
Wei Weng

A Beginner’s Guide
to Informatics
and Artificial
Intelligence
A Short Course Towards Practical
Problem Solving

A Beginner’s Guide to Informatics and Artificial
Intelligence

Wei Weng

A Beginner’s Guide
to Informatics and Artificial
Intelligence
A Short Course Towards Practical Problem
Solving

Wei Weng
Institute of Liberal Arts and Science
Kanazawa University
Kanazawa, Ishikawa, Japan

ISBN 978-981-97-1476-6 ISBN 978-981-97-1477-3 (eBook)
https://doi.org/10.1007/978-981-97-1477-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Singapore Pte Ltd. 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

Paper in this product is recyclable.

https://doi.org/10.1007/978-981-97-1477-3

Preface

Background and Purpose

In today’s technology-driven world, computer science, artificial intelligence (AI), and
data science have emerged as foundational pillars that shape our digital landscape.
As these fields continue to evolve and weave themselves into every aspect of our life,
it is becoming increasingly essential for individuals from all walks of life to gain a
solid understanding of their fundamentals.

The purpose of this book is to unlock the seemingly mysterious domains of
computer science, AI, and data science, particularly for those who are taking their
first steps into this realm. While these domains might appear intimidating at first
glance, they possess an inherent beauty and logic that can be understood by anyone
with the right guidance.

We created this book to enable swift transformation from a novice to a problem
solver by providing a seamless learning experience from introducing basic concepts
to engaging learners in practical problem-solving exercises. This carefully selected
and designed course spanning seven to nine classes ensures that busy individuals can
grasp the essentials swiftly and efficiently.

Whether your aim is to pursue a career in technology, undertake research projects,
or simply understand the workings of the digital age, this book lays a sturdy founda-
tion upon which you can build. As you progress in your studies and pursuit, we hope
that the knowledge and skills gained from this book will enable you to contribute to
the future of the exciting discipline of information science and AI.

Topics and Organization of Contents

This book covers a wide range of topics including computer, flowchart, time
complexity, mathematical modeling, genetic algorithm, machine learning, network,
database, and information security.

v

vi Preface

The organization of contents is as follows. We start from the underlying mecha-
nisms of computers, how they process and store information, and the fundamental
principles of logic operations (Chap. 1). This lays the groundwork for the subsequent
exploration of problem solving and algorithmic thinking. We then introduce flowchart
(Chap. 2), a commonly used method to show technical processes such as programs
and algorithms. By highlighting the relations between programs, flowcharts, and
time complexity, we move to computation efficiency (Chap. 3), which underlies the
importance of applying AI algorithms.

Then we guide learners to use AI algorithms for problem solving by showing
how to build models and encode solutions (Chap. 4) and apply genetic algorithm as
an example (Chap. 5). Through clear explanations, vivid examples, and illustrative
flowcharts, we ensure that each step is not only understood but also embraced. After
that, we introduce machine learning (Chap. 6), another popular AI branch where
we focus on neural network. We show how a neuron can produce various outcomes
according to need by giving step-to-step examples.

After our journey in the AI realm, we introduce network (Chap. 7), database
(Chap. 8), and information security (Chap. 9) by showing the backbones of these
modern technologies.

For each topic, we provide questions to activate learners’ thinking and hands-on
exercises for learners to gain practical experience. We give instructions and guidance
for the exercises. Through guided problem-solving, we empower learners to think
systematically and algorithmically, raising their ability in creation and coping with
difficulties.

Features of this Book

1. Beginner-friendly: this book is tailored specifically for beginners in informatics
and AI, making it accessible to individuals with no prior technical background.

2. Concise and condensed: this book is designed for an accelerated curriculum
where time is limited but the goal is to transform beginners to part of the intelligent
future. We have carefully crafted the content to be concise and condensed without
compromising on clarity or depth of the material, ensuring that learners will
receive a well-rounded education that can serve as a strong foundation for their
future pursuits.

3. Integration of information science and AI: this book covers a wide range of topics
from basic computer concepts to advanced AI techniques. By combining these
two disciplines, we aim to provide learners with a holistic understanding of how
computers, data, and algorithms are interconnected to shape our modern world.
The topics are basically independent, but each chapter is built upon the previous
ones to gradually expand learners’ knowledge and problem-solving abilities.

4. Step-by-step guidance: each chapter is enriched with detailed calculation proce-
dures and problem-solving examples that illustrate the concepts discussed,

Preface vii

ensuring that learners can witness how to apply what they learn in the classroom
to research and practical applications.

5. Practical hands-on exercises: each chapter is accompanied by questions and exer-
cises. By engaging with real-world scenarios, learners will not only comprehend
the theories but also develop the skills to tackle challenges they might encounter
in the field.

6. Immediate guidance: hint for questions and detailed guidance for exercises are
given immediately after each problem, aiding learners in their problem-solving
process. Solutions to exercises are provided in Chap. 10 along with explanations.

7. Preparation for the future: this book fosters an environment where complex
concepts are made accessible, curiosity is nurtured, and creation is welcome.
With this book in hand, learners will not only understand the world of computer
science, AI, and data science but also be able to navigate more ambitious journey
in their future pursuits.

How to Use this Book

This book can be used for a course spanning seven to nine 90-min classes. In the
case of seven classes, Chaps. 2 and 3, and Chaps. 8 and 9 can be combined into one
class, respectively.

For each class, we recommend that the instructor explains the content while asking
the listed questions first, then guides the learners as they work on the exercises, and
finally presents the solutions. The questions and exercise problems without an asterisk
(*) symbol are intended to be completed in class, while those marked with an asterisk
(*) can be assigned as homework or left for learners who are interested to work on
independently.

For self-learners, we recommend that you read the content and think about the
questions first, then work on the exercise problems without an asterisk (*) symbol
before checking the solutions in Chap. 10. If you are interested in enhancing your
ability, further work on the exercise problems with an asterisk (*) and check their
solutions.

To enhance your understanding and improve your learning experience, lecture
videos for this book will soon be available in Springer Nature Video, named “Infor-
matics and Artificial Intelligence for Beginners I and II”. You may watch the videos
at your convenience.

Acknowledgements

We extend our heartfelt gratitude to all the colleagues who have played a role in
shaping this book. This textbook was created in 2018 and has been refined over five
years through extensive use and feedback from more than 5000 students. The valuable

viii Preface

input from faculty, editor, and students has greatly contributed to the improvement
of this book and the learning experience.

Finally, we would like to express our sincere appreciation to you, the reader, for
embarking on this learning journey with us. We believe that this book will empower
you to navigate and pursue further in the fantastic fields of informatics and AI. Best
wishes for a rewarding and fulfilling learning experience!

Kanazawa, Japan
January 2024

Wei Weng

Contents

1 Computer . 1
1.1 What is a Computer . 1
1.2 Program and Programming . 2
1.3 Distinguishing Characteristic of a Computer 3
1.4 Composition of a Computer . 3
1.5 Hardware and Software of a Computer . 4
1.6 Representation of Information Inside a Computer 5
1.7 Computing Mechanism of a Computer . 7
References . 12

2 Flowchart . 13
2.1 What is a Flowchart . 13
2.2 How to Create a Flowchart . 15
2.3 Notes on Flowcharting . 16
2.4 Clarify the Meaning of Each Statement . 19
Reference . 20

3 Time Complexity . 21
3.1 What is Time Complexity . 21
3.2 How to Know Time Complexity from a Flowchart 21
3.3 Significance of Time Complexity . 25
3.4 How to Evaluate a Program . 26
References . 28

4 Artificial Intelligence—Mathematical Modeling 29
4.1 What is Artificial Intelligence . 29
4.2 Target Problems of AI Optimization Methods 30
4.3 Mathematical Modeling of a Problem . 30

4.3.1 Single Machine Scheduling Problem 30
4.3.2 Knapsack Problem . 33

4.4 Encoding . 35
References . 38

ix

x Contents

5 Artificial Intelligence—Genetic Algorithm . 39
5.1 What is Genetic Algorithm . 39
5.2 Flowchart of Genetic Algorithm . 39
5.3 How to Use GA to Solve a Problem . 40

5.3.1 Initial Population Creation . 41
5.3.2 Evaluation . 41
5.3.3 Selection . 42
5.3.4 Crossover . 43
5.3.5 Mutation . 45
5.3.6 Termination Criterion . 46

References . 49

6 Artificial Intelligence—Machine Learning . 51
6.1 What is Machine Learning . 51
6.2 Types of Machine Learning . 52
6.3 Neural Network . 53

6.3.1 What is a Neural Network . 53
6.3.2 Threshold Logic Unit (TLU) . 54
6.3.3 Learning of TLU . 59
6.3.4 Deep Learning . 61

References . 67

7 Network . 69
7.1 What is a Network . 69
7.2 Methods of Switching . 69
7.3 Network Topologies . 71
7.4 Physical Configuration . 71

7.4.1 Wired LAN (Ethernet) . 71
7.4.2 Wireless LAN (Wi-Fi) . 74

7.5 Internet . 75
7.5.1 Internet Protocols . 75
7.5.2 IP Address . 78
7.5.3 Domain Name . 79

7.6 Various Information Systems . 80
References . 82

8 Database . 83
8.1 What is a Database . 83
8.2 Relational Database . 84

8.2.1 Union . 85
8.2.2 Difference . 86
8.2.3 Intersection . 87
8.2.4 Restriction . 87
8.2.5 Projection . 88

References . 91

Contents xi

9 Information Security . 93
9.1 What is Information Security . 93
9.2 Risks, Threats, and Vulnerabilities . 94
9.3 Security Measures for Users . 98

9.3.1 Management of User IDs and Passwords 98
9.3.2 Anti-virus Measures . 98

9.4 Security Measures for Administrators . 99
9.4.1 Create Information Security Policy 99
9.4.2 Access Management . 99
9.4.3 Firewall . 99

9.5 Security Technologies . 101
9.5.1 Encryption . 101
9.5.2 Digital Signature and Digital Authentication 103
9.5.3 Secure Encrypted Communication . 103

References . 104

10 Solutions to Exercises . 105
10.1 Chapter 1 Solutions and Answers . 105
10.2 Chapter 2 Solutions and Answers . 107
10.3 Chapter 3 Solutions and Answers . 108
10.4 Chapter 4 Solutions and Answers . 109
10.5 Chapter 5 Solutions and Answers . 112
10.6 Chapter 6 Solutions and Answers . 113
10.7 Chapter 7 Solutions and Answers . 118
10.8 Chapter 8 Solutions and Answers . 119
10.9 Chapter 9 Solutions and Answers . 120

List of Figures

Fig. 1.1 An example of analog display . 2
Fig. 1.2 An example of digital display . 2
Fig. 1.3 An example of a Java program . 2
Fig. 1.4 Composition of a computer . 4
Fig. 1.5 Examples of hardware and software in a computer 5
Fig. 1.6 An example of converting an analog signal to a digital signal . . . 6
Fig. 1.7 Three primary colors of light (RGB) . 7
Fig. 1.8 Representing the color purple in the RGB system 7
Fig. 1.9 Gate symbol and truth table of logic NOT 7
Fig. 1.10 Gate symbol and truth table of logic AND 8
Fig. 1.11 Gate symbol and truth table of logic OR . 8
Fig. 1.12 Circuit symbols and the truth table of a half adder 9
Fig. 1.13 An RS flip-flop circuit . 10
Fig. 1.14 Circuit for exercise problem 2 . 11
Fig. 2.1 A flowchart for the program shown in Fig. 1.3 14
Fig. 2.2 A flowchart of washing hands . 14
Fig. 2.3 Typical boxes in a flowchart . 15
Fig. 2.4 A flowchart of calculating the sum of integers 1 to n 16
Fig. 2.5 A flowchart of taking fitness training 10 times 17
Fig. 2.6 An example of using multiple decision boxes 18
Fig. 2.7 Examples of arrows entering boxes . 18
Fig. 2.8 A flowchart created by some learners . 20
Fig. 3.1 Flowchart of getting the sum of integers 1 to n 22
Fig. 3.2 A flowchart whose time complexity is O(n2) 23
Fig. 3.3 A flowchart where a loop is iterated R times 24
Fig. 3.4 Comparison between time complexities O(n) and O(n2) 25
Fig. 3.5 Flowchart for exercise problem 3 . 27
Fig. 3.6 Flowchart for exercise problem 5 . 28
Fig. 4.1 Single machine scheduling problem . 31
Fig. 4.2 Objective function calculation loop in the flowchart 33
Fig. 4.3 An example of items in the knapsack problem 34

xiii

xiv List of Figures

Fig. 4.4 An example of a candidate solution in genetic algorithms 35
Fig. 4.5 An example of encoding for the single machine scheduling

problem . 36
Fig. 4.6 An example of encoding for the knapsack problem 36
Fig. 4.7 An illustration of cities, routes, and modeling 37
Fig. 5.1 Flowchart of genetic algorithm . 40
Fig. 5.2 An example of the salesman problem . 41
Fig. 5.3 An example of encoding for the salesman problem 41
Fig. 5.4 An example of randomly created initial population 41
Fig. 5.5 Evaluation of the individuals . 42
Fig. 5.6 An example of one-point crossover . 44
Fig. 5.7 An example of producing two children from two parents 45
Fig. 5.8 An example of two-point crossover . 45
Fig. 5.9 An example of mutation by random gene exchange 46
Fig. 5.10 Single machine scheduling problem for exercises 47
Fig. 5.11 An illustration of individual creation and evaluation 48
Fig. 6.1 An example of using regression for prediction 52
Fig. 6.2 A simple neural network . 54
Fig. 6.3 Threshold logic unit . 54
Fig. 6.4 A TLU with a single input . 55
Fig. 6.5 Another TLU with a single input . 55
Fig. 6.6 TLU for questions 1 and 2 . 56
Fig. 6.7 A TLU with the same number of inputs as logic gate OR 57
Fig. 6.8 A TLU with w1 = 2, w2 = 2, and θ = 1 . 58
Fig. 6.9 An example of radical updates of y . 60
Fig. 6.10 Structure of a deep learning neural network 61
Fig. 6.11 Structure of a CNN used for image recognition 62
Fig. 6.12 A filter moving over an image . 62
Fig. 6.13 Bidirectional propagation in an RNN . 63
Fig. 6.14 A TLU with three inputs . 63
Fig. 6.15 Circuit for exercise problem 2 . 64
Fig. 6.16 A TLU for exercise problem 2 . 65
Fig. 6.17 Diagram for exercise problem 3 . 65
Fig. 6.18 Expression of partial overlap between two fields 66
Fig. 6.19 Expression of one field encompassing another 66
Fig. 7.1 Circuit-switched network . 70
Fig. 7.2 Packet-switched network . 70
Fig. 7.3 Relation between data to be sent and a packet 71
Fig. 7.4 An example of Ethernet standards . 73
Fig. 7.5 Procedure of sending data to the Internet in TCP/IP model 77
Fig. 7.6 Procedure of processing data received from the Internet

in TCP/IP model . 78
Fig. 7.7 An example of IP address and port number 78
Fig. 7.8 An example of domain name . 79
Fig. 8.1 Union of sets A and B . 85

List of Figures xv

Fig. 8.2 Difference between sets A and B . 86
Fig. 8.3 Intersection of sets A and B . 87
Fig. 9.1 Three major elements of information security 94
Fig. 9.2 Security risks for information assets . 95
Fig. 9.3 New message window in Outlook . 97
Fig. 9.4 Function of firewall . 100
Fig. 9.5 Function of SPI . 100
Fig. 9.6 Function of DMZ . 101
Fig. 9.7 Symmetric key cryptosystem . 102
Fig. 9.8 Public key cryptosystem . 102
Fig. 9.9 Website using HTTPS . 104
Fig. 10.1 Circuit for NOT (A AND (B OR C)) . 107
Fig. 10.2 Flowchart of the jumping exercise . 107
Fig. 10.3 Range of E . 108
Fig. 10.4 Number of iterations . 109
Fig. 10.5 Examples of infeasible solutions . 111
Fig. 10.6 Relation between AI, ML, and NN . 116
Fig. 10.7 Flowchart of an automatic clothes drying pole 119
Fig. 10.8 Flowchart of an automatic door with face recognition 120
Fig. 10.9 Flowchart of a following distance keeping system 121

List of Tables

Table 1.1 Truth table to complete for exercise problem 1 10
Table 1.2 Truth table to complete for exercise problem 2 11
Table 1.3 Truth table to help solve exercise problem 2 12
Table 6.1 Truth table of the TLU in Fig. 6.4 . 55
Table 6.2 Truth table of the TLU in Fig. 6.5 . 55
Table 6.3 Truth table for question 1 . 56
Table 6.4 Truth table for question 2 . 56
Table 6.5 Truth table of the logic OR operation . 57
Table 6.6 Truth table to complete for exercise problem 1 64
Table 6.7 Truth table for exercise problem 5 . 66
Table 7.1 Network topologies . 72
Table 7.2 Details of commonly known IEEE802.11 standards 74
Table 7.3 OSI model versus TCP/IP model . 76
Table 7.4 Examples of protocols in TCP/IP model 76
Table 8.1 Structure of a relation . 84
Table 8.2 IEEE members . 85
Table 8.3 ACIS members . 85
Table 8.4 IEEE members ∪ ACIS members . 85
Table 8.5 IEEE members − ACIS members . 86
Table 8.6 IEEE members ∩ ACIS members . 87
Table 8.7 Inventory . 88
Table 8.8 Inventory [stock ≤ safety stock] . 88
Table 8.9 Inventory [stock ≤ safety stock + 3] . 88
Table 8.10 Inventory . 89
Table 8.11 Alcoholic drinks . 89
Table 8.12 Soft drinks . 89
Table 8.13 Weekly recommended foods . 90
Table 8.14 Foods eaten this week . 90
Table 8.15 Favorite foods . 91
Table 9.1 Characteristics of information security 94
Table 9.2 Threats and vulnerabilities from human factors 95

xvii

xviii List of Tables

Table 9.3 Threats and vulnerabilities from physical factors 96
Table 9.4 Threats and vulnerabilities from technical factors 96
Table 9.5 Access rights and settings . 99
Table 10.1 Truth table of multiplying two bits . 105
Table 10.2 Truth table of the circuit in Fig. 1.14 . 106
Table 10.3 Truth table of A AND B AND C . 106
Table 10.4 Truth table of NOT (A AND (B OR C)) 106
Table 10.5 Truth table of X1 AND X2 AND X3 . 114
Table 10.6 Truth table of the circuit in Fig. 6.15 . 115
Table 10.7 Truth table of X1 AND (X2 OR X3) . 116
Table 10.8 Alcoholic drinks ∪ soft drinks . 121
Table 10.9 Alcoholic drinks ∪ soft drinks [stock ≤ safety stock + 2] . . . 122
Table 10.10 Alcoholic drinks ∪ soft drinks [stock ≤ safety stock + 2] . . . 122
Table 10.11 (Weekly recommended foods − foods eaten this week)

∩ favorite foods . 122
Table 10.12 Difference between symmetric key and public key

cryptosystems . 123

Chapter 1
Computer

1.1 What is a Computer

In the seventeenth century, the term “computer” described a man whose job was
calculation, whereas the term “computress” was used to refer to a woman in the same
role. Over time, “computer” also evolved to denote a device designed for performing
calculations.

Computers can be classified into two categories based on how they process
information: analog computers and digital computers. Analog computers process
information using continuous analog quantities, whereas digital computers process
information using discrete digits. Further details will be provided in the following.

There are two types of signals: analog signal and digital signal. Analog signals
represent continuous quantities. For example, temperature and voltage are considered
analog signals because they are continuous quantities. Analog displays represent
these continuous values such as by using the position of a needle (Fig. 1.1).

In contrast, digital signals represent discrete values. A digital display conveys
information such as temperature and voltage using numerical representations. The
display is limited to showing values within the range of its available digits. For
example, in Fig. 1.2, the display reads “12,345.6”. In this context, “discrete values”
means that values between 12,345.5 and 12,345.6 cannot be displayed. Additionally,
“within the range of its available digits” means that values with more than two
decimal places, such as “12,345.67”, cannot be displayed.

In mathematics, real numbers are analog quantities because they represent contin-
uous values without interruption. In contrast, integers are digital quantities because
they are discrete values such as 0, 1, and 2.

Computers can also be classified as either mechanical or electronic, depending on
the components used in their construction. Early analog computers are built using
mechanical components like gears and levers, making them mechanical computers.
In contrast, modern digital computers are built using electronic components, such
as transistors and integrated circuits, making them electronic computers. Today the

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
W. Weng, A Beginner’s Guide to Informatics and Artificial Intelligence,
https://doi.org/10.1007/978-981-97-1477-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-1477-3_1&domain=pdf
https://doi.org/10.1007/978-981-97-1477-3_1

2 1 Computer

Fig. 1.1 An example of
analog display

Fig. 1.2 An example of
digital display

overwhelming majority of computers are electronic digital computers, so the term
“computer” hereinafter refers to electronic digital computers.

1.2 Program and Programming

A program (also called code) is a human-written modifiable calculation procedure. It
consists of multiple “instructions”, often guiding the execution of elementary oper-
ations such as “retrieve data from storage” and “add these numbers”. For example,
Fig. 1.3 is a Java program that outputs the sum of two integers a and b, being 5 and
3, respectively.

Fig. 1.3 An example of a Java program

1.4 Composition of a Computer 3

The main body of a program is typically written in English, using alphabets,
numbers, and symbols including commas and line breaks. This practice can be
attributed to historical factors, such as the initial limitation to English of early
computers, the prevalent use of English within the field of computer science, and the
necessity for a standardized and universally comprehensible language to facilitate
global code collaboration and sharing.

Writing a program is called programming. The formal language for writing
programs is called a programming language. There are many programming languages
such as Python, Java, C++, and JavaScript. These popular and widely used program-
ming languages all employ English-based syntax and keywords, and this is one of
the reasons why English is prevalent in programming.

1.3 Distinguishing Characteristic of a Computer

The key difference between a “computer” and a “calculator” is that a computer can
automatically execute calculations based on a program, whereas a calculator requires
manual operation. Hence, a computer is a programmable electronic digital computing
device.

A computer can perform various calculations automatically if the program is
changed. In contrast, a basic calculator, like a pocket calculator, relies on human
operation. Complex calculations with a calculator demand manual operation for
each step.

• Questions

1. Is a smartphone a computer?

Hint: consider whether a smartphone has the same characteristic as that of
a computer.

1.4 Composition of a Computer

The basic components of a computer (Fig. 1.4) are.

• the computing and control unit,
• the storage unit,
• the input/output (I/O) unit,

4 1 Computer

Fig. 1.4 Composition of a
computer

and the “buses” that connect these units [1]. The computing and control unit performs
calculations and controls the entire computer. The storage unit stores programs that
define computational procedures and the data to be processed. The input/output unit
obtains information from the outside and presents calculation results.

The computing and control unit is also called the central processing unit (CPU). In
modern computers, the CPU is often combined with integrated circuits (ICs), which
include many electronic logic gates. An electronic logic gate has an elementary
computational function. More details of logic gates will be given in Sect. 1.7.

The storage unit has many blocks for storing programs and data. The location is
indicated by a serial number (usually an integer) called address. The minimum size
of storage is called a “bit”, which stores only one “0” or “1”. A group of eight bits
is called a “byte”. Addresses are often assigned in byte units.

The input unit receives information from a human. There are many input devices
such as keyboards, mice, styluses, handwriting panels, microphones, and cameras.
The output unit delivers information to a human. Output devices include displays,
printers, speakers, and earphones.

1.5 Hardware and Software of a Computer

Originally, the term “hardware” referred to machinery or devices made of physical
materials, often including iron components. In contrast, “software” is a term used
to distinguish the non-physical aspects of computing. In the context of a computer,
“hardware” refers to its physical components (Fig. 1.5a), whereas “software” refers to
the computational procedures and programs that enable its functionality (Fig. 1.5b).
Hence, in a computer, hardware operates according to software [2].

1.6 Representation of Information Inside a Computer 5

Fig. 1.5 Examples of hardware and software in a computer

A computer executes a program in the following procedure:

1. Retrieve instructions from the storage unit.
2. Translate the instructions into machine-readable code.
3. Prepare necessary data.
4. Perform calculation.
5. Store or output the calculation results.
6. Repeat the above steps.

1.6 Representation of Information Inside a Computer

A computer processes all information as digital quantities, represented by combi-
nations of “0” and “1” known as bits. A computer system where the high voltage
(or large current) state represents “1” and the low voltage (or small current) state
represents “0” is called a “positive logic” system. In contrast, a system where the
low voltage state represents “1” and the high voltage state represents “0” is called
a “negative logic” system [2]. Which type of system to use should be determined
according to need.

A number inside a computer is represented by its binary value, consisting of “0”
and “1”.

A character is represented by a numerical value corresponding to the character in
the character code used. A character code is a correspondence table linking characters
and their corresponding numerical values. There are many types of character codes.
The American Standard Code for Information Interchange (ASCII) has been in use
since the mid-twentieth century. It uses seven bits to represent an uppercase or lower-
case English alphabet, an Arabic number (0–9), a symbol, and a control character
such as a line break. For example, the number “0” is expressed by binary 0,110,000
(= decimal 48), and the uppercase letter “A” is expressed by binary 1,000,001 (=
decimal 65).

A kanji character in languages such as Japanese cannot be represented by only
1 byte (8 bits), so a kanji is represented by two or more bytes. There are several

6 1 Computer

Fig. 1.6 An example of converting an analog signal to a digital signal

character codes associating Japanese characters with numbers such as JIS, Shift-JIS,
and EUC-JP. In recent years, Unicode has gained increasing prominence. It aims to
handle all the characters in the world, including emoji that is often used in mobile
messages [2].

Audio and images are converted to digital numbers before being processed. Sound
is change in air pressure over time. Since air pressure and time are both continuous
quantities, sound is an analog quantity. To be processed inside a computer, an analog
quantity needs to be converted into digital values first. This conversion is achieved
through a process known as sampling, which involves measuring and recording sound
values at regular intervals. If the interval T between measurements is extremely short,
the recorded discrete values will be very close to the analog signal, as shown in
Fig. 1.6. After being converted to digital values, sound can be processed by using
various calculations in a computer.

An image such as a photograph is converted into a collection of “points” called
“pixels” first and then the color of each pixel is converted to a numeric value. For a
monochrome image (i.e. a single color image, often in black and white), the color of
one pixel is represented by one number. For example, 0 represents pure black, 255
represents pure white, and the degree of black between pure black and pure white is
divided into 254 levels and represented by one number between 1 and 254.

For a color image, the color of one pixel is represented by a set of three numbers.
In the RGB system (Fig. 1.7), the three numbers represent the respective ratios of the
three primary colors of light: red (R), green (G), and blue (B). Figure 1.8 illustrates
how the color purple is represented in the RGB system. In systems other than RGB,
one number may represent brightness and the other two numbers may represent the
color. Motion pictures, or videos, are decomposed into multiple images first and then
processed in the same way as processing images.

1.7 Computing Mechanism of a Computer 7

Fig. 1.7 Three primary
colors of light (RGB)

Fig. 1.8 Representing the
color purple in the RGB
system

1.7 Computing Mechanism of a Computer

The interior of a computer comprises a multitude of arithmetic circuits. In these
circuits, there are many electronic logic gates performing specific operations of “0”
and “1” [2].

A combinational logic circuit is a kind of circuit whose output is determined by
only the current input. The three most basic logic gates in combinational circuits are
NOT, AND, and OR. Their definitions are given in Figs. 1.9, 1.10 and 1.11. In the
figures, a truth table means a table showing the corresponding input–output values.

A logic gate performs logic operation, which involves only binary values 0 and 1.
Logic NOT has only one input. It outputs the inverse value of the input. If the input
is 0, the output will be 1. If the input is 1, the output will be 0.

Fig. 1.9 Gate symbol and truth table of logic NOT

8 1 Computer

Fig. 1.10 Gate symbol and truth table of logic AND

Fig. 1.11 Gate symbol and truth table of logic OR

Logic AND has two inputs. If either of them is 0, the output will be 0. Only when
both inputs are 1 will the output be 1. In other words, 0 AND 0 = 0, 0 AND 1 = 0,
1 AND 0 = 0, and 1 AND 1 = 1. These equations are the expressions of the logic
AND operation, similar to the expressions of mathematical multiplication: 0 × 0 =
0, 0 × 1 = 0, 1 × 0 = 0, and 1 × 1 = 1. It should be noted that while logic AND and
mathematical multiplication share similarities, they are not identical because logic
AND operates with only binary values.

Logic OR has two inputs. If either of them is 1, the output will be 1. Only when
both inputs are 0 will the output be 0. In other words, 0 OR 0 = 0, 0 OR 1 = 1, 1
OR 0 = 1, and 1 OR 1 = 1. These equations are the expressions of the logic OR
operation, similar to the expressions of mathematical addition: 0 + 0 = 0, 0 + 1 =
1, 1 + 0 = 1, and 1 + 1 = 2.

1.7 Computing Mechanism of a Computer 9

Fig. 1.12 Circuit symbols and the truth table of a half adder

While some logic operations yield the same result as mathematical calculations, it
is essential to note that logic operations exclusively deal with binary values and serve
fundamentally different purposes from mathematical calculations. Logic operations
and mathematical calculations can be considered as two different computing systems.

By combining basic logic gates, a wide array of calculations can be performed.
For example, the addition of two bits A and B can be realized by the circuit shown
in Fig. 1.12. The sum of A and B is represented by S (Sum). Since S is only one
bit, the sum “2” resulting from the addition “1 + 1” cannot be represented because
every bit in a computer can only hold a value of either 0 or 1. Therefore, the digit
increase C (Carry) is needed. The truth table for inputs A and B and outputs C and
S is shown in Fig. 1.12. This circuit is called a “half adder” and is used for the first
digit of addition. A full adder, which includes a carry input from the lower digit, can
be realized by using two half adders.

In some circuits, past output is used as input to determine the current output. If
the output of a circuit depends on its past output, the circuit is called a flip-flop. A
flip-flop circuit has the ability to store information. For example, in the RS flip-flop
circuit shown in Fig. 1.13, the current output Q is the result of applying OR then
NOT to the current input R and the past output Q, and the current output Q is the
result of applying OR then NOT to the current input S and the past output Q. Such a
circuit that depends on the past output is called a sequential circuit.

Complex processing is achieved by combining a large number of combinational
logic circuits and sequential circuits. The integrated circuits introduced in Sect. 1.4
are combinations of many such circuits.

Exercises

1. Create the truth table for multiplying two bits.

10 1 Computer

Fig. 1.13 An RS flip-flop
circuit

• Guidance
You may refer to the truth table for adding two bits (Fig. 1.12). In Fig. 1.12,
when A is 0 and B is 0, S is 0 because 0 (A) + 0 (B) = 0 (S). When A is 0 and
B is 1, S is 1 because 0 (A) + 1 (B) = 1 (S). When A is 1 and B is 0, S is 1
because 1 (A) + 0 (B) = 1 (S). When A is 1 and B is 1, the result is 2 because
1 (A) + 1 (B) = 2 (S). However, S cannot be 2 because there are only 0 and
1 in a computer. In this case, carry C is needed. Hence, in a computer, “10”
represents 2.

Similarly, when creating the truth table for multiplying two bits, first create
the input, for example, A and B. Then create the output and name it using an
alphabet. Since both A and B can be either 0 or 1, the table should have 22 =
4 rows, as shown in Table 1.1. Fill in the values of each cell in the table. If one
column of output is enough, there is no need to create two columns.

Table 1.1 Truth table to complete for exercise problem 1

Input Output
A B

2. Create the truth table for the circuit shown in Fig. 1.14.

1.7 Computing Mechanism of a Computer 11

Fig. 1.14 Circuit for
exercise problem 2

Table 1.2 Truth table to complete for exercise problem 2

Input Output
A B X

• Guidance
The following is an example of how to get X:

i. Let “a” be the result of NOT A, as shown in Fig. 1.14
ii. Let “b” be the result of A OR B, as shown in Fig. 1.14
iii. Then X is the result of “a” AND “b”
iv. Both A and B can be either 0 or 1, so the table should have 22 = 4 rows.

Calculate X for each of the four input patterns.

Table 1.2 shows the table you should create. Please fill in the values into
empty cells. If you find it difficult to get X directly from A and B, you may add
two columns, “a” and “b”, as shown in Table 1.3. For each input pattern, you
can calculate “a” and “b” first, and then you can get X. For example, when A
is 0 and B is 0, a = Not A (Not 0) = 1. b = A OR B (0 OR 0) = 0. As a result,
X = a AND b (1 AND 0) = 0. Fill in the next three rows by yourself.

*3. Create the truth table for A AND B AND C.
*4. Create the truth table for NOT (A AND (B OR C)).
*5. Create a circuit for NOT (A AND (B OR C)) by using the gate symbols shown

in Figs. 1.9, 1.10 and 1.11.

Problems marked with an asterisk “*” are optional. However, learners are
encouraged to work on them independently to enhance their understanding and skills.

12 1 Computer

Table 1.3 Truth table to help solve exercise problem 2

Input Output
A B a b X
0 0 1 0 0

References

1. Brookshear G, Brylow D (2014) Computer science: an overview, 12th edn. Pearson, Reading,
MA

2. Petzold C (2000) Code: the hidden language of computer hardware and software. Microsoft
Press, Redmond, WA

Chapter 2
Flowchart

2.1 What is a Flowchart

A program may be understandable by only developers and engineers. In contrast, a
flowchart is a diagrammatic method that enables anyone to understand a program
or calculation procedure. In this book, we will use flowcharts to explain many
calculation procedures.

In a flowchart, each step is expressed by a box and the flow is shown by arrows
between boxes. For example, Fig. 2.1 is a flowchart of the Java program shown in
Fig. 1.3. In the flowchart, “Integer a = 5” corresponds to “int a = 5” in the program,
“Integer b = 3” corresponds to “int b = 3” in the program, and “Output the sum of a
and b” corresponds to “System.out. println(a + b)” in the program. Since the steps
in the flowchart are easily understandable, anyone reading it can grasp the program’s
functionality.

Initially used in the field of programming, flowchart is now widely used in various
fields. For example, Fig. 2.2 is a flowchart illustrating the procedure of washing hands.
First, wet your hands with water. Next, lather them with soap. Then, rinse off the
soap with water. Afterward, check if your hands are clean. If yes, dry your hands
with a towel and stop. Otherwise, repeat the above process.

A flowchart containing business details is useful in discussions with business
partners and can often be understood more easily than a spoken explanation. It is
important that the statements in a flowchart should be both concise and clear in
meaning, as shown in Fig. 2.2.

Typical “boxes” in a flowchart include terminals, input/output, decision, and
processes [1]. Figure 2.3 shows the symbols of these boxes. It should be noted
that the symbols are predetermined and constant. “Start” and “end” are called termi-
nals and should be oval. It is highly recommended to use them, because they serve
as clear entry and exit points for the flowchart. Input and output are optional and
should be parallelograms. Input refers to information going into the computer, such
as data from the user. Output shows the result of a calculation or a message on the

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
W. Weng, A Beginner’s Guide to Informatics and Artificial Intelligence,
https://doi.org/10.1007/978-981-97-1477-3_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-1477-3_2&domain=pdf
https://doi.org/10.1007/978-981-97-1477-3_2

14 2 Flowchart

Fig. 2.1 A flowchart for the
program shown in Fig. 1.3

Fig. 2.2 A flowchart of
washing hands

display. Decision is optional but is often used. A decision box should be a diamond
and should have two output arrows, which typically represent the answers “yes” and
“no”. Process boxes are required. A process box should be a rectangular in which
details of a step are described.

2.2 How to Create a Flowchart 15

Fig. 2.3 Typical boxes in a
flowchart

2.2 How to Create a Flowchart

The general approach to create a flowchart is explained using Fig. 2.4, a flowchart
of calculating the sum of integers 1 to n.

First, determine whether input and output are necessary. To get the sum of n
integers, n should be specified by the user, so input is necessary. The sum should
be displayed, so output is also necessary. As a result, create the boxes “input n” and
“output s (sum)”. Then initialize variables, i.e. set the initial value of every variable
used in a flowchart. The output “s” is a variable (the reason why s is a variable will
be given later) and hence should be initialized. “s = 0” is its initialization, which
sets the initial value of s to 0. After initialization, create process boxes to detail the
calculation procedure.

To calculate “1 + 2 + 3 + …”, a variable i should be created to represent each
integer such as 1, 2, and 3. “i = 1” sets the initial value of i to 1. After initializing i,
the calculation procedure starts.

The meaning of the symbol “=” in a flowchart is to assign the value on the right
side to the variable on the left side. If the right side is a number, the number is
assigned directly to the variable on the left side, as exemplified in the steps “s = 0”
and “i = 1”. If the right side is a formula, then calculate the formula first and then
assign the result to the variable on the left side, as exemplified in the step “s = s +
i”. This step calculates “s + i” first and then assigns the result to s. Since the initial
value of s is 0 and the initial value of i is 1, this step calculates “0 + 1” first and then
assigns the result 1 to s. In other words, after executing this step, s changes from 0
to 1. Therefore, s is a variable that stores the sum of integers 1 to i.

If n > 1, the next step will be adding 2 to s. Since the current value of i is 1, it
should be increased by 1 so that i can represent 2. This is achieved by the step “i

16 2 Flowchart

Fig. 2.4 A flowchart of
calculating the sum of
integers 1 to n

= i + 1”. Then create a decision box to check if the current value of i has reached
n. Supposing that n is 10, then the current value of i, 2, has not reached n, so the
procedure exits the decision box from the arrow “no” and returns to “s = s + i”. As a
result, “s = s + i” will be executed again. This time, the step adds 2 to s and updates
s with the result 3. Hence, after executing this step, s becomes the sum of integers
1 to 2.

The process of increasing i by 1 and adding it to s will be repeated until i becomes
greater than n. When i becomes n + 1, the procedure will exit the decision box from
“yes” and output s.

Statements in a flowchart can be conveyed through textual descriptions as shown
in Fig. 2.2, or through the use of variables as illustrated in Fig. 2.4. When conveying
numerical information, variables are commonly employed due to their ability to
provide concise and precise representation compared to words. A flowchart can
incorporate a blend of textual descriptions and variables, as exemplified in Fig. 2.5,
a flowchart of taking fitness training ten times.

2.3 Notes on Flowcharting

Flowcharts created by beginners often have problems. Here are some notes you
should pay attention to when creating flowcharts.

2.3 Notes on Flowcharting 17

Fig. 2.5 A flowchart of
taking fitness training 10
times

First, a decision box typically presents a yes/no question and has two output arrows
corresponding to the answers to that question. Hence, create a question that can be
answered by yes or no for each decision box. If a decision cannot be made with a
simple yes/no answer, consider using multiple yes/no questions, as exemplified in
Fig. 2.6. A decision box should have one more output arrow than the other boxes,
so make sure to include the second output arrow. It is easy for beginners to believe
that the box has been completed after drawing only one output arrow. In addition,
make sure to label the two arrows “yes” and “no”. If you revise the question in a
decision box or the steps connected to it, check again if the labels “yes” and “no” are
still correct after the update. It often happens that the labels become reversed after
updating some boxes.

Second, do not write more than one question in a decision box. If you have multiple
questions, create multiple decision boxes and write one question in each of them.
For example, if you want to express three cases: i < 10, i = 10, and i > 10, avoid
creating a flowchart like the one depicted in Fig. 2.6a; instead, create it in the way
shown in Fig. 2.6b.

Third, boxes other than decision boxes should typically have a single output
from the bottom. Having two or more outputs can lead to confusion, as it implies
simultaneous execution of multiple steps, which contrasts with the purpose of a
flowchart—to illustrate the sequential order of execution.

18 2 Flowchart

Fig. 2.6 An example of using multiple decision boxes

Last, it is generally preferred that arrows enter boxes from the top, rather than from
the left or right side. This creates a visual hierarchy that aligns with the top-to-bottom
reading habit in many cultures, improving clarity and understanding. Figure 2.7
shows two examples in which arrows enter boxes from the top and the right side,
respectively. While it is true that many drawing software programs allow arrows to
enter boxes from the left or right side, this flexibility is often provided to accommodate
various diagramming needs. It is important to ensure that the flowchart remains clear
and understandable.

Fig. 2.7 Examples of arrows entering boxes

2.4 Clarify the Meaning of Each Statement 19

2.4 Clarify the Meaning of Each Statement

A flowchart should be easily understandable and free from ambiguity. Each statement
should have a clear and singular meaning.

For example, using a single word like “jump” in a process box can lead to confu-
sion. Is it a forward jump or upward? With one foot or two? For how long or how
many times? In contrast, a statement such as “jump up once with both feet” will
clear up most of the confusion. As another example, using “cook” as a process box
is insufficient because it lacks specificity. It would be much clearer to provide details
such as “bake at 230° for 10 s”.

Similarly, ensure clarity in decision criteria. Avoid creating conditions that are
hard to judge. For example, a question like “Is it late?” is insufficient because the
criteria for “late” are unclear. In contrast, a condition such as “Is it later than 9 p.m.?”
would be much better.

In short, a good flowchart should enable the reader to understand and execute its
instructions with clarity and ease.

Exercises

1. Create a flowchart detailing a jumping exercise procedure where you should jump
up either 15 times or for 20 s, whichever comes first.

• Guidance
Some learners may create a flowchart like the one shown in Fig. 2.8. The
figure lacks details, but if you create a similar flowchart, there is room for
improvement. Figure 2.8 has many problems, such as having two output arrows
exiting a box that is not a decision box. We discussed this problem in Sect. 2.3.
Non-decision boxes should have only one output because multiple outputs
cannot be executed simultaneously. Therefore, it is better to use a single output
and evaluate the two conditions sequentially.

In addition, the steps required before you can tell the answers to the two
questions are not included in Fig. 2.8. If you do not count, you will not know
if 15 times have been reached. The procedure of counting should be included
in the flowchart. You may refer to the way of writing in Fig. 2.5. You may use
i as the counter and after each jump, increase i by 1. By comparing i with 15,
you can know if 15 times have been reached. Since i is a variable, you should
initialize it first. Similarly, you should create a step for setting a timer or an
alarm so that you can know if 20 s are reached. If you write all these details,
you will get the full score.

The exercises in this and subsequent chapters serve the dual purpose of assessing
your understanding and enhancing problem-solving abilities. It is crucial to develop
the skills to apply classroom knowledge to unfamiliar problems. Although it

20 2 Flowchart

Fig. 2.8 A flowchart created by some learners

may be challenging initially, dedicated effort often leads to greater-than-expected
achievements.

Reference

1. Andersen B, Fagerhaug T, Henriksen B, Onsøyen LE (2008) Mapping work processes, 2nd edn.
ASQ Quality Press, Milwaukee

Chapter 3
Time Complexity

3.1 What is Time Complexity

Computers execute calculations based on programs, making programs the key deter-
minant of computational efficiency. One way to evaluate program efficiency is by
considering its time complexity.

Time complexity is expressed using the big O notation [1]. O(n) is read “big O
of n”, where O is called order and n is called size. In many cases, size is determined
by the amount of input data, so O(n) represents the time needed to process n data.
In the big O notation, “O()” is a constant factor whereas “n” is a variable that varies
depending on the specific problem. The method to get n is: (1) use a polynomial of
n to express the number of instructions to be executed, (2) find in the polynomial
the term that has the biggest effect, and (3) change the term’s coefficient to 1. The
resultant monomial is what should be placed within the “()” after the big O. In the
following, we give detailed examples of getting the polynomial of instructions using
a flowchart.

3.2 How to Know Time Complexity from a Flowchart

Time complexity can be obtained from the flowchart of a program or calculation
procedure. We use the flowchart of calculating the sum of integers 1 to n as an
example to explain this.

When the calculation procedure depicted in Fig. 3.1 is executed, part (4),
comprising 3 instructions, is triggered each time an integer is added to s. Since a
total of n integers are added, part (4) is executed n times. As a result, the number of
instructions to be executed in part (4) is 3 × n = 3n. The remaining 4 instructions
are (1), (2), (3), and (5). The terminals “start” and “end” are not typically counted as
instructions. Instead, they serve as entry and exit points like boundary markers for

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
W. Weng, A Beginner’s Guide to Informatics and Artificial Intelligence,
https://doi.org/10.1007/978-981-97-1477-3_3

21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-1477-3_3&domain=pdf
https://doi.org/10.1007/978-981-97-1477-3_3

22 3 Time Complexity

Fig. 3.1 Flowchart of
getting the sum of integers 1
to n

the flowchart. Combined with part (4), the total number of instructions is 3n + 4.
Therefore, 3n + 4 is the polynomial representing the number of instructions.

For the 3n + 4 instructions, if the execution time of each instruction is U, the total
execution time will be (3n + 4) × U. When n is sufficiently large, the constant 4
will be negligible and the term 3n will have the biggest effect on the execution time.
Replace the coefficient of 3n with 1 and place the result n within the parentheses of
O(). As a result, the time complexity of the flowchart is O(n).

Figure 3.2 is an example of a flowchart with a time complexity of O(n2). To
determine the number of instructions in the flowchart, start by examining the central
blue solid-line loop, as it undergoes the most iterations. The loop, comprising 3
instructions (steps ➀ to ➂), is executed n times, starting with j initialized to n (step
2) and concluding when j reaches 1 (step ➂). Accordingly, the total number of
instructions in the loop is 3 × n = 3n.

Then look at the pink dashed-line loop. The number of instructions in this loop
is 3n + 4, including the instructions in the blue solid-line loop, 3n, and 4 other
instructions (steps 1–4). This loop undergoes n iterations, starting with i initialized
to n (step II) and concluding when i reaches 1 (step 4). Accordingly, the total number
of instructions in this loop is (3n + 4) × n = 3n2 + 4n. The number of instructions
outside this loop is 3 (steps I–III). As a result, the total number of instructions is 3n2

+ 4n + 3. This is the polynomial representing the number of instructions.
When n is sufficiently large, the term with the biggest impact on execution time

is 3n2, rendering 4n and 3 negligible. Replace the coefficient of 3n2 with 1 and place

3.2 How to Know Time Complexity from a Flowchart 23

Fig. 3.2 A flowchart whose
time complexity is O(n2)

the result n2 within the parentheses after the big O. Hence, the time complexity of
this flowchart is O(n2).

Based on the above two examples, the relation between a flowchart and the number
of instructions can be described as follows: if a flowchart contains an i-fold loop,
in which C instructions are iterated n times, then there will be a term C × ni in
the polynomial representing the total number of instructions. The instructions not
contained in any loops will contribute a constant term to the polynomial. As a result,
when trying to get the time complexity from a flowchart, find the loop that is iterated
the most. If the number of iterations R of the loop is ni, the time complexity will be
O(ni).

24 3 Time Complexity

What will happen if the number of iterations R of a loop is not exactly ni? Consider
the flowchart in Fig. 3.3, which contains a single loop. The loop is iterated n2 − 1
times and contains C1 instructions. Immediately preceding the loop, C0 instructions
are executed, and immediately after the loop, C2 instructions are executed. In total,
there are (n2 − 1)C1 + C0 + C2 + 2 instructions. As a result, the polynomial
representing the number of instructions is

E = (
n2 − 1

)
C1 + C0 + C2 + 2

= C1n2 − C1 + C0 + C2 + 2.

Accordingly, the time complexity is O(n2). In conclusion, whether the number of
iterations R of the most iterated loop is exactly ni or a polynomial where ni is the
biggest item, the time complexity will be O(ni). If the number of iterations R of the
loop is a constant, the number of instructions will be a constant. In such a case, the
time complexity is expressed by O(1), which means constant time.

Fig. 3.3 A flowchart where
a loop is iterated R times

3.3 Significance of Time Complexity 25

3.3 Significance of Time Complexity

Time complexity represents how the time required to solve a problem will increase
as the problem size increases. The big O notation is a concise notation that describes
the upper bound of complexity in relation to input data size n [2].

The following is a comparison of efficiency between two programs whose time
complexities areO(n) andO(n2), respectively. Consider the polynomials representing
the number of instructions as E1(n) = C1,1n + C1,2 and E2(n) = C2,1n2 + C2,2n +
C2,3. Even if C1,1 and C1,2 are much greater than C2,1, C2,2, and C2,3, for sufficiently
large n, E1(n) will always be smaller than E2(n). For example, with E1(n) = 999n +
1000 and E2(n) = n2, whenever n > 1000, E1(n) is consistently smaller than E2(n),
as illustrated in Fig. 3.4.

This indicates that a program’s execution time depends on the exponential term
rather than the coefficient or constant in the polynomial representing the number
of instructions. In addition, error in execution time may affect the coefficients and
constants but not the exponential term. As a result, a program with a time complexity
of O(n) is more efficient than one with a time complexity of O(n2). In other words,
the less the time complexity is, the higher the efficiency will be [3]. If two programs
are the same in time complexity, comparison of efficiency should be made based on
the number of instructions, coefficients, and constants.

Time complexity is an important measure. As computers advance in speed and
capability, time complexity governs the execution speed as problem size grows. When

Fig. 3.4 Comparison between time complexities O(n) and O(n2)

26 3 Time Complexity

dealing with small problem sizes, it might not be so important to discuss efficiency.
This is because even the most inefficient program can be executed almost instantly,
making execution time a non-issue. However, as problem sizes increase, it becomes
crucial to consider how execution time scales and whether it remains within practical
limits.

3.4 How to Evaluate a Program

How to evaluate if a program is good or not? The following is a list of evaluation
criteria.

(1) Less Execution Time

A good program should be executable within a short time. The execution time is
largely determined by time complexity. For example, if one program outputs the
result immediately, whereas another program does not output the result after 20 min,
the former is clearly better.

(2) Less Memory (Storage Space) Required

A program that requires less memory (storage space) is superior to one that requires
more. For example, a program that can be executed with 1 GB (gigabytes) of memory
is better than one requiring 5 GB, because a computer with 4 GB memory can run
only the former.

(3) Easy to Understand

A program that is easy to understand is better than one that is not. Creating a program
does not necessarily mean it is complete. Bugs are often discovered and fixed later,
and changes may be necessary due to evolving circumstances. Therefore, a good
program should have a well-structured design with sufficient comments, making it
easy to understand and maintain.

Various criteria are considered when assessing the quality of a program. Crite-
rion (3), easy to understand, holds significant importance, but it often depends on
individual perspectives and is challenging to quantify. The emphasis on criterion (2),
less memory required, has diminished over time due to advancements in semicon-
ductor technology, which have made memory both cheaper and larger in capacity.
As a result, criterion (1), execution time, or time complexity, currently takes prece-
dence as the primary criterion for program evaluation, as it allows for quantitative
assessment.

Exercises

1. What is the time complexity if the polynomial representing the number of
instructions is 8n3 + 10000n + 83,417?

3.4 How to Evaluate a Program 27

Fig. 3.5 Flowchart for
exercise problem 3

2. What is the time complexity if the number of instructions E satisfies 2n2 − 100
≥ E ≥ 100n + 12,345?

• Guidance
You can plot the lower bound and upper bound formulas on the X and Y axes.
You will find the result similar to Fig. 3.4. In the figure, focus on the range
when n is very large and find the polynomial that represents the largest possible
case of n, as time complexity is used to reflect the time required when n is at
its maximum. Consider the term with the biggest effect in that polynomial.

3. Find the time complexity of the flowchart shown in Fig. 3.5.

• Guidance
You may refer to the paragraph right before Sect. 3.3, a summary of the relation
between the number of iterations and time complexity.

*4. What is the time complexity if the number of instructions E satisfies (3logn)n
+ 100 ≥ E ≥ 5logn − 19?

*5. Find the time complexity of the flowchart in Fig. 3.6.

28 3 Time Complexity

Fig. 3.6 Flowchart for
exercise problem 5

References

1. Levitin A (2011) Introduction to the design and analysis of algorithms. Addison Wesley
Publishing Company, London

2. Huang S (2020) What is big O notation: space and time complexity. https://www.freecodecamp.
org/news/big-o-notation-why-it-matters-and-why-it-doesnt-1674cfa8a23c/

3. Zindros D (2012) A gentle introduction to algorithm complexity analysis. https://discrete.gr/
complexity/

https://www.freecodecamp.org/news/big-o-notation-why-it-matters-and-why-it-doesnt-1674cfa8a23c/
https://www.freecodecamp.org/news/big-o-notation-why-it-matters-and-why-it-doesnt-1674cfa8a23c/
https://discrete.gr/complexity/
https://discrete.gr/complexity/

Chapter 4
Artificial Intelligence—Mathematical
Modeling

4.1 What is Artificial Intelligence

The significance of mathematical modeling lies in its necessity before applying
artificial intelligence (AI) to solve optimization problems.

AI is a popular field that attempts to use computers to achieve human-like intelli-
gence. AI techniques can be broadly divided into two categories: knowledge-based
techniques such as expert systems and soft computing techniques such as genetic
algorithms and machine learning. In expert systems, knowledge bases serve as
databases housing rules that emulate the decision-making processes employed by
human experts. The rules are often expressed in the form “if A, then B”, where A is
the phenomenon and B is the conclusion, solution, or recommendation. Reasoning
engines derive answers from the user input and knowledge bases. If the user input is A,
then B will be displayed if it corresponds to A in the knowledge bases. Expert systems
have been widely used for diagnosing machine failures and biological diseases. After
inputting the symptom, the system will show the cause of a failure or the name of a
disease.

Soft computing techniques use computers to study, model, analyze, and estimate
complex events. There are many soft computing techniques such as genetic algo-
rithms, machine learning, and fuzzy logic. In this textbook, we will introduce genetic
algorithms and neural networks, two popular and widely applicable techniques for
solving various problems. Genetic algorithm is one of the most typical evolutionary
and heuristic search methods, which are used for optimization problems. Neural
network, on the other hand, is typical for machine learning and deep learning, which
are used for pattern recognition, classification, natural language processing, computer
vision, etc. They represent two different AI domains and have numerous real-world
applications. They can serve as stepping stones for learners to delve deeper into AI
and related fields. That being said, AI is a rapidly evolving field and there are many
other AI approaches worth exploring as well.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
W. Weng, A Beginner’s Guide to Informatics and Artificial Intelligence,
https://doi.org/10.1007/978-981-97-1477-3_4

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-1477-3_4&domain=pdf
https://doi.org/10.1007/978-981-97-1477-3_4

30 4 Artificial Intelligence—Mathematical Modeling

4.2 Target Problems of AI Optimization Methods

AI optimization methods such as genetic algorithms are widely used to solve NP-hard
(Non-deterministic Polynomial-time hard) optimization problems. An optimization
problem aims to find the best solution, namely the optimal solution, among many
candidate solutions.

One of the methods is called exhaustive search, which checks all the candidate
solutions to identify the optimal one. As the problem size increases, it will become
unrealistic for exhaustive search to find in a reasonable time the optimal solution. In
such a case, the problem is often called NP-hard. Though time complexity is not the
sole criterion, it is often observed that if the time complexity of solving a problem
using exhaustive search is O(n2) or greater, such as O(n3) or O(n!), the problem is
typically regarded as NP-hard.

There are many NP-hard optimization problems such as production scheduling
problems, transportation routing problems, and asset allocating problems. Detailed
examples are given in the following.

4.3 Mathematical Modeling of a Problem

To solve NP-hard optimization problems using AI, both mathematical modeling and
encoding are necessary. This reliance stems from the fact that AI methods depend
on computer-based computation. As previously introduced in Chap. 1, computers
process all information using numerical data, necessitating the representation of
problems in a numerical format. Creating the numerical format of a problem is
referred to as “mathematical modeling” or simply “modeling” of the problem.

After completing the modeling of a problem, the process of expressing a candidate
solution using a set of numerical values is referred to as “encoding”. In the following,
we will provide detailed explanations of how to perform mathematical modeling and
encoding for two NP-hard optimization problems, respectively.

4.3.1 Single Machine Scheduling Problem

A set of jobs sharing a common due date will be processed on a single machine. Find
the sequence for processing the jobs so that the total deviation between each job’s
completion time and the due date is minimized [1, 2].

Figure 4.1 illustrates this problem. The time axis is depicted horizontally. It shows
the sequence of processing the jobs, along with each job’s start time, processing time,
and completion time. For example, the left endpoint of job 1 corresponds to its start
time, and the right endpoint corresponds to its completion time. The span between
these two points represents job 1’s duration, i.e. processing time. The processing time

4.3 Mathematical Modeling of a Problem 31

Fig. 4.1 Single machine scheduling problem

of each job and the due date are given in advance. Since the jobs are processed on a
single machine, they cannot be processed simultaneously. Hence, at most one job can
be completed exactly on the due date, which is considered the optimal scenario with
a deviation of zero between the job’s completion time and due date. The other jobs
must be completed either earlier or later than the due date. If a job is completed earlier
than the due date, such as job 1, the deviation is calculated as “due date-completion
time”. If a job is completed later than the due date, such as job 2, the deviation is
calculated as “completion time-due date”. In all the cases, the deviation will be no
less than zero. The objective is to minimize the sum of these deviations for all the
jobs.

Solving this problem has important real-world implications. In a factory, a job
represents an unfinished product that may start as raw material and finish as a product.
Regardless of whether a job is completed before or after its due date, costs are
incurred. If a job is completed earlier than the due date, it will become inventory
and lead to inventory costs, which encompass expenses related to storage space and
management. If a job is completed later than the due date, it will incur delay costs,
including fines, potential loss of future orders due to customer dissatisfaction, and
idling costs in the subsequent production processes if the completed jobs (semi-
products) are delivered there late. Accordingly, completing all the jobs as close as
possible to their due dates will minimize the combined inventory and delay costs,
and hence is known as the optimal solution.

The single machine scheduling problem is a simplified mathematical model that
mirrors such real-world problems. In the single machine scheduling problem, all jobs
share a common due date for completion. Completing a job ahead of the due date
incurs inventory costs, while finishing it late results in delay costs. Minimizing the
total deviation between each job’s completion time and the due date will minimize
the total inventory and delay costs. Since the deviation between a job’s completion
time and the due date is determined by the sequence in which the jobs are processed,
the objective is to find the optimal processing sequence—a sequence where the total
deviation is at its minimum. This optimal sequence is referred to as the optimal
solution to the problem.

Mathematical modeling involves three key elements: notation, objective function,
and constraints. Notation refers to creating names and assigning numerical values
to them to represent essential information for solving a problem. Objective function
is typically a formula used to evaluate the quality of a solution, aiming to either

32 4 Artificial Intelligence—Mathematical Modeling

maximize or minimize a specific metric. Constraints are the conditions a solution
must meet when applicable. The outcome is known as the mathematical model of
the problem.

The following is an example of the mathematical model of the single machine
scheduling problem.

Notation

d common due date
i index of job (i = 1, 2, …, K)
Ci completion time of job i
Pi processing time of job i

Objective function: Minimize
K∑

i=1

|Ci − d| (4.1)

In the notation, d represents the common due date, i.e. the time that all the jobs
are desired to be completed. i represents index of job, ranging from 1 to K for K jobs.
Ci represents the completion time of job i, and Pi represents the processing time of
job i.

In the objective function, Ci − d represents the deviation between a job’s comple-
tion time and the due date when the job is completed after the due date. If a job is
completed before the due date, the deviation will be d − Ci. Therefore, |Ci − d|
represents the deviation between a job’s completion time and the due date, regard-
less of whether the job is completed before or after the due date. We sum up these
deviations using sigma “

∑
”, and the objective is to minimize this total deviation.

• Questions

1. If there are n jobs and the first job starts processing at time 0, with each
subsequent job starting immediately after the previous job is completed,
how many possible processing sequences are there?

Hint: if there are n jobs, how many jobs among them can be processed first?
After processing the first job, how many jobs can be processed the second?
How many jobs can be processed the third? This pattern continues until the
job that can be processed the nth. In total, what is the number of processing
sequences?

2. What is the time complexity of solving this problem using exhaustive
search? (Exhaustive search calculates the objective function values for all
processing sequences to find the one with the smallest value.)

4.3 Mathematical Modeling of a Problem 33

Hint: you may consider the number of iterations of the objective function
value calculation loop within the exhaustive search flowchart (Fig. 4.2). As
discussed in Chap. 3, you can know the time complexity from the number of
iterations of the loop.

Fig. 4.2 Objective function calculation loop in the flowchart

Based on the answers to questions 1 and 2, the single machine scheduling problem
is considered NP-hard, and the reasons are as follows.

The “problem size” mentioned in Sect. 4.2 is determined by the number of
jobs in this problem. If the number of jobs is n, the number of processing sequences,
or candidate solutions, will be (), which is an exponentially growing value. A
problem that aims to find the optimal solution among these candidates is called an
optimization problem.

Exhaustive search examines all candidate solutions by calculating their objective
function values to identify the optimal solution. While this method guarantees finding
the optimal solution, it becomes impractical as the number of jobs increases. For
example, with 100 jobs, the number of candidate solutions will be (), which is
astronomical. Calculating the objective function value for each of them could take
days or even weeks, which is not feasible in most real-world scenarios where jobs
must start processing shortly after being received. Such a problem that requires an
unrealistic amount of time for exhaustive search is typically an “NP-hard problem”.

The following is another example of an NP-hard optimization problem.

4.3.2 Knapsack Problem

Given a knapsack and a set of items, each with a size and a value, find the items
to be put into the knapsack so that the total value of the items in the knapsack is
maximized.

34 4 Artificial Intelligence—Mathematical Modeling

Fig. 4.3 An example of items in the knapsack problem

A similar problem in our daily life could be that you are packing up before traveling
(Fig. 4.3). You want to take many things, but the bag is limited in size, so you need
to decide which items to choose.

The significance of solving the knapsack problem extends broadly, as it serves as
a representative model for numerous real-life scenarios involving the optimization
of value within constraints. For example, when using a certain area of land for
agriculture, when using a certain area of land for construction, or when using a truck
limited in size to transport goods, what should be chosen to maximize the profit?
When using a certain amount of time to do part-time jobs, which part-time jobs will
maximize the income? The strategies and techniques used to address the knapsack
problem can be applied to solve these similar problems.

The following is an example of modeling the knapsack problem.
Notation

i index of item (i = 1, 2, …, K)
Si size of item i
Sn size of the knapsack
V i value of item i
Ci Ci = 1, item i is in the knapsack

Ci = 0, item i is not in the knapsack

Objective function: Maximize
K∑

i=1

Vi Ci (4.2)

Subject to:
K∑

i=1

Si Ci ≤ Sn (4.3)

In the notation, i represents index of item. If there are K items, the value of i will
range from 1 to K. Si represents size of item i, and Sn represents size of the knapsack.
Vi represents value of item i. Ci is an integer being either 1 or 0. When it is 1, it
means item i is included in the knapsack. When it is 0, it means item i is not included
in the knapsack.

4.4 Encoding 35

In the objective function, if item i is included in the knapsack, Ci is 1 and hence
ViCi is V i. If item i is not included in the knapsack, Ci is 0 and hence ViCi is
0. Therefore,

∑K
i=1 Vi Ci represents the total value of the items in the knapsack,

because the value of ViCi for an item not in the knapsack is zero. The objective is
to maximize this total value, so adding “maximize” before

∑K
i=1 Vi Ci results in the

objective function. Similar to what
∑K

i=1 Vi Ci represents,
∑K

i=1 Si Ci represents the
total size of the items included in the knapsack. This can be understood by replacing
Vi with Si in the above explanation. This size must not exceed the size capacity of
the knapsack.

4.4 Encoding

To tackle such NP-hard optimization problems, AI optimization methods such as
genetic algorithms are commonly employed. These methods prioritize finding high-
quality solutions quickly, rather than seeking the optimal solution over an unrea-
sonably long time. To apply AI optimization methods, in addition to mathematical
modeling, encoding candidate solutions is necessary.

Encoding is a process of representing a candidate solution using a series of numer-
ical values defined in the mathematical model. In Fig. 4.4, the series of numerical
values on a pink background represents a candidate solution, referred to as an “indi-
vidual” or a “chromosome” in genetic algorithms. Each bit in it, which is highlighted
in yellow, is called a “gene” in genetic algorithms. The encoding task is to assign
meanings to both the order and value of each bit in a candidate solution. For example,
when the first bit has an order of 1 and a value of 3, you should define what these 1
and 3 mean respectively in the encoding process.

Figure 4.5 shows an example of encoding for the single machine scheduling
problem. In this example, each bit’s order represents the job’s processing order,
and its value represents the index of job. For example, the first bit with an order
of 1 represents “processed the 1st”, and the last bit with an order of K represents
“processed the K th”. Similarly, the first bit’s value of 3 represents job 3, and the last
bit’s value of 5 represents job 5. In other words, the first job to process is job 3, and
the K th job to process is job 5.

Fig. 4.4 An example of a candidate solution in genetic algorithms

36 4 Artificial Intelligence—Mathematical Modeling

Fig. 4.5 An example of encoding for the single machine scheduling problem

• Questions

3. What is the order of processing job 1 in the candidate solution shown in
Fig. 4.5?

4. Which job is processed the third?

Methods of encoding for a given problem are not unique. For example, in
Fig. 4.5, a bit’s order can represent index of job, and its value can represent the
order of processing. Different ways of encoding for the same problem may vary in
computational efficiency.

Figure 4.6 is an example of encoding for the knapsack problem. A bit’s order
represents i—index of item, and its value represents Ci—whether the item is included
in the knapsack. In this example, item 1 is not included in the knapsack, whereas
item 2 is included.

• Questions

5. Is item 3 included in the knapsack in the candidate solution shown in
Fig. 4.6?

Exercises

Salesman Problem

Given a set of cities and the distance between every two cities, find the shortest
distance a salesman can visit all the cities one at a time.

Fig. 4.6 An example of encoding for the knapsack problem

4.4 Encoding 37

• Questions

6. If there are n cities, how many possible routes exist to visit them all?

Hint: the hints given for questions 1 and 2 before Sect. 4.3.2 are equally
helpful for questions 6 and 7. Simply replace “jobs” with “cities” and “process”
with “visit” in the hints.

7. What is the time complexity of solving this problem using exhaustive
search?

Based on the answers to questions 6 and 7, the salesman problem is also consid-
ered an NP-hard problem, sharing similarities with the single machine scheduling
problem. Therefore, instead of using exhaustive search, which can demand an imprac-
tical amount of computation time, AI optimization methods are often employed to
swiftly obtain high-quality solutions. In the next chapter, we will detail how to apply
genetic algorithms to solve this problem. As mentioned earlier, both mathematical
modeling and encoding are prerequisites for applying AI optimization methods, so
please proceed with the following tasks:

1. Mathematical modeling for this problem (create the notation and objective
function)

• Guidance
Let us start with a brief explanation of the problem before delving into the
exercise details. If we use one circle to represent one city, then the circles
in Fig. 4.7 represent a set of cities. The distances between cities are given,
corresponding to the lengths of the arcs between the circles.

Fig. 4.7 An illustration of cities, routes, and modeling

The salesman can start from any city. For example, he can start from the
upper-left city, move right, down, and up to reach the middle-left city, following
the red dashed lines, which represent one possible route. Alternatively, he
can start from the lower-left city, move up, down, right, and left to reach the
upper-left city, following the blue lines, representing another possible route.

38 4 Artificial Intelligence—Mathematical Modeling

Between the above two routes, it seems that the one marked with red dashed
lines is shorter, but there are many possible routes and the red dashed route
may not be the shortest. The objective is to find the shortest route.

Now, let us delve into the exercise details. To model this problem, you need
to establish the necessary notation and objective function. For example, you
can use “C” to represent some city-related information. Please define all the
notation and create the objective function, which should represent the total
distance traveled by the salesman.

For example, consider the red dashed route, which can be broken down
into the sum of four smaller distances. Each small distance can be expressed
using the information associated with two cities, such as C1 and C2. In other
words, begin by representing each small distance using the information of two
cities, then sum the four small distances to calculate the entire distance. Finally,
minimize the entire distance.

2. Encode candidate solutions for this problem (define what the order and value of
each bit in a candidate solution represent).

• Guidance
You can proceed with encoding even if you have not completed the mathemat-
ical model. You may refer to the encoding example in Fig. 4.5, as it closely
resembles an applicable way of encoding for this problem.

*3. Try providing a different way of encoding from the one you provided in exercise
problem 2.

References

1. Tanaka S (2016) Single-machine scheduling problem with precedence constraints. https://sites.
google.com/site/shunjitanaka/prec-single

2. Feldmann M, Biskup D (2003) Single-machine scheduling for minimizing earliness and tardiness
penalties by meta-heuristic approaches. Comput Ind Eng 44(2):307–323

https://sites.google.com/site/shunjitanaka/prec-single
https://sites.google.com/site/shunjitanaka/prec-single

Chapter 5
Artificial Intelligence—Genetic
Algorithm

5.1 What is Genetic Algorithm

Genetic algorithm (GA) is a biologically inspired search method used to find high-
quality solutions for complex problems. As previously introduced in Chap. 4, exhaus-
tive search is often impractical for solving NP-hard optimization problems, and GA
is designed to quickly identify good solutions. GA can effectively tackle a large
variety of NP-hard optimization problems, including the single machine scheduling
problem, the knapsack problem, and the salesman problem discussed in Chap. 4.

5.2 Flowchart of Genetic Algorithm

Figure 5.1 depicts the basic flowchart of solving a problem using GA. The procedure
begins by generating the initial population, which consists of individuals representing
candidate solutions to the problem. Each individual is expressed by a set of numerical
values, as explained in encoding (Sect. 4.4). In GA, the terms “individual”, “candidate
solution”, and “chromosome” are used interchangeably. The initial population is also
referred to as the first generation.

After creating the initial population, evaluate the fitness of each individual using
the objective function established in the mathematical modeling introduced in Sect. 4.
3. For a maximization objective function, higher values indicate higher fitness,
whereas for a minimization objective function, lower values indicate higher fitness.

Proceed by iteratively producing new generations using three operators: selec-
tion, crossover, and mutation [1]. When the termination criterion is met, output the
objective function value of the best individual in the final generation as the result.

In the following, we give detailed explanations for each step by applying GA to
solve the salesman problem introduced in the previous chapter.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
W. Weng, A Beginner’s Guide to Informatics and Artificial Intelligence,
https://doi.org/10.1007/978-981-97-1477-3_5

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-1477-3_5&domain=pdf
https://doi.org/10.1007/978-981-97-1477-3_4
https://doi.org/10.1007/978-981-97-1477-3_5

40 5 Artificial Intelligence—Genetic Algorithm

Fig. 5.1 Flowchart of
genetic algorithm

5.3 How to Use GA to Solve a Problem

Salesman problem

Given a set of cities and the distance between every two cities (Fig. 5.2), find the
shortest distance a salesman can visit all the cities one at a time.

Let us start with a brief overview of this problem. In Fig. 5.2, each circle represents
a city, and there are a total of four cities. The index of each city is the number inside the
corresponding circle. The distances between cities are shown on the lines connecting
them. For example, the distance between city 1 and city 2 is 18, and the distance
between city 2 and city 4 is 6. We will use the mathematical model for this problem
provided in the solutions to the previous chapter’s exercises and the encoding shown
in Fig. 5.3. In this encoding, the order of a bit represents i—order of visit, and the
value of a bit represents Ci—ith city to visit.

5.3 How to Use GA to Solve a Problem 41

Fig. 5.2 An example of the
salesman problem

Fig. 5.3 An example of
encoding for the salesman
problem

Fig. 5.4 An example of
randomly created initial
population

5.3.1 Initial Population Creation

The initial population is often created randomly, usually consisting of 20 to 100
individuals, depending on the problem’s size. Generally, the larger the problem size
is, the more individuals there would be in one generation.

In the salesman problem, the problem size is determined by the number of cities.
Since the number of cities in this example is 4, the total number of candidate solutions
is 4! = 24 (explanation for this calculation can be found in the previous chapter). The
number of individuals in one generation is usually much less than the total number
of candidate solutions, so for this example, we choose to have 4 individuals in one
generation. Figure 5.4 shows the four randomly created individuals.

5.3.2 Evaluation

Evaluation is made by calculating the objective function value for each individual,
as shown in Fig. 5.5. For example, individual A represents the route that city 1 is

42 5 Artificial Intelligence—Genetic Algorithm

Fig. 5.5 Evaluation of the individuals

visited first, followed by city 2, city 3, and finally city 4. Since the distance between
city 1 and city 2 is 18, between city 2 and city 3 is 15, and between city 3 and city 4
is 5, the total distance is 18 + 15 + 5 = 38.

Since this is a minimization problem, individuals with smaller objective function
values have higher fitness. Therefore, the fitness ranking of the four individuals is D
> B > C > A.

5.3.3 Selection

Selection in GA mimics natural selection, favoring individuals with higher fitness for
the next generation. Those selected individuals will continue to the next generation,
whereas unselected ones will not. Multiple types of selections are often employed
in one GA process. In the following, examples will be given to detail two common
types of selections: elite selection and tournament selection.

5.3.3.1 Elite Selection

The word “elite” refers to the most outstanding individuals. Accordingly, elite selec-
tion selects individuals that are the highest in fitness. If i individuals are to be selected,
then they will be the top i individuals. If multiple individuals share the same fitness
as the ith individual, one will be selected randomly as the ith individual.

For example, we employ elite selection to select one individual from the initial
population shown in Fig. 5.4. Individual D, the highest in fitness among the four
individuals, will be selected. If multiple individuals have the same highest fitness,
select one of them randomly. The selected individual D will be in the next generation.

5.3 How to Use GA to Solve a Problem 43

The advantage of elite selection is that it ensures that the fittest individuals survive
into the next generation, guaranteeing that the best individuals in the current genera-
tion are not lost in the evolutionary process. As a result, the best individual in the final
generation will be the best individual in all the generations. Without elite selection,
the best individual in the current generation may disappear in the next generation.

5.3.3.2 Tournament Selection

Tournament selection selects the winner from a tournament match between k indi-
viduals, where k is called tournament size, representing the number of participants
in the match.

For example, we employ tournament selection with k = 2 to select one individual
from the initial population shown in Fig. 5.4. We randomly pick up A and B as the
two participants in the tournament. Among them, B has a higher fitness than A and
hence will be selected. The selected individual B will become an individual in the
next generation.

The advantage of tournament selection is that it offers flexibility in selecting
individuals. As k increases, the probability of selecting highly fit individuals rises,
whereas lower k values increase the chances of selecting less fit individuals. Adjusting
k allows for the selection of individuals with varying fitness levels, contributing to
diversity within a generation.

5.3.4 Crossover

Crossover is an operator that mimics the reproductive process in living organisms.
Similar to human reproduction where two individuals, typically parents, produce
offspring, crossover involves two individuals, with the child inheriting genes from
its parents [2].

Crossover is assigned a crossover rate, analogous to a marriage or mating rate.
Typically, the crossover rate is set relatively high, ranging from 75 to 95%. This
ensures a sufficient number of offspring for a broader exploration of candidate solu-
tions. If the crossover rate is too low, there will be less offspring, limiting the search for
new individuals. However, a 100% crossover rate can lead to too rapid updates, poten-
tially causing the loss of promising individuals before they can produce high-quality
offspring.

While various types of selections are often employed, it is common to employ
a single type of crossover in one GA process. The two most widely used types of
crossovers are one-point crossover and two-point crossover.

For example, we perform one-point crossover with a crossover rate of 90%
to produce one offspring from the initial population shown in Fig. 5.4. First, we
randomly pick up two individuals as parents, in this case, C and D. Next, we generate

44 5 Artificial Intelligence—Genetic Algorithm

Fig. 5.6 An example of
one-point crossover

2 3 4 1E:

2 3 1 4

3 4 2 1

C:

D:

a random number r1 to determine whether C and D will crossover. If you are imple-
menting GA using software, r1 can be automatically generated by the computer.
If you are doing this manually, you can assign a random value to r1. Since r1 is a
random number within the range [0, 1], there is a 90% probability that it falls within
the interval [0, 0.9] and a 10% probability that it falls within the interval [0.9, 1].
If r1 ≤ 0.9, the two individuals will crossover; otherwise, they will not. Here, we
assume that r1 is 0.3, which is less than 0.9, so C and D will crossover.

One-point crossover is performed by randomly setting a cutting point in the indi-
viduals. In Fig. 5.6, the red dashed line represents the cutting point. Offspring can
be produced in two ways. The first way is combining the genes on the left side of
the cutting point in parent 1 with the genes on the right side of the cutting point in
parent 2. The second way is combining the genes on the left side of the cutting point
in parent 1 with the genes that remain in parent 2 after removing from parent 2 the
genes on the left side of the cutting point in parent 1.

For this problem, the first way may lead to infeasible solutions because directly
combining the genes on the left side in C with the genes on the right side in D results
in 2321, a route where city 2 is visited twice whereas city 4 is not visited. This differs
from the problem definition and hence is infeasible. Therefore, we use the second
way and combine genes 2 and 3 on the left side in C with genes 4 and 1 in D, which
are the genes that remain in D after removing genes 2 and 3 from D. The produced
offspring is a new individual distinct from any individuals in the initial population.
We name it E, and E will be in the next generation.

Please note that the genes in an offspring must be in the same order as those in
one of its parents. In other words, do not change the order of genes when transferring
them from C and D to E.

A common practice is to produce two children from two parents. In the case of
crossover, the two children will become individuals in the next generation. In the
case of not crossover, the two parents themselves will be individuals in the next
generation.

For example, Fig. 5.7a, b illustrate two ways of creating two children from parents
C and D. In the first way, the left side in C is transferred to child 1 and the left side
in D is transferred to child 2 (Fig. 5.7a). In the second way, the left side in C is
transferred to child 1, then a new cutting point is selected randomly and the new left
side in C is transferred to child 2 (Fig. 5.7b).

5.3 How to Use GA to Solve a Problem 45

Fig. 5.7 An example of producing two children from two parents

Fig. 5.8 An example of two-point crossover

In the case of two-point crossover, randomly select two cutting points and apply
the same process as in one-point crossover. Figure 5.8a shows an example of applying
two-point crossover to C and D, and Fig. 5.8b provides another example where the
gene values are either 0 or 1.

5.3.5 Mutation

Mutation is an operator that mimics natural mutations in living organisms. For
example, in nature, parents with blue eyes might have a child with black eyes due

46 5 Artificial Intelligence—Genetic Algorithm

Fig. 5.9 An example of
mutation by random gene
exchange

to a genetic mutation. In GA, mutation means some genes in an individual undergo
change randomly, and hence the individual becomes a new one. Similar to mutation
rates in nature, the mutation rate in GA is typically low, often ranging from 1 to
10%. The method for implementing the mutation rate is the same as that used for
implementing the crossover rate.

To perform mutation, randomly pick up one individual and change the value of
one or more genes, or randomly exchange two genes in it.

For example, we perform mutation through random gene exchange with a mutation
rate of 10% to produce one individual from the initial population shown in Fig. 5.4.
First, we randomly pick up one individual, which in this case is B. Next, we generate
a random number r2 in the range [0, 1]. If r2 is no greater than 0.1, the individual will
mutate, and the mutated individual will be in the next generation. If r2 is greater than
0.1, the individual will remain unchanged and itself will be in the next generation.
We assume that r2 is 0.2, which is greater than 0.1, and hence B will not mutate but
remain in the next generation.

In the case that r2 is less than 0.1, B will mutate and Fig. 5.9 shows an example of
it. We randomly choose the second and the fourth genes and exchange their values.
The mutated individual is a new individual distinct from any individuals in the initial
population, and we name it F.

5.3.6 Termination Criterion

When the termination criterion is met, stop producing the next generation and output
the result. Usually, it takes hundreds or thousands of generations to find a high-quality
solution to an NP-hard optimization problem.

Commonly used termination criteria include:

1. The number of generations has reached the set limit.
2. The execution time has reached the set limit.
3. The objective function value of the best individual found has not been updated

for the set number of generations.

In the third criterion, “update” means that an individual with higher fitness than
the best individual in the previous generation has been found. For example, consider
the second generation in the above example: D, B, E, B. Among them, D and the
first B are from selection, E is from crossover, and the last B is from mutation. The

5.3 How to Use GA to Solve a Problem 47

best individual is E, whose objective function value is 28. Since 28 is smaller than
29 (the objective function value of D, the best individual in the first generation), the
objective function value of the best individual is updated. If the objective function
value of E is 29, i.e. the same as that of D, then the objective function value is not
updated.

When performing selection, crossover, and mutation, the selected or produced
individuals may be the same as existing individuals in either the current generation
or the next generation. In the above example, there are two Bs in the next generation.
This is not a significant problem in GA, as it is similar to the existence of twins and
very similar parent and child in human society. However, if the same individuals
in one generation are large in number, it may have negative effect on exploring the
optimal solution due to lack of diversity among the individuals.

When the termination criterion is satisfied, output the objective function value
of the best individual in the final generation as the result. In the above example, if
the procedure ends in the second generation, the objective function value of the best
individual E, 28, will be the output. Typically, the objective function value is output,
as it provides a straightforward indication of the quality of the best individual. If
needed, the best individual can also be displayed.

Exercises
Single machine scheduling problem

Five jobs sharing a common due date will be processed on a single machine
(Fig. 5.10). Find the sequence for processing the jobs so that the total deviation
between each job’s completion time and the due date is minimized.

Assumptions:

1. The first job is processed at time zero.
2. Once a job is finished, the next job will be processed immediately, with no idle

time between jobs.

The mathematical model for this problem was previously provided in Sect. 4.3.1,
and the encoding was shown in Fig. 4.5. Additionally, the following information is
provided:

d = 30.
P1 = 5, P2 = 10, P3 = 15, P4 = 20, P5 = 25.
Use GA to solve this problem by completing the following seven steps:

Fig. 5.10 Single machine scheduling problem for exercises

48 5 Artificial Intelligence—Genetic Algorithm

1. Initial population creation: create five individuals randomly.
2. Evaluation: calculate the objective function value for each individual and rank

their fitness.
3. Selection: use elite selection to select one individual and tournament selection

(k = 3) to select another (the two individuals can be the same).
4. Crossover: use an 80% crossover rate with one-point crossover to produce two

children from the same two parents (randomly assign a value to the random
number r1, but perform crossover at least once).

5. Mutation: apply a 10% mutation rate with random gene exchange to produce
one individual (randomly assign a value to the random number r2, but perform
mutation at least once).

6. Termination criterion: continue repeating the above steps until the objective
function value of the best individual remains unchanged for one generation.

7. Result output: output the objective function value of the best individual found.

• Guidance
As an example, we create an individual shown in Fig. 5.11. The individual
should consist of five jobs: job 1, job 2, job 3, job 4, and job 5. According to
assumption 1, the first job, job 1, starts processing at time zero. According to
assumption 2, there is no idle time between jobs.

Fig. 5.11 An illustration of individual creation and evaluation

We show the given processing times for each job above them and depict the
due date as a vertical line. Since the sum of the processing times for jobs 1, 2,
and 3 is 30, the due date is equivalent to the completion time of job 3.

We proceed to calculate the objective function (Eq. 4.1 in Sect. 4.3.1) value
for this individual. The objective function represents the sum of the deviations
between each job’s completion time and the due date.

For job 1, whose processing time is P1 = 5, the start time is 0 and the
completion time is C1 = 5. With the due date being 30, the deviation is d - C1

= 30 – 5 = 25. Alternatively, this deviation can be obtained by summing the
processing times of job 2 (10) and job 3 (15), as their total duration equals the

References 49

deviation between C1 and d. For job 2, the deviation is 15, equivalent to the
duration of job 3. For job 3, the deviation is 0 because d – C3 = 30 – 30 =
0. For job 4, the deviation is 20, equivalent to the duration of job 4. For job 5,
the deviation is 45, equivalent to the sum of the durations of jobs 4 and 5, i.e.
20 + 25 = 45. The objective function value is the sum of all these deviations,
totaling 25 + 15 + 0 + 20 + 45 = 105.

For each individual created, you can obtain such an objective function value.
Since there are five individuals in the initial population, you will have five such
values. You can then compare these values to perform selection and proceed
with the remaining steps in the exercises.

References

1. Mitchell M (1998) An introduction to genetic algorithms. MIT Press, Cambridge, Massachusetts,
US

2. Obitko M (1998) Introduction to genetic algorithms. https://www.obitko.com/tutorials/genetic-
algorithms/about.php

https://www.obitko.com/tutorials/genetic-algorithms/about.php
https://www.obitko.com/tutorials/genetic-algorithms/about.php

Chapter 6
Artificial Intelligence—Machine
Learning

6.1 What is Machine Learning

Machine learning is a subfield of AI that seeks to replicate the learning capabilities of
humans on computers. It has extensive applications in tasks such as object recogni-
tion, which involves recognizing and understanding input data to achieve intelligent
processing. Some notable applications of machine learning include speech recogni-
tion, character recognition, image recognition, anomaly detection, medical diagnosis,
financial market prediction, and obstacle sensing in self-driving technology.

Machine learning plays a crucial role in imitating the five human senses—sight,
hearing, touch, taste, and smell—by processing perceptual information. For example,
computer vision aims to replicate human vision and is often applied in the develop-
ment of robotic eyes. It goes beyond mere image capture, encompassing tasks like
extracting information from images and understanding scenes. Pattern recognition is
a process of classifying patterns, such as speech and images, into distinct categories.
The next level of pattern recognition is the understanding of patterns and scenes.
Natural language processing enables computers to work with human language. It
facilitates interaction between machines and humans, including tasks like speech
recognition for text input, text-to-speech synthesis for information presentation, and
predictive text input on smartphones and personal computers.

The process of machine learning is training a computer by inputting data samples
and allowing the computer to derive valuable rules and criteria from these samples.
Subsequently, the computer employs the extracted rules to make decisions when
presented with new inputs.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
W. Weng, A Beginner’s Guide to Informatics and Artificial Intelligence,
https://doi.org/10.1007/978-981-97-1477-3_6

51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-1477-3_6&domain=pdf
https://doi.org/10.1007/978-981-97-1477-3_6

52 6 Artificial Intelligence—Machine Learning

6.2 Types of Machine Learning

Machine learning can be broadly categorized into two main types: supervised learning
and unsupervised learning. In supervised learning, the supervisor is not a human
teacher but the correct output. The computer learns from data samples where each
record is labeled the correct output. For example, input many images of cats and dogs
labeled with their respective correct answers, i.e. a cat or a dog, into a computer and
let the computer learn to recognize whether a newly input picture is a cat or a dog.
In contrast, if the computer learns from data samples with no label of the correct
output, it is called unsupervised learning.

Supervised learning includes various techniques, and among them, regression and
classification are two fundamental techniques. Regression aims to predict numerical
values for given inputs [1]. For example, consider Fig. 6.1a, which displays a set of
records containing time and temperature data points. Each record, such as (t1, T 1),
represents the temperature T1 at time t1. Collectively, these records are referred to as
data samples. When we input these data samples into a computer, their distribution
is illustrated in Fig. 6.1b. The computer’s task is to find a function that accurately
represents the distribution or trend of these data. As shown in Fig. 6.1c, the computer
may find a function like T = kt + b. This function can then be used to predict the
temperature at a future time, such as temperature Tn+1 at time tn+1. Notably, tn+1 is a
new input that was not present in the original data samples, and Tn+1 is the predicted
output based on the function.

Regression can also be applied to complex data distributions. For example, by
inputting historical stock price movement data samples, a function that fits the move-
ment, such as a sine or cosine function, can be discovered and used to predict future
price movements.

Classification assigns attributes or types to input data. For example, if we catego-
rize human facial expressions into joyful, angry, sad, and neutral, and train a computer

Fig. 6.1 An example of using regression for prediction

6.3 Neural Network 53

with labeled data samples of numerous facial expressions, it can subsequently clas-
sify new facial expressions into one of these types. Classification that can return one
of two types is used for tasks like detecting harmful or harmless bacteria, assessing
the normalcy or abnormality of a machine, identifying ordinary or spam emails, and
determining whether a program is harmless or a virus.

Unsupervised learning does not rely on correct answers and allows a computer
to learn automatically from vast datasets by extracting structure, patterns, and rules.
One unsupervised learning technique is clustering, which groups input data.

In addition to regression and classification, machine learning encompasses various
techniques, including decision tree learning, relational rule learning, reinforcement
learning, and neural network. These techniques are not limited to supervised learning
or a single type of learning. In this textbook, we will focus on neural network, which
has gained significant attention in recent years, especially with the rise of deep
learning.

6.3 Neural Network

6.3.1 What is a Neural Network

A neural network, also known as an artificial neural network, is a computational
model inspired by the neural network that makes up the human brain. It is composed
of multiple artificial neurons connected by synapses. By adjusting the strength of
synaptic connections through a learning process, a neural network can be employed
to solve a wide range of problems.

Figure 6.2 illustrates a simplified neural network, with each circle representing a
neuron and the arrows representing synapses [2]. The direction of an arrow represents
the flow of information. A neural network consists of three primary layers: the input
layer, the output layer, and optional hidden layers. The hidden layers are termed as
such because they remain invisible from the user, who can observe only the input
and output. Each layer must contain at least one neuron, and each neuron should be
connected to all the neurons in the subsequent layer. The strength of connections is
known as synaptic strength and may differ among synapses.

A neuron, often referred to as a node or unit, receives information from the input
layer or other neurons. The most commonly used model for a neuron is Eq. 6.1 [1].

y = f (
∑n

i=1
wi xi − θ) (6.1)

In this equation, y represents the output, and xi represents the ith input. For
example, consider the neuron in the output layer illustrated in Fig. 6.2. It has three
inputs: x1, x2, and x3. Each input has a weight wi, representing its synaptic strength. In
other words, w1 is the weight of x1, w2 is the weight of x2, and w3 is the weight of x3.
The weighted sum of these inputs is denoted as

∑
i wi xi . This sum is compared with

54 6 Artificial Intelligence—Machine Learning

Fig. 6.2 A simple neural network

a threshold value θ of the neuron. If the weighted sum is no less than the threshold,
the neuron will become excited, resulting in an increase in the output value y. In the
following, we will provide detailed explanations using the threshold logic unit as an
illustrative example.

6.3.2 Threshold Logic Unit (TLU)

The threshold logic unit (TLU), depicted in Fig. 6.3, is a single neuron having n
inputs x1 to xn and one output y. If the weighted sum of inputs

∑n
i=1 wi xi is less

than the threshold, the output will be 0. If the weighted sum of inputs
∑n

i=1 wi xi is
greater than or equal to the threshold, the output will be 1 (Eq. 6.2) [3].

y =

⎧
⎨

⎩
0, if

∑n

i=1
wi xi < θ,

1, if
∑n

i=1
wi xi ≥ θ.

(6.2)

x1

xn

y

w1

wn

Fig. 6.3 Threshold logic unit

6.3 Neural Network 55

Fig. 6.4 A TLU with a single input

Table 6.1 Truth table of the
TLU in Fig. 6.4 Input Output

X Y

0 0

1 1

Figure 6.4 shows a TLU with a threshold of 1 and a single input X whose weight
is 2. Table 6.1 presents the truth table of this TLU. Let us explain why the output
values Y are 0 for X = 0 and 1 for X = 1, respectively.

When X = 0, the weighted sum of inputs is wX = 2 × 0 = 0. Compared with
the threshold 1, the weighted sum is less. According to the model function Eq. 6.2,
when the weighted sum is less than the threshold value, the output Y will be 0.

When X = 1, the weighted sum becomes wX = 2 × 1 = 2. Compared with the
threshold 1, the weighted sum is greater. According to the model function, when the
weighted sum is greater than or equal to the threshold value, the output Y will be 1.

When the weight w and threshold θ are modified to 1 and 2, respectively, as
illustrated in Fig. 6.5, the truth table transforms into Table 6.2. When the input is 0,
the weighted sum is 1 × 0 = 0. Compared with the threshold 2, the weighted sum is
less. According to the model function, if the weighted sum is less than the threshold,
the output Y will be 0. When the input is 1, the weighted sum is 1 × 1 = 1, still less
than the threshold 2. According to the model function, the output Y will be 0.

Comparing the neurons in Figs. 6.4 and 6.5, it can be observed that only the weight
and threshold values differ. In summary, altering the synaptic strength (weights and
threshold) of a neuron leads to a change in the output for the same input.

Table 6.2 Truth table of the
TLU in Fig. 6.5 Input Output

X Y

0 0

1 0

Fig. 6.5 Another TLU with a single input

56 6 Artificial Intelligence—Machine Learning

• Questions

1. Can a TLU with a single input (Fig. 6.6) produce an output of 1 for both X
= 0 and X = 1? In other words, can the truth table of a TLU be Table 6.3?
If possible, please give an example of the weight w and threshold θ values
that would achieve this.

Fig. 6.6 TLU for questions 1 and 2

Table 6.3 Truth table for question 1

Input Output

X Y

0 1

1 1

Hint: when X = 0, the weighted sum is w × 0 = 0. According to the
model function Eq. 6.2, if 0 ≥ θ, the output Y will be 1. When X = 1,
the weighted sum is w × 1 = w, and if w ≥ θ, the output Y will be 1.
Therefore, the question can be rephrased as “Are there values of w and θ
that can satisfy both 0 ≥ θ and w ≥ θ ?” If so, please give an example of
the values for w and θ.

2. Can a TLU with a single input (Fig. 6.6) produce an output of 1 for X =
0 and an output of 0 for X = 1? In other words, can the truth table of a
TLU be Table 6.4? If possible, please give an example of the weight w and
threshold θ values that would achieve this.

Table 6.4 Truth table for question 2

Input Output

X Y

0 1

1 0

Hint: Similar to question 1, if there are values of w and θ that satisfy both
conditions 0 ≥ θ and w < θ, it will be possible to output 1 and 0 for inputs 1
and 0, respectively. Consider if such values exist.

As shown in Figs. 6.5 and 6.6 and the above questions, the output of a neuron
can vary for the same input if the weights and threshold values change. This ability

6.3 Neural Network 57

Fig. 6.7 A TLU with the
same number of inputs as
logic gate OR

Table 6.5 Truth table of the
logic OR operation Input Output

A B T

0 0 0

0 1 1

1 0 1

1 1 1

to produce different outputs for the same input is a fundamental feature of neural
network. This feature can be used to implement various functions.

Next, we provide an example of using a TLU to imitate the logic gate OR, one of
the basic logic gates introduced in Sect. 1.7. This means we will demonstrate how
to configure the weights and threshold of a TLU to produce the same results as the
logic OR operation.

First, create a TLU with two inputs as shown in Fig. 6.7, because the logic gate
OR has two inputs.

Second, set the weights w1, w2, and threshold θ of the TLU to match the output
of logic gate OR. The value-setting process includes three steps.

Step 1: create the truth table for the inputs and the correct outputs of the logic OR
operation, as presented in Table 6.5. In this table, the inputs are A and B, and the
output is T. When at least one input is one, the output will be one. Only when both
inputs are zero will the output be zero.

Step 2: create a constraint for each of the four input patterns. For the input pattern
A = 0 and B = 0, the weighted sum of inputs is w1 × 0 + w2 × 0. According to the
model function Eq. 6.2, if this sum is less than θ, the output will be 0, matching the
correct output (T column in Table 6.5). Therefore, the constraint is w1 × 0 + w2 ×
0 < θ. In other words, we need to set the values of w1, w2, and θ to satisfy w1 × 0 +
w2 × 1 < θ so that the TLU’s output aligns with the logic OR output for this input
pattern.

Similarly, for the input pattern A = 0 and B = 1, the weighted sum of inputs is w1

× 0 + w2 × 1. According to the model function, if this sum is greater than or equal
to θ, the output will be 1, matching the correct output. Therefore, the constraint is
w1 × 0 + w2 × 1 ≥ θ. In other words, we need to set the values of w1, w2, and θ
to satisfy w1 × 0 + w2 × 1 ≥ θ so that the TLU’s output aligns with the logic OR
output for this input pattern.

In summary, when the correct output is 0, the weighted sum should be less than
θ, and when the correct output is 1, the weighted sum should be greater than or equal

58 6 Artificial Intelligence—Machine Learning

to θ. The resulting four constraints are shown in Eqs. 6.3–6.6. Equations 6.7–6.10
are the calculation results, such as w1 × 0 + w2 × 0 = 0 and w1 × 0 + w2 × 1 = w2.

w1 × 0 + w2 × 0 < θ (6.3)

w1 × 0 + w2 × 1 ≥ θ (6.4)

w1 × 1 + w2 × 0 ≥ θ (6.5)

w1 × 1 + w2 × 1 ≥ θ (6.6)

0 < θ (6.7)

w2 ≥ θ (6.8)

w1 ≥ θ (6.9)

w1 + w2 ≥ θ (6.10)

Step 3: determine the values for wi and θ that satisfy all the constraints. Since both
wi and θ are real numbers, numerous combinations can satisfy the four constraints.
For example, w1 = 2, w2 = 2, θ = 1; w1 = 2.4, w2 = 1.7, θ = 0.6; and w1 = 15.7,
w2 = 159, θ = 0.02.

After setting values for the weights and threshold, it is recommended to verify
the TLU’s actual output. For example, for a TLU with w1 = 2, w2 = 2, and θ = 1 (as
shown in Fig. 6.8), you can calculate its actual output using Eqs. 6.11–6.14. When A
= 0 and B = 0, the weighted sum of inputs is 0 × 2 + 0 × 2 = 0, which is less than
the threshold 1, resulting in an output of 0. If all four actual outputs match the values
in the T (target) column in Table 6.5, it is confirmed that the weights and threshold
have been set correctly.

A = 0, B = 0 → 0 × 2 + 0 × 2 = 0 < 1 → Y = 0 (6.11)

Fig. 6.8 A TLU with w1 = 2, w2 = 2, and θ = 1

6.3 Neural Network 59

A = 0, B = 1 → 0 × 2 + 1 × 2 = 2 ≥ 1 → Y = 1 (6.12)

A = 1, B = 0 → 1 × 2 + 0 × 2 = 2 ≥ 1 → Y = 1 (6.13)

A = 1, B = 1 → 1 × 2 + 1 × 2 = 4 ≥ 1 → Y = 1 (6.14)

Besides the logic OR operation, a single TLU can be employed to implement
various logic operations, including the logic AND and combinations of logic circuits.
Several examples will be given in the exercises.

6.3.3 Learning of TLU

The purpose of neural network learning is to enable a computer to automatically set
the weights and thresholds for each neuron. For a TLU, the values to be set are w1 to
wn and θ. During TLU learning, the input vector is (x1, x2,…, xn), the correct output
is t (target), and the actual output is y. If y /= t, the weight vector (w1, w2,…, wn) and
θ will be updated as follows [4].

∀i ∈ {1, ..., n} :
{

θ (new) = θ (old) + ∆θ, ∆θ = −η(t − y)

w (new)
i = w (old)

i + ∆wi , ∆wi = η(t − y)xi

(6.15)

If the actual output y differs from the correct output t, Δθ will be calculated as the
difference between y and t multiplied by a learning coefficient η. The new θ value is
obtained by adding Δθ to the old θ value. Similarly, let Δwi = η(t − y)xi, the new
wi value is obtained by adding Δwi to the old wi value. These updates to θ and wi

will continue until y = t.
The learning coefficient η is in the range of (0, 1). When η approaches 0, the

updates have smaller magnitudes, resulting in slower learning. Conversely, as η
approaches 1, the updates become larger, potentially leading to faster learning.
However, it is essential to note that increasing η indiscriminately does not necessarily
accelerate learning. This is because overly large updates may hinder convergence of
y toward the target t, especially when dealing with complex functions.

To illustrate this, consider the case where y is represented by a curve depicted in
Fig. 6.9, and t is its lowest point. If the learning coefficient is set too high, the model
may skip over many values during each iteration, making it challenging to reach t
accurately. Therefore, selecting an appropriate value for η is crucial and should strike
a balance between rapid learning and convergence to the desired output.

60 6 Artificial Intelligence—Machine Learning

Fig. 6.9 An example of radical updates of y

• Questions

3. Which type of learning does the learning of a TLU belong to?

A. Supervised learning
B. Unsupervised learning

Hint: consider if the learning of a TLU needs the correct output or not.

The learning process of a TLU will update the weights (w1, w2,…, wn) and
threshold θ until the actual output y becomes the same as the correct output t. It
is important to note that not all problems can be effectively solved using a single
TLU. For example, in cases where there are no combinations of weights wi and
threshold θ values that can satisfy all the constraints, such as those illustrated in
Eqs. 6.16–6.19, the TLU’s learning process may never converge to a solution.

0 < θ (6.16)

w2 ≥ θ (6.17)

w1 ≥ θ (6.18)

w1 + w2 < θ (6.19)

To address such problems, it becomes necessary to use a neural network with
multiple neurons, and even hidden layers. In the upcoming section, we will provide
a brief introduction to deep learning, which is a type of neural network characterized
by its multilayered architecture.

6.3 Neural Network 61

6.3.4 Deep Learning

Deep learning is a problem-solving approach that uses large-scale hierarchical neural
networks with multiple hidden layers.

Figure 6.10 illustrates the architecture of a deep learning neural network. A distin-
guishing characteristic of deep learning is that it is performed on neural networks
with multiple (more than one) hidden layers. In other words, neural networks with
zero (e.g. a TLU) or one hidden layer are commonly referred to as shallow networks
rather than deep learning networks. Deep learning neural networks, as opposed to
those with fewer hidden layers, exhibit superior capabilities in achieving higher
accuracy in tasks like image and pattern recognition.

Deep learning offers several advantages, primarily stemming from its ability to
handle complex data processing tasks when a sufficient amount of training data is
available. With an ample dataset for training, a well-trained neural network can tackle
tasks that are often too intricate for traditional machine learning algorithms. Further-
more, the accuracy of the trained neural network tends to increase proportionally
with the quantity of training data.

On the downside, deep learning has its limitations. When the amount of training
data is insufficient or when access to high-performance computing resources is
lacking, deep learning may struggle to achieve high performance or become
infeasible.

Fig. 6.10 Structure of a deep learning neural network

62 6 Artificial Intelligence—Machine Learning

The most commonly used deep learning neural networks are Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs).

CNNs are forward-propagating neural networks that excel at extracting local infor-
mation and exhibiting location universality. Two-dimensional CNNs share structural
similarities with neurons in the human visual cortex, which makes them particularly
adept at pattern recognition. Figure 6.11 illustrates the architecture of a CNN used
for image recognition.

The left part of a CNN, known as the feature extraction component, takes input
images of various sizes and extracts features from them. This is performed using
filters (also known as kernels) that are smaller than the input image. The filters act
like windows, examining the image part by part as they traverse over the image (as
shown in Fig. 6.12). On the right side, the classification component uses the extracted
features to make predictions or determine the content of the image, outputting the
final result. If you are interested in delving deeper into image recognition using
CNNs, please refer to the reference [5].

RNNs are bidirectional neural networks that incorporate a recursive structure in
its middle layers, where some of the outputs are used as inputs, as illustrated in
Fig. 6.13. RNNs are well-suited for managing variable-length data, including audio

Fig. 6.11 Structure of a CNN used for image recognition

Fig. 6.12 A filter moving over an image

6.3 Neural Network 63

Fig. 6.13 Bidirectional propagation in an RNN

and video, and they excel in tasks such as speech recognition, video recognition, and
natural language processing.

Exercises

1. Use a TLU to implement the logic calculation X1 AND X2 AND X3.

• Guidance
Figure 6.14 illustrates the TLU for this problem. You need to specify the values
for w1, w2, w3, and θ.

Fig. 6.14 A TLU with three inputs

First, create the truth table for the logic operation X1 AND X2 AND X3. The
truth table for the logic AND operation was previously provided and explained
in Chap. 1. In case you need a refresher, please review it.

Table 6.6 is an example of a truth table with three inputs, X1, X2, and X3.
Each input has a value of either 0 or 1, resulting in a total of 23 = 8 possible
combinations. Please fill in the empty cells with the appropriate values.

64 6 Artificial Intelligence—Machine Learning

Table 6.6 Truth table to complete for exercise problem 1

Once you have completed the truth table, proceed to derive a constraint
based on the information in each row, following the examples provided in
Sect. 6.3.2. Finally, set the values of w1, w2, w3, and θ to ensure that all the
eight constraints are satisfied.

2. Use a TLU to produce the output of the circuit shown in Fig. 6.15.

Fig. 6.15 Circuit for exercise problem 2

• Guidance
Similar to problem 1, start by creating the truth table for the circuit. This
table should have two inputs, A and B, and one output. Since both A and
B can be either 0 or 1, the table will consist of 22 = 4 rows.

6.3 Neural Network 65

Fig. 6.16 A TLU for exercise problem 2

After completing the truth table, create a constraint based on the information
in each row. Finally, set the values of the weights and threshold in such a way
that all the four constraints are satisfied.

If you need a visual representation of the TLU for this circuit, refer to Fig. 6.16.
It depicts a TLU with inputs A and B, and only one neuron is enough. You should
specify the values of w1, w2, and θ. Since a single neuron can produce the output
for this circuit, there is no need to create additional neurons.

3. According to the content of this textbook, what is the relation between the three
fields: artificial intelligence (AI), machine learning (ML), and neural network
(NN)?

• Guidance
If we use three circles to represent the three fields, as shown in Fig. 6.17, then
Fig. 6.18 indicates partial overlap between two fields, and Fig. 6.19 indicates
one field entirely encompassing another. You can illustrate the relation between
the three fields using such visual expressions.

Fig. 6.17 Diagram for exercise problem 3

66 6 Artificial Intelligence—Machine Learning

Fig. 6.18 Expression of partial overlap between two fields

Fig. 6.19 Expression of one field encompassing another

*4. Use a TLU to implement the logic operation X1 AND (X2 OR X3).
*5. Please explain why a TLU cannot produce the output shown in Table 6.7.

Table 6.7 Truth table for
exercise problem 5 Input Output

X1 X2 X3 T

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

References 67

References

1. Kruse R, Borgelt C, Braune C, Mostaghim S (2016) Introduction to neural networks. In: Compu-
tational intelligence. Texts in computer science. Springer, London. https://doi.org/10.1007/978-
1-4471-7296-3_2

2. Orr G, Schraudolph N, Cummins F (1999) Lecture notes of neural networks. https://willamette.
edu/~gorr/classes/cs449/intro.html

3. Blais A, Mertz D (2001) An introduction to neural networks—pattern learning with back prop-
agation algorithm. Gnosis Software, Inc. https://www.sci.brooklyn.cuny.edu/~sklar/teaching/
s06/ai/papers/nn-intro.pdf

4. Stergiou C, Siganos D (2011) Neural networks. https://wiki.eecs.yorku.ca/course_archive/2011-
12/F/4403/_media/report.pdf

5. Ujjwalkarn (2016) An intuitive explanation of convolutional neural networks. https://ujjwalkarn.
me/2016/08/11/intuitive-explanation-convnets/

https://doi.org/10.1007/978-1-4471-7296-3_2
https://doi.org/10.1007/978-1-4471-7296-3_2
https://willamette.edu/~gorr/classes/cs449/intro.html
https://willamette.edu/~gorr/classes/cs449/intro.html
https://www.sci.brooklyn.cuny.edu/~sklar/teaching/s06/ai/papers/nn-intro.pdf
https://www.sci.brooklyn.cuny.edu/~sklar/teaching/s06/ai/papers/nn-intro.pdf
https://wiki.eecs.yorku.ca/course_archive/2011-12/F/4403/_media/report.pdf
https://wiki.eecs.yorku.ca/course_archive/2011-12/F/4403/_media/report.pdf
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

Chapter 7
Network

7.1 What is a Network

A network refers to connections between nodes, where each node represents an
element or thing. There are various types of networks, including information
networks, railway networks, and logistics networks. An information network consists
of multiple information devices like telephones and computers connected by commu-
nication channels. While the terms “network” and “information network” are not
identical, “network” often refers to an information network in many contexts. In
this textbook, unless otherwise stated, the term “network” specifically refers to
information network.

7.2 Methods of Switching

Information networks can be categorized based on their switching methods [1]. There
are two main types: circuit-switched networks, represented by the telephone network,
and packet-switched networks, represented by computer networks. In the following,
we will provide detailed explanations of each type.

In a telephone network, each telephone is connected to a cable, which is, in turn,
connected to an exchange station (see Fig. 7.1). The number of cables between
an exchange station and a relay station might be less than the cables between the
exchange station and telephone terminals. Consequently, the simultaneous usage of
telephones may be limited by the availability of cables between the exchange station
and the relay station.

Since each terminal exclusively uses a cable, a circuit-switched network is ideal
for transmitting continuous information like voice. However, the limited number of
cables restricts the simultaneous use of terminals.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
W. Weng, A Beginner’s Guide to Informatics and Artificial Intelligence,
https://doi.org/10.1007/978-981-97-1477-3_7

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-1477-3_7&domain=pdf
https://doi.org/10.1007/978-981-97-1477-3_7

70 7 Network

Fig. 7.1 Circuit-switched network

Unlike circuit-switched networks that primarily handle continuous data like voice,
computer networks transmit a variety of data types. Using a switching system
where each communication exclusively occupies a cable would result in low effi-
ciency. Therefore, computer networks use a packet-switched system, where data is
divided into fixed-size packets. In a packet-switched network, multiple communi-
cations can share a cable simultaneously, allowing for a high degree of concurrent
communication.

In Fig. 7.2, each host represents a personal computer (PC) user. Communication
data from user A to user B passes through three routers before reaching user B, while
communication data from user C to user D traverses four routers before reaching
user D. The cable connecting the central router and the upper-right router is shared
by both communications. Packets from A to B are shown in brown, and packets from
C to D are shown in yellow.

Fig. 7.2 Packet-switched network

7.4 Physical Configuration 71

Fig. 7.3 Relation between data to be sent and a packet

Figure 7.3 illustrates the relation between data to be sent and a packet in a packet-
switched network. The data is divided into the packet size, which is smaller than the
data size [1]. Each packet consists of a portion of the data and headers containing
information to identify the data, including sender, destination, type, serial number,
and size. A detailed explanation of header structure will be provided in Sect. 7.5.1.

7.3 Network Topologies

Network topologies define the network’s connection type or configuration. In the
early days, when computers were expensive, networks were developed to allow
multiple terminals to share a single computer. The predominant topology at that
time was the star topology, known for its efficient cable usage but vulnerable to
network-wide failure if the central device malfunctions.

Other network topologies include bus, line, ring, tree, and mesh types. Bus
topology was common in early Ethernets. Line topology suits smaller systems but is
vulnerable to network-wide failure if any device malfunctions. Ring topology offers
redundancy with minimal cables. Table 7.1 provides a summary of different network
topologies along with their respective characteristics. The selection of a network
topology should align with the specific type and intended purpose of the network.

7.4 Physical Configuration

Based on the physical configuration, networks can be categorized into two main
types: wired local area network (LAN) and wireless LAN.

7.4.1 Wired LAN (Ethernet)

A wired LAN is commonly referred to as Ethernet [1]. Ethernet standards consist of
three components, as depicted in Fig. 7.4: the number on the left side indicates the

72 7 Network

Ta
bl
e
7.
1

N
et
w
or
k
to
po
lo
gi
es

Ty
pe

C
ha
ra
ct
er
is
tic

s

St
ar

A
 n
et
w
or
k
co
nfi

gu
ra
tio

n
w
he
re
 m

ul
tip

le
 d
ev
ic
es
 a
re
 c
on

ne
ct
ed
 to

 a
 c
en
tr
al
 h
ub

 o
r
sw

itc
h.
 I
t o

ff
er
s
ef
fic

ie
nt
 c
ab
le
 u
sa
ge
. I
f
a
ca
bl
e
fa
ils
,

on
ly
 o
ne
 n
od
e
is
 a
ff
ec
te
d.
 H
ow

ev
er
, a
 c
en
tr
al
 d
ev
ic
e
fa
ilu

re
 c
an
 b
ri
ng
 d
ow

n
th
e
en
tir
e
ne
tw
or
k

B
us

A
 n
et
w
or
k
co
nfi

gu
ra
tio

n
w
he
re
 m

ul
tip

le
 d
ev
ic
es
 a
re
 c
on

ne
ct
ed
 to

 a
 s
in
gl
e
sh
ar
ed
 b
us
, w

ith
 te
rm

in
at
or
s
at
 b
ot
h
en
ds
 to

 p
re
ve
nt
 s
ig
na
l

re
fle
ct
io
n
an
d
no
is
e.
 T
hi
s
co
nfi

gu
ra
tio

n
w
as
 p
re
va
le
nt
 in

 th
e
ea
rl
y
da
ys
 o
f
E
th
er
ne
t

L
in
e

A
 n
et
w
or
k
co
nfi

gu
ra
tio

n
w
he
re
 m

ul
tip

le
 d
ev
ic
es
 a
re
 c
on

ne
ct
ed
 in

 a
 li
ne
ar
 s
er
ie
s.
 T
hi
s
co
nfi

gu
ra
tio

n
is
 s
im

pl
e,
 b
ut
 if
 a
ny
 o
f
th
e
de
vi
ce
s

ex
pe
ri
en
ce
s
a
fa
ilu

re
 o
r
go

es
 o
ffl
in
e,
 it
 c
an
 d
is
ru
pt
 th

e
en
tir
e
ne
tw
or
k’
s
fu
nc
tio

na
lit
y

R
in
g

A
 n
et
w
or
k
co
nfi

gu
ra
tio

n
w
he
re
 d
ev
ic
e
co
nn

ec
tio

ns
 c
re
at
e
a
ci
rc
ul
ar
 d
at
a
pa
th
. E

ac
h
ne
tw
or
ke
d
de
vi
ce
 is
 c
on

ne
ct
ed
 to

 tw
o
ot
he
rs
, f
or
m
in
g

a
ci
rc
ul
ar
 d
at
a
pa
th
 r
es
em

bl
in
g
po

in
ts
 o
n
a
ci
rc
le
. O

ne
 a
dv
an
ta
ge
 o
f
th
is
 c
on

fig
ur
at
io
n
is
 th

at
 it
 a
llo

w
s
fo
r
ca
bl
e
re
du

nd
an
cy
 w
hi
le

m
in
im

iz
in
g
th
e
nu

m
be
r
of
 c
ab
le
s
re
qu

ir
ed

T
re
e

A
 n
et
w
or
k
co
nfi

gu
ra
tio

n
w
he
re
 c
on
ne
ct
ed
 d
ev
ic
es
 a
re
 a
rr
an
ge
d
lik

e
th
e
br
an
ch
es
 o
f
a
tr
ee

M
es
h

A
 n
et
w
or
k
co
nfi

gu
ra
tio

n
w
he
re
 e
ac
h
de
vi
ce
 is
 in

te
rc
on

ne
ct
ed
 w
ith

 e
ve
ry
 o
th
er
 d
ev
ic
e.
 T
hi
s
co
nfi

gu
ra
tio

n
en
su
re
s
m
ax
im

um
 tr
an
sm

is
si
on

re
lia

bi
lit
y,
 e
ve
n
if
 o
ne
 c
on

ne
ct
io
n
fa
ils
. H

ow
ev
er
, i
t r
eq
ui
re
s
a
si
gn

ifi
ca
nt
 n
um

be
r
of
 c
ab
le
s
du

e
to
 it
s
hi
gh

 r
ed
un

da
nc
y

7.4 Physical Configuration 73

Fig. 7.4 An example of
Ethernet standards

maximum data rate, “Base” or “Fast” in the middle refers to the signaling type, and
the number or letters on the right side denote the type of cable used. For example,
in the “10BASE-T” standard, “10” indicates a maximum data rate of 10 Mbps (10
million bits per second); “Base” signifies the use of baseband signaling, and “T”
means the network is wired using twisted pair copper cables.

Notably, Fig. 7.4 is an example of Ethernet standards. The figure does not include
all Ethernet standards, and not all data rates on the left side can be paired with the
numbers or letters on the right side.

In an Ethernet standard, the key element is the “maximum data rate” on the left
side. Currently, Ethernet networks with a maximum data rate of only 10 Mbps are
uncommon. Most Ethernet networks offer a maximum data rate of 100 Mbps or
1000 Mbps. While Ethernet networks with a maximum data rate of 10 Gbps (10,000
Mbps) are available, they are not yet widely adopted.

Ethernet connections can be established using either copper cabling or fiber optic
cabling. In a copper cabling Ethernet, data is transmitted through copper cables.
Previously, ADSL was primarily used for broadband Internet access over traditional
copper telephone lines. It offers a maximum downstream (download) data rate of up to
24 Mbps. Upstream (upload) speeds are lower than downstream speeds. One advan-
tage of ADSL is its ability to carry both voice communication (telephone service) and
data communication (Internet service) over the same copper cable simultaneously.
This is achieved by using different frequency bands for voice and data, allowing both
services to coexist without interference. However, ADSL has been largely replaced
by faster and more capable broadband technologies. Currently, one of the most preva-
lent forms of copper cabling Ethernet is twisted pair cabling Ethernet including Fast
Ethernet (100 Mbps) and Gigabit Ethernet (1 Gbps).

Copper cabling has its drawbacks, including vulnerability to interference, lower
quality for voice communication, and decrease in data rate as the distance from the
closest exchange station increases. For example, an ADSL Ethernet may achieve
the maximum data rate when the customer’s location is within 100 m of the nearest
exchange station. As the distance from the exchange station increases, the data rate
gradually decreases due to signal attenuation and other factors. Beyond a certain
distance, the achievable data rate may significantly decrease.

In contrast, fiber optic cabling Ethernet offers distinct advantages, including high
data rates over long distances. This technology relies on optical fibers for data trans-
mission. With a maximum data rate exceeding 10 Gbps and a reach of over 40 km,

74 7 Network

fiber optics excel in providing high-speed connectivity over considerable distances.
They are also known for their resilience against external interference, even in chal-
lenging environments with high levels of noise. However, fiber optic cables are
vulnerable to physical damage, including scratches, bends, and stains. If the optical
fibers suffer from such issues, it can lead to a sudden network outage.

7.4.2 Wireless LAN (Wi-Fi)

Wireless LANs, also known as Wi-Fi, are standardized by IEEE 802.11 [1, 2]. Their
standards have gone through multiple iterations and revisions. At present, the most
commonly known ones among the IEEE 802.11 family include IEEE 802.11a, IEEE
802.11b, IEEE 802.11g, IEEE 802.11n, IEEE 802.11ac, and IEEE 802.11ax.

Table 7.2 displays the frequency bands, maximum data rates, and characteristics
of these Wi-Fi standards. For example, the 802.11a Wi-Fi operates in the 5 GHz
frequency band and offers a maximum data rate of 54 Mbps. It is unlikely to be
interfered by electronic devices like microwave ovens and Bluetooth devices, but
has limited ability to go through obstacles.

Comparing the Wi-Fi standards listed in Table 7.2 with the Ethernet standards
shown in Fig. 7.4, it can be known that Wi-Fi can match or even surpass Ethernet
in terms of data speed. For example, the maximum data rate of an 802.11ax Wi-Fi
reaches 9.6 Gbps, significantly faster than many common Ethernet standards with
maximum rates of 100 Mbps or 1 Gbps.

Table 7.2 Details of commonly known IEEE802.11 standards

x Frequency band Maximum data rate Characteristics

Likelihood to be
interfered

Ability to go through
obstacles

a 5 GHz 54 Mbps Low Weak

b 2.4 GHz 11 Mbps High Strong

g 2.4 GHz 54 Mbps High Strong

n 2.4 GHz 600 Mbps High Strong

5 GHz 600 Mbps Low Weak

ac 5 GHz 6.9 Gbps Low Weak

ax 2.4 GHz 9.6 Gbps High Strong

5 GHz 9.6 Gbps Low Weak

7.5 Internet 75

• Questions

1. According to the details of the Wi-Fi standards in Table 7.2, which item
determines the characteristics of a Wi-Fi network?

7.5 Internet

In a broad sense, the term “Internet” refers to a network in which multiple networks
are interconnected. However, when we use the term “Internet” in a narrow sense, we
are typically referring to the vast global-scale interconnected network that originated
from ARPANET, a military network of the US Department of Defense. ARPANET
was designed to withstand damage and continue functioning even if parts of it were
destroyed. Today, when we say “the Internet”, we are usually referring to this global
network, which is much more extensive and widely used than a generic “internet”.

7.5.1 Internet Protocols

A communication protocol is a set of predetermined rules for transmitting and
processing information. It serves as the essential framework for ensuring correct
information exchange between senders and receivers. It is similar to sending a postal
letter, where one must write the recipient’s address, place the letter in an envelope,
and affix a stamp.

For information communication on the Internet, a great number of protocols are
needed. These include protocols for the cables connecting devices and protocols
for processing different types of data, such as text, voice, and images. If only one
protocol is used as a single system to meet all these needs, it can be imagined that
this single protocol would become very large in scale and, consequently, difficult to
maintain. Therefore, a hierarchical model is employed to facilitate the development
and modification of protocols.

There are two hierarchical models of protocols. One is the Open Systems Intercon-
nection (OSI) model developed by the International Organization for Standardization
(ISO), and the other is the TCP/IP model, which is currently in use [2]. The term
“TCP/IP” collectively refers to the two most widely used protocols: TCP, which
stands for Transmission Control Protocol, and IP, which stands for Internet Protocol.

Table 7.3 provides a comparison of the two models. The OSI model comprises 7
layers, which are, from layer 1 to layer 7: the physical layer, data link layer, network
layer, transport layer, session layer, presentation layer, and application layer. This
model is not intended for practical implementation and is referred to as a reference
model. It serves as a foundation for the development of multilayered protocols

76 7 Network

Table 7.3 OSI model versus TCP/IP model

OSI model TCP/IP model

Application layer (Layer 7)
Provides communication function for
applications

Application layer (Layer 4)
Provides services to the application being
used by the user

Presentation layer (Layer 6)
Unifies formats of data expression

Session layer (Layer 5)
Manages data sequence

Transport layer (Layer 4)
Achieves reliable data transmission

Transport layer (Layer 3)
Ensures reliability in data transmission

Network layer (Layer 3)
Determines the transmission route and
destination of data

Internet layer (Layer 2)
Provides end-to-end data transmission

Data link layer (Layer 2)
Controls data transmission to neighboring
devices

Network interface layer (Layer 1)
Provides methods of data transmission in the
physical parts of a network

Physical layer (Layer 1)
Provides methods of transmission in electronic
and mechanical parts

The TCP/IP model is currently in use and consists of 4 layers. In the model, layers
1 and 2 in the OSI reference model are combined into layer 1, known as the network
interface layer, and layers 5 to 7 in the OSI reference model are combined into layer
4, known as the application layer.

Table 7.4 provides a list of widely used protocols in each layer of the TCP/IP
model. In the network interface layer, protocols for Ethernet standards and Wi-Fi
standards introduced in Sect. 7.4 are used. In the transport layer and the Internet
layer, TCP and IP are used, respectively. In the application layer, HTTP is used for
viewing web pages, and SMTP and POP are used for sending and receiving emails

Table 7.4 Examples of protocols in TCP/IP model

TCP/IP model Examples of protocols

Application layer
Provides services according to the application being used
by the user

• Web: HTTP
• E-mail: SMTP, POP, IMAP

Transport layer
Ensures reliability in data transmission

TCP, UDP, ICMP

Internet layer
Provides end-to-end data transmission

IP

Network interface layer
Provides methods of data transmission in the physical parts
of a network

• Ethernet:10/100/1000 Base-T/
FX

• Wi-Fi: IEEE 802.11a/b/g/n/ac/ax

7.5 Internet 77

Fig. 7.5 Procedure of sending data to the Internet in TCP/IP model

In the TCP/IP model, data intended for transmission over the Internet flow down-
ward from the upper layers to the lower layers. Initially, data is sent to the topmost
layer, which then appends a layer header to the data before passing it down to the next
lower layer. Each successive layer follows this process, receiving data from the layer
above, adding its own layer header, and forwarding the modified data to the layer
below. Finally, the data destined for Internet transmission contains four headers, each
added by one of the layers, as illustrated in Fig. 7.5.

Accordingly, the headers in the packet introduced in Sect. 7.2 (Fig. 7.3) consist
of headers from the application layer, transport layer, Internet layer, and network
interface layer.

In contrast, data received from the Internet moves upward from lower layers to
upper layers. Initially, the data is received by the lowest layer, which checks whether
the data is addressed to it. If it is, the layer removes its own header from the data and
then forwards the data to the layer above. Each subsequent layer follows this process,
receiving data from the layer below, checking for addressing, and, if correct, removing
its own layer header before forwarding the data to the layer above. Ultimately, the
processed data contains no headers, as depicted in Fig. 7.6.

When verifying the destination of data, each layer employs a specific type of
address. Among these addresses, the IP address used in the Internet layer is the most
well-known. Aside from its role in transmitting and receiving data within the Internet
layer, IP addresses are widely used for various other purposes.

78 7 Network

Fig. 7.6 Procedure of processing data received from the Internet in TCP/IP model

7.5.2 IP Address

An IP address serves as an identifier for a unique terminal connected to the Internet.
Figure 7.7 illustrates an IP address, where 133.28.10.100 represents the IP address
itself, and 80 is the port number. Typically, the port number is used to identify the
software or application. For example, port number 80 is commonly associated with
web browsers.

The range of IP addresses allocated to each country and region worldwide is
pre-established and remains constant. For example, the IP addresses allocated for
Kanazawa University start from 133.28.xx.xx [3]. Similarly, the IP address ranges
for individual buildings and departments are also predetermined and fixed [3]. In
other words, there is a direct correlation between an IP address and a location. As a
result, if you know the IP address of a terminal device, you can know its location.

IP addresses can be divided into two categories: global addresses and private
addresses. A global address is unique worldwide and does not duplicate anywhere
else in the world. For example, the IP address shown in Fig. 7.7 is a global address.
On the other hand, a private address is managed independently within an internal

Fig. 7.7 An example of IP
address and port number

7.5 Internet 79

network, such as a company’s or a home network. Private addresses typically begin
with either “10.” or “192.168.”

There are two versions of IP addresses: IPv4 (Internet Protocol version 4) and IPv6
(Internet Protocol version 6). IPv4 has been in use since the early days of the Internet,
while IPv6 was developed as the next-generation protocol. IPv4 uses a 32-bit address
format, allowing for a total of 232 = 4,294,967,296 (more than 4.2 billion) addresses.
With the global population approaching this number, IPv4 address exhaustion is a
foreseeable issue. In contrast, IPv6 employs a 128-bit address format, capable of
accommodating an astonishing 2128 = 340,282,366,920,938,463,463,463,374,607,
431,768 (more than 340 decillion) addresses, making it virtually inexhaustible. IPv6
also brings various improvements over IPv4. However, the challenge lies in its
incompatibility with IPv4, which has hindered its widespread adoption despite its
standardization in 1995.

7.5.3 Domain Name

An IP address is made up of digits, which are not easy to remember and use. To
make it easier to remember and use, domain names, which are made up of characters,
are used. Figure 7.8 shows an illustrative URL, where the portion beginning with
“example” represents the domain name. A domain name has a hierarchical structure
that is separated by “.”. The hierarchy begins with a top-level domain (TLD) situated
at the far right, followed by a second-level domain (SLD). The top-level domain can
encompass either a generic TLD (gTLD) or a country code TLD (ccTLD). Examples
of gTLDs include .com (for companies), .org (for organizations), and .gov (for U.S.
government entities).

When a user enters a domain name, such as a website address, the address needs
to be converted into its corresponding IP address before it can be used by computers
on the Internet. This automatic conversion between domain names and IP addresses
is made possible through a mechanism known as the Domain Name System (DNS).
DNS servers play a crucial role in managing lists of domain names and their corre-
sponding IP addresses. When a user inputs a domain name, a DNS server translates
that name into the corresponding IP address, allowing computers on the Internet to
process it. Similarly, when an IP address needs to be converted back into its corre-
sponding domain name, the DNS server handles this translation before presenting
the result to the user. Due to the vast number of domain names and IP addresses
on the Internet, a single DNS server cannot manage them all effectively. Instead, a

Fig. 7.8 An example of
domain name

80 7 Network

distributed hierarchical structure is used, with the root DNS server situated at the
top.

• Questions

2. What is the mechanism of a Web page accessible from only inside an
institution, i.e. a Web page that cannot be accessed even if you enter your
user name and password when you are outside that institution?

Hint: think about how you can know whether a terminal device is inside the
institution.

7.6 Various Information Systems

In recent years, there has been rapid development in information and communication
systems, resulting in the popularity of various new systems. In this book, we will
provide brief descriptions of some of these systems.

(1) Cloud computing

Cloud computing refers to the use of devices or services over the Internet. The
term “cloud” symbolizes the Internet, because Internet is often depicted as a cloud
in images.

Traditionally, we have used computers with locally installed software and appli-
cations. Cloud computing, however, entails the use of software, applications, and
services via the Internet, eliminating the need for installation on local devices. For
example, using online services or storing files in online storage are examples of cloud
computing.

Cloud computing includes Software as a Service (SaaS), which provides use of
software, and Infrastructure as a Service (IaaS), which provides use of computer
resources (CPU, memory, storage, etc.) via virtualization technologies.

(2) Sensor network

A sensor network is a type of network in which sensors are interconnected. Orig-
inally, the term “network” referred to a system of interconnected computers. In a
sensor network, sensors replace the traditional computers. Sensors typically serve
specific functions and are simpler than computers. As a result, most sensor networks
are wireless and use low-power protocols like ZigBee.

(3) Ubiquitous computing

The word “ubiquitous” derives from the Latin word “ubique”, which means
“everywhere, anytime, and any place”. Accordingly, ubiquitous computing refers

7.6 Various Information Systems 81

to an information environment in which computers are accessible everywhere at any
time.

In recent years, the development of smartphones and wearable computers has
made it possible for users to own and carry multiple computing devices. As a result,
the vision of a ubiquitous networked society based on ubiquitous computing is
becoming a reality.

(4) Internet of Things (IoT)

The Internet of things (IoT) is often seen as the successor to ubiquitous computing.
IoT has gathered attention because it enables information exchange and control
between various things, including home appliances, machines, and portable devices,
by assigning them IP addresses directly. IoT facilitates remote control of devices
like television recorders and air conditioners, as well as remote monitoring, such
as tracking a machine’s status or a pet’s location. Moreover, it enables seamless
communication between things, as they can send and receive data. Furthermore,
sensors attached to these things can collect substantial amounts of data, which can
open the door to new values and services.

(5) Industry 4.0

Industry 4.0 represents a transformative approach to digitizing and computerizing
the manufacturing industry through the integration of AI and IoT. Its primary goal is
to enhance productivity by harnessing AI technologies, such as machine learning, for
predicting equipment malfunctions and abnormalities. Additionally, it leverages IoT
to collect real-time data on machine operations and captures big data like temperature
and humidity datasets at various machine locations.

Exercises

1. What may cause a computer network to be slow?

• Guidance
Think about various possibilities, primarily based on the content in this book.

2. What may cause a computer network to go down?

• Guidance
Think about various possibilities, primarily based on the content in this book.

3. Describe what you expect in your future life and work from technologies such
as AI and IoT.

82 7 Network

• Guidance
Give some detailed examples of your expectations. A poor example might be
“use AI to raise work efficiency” because it is unclear how to use AI, raise
what kind of efficiency, and in what type of work. It would be better to give
more details.

4. Create a flowchart to illustrate your idea for using AI and IoT to realize one of
the expectations.

• Guidance
You are encouraged to create a clear and user-friendly flowchart for an inno-
vative idea. Flowchart is the topic of Chap. 2, and you may review it if you
need a refresher. The notes on flowcharting will help you improve the quality
of your flowchart.

References

1. Andrew ST, David JW (2010) Computer networks, 5th edn. https://csc-knu.github.io/sys-prog/
books/Andrew%20S.%20Tanenbaum%20-%20Computer%20Networks.pdf

2. Forouzan BA (2005) Data communications and networking. McGraw-Hill Education, New
Delhi, India

3. https://www.med.kanazawa-u.ac.jp/inside/net/shinsei/listip.html

https://csc-knu.github.io/sys-prog/books/Andrew%20S.%20Tanenbaum%20-%20Computer%20Networks.pdf
https://csc-knu.github.io/sys-prog/books/Andrew%20S.%20Tanenbaum%20-%20Computer%20Networks.pdf
https://www.med.kanazawa-u.ac.jp/inside/net/shinsei/listip.html

Chapter 8
Database

8.1 What is a Database

The term “database” can refer to either a collection of data or a database management
system.

When referring to a collection of data, it implies a set of items that share common
attributes. Examples of such collections include student name lists, customer records,
and the vast amounts of data collected by the Internet of Things (IoT). Additionally,
the storage media used for housing data, such as magnetic tapes, hard disks, CDs,
and USB drives, can also be referred to as databases.

When referring to a database management system, it is a software component for
file management in the operating system. In earlier times, such systems were often
referred to as “data banks”, but today they are commonly known as “databases”.

In the early days of computing, a computer capable of handling 100 tasks
was priced at $10,000, whereas a new computer capable of handling 1000 tasks
was often priced at $50,000; hence, many companies frequently replaced their old
computers. However, frequent replacements brought about more problems than just
cost-performance ratio. Managers began analyzing the data stored and managed on
each computer and discovered significant duplication, leading to poor memory effi-
ciency. As a result, they decided to consolidate the data managed by each computer
and created a shared database, marking the start of database management systems
[1].

Database management systems will become more important in the future because
they play a vital role in supporting decision-making in our daily life and work.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
W. Weng, A Beginner’s Guide to Informatics and Artificial Intelligence,
https://doi.org/10.1007/978-981-97-1477-3_8

83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-1477-3_8&domain=pdf
https://doi.org/10.1007/978-981-97-1477-3_8

84 8 Database

8.2 Relational Database

In routine office work, commands can be used in a database management system
called the relational database [2]. Relational databases have several key charac-
teristics, including clarity, data independence, non-procedural data manipulation,
and compatibility with distributed databases. Additionally, the efficiency of data
reading and writing, which was once considered a drawback, has seen significant
improvements.

Table 8.1 illustrates the basic structure of a relational database. In a relational
database, a table is often referred to as a “relation”, and the relation name is usually
positioned in the upper-left corner of the table. Each relation consists of multiple
attributes, which are represented as individual columns.

Users can search for attribute values both vertically and horizontally in relational
databases as well as perform various operations, similar to commands. Dr. E. F. Codd,
the inventor of the relational database, introduced several fundamental operations to
the database, and the following are five commonly used ones.

(1) Union
(2) Difference
(3) Intersection
(4) Restriction
(5) Projection

Union, difference, and intersection are applicable to compatible relations, whereas
restriction and projection are applicable to a single relation.

Compatible relations are defined by two criteria: (1) The relations must have the
same number of attributes, i.e. the same number of columns. (2) They must have
the same content for each attribute, regardless of the attribute names. For example,
Table 8.2 “IEEE (Institute of Electrical and Electronics Engineers) members” and
Table 8.3 “ACIS (Association for Computing and Information Sciences) members”
are two compatible relations. They both have three columns, satisfying the first condi-
tion. In both relations, the first column contains names, the second column contains
age, and the third column contains affiliation, meeting the second condition. Despite
having different attribute names in the first row, these relations are compatible.

It should be noted that data in this chapter is fictional with no association with any
real-world cases and is used only for illustrative purposes. In the following, we detail
union, difference, and intersection, which are applicable to compatible relations.

Table 8.1 Structure of a relation

Relation name

Attribute 1 Attribute 2 ... Attribute m

8.2 Relational Database 85

Table 8.2 IEEE members
Name Age Affiliation

John Smith 59 Duke University

Anna Miller 42 IBM

Taro Ito 47 Sony

Yi Zhang 54 Wuhan University

Table 8.3 ACIS members
Designation Years old Employed by

Yi Zhang 54 Wuhan University

Mike Taylor 32 University of London

Cihon Lee 49 Samsung

8.2.1 Union

The union operation is commonly used to form the parent set. It creates the set A ∪
B, which is the sum of two sets, A and B, as illustrated in Fig. 8.1.

Table 8.4 shows the result of applying a union operation to the two relations,
Tables 8.2 and 8.3. It combines all the rows from both relations, excluding any
duplicates.

The resulting relation should be named by combining the names of the two original
relations with the “ ∪ “ symbol. The resulting attribute names should be the same
as those of the first relation, in this case, relation A. The data in the result should

Fig. 8.1 Union of sets A and B

Table 8.4 IEEE members ∪
ACIS members

Name Age Affiliation

John Smith 59 Duke University

Anna Miller 42 IBM

Taro Ito 47 Sony

Yi Zhang 54 Wuhan University

Mike Taylor 32 University of London

Cihon Lee 49 Samsung

86 8 Database

be a combination of the data from both original relations, representing a member of
either IEEE or ACIS.

Redundancy is not allowed in union or other operations applicable to compatible
relations. Redundancy occurs when the same data is duplicated within the result.
The data “Yi Zhang, 54, Wuhan University” is present in both relations A and B,
having it appear twice in the result would cause redundancy. Therefore, the process
of ensuring that “Yi Zhang, 54, Wuhan University” appears only once in the result
is known as removing redundancy.

8.2.2 Difference

The difference operation is often used as a constraint for data in the parent set. It
creates the set A −B, which is the difference between two sets, A and B, as illustrated
in Fig. 8.2.

Table 8.5 displays the result of performing a difference operation between
Tables 8.2 and 8.3. This operation subtracts the second relation from the first,
retaining only the attributes that differ between the two relations.

The resulting relation should be named by connecting the names of the two original
relations by a minus symbol “−”. The resulting attribute names should be the same
as those of the first relation, i.e. relation A. The data in the result should consist of
the data from relation A that are not found in relation B, i.e. members of IEEE who
are not members of ACIS.

Fig. 8.2 Difference between sets A and B

Table 8.5 IEEE members −
ACIS members Name Age Affiliation

John Smith 59 Duke University

Anna Miller 42 IBM

Taro Ito 47 Sony

8.2 Relational Database 87

Fig. 8.3 Intersection of sets A and B

Table 8.6 IEEE members ∩
ACIS members Name Age Affiliation

Yi Zhang 54 Wuhan University

8.2.3 Intersection

The intersection operation is often used as a constraint for data within the parent set.
It extracts the common elements of two sets, A and B, as illustrated in Fig. 8.3.

Table 8.6 displays the result of applying the intersection operation to the two
relations Tables 8.2 and 8.3. This operation extracts the rows that appear in both
relations.

The resulting relation should be named by connecting the names of the two original
relations by the “ ∩ “ symbol. The resulting attribute names should be the same as
those of the first relation, i.e. relation A. The data in the result should be those that
are present in both relation A and relation B, i.e. members who belong to both IEEE
and ACIS.

8.2.4 Restriction

The restriction operation retrieves data that satisfy a constraint formula AiθAj. In this
formula, Ai and Aj represent attributes, and θ is one of the operators {>, < , = , /= ,
≥ , ≤ }. The resulting relation, R[AiθAj], contains data for which the formula AiθAj

holds.
To perform the restriction operation, relation R must be θ-comparable, which

means that any value of attribute Ai can be compared with the value of attribute Aj

using the operator θ.
Table 8.8 shows an example of getting the list of products requiring replenishment

from the data in Table 8.7. The constraint is “stock ≤ safety stock”. Here, “stock”
refers to the current inventory level, and “safety stock” represents the expected
quantity to be sold during the time between placing an order and its delivery.

Typically, safety stock is determined using historical data averages. For example,
in the case of the first item, “champagne”, the safety stock is 10, because it typically

88 8 Database

Table 8.7 Inventory
Code Name Stock Safety stock

P0001 Champagne 8 10

P0002 Red wine 11 10

P0003 Brandy 7 9

P0004 White wine 17 11

P0005 Beer 16 12

Table 8.8 Inventory [stock ≤
safety stock] Code Name Stock Safety stock

P0001 Champagne 8 10

P0003 Brandy 7 9

takes one week from order placement to delivery and during this period, approxi-
mately 10 bottles are sold on average. As a result, if the current stock falls below 10,
there is a risk of running out of inventory before the next scheduled delivery unless
an order is placed immediately. Similarly, the stock level for the third product also
falls below its safety stock. Therefore, it is necessary to place immediate orders for
both products, as shown in the result.

The resulting relation name should follow the format R[Aiθ Aj], where R is the
original relation name and [AiθAj] is the constraint. The resulting attribute names
should be the same as the original attribute names.

In the restriction operation, attributes can undergo various mathematical oper-
ations such as multiplication, division, addition, and subtraction with constants.
Furthermore, attributes can be compared to constants as well. For example, if you
aim to reduce the risk of stockouts by proactively placing orders, you might consider
increasing the safety stock by 3. The resulting restriction operation is given in
Table 8.9.

Table 8.9 Inventory [stock ≤
safety stock + 3] Code Name Stock Safety stock

P0001 Champagne 8 10

P0002 Red wine 11 10

P0003 Brandy 7 9

8.2.5 Projection

The projection operation is typically used when dealing with a high number of
attributes that cannot fit on a single screen or when there is a need to focus on only

8.2 Relational Database 89

a few attributes. It extracts specific columns from a relation. Table 8.10 shows an
example of a projection operation on the “name” and “stock” attributes in Table 8.7.
The result is a vertical view comprising the two projected columns.

Table 8.10 Inventory
Name Stock

Champagne 8

Red wine 11

Brandy 7

White wine 17

Beer 16

The resulting relation name should be the same as the original relation name. The
resulting attribute names should be the same as those of the projected attributes. The
data should be the same as those in the projected columns.

Exercises

1. Using the data provided in Tables 8.11 and 8.12, create a projection on the “name”
attribute of the products belonging to the set (alcoholic drinks ∪ soft drinks) with
a constraint of [stock ≤ safety stock + 2].

Table 8.11 Alcoholic drinks
Code Name Stock Safety stock

P0001 Champagne 8 10

P0002 Red wine 11 10

P0003 Brandy 7 9

P0004 White wine 17 11

P0005 Beer 16 12

Table 8.12 Soft drinks
Number Product Stock Safety stock

P00010 Orange juice 18 10

P00011 Apple juice 14 12

P00012 Red tea 9 9

90 8 Database

• Guidance
Steps to solve this problem.

1. Create the union of the two given sets “alcoholic drinks” and “soft drinks”.
2. Apply the restriction operation to the relation created in Step 1, filtering

for [stock quantity ≤ safety stock + 2].
3. Apply the projection operation to the attribute “name” in the relation

obtained in Step 2.

The final result after completing all the three steps is necessary, whereas the
intermediate results of Steps 1 and 2 are not required. Please pay attention to
the relation name: (1) Ensure that you create the relation name; (2) The name
should be the outcome of performing the above three operations.

*2. Using the data provided in Table 8.13, which lists foods recommended for
providing weekly nutrition, along with foods eaten this week (Table 8.14) and
favorite foods (Table 8.15), perform necessary operations to identify the name(s)
of the favorite foods that are recommended weekly but have not been eaten this
week. Present the result.

Table 8.13 Weekly
recommended foods Code Food

1 Apple

2 Tomato

3 Carrot

4 Yogurt

5 Fish

Table 8.14 Foods eaten this
week Number Item

1 Apple

2 Beef

3 Ice cream

4 Milk

5 Fish

References 91

Table 8.15 Favorite foods
Number Item

1 Apple

2 Peach

3 Beef

4 Yogurt

5 Fish

References

1. R Elmasri, Navathe S B (2015) Fundamentals of database systems, 7th edn. Pearson, Hoboken,
NJ. https://amirsmvt.github.io/Database/Static_files/Fundamental_of_Database_Systems.pdf

2. Silberschatz A, Korth HF, Sudarshan S (2010) Database system concepts, 6th edn. McGraw-Hill
Science Engineering https://www.octawian.ro/fisiere/situri/asor/build/html/_downloads/1fcab5
3a6d916e39c715fc20a9a9c2a8/Silberschatz_A_databases_6th_ed.pdf

https://amirsmvt.github.io/Database/Static_files/Fundamental_of_Database_Systems.pdf
https://www.octawian.ro/fisiere/situri/asor/build/html/_downloads/1fcab53a6d916e39c715fc20a9a9c2a8/Silberschatz_A_databases_6th_ed.pdf
https://www.octawian.ro/fisiere/situri/asor/build/html/_downloads/1fcab53a6d916e39c715fc20a9a9c2a8/Silberschatz_A_databases_6th_ed.pdf

Chapter 9
Information Security

9.1 What is Information Security

The Internet of Things (IoT) has revolutionized connectivity, enabling various
devices and systems to connect to the Internet. However, this connectivity also intro-
duces security risks that demand attention. Furthermore, when handling databases
or big data containing sensitive or personal information, information security is also
a critical concern.

Information security, as defined in JIS Q27000:2014, is the practice of maintaining
the confidentiality, integrity, and availability of information. This encompasses
preserving characteristics such as authenticity, accountability, non-repudiation, and
reliability [1]. For detailed definitions of these terms, please refer to Table 9.1.

Among them, confidentiality, integrity, and availability are called three major
elements of information security, as shown in Fig. 9.1. They serve distinct purposes:
confidentiality aims to prevent information leakage, integrity safeguards against
tampering and data loss, and availability ensures access to necessary data when
required. Enhancing confidentiality and integrity can effectively reduce the risk of
information leakage and data falsification. However, taking extreme measures to
achieve this can result in significantly decreased availability. Conversely, when avail-
ability is a top priority, maintaining high levels of confidentiality and integrity might
be challenging. These three elements are often in tension with one another, making
it crucial to strike a well-balanced approach in considering them.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
W. Weng, A Beginner’s Guide to Informatics and Artificial Intelligence,
https://doi.org/10.1007/978-981-97-1477-3_9

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-1477-3_9&domain=pdf
https://doi.org/10.1007/978-981-97-1477-3_9

94 9 Information Security

Table 9.1 Characteristics of information security

Confidentiality The characteristic of being inaccessible or unusable by unauthorized
individuals, entities, and processes

Integrity The characteristic of safeguarding the authenticity and completeness of
information assets

Availability The characteristic of being accessible and usable by authorized entities
upon request

Authenticity The characteristic of ensuring that an entity or resource matches its claimed
identity

Accountability The characteristic of ensuring that the actions of an entity can be uniquely
tracked, either from the action itself or from the entity

Non-repudiation The characteristic of verifying the undeniable occurrence of an activity or
event

Reliability The characteristic of aligning with intended actions and results

Fig. 9.1 Three major
elements of information
security

9.2 Risks, Threats, and Vulnerabilities

The primary objective of information security is to safeguard valuable informa-
tion assets [2]. Information assets include personal information, such as credit card
numbers, user IDs, and passwords for individuals, as well as customer informa-
tion, confidential data, and accounting records for organizations and companies. It is
crucial for both individuals and organizations to shield their information assets from
potential risks, such as falsification, theft, destruction, and loss. Detailed examples of
such risks include theft or loss through removable storage media, network breaches,
social engineering attacks, unauthorized access, or the loss of personal computers
and smartphones, as illustrated in Fig. 9.2.

A risk arises from threats to the vulnerability of information assets and has the
potential to cause damage [2]. The level of risk is determined by the value of informa-
tion assets, the level of threat, and the degree of vulnerability (Eq. 9.1). Minimizing

9.2 Risks, Threats, and Vulnerabilities 95

Network

Theft or loss via re-

movable storage media

Theft or loss via network

Theft via social

engineering

Theft or loss of PCs

and smartphones

Theft by unau-

thorized users

Information

 assets

Fig. 9.2 Security risks for information assets

risk is crucial in information security.

Information security risk = value of information asset

 level of threat degree of vulnerability

(9.1)

Potential sources of threats and vulnerabilities include human, physical, and
technical factors.

(1) Threats and Vulnerabilities from Human Factors (Table 9.2)

Potential threats from human factors include those resulting from human errors and
social engineering. Social engineering includes various techniques, such as shoulder
hacking, i.e. observing someone entering a password by looking over their shoulder,
and password spoofing, i.e. identity fraud over the phone to trick individuals into
revealing their passwords.

Table 9.2 Threats and vulnerabilities from human factors

Threats Vulnerabilities

Human error
• Maloperation due to assumptions
• Unintended operating mistakes

• Illness, fatigue, excessive workload
• Misunderstanding or inadequate
understanding of operations

• Misleading information in operating manuals

Sabotage
• Laziness or inattention to security rules

• Inadequate operator management
• Inadequate education about obeying rules
• Inadequate punishment for breaking rules

Internal crime
• Intentional theft of information by personnel
within the organization

• Inadequate operator management
• Inadequate access management
• Inadequate punishment for breaking rules

Social engineering
• Theft of passwords
• Theft of information by impersonating an
administrator

• Inadequate knowledge about social
engineering techniques

96 9 Information Security

(2) Threats and Vulnerabilities from Physical Factors (Table 9.3)

Environmental physical threats include various sources, such as natural disasters,
equipment failures, and physical destruction. Vulnerabilities often stem from inad-
equate equipment and facility management. Effective countermeasures, such as
equipment redundancy, can reduce these physical threats.

(3) Threats and Vulnerabilities from Technical Factors (Table 9.4)

Threats resulting from technical factors often involve intentional actions. Technical
threats include a range of issues, such as unauthorized access, eavesdropping, Denial-
of-Service (DoS) attacks, and computer viruses. These actions fall under the category
of cybercrimes. A common technical vulnerability is a “security hole”, which refers
to a bug or defect in the operating system or software that may lead to technical
threats. Therefore, when a security hole is identified, it is essential to fix it promptly
to maintain security.

Table 9.3 Threats and vulnerabilities from physical factors

Threats Vulnerabilities

Natural disasters
• Fire, earthquake
• Thunderstorm (including blackout caused by
lightning)

• Lack of fireproofing and earthquake-proofing
measures

• Inadequate lightning strike surge protection

Equipment failure
• Equipment failure or loss not caused by
natural disasters

• Inadequate equipment failure measures
(redundancy and updates)

• Incorrect equipment setting
• Inadequate equipment rental management

Intruders
• Physical damage by intruders
• Theft of equipment by intruders

• Inadequate lock management for equipment
areas

• Inadequate entrance/exit management for
equipment areas

Table 9.4 Threats and vulnerabilities from technical factors

Threats Vulnerabilities

Unauthorized access
• Impersonation, cracking

• Security holes in information devices and
software

Eavesdropping
• Phishing scams, spyware

• Inadequate anti-virus measures
• Inadequate education about attack techniques
• Security holes in information devices and
software

DoS attacks
• Denial-of-Service (DoS) attacks, distributed
DoS (DDoS) attacks

• Inadequate measures against DoS attacks
• Security holes in information devices and
software

Computer viruses
• Malware
• Worms, Trojans, bots

• Inadequate anti-virus measures
• Inadequate education about attack techniques
• Security holes in information devices and
software

9.2 Risks, Threats, and Vulnerabilities 97

• Questions

1. How can you prevent the leakage of recipients’ personal information (email
addresses) when sending an email to multiple recipients who do not know
each other?

Hint: think about where to enter recipients’ email addresses, such as in the
new message window of Outlook (Fig. 9.3).

Fig. 9.3 New message window in Outlook

Please note that not all questions in this chapter can be answered based on
the content of this book. For questions without answers in the book, feel free
to respond based on your experience or personal understanding.

2. Choose the incorrect items for managing a USB disk containing personal
information (multiple choices allowed).

A. Leaving it in a bag in your car before locking the car and going to eat
at a restaurant.

B. Leaving it on the desk in your university lab before locking the lab
door and going home.

C. Taking it with you when going home.

98 9 Information Security

9.3 Security Measures for Users

9.3.1 Management of User IDs and Passwords

A combination of a user ID (account) and password is commonly used for user
authentication in determining access to an information system. A user ID is a system-
registered identifier designed to uniquely identify a user, whereas a password is a
string of characters known only to the user. Effective password management practices
include: (1) Not sharing your password with others. (2) Using unique passwords
for different systems. (3) Avoiding writing down the combination of user ID and
password on paper. (4) Not using easily guessable passwords, such as birthdays or
dictionary words.

• Questions

3. Do you think setting a login password ensures computer security? Why?

9.3.2 Anti-virus Measures

Malware and computer viruses, in a broad sense, refer to programs designed to
intentionally harm software or data. In a narrower sense, they are defined as programs
that are:

• Self-replicate: capable of infecting other programs or systems by copying
themselves.

• Latent: can remain hidden, with symptoms appearing only under specific condi-
tions, like at a specified time, after a set amount of time, or after a certain number
of executions.

• Pathogenic: can destroy files, such as programs and data, and operate in ways
unintended by the user.

While viruses can exploit system vulnerabilities, they are frequently introduced
into a system through files downloaded from the Internet or email attachments. A
vital measure for protection is to use anti-virus software to scan external files for
viruses. Nevertheless, installing anti-virus software alone is insufficient. Regularly
update your anti-virus software with the latest virus definition files. Additionally, it
is recommended to keep the operating system, software, and applications up to date
while addressing any security vulnerabilities within them.

9.4 Security Measures for Administrators 99

Table 9.5 Access rights and settings

Access
rights

Read Rights to read files and folders

Write Rights to create and overwrite files and folders

Modify Rights to read, write, and delete files and folders

Full control Rights to fully access files and folders, and modify access rights
settings

Settings Enable Enable access

Disable Disable access (takes priority over the enable option)

Empty Inherit the settings of the parent folder

9.4 Security Measures for Administrators

9.4.1 Create Information Security Policy

One important security measure is the creation of information security policy, estab-
lishing fundamental principles for ensuring information security. Information secu-
rity policy is particularly effective in addressing threats from humans. This policy
helps define the rules for handling information assets and establishes a system for
compliance with these rules.

9.4.2 Access Management

System administrators should implement security measures to control and restrict
access to information assets. These measures may include a combination of physical
and electronic security measures. Physical security measures can regulate access to
facilities where information assets are stored through the use of physical keys, inte-
grated circuit (IC) cards, and biometric authentication. Electronic security measures
can manage access to data, including files and folders, by defining access rights for
individual users or groups. Access rights can be customized for each specific file and
folder. Table 9.5 presents an overview of the available access rights and settings.

9.4.3 Firewall

Another security measure is the use of a firewall. A firewall is a communication
device employed to safeguard client PCs in an internal network against potential
threats from the Internet. The firewall functions by scrutinizing packets that traverse
the connection point between the internal network and the Internet. It determines
whether to permit or block the transmission of incoming packets based on their IP

100 9 Information Security

addresses and the applications using them. Its fundamental operation allows requests
from clients in the internal network whereas rejecting requests from the Internet, with
exceptions made as needed (as shown in Fig. 9.4).

For communication initiated by a client on the internal network, a mechanism
called stateful packet inspection (SPI) is used to maintain the communication status
and allow replies from the Internet to pass through temporarily (Fig. 9.5).

When a server is accessible to the public Internet, it is a common security practice
to isolate its network environment from the rest of the organization’s devices due
to external threats. This isolated area between the Internet and the internal network
is known as a Demilitarized Zone (DMZ). The relation between a firewall and a
DMZ is illustrated in Fig. 9.6. Using a firewall to regulate communication between
the Internet and the DMZ enhances security, reducing threats from the Internet and
enabling secure use of Internet services from the internal network.

Fig. 9.4 Function of firewall

Fig. 9.5 Function of SPI

9.5 Security Technologies 101

Fig. 9.6 Function of DMZ

9.5 Security Technologies

Encryption and authentication are security technologies that help maintain confiden-
tiality and integrity. In the following, we will provide detailed explanations of these
two technologies.

9.5.1 Encryption

Encryption is a technology that makes digital data unreadable to unauthorized parties.
It involves the transformation of plain text into ciphertext, a form of text rendered
unreadable through the use of specific keys or rules. The reverse process, turning
ciphertext back into plain text, is known as decryption. Encryption serves two
primary purposes: it safeguards data and communication paths to prevent eaves-
dropping, ensuring confidentiality, and it guarantees the integrity of transmitted data
by preventing tampering during transit.

There are two main types of encryption systems: symmetric key cryptosystem
and public key cryptosystem [2].

The symmetric key cryptosystem, in use for a long time, employs the same key
for both encryption and decryption. While it requires the sender and receiver to share
the key beforehand, it offers the advantage of being simple and both encryption and
decryption processes are fast (Fig. 9.7). Data Encryption Standard (DES), Triple
DES (3DES), and Advanced Encryption Standard (AES) are three standards for
encryption. DES has a key length of only 56 bits, and hence is no longer recommended
due to low encryption strength. AES is currently the mainstream standard.

In the public key cryptosystem, the keys used for encryption and decryption are
separate, as depicted in Fig. 9.8. This system requires two types of keys: a public key
and a private key, which are used in pairs. The public key is accessible to anyone,
whereas the private key is available to only the key owner. The system operates
either using the public key for encryption and its paired private key for decryption or
using the private key for encryption and its paired public key for decryption. If data

102 9 Information Security

Fig. 9.7 Symmetric key cryptosystem

is encrypted with the public key, it can only be decrypted using the corresponding
private key, and vice versa.

When the public key is used for encryption and the private key is used for decryp-
tion, there is no need to transmit the decryption key through the communication

Fig. 9.8 Public key cryptosystem

9.5 Security Technologies 103

channel. Therefore, the challenge of sharing keys before communication is elimi-
nated. If the private key is used for encryption and the public key is used for decryp-
tion, it allows for data creator authentication. However, it is important to note that the
public key cryptosystem is more complex than the symmetric key cryptosystem, and
the encryption and decryption processes tend to be slower. The encryption method
typically employs the Rivest, Shamir, Adleman (RSA) algorithm, known for its
difficulty in factoring the product of two prime numbers.

9.5.2 Digital Signature and Digital Authentication

While encryption effectively safeguards against threats like eavesdropping and data
falsification, it faces challenges when it comes to preventing user spoofing. To address
this problem, a mechanism known as digital signature is employed. A digital signature
uses the public key cryptosystem to encrypt a message using the user’s private key.
The user’s identity will be confirmed if the encrypted message can be decrypted
using the corresponding public key.

To verify a user’s identity using a digital signature, it is crucial to confirm the
rightness of their public key. This verification process is facilitated by the Public
Key Infrastructure (PKI), a global authentication system. PKI employs digital certifi-
cates to validate the public key’s authenticity and the user’s trustworthiness. Digital
certificates are issued and managed by certificate authorities. Users are required to
preregister their public keys with a trusted certificate authority, which then issues a
digital certificate. This combination of a digital signature and a digital certificate,
like a real-world seal and a seal certificate, enables digital authentication and is often
referred to as e-authentication.

9.5.3 Secure Encrypted Communication

Secure Socket Layer (SSL) was initially a protocol for encrypted communication
using public key authentication. Subsequently, it was standardized under the name
Transport Layer Security (TLS), though SSL remains a more common term.

SSL-based encrypted communication combines the advantages of both symmetric
key cryptography and public key cryptography. It achieves this by encrypting commu-
nication data using a symmetric key, which, in turn, is encrypted with a public
key. Using a symmetric key for data encryption reduces the processing load for
both encryption and decryption, enhancing efficiency. Encrypting the symmetric key
using a public key increases security. The public key of the communication partner,
such as a web server, can be obtained from a digital certificate through public key
authentication.

SSL operates at the transport/application layer in the TCP/IP model and can be
used in many applications. One of its primary and widespread uses is in the form

104 9 Information Security

Fig. 9.9 Website using HTTPS

of HTTP Secure (HTTPS), which ensures encrypted communication on the World
Wide Web (WWW).

A URL using HTTPS begins with “https://”. When the digital signature of the
target server is successfully verified, a padlock symbol appears in the URL bar, and
the background color may turn green. These indicators signal to the user that the
website is secure. For example, Fig. 9.9 shows the URL of a website using HTTPS.

Exercises

1. According to the content of this book, is it possible to use artificial intelligence
(AI) to detect a virus? if so, please briefly explain the mechanism.

*2. Describe the conflicting nature of the three major elements of information
security.

*3. Describe the difference between the symmetric key cryptosystem and public
key cryptosystem.

References

1. Information technology—security technology—information security management systems—
terminology (JIS Q27000: 2014), Japanese Industrial Standards

2. Whitman ME, Mattord HJ (2012) Principles of information security, 4th ed. Cengage Learning,
Boston, MA. http://almuhammadi.com/sultan/sec_books/Whitman.pdf

http://almuhammadi.com/sultan/sec_books/Whitman.pdf

Chapter 10
Solutions to Exercises

10.1 Chapter 1 Solutions and Answers

Answers to Questions:

1. A smartphone is a programmable electronic digital computing device, and hence,
it can be considered a computer. The programs running on a smartphone are
commonly referred to as applications or “apps”.

Solutions to Exercises:

1. See Table 10.1.

Table 10.1 Truth table of
multiplying two bits Input Output

A B P

0 0 0

0 1 0

1 0 0

1 1 1

P = A × B

It is not mandatory to name the input and output variables as A, B, and P, but
P is a suitable choice to represent “product”, which aligns with multiplication. You
have the flexibility to use other letters for variable names. There is no need to include
Column C.

2. See Table 10.2.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
W. Weng, A Beginner’s Guide to Informatics and Artificial Intelligence,
https://doi.org/10.1007/978-981-97-1477-3_10

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-1477-3_10&domain=pdf
https://doi.org/10.1007/978-981-97-1477-3_10

106 10 Solutions to Exercises

Table 10.2 Truth table of the circuit in Fig. 1.14

Input Output Input Output

A B a b X A B X

0 0 1 0 0 0 0 0

0 1 1 1 1 0 1 1

1 0 0 1 0 1 0 0

1 1 0 1 0 1 1 0

Table 10.3 Truth table of A
AND B AND C Input Output

A B C X

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

Since “a” and “b” serve as intermediate variables in obtaining the final result, it
is better to exclude them from the final result.

*3. See Table 10.3.
*4. See Table 10.4.
*5. See Fig 10.1.

Table 10.4 Truth table of
NOT (A AND (B OR C))

Input Output

A B C X

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

10.2 Chapter 2 Solutions and Answers 107

Fig. 10.1 Circuit for NOT
(A AND (B OR C))

10.2 Chapter 2 Solutions and Answers

1. See Fig. 10.2.

Points

1. Initialize both the counter and the timer/alarm.
2. Create the steps “jump up once” and “j = j + 1” as a paired set of instructions.

Including the increase of “j” is necessary because counting is a required action.
3. Avoid including a step such as “timer = timer + 1” since the duration of each

jump may not be exactly one time unit, and there is no need to advance time.

Fig. 10.2 Flowchart of the
jumping exercise

108 10 Solutions to Exercises

10.3 Chapter 3 Solutions and Answers

1. O(n3)

In the polynomial 8n3 + 10000n + 83417, the term with the biggest effect is 8n3.
Replacing the coefficient 8 with 1 yields n3, and placing n3 inside the () after the big
O results in the time complexity.

2. O(n2)

Figure 10.3 shows the range of E, where the highlighted part when n is very large,
should be focused on. In this part, the upper bound is 2n2 − 100. Time complexity
represents the time required for the largest possible value of n, and hence the upper
bound determines the time complexity. In the upper bound polynomial, 2n2 is the
term with the biggest effect. Replacing the coefficient 2 with 1 yields n2, and placing
n2 in the () after the big O results in the time complexity.

3. O(1)

The number of iterations R of the loop is 10. If the number of iterations is a constant,
the time complexity will be O(1).

*4. O(nlogn)

Similar to exercise problem 2, replace the coefficient 3 in “3lognn” with 1, and
express the result “lognn” in a more comprehensible form as “nlogn”. Place this in
the parentheses following the big O. Note that “log” without a specified base implies
that the base can be any number.

*5. O(n)

Fig. 10.3 Range of E

10.4 Chapter 4 Solutions and Answers 109

The number of iterations of the loops is 100n. Specifically, the number of iterations
of the loop right below “i = 100” is 100, and of the loop right below “j = n” is n. In
total, the number of iterations is 100 × n = 100n. The total number of instructions
is (3n + 3)×100 + 1 = 300n + 301. In either case, replacing the coefficient before
“n” with 1 yields “n”, resulting in a time complexity of O(n). In other words, time
complexity can be obtained from either the total number of instructions or the number
of iterations of the most iterated loop.

10.4 Chapter 4 Solutions and Answers

Answers to Questions

1. n!

The number of jobs that can be processed the first is “n”. After processing the first
job, the number of jobs that can be processed the second is “n − 1”. Similarly, the
number of jobs that can be processed the third is “n − 2”. In other words, after each
job is processed, the number of remaining jobs decreases by one. This leads to a total
number of processing sequences to be n × (n − 1) × (n − 2) × … × 1 = n!

2. O(n!)

The iteration for calculating the objective function value in the exhaustive search
is shown in Fig. 10.4. Since the number of iterations R of the loop is n!, the time
complexity is O(n!).

3. Second
4. Job 2
5. Yes
6. n!
7. O(n!)

The number of cities that can be visited the first is “n”. After visiting the first city,
the number of cities that can be visited the second is “n − 1”. Similarly, the number

Fig. 10.4 Number of iterations

110 10 Solutions to Exercises

of cities that can be visited the third is “n − 2”. In other words, after each city is
visited, the number of remaining cities decreases by one. This leads to a total number
of visiting sequences to be n × (n − 1) × (n − 2) × … × 1 = n!

Solutions to Exercises

1.

Notation

c index of city(c = 1, 2, . . . , n)
i order of visit(i = 1, 2, . . . , n)
Ci i th city to visit
dCi, Ci+1 distance betweenCi andCi+1

Objective function: Minimize
∑n−1

i=1 dCi ,Ci+1

It is important to define order of visit. Alternatively, you can define only “ith city
to visit” or “distance between the ith and the (i + 1)th cities to visit”. In the objective
function, the iteration of “i” concludes at “n − 1” rather than “n” because the last
distance is from the i = (n − 1)th city to the i + 1= nth city.

If the salesman needs to return to the initial city after visiting the nth city, the
iteration of “i” can conclude at “n”. In this textbook, we assume that it is allowed
for the starting point to be different from the finishing point. Hence, the mission is
considered finished when the salesman completes the visit to the nth city.

To enhance your understanding and problem-solving ability, some common
incorrect solutions are listed below.

Incorrect solution 1:

c index of city(c = 1, 2, . . . , n)
dc, c+1 distance between c and c + 1

Objective function: Minimize
∑n−1

c=1 dc,cc+1

If c represents index of city, then d1, 2 represents the distance between city 1 and
city 2, and d2, 3 represents the distance between city 2 and city 3. Accordingly, the
objective function expresses only one visiting sequence: city 1 → city 2 → city 3
→ city 4 → city 5. It cannot express other sequences such as city 2 → city 5 → city
3 → city 1 → city 4.

Incorrect solution 2:

i, j index of city(i = 1, 2, . . . , n j = 1, 2, . . . , n)
di, j distance between city i and city j

Objective function: Minimize
∑i=n

i=1

∑ j=n
j=1 di, j , i /= j

Let us use three cities as an example with i and j both ranging from 1 to 3. Initially,
with i = 1 and j = 2 and 3,

∑
j di, j calculates the distance between city 1 and city 2

10.4 Chapter 4 Solutions and Answers 111

(distance 1) + the distance between city 1 and city 3 (distance 2). Then, with i = 2
and j = 1 and 3,

∑
j di, j calculates the distance between city 2 and city 1 (distance

3) + the distance between city 2 and city 3 (distance 4). Finally, with i = 3 and j
= 1 and 2,

∑
j di, j calculates the distance between city 3 and city 1 (distance 5)

+ the distance between city 3 and city 2 (distance 6). In total,
∑

i

∑
j di, j sums up

distances 1 to 6, which amounts to twice the total distance between all cities, rather
than the distance of visiting three cities at a time.

Incorrect solution 3:

i, j index of city(i = 1, 2, . . . , n j = 1, 2, . . . , n)
di, j distance between city i and city j

Xi, j
Xi, j = 1 means the route is taken
Xi, j = 0 means the route is not taken

Objective function: Minimize
∑i=n

i=1

∑ j=n
j=1 di, j × Xi, j , i /= j

This model needs constraints to ensure that the solution is feasible. Without
constraints, it is possible that the end of one route is not connected to the start
of the next route, as depicted in Fig. 10.5. In Fig. 10.5a, the number of routes taken is
insufficient to visit all the cities, and the routes are not connected. In Fig. 10.5b, the
number of routes taken is correct, and the routes are connected but not in a way that
allows the trip to be completed in one go. Therefore, this model is only correct when
constraints are added to prevent such infeasible solutions. However, the constraints
can be complex, particularly for beginners, so we will not delve into the details here.

2. An example of encoding:
i 1 2 3 . . . n

Ci 2 n 1 . . . 3

Fig. 10.5 Examples of infeasible solutions

112 10 Solutions to Exercises

*3. Another way of encoding:
c 1 2 3 . . . n

i 3 1 n . . . 2

The first way of encoding means that the first city to visit is city 2, the second
city to visit is city n, and the third city to visit is city 1. The second way of encoding
means that city 1 is the third city to visit, city 2 is the first city to visit, and city 3 is
the nth city to visit.

10.5 Chapter 5 Solutions and Answers

1. Initial population creation and evaluation:

A 1 2 3 4 5 25+15+20+45=105
B 2 3 1 5 4 20+5+25+45=95
C 3 4 5 2 1 15+5+30+40+45=135
D 4 1 5 2 3 10+5+20+30+45=110
E 5 3 1 4 2 5+10+15+35+45=110

Selection:

Elite selection: B (underlined individuals will be in the next generation)
Tournament selection (k=3): A, C, E → A

Crossover:

Randomly pick up A and B, suppose r1=0.7 → crossover

Attention: in the produced offspring, the genes inherited from parent A and parent
B must maintain the same order as in the parents. In other words, the order of genes
3 5 4 in F and 1 4 5 in G should not be altered.

Mutation:

Randomly pick up D, suppose r2=0.1 → mutate
D 4 1 5 2 3 2 1 5 4 3 (Individual H)

Second generation: B・A・F・G・H

Second generation evaluation:

A 2 3 1 5 4 20+5+25+45=95
B 1 2 3 4 5 25+15+20+45=105
C 1 2 3 5 4 25+15+25+45=110
D 2 3 1 4 5 20+5+20+45=90
E 2 1 5 4 3 20+15+10+30+45=120

10.6 Chapter 6 Solutions and Answers 113

The best found individual B is updated by G, so repeat the reproduction process.

Selection:

Elite selection: G
Tournament selection: A, F, H → A

Crossover:

Randomly pick up B and H, suppose r1=0.5 → crossover
B 2 3 1 5 4 2 3 1 5 4 (Individual B)
H 2 1 5 4 3 2 1 3 5 4 (Individual I)

Mutation:

Randomly pick up A, suppose r2 = 0.3 → no mutation

Third generation: G・A・B・I・A

Third generation evaluation:

G: 90
A: 105
B: 95
I: 105
A: 105

The best individual G remains the same as in the second generation, so the termi-
nation criterion “best found individual is not updated for one generation” is met, and
the process is concluded.

Finally, output the objective function value of the best found individual G: 90.

10.6 Chapter 6 Solutions and Answers

Answers to Questions

1. Yes. Set the values of w and θ so that both 0 ≥θ and w ≥θ are satisfied. For
example, w=2, θ=−2.

2. Yes. Set the values of w and θ so that both 0 ≥θ and w <θ are satisfied. For
example, w = −5, θ = −4.

3. A

In TLU learning, the weights and threshold will be updated until the actual output
matches the correct output, making it a form of supervised learning.

Solutions to Exercises

1. First, create the truth table of X1 AND X2 AND X3 (Table 10.5).

114 10 Solutions to Exercises

Table 10.5 Truth table of X1
AND X2 AND X3

Input Output

X1 X2 X3 T

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

Next, create the constraints based on the truth table:

w1 × 0 + w2 × 0 + w3 × 0 < θ (10.1)

w1 × 0 + w2 × 0 + w3 × 1 < θ (10.2)

w1 × 0 + w2 × 1 + w3 × 0 < θ (10.3)

w1 × 0 + w2 × 1 + w3 × 1 < θ (10.4)

w1 × 1 + w2 × 0 + w3 × 0 < θ (10.5)

w1 × 1 + w2 × 0 + w3 × 1 < θ (10.6)

w1 × 1 + w2 × 1 + w3 × 0 < θ (10.7)

w1 × 1 + w2 × 1 + w3 × 1 ≥ θ (10.8)

Calculate Eqs. 10.1–10.8 and get the results:

0 < θ (10.9)

w3 < θ (10.10)

w2 < θ (10.11)

10.6 Chapter 6 Solutions and Answers 115

Table 10.6 Truth table of the
circuit in Fig. 6.15 Input Output

A B T

0 0 1

0 1 1

1 0 0

1 1 1

w2 + w3 < θ (10.12)

w1 < θ (10.13)

w1 + w3 < θ (10.14)

w1 + w2 < θ (10.15)

w1 + w2 + w3 ≥ θ (10.16)

Finally, set the values of w and θ so that all the constraints are satisfied. For
example, w1 = 4, w2 = 2, w3 = 2, θ = 7; w1 = 3, w2 = 3, w3 = 3, θ = 9.

2. First, create the truth table of the given circuit (Table 10.6).

Next, create the constraints based on the truth table:

w1 × 0 + w2 × 0 ≥ θ (10.17)

w1 × 0 + w2 × 1 ≥ θ (10.18)

w1 × 1 + w2 × 0 < θ (10.19)

w1 × 1 + w2 × 1 ≥ θ (10.20)

Calculate Eqs. 10.17–10.20 and get the results:

0 ≥ θ (10.21)

w2 ≥ θ (10.22)

w1 < θ (10.23)

116 10 Solutions to Exercises

Fig. 10.6 Relation between
AI, ML, and NN

w1 + w2 ≥ θ (10.24)

Finally, set the values of w and θ so that all the constraints are satisfied. For
example, w1 =−4, w2 = 2, θ = −2; w1 = −5, w2 = 5, θ = −4.

3. See Fig. 10.6.

AI has been our topic since Chap. 4. In Chap. 5, we introduced genetic algorithm,
and in Chap. 6, neural network. Neural network is a subset of machine learning, and
machine learning is a subset of AI.

*4. See Table 10.7.

Constraints:

0 < θ (10.25)

w3 < θ (10.26)

Table 10.7 Truth table of X1
AND (X2 OR X3)

Input Output

X1 X2 X3 T

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

10.6 Chapter 6 Solutions and Answers 117

w2 < θ (10.27)

w2 + w3 < θ (10.28)

w1 < θ (10.29)

w1 + w3 ≥ θ (10.30)

w1 + w2 ≥ θ (10.31)

w1 + w2 + w3 ≥ θ (10.32)

An example of w and θ values that satisfy all the constraints: w1 = 8, w2 =
2, w3 = 2, θ = 10.

*5. Create the constraints based on the truth table:

0 < θ (10.33)

w3 ≥ θ (10.34)

w2 ≥ θ (10.35)

w2 + w3 ≥ θ (10.36)

w1 ≥ θ (10.37)

w1 + w3 ≥ θ (10.38)

w1 + w2 ≥ θ (10.39)

w1 + w2 + w3 < θ (10.40)

You will notice that there are no values of w and θ that can satisfy all the constraints,
and that is why a single TLU cannot produce the same output.

118 10 Solutions to Exercises

10.7 Chapter 7 Solutions and Answers

Answers to Questions:

1. Frequency band

Wi-Fi operates in two frequency bands: 2.4 and 5 GHz, each with its own merit and
demerit.

2.4 GHz:

Merit: strong ability to go through obstacles
Demerit: can be interfered by home appliances like microwave ovens because
they use the same frequency band

5 GHz:

Merit: minimal interference because 5 GHz is an exclusive frequency band
reserved for Wi-Fi
Demerit: limited ability to go through obstacles

2. IP address

The range of IP addresses assigned to an institution is pre-established and constant,
enabling us to identify whether a terminal is within the institution based on its IP
address.

Solutions to Exercises

1.

• Maximum data rate is slow (e.g. 10 Mbps)
• Far from the exchange station in a copper cabling network
• Network is busy due to many accesses
• Obstacles and interference in a Wi-Fi network
• Connection issue, virus infection, data rate restriction, etc.

2.

• Connection issue due to scratches, bends, or stains in a fiber optic cabling network
• Breakdown of a device connecting other devices on the network
• Obstacles or lack of signals in a Wi-Fi network, etc.

3. Some solutions from learners: (1) clothes drying poles that move in automat-
ically when it rains or gets dark, (2) doors that open automatically when the
owner returns, (3) car systems that automatically maintain a minimum following
distance.

4. Figures 10.7, 10.8 and 10.9 are flowcharts created by some learners for their
solutions to problem 3.

10.8 Chapter 8 Solutions and Answers 119

Fig. 10.7 Flowchart of an
automatic clothes drying
pole

Regarding Fig. 10.9, some explanations are given as follows. According to
Japanese driving textbooks, the recommended minimum following distance is (speed
− 15) km/h when the vehicle’s speed is in the range of 30–70 km/h. If the vehicle’s
speed exceeds 70 km/h, the minimum following distance should be no less than the
vehicle’s speed km/h. Figure 10.9 illustrates the control flowchart for achieving this.

10.8 Chapter 8 Solutions and Answers

Solutions to Exercises

1. Step 1: create the union “alcoholic drinks ∪ soft drinks”.

120 10 Solutions to Exercises

Fig. 10.8 Flowchart of an
automatic door with face
recognition

Step 2: apply the restriction “stock ≤ safety stock + 2” to Table 10.8. First calculate
“safety stock + 2”, with the results displayed on the right side of Table 10.8. Items
that meet the condition “stock ≤ safety stock + 2” are shown in bold and underlined.
The result of step 2 is presented in Table 10.9.

Step 3: apply the projection on “name” to Table 10.9, and the final result is displayed in
Table 10.10. It should be noted that the relation name (table name) remains unchanged
when applying projection.

*2. See Table 10.11.

10.9 Chapter 9 Solutions and Answers

Answers to Questions

1. Write the recipients’ email addresses after “Bcc” rather than “To” or “CC”.

It is highly recommended to use the “Bcc” field when sending emails to a group of
recipients who may not know each other or should not have access to each other’s

10.9 Chapter 9 Solutions and Answers 121

Fig. 10.9 Flowchart of a following distance keeping system

Table 10.8 Alcoholic drinks ∪ soft drinks

Code Name Stock Safety stock

P0001 Champagne 8 10 12

P0002 Red wine 11 10 12

P0003 Brandy 7 9 11

P0004 White wine 17 11 13

P0005 Beer 16 12 14

P00010 Orange juice 18 10 12

P00011 Apple juice 14 12 14

P00012 Red tea 9 9 11

122 10 Solutions to Exercises

Table 10.9 Alcoholic drinks
∪ soft drinks [stock ≤ safety
stock + 2]

Code Name Stock Safety stock

P0001 Champagne 8 10

P0002 Red wine 11 10

P0003 Brandy 7 9

P00011 Apple juice 14 12

P00012 Red tea 9 9

Table 10.10 Alcoholic
drinks ∪ soft drinks [stock ≤
safety stock + 2]

Name

Champagne

Red wine

Brandy

Apple juice

Red tea

Table 10.11 (Weekly
recommended foods − foods
eaten this week) ∩ favorite
foods

Food

Yogurt

email addresses. With “Bcc”, each recipient gets the email without seeing the email
addresses of other Bcc recipients. On the other hand, “CC” is used when you want to
keep all the recipients informed and be aware of the communication. When you add
recipients to the CC field, all the recipients can see the email addresses of everyone
else who received the email.

2. A and B

Even when stored in a locked car, a USB drive containing sensitive data is not secure
due to the risk of theft and exposure to extreme temperatures. Thieves can gain
access to locked cars using lock-picking tools, and extreme temperatures in a car
may potentially damage the drive.

Leaving the drive in a lab that is accessible to multiple individuals also poses
security risks. Comparing with leaving it in an unattended or potentially vulnerable
location, carrying it with you can be more secure due to direct physical control,
reduced exposure, and immediate access. Just be cautious not to lose it.

3. Setting a login password alone does not provide a high level of security, because
cracking software tools available for download on the Internet can potentially
break the login password relatively quickly. Measures such as setting a BIOS
password or using hard disk encryption will enhance the level of security.

10.9 Chapter 9 Solutions and Answers 123

Solutions to Exercises

1. Before Sect. 6.3 in Chap. 6, it is mentioned that machine learning can be used to
detect viruses. The mechanism can be described as follows:

➀ Let computers learn from samples of harmless files and harmful files
(supervised learning, classification).

➁ Extract features of harmless files and harmful files respectively and produce
the model for identification.

➂ Use the produced model to identify new files.

If your answer is “impossible”, you can also get scores if you give comprehensible
reasons such as viruses may destroy AI first and then AI cannot work.

*2. Generally, if confidentiality and integrity are increased, availability will
decrease, and if availability is increased, confidentiality and integrity will
decrease. Some details are as follows.

Confidentiality versus availability: Implementing strong encryption and strict access
controls can greatly enhance confidentiality. However, this can reduce availability
because decryption and access controls may slow down and restrict access to
information.

Integrity versus availability: Implementing rigorous integrity checks and valida-
tion procedures ensures that data remains accurate and unaltered. However, this can
slow down the access process because data changes are closely scrutinized, and
suspicious activities may result in access rejection.

*3. See Table 10.12.

Table 10.12 Difference between symmetric key and public key cryptosystems

Symmetric key cryptosystem Public key cryptosystem

Key for encryption/decryption Same Different

Sending the key in advance Required Unnecessary

Mechanism/processing Easy Complex

Speed of encryption/decryption Fast Slow

Methods of encryption DES, 3DES, AES RSA

	Preface
	Background and Purpose
	Topics and Organization of Contents
	Features of this Book
	How to Use this Book
	Acknowledgements

	Contents
	List of Figures
	List of Tables
	1 Computer
	1.1 What is a Computer
	1.2 Program and Programming
	1.3 Distinguishing Characteristic of a Computer
	1.4 Composition of a Computer
	1.5 Hardware and Software of a Computer
	1.6 Representation of Information Inside a Computer
	1.7 Computing Mechanism of a Computer
	References

	2 Flowchart
	2.1 What is a Flowchart
	2.2 How to Create a Flowchart
	2.3 Notes on Flowcharting
	2.4 Clarify the Meaning of Each Statement
	Reference

	3 Time Complexity
	3.1 What is Time Complexity
	3.2 How to Know Time Complexity from a Flowchart
	3.3 Significance of Time Complexity
	3.4 How to Evaluate a Program
	References

	4 Artificial Intelligence—Mathematical Modeling
	4.1 What is Artificial Intelligence
	4.2 Target Problems of AI Optimization Methods
	4.3 Mathematical Modeling of a Problem
	4.3.1 Single Machine Scheduling Problem
	4.3.2 Knapsack Problem

	4.4 Encoding
	References

	5 Artificial Intelligence—Genetic Algorithm
	5.1 What is Genetic Algorithm
	5.2 Flowchart of Genetic Algorithm
	5.3 How to Use GA to Solve a Problem
	5.3.1 Initial Population Creation
	5.3.2 Evaluation
	5.3.3 Selection
	5.3.4 Crossover
	5.3.5 Mutation
	5.3.6 Termination Criterion

	References

	6 Artificial Intelligence—Machine Learning
	6.1 What is Machine Learning
	6.2 Types of Machine Learning
	6.3 Neural Network
	6.3.1 What is a Neural Network
	6.3.2 Threshold Logic Unit (TLU)
	6.3.3 Learning of TLU
	6.3.4 Deep Learning

	References

	7 Network
	7.1 What is a Network
	7.2 Methods of Switching
	7.3 Network Topologies
	7.4 Physical Configuration
	7.4.1 Wired LAN (Ethernet)
	7.4.2 Wireless LAN (Wi-Fi)

	7.5 Internet
	7.5.1 Internet Protocols
	7.5.2 IP Address
	7.5.3 Domain Name

	7.6 Various Information Systems
	References

	8 Database
	8.1 What is a Database
	8.2 Relational Database
	8.2.1 Union
	8.2.2 Difference
	8.2.3 Intersection
	8.2.4 Restriction
	8.2.5 Projection

	References

	9 Information Security
	9.1 What is Information Security
	9.2 Risks, Threats, and Vulnerabilities
	9.3 Security Measures for Users
	9.3.1 Management of User IDs and Passwords
	9.3.2 Anti-virus Measures

	9.4 Security Measures for Administrators
	9.4.1 Create Information Security Policy
	9.4.2 Access Management
	9.4.3 Firewall

	9.5 Security Technologies
	9.5.1 Encryption
	9.5.2 Digital Signature and Digital Authentication
	9.5.3 Secure Encrypted Communication

	References

	10 Solutions to Exercises
	10.1 Chapter 1 Solutions and Answers
	10.2 Chapter 2 Solutions and Answers
	10.3 Chapter 3 Solutions and Answers
	10.4 Chapter 4 Solutions and Answers
	10.5 Chapter 5 Solutions and Answers
	10.6 Chapter 6 Solutions and Answers
	10.7 Chapter 7 Solutions and Answers
	10.8 Chapter 8 Solutions and Answers
	10.9 Chapter 9 Solutions and Answers

