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Abstract. Respiratory symptoms associated with sound frequently
manifest in our daily lives. Despite their potential connection to ill-
ness or allergies, these symptoms are often overlooked. Current detec-
tion methods either depend on specific sensors that must be deliber-
ately worn by the user or are sensitive to environmental noise, limiting
their applicability to specific settings. Considering that indoor environ-
ments vary, we propose SymRecorder, an earphone microphone-based
application, for detecting respiratory symptoms across a range of indoor
settings. By continuously recording audio data through the earphone’s
built-in microphone, we can detect the four common respiratory symp-
toms: cough, sneeze, throat-clearing, and sniffle. We have developed a
modified ABSE-based method to detect respiratory symptoms in noisy
environments and mitigate the impact of noise. Additionally, a Hilbert
transform-based method is employed to segment the continuous respira-
tory symptoms that users may experience. Based on selected acoustic fea-
tures, the four symptoms are classified using the residual network and the
multi-layer perceptron. We have implemented SymRecorder on various
Android devices and evaluated its performance in multiple indoor envi-
ronments. The evaluation results demonstrate SymRecorder’s depend-
able ability to detect and identify users’ respiratory symptoms in various
indoor environments, achieving an average accuracy of 92.17% and an
average precision of 90.04%.

Keywords: respiratory symptoms · ear-phone · signal process ·
deep-learning

1 Introduction

Respiratory symptoms are associated with illnesses, infections or allergies. For
example, cough is the main symptom of asthma. When the patient has pneu-
monia (e.g., COVID-19), it is often accompanied by throat-clearing (t-c) and
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nasal aspiration symptoms. Currently, patients commonly use subjective report-
ing methods when seeking medical care [6]. This has been shown to be inefficient
and inaccurate.

In recent years, works have focused on the detection of specific types of respi-
ratory symptoms, such as cough [13], sneeze [1], and snore [15]. PulmoTrack-CC
[14] uses a combination of sound recorded from the neck and a motion sensor
placed on the chest to achieve a sensitivity of approximately 96% when calcu-
lating cough events. All of the above systems require the user to wear special
sensors and are not practical enough. With the increasing power of smartphones,
many studies have emerged on the use of smartphones to improve the quality of
healthcare services [10,11,17,18]. A cough detection system [19] uses a local Hu
matrix and a k-nearest neighbor (KNN) algorithm to achieve 88.51% sensitiv-
ity (SE) and 99.72% specificity (SP). SymDectector [12] is a smartphone-based
application that implements the detection of sound-related respiratory symp-
toms in office and home scenarios. SymListener [16] implements three types
of respiratory symptom detection in driving environments with strong interior
noise. However, SymDetector and SymListener do not consider continuous symp-
toms. The popularity of earphones provides an opportunity to detect respiratory
symptoms in multiple indoor environments. When users wear earphones, their
relative position to the human body does not change and they are able to receive
the acoustic signals generated by the user more stably.

Driven by these circumstances, we propose an earphone-microphone based
system, called SymRecorder, for detecting sound-related respiratory symptoms
in a variety of indoor environments. SymRecorder uses the earphone microphone
connected to a smart device to sense the environment and detects and recognizes
sound-related respiratory symptoms, including cough, sneeze, t-c and sniffle. To
achieve the above objective, we face the following challenges: (1) the indoor
environment where the user is located may be noisy, which can lead to a lower
signal-to-noise ratio and make it difficult to detect sound events; (2) the user may
experience continuous respiratory symptoms, especially continuous cough, at
very short intervals, SymRecorder needs to accurately subdivide these continuous
symptoms.

To address the above challenges, we design a sound event detection method
combining dual threshold and Adaptive Band-partitioning Spectral Entropy
(ABSE) [3], named RA-ABSE to detect sound-related events occurring in differ-
ent indoor environments. RA-ABSE uses dual thresholds to detect sound event
endpoints in quiet environments. While in the noisy environment, ABSE is used
as a feature to detect the endpoints of sound-related events and is combined
with Berouti power spectrum subtraction to remove the effect of noises on sound
events. With the help of the RA-ABSE, segments of the audio containing sound
events are filtered out. After acquiring the sound event fragments, we design
a Hilbert Transform (HT) based method to subdivide the possible continuous
symptoms. Then we use a combination of features based on Mel Frequency
Cepstrum Coefficients (MFCC), Gammatone Frequency Cepstrum Coefficients
(GFCC) and spectrogram. SymRecorder adopts the Residual Network (ResNet)
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and Multi-layer Perceptron (MLP) to classify the four types of respiratory symp-
toms. We also incorporate the attention mechanism into the ResNet to highlight
the unique features of the same respiratory symptoms and reduce the influence
of different environments and different populations.

To evaluate the performance of SymRecorder, we collect data from a total
of 20 volunteers over 4 months using earphones to build the system model. We
implement SymRecorder on the Android platform and comprehensively evaluate
its performance. The experimental results show that SymRecorder is effective in
four indoor environments: home, office, canteen, and shopping mall. Our contri-
butions are summarized as follows:

– We propose a detection system, called SymRecorder to detect sound-related
respiratory symptoms in different indoor environments. Through acoustic
sensing, SymRecorder only uses a pair of earphones and a mobile device to
detect and differentiate between cough, sneeze, t-c, and sniffle.

– We design a dual threshold and ABSE-based sound event detection method,
called RA-ABSE, to detect sound events in different indoor environments,
and use Berouti power spectrum subtraction to eliminate the environmental
noises. We also design a HT based method to subdivide possible continuous
respiratory symptoms.

– We design a combination of features based on the spectrogram, MFCC, and
GFCC, and use a deep learning model combining ResNet, attention mech-
anism, and MLP for classification. The evaluation results show that Sym-
Recorder has an average accuracy of 92.17% and an average precision of
90.04%.

The rest of this article is organized as follows: In Sect. 2, we describe The
detailed description of the SymRecorder design. Experimental details and future
work on SymRecorder are presented in Sect. 3. Section 4 discusses related work,
and finally, we draw our conclusion in Sect. 5.

2 System Design

This section describes the system architecture of SymRecorder. As shown in
Fig. 1, the whole system consists of six modules. First, the original microphone
audio recording is split into frames and windows, and the frames and windows
are sent to the sound event detection module. This module first determines
the current environment type and detects sound events using the RA-ABSE
method. Next, the sound events are passed through the continuous symptom
detection module to subdivide the possible continuous symptoms. Next, features
are extracted for each filtered sound event and a deep learning network is used
to classify the sound events. Finally, respiratory symptoms are recorded. The
design details of each module are described in detail below.
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Fig. 1. System overview.

2.1 Sampling and Pre-processing

Existing earphones are capable of sampling audio signals at a variety of sampling
rates. We choose 20000 Hz as the sampling rate. The sampled audio stream is
then segmented into 10ms non-overlapping frames, which are used to extract
time-domain features. The VocalSound [7] dataset contains recordings of 3365
subjects performing six physiological activities: laugh, sigh, cough, t-c, sneeze,
and sniffle. We count the distribution of all symptom durations. As seen in
Fig. 2a, respiratory symptoms typically last for hundreds of milliseconds and
cover multiple frames. Therefore, we group a fixed number of consecutive frames
into a single window for processing. In addition, the user may also experience
continuous respiratory symptoms, especially continuous cough. To determine the
window size, we also count the number of possible occurrences of continuous res-
piratory symptoms. As shown in Fig. 2b, continuous respiratory symptoms tend
to last 1 to 3 times, while reference [5] states that during continuous respiratory
symptoms, subsequent symptoms will not include an inspiratory period except
for the first symptom, and the duration of each symptom will not exceed 0.5 s.
Therefore, the window size is set to 2 s, which can cover any respiratory symp-
toms. To avoid double counting, there is no overlaph between windows. When a
user experiences consecutive symptoms, they are distributed in a maximum of
two windows.

Fig. 2. The distribution of symptom.
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2.2 Sound Event Detection

We utilize the short-time power (STE) to determine the user’s environment.
Specifically, SymRecorder stores data from the current window and the past 4
windows, totaling 5 windows (i.e., 10 s). Subsequently, the STE of the frames
within each window is computed. Only when 80% of the frames’ STE in each
window are below the STE threshold (i.e., 10), the current environment is classi-
fied as a quiet environment. Otherwise, it is considered as a noisy environment.
Following this, we design a sound event detection method called RA-ABSE. In
quiet indoor environments, the method employs dual-threshold time-domain fea-
tures for sound event detection, while in noisy indoor environments, ABSE is
used as a feature to detect sound events.

Quiet Indoor Environment. In a quiet indoor environment, the energy of
the audio signal received by the earphone microphone is typically low except
for sound events. Figure 3a illustrates an earphone audio recording in an office
scenario with a subject’s speech signal and several respiratory symptoms. It
can be observed that the energy of the environmental noise is very low except
for the sound events. Furthermore, in addition to discrete sound events con-
taining respiratory symptoms, continuous sound events (e.g., speech or music)
are included, which need to be filtered out. In the following, we introduce the
employed time-domain features and elucidate how these features can be used to
filter out continuous sound events.

Root Mean Square (RMS): Suppose l denotes the frame consisting of N
samples, and x(l, n) denotes the amplitude value of the n sample in l, then the
RMS [8] of the l frame is

rms (l) =

√
√
√
√ 1

N

N∑

n=1

x (l, n)2 (1)

The RMS measures the energy level contained in the current acoustic frame so
that the RMS can distinguish between acoustic and non-acoustic event frames.

Above α-Mean Ratio (AMR): Assuming that w represents a window con-
sisting of m frames, the AMR of the window w is calculated as

amr (α,w) =
∑m

i=1 ind [rms (li) > α · rms (w)]
m

(2)

where rms (w) is the mean RMS of all frames in window w and ind (·) indicates
the indicator function that returns 1 when the condition is true and 0 otherwise.
α is the given parameter. AMR measures the ratio of high-energy frames in the
window and the experimental parameter α is jointly set with the mean RMS of
the window to distinguish between high-energy and low-energy windows. Given
an appropriate value of α, windows containing discrete sound events, continuous
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sound events, and environmental noise return different AMR. Therefore, this
feature can be used to filter windows with discrete sound events. In SymRecorder,
α is set to 0.6.

RMS is first used to find the endpoints of sound events. As shown in Fig. 3b,
sound events usually have higher energy, and therefore the RMS of the sound
event frames is also significantly larger than the surroundings. Specifically, when
the RMS of three consecutive frames is above the RMS threshold β (i.e., 0.005),
the beginning of the first frame is considered the start point of the sound event.
The end point is obtained when the RMS of three consecutive frames below the
threshold. And the AMR is used to filter out continuous sound events, especially
the user’s speech signals. As shown in Fig. 3c, windows contain discrete sound
events typically have lower AMR due to the windows contain fewer frames of
sound events, while the sound events contain much more energy than environ-
mental noise frames. The AMR of the speech event window typically ranges
from 0.3 to 0.5, since the voiced frames occupy about 30% to 50% [9] in a fluent
speech. Therefore, when the AMR of the window where the current sound event
is less than 0.3 and the duration of the sound event is greater than 0.2 s, the
sound event is considered as a valid sound event, otherwise, the sound event is
discarded.

Finally, we consider the situation when the user experiences continuous symp-
toms. We observe that when most of the continuous symptoms are distributed
across two windows, the AMR of the window containing more symptom parts
will be slightly higher, but still below the threshold of 0.3, so that the continuous
symptoms are preserved. However, when continuous symptoms are concentrated
within a single window, the AMR of that window becomes similar to the AMR
of the continuous speech windows, which means that the continuous symptoms
will be discarded. Therefore, if the AMR of the window containing the sound
event is higher than 0.3 but the duration of that sound event is lower than the
window size (i.e., 2 s), the sound event is still preserved.

Noisy Indoor Environment. In a noisy indoor environment, the earphone
microphone continuously receives audio signals with higher energy. Figure 4a
shows an audio recording in a canteen scene, where it can be observed that
the environmental noise in the canteen makes it challenging to accurately detect
respiratory symptoms by time-domain features. Therefore, we employ the ABSE
as a feature parameter to detect sound events in noisy environments. ABSE
divides the spectrum into multiple frequency bands and calculates the spectral
entropy within each frequency band, thus avoiding dependence on the entire
spectral amplitude variance. The ABSE for the l frame is calculated as

Hb (l) =
Nb∑

m=1

W (m, l) · Hb (m, l) (3)

where W (m, l) and Hb(m, l) are the weight and spectral entropy value of the m
sub-band, respectively. Then an adaptive signal threshold Ts is set to classify
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Fig. 3. Example of audio recording in
office.

Fig. 4. Example of audio recording in
canteen.

event segment or noise-only segment according to the mean μ and variance θ
of the logarithmic ABSE value of detected noise-only segments. Formally, Ts =
μ + γ · σ, and γ (i.e., 0.005) is an experimental coefficient. This threshold is
compared to the value of the current frame. Whenever the difference surpasses a
specified threshold, event segment is detected. If a given segment is detected as a
noise-only segment, then the signal threshold is updated. Figure 4b illustrates the
trend of the ABSE of Fig. 5(a) and Ts. It can be observed that Ts is constantly
updated during the pure noise and remains unchanged when a sound event is
detected.

After the sound events endpoints are detected, it is necessary to separate
the noise components from the sound events. We employ the Berouti spectral
subtraction method to reduce the noise components in the sound events. Sup-
pose Y (ejw), S(ejw) and N(ejw) denote the Fourier Transform (FT) result of
the mixed noisy signal, the pure signal and the additive noise, then we have
|Y (

ejw
) |2 = |X (

ejw
) |2 + |N (

ejw
) |2. As for the additive noise can not be

obtained directly, we use the average power spectral E of several beginning
frames to approximately replace |N (

ejw
) |2. Finally, |S(ejw)| can be calculated

by |S(ejw)| =
√|Y (ejw) |2 − E. Figure 4c illustrates the processed result, it can

be seen that most of the environmental noise has been eliminated, and the sound
events can be effectively extracted from the time domain.
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2.3 Subdivision of Continuous Symptom

Although continuous symptoms mainly refer to continuous cough, in order to
cope with other continuous symptoms that may occur, all detected sound events
are sent to this module. We design an algorithm based on HT to subdivide the
sound events that may contain continuous respiratory symptoms.

The algorithm execution steps are shown in Fig. 5. Firstly, the HT is applied
to the sound events detected in the previous stage to extract the envelope, repre-
senting the amplitude contour of the sound events. The HT is applied to smooth
the sound signal and eliminate the negative values [4].

The envelope is then passed through a Butterworth low-pass filter, as a way
to obtain the fundamental frequencies of the continuous respiratory symptoms.
The frequency range of the low-pass filter is estimated based on the duration of
the current sound event. Assuming the duration of the current sound event is t,
as shown in Fig. 2b, the number of possible occurrences of consecutive symptoms
is from 1 to 4. Thus, the frequency interval of the current symptom during the
time of t is (1/t, 4/t) Hz. We set this frequency interval as the frequency range
of the low-pass filter and iteratively increment 0.1 Hz. When the filter frequency
approaches the frequency of the current respiratory symptoms, the number of
peaks on the filtered envelope corresponds to the number of occurrence counts
of the current symptom. Thus, when the criteria for the number of peaks are
met, the variance of all peaks is recorded until the iteration process concludes.
The set of peaks with the minimum variance is subsequently selected, and the
subdivision of sound events is achieved by the distance differences between the
peaks. In the algorithm design process, additional conditional statements are
incorporated to handle specific situations:

(a) Since the number of peaks in the filter envelope corresponds to the number
of times during the filter frequency change, only one peak can be detected
for a sound event that contains only one respiratory symptom. If only one
peak is still detected when the filter frequency iterates to 4/tHz, the current
sound event is not processed in the current module.

(b) Some single symptoms can have two stages of energy bursts, with the first
phase being sharper and containing higher energy, while the second stage
is relatively flat and has lower energy. Therefore, two peaks may appear
during the filter frequency iterations, indicating the subdivision of a single
symptom. To differentiate it from two consecutive symptoms, the values of
the two peaks are compared after the set of peaks with the lowest variance is
obtained. For two consecutive symptoms, the peaks on the filtered envelope
will be evenly distributed. Suppose the first peak value is Peak1 and the
second peak value is Peak2. If 0.8 · Peak1 < Peak2 is satisfied, the sound
event is subdivided according to the distance between the peaks, otherwise
the current sound event is output directly.

(c) Two stages of energy bursts may also occur during continuous symptoms.
The variance of the peak set can help filter out such case. During the iter-
ation of the filter frequency, when a smaller peak appears, the variance of
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the set of peaks increases, and therefore the current peak set is not selected.
So, if the number of selected peak set is more than two, the current sound
event is subdivided directly according to the distance between the peaks.

Finally, we perform alignment processing on each subdivided sound event
to facilitate the next step of feature extraction. Specifically, the duration of
the sound event is denoted as d, if d < 0.2 s, the sound event is discarded; if
0.2 s < d < 0.5 s, then the sound event is zero-padded to 0.5 s; if d > 0.5 s, then
the middle part of the sound event is taken, and the part before and after the
length of 1/2 · (d − 0.5) is deleted.

Fig. 5. Subdivision algorithm.



310 Z. Li et al.

2.4 Feature Extraction and Classified Model

Respiratory symptoms are abnormal manifestations related to the respiratory
system, typically emitted from the nasal cavity or throat, presented in the acous-
tic form of specific audio signals. Many features exist for identifying specific types
of audio signals, and one of the most commonly used features is the MFCC.
MFCC takes into account the non-linear response of the human ear on the audio
spectrum, and is obtained through a frequency transformation of the logarithmic
spectrum.

Although MFCC is widely used as a feature in audio signal processing, the
performance of MFCC is strongly influenced by the noise level. The Gammatone
filter bank can provide higher accuracy compared to the Mel filter bank. To make
the acoustic features more robust, we also use GFCC as a feature.

In addition, SymRecorder requires a feature to describe the local information
of respiratory symptoms in both frequency and time domains. Short-term Fourier
Transform (STFT) splits the original signal into fixed-length time windows and
applies the FT, which can capture the short-time spectral features in the original
signal.

SymRecorder uses deep learning networks to capture the distinctive repre-
sentations of each respiratory symptom. The network architecture is shown in
Fig. 6. The learning network uses Convolutional Neural Network (CNN) and
ResNet as the backbone, MFCC matrix, GFCC matrix, and spectrogram as
inputs. To enhance the differences between different sound event features, the
lightweight Convolutional Block Attention Module (CBAM) is integrated into
the ResNet. Finally, the fine-grained features extracted by the learning network
are concatenated into the same feature vector and then classified using the MLP.

Fig. 6. Finer feature extraction and symptom identification network structure.

3 Experimentation and Evaluation

In this section, we present the implementation details and evaluates the perfor-
mance of SymRecorder based on the data collected from experiments. We also
conclude with a discussion on the future work of SymRecorder.
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3.1 Experimental Setup

The training set used is derived from two datasets. The first dataset is from
VocalSound [7]. We get 2013 cough, 1310 sneeze, 1764 t-c, and 2341 sniffle sam-
ples. These samples are utilized to investigate the features extracted from res-
piratory symptoms and enable deep learning networks to learn the distinctions
between different respiratory symptom characteristics.

The second dataset comes from 14 participants we recruited, consisting of 4
females and 10 males. The participants’ ages range from 12 to 58 years. Three
participants are from the same family and spend much of their time at home; the
remaining 11 participants are graduate students who frequented the office and
canteen almost every day. Additionally, they spend one day per week shopping at
the mall. Over a period of four months, we collect 2,873 cough, 2,008 sneeze, 2,577
t-c, and 3,135 sniffle samples under the four different environmental conditions.
In addition, we also gathered non-symptomatic sound events (e.g., door closing),
which are labeled as “other” categories.

To test the performance of SymRecorder, a prototype is developed and
installed on Honor-10 and Xiaomi 12Pro smartphones. Four volunteers who par-
ticipate in data collection are joined by an additional 6 volunteers for evaluation
purposes. The evaluation scenarios included home, office, canteen, and shopping
mall. Over the course of nearly three months of evaluation, we collect 1331 cough,
797 sneeze, 916 t-c, and 1054 sniffle samples. Table 1 presents detailed informa-
tion about the utilized dataset. We compare the performance of SymRecorder
with the following methods, which also focus on detecting respiratory symptoms
through acoustic sensing:

SymDetector [12]: This work classifies cough, sneeze, sniffle, and t-c symp-
toms using the SVM classifier using time-domain features and frequency-domain
features such as symptom length, the center of mass, bandwidth, etc.

SymListener [16]: This work uses MFCC and GFCC features to classify
cough, sniffle, and sneeze using Long Short Term Memory (LSTM) networks.

3.2 System Performance

Overall Performance. We first compare the overall performance of Sym-
Recorder with the baseline methods realized in an offline manner. Figure 7a
shows the confusion matrix of SymRecorder, indicating that 93.18% of respira-
tory symptoms are correctly classified. Sniffle has a probability of being classified
as “other”, but is less likely to be classified as cough. Cough has a probability
of being classified as t-c, while sneeze has a probability of being classified as
sniffle. Figure 7b illustrates the overall performance of SymRecorder compares
to the two baseline methods. It can be observed that SymRecorder achieved the
highest average recall and precision, which are 92.17% and 90.04%, respectively.
Due to SymDetector relying only on audio amplitude and RMS to detect sound-
related events, it is less robust to the interference of noisy environments, such
as canteens and malls. This may result in SymDetector missing sound events in
noisy environments. Although SymListener can adapt to strong driving noise, it
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Table 1. Setup of Datasets.

dataset cough sneeze t-c sniffle days source

train set 2013 1310 1764 2341 – vocalsound

2873 2008 2577 3135 120 1st–14th

testset 1331 797 916 1054 85 11th–20th

does not consider the impact of consecutive symptoms, treating them as indi-
vidual occurrences. Furthermore, both SymDetector and SymListener do not
differentiate the source of symptoms, and symptoms generated by other people
also lead to overall performance degradation. For SymRecorder, the detection
accuracy for cough and sneeze is relatively high. This can be attributed to the
high energy density and long symptom duration associated with these two symp-
toms. In contrast, the detection accuracy for sniffle is relatively low due to its
lower energy density and shorter symptom duration.

Fig. 7. The overall performance of SymRecorder.

Influence of Indoor Scenario. Figure 8a and Fig. 8b illustrate the recall and
precision in different indoor scenarios. In this context, the term “mall” refers to
a comprehensive commercial complex where the environmental noise tends to
be more pronounced compared to other scenarios. It can be observed that Sym-
Recorder performs the best in office environments, as offices are typically charac-
terized by relatively quiet surroundings. Across various scenarios, the detection
performance for cough and sneeze is consistently good. However, in canteen
and mall scenarios, the recall and precision for sniffle are relatively low. This
is because these scenarios often feature short and high-frequency sound events
such as tray handling noises and buzzing sounds, which can either mask snif-
fle sounds or be misclassified as sniffle. Additionally, the category of “other”
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sound events exhibits a lower recall rate but higher precision in the evaluation.
This suggests that sound events tend to be classified as respiratory symptoms,
while respiratory symptoms are difficult to classify as “other”. This phenomenon
may be attributed to the fact that certain sound events can generate acoustic
characteristics similar to respiratory symptoms.

Fig. 8. The performance of different scenarios.

3.3 Discussion and Future Work

Although we introduce a subdivision algorithm to handle potential instances
of continuous cough events, the subdivision algorithm cannot handle all con-
tinuous cough events. The algorithm can fail when the second burst stage of
a cough symptom resembles the first stage. Furthermore, if multiple individ-
uals cough simultaneously, causing overlapping cough sounds, the subdivision
algorithm may also produce errors. We will subsequently improve the subdivi-
sion algorithm and consider acquiring dual-channel signals from headphones to
distinguish between different users.

4 Related Work

The audio-based approach has an excellent track record in detecting respiratory
health. PulmoTrack-CC [14] achieved 94% overall specificity and 96% overall
sensitivity in detecting cough events. VitaloJAKTM [2] proposes to capture sig-
nal regions with high energy and high spectral mass to automatically count
coughs from recordings. However, all of the above work requires the user to wear
a recording device or acoustic sensor, which is extremely inconvenient to use.

In many previous works, smartphones started to be used to collect respi-
ratory health information. iSleep [8] is a smartphone-based sleep monitoring
system that detects snoring sounds from the user, but it has high environmental
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requirements. symDetector [12] is a smartphone-based application that detects
sneeze, cough, sniffle, and t-c sounds in a home or office environment, and has
high ambient noise requirements. SymListener [16] is also a smartphone-based
application that detects sneeze, cough, and sniffle sounds in the driving envi-
ronment, with a high level of environmental robustness, but without considering
the effects of continuous symptoms.

5 Conclusion

We propose SymRecorder, an application based on the microphone of earphones,
which can inconspicuously detect user-related respiratory symptoms in various
indoor environments, including cough, sneeze, t-c, and sniffle. A method called
RA-ABSE is designed to detect the endpoints of sound events, and Berouti power
spectral subtraction is employed to remove potential environmental noise. We
devise an algorithm to subdivide possible continuous symptoms, utilizing MFCC,
GFCC, and spectrogram as features, and employ the ResNet with the stacked
attention mechanism and MLP for classification. Extensive experiments are con-
ducted to evaluate the performance of SymRecorder in different indoor environ-
ments, and the results demonstrate that SymRecorder can detect respiratory
symptoms with high accuracy.
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9. Korpáš, J., Sadloňová, J., Vrabec, M.: Analysis of the cough sound: an overview.
Pulm. Pharmacol. 9, 261–268 (1996). https://doi.org/10.1006/pulp.1996.0034

10. Lu, H., Pan, W., Lane, N.D., Choudhury, T., Campbell, A.T.: SoundSense: scalable
sound sensing for people-centric applications on mobile phones. In: MobiSys 2009,
Kraków, Poland, pp. 165–178 (2009). https://doi.org/10.1145/1555816.1555834

11. Qian, K., et al.: Acousticcardiogram: monitoring heartbeats using acoustic signals
on smart devices. In: INFOCOM 2018, pp. 1574–1582 (2018). https://doi.org/10.
1109/INFOCOM.2018.8485978

12. Sun, X., Lu, Z., Hu, W., Cao, G.: SymDetector: detecting sound-related respiratory
symptoms using smartphones. In: UbiComp 2015, pp. 97–108 (2015). https://doi.
org/10.1145/2750858.2805826

13. Vhaduri, S., Kessel, T.V., Ko, B., Wood, D., Wang, S., Brunschwiler, T.: Nocturnal
cough and snore detection in noisy environments using smartphone-microphones.
In: ICHI 2019, pp. 1–7 (2019). https://doi.org/10.1109/ICHI.2019.8904563

14. Vizel, E., et al.: Validation of an ambulatory cough detection and counting applica-
tion using voluntary cough under different conditions. Cough 6, 3 (2010). https://
doi.org/10.1186/1745-9974-6-3

15. Wang, C., Peng, J., Song, L., Zhang, X.: Automatic snoring sounds detection from
sleep sounds via multi-features analysis. AUST. Phys. Eng. Sci. 40, 127–135 (2017).
https://doi.org/10.1007/s13246-016-0507-1

16. Wu, Y., Li, F., Xie, Y., Wang, Y., Yang, Z.: SymListener: detecting respiratory
symptoms via acoustic sensing in driving environments. ACM Trans. Sens. Netw.
19, 1–21 (2023). https://doi.org/10.1145/3517014

17. Xie, Y., Li, F., Wu, Y., Wang, Y.: HearFit: fitness monitoring on smart speakers
via active acoustic sensing. In: INFOCOM 2021, pp. 1–10 (2021). https://doi.org/
10.1109/INFOCOM42981.2021.9488811

18. Xie, Y., Li, F., Wu, Y., Yang, S., Wang, Y.: D3-guard: acoustic-based drowsy
driving detection using smartphones. In: INFOCOM 2019, pp. 1225–1233 (2019).
https://doi.org/10.1109/INFOCOM.2019.8737470

19. You, M., et al.: Novel feature extraction method for cough detection using NMF.
IET Signal Process. 11, 515–520 (2017). https://doi.org/10.1049/iet-spr.2016.0341

https://doi.org/10.1006/pulp.1996.0034
https://doi.org/10.1145/1555816.1555834
https://doi.org/10.1109/INFOCOM.2018.8485978
https://doi.org/10.1109/INFOCOM.2018.8485978
https://doi.org/10.1145/2750858.2805826
https://doi.org/10.1145/2750858.2805826
https://doi.org/10.1109/ICHI.2019.8904563
https://doi.org/10.1186/1745-9974-6-3
https://doi.org/10.1186/1745-9974-6-3
https://doi.org/10.1007/s13246-016-0507-1
https://doi.org/10.1145/3517014
https://doi.org/10.1109/INFOCOM42981.2021.9488811
https://doi.org/10.1109/INFOCOM42981.2021.9488811
https://doi.org/10.1109/INFOCOM.2019.8737470
https://doi.org/10.1049/iet-spr.2016.0341

	SymRecorder: Detecting Respiratory Symptoms in Multiple Indoor Environments Using Earphone-Microphones
	1 Introduction
	2 System Design
	2.1 Sampling and Pre-processing
	2.2 Sound Event Detection
	2.3 Subdivision of Continuous Symptom
	2.4 Feature Extraction and Classified Model

	3 Experimentation and Evaluation
	3.1 Experimental Setup
	3.2 System Performance
	3.3 Discussion and Future Work

	4 Related Work
	5 Conclusion
	References


