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Abstract. As blockchain technology garners increased adoption, per-
missioned blockchains like Hyperledger Fabric emerge as a popular
blockchain system for developing scalable decentralized applications.
Nonetheless, parallel execution in Fabric leads to concurrent conflict-
ing transactions attempting to read and write the same key in the ledger
simultaneously. Such conflicts necessitate the abortion of transactions,
thereby impacting performance. The mainstream solution involves con-
structing a conflict graph to reorder the transactions, thereby reducing
the abort rate. However, it experiences considerable overhead during sce-
narios with a large volume of transactions or high data contention due
to capture dependencies between each transaction. Therefore, one crit-
ical problem is how to efficiently order conflicting transactions during
the ordering phase. In this paper, we introduce an optimized reordering
algorithm designed for efficient concurrency control. Initially, we lever-
age key dependency instead of transaction dependency to build a conflict
graph that considers read/write units as vertices and intra-transaction
dependency as edges. Subsequently, a key sorting algorithm generates a
serializable transaction order for validation. Our empirical results indi-
cate that the proposed key-based reordering method diminishes trans-
action latency by 36.3% and considerably reduces system memory costs
while maintaining a low abort rate compared to benchmark methods.

Keywords: Hyperledger Fabric · Reordering Algorithm · Concurrency
Control · Transaction Conflicts

1 Introduction

Originating from Nakamoto’s Bitcoin whitepaper [12], Bitcoin only supports
cryptocurrency. Ethereum [1] was then developed to facilitate Turing-complete
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smart contracts, thus enabling arbitrary data processing logic. Consequently, the
blockchain evolved from merely a cryptocurrency platform to a distributed trans-
action system. Traditional blockchain systems, such as Bitcoin and Ethereum,
employ an Order-Execute(OE) model, whose sequential transaction execu-
tion characteristic restricts performance, as evidenced in an analysis of seven
blockchain systems [14]. In contrast, Hyperledger Fabric leverages an Execute-
Order-Validate (EOV) model to enhance performance: transactions submitted
are first executed by the endorsing peers, then ordered and batched by the order-
ing services, and finally validated by the validating peers. Fabric exploits today’s
multi-core architecture to facilitate transaction processing by supporting parallel
processing of transactions [2]. It overcomes the limitations of the OE model by
providing parallelism of transaction execution on different endorsing peers.

Fig. 1. Effective and aborted throughput under vaying skewness

However, the delay between execution and commitment of a transaction
increases the probability of conflicting transactions, which are subsequently
rejected by peers during the verification stage, thus creating a scalability bot-
tleneck. The Fabric uses an optimistic concurrency control (OCC) mechanism,
terminating conflicting transactions to ensure the consistency of the ledger under
concurrent updates. However, this measure comes with a substantial transac-
tion abort rate exceeding 40% [3] due to many inter & intra-block conflicts,
amplified particularly under high contention workload characterized by a large
number of conflicting transactions. Various degrees of data race conditions can
be simulated by adjusting the skew parameters implying Zipfian distribution.
It reveals that higher skewness corresponds to an increased percentage of con-
flicting transactions, e.g., skew = 0 represents uniform access, and skew = 2.0
represents extremely skewed access. Figure 1 reports Fabric’s throughput under
varying skewness [15], with its blue and red components, respectively, demon-
strating effective and aborted throughput. The raw throughput remains consis-
tent despite the workload type and requests skewness. But with higher skewness,
a larger proportion of transactions are aborted for serializability.

Current studies [15,16] employ conflict graph construction, with Tarjan’s and
Johnson’s algorithms [18] used for cycle detection and removal to decrease dis-
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carded transactions during the sorting phase of transaction reordering. However,
the overhead associated with conflict graph construction is significant due to
the need to map dependencies between every transaction pair, especially when
large transaction volumes or considerable conflicting transactions are present.
As transactions increase, so do blocks that need to be processed, implying more
conflict graphs need construction and processing. Heightened data contention
amplifies this issue as each transaction potentially conflicts with a larger number
of other transactions, leading to an increase in edges that may trigger out-of-
memory issues. Additionally, Tarjan’s and Johnson’s algorithms require complex
operations on the graph to identify strongly connected components or cycles,
demanding considerable computational and memory resources. This approach
can result in substantial delays and potential system failures. Therefore, an effi-
cient algorithm or strategy for conflict graph construction and transaction pro-
cessing and order is essential to alleviate system resource usage and manage an
increased number of conflicting transactions.

We propose an efficient alternative: a key-based conflict graph (KCG) con-
struction method that leverages key dependency to establish a global transaction
order instead of capturing conflicting relationships between each pair of transac-
tions in the conflict detection of transaction dependency-based strategies. This
key dependency reveals transaction order on different keys, and more dependent
transactions can be obtained on each key. Subsequently, a transaction sorting
method is adopted to obtain a commit order. The advantage of our solution lies
in its efficiency under high data contention. As conflicting transactions increase
on each key, more dependent transactions can be detected, thus reducing sys-
tem resource overhead. Utilizing the key-based reordering method, we can get a
submission of non-conflicting transactions and achieve higher performance under
concurrency conflicts on Fabric. The contributions of our paper are as follows:

• We present a theoretical classification of various types of concurrency-related
transaction conflicts in Fabric and formulate the problem that our study aims
to address.

• We introduce a key-based conflict graph construction approach, leveraging
key dependency instead of the conventional transaction dependency, to effi-
ciently resolve concurrency update conflicts in Hyperledger Fabric. Our solu-
tion proves particularly suitable for large transaction volumes under data con-
tention. Notably, our method remains functional even when the CG method
crashes due to Out-of-Memory (OOM) errors.

• We evaluate the performance of our solution and compare it with methods
employed by vanilla Fabric and Fabric++/FabricSharp. Additionally, we con-
duct a sensitivity analysis to study the impact of different workload parame-
ters on performances. Compared to these existing methods, our model dimin-
ishes transaction latency by 36.3% and considerably reduces system memory
costs while maintaining a low abort rate.

The remainder of this paper is organized as follows. Section 2 reviews the related
work. Section 3 categorizes transaction conflicts and formulates the problem. In
Sect. 4, we present the system model and propose our approach. Performance
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evaluations are provided in Sect. 5, followed by a conclusion and future work in
Sect. 6.

2 Related Work

Efficient handling of concurrency conflicts is a hot research topic in distributed
databases, and conflicting transactions are also existing in Hyperledger Fabric
which is a distributed system. Many studies have proposed the optimization of
the performance for processing conflicting transactions. In this section, we will
introduce these works along three categories according to the Fabric lifecycle:
optimization for endorsement, ordering, and validation.

2.1 Endorsement Phase Optimization

Xu et al. [21] propose a lock mechanism to create a temporary database index for
conflicting transactions, with the subsequent merging of the newly created index
with the original index after the transaction is verified. However, in asynchronous
blockchain systems, lock services are required to create and merge database
indexes synchronously, resulting in substantial communication costs. Minsu et
al. [9] introduce a read and write transactions separating method to accelerate
transaction processing. Consequently, the transaction endorsement latency is
reduced by 60% compared to the traditional Fabric network. Trabelsi et al. [19]
offer a methodology to maintain a cache for conflict transaction detection at this
stage and, based on this, compares three different cache storage strategies.

2.2 Ordering Phase Optimization

For the ordering phase, FastFabric [7] redesigns the ordering service to oper-
ate only with transaction IDs. By separating the transaction header from the
payload, the process for determining transaction order is expedited, thus boost-
ing throughput. Sharma et al. [16] introduce a reordering step immediately
before block formation but after consensus, analyzes transaction conflicts by
constructing a conflict graph, reorders and selectively discard transactions that
cannot be serialized to determine a conflict-free transaction sequence, and elim-
inates Multi-version Concurrency Control (MVCC) Read Conflicts. Although
Fabric++ reduces the number of conflicting transactions in a block, it does not
apply a straightforward discarding strategy for cross-block transactions, lim-
iting its reordering effect. Subsequently, Ruan et al. [15] consider transaction
cross-block conflicts and varying conflict types based on the work of Fabric++.
They proposed FabricSharp, a method capable of handling conflicts in a more
fine-grained manner. However, the reordering algorithm has problems in usabil-
ity and security [17]. In high-concurrency scenarios, the conflict graph becomes
complex, and solving it can become a performance bottleneck and potentially
even cause system crashes. To mitigate the overhead incurred by cycle detection
and removal, Dickerson et al. [4] and FastBlock [11] introduce a happen-before
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graph for transaction execution and employ assumptions about software and
hardware configurations to detect conflicts. Nevertheless, this reliance is not
supported by all blockchain nodes. The transaction reordering method is also
adopted in other distributed transaction processing systems. Furthermore, this
method is utilized for improving OCC in online transaction processing systems
[5]. Xiao et al. [20] employ the key-based concurrency control method to resolve
conflicting transactions in directed acyclic graph (DAG)-based blockchains.

2.3 Validation Phase Optimization

Multiple articles propose the parallel execution of the validation process (syn-
tax verification, endorsement policy verification, MVCC validation) to accelerate
block validation [6–8]. Gorenflo et al. [6] advocate for the XOX transaction pro-
cess. He believes that if a transaction is only marked as invalid due to conflicts
in the verification phase, there is no trust problem in the entire execution pro-
cess of the transaction, so conflicts can be found during the verification phase.
Then the node executes the transaction locally to get the latest result. However,
this method ignores the trust problem that still exists in the alliance chain built
by Fabric, and different nodes may maliciously write wrong data, resulting in
ledger data errors. FabricCRDT [13] focuses on automatically merging conflict-
ing transactions using CRDT techniques without rejecting them. However, this
approach is only suitable for use cases that can be modeled with CRDT. Skip-
ping MVCC verification makes FabricCRDT lose the ability to detect “double
spend attacks.”

3 Problem Definition

3.1 Types of Transaction Conflicts

There are three categories of transaction conflicts in Fabric [3]:

3.1.1 Endorsement Failure Conflicts: All transactions need to be endorsed
in the execution phase. The reasons for endorsement failure include invalid
endorsement signatures or other reasons such as configuration or network errors.
In this article, we only focus on endorsement policy failures caused by read-
write set mismatches. Every peer independently maintains a ledger using a key-
value store, which will update independently by each peer in the validation
phase. Therefore, transient world state inconsistencies between peers are possi-
ble. Moreover, in the execution phase, the tail delay of block propagation makes
it impossible for each endorsement node in the organization to obtain the latest
ledger status for the first time. Due to the inconsistency of the world state of
peers, the error of read/write set mismatch is called endorsement failure conflict.

As illustrated in the Table 1, when two different endorsement nodes Peer1,
Peer2 ∈ P endorse the same transaction Ti ∈ T , the version numbers of the
same value Key in the read-write set RWSet generated by Peer1 and Peer2 are
inconsistent, and an error occurs in the endorsement phase.
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Table 1. Example of Endorsement Failure Conflicts

Peers Execution Phase World State

Transaction from Client Generated Read/Write Set Key Version

Peer 1 T1[R(A), W(A)] R(A, Version 1), W(A) A 1

Peer 2 T2[R(A), W(A)] R(A, Version 2), W(A) A 2

3.1.2 MVCC Read Conflicts: MVCC Read Conflicts arise in the transac-
tion verification phase. MVCC is a low-cost optimistic concurrent access pro-
cessing method widely utilized in database systems. Its core principle involves
creating historical snapshots for read transactions, and for write transactions, a
new version snapshot is created instead of overwriting original data.

During the verification process, each peer node examines the transactions
within the current block sequentially, and compares the version number of each
transaction’s read set with the current world state. The peer ensures that the
current ledger state is consistent with the state achieved by transaction simu-
lation. If any key’s version number in the read set doesn’t match the present
world state, the transaction is considered as invalid. MVCC Read Conflicts can
happen under two circumstances:

Condition 1: A read-after-write conflict, where a transaction’s read operation
takes place after another transaction’s write operation.

Condition 2: A stale read conflict happens because a node can be either a
committing peer or an endorsing peer. During a transaction’s transition from
the execution to the validation phase, other transactions could get validated
and committed to the chain, thereby updating the world state. Therefore, the
ledger update turns the data read by the transaction into stale data.

Table 2. Example of an MCVV Read Conflict

Transactions Validation Phase World State

Transaction from
Ordering Service

Read Set Version
Matches World State

Status Key Version

1 T1[R(A, Version 1)] Yes Success A 1

2 T2[W(A, Version 1)] / Success A 1

3 T3[R(A, Version 1)] No Fail A 2

4 T4[R(B, Version 1)] No Fail B 2

A typical instance of MVCC read conflict is depicted in Table 2. Transaction
1 (T1) reads key A, whose world state version is the same as the one in the
transaction’s read set. Therefore, the read set contains the latest value of Key
A. Transaction 2 (T2) modifies Key A’s value, giving it a new version 2. For
Transactions 3 and 4 (T3 and T4), that read Key A and Key B respectively, the
world state and read set host different versions. This implies that T3 and T4
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are accessing an older key version, hence, they fail. Specifically, T3 fails due to
condition 1 and T4 fails owing to condition 2.

3.1.3 Write-Write Conflicts: In traditional databases, “write-write” con-
currency conflicts primarily arise when multiple requests attempt to modify the
same database index concurrently. Similarly, on blockchain platform like Fabric,
when multiple transactions seek to modify the same ledger data simultaneously,
it creates a similar concurrency problem. Although the data written later will
overwrite the previous ones, these transactions in Fabric will eventually be sub-
mitted successfully and not marked as invalid. However, this process consumes
system resources.

3.2 Problem Formulation

The problem we are focusing on is solving MVCC Read conflict with lower system
overhead and acceptable latency. This is in contrast to the current problem
resolved by Fabric++, which uses a CG of consuming a lot of resources. On
EOV blockchain systems like Hyperledger Fabric, in the simulation execution
phase, multiple peer nodes execute transactions in parallel to obtain read and
write sets, which are then sent by the client to the ordering service for sorting and
packaging and then verification. For the Hyperledger Fabric blockchain platform,
its essence as a distributed database also has concurrency problems. We analyzed
the concurrency problems in Sect. 3.1 and defined three types of transactions that
cause transaction conflicts. In order to avoid MVCC Read Conflicts caused by the
order of transactions in the validate phase, a transaction sequence that satisfies
serialized execution can be obtained through a CG reordering method based on
transaction dependencies instead of original first-in-first-out (FIFO) ordering,
thus can reduce the aborted rate of transactions. CG reordering method is used
to guide the ordering of conflicting transactions adopting transactions as vertices
and transaction dependencies as edges. However, a transaction dependency only
indicates the order between two transactions.

When constructing a conflict graph, its memory usage is closely related to
the conflict graph relationship of transactions. As the capacity of transactions
within a block or the skewness of transactions escalate, so does the count of
conflicting transactions. As the skewness increases, the access pattern tends to
concentrate on a small number of hotkeys. Smallbank workload corresponds to
frequent asset update operations on a small number of accounts. In this case, the
potential conflict between transactions will increase because they may more fre-
quently access the same keys. This will increase the number of nodes and edges
of the conflict graph, thereby increasing the complexity of the conflict graph,
which in turn increases memory usage. Johnson’s algorithm, which is used for
identifying cycles in a strongly connected subgraph, can be done in linear time
in O((N + E)(C + 1)), where N is the number of nodes and E is the number
of edges, C is the number of cycles in the graph. Meanwhile, it uses a recur-
sive algorithm called depth-first-search (DFS) for cycle detection, substantially
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increasing the system resources overhead required for cycle detection and trans-
action processing latency. In extreme cases, an Out-Of-Memory (OOM) might
occur, which can potentially lead to a system crash. That is why CG is not
suitable for data contention situations. Hence, it motivates us to find a more
efficient way to generate a commit order.

4 System Design

4.1 System Model

Supposing the client sends two transaction requests (Tu) and (Tv), and the
endorsement node gets the transaction read-write set after execution: RS(Tu),
WS(Tu), RS(Tv), WS(Tv). Assume that Tu and Tv are executed in parallel, and
when any of the following conditions (1)(3) is true, Tu and Tv conflict with each
other. The difference is that conflicting transactions that satisfy condition (1) will
be marked as invalid transactions during the verification phase, while conflicting
transactions that satisfy condition (3) are valid transactions, that is, transac-
tions whose write sets are finally successfully applied to the state database.
(1) WS(Tu) ∩ RS(Tv) �= φ
(2) RS(Tu) ∩ WS(Tv) �= φ
(3) WS(Tu) ∩ WS(Tv) �= φ

Definition 1. Transaction Dependency. Given two transactions Tu and
Tv(u < v), when Tu is verified before Tv, a transaction dependency Tu→Tv

exists if condition (1) is met, Tu
rw−→ Tv, that is, read-write dependency, or when

(3) is satisfied, Tu
ww−→ Tv, that is, write-write dependency.

Definition 2. Conflict Graph. A conflict graph, denoted as CG, is a directed
graph that consists of a set of vertices V = {T1, T2, ..., TN} and a set of edges
E = {(Tu, Tv)|1 ≤ u �= v ≤ N,Tu → Tv}. In this graph, |V | = N .

Based on the captured transaction dependencies, a conflict graph that takes
transactions as vertices and dependencies as edges is build. CG can guide the
ordering of transactions to reduce over-aborting transactions that are still seri-
alizable.

Definition 3. Key Dependency. Let’s consider two distinct keys Ki and
Kj(i �= j). We can say that Ki is dependent on Kj (notated as Ki���Kj) if
there exists a transaction Tv such that TW

v belongs to RWi and TR
v is part of

RWj. Here, TR
v and TW

v denote the read and write units of transaction Tv,
respectively.

Definition 4. Key-based Conflict Graph. A key-based conflict graph,
denoted as KCG = (V,E), is a directed graph where V = {RWj |j = 1, 2, . . . , n},
and E = {(RWi, RWj)|1 ≤ i �= j ≤ n,∃v ∈ [1, Ne], TW

v ∈ RWi ∧ TR
v ∈ RWj}.

Here, n represents the number of keys being accessed.
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The key dependency is identified between the read and write units of a trans-
action. Contrasting with transaction dependency, we methodically map these
read and write units to the associated key queues and position them accurately
within this sequence. Using the captured key dependency, we build a directed
edge between the write-read units of each transaction across different keys. We
employ these edges to organize the read/write sets of all keys into a novel conflict
graph called KCG.

Table 3. Four concurrent transactions

Transaction T1 T2 T3 T4

R/W Operation R W R W W

Accessed Key K1 K1 K2 K1 K2

Total order T1 ⇒ T2 ⇒ T3 ⇒ T4

Due to the increased conflicts per key, as shown in Table 3, more dependent
transactions can be obtained on each key. Such dependency speeds up the pro-
cessing of all writes and reads by incorporating a relatively small yet fast solution
compared with a transaction dependency.

Fig. 2. Example of obtaining a commit order

Figure 2 presents a concrete example. It shows that employing the transaction
dependency requires four pairs of dependent transactions to obtain the total
order. Instead, it only requires two groups of dependent transactions detected
by key K1 and K2 by relying on key dependency. Specifically, there are four
transactions from T1 to T4 waiting ordering. In transaction dependency, if there
is a dependency between two transactions, an edge is added, and at the same
time, the transaction acts as a node. In key dependency, the read and write
units of transactions that operate on the same key are stored in the same queue.
We can see that employing the transaction dependency requires four pairs of
dependent transactions to obtain the total order. Instead, it only requires two
groups of dependent transactions detected by K1 and K2 by relying on key
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dependency. Hence, comparing to transaction dependency, key dependency is
more suitable for large number of transaction conflicts.

Fig. 3. Overview of System Model

To solve the concurrency conflict problem in Hyperledger Fabric, we propose
a new transaction processing optimization method using a key-based transaction
reordering algorithm. The main workflow of the system is shown in Fig. 3. The
main goal is to get a serialized sorting after ordering service, which produces the
least transaction discard and latency under the lowest system resources overhead.

The system workflow is as follows: the proposal is first signed and executed
by the endorsing peers before it reaches the client. Then, the client will assemble
endorsements into a transaction that contains the read/write sets, the endorsing
peers’ signatures, and the channel ID. Then send them to the Ordering Service
to package and propagate. In the original version, the Ordering Service does not
read the transaction details; it simply receives transactions from all channels
in the network, orders them chronologically by channel, and creates blocks of
transactions per channel. Therefore, you can take advantage of different ordering
strategies to order the transactions inside a block to reduce the production of
invalid transactions, such as transaction-based CG and key-based CG.

The main goal of the reordering algorithm is to generate a serialized sort in
the middle of serialized transactions, ensuring that the least amount of trans-
action discards occur while consistent state transitions occur. The CG reorder-
ing algorithm using transaction dependency mainly includes five steps. They
have directed conflict graph construction, subgraph division, cycle detection and
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removal, cycle-free conflict graph construction, and topological sorting. With the
increase of conflicting transactions, we discover that each key may exhibit more
transaction dependencies due to the increased conflicts per key. So, we utilize
keys to capture group dependency instead of pair dependency among transac-
tions to alleviate the overhead of detecting all dependent transactions. As shown
above, the main steps of the key-based reordering algorithm include graph con-
struction, keys ranking, and transaction sorting, which realizes identifying the
dependence among transactions. After the ordering, the block will be generated
and delivered to all peers for validation and commitment.

4.2 Algorithm Design

In order to solve the concurrency conflict problems in Hyperledger Fabric, we
propose a key-based transactions reordering algorithm to reduce the demand for
system resources under high data contention and increase performance. Firstly,
the key dependency is used to indicate the order of transactions on different
keys so that more dependent transactions can be obtained on each key. Sec-
ondly, based on the key-based conflict graph (KCG), we use a transaction sort-
ing method using read/write units in each queue of keys to efficiently obtain a
total commit order of transactions. The above methods can effectively improve
the performance of Hyperledger Fabric with MVCC Read Conflicts.

Algorithm 1 presents the Key-based Reordering Algorithm. The Procedure
CreateGraph creates a graph whose nodes contain queues of read and write units,
and the data structure of rwNodes in each node is create to record read/write
sets. During the graph construction, the edges of the graph is first created, and
then in each read-write node (rwNodes), according to its read-write set, (RWSet)
generates queues for the keys and stores these queues in a list. Since each queue
of keys maintains all dependent transactions that read and write to it, we can
obtain a partial order between transactions on each key. As to transactions that
read and write to multiple keys, we need to get their order using key dependency.

After building the KCG, the next step is to determine the specific order of
each transaction. Based on key dependency, we can obtain the sorting priority
of keys. Procedure KeysRank ranks vertices in a graph based on in-degree and
out-degree. There may exist cycles among keys. This phenomenon is caused by
unserializable transactions, which will drop in the final sorting process. After
that, Procedure TransactionSorting is used to generate a commit order based
on KCG. Inspired by Lamport’s logical clock [10], we assign a unified sequence
number for each read/write unit in the queue to represent their sequence in
the total order. After removing unserializable transactions, we got a conflict-free
transaction order by switching transactions with the same sequence number to
a serial order for deterministic state transfer.
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Algorithm 1. Key-based Reordering Algorithm
1: procedure CreateGraph

2: Initialize edges, queueArray, and queues as empty dictionaries

3: Construct a list of read/write nodes named rwNodes from set of transactions S

4: for each rw in rwNodes do

5: Create an edge with rw and an id

6: Add the new edge to edges

7: for each node n in rw do

8: append n to the list of nodes associated with the string key in queueArray

9: end for

10: end for

11: for each key in queueArray do

12: Sort the nodes associated with the key into rSlice and wSlice

13: Create a new queue with rSlice and wSlice, and add it to queues

14: end for

15: return a new QueueGraph with queues and edges

16: end procedure

17: procedure SortingRankDivision

18: Initialize a sequence seq to represent sorting ranks

19: if G.vertices == ∅ then

20: return

21: end if

22: Find the minimum in-degree in G, assign it to min

23: for each Kj in G do

24: if Aj .inDegree == min then

25: Select Aj and append it to seq, then break

26: end if

27: end for

28: if min > 0 then

29: Find the first keys with maximum out-degree in minAddrs, append it to seq

30: end if

31: Remove the vertex and edges of the selected vertex from G

32: Recursively call SortingRankDivision with the updated G

33: end procedure

34: procedure TransactionSorting

35: Initialize initialSeq with seq from SortingRankDivision

36: Find read units with sequence numbers in RWj , assign it to sortedRSet

37: if sortedRSet is empty then

38: Assign initialSeq to sequence in RWj and update maxRead to initialSeq

39: else

40: Find the minimum and maximum sequence numbers in sortedRSet, assign maxRead to maxSeq

and update sequence of remaining units in RWj to minSeq

41: end if

42: Find write units with sequence numbers in RWj , assign it to sortedWSet

43: if sortedWSet contains a unit whose read unit exists in RWj then

44: Increment sequence number

45: end if

46: for each unit in sortedWSet do

47: if its sequence is less than maxRead then

48: Abort the unit

49: end if

50: end for

51: for remaining units in RWj do

52: while writeSeq is assigned do

53: Increment writeSeq and then assign writeSeq to their sequence

54: end while

55: end for

56: end procedure
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5 Experimental Evaluation

In this section, we present a comprehensive evaluation of our key-based reorder-
ing method. We first describe the experimental setup for our prototype and the
workload in our experiments. Then, we evaluate the performance of KCG against
FIFO adopted by vanilla Fabric and CG used by Fabric++.

5.1 Experimental Setup

Table 4. Experiment Configuration

Parameters Values

Number of users 10,000

World State Database LevelDB

Number of transactions per block(block size) 100

Probability for picking a read transactions (Pr) 50%

s-value of Zipfian distribution 0.8

Environment: This paper designs a blockchain prototype system implemented
in GO 1.19 including simulated execution, sorting and verification of the Fab-
ric. During the simulation phase, we adopt LEVM (Little Ethereum Virtual
Machine) to provide an execution environment for our smart contracts written
in Solidity. The open source panjf2000/ants library is used to provide the ability
to manage and recycle a massive number of goroutines to simulate multiple peer
nodes executing transactions in parallel. In the sorting phase, three ordering
algorithms, FIFO, CG and KCG, are implemented. Table 4 respectively presents
the various parameters that we have configure for system and workload.

Workloads: We use SmallBank as the workload, which simulates typical asset
transfer scenarios. It provides 6 types of transactions for operating the data,
including 5 update transactions and 1 read transaction. The read transaction is
selected with probability Pr, while one of the five update transactions is chosen
with a probability 1 − Pr. The degree of skewness influences the distribution of
read/write operations among the 10,000 available accounts. A higher skewness
indicates a greater concentration of read/write operations on a smaller subset of
accounts, leading to an increased potential for conflicts (Table 5).
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Table 5. Transaction Types in SmallBank Workload

Transaction Implication

CreateAccount Initialize random funds for each customer’s
checking and savings accounts

TransactSavings Add a certain amount of money to a savings
account

DepositChecking Add a certain amount of money to a
checking account

WriteCheck Indicates the removal of an amount from a
customer’s checking account

SendPayment Transfer funds between two checking
accounts

Amalgamate Transfer all funds from a savings account to
a checking account

Query Query about the amount of a customer’s
savings or checking account

5.2 Results

This section presents a comprehensive analysis of the performance metrics of
blockchain systems, specifically focusing on the influence of various parameters
and different ordering strategies. We parameterize three key factors: 1) the skew
parameter of the Zipfian distribution, 2) the block size, and 3) the percentage of
read transactions. Our benchmarking analysis primarily considers latency and
abort rate as the key metrics. It is worth mentioning that the ordering method
employed in Fabric is abbreviated as FIFO, while the conflict graph utilized
in Fabric++ and Fabricsharp is referred to as CG. Our proposed solution is
denoted as KCG. For all experiments, we conduct ten runs for each parameter,
and the reported results are the average values of these sum runs.

5.2.1 Impact of Block Size: To evaluate the impact of block size on per-
formance, we increase the number of transactions in each block from 50 to 200.
We set the percentage of read transactions as 50% and the skew parameter as
0.8. For other parameters, refer to Table 4.

Figure 4(a) shows the transaction abort rate under different strategies. The
results indicate that all three systems experience a drop in transaction rates
ranging from 5% to 15% when the block size is set to 50 and 100. However, the
CG strategy encounters memory-related failures when the block size increases
from 100 to 150. This is attributed to the increasing number of transactions
within a block, leading to a higher likelihood of conflicts and, consequently,
a more complex conflict graph. This is attributed to the increasing number of
transactions within a block, leading to a higher likelihood of conflicts and, conse-
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Fig. 4. Impact of the block size on transaction (a) aborting rate, (b) latency of FIFO,
CG and ours.

quently, a more complex conflict graph. In the CG strategy, the DFS algorithm is
utilized for searching, and when numerous cycles are present, memory consump-
tion becomes significant as a new object is created for each cycle detected in a
strongly connected subgraph. Our proposed KCG strategy maintains a transac-
tion abort rate that is lower compared to FIFO and equal to or lower than CG.
Moreover, unlike CG, our method can handle larger block sizes such as 150, 200,
or even larger. This is possible because KCG resolves conflicting transactions by
leveraging key dependency rather than transaction dependency. Key dependency
denotes the order of transactions on different keys, allowing for faster processing
of all writes and reads through the incorporation of a relatively small yet efficient
solution.

Figure 4(b) shows the average latency under different block sizes. It is observ-
able that the average latency escalates with the increase in block size, while
FIFO always maintains a low latency. These results are expected since both
CG and our KCG require additional reordering processing to resolve conflicting
transactions in the ordering phase. Additionally, more transactions included in
a block result in longer processing time, thus leading to higher latency. But the
latency in KCG is always lower than CG and is comparable with FIFO. This is
because the KCG method does not require the time-consuming cycle detection
and removal stages under each strongly connected component within the graph.
Furthermore, non-serializable transactions are directly discarded. Consequently,
compared to FIFO, the number of transactions necessitating verification within
KCG is reduced, thereby mitigating the delay. Hence, KCG proves to be a highly
efficient method in high contention scenarios with concurrency conflicts.
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5.2.2 Impact of Transaction Contention: Next, we conduct a comprehen-
sive examination of transaction contention and its effects on overall performance.
We set varying degrees of transaction contention by adjusting the skew param-
eter of the Zipf distribution from 0.2 to 1.2 in steps of 0.2.

Fig. 5. Impact of skew parameter on transaction (a) aborting rate, (b) latency of FIFO,
CG, and ours.

Figure 5(a) summarizes the results of the transaction abort rate under vari-
ous skew parameters. We can see that for a small skew parameter (< 0.6), the
transaction abort rate of all three systems is relatively low because the num-
ber of potentially conflicting transactions is small. However, an increase in the
transaction abort rate of FIFO is witnessed with higher skew parameters (> 0.6),
attributed to the fact that high data skewness in the Smallbank workload leads to
a large number of potentially conflicting transactions. What’s worse, the CG pro-
cess fails due to exhausted memory when the skew exceeds 0.8. On the contrary,
KCG’s abort rate is always lower than FIFO. When the number of conflicting
transactions is small (with skew below 0.8), this can be resolved by CG adopted
by Fabric++. However, when it is set to 1.0 or higher, CG is prone to failure
due to memory exhaustion, and OOM occurs. Contrarily, our KCG allows the
system to operate normally for all skew degrees. KCG is not sensitive to the
increase of contention degree and demands fewer system resources due to avoid
building an edge between each pair of dependent transactions. Specifically, KCG
assigns each transaction to the corresponding keys. Unique keys housing depen-
dent transactions construct a novel scheduling graph, known as the key-based
conflict graph (KCG), where edges capture key dependencies.



288 H. Ma et al.

Fig. 6. Latency and Memory Cost of each sub-phase in CG and KCG.

When a skew parameter is set to 1.0 or higher, the rise in conflicts per key
yields more dependent transactions on each key. This incurs substantial com-
putational overhead to establish total order, rendering it inefficient in scenarios
with high contention and a large volume of conflicting transactions. The result
demonstrates KCG improves the transactions abort rate compared to FIFO. We
compare the average latency in Fig. 5(b). We observe that our KCG latency is
always lower than CG. Moreover, when the skew surpasses 0.8, the CG method
becomes inapplicable. This is due to the increase in conflicting transactions lead-
ing to a larger transaction processing time in CG. In contrast, it has a relatively
minor influence on our KCG system, where the rise in conflicts results in a
limitation of accessed keys.

As presented in Fig. 6, we evaluate the latency and memory cost of each sub-
phase in CG and KCG. The first and second columns represent the utilization
of time. Overall, the latency of KCG is 36.3% lower than that of CG, where
the time excluding the transaction commit stage is nearly equivalent across all
systems. However, latency for other time periods in KCG is markedly lower than
the corresponding stage latency in CG. Particularly under high data contention
scenarios with a skew rising to 1.0, the latency for cycle detection and removal
in CG substantially increases. This change is due to the recursive Johnson’s
algorithm, which has a time complexity of O((|V |+|E|)·(C+1)), and consumes a
significant amount of memory when the number of cycles is large. Turning to the
third and fourth columns, they indicate the utilization of memory resources. The
sorting phase in both systems only constitutes a small fraction, with the KCG
method outperforming CG in the other two stages. We can see that the graph
construction and keys rank/cycle detection occupy a large portion of memory due
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to the overhead involved in establishing an edge between each pair of dependent
transactions and the object overhead created for each cycle during the process
of cycle detection in strongly connected components.

5.2.3 Impact of Read Transaction Percentage: This section presents an
evaluation of how the percentage of read transactions affects the performance
of simulated blockchain systems. We vary the percentage of read transactions
from 0.1 to 0.9 in steps of 0.2. Figure 7(a) illustrates the impact of the per-
centage of read transactions on the transaction abort rate. It can be observed
that as the percentage of read transactions increases, the transaction aborting
rate decreases. This can be attributed to fewer conflicting transactions occur-
ring when a higher proportion of read transactions is present, resulting in fewer
updates to transaction records within a short time slot. Similar to the previous
case, the CG method is not applicable when there are too many cycles in the
conflict graph, while the proposed KCG method remains effective under any read
transaction rate. Hence, the transaction abort rate of KCG outperforms that of
FIFO and CG.

Fig. 7. Impact of the read transaction percentage on (a) aborting rate, (b) latency of
FIFO, CG, and ours.

Figure 7(b) depicts the average latency of the three systems. As the pro-
portion of read transactions increases and the proportion of write transac-
tions decreases, the average latency shows a decreasing trend. Specifically, KCG
demonstrates lower latency compared to FIFO and CG. However, when the read
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transaction proportion is as low as 10%, there is a possibility of CG experienc-
ing errors or taking significantly longer than expected, primarily due to the
time-consuming cycle detection and removal. To summarize, the aforementioned
experiments demonstrate that the key-based CG construction method enables
efficient concurrency control and yields few transaction aborts in scenarios with
considerable transactions and conflicts. This method proves to be more suitable
for high contention scenarios than the compared schemes.

6 Conclusion and Future Work

This paper focuses on enhancing the efficiency of handling concurrency conflicts
in Hyperledger Fabric. We propose a key-based transaction reordering algorithm
called KCG, which effectively resolves conflicts with minimal overhead. We first
adopted a key-based transaction conflict graph construction method to replace
transaction dependency to support parallel transaction processing. Then, the
keys rank and sorting method is used to generate a transaction commit order.
Through evaluations conducted on a real workload using Smallbank, we demon-
strate that the key-based ordering method outperforms both the original and CG
ordering method adopted by Fabric and Fabric++ permissioned blockchain sys-
tems, particularly as the number of conflicting transactions increases. In future
work, we will further analyze resource consumption in concurrent transaction
processing and strive to improve the abort rate and latency of Hyperledger Fab-
ric.
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