kendall’s tau and 
Spearman’s rho tests by considering the two variables “region” and “lexp” in the 
example data (stored as Tau.Rho.data in R). 

• The results of the Kendall’s tau tests were stored in an R object 
we named “Tau.Corr.test” for  the  two-tailed analysis, and then
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“Tau.Corr.test2” and “Tau.Corr.test3” for  the  one-tailed analysis, 
respectively. 

• Accordingly, we stored the results of the Spearman’s rho tests in R 
objects we called “Rho.Corr.test” for  the  two-tailed analysis, and then 
“Rho.Corr.test2” and “Rho.Corr.test3” for  the  one-tailed analysis, 
respectively.

Fig. 12.11 a Results of test for data normality and factorization displayed in the Console in R. 
b Results of Kendall’s tau correlation tests displayed in the Console in R. c Results of Spearman’s 
rho correlation tests displayed in the Console in R



12.3 Kendall’s Tau and Spearman’s Rho Correlation Tests in R 269

Fig. 12.11 (continued)
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Fig. 12.11 (continued)

# Step 4—Plot and Visualize Correlation Between the Variables 

As previously illustrated earlier in Sect. 12.2, another way to check whether there is 
association or relationship (correlation) between two variables is by plotting them 
as graph. By so doing, the researcher or data analyst are able to visualize the linear 
line (correlation) between the two analyzed variables. 

As represented in Figs. 12.12a, b (see Step 4, Lines 60–74) and the resultant 
scatterplots in the same figures (Fig. 12.12a, b); the authors utilized the ggscatter( ) 
function to visualize the association or linearity between the two variables “region” 
and “lexp” as contained in the example data we stored as “Tau.Rho.data” in R.

The syntax and code we used to plot the graphs for both the Kendall’s tau (method 
1) and Spearman’s rho (method 2) correlation is as shown in the codes below, and 
the resultant charts are represented in Figs. 12.12a and b, respectively.
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Fig. 12.12 a Plot for Kendall’s tau correlation (test for dependency) between two variables in R 
using the ggscatter() function. b Plot for Spearman’s rho correlation (test for association) between 
two variables in R using the ggscatter() function
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# Step 5—Results Interpretation (Kendall’s Tau and Spearman’s Rho) 

The final step for the Kendall’s tau (method 1) and Spearman’s rho (method 2) 
correlation analysis is to interpret and understand the results of the tests. 

By default, the hypothesis for conducting the tests (Kendall’s tau and Spearman’s 
rho) by considering the analyzed variables “region” and “lexp” in this partic-
ular example (see: Fig. 12.11b, c) is; 

Two-Tailed Kendall’s Tau and Spearman’s Rho Correlation Test 

• (H1) IF the p-value of the tests is less than or equal to 0.05 (p≤0.05), THEN we can 
assume that there is a dependency or association between the two variables (region 
and lexp). Thus, the population correlation coefficient (ρ) /= 0. Meaning that the 
population correlation coefficient is not 0, and consequently, we can assume that 
a non-zero correlation exist between the “region” and “lexp” variables. 

• (H0) ELSE IF the p-value is greater than 0.05 (p > 0.05) THEN we can assume 
that there is no correlation (association) between the two variables. Thus, ρ = 0. 
Meaning that the population correlation coefficient is 0, and therefore, there is no 
association (correlation) between the two variables. 

One-Tailed Kendall’s Tau and Spearman’s Rho Correlation Test 

• (H1) IF the p-value of the test is less than or equal to 0.05 (p ≤ 0.05), THEN we 
can statistically assume that the value of ρ > 0, i.e., the population correlation 
coefficient is greater than 0, thus, a positive correlation exist between the two 
analyzed variables. 

OR 
ρ < 0, i.e., the population correlation coefficient is less than 0, thus, a negative 

correlation exist between the two variables (region and lexp).
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• (H0) ELSE IF the p-value is greater than 0.05 (p > 0.05) THEN we can conclude 
that there is no correlation between the two variables. Thus, ρ = 0. Meaning that 
the population correlation coefficient is 0, and therefore, there is no association 
(correlation) between the two variables. 

> Tau.Corr.test <- cor.test(Tau.Rho.data$region, Tau.Rho.data$lexp, 
method = "kendall") 

> Tau.Corr.test 

 Kendall's rank correlation tau 

data:  Tau.Rho.data$region and Tau.Rho.data$lexp 

z = -1.6415, p-value = 0.1007 
alternative hypothesis: true tau is not equal to 0 

sample estimates: 

       tau  
-0.1632955) 

> Rho.Corr.test <- cor.test(Tau.Rho.data$region, Tau.Rho.data$lexp, 
method = "spearman", exact=FALSE) 
> Rho.Corr.test 

Spearman's rank correlation rho 

data:  Tau.Rho.data$region and Tau.Rho.data$lexp 
S = 62860, p-value = 0.1024 

alternative hypothesis: true rho is not equal to 0 

sample estimates: 

rho 
-0.1997594) 

As shown in the results above which is the outcome of the Kendall’s tau (method 
1) and Spearman’s rho (method 2) correlation analysis (Two-tailed) for the example 
dataset (Tau.Rho.data) that we have reported in Fig. 12.11b, c; the meaning of 
the results of the cor.test( ) method or function that we implemented to test the 
association or dependency between the region and lexp variables (stored as R 
objects “Tau.Corr.test” and “Tau.Corr.test”) can be explained as a list 
containing the following: 

Method 1: Kendall’s Tau 

• Statistics: z = −1.6415 denotes the value of the Kendall’s tau correlation 
analysis. 

• p-value: p-value = 0.1007 is the p-value (significance level) of the test. 
• Sample estimates: tau = −0.1632955 is the value of the population 

correlation coefficient.
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Method 2: Spearman’s Rho 

• Statistics: s = 62860 signifies the value of the Spearman’s rho correlation 
analysis. 

• p-value: p-value = 0.1024 is the p-value (significance level) of the test. 
• Sample estimates: rho = −0.1997594 is the value of the population 

correlation coefficient. 

Statistically, we can see that the p-value of both tests, i.e., the Kendall’s tau 
(Tau.Corr.test, z=-1.6415, p=0.1007, method 1) and Spearman’s rho 
(Rho.Corr.test, s=62860, p = 0.1024, method 2) correlation analysis 
(Two-tailed) are conventionally the same (p=0.1) and greater than the stated or scien-
tifically acceptable significance levels (p ≤ 0.05). Therefore, we reject the H1 and 
accept H0 by supposedly concluding that there is no dependency or association 
(correlation) between the two sets of analyzed variables (region and lexp) in the  
example data (two-tailed test). 

Also, as shown in the next results reported below, and in Figs. 12.11b, c for the 
“one-tailed” correlation tests: 

• We checked whether the correlation, if any? (in this case, no) may be a positive 
or negative (direction) correlation by considering the outcomes or output of the 
Kendall’s tau and Spearman’s rho tests, respectively. 

Method 1: Kendall’s Tau Test for Positive or Negative Correlation (One-Tailed) 

> Tau.Corr.test2 <- cor.test(Tau.Rho.data$region, Tau.Rho.data$lexp, 
method = "kendall", alternative = "greater") 

> Tau.Corr.test2 

Kendall's rank correlation tau 

data:  Tau.Rho.data$region and Tau.Rho.data$lexp 

z = -1.6415, p-value = 0.9497 

alternative hypothesis: true tau is greater than 0 

sample estimates: 
tau 

-0.1632955 

> > Tau.Corr.test3 <- cor.test(Tau.Rho.data$region, 
Tau.Rho.data$lexp, method = "kendall", alternative = "less") 

> Tau.Corr.test3 

Kendall's rank correlation tau 

data:  Tau.Rho.data$region and Tau.Rho.data$lexp 

z = -1.6415, p-value = 0.05035 
alternative hypothesis: true tau is less than 0 

sample estimates: 

tau 

-0.1632955)
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Method 2: Spearman’s Rho Test for Positive or Negative Correlation (One-
Tailed) 

> Rho.Corr.test2 <- cor.test(Tau.Rho.data$region, Tau.Rho.data$lexp, 
method = "spearman", alternative = "greater", exact=FALSE) 

> Rho.Corr.test2 

Spearman's rank correlation rho 

data:  Tau.Rho.data$region and Tau.Rho.data$lexp 
S = 62860, p-value = 0.9488 

alternative hypothesis: true rho is greater than 0 

sample estimates: 
rho 

-0.1997594 

> Rho.Corr.test3 <- cor.test(Tau.Rho.data$region, Tau.Rho.data$lexp, 
method = "spearman", alternative = "less", exact=FALSE) 

> Rho.Corr.test3 

Spearman's rank correlation rho 

data:  Tau.Rho.data$region and Tau.Rho.data$lexp 

S = 62860, p-value = 0.05121 

alternative hypothesis: true rho is less than 0 
sample estimates: 

rho 

-0.1997594) 

As gathered in the above results for the “one-tailed” test for positive and nega-
tive correlation (direction test) for the Kendall’s tau (method 1) and Spearman’s rho 
(method 2) tests; we can see that the results of the direction test (one-tailed) based on 
the p-values or estimated significance levels, i.e., p ≤ 0.05, show that there is a nega-
tively directed correlation between the targeted variables (Tau.Corr.test3, p 
= 0.05035) and (Rho.Corr.test3, p = 0.05121), respectively. Indeed, 
this is also reflected in the outcomes of the two-tailed test results (see Fig. 12.11b, 
c), therein we found that the sample estimates or population correlation coefficient 
(ρ) is less than 0, (i.e. Kendall tau, ρ = −0.1632955) and (Spearman rho, ρ = 
−0.1997594), and thus, it can be said in addition to the fact that there was no 
correction or association between the two analyzed variables (region and lexp), that 
a negatively directed correlation exists between the two variables (region and lexp).
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12.4 Summary 

In this chapter, the authors covered and demonstrated to the readers how to conduct 
the three main types of Correlational Analysis in R. This includes the practical 
illustration of how to perform the Pearson cor, Kendall’s tau, and Spearman’s rho 
correlation tests using R. 

We illustrated how to conduct the Pearson correlation test, also known as the 
Pearson product–moment correlation coefficient in Sect. 12.2. While in Sect. 12.3, 
the chapter covered how to perform the Kendall’s tau and Spearman’s rho correlation 
tests. 

Also, the chapter covered in each of the above sections (Sects. 12.2 and 12.3) how  
to graphically plot or visualize the correlation between two specified variables and/ 
or the results of the correlational analysis. The content of the chapter also discussed 
in detail how to interpret and understand the results of the three main tests (Pearson, 
Kendall’s tau, and Spearman’s rho) in R. 

In summary, the main contents covered in this chapter include: 

• Pearson correlation (also known as Pearson Product–moment correlation coeffi-
cient) is a parametric procedure or statistical test of hypothesis used to compare 
the relationship that exists (linearity) between two sets of continuous (usually 
normally distributed) variables. 

• Kendall’s tau (also known as Kendall rank correlation coefficient) is described 
as a non-parametric procedure (distribution-free) or statistical test of hypothesis 
applied by the researchers to measure the strength of dependence or association 
between two categorical or ordinal variable types. 

• Spearman’s rho (also known as Spearman rank correlation coefficient) is equally 
described as non-parametric procedure (distribution-free) or statistical test of 
hypothesis applied by the researchers to measure the degree of association between 
two categorical or ordinal variable types. 

• Both the Kendall’s tau and Spearman’s rho correlation tests are considered as the 
non-parametric versions or alternative to the Pearson’s correlation test. 

When choosing whether to conduct a Pearson, Kendall tau, or Spearman’s rho 
correlation tests? The researcher or data analyst should: 

• Perform the “Pearson correlation” if the targeted variables come from an indepen-
dently sampled population, are normally distributed, in continuous data format, 
and shows or presents to be linearly related when plotted. 

• Perform the “Kendall’s tau or Spearman’s rho” tests if the targeted variables 
come from an independently sampled population, are distribution-free (i.e., non-
normally distributed), and in categorical or ordinal data format. Although it is 
noteworthy to mention that the two tests (i.e., Kendall’s and Spearman’s) can also 
be applied for discrete or interval datasets, as long as the dataset being analyzed 
has violated the test of assumptions such as data normality or homoscedasticity. 

• In any case (be it Pearson, Kendall’s tau, or Spearman’s rho); the researchers 
or data analyst can perform a “one-tailed” correlational analysis to determine
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the direction test (positive or negative) of the linear relationship or association/ 
dependency (if there exist any) between the analyzed variables. 
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Chapter 13 
Wilcoxon Statistics in R: Signed-Rank 
Test and Rank-Sum Test 

13.1 Introduction 

The Wilcoxon test, which is of two types (i) Wilcoxon Signed-rank and (ii) Wilcoxon 
Rank-sum (Wilcoxon, 1945), is a non-parametric test and alternative version of the 
t-test (Rey & Neuhäuser, 2011). The test is mostly applied by the researchers to 
compare two samples by testing whether the median values of the data or variables 
differ significantly from each other. The resultant models assume that the data comes 
from two matched, or dependent populations, following the same distribution through 
time or place (Hayes, 2023). The test (Wilcoxon) can be applied to test the hypothesis 
that the median of a symmetrical distribution equals a given constant. And, as the 
name implies and as with the many other types of non-parametric tests that we have 
also previously covered in this book (see Chaps. 4, 6 and 12); this distribution-free 
test is based on ranks (Rey & Neuhäuser, 2011). It is expected that the indepen-
dent variable in a Wilcoxon test is dichotomous, while the dependent variable is a 
continuous variable whose measurement is at least ordinal. 

The main types and features or summary of the Wilcoxon test include (Hayes, 
2023): 

• The Wilcoxon test compares two paired or independent groups of variable and 
comes in two versions depending on the data groupings or scenario: (i) the rank-
sum test and (ii) signed-rank test. 

• The aim of the tests is to determine if two or more sets of pairs are different from 
one another in a statistically significant manner. 

• Both tests (whether rank-sum or signed-rank) assume that the pairs in the data 
sample come from the same dependent populations. 

• Unlike t-test that calculates the mean difference of two variables, the Wilcoxon 
test is used to calculate the median difference between two variables. 

The “signed-ranked” version of the Wilcoxon test is calculated based on differ-
ences in the samples’ median scores but in addition to it taking into account the signs
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of the differences, thus, takes into consideration the magnitudes of the observed 
differences. As the non-parametric equivalent of the paired t-test, the signed-rank 
can be used as an alternative to the t-test when the population data does not follow 
a normal distribution. 

On the other hand, the Wilcoxon “rank-sum” test is often used as the non-
parametric version or alternative to the independent or two-sample t-test. 

Thus, the Wilcoxon rank-sum test is used to compare two independent samples, 
while Wilcoxon signed-rank test is used to compare two related samples. 

The value of z in a Wilcoxon test is calculated with the following formula: 

ZT = 
T − μT 

σT 

where: 

• T = the sum of values from calculating the ranges of differences in the sample. 

In the next sections of this chapter (Sects. 13.2 and 13.3); the authors will be 
demonstrating to the readers how to conduct the two main types of the Wilcoxon 
test (Signed-rank and Rank-Sum) in R. We will explain and illustrate the different 
steps and functions that are used to perform the test (Wilcoxon) in R by following 
the outlined steps in Fig. 13.1. 

Interpret
Check and interpret the results of the analysis 

Visualize Plot and visualize the data and results for comparison and 
interpretation including export for use 

Analyze Conduct test for assumptions and the Wilcoxon tets in R using the 
supported methods; wilcox.test( ), shapiro.test( ), and var.test( ) 

Data Import and inspect dataset for analysis 

R Packages Install and Load the required R packages for data manipulation, and plot 
visualization; “scales”, "ggplot2", “dplyr”, "reshape2", "plyr", "class" 

Fig. 13.1 Steps to conducting Wilcoxon tests in R



13.2 Signed-Rank Wilcoxon Test in R 281

13.2 Signed-Rank Wilcoxon Test in R 

Signed-Rank Wilcoxon test is used by the researchers to determine the median differ-
ence between two sets of data. It is used when the researchers or data analysts are 
interested in knowing the difference in median between two measures in a sample 
(e.g., pre and post tests, or before and after test). 

By default, the hypothesis for testing whether there is a difference in median of 
the two (paired) data samples in Signed-Rank Wilcoxon tests is; IF the p-value is less 
than or equal to 0.05 (p ≤ 0.05), THEN we assume that the median of the two sets 
of data or group of variables are statistically different and that this is not by chance 
(H1), ELSE IF the p-value is greater than 0.05 (p > 0.05) THEN we can presume that 
there is no difference in the median of the two groups and any potential difference 
could only occur by chance (H0). 

The authors will demonstrate to the readers how to perform the Signed-
Rank Wilcoxon tests used for two paired samples in R using the wilcox.test( ), 
shapiro.test( ) and var.test( ) functions. 

As defined in the previous section (Sect. 13.1), we will do this using the steps 
outlined in Fig. 13.1. 

To begin, Open RStudio and Create a new or open an existing project. Once 
the user has the RStudio and an R Project opened, Create a new R Script and 
name it “Signed-Rank-Wilcoxon” or any name the user may preferably choose (see 
Chaps. 1 and 2 if the user requires to refresh on how to do these steps). 

Now, let’s download an example data that we will use to demonstrate the two 
types of the Wilcoxon tests (Signed-Rank and Rank-Sum) in R. ***Note: the users 
are welcome to use any existing data or format they may wish to use for this illus-
tration or analysis***. The example datasets the authors have used here are only for 
illustration purposes (users can see Chap. 2 for a step-by-step guide on how to work 
with different data types and format in R). 

As shown in Fig. 13.2, download the example file named “exam_grades.csv” 
from the following source (https://www.openintro.org/data/) and save it on the 
local machine or computer. ***Note: the readers can also visit the following 
repository (https://doi.org/https://doi.org/10.6084/m9.figshare.24728073) where the 
authors have uploaded all the example files used in this book to directly access and 
download the file.

Once the user has downloaded the example file (exam_grades.csv) and saved this 
on the local machine or computer, we can proceed to conduct the first Wilcoxon test 
(Signed-Rank Wilcoxon) in R. 

# Step 1—Load the Required R Packages and Libraries 

Install and Load the following R packages and libraries (see Fig. 13.3, Step1, Lines 
3–20) that will be used to call and run the different R functions, data manipulations, 
and graphical visualizations for the Signed-Rank Wilcoxon analysis.

The code and syntax to install and load the required R packages are as follows 
(Fig. 13.3, Step 1, Lines 3–20):

https://www.openintro.org/data/
https://doi.org/
https://doi.org/10.6084/m9.figshare.24728073


282 13 Wilcoxon Statistics in R: Signed-Rank Test and Rank-Sum Test

Fig. 13.2 Example of csv data download for Wilcoxon test. Source https://www.openintro.org/ 
data/

Fig. 13.3 Steps to conducting Wilcoxon test in R

https://www.openintro.org/data/
https://www.openintro.org/data/
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install.packages("ggplot2") 

install.packages("scales") 

install.packages("reshape2") 

install.packages("plyr") 

install.packages("dplyr") 

install.packages("class") 

install.packages("PairedData") 

library(ggplot2) 

library(scales) 

library(reshape2) 

library(plyr) 

library(dplyr) 

library(class) 

library(PairedData) 

library(readxl) 

# Step 2—Import and Inspect the Example Dataset for Wilcoxon Analysis 

As illustrated in Fig. 13.3 (Step 2, Lines 22–32), import the dataset named 
“exam_grades.csv” that we have downloaded earlier, and store this in an R 
object named “Wilcoxon.Data” (remember the users can use any name of they 
may preferably choose if they wish to do so). 

Once the user has successfully imported the dataset, they will be able to view 
the details of the example dataset (exam_grades.csv) stored as R object we named 
“Wilcoxon.Data” in R as shown and highlighted in Fig. 13.4 with 233 observations 
and 6 variables (column) in the data sample. 

Wilcoxon.Data <- read.csv(file.choose()) 

attach(Wilcoxon.Data) 

names(Wilcoxon.Data) 

str(Wilcoxon.Data) 

View(Wilcoxon.Data) 

***Note: a good scientific practice when working with datasets both in R or for 
research purposes is to clean up the dataset for use, e.g., by removing the NA or 
empty cells or values to ensure an accurate and reliable calculation or computation. 
For example, as shown in Step 2 in Fig. 13.3 (see Lines 30 to 32), the authors have 
used the following syntax and code to “remove the NA values” in the stored dataset 
(Wilcoxon.Data).
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Fig. 13.4 Example dataset.csv imported and stored as an R object in R

# Remove NA values in the Example data 

Wilcoxon.Data <- na.omit (Wilcoxon.Data)  

View(Wilcoxon.Data) 

***Now, when you use the view functionView(Wilcoxon.Data) to visualize 
the example dataset again, you will notice that the program has removed the row that 
contain the “NA” value under the “exam1” variable. Consequentially, the user will 
also notice in the Environment Tab that there are now a total of “232 observations” 
and 6 variables (column) in the cleaned data sample (Wilcoxon.Data). 

# Step 3—Conduct Tests for Assumptions and Analyze Data 

As shown in Fig. 13.5 (Step 3A, Lines 34–49), we first conducted the various neces-
sary tests of assumptions (e.g., data normality and homogeneity of variance) for the 
selected items or variables (i.e., “exam1” and “exam2”—see Fig. 13.4) in R before 
proceeding to perform the main analysis (Signed-Rank Wilcoxon test—Step 3B). 
The assumption test done in Step 3A (Fig. 13.4) is to ensure that the data does not
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meet (violates) the data normality or homogeneity of variance condition, which are 
prerequisite to carrying out the non-parametric tests such as the Wilcoxon test. 

The test of assumptions (Step 3A, Fig. 13.5) and Signed-Rank Wilcoxon test 
defined in Step B (see Fig. 13.5, Lines 51–63) is done by using the shapiro.test( ), 
var.test( ), and wilcox.test( ) functions in R. 

As defined in the Introduction section (Sect. 13.1); 

• Signed-Rank Wilcoxon test statistics compares the median for two sets of data 
from a single population but analyzed at different time intervals (e.g., pre and post 
test, before and after, etc.). 

• The targeted variables must be measured in ranked or ordinal scale. Thus, it is 
assumed that the independent variable in a Wilcoxon test is dichotomous, and 
the dependent variable is a continuous variable whose measurement is at least 
ordinal. 

To illustrate the Signed-Rank Wilcoxon test using the example dataset we stored 
as “Wilcoxon.Data” (see: highlighted columns in Fig. 13.4) we will:

1. Test whether the median of the grades for the “exam1” variable is equal to the 
median of the “exam2” variable in the dataset? (two-tailed test).

Fig. 13.5 Conducting signed-rank Wilcoxon test in R 
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2. Test whether the median of the “exam1” grades is less than the median of the 
“exam2”? (one-tailed test). 

3. Test whether the median of the “exam1” grades is greater than the median of 
the “exam2”? (one-tailed test). 

Accordingly, the syntax to performing the above-listed tests in R (see Fig. 13.5, 
Steps 3A and 3B, Lines 34–63) are as shown in the codes below: 

# Assmp1: Shapiro-Wilk's test for data normality of the two variables  

shapiro.test(Wilcoxon.Data$exam1) 

shapiro.test(Wilcoxon.Data$exam2) 

# Assmp2: F-test for homogeneity in variances. function var.test()  

homogeneity.ftest_3 <- var.test(exam1, exam2, data = Wilcoxon.Data) 

homogeneity.ftest_3 

# Assmp3: Factor variables from numeric to ranked or ordinal variable 

Wilcoxon.Data$exam1 <- as.numeric(Wilcoxon.Data$exam1) 

Wilcoxon.Data$exam1 <- as.factor(Wilcoxon.Data$exam1) 

Wilcoxon.Data$exam2 <- as.numeric(Wilcoxon.Data$exam2) 

Wilcoxon.Data$exam2 <- as.factor(Wilcoxon.Data$exam2) 

#Perform Signed-Rank Wilcoxon tests 

# Signed-Rank Wilcoxon Test where variables are factor or categorical (Two-tailed) 

WilcoxonSignedModel1 <- wilcox.test(`exam1`, `exam2`, mu=0, alt="two.sided", 

paired=TRUE, conf.int=TRUE, conf.level=0.95, exact=F, correct=F) 

WilcoxonSignedModel1 

# Test whether Ave. median of exam1 is less than the Ave. median of exam2 (One-tailed) 

WilcoxonSignedModel2 <- wilcox.test(`exam1`, `exam2`, mu=0, alt="less", paired=TRUE, 

conf.int=TRUE, conf.level=0.95, exact=F, correct=F) 

WilcoxonSignedModel2 

# Test whether Ave. median of exam1 is greater than the Ave. median of exam2 (One-tailed) 

WilcoxonSignedModel3 <- wilcox.test(`exam1`, `exam2`, mu=0, alt="greater", 

paired=TRUE, conf.int=TRUE, conf.level=0.95, exact=F, correct=F) 

WilcoxonSignedModel3 
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Useful Tip: 

• As described in the codes and figure above (Fig. 13.5), the users are 
always required to specify the paired = TRUE option when conducting the 
Signed-Rank Wilcoxon test, which represents as the alternative (non-parametric 
equivalent) to the Paired Sample t-test. 

• Use the alt = “less” and alt = “greater” options to specify a “one-
tailed” t-test. 

Once the user has successfully run the codes defined inSteps 3A and 3B (Lines 34– 
63) in Fig. 13.5, they will be presented with the results of the “tests for assumptions” 
(Step 3A) and the “Signed-Rank Wilcoxon test” (Step 3B) in the Console as shown 
in Figs. 13.6a and b, respectively. 

In Fig. 13.6a which represents as the result or outcome of Step 3A (see: Fig. 13.5), 
we conducted the different necessary assumptions tests for the Wilcoxon test in order 
to determine if the available dataset and variables are valid to perform the test. 

As highlighted in the figure (Fig. 13.6a), the normality test (Assmp1) by using 
the Shapiro–Wilk’s method shapiro.test( ) whereby we hypothetically assume that a

a 

Fig. 13.6 a Results of data normality and homogeneity of variance test displayed in the console in 
R. b Results of signed-rank Wilcoxon test displayed in Console in R
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b 

Fig. 13.6 (continued)

score of p-value > 0.05 is normal, shows that the distribution of the two sets of data or 
variables (i.e., “exam1” where W=0.96602, p-value=2.419e-05, and 
“exam2” where W=097513, p-value=0.0004188) are not normality 
distributed. 

Also, the homogeneity of variance test (Assmp2) for the two variables (exam1 
and exam2) using  the  var.test( ) method, whereby we assume that a value of p > 0.05 
indicates equality in variance, shows that there is difference in the variance for the 
two variables (exam1, exam2) with p-value=0.0009178 and F=0.64534. 

Thus, we presume that the data normality and assumption of equality in variance 
are not met, and proceed to conduct the Signed-rank Wilcoxon test. 

Consequently, Fig. 13.6b is the result of the Signed-Rank Wilcoxon test and 
statistics as described in Step 3B in Fig. 13.5 (Lines 51–63). 

As reported in Fig. 13.6b, we conducted the Signed-Rank Wilcoxon test by testing 
the median differences for the two target variables (exam1, exam2). The results of 
the test were stored in an R object we defined as “WilcoxonSignedModel1” 
for the two-tailed analysis, and “WilcoxonSignedModel2” and 
“WilcoxonSignedModel3” for the one-tailed analysis, respectively. The 
meaning of the results is discussed in detail in Step 5 in this section.
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Fig. 13.7 Plot for median difference for two paired group of variables in R 

# Step 4—Plot and Visualize the Mean Differences for the Two Paired Variables 

Another good way to determine the median differences between two variables is to 
graphically plot or represent it. As defined in Step 4 in Fig. 13.5 (Lines 66–69) and the 
resultant chart represented in Fig. 13.7; the authors graphically represented or visu-
alized the median between the two paired groups of variables (exam1, exam2) 
in the example dataset “Wilcoxon.Data” by plotting them using the paired( ) and 
boxplot( ) functions in R. 

The code used to plot the median of the two variables (exam1, exam2) is as  
shown below, and the resultant graph is as presented in Fig. 13.7. 

# Visualize median differences for paired groups of data 
pairedSample <- paired(exam1, exam2) 

boxplot(pairedSample, type = "profile") + theme_bw() 

# Step 5—Results’ Interpretation for Signed-Rank Wilcoxon Test 

The final step for the “Signed-Rank Wilcoxon” test statistics is to interpret and 
understand the results of the analysis. 

By default, the hypothesis for conducting the test (Signed-Rank Wilcoxon) is; 
IF the p-value is less than or equal to 0.05 (p ≤ 0.05), THEN we assume that the 
median of the two set of variables or analyzed data are statistically different and not 
by chance (H1), ELSE IF the p-value is greater than 0.05 (p > 0.05) THEN we can 
say that there is no difference in the median of the two sets of data (H0).
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> WilcoxonSignedModel1 

 Wilcoxon signed rank test 

data:  exam1 and exam2 
V = 20686, p-value = 6.842e-14 
alternative hypothesis: true location shift is not equal to 0 
95 percent confidence interval: 
6.499942 10.299996 

sample estimates: 
(pseudo)median  
        8.4285  

As reported in the above statistics and outcome of the Wilcoxon test (Signed-
Rank)—Figs. 13.6b; the meaning of the results of the test by using the wilcox.test( ) 
function in R can be explained as a list containing the following: 

• Statistics: v = 20686 which denotes the value of the t-test analysis. 
• p-value: p-value = 6.842e-14 is the significance level of the test. 
• Confidence interval: Conf.Int(95%, 6.499942 10.299996) repre-

sents the confidence interval for the median assumed to be appropriate to the 
specified alternative hypothesis. 

• Sample estimates: (pseudo)media = 8.4285 is the estimated median 
of the two groups of variables, e.g., compared by considering the two variables 
(exam1, exam2). 

Accordingly, the outcome of the wilcox.test( ) function used for the Two-tailed 
Singed-Rank test or model (WilcoxonSignedModel1) shows that there exist 
a difference in the median between the two sets of analyzed variable (exam1, 
exam2). The p-value for the “Two-tailed” test was statistically found to be 
p=6.842e-14 (V=20686), which is significantly less than the scientifically 
accepted levels (p ≤ 0.05). Therefore, we conclude that there is a significant differ-
ence between the median of the two sets of exam grades (exam1, exam2) across 
the analyzed period or data. 

Furthermore, as gathered in the results for the one-tailed Signed-Rank 
tests described below (see Fig. 13.6b); 

• In our analysis, we also checked whether the median of the “exam1” variable is 
less than the median of the “exam2” (WilcoxonSignedModel2). 

• Then checked whether the median of the “exam1” is  greater than the median of 
the “exam2” (WilcoxonSignedModel3).



13.2 Signed-Rank Wilcoxon Test in R 291

> WilcoxonSignedModel2 

Wilcoxon signed rank test 

data:  exam1 and exam2 

V = 20686, p-value = 1 

alternative hypothesis: true location shift is less than 0 
95 percent confidence interval:

-Inf 10.00006 

sample estimates: 
(pseudo)median 

8.4285 

> WilcoxonSignedModel3 

Wilcoxon signed rank test 

data:  exam1 and exam2 

V = 20686, p-value = 3.421e-14 

alternative hypothesis: true location shift is greater than 0 
95 percent confidence interval: 

6.750027      Inf 

sample estimates: 
(pseudo)median 

8.4285 

In the results of the one-tailed tests presented above, we can see that when we 
analyzed whether the median of the “exam1” variable is less than the median of the 
“exam2” that there was no significant difference (WilcoxonSignedModel2, 
V=20686, p=1). But when we analyzed whether the median of the “exam1” 
is greater than the median of the “exam2” there was a significant difference 
(WilcoxonSignedModel3, V=20686, p=3.421e-14) (i.e., p ≤ 0.05). 
Therefore, it can be said from the results of the one-tailed Wilcoxon tests that the 
median of the “exam1” is  greater and not less than the median of the “exam2” 
grades which was statistically differenced (sample estimates) by margin of 8.4285 
(pseudo median of the differences) presented in both tests (one-tailed). 

Therefore, in summary, we can statistically say that there was a significant differ-
ence or variation in the median of the grades or targeted variables (exam1 and exam2) 
across the periods of the exams based on the example dataset that we stored as 
“Wilxoxon.Data” in R. For example, this result suggests a change in the grades of 
the students or participants across those periods. Moreover, the average median of the 
“exam1” represents to be greater (and not less) than the median of the “exam2” in  
the analyzed data.
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13.3 Rank-Sum Wilcoxon Test in R 

Rank-Sum Wilcoxon test (also referred to as the non-parametric equivalent or alter-
native to the “Unpaired” or “Two-sample” or “Independent-sample” t-test) is used 
when the dataset the researcher or data analysts wants to analyze are of two types 
or sample, and are statistically independent. In essence, the “Rank-Sum Wilcoxon 
test” is used to compare the median of two independent groups of variables or data 
samples. As the non-parametric equivalent of the Independent sample t-test, it (Sum-
Rank) allows the researchers to compare the median of two distinctive sets of data 
randomly drawn from two different populations, when the dataset in question violates 
the necessary conditions to perform the Independent sample t-test or is said to contain 
outliers. 

By default, the hypothesis for testing whether there is a difference in median of 
the two (independent) data samples is; IF the p-value is less than or equal to 0.05 
(p ≤ 0.05), THEN we assume that the median of the two sets of data or groups of 
population in the sample are statistically different and that this is not by chance (H1), 
ELSE IF the p-value is greater than 0.05 (p > 0.05) THEN we can presume that there 
is no difference in the median of the two groups of data and any difference observed 
could only occur by chance (H0). 

In this section, the authors will demonstrate to the readers how to conduct the 
Rank-Sum (unpaired sample) Wilcoxon test in R using the shapiro.test( ), var.test( ) 
and wilcox.test( ) functions in R. 

As defined earlier in the previous section (Sect. 13.1), we will do this by using 
the computational steps outlined in Fig. 13.1. 

To begin, Create a new or open an existing R project. Once the user has the 
RStudio and an R Project opened, Create a new R Script and name it “Sum-Rank-
Wilcoxon” or any name the user may preferably choose (see Chaps. 1 and 2 for 
step-by-step guide on how to do these steps if required). 

Next, we will continue to use the example dataset (exam_grades.csv) (see 
Figs. 13.2 and 13.4) that we downloaded earlier and stored as R object we named or 
defined as “Wilcoxon.Data” in R to illustrate the Rank-Sum Wilcoxon test. ***Note: 
the readers can refer to the following repository (https://doi.org/https://doi.org/10. 
6084/m9.figshare.24728073) where the authors have uploaded all the example files 
used in this book or if they have not practiced the previous example the authors 
presented in Sect. 13.2. 

# Step 1—Install and Load the Required R Packages 

Since we have previously installed the necessary R packages in our previous example 
in Sect. 13.2, we do not necessarily need to install the different R packages again, 
rather we just need to “load” the libraries for the necessary packages (see Lines 12 
to 18, Step 1, Fig. 13.8). However, if the user has directly visited this section or has 
exited or not practiced the previous example in Sect. 13.2, then they would need 
to “Install and load” the necessary R packages as defined in Lines 5–18 in Step 1 
(Fig. 13.8).

https://doi.org/
https://doi.org/10.6084/m9.figshare.24728073
https://doi.org/10.6084/m9.figshare.24728073
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Fig. 13.8 Steps to conducting Rank-Sum Wilcoxon test in R 

Depending on the users case scenario, Install or Load the following R packages 
and libraries (Fig. 13.8, Step 1), that we will be using to call the different R functions, 
data manipulations, and graphical visualizations for the Rank-Sum Wilcoxon test. 

The code and syntax to install and load the required R packages are as follows: 

install.packages("ggplot2") 
install.packages("scales") 
install.packages("reshape2") 
install.packages("plyr") 
install.packages("dplyr") 
install.packages("class") 

library(ggplot2) 
library(scales) 
library(reshape2) 
library(plyr) 
library(dplyr) 
library(class) 
library(readxl) 
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# Step 2—Import and Inspect Example Dataset for Analysis 

As illustrated in Step 2 in Fig. 13.8 (Lines 20–30); import and/or load the dataset 
named “exam_grades.csv” which we have previously downloaded and stored as an 
R object we named “Wilcoxon.Data” in R (see Figs. 13.2 and 13.4). 

Depending on whether the user has continued in our previous example, or has 
exited or visited this particular section; the code to import and/or attach the example 
dataset is provided below: 

Wilcoxon.Data <- read.csv(file.choose()) 

attach(Wilcoxon.Data) 

names(Wilcoxon.Data) 

str(Wilcoxon.Data) 

View(Wilcoxon.Data) 

# Remove NA values in Example dataset 
Wilcoxon.Data <- na.omit(Wilcoxon.Data)  

View(Wilcoxon.Data)  

Once the user has successfully imported or loaded the dataset, you will be able to 
view the details of the dataset (exam_grades.csv) stored as R object “Wilcoxon.Data” 
in the R environment as shown in Figs. 13.2 and 13.4, respectively, with 233 
observations and 6 variables (column) in the data sample. 

# Step 3—Conduct Tests for Assumptions and Analyze Data 

Now that we have imported the dataset and/or loaded it ready for analysis 
(Wilcoxon.Data), we can proceed to analyze the data. 

As defined in Step 3A in Fig. 13.8 (Lines 32–46), we first conducted the various 
necessary tests of assumptions (e.g., data normality and homogeneity of variance) 
for the chosen items or variables (i.e., “sex” and “exam1”—see Fig. 13.4) in R  
before proceeding to perform the analysis (Rank-Sum Wilcoxon test – Step 3B). The 
assumption tests we performed in Step 3A (Fig. 13.8) are to ensure that the data does 
not meet or violate the data normality or homogeneity of variance condition which 
are preconditions to carrying out the non-parametric tests, such as the Wilcoxon test. 

The test of assumptions (Step 3A, Fig. 13.8) and Rank-Sum Wilcoxon test 
described in Step B (see Fig. 13.9, Step 3B, Lines 48–60) is performed by using 
the shapiro.test( ), var.test( ), and wilcox.test( ) functions in R.

As defined earlier in the Introduction section (Sect. 13.1); 

• Rank-Sum Wilxocon test compares the median for two independently sampled 
groups from two different population whereby the two variables under consider-
ation are independent of each other. 

• The targeted grouping “independent” variable (x) is often a dichotomous or binary 
type, while the y variable is continuous with at least ordinal scale measurement.
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Fig. 13.9 Conducting Rank-Sum (Unpaired) Wilcoxon Test in R

To illustrate this test (Rank-Sum) using the example dataset “Wilxocon.Data” in 
R (see: highlighted columns in Fig. 13.4) we will: 

1. Test whether the median of the group A (Man) of the “sex” variable is equal to 
the mean of the group B (Woman) of the “sex” variable considering the “exam1” 
period in the data? (two-tailed test) 

2. Also, we will check whether the median of the group A (Man) is less than the 
median of group B (Woman) in the “sex” variable? (one-tailed test) 

3. Then we will check whether the median of group A (Man) is greater than the 
median of group B (Woman) in the “sex” variable? (one-tailed test) 

The syntax and code to perform the above tests in R (see Fig. 13.9, Steps 3A and 
3B, Lines 32–60) is as shown in the codes provided below:
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Test of Assumption (Step 3A): 

# Assmp1: Shapiro-Wilk test for data normality - Sex (Man, Woman) vs exam1 

with(Wilcoxon.Data, shapiro.test(exam1[sex == "Man"])) 

with(Wilcoxon.Data, shapiro.test(exam1[sex == "Woman"])) 

# Assmp2: F-test for homogeneity in variances. function var.test()  

homogeneity.ftest4 <- var.test(exam1 ~ sex, data = Wilcoxon.Data) 

homogeneity.ftest4 

# Assmp3: Factor variables from numeric to ranked or ordinal variable 

Wilcoxon.Data$exam1 <- as.numeric(Wilcoxon.Data$exam1) 

Wilcoxon.Data$exam1 <- as.factor(Wilcoxon.Data$exam1) 

Wilcoxon.Data$sex <- as.factor(Wilcoxon.Data$sex) 

Perform Rank-Sum Wilcoxon Test (Step 3B): 

# Rank-Sum Wilcoxon Test where variable is dichotomous and at least ordinal (Two-tailed) 

WilcoxonRankSumModel1 <- wilcox.test(`exam1` ~ `sex`, mu=0, alt="two.sided", 

paired=FALSE, conf.int=TRUE, conf.level=0.95, exact=F, correct=F) 

WilcoxonRankSumModel1 

# Test whether Ave. median of sex variable is less than the Ave. median of exam1 (One-tailed) 

WilcoxonRankSumModel2 <- wilcox.test(`exam1` ~ `sex`, mu=0, alt="less", 

paired=FALSE, conf.int=TRUE, conf.level=0.95, exact=F, correct=F) 

WilcoxonRankSumModel2 

# Test whether Ave. median of sex variable is greater than the Ave. median of exam1 (One-

tailed) 

WilcoxonRankSumModel3 <- wilcox.test(`exam1` ~ `sex`, mu=0, alt="greater", 

paired=FALSE, conf.int=TRUE, conf.level=0.95, exact=F, correct=F) 

WilcoxonRankSumModel3 
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Useful Tips 

• As shown and illustrated in the code and figure above (Fig. 13.9), the users must 
always use the paired = FALSE option to specify the Rank-Sum (unpaired) 
Wilcoxon test. 

• Whereas the paired = TRUE option is used to specify the Signed-Rank 
(paired) Wilcoxon test (which the authors have covered in the previous Sect. 13.2). 

• Users need to use the exact = F and correct = F options to specify 
unequal variances for both the Signed-Rank and Rank-Sum Wilcoxon test or 
analysis. 

• Then use the alt = “less” and alt = “greater” option to specify a 
“one-tailed” Wilcoxon analysis. 

Accordingly, once the user has successfully run the codes as defined in Steps 3A 
and 3B (see Fig. 13.9, Lines 32–60), they will be presented with the results of the 
“tests for assumptions” (Step 3A) and the “Rank-Sum Wilcoxon test” in the Console 
as shown in Figs. 13.10a and b, respectively. 

In Fig. 13.10a, which represents the outcome of the Step 3A (see Figs. 13.8 and 
13.9); we conducted the different tests for assumptions for the Rank-Sum Wilcoxon 
test in order to determine if the analyzed dataset is fitting and valid for the test 
(Independent Samples t-test). In other words, whether the dataset in question does 
not meet the criteria to perform the parametric test or version (i.e., Independent 
Sample t-test).

As highlighted in the figure (Fig. 13.10a), we can see that the normality test 
(Assmp1) by using the shapiro.test( ) method (where we assume a value of p > 0.05 is 
normal) shows that the distribution of the two groups of the independent variable (i.e., 
Man and Woman of the “sex”) are not normality distributed when analyzed against 
the “exam1” variable, which is the second targeted variable in our analysis, whereby 
(exam1[sex == “Man”], p-value=0.0004686, W=0.96992) and (exam1[sex == 
“Woman”], p-value=0.01099, W=0.93194), respectively. 

Also, in the second assumption test (Assmp2, Fig. 13.10a); we tested the homo-
geneity of variance for the two targeted variables (exam1 ~ sex) using  the  var.test( ) 
method, whereby we assume that a value of p > 0.05 indicates that “equality in 
variance” is met. Consequentially, as highlighted in Fig. 13.10a, we note that there 
are slightly differences (i.e., close to equality of variance being met) in the vari-
ance for the two sets of analyzed variables with p=0.06007. and F = 0.65852, 
respectively. 

Thus, with no data normality met and the slight differences in homogeneity of 
variance, we can proceed to conduct the “Rank-Sum Wilcoxon test” as defined in 
Step 3B (Fig. 13.9) and the results represented in Fig. 13.10b. 

As gathered the results presented in Fig. 13.10b, we conducted the Rank-
Sum (Two-sample) Wilcoxon test by considering the two variables (exam1 
~ sex). The results of the tests are stored in R object we named or 
defined as “WilcoxonRankSumModel1” for  the  two-tailed analysis, and 
“WilcoxonRankSumModel2” and “WilcoxonRankSumModel3” for  the  
one-tailed analysis, respectively. The meaning of the results is interpreted in detail 
in Step 5 described in this section.
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Fig. 13.10 a Results of data normality and homogeneity of variance tests displayed in the console 
in R. b Result of rank-sum (two-sample or unpaired) Wilcoxon test in R
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# Step 4—Plot and Visualize the Median Differences for Two (Independent) 
Variables 

As illustrated previously in Sect. 13.2, another great way to check whether there is a 
difference in median of the two independent group of variables (e.g., sex and exam1) 
is by plotting them as graph. By so doing, the users will be able to visualize the 
difference in the median (if any) between the two data sample. 

To do this, in Step 4 in Fig. 13.9 (Lines 62–69) and the resultant chart repre-
sented in Fig. 13.11; the authors used the ggplot( ) function in R to visualize the 
median between the two groups of variables “sex” (Man, Woman) by taking into 
account or plotting it against the second variable “exam1” in the example data 
“Wilcoxon.Data”. 

The code and syntax used in plotting the median for the two variables is shown 
in the code below, and the resultant chart is as represented in Fig. 13.11. 

# Visualize Median Difference for Two Independent (Unpaired) Variables 

ggplot(Wilcoxon.Data, aes(x = sex, y = exam1, fill = sex), ylim = c(45, 100)) + 
stat_boxplot(geom ="errorbar", width = 0.5) + 
geom_boxplot(fill = "light blue") +  
stat_summary(fun = mean, geom="point", shape=10, size=3.5, color="dark blue") +  
ggtitle("Distribution (Median) of exam1 by sex (Man, Woman)") +  
theme_bw() + theme(legend.position="none") 

Fig. 13.11 Plotting the median differences for two sets of independent variables in R using the 
ggplot() function 
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# Step 5—Results’ Interpretation (Sum-Rank Wilcoxon Test) 

The final step for the Sum-Rank Wilcoxon test or statistics is to interpret and 
understand the results of the test. 

By default, the hypothesis for conducting the test (Sum-Rank Wilcoxon) is; IF 
the p-value is less than or equal to 0.05 (p ≤ 0.05), THEN we assume that the median 
of the two sets of data or groups of variables is statistically different and that this is 
not by chance (H1), ELSE IF the p-value is greater than 0.05 (p > 0.05) THEN we 
can conclude that there is no difference in the median of the two sets of variable and 
that any difference observed may only occur by chance (H0). 

> WilcoxonRankSumModel1 <- wilcox.test(`exam1` ~ `sex`, mu=0, 
alt="two.sided", paired=FALSE, conf.int=TRUE, conf.level=0.95, exact=F, 
correct=F) 

> WilcoxonRankSumModel1 

Wilcoxon rank sum test 

data:  exam1 by sex 

W = 4472, p-value = 0.5129 
alternative hypothesis: true location shift is not equal to 0 

95 percent confidence interval:

-2.500016  5.000012 
sample estimates: 

difference in location 

1.285688% 

As shown in the results of the test presented above or the outcome of the Rank-
Sum Wilcoxon test (WilcoxonRankSumModel1) (see (Fig. 13.10b); the meaning 
of the results of the Rank-Sum test for the two-tailed (exam1 ~ sex) by using  the  
wilcox.test( ) function in R can be explained as a list containing the following: 

• Statistics: w = 4472, which denotes the value of the Rank-Sum test statistics. 
• p-value: p-value = 0.5129 is the p-value or significance level of the test. 
• Confidence interval: Conf.Int(95%, -2.500016 5.000012) repre-

sents the confidence interval for the median assumed to be appropriate to the 
specified alternative hypothesis. 

• Sample estimates: 1.285688 is the median difference in location between the 
two groups of data or population that is compared considering the two variables 
(exam1 ~ sex). 

As seen in the results described above, statistically it can be said that the p-
value of the Rank-Sum Wilcoxon test (WilcoxonRankSumModel1), i.e., the two-
tailed analysis, is p=0.5129. As we can see, the p-value of the test is greater 
than the scientifically acceptable significance levels (p ≤ 0.05). Therefore, we can 
statistically conclude that there is no statistically significant difference between the 
medians of the two groups of data (Man vs Woman) of the “sex” variable taking 
into account the “exam1” grades of the students or participants in the analyzed data. 
In other words, the median of the group A (Man) of the “sex” variable is equal to
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the median of group B (Woman) of the “sex” when analyzed against the “exam1” 
grades (two-tailed test). 

Furthermore, as shown in the next results for the “one-tailed” Rank_Sum tests 
presented below and as reported in Fig. 13.10b. 

– We also checked whether the median of the group A (i.e., Man) is 
less than the median of the group B (Woman) of the “sex” variable 
(WilcoxonRankSumModel2), and 

– Whether the median of the group A (Man) is greater than the median of group 
B (Woman) of the “sex” variable (WilcoxonRankSumModel3), respectively. 

> WilcoxonRankSumModel2 <- wilcox.test(`exam1` ~ `sex`, mu=0, 
alt="less", paired=FALSE, conf.int=TRUE, conf.level=0.95, exact=F, 
correct=F) 
> WilcoxonRankSumModel2 

Wilcoxon rank sum test 

data:  exam1 by sex 
W = 4472, p-value = 0.7436 

alternative hypothesis: true location shift is less than 0 

95 percent confidence interval:

-Inf  4.499905 
sample estimates: 

difference in location 

1.285688 

> WilcoxonRankSumModel3 <- wilcox.test(`exam1` ~ `sex`, mu=0, 
alt="greater", paired=FALSE, conf.int=TRUE, conf.level=0.95, exact=F, 
correct=F) 

> WilcoxonRankSumModel3 

Wilcoxon rank sum test 

data:  exam1 by sex 

W = 4472, p-value = 0.2564 

alternative hypothesis: true location shift is greater than 0 
95 percent confidence interval:

-1.999974 Inf 

sample estimates: 
difference in location 

1.285688 

As gathered in the above results of the one-tailed tests 
(WilcoxonRankSumModel2, where W=4472, p=0.7436; and 
WilcoxonRankSumModel3, where W=4472, p=0.2564), we can see 
that there are no significant differences in the medians of the two groups of data 
(i.e., the value of p-value is above the threshold of p ≤ 0.05, and the difference 
in location (sample estimates) = 1.285688), as also evidenced
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in the result of the “two-tailed test (see Fig. 13.10b). Therefore, we can statistically 
conclude that there are no differences in the median of the scores for the group of 
Men vs Women in the “exam1” variable. 

13.4 Summary 

In this final chapter of the book and PART II, the authors illustrated to the readers how 
to conduct the two main types of Wilcoxon test (Signed-Rank and Rank_Sum) in R. 
In Sect. 13.2, we explained and practically illustrated how to perform the Signed-
rank (paired) Wilcoxon test. While Sect. 13.3 covers how to conduct the Rank-Sum 
(unpaired or two-sample) Wilcoxon test. 

The chapter also covered how to graphically plot the median of the different 
analyzed variables in the data and/or results of the Wilcoxon tests. In addition, it 
discussed in detail how to interpret and understand the results of the two main types 
of the Wilcoxon tests (Signed-Rank and Rank_Sum) in R. 

To summarize the contents of this chapter: 

• Wilcoxon test is one of the inferential (non-parametric) statistics that are used 
for hypothesis testing, and for determining if there are any significant differences 
(where applicable) between the medians of two independent groups of data or 
paired variables in a given data sample. 

When choosing whether to conduct the ”Signed-Rank“ or ”Rank-Sum“ Wilcoxon 
test? The researcher or data analyst should: 

• Perform “Signed-Rank (paired) Wilcoxon test” if the targeted group or variable 
comes from a single population but is analyzed at different time intervals (e.g., pre 
and post tests, before and after an intervention or treatment for the same group of 
people, place, or thing, etc). It is also important to mention that this test (Signed-
Rank) is done when the dataset in question violates the necessary conditions 
or assumptions for conducting the Paired-Sample t-test. Thus, is (Signed-Rank) 
considered as the non-parametric alternative to the parametric Paired-sample t-
test. 

• Perform the “Rank-Sum (independent or two sample) Wilcoxon test” if the groups 
of data to be analyzed come from two different populations (i.e., are statisti-
cally independent). For example, two different categories of people, thing or 
place (gender: male and female, state: on and off, region: north and south, etc.). 
In addition, it is also important to mention that the test (Rank-Sum) is done 
when the dataset in question violates the necessary conditions or assumptions for 
conducting the Independent Sample t-test. Thus, is (Rank-Sum) considered as the 
non-parametric alternative to the parametric Independent-sample t-test.
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Finally, the users will need to perform the “two-tailed” test or statistics, if they 
only want to determine whether the median of the two data samples is different from 
one another. Whereas, on the other hand, they will require to perform a “one-tailed 
test” if their goal includes also to determine whether the median of a specific sample 
or variable is less than or greater than the median of another variable, as the case 
may be. 
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Epilogue and Conclusion 

Achievements of This Book 

First and foremost, the goal of this book is to provide a textbook and manual for R 
statistics applied for academic research, data analytics, and computer programming. 

It provides information about the different types of statistical data analysis and 
methods, and the best scenarios for use of each case in R. 

It gives a hands-on step-by-step practical guide on how to identify and perform 
the different parametric and non-parametric procedures mostly used in social science 
research. This includes a description of the different conditions or assumptions that 
are necessary to perform the different statistical tests, and how to understand the 
results of the various methods. 

This book also covers the different types of data formats and sources, and how to 
test for the reliability and validity of the available datasets e.g for research. 

Different research experiments, case scenarios, and examples are explained in this 
book. 

It is the first book to provide a comprehensive description and step-by-step prac-
tical hands-on guide on how to carry out the different types of statistical analysis 
in R particularly for research purposes with examples. Ranging from how to import 
and store datasets in R as objects, how to code and call the different R methods 
and functions for manipulating the datasets or objects, factorization, and vectoriza-
tion, to better reasoning, interpretation, and storage of the results for future use, and 
graphical visualizations and representations. 

Bringing in perspectives both from the authors’ background in the fields of 
Computer Science and Education, to the several workshops delivered on Research 
Methods, Statistical Data Analysis and Data Collection topics, to the hands-on prac-
tical implementation of the statistical methods in the form of scientific research 
studies and experiments; the insightful analysis and practical guidelines provided 
by the authors in this book serves as a Reference Source Material for both the

© The Editor(s) (if applicable) and The Author(s), under exclusive license 
to Springer Nature Singapore Pte Ltd. 2024 
K. Okoye and S. Hosseini, R Programming, 
https://doi.org/10.1007/978-981-97-3385-9 

305

https://doi.org/10.1007/978-981-97-3385-9


306 Epilogue and Conclusion

Educational community (Teachers, PhD Students, Researchers, Libraries) and Indus-
trial experts (Statisticians, Professionals, programmers, Software Developers, Data 
Analysts) who are interested in using R for Statistical Data Analysis or Research 
purposes. 

Thus, the congruence of Statistics and Computer Programming for Research.
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