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Abstract. Pointwise convolutions are widely used in various con-
volutional neural networks, due to low computation complexity and
parameter requirements. However, pointwise convolutions are still time-
consuming like regular convolutions. As a result of increasing power con-
sumption, low-power embedded processors have been brought into high-
performance computing field, such as multi-core digital signal processors
(DSPs). In this paper, we propose a high-performance multi-level parallel
direct implementation of pointwise convolutions on multi-core DSPs in
FT-M7032, a CPU-DSP heterogeneous prototype processor. The main
optimizations include on-chip memory blocking, loop ordering, vectoriza-
tion, register blocking, and multi-core parallelization. The experimental
results show that the proposed direct implementation achieves much bet-
ter performance than GEMM-based ones on FT-M7032, and a speedup
of up to 79.26 times is achieved.

Keywords: CNNs · Pointwise Convolution · Direct Convolution ·
DSPs · Parallel algorithm

1 Introduction and Related Work

Convolutional neural networks (CNNs) are extensively used in diverse fields such
as computer vision and scientific computing [3,4,15,28]. As CNNs develop, more
convolutional layers with small filters are applied in the models, such as pointwise
convolutions in which the filter size is only 1× 1. And this type of convolutional
layer is commonly utilized in mainstream backbone networks, such as ResNet
[6] and GoogleNet [21], and lightweight networks, such as MobileNetV1 [8] and
MobileNetV2 [20]. Thus, it is very important to implement high-performance
pointwise convolutions on targeted platforms.
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The dominant methods for implementing convolutions are matrix
multiplication-based, Winograd-based, Fast Fourier Transform (FFT)-based,
and direct algorithms [2,5,7,9,10,12,22,23,26]. For the matrix multiplication-
based method, the convolutions are converted into matrix multiplication opera-
tions in an explicit or implicit way. For example, Wang et al. [26] implemented
two-dimensional convolutions using implicit matrix multiplication. Thus, the
performance of convolutions largely relies on the performance of matrix mul-
tiplication on hardware platforms in this method. The fast methods including
Winograd-based and FFT-based ones can effectively decrease the computational
complexity of convolutions, while they are only applicable to convolutions with
large filters. Since the direct method has no extra memory overhead and can
gain high performance, numerous direct implementations for various types of
convolutions have been proposed on different platforms, such as regular convo-
lutions on Intel CPUs [7] and ARM Mali GPUs [16]. Lu et al. proposed two
novel optimization techniques to improve the performance of pointwise convolu-
tions by enhancing data reuse in row and column directions on NVIDIA mobile
graphics processing units (GPUs) [13,14]. Wang et al. proposed a parallel direct
algorithm for pointwise convolutions on ARMv8 multi-core CPUs [24]. However,
there is little work on the direct implementation of pointwise convolutions on
multi-core DSPs.

Multi-core digital signal processors (DSPs) have been brought into the
high-performance computing field due to the low-power characteristic [11]. To
diminish power consumption, DSPs usually adopt Very Long Instruction Word
(VLIW) architecture, software-controlled on-chip memories, and Direct Mem-
ory Access (DMA) engines for data moving, which are unique and different from
the architectures of modern CPUs and GPUs. There have been many paral-
lel implementations of algorithms and applications on multi-core DSPs, such as
matrix multiplications [19,27], matrix transpose [18], and GEMM-based convolu-
tions [25], but the parallel direct optimization of pointwise convolutions targeting
multi-core DSPs has not been found.

FT-M7032 is a CPU-DSP heterogeneous prototype processor which consists
of one 16-core ARMv8 CPU for process management and four 8-core DSPs
for offering major peak performance [27]. To improve the performance of point-
wise convolutions on FT-M7032, this paper proposes a high-performance parallel
direct implementation for pointwise convolutions targeting multi-core DSPs. In
parallelization, many common optimization techniques are carried out, such as
vectorization, register blocking, and multi-core parallelization. The experimental
results demonstrate that the direct implementation gets the computation effi-
ciency of 11.42% - 58.61% and outperforms the GEMM-based one with speedups
of 1.43×–79.26× on multi-core DSPs in FT-M7032. Compared with the imple-
mentations in Pytorch [17] and ARM Computer Library [1] running on the
ARMv8 CPU in FT-M7032, the proposed direct implementation gets a speedup
of up to 35.84 times. To the best of our knowledge, this is the first work about
the direct parallelization of pointwise convolutions on multi-core DSPs.
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The structure of this paper is as follows. Section 2 outlines the definition of
pointwise convolutions and the architecture of FT-M7032 processors. Section 3
describes our parallel direct implementation of pointwise convolutions on multi-
core DSPs in FT-M7032 processors in detail. Section 4 shows the analyses of the
performance results. Last, the conclusion and future work are given in Sect. 5.

2 Backgound

2.1 Pointwise Convolution

For the forward propagation pass, pointwise convolutions work on input feature
maps tensor I with filters tensor F to produce output feature maps tensor O.
The backward propagation and weight gradient update passes obtain the input
feature maps gradient tensor dI and filter gradient tensor dF based on output
feature maps gradient tensor dO, respectively. With blocked data layout which is
very beneficial to vectorization, the three passes above of pointwise convolutions
are figured by Eqs. 1, 2, and 3.

On,kd,ho,wo,kl
+= In,cd,ho×S,wo×S,cl × Fcd×L+cl,kd,0,0,kl

, (1)

dIn,cd,ho×S,wo×S,cl += dOn,kd,ho,wo,kl
× Fcd×L+cl,kd,0,0,kl

, (2)

dFcd×L+cl,kd,0,0,kl
+= dOn,kd,ho,wo,kl

× In,cd,ho×S,wo×S,cl , (3)

where n ∈ [0, N), kd ∈ [0,Kd), ho ∈ [0,Ho), wo ∈ [0,Wo), kl ∈ [0, L), cd ∈
[0, Cd), cl ∈ [0, L), N is the mini-batch size, C and K are the number of input
and output channels, Cd and Kd represent the number of blocks in C and K
dimensions, C = Cd × L, K = Kd × L, L is the number of lanes in vector units
of DSPs, Hi/o and Wi/o denotes the spatial dimensions of different tensors, and
S is the stride size. In this paper, only the unit-stride pointwise convolutions are
involved so the stride size is 1 in the following.

2.2 Architecture of FT-M7032 Heterogeneous Processors

An FT-M7032 heterogeneous processor consists of a 16-core ARMv8 CPU and
four GDPSP clusters, shown in Fig. 1. The 16-core CPU where the Linux oper-
ating system runs is mainly for process management and multi-node communi-
cation, and its single-precision peak performance is 281.6 GFlops with 2.2GHz
working frequency. Each GPDSP cluster, also called a multi-core DSP, includes
eight DSP cores and global shared memory (GSM), which is connected by an
on-chip crossbar network. Each core can offer 345.6 GFlops single-precision peak
performance with 1.8GHz working frequency so that the total peak performance
of each GPDSP cluster can achieve up to 2764.8 GFlops. The 16-core CPU and
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Fig. 1. Architecture of FT-M7032 Processors

four GPDSP clusters share the same memory space. Specifically, the CPU can
access the whole main memory space in FT-M7032, while each GPDSP cluster
can only access a specific part with 42.6 GBytes/s bandwidth. Therefore, four
GPDSP clusters can communicate with each other via the CPU, and be mainly
utilized by process-level parallelization.

The micro-architecture of each DSP core is shown in Fig. 2. Each core pri-
marily includes a scalar processing unit (SPU), a vector processing unit (VPU),
an instruction dispatch unit (IFU), and a DMA engine. SPU is used to support
parallel execution of five scalar instructions, where the size of scalar memory
(SM) is 64 KB. VPU is applied to carry out vector instructions, and the capac-
ity of array memory (AM) is 768 KB. There are three 64-bit float-point fused
multiply-add (FMAC) units in each of 16 vector processing elements (VPEs), so
VPU can perform three vector 32-bit FMAC (VFMAC) operations with 32 lanes
per cycle. VPU also has two parallel vector load-store units (VLoad/VStore),
each of which can convey data of up to 2048 bytes per cycle between AM and
vector registers. There are 64 1024-bit vector registers in total. SPU can directly
transfer data to VPU through broadcast operations and shared registers. These
DSP cores adopt VLIW architecture, and IFU can issue up to 11 instructions per
cycle, including at most five scalar instructions and six vector instructions. The
DMA engine is in charge of fast data transmission between different memories.

3 Parallel Direct Implementation

3.1 Overview of Our Implementation

Pointwise convolutions are computationally equivalent to matrix multiplication.
Therefore, when directly mapping pointwise convolutions on multi-core CPUs
and GPUs, the optimization methods for matrix multiplication are carried out
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Fig. 2. Micro-architecture of each DSP core in FT-M7032 Processors

for high efficiency. This paper also follows this rule above and incorporates the
architectural features of the GPDSP cluster in the FT-M7032 and the relatively
small number of parameters in pointwise convolution for targeted algorithm
design and optimization.

3.2 Multi-level Parallel Forward Propagation Algorithm

When the stride size is 1, the spatial dimensions H and W of feature maps can
be merged into a single dimension denoted as H×W . In this section, we propose
a multi-level parallel direct algorithm named directConv1x1Fwd() for computing
the forward propagation pass of pointwise convolutions in convolutional neural
networks, shown in Algorithm 1. The implementation of the Conv1x1FwdAsm
kernel function within directConv1x1Fwd() is presented in Algorithm 2. Since
the storage cost of the filter tensor F in pointwise convolutions is typically
low, directConv1x1Fwd() prioritizes loading F into the on-chip AM space or
GSM space. To accommodate the unit-strided convolutions, directConv1x1Fwd()
merges the dimensions H and W directly into one (Line 10). In the following, we
primarily employ directConv1x1Fwd() as an exemplar to elucidate the meticu-
lous design of a multi-level parallel forward propagation algorithm for realizing
high-performance pointwise convolution.

On-Chip Memory Blocking and Loop Ordering. GPDSP clusters are
equipped with on-chip storage spaces, namely SM, AM, and GSM spaces. In
order to achieve high-performance computing objectives, algorithms commonly
load relevant tensor data into these spaces in blocking format prior to performing
calculations using the on-chip data. Furthermore, loop ordering is necessary to
optimize the locality of the on-chip data within the storage space and reduce the
overhead of accessing off-chip DDR storage.
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Algorithm 1: Multi-level parallel forward propagation direct algorithm
for unit-stride pointwise convolutions on multi-core DSPs
Input : I [N ][Cd][Hi][Wi][L], F [C][Kd][1][1][L]
Output: O[N ][Kd][Ho][Wo][L]

1 Calculate the block size for each level
2 for cgd = 0: Cdgb : Cd do
3 for kdg = 0: Kdgb : Kd do
4 if Kdab × Cdab != Kd × Cd then
5 Load the F subblock into the GSM space Fgsm via DMA

6 else
7 Directly load the entire F into the AM space Fam via DMA

8 for kda = 0: Kdab : Kdgb do
9 for n = 0: 1: N do in parallel

10 for hw = 0: HWob : Ho ×Wo do in parallel
11 if cgd != 0 then
12 Load the O subblock into the AM space Oam via DMA

13 for cda = 0: Cdab : Cdgb do
14 if Kdab × Cdab != Kd × Cd then
15 Load the Fgsm subblock into the AM space Fam via

DMA

16 for cds = 0: Cdsb : Cdab do
17 Load the I subblock into the SM space Ism via

DMA
18 Call Conv1x1FwdAsm()

19 Store the Oam subblock in the DDR space O via DMA

Within the design of directConv1x1Fwd(), the SM space stores the block-
ing data of the input feature tensor I, while the AM space accommodates the
blocking data of both the output feature tensor O and the filter tensor F . By
prioritizing the loading of the filter tensor F as a whole, this design utilizes
the GSM space to buffer the blocking data of F . In this section, the subscripts
sm, am, and gsm indicate the on-chip storage space positions of the tensors
corresponding to the SM, AM, and GSM spaces, respectively. To load the rel-
evant subblocks into their respective on-chip storage spaces, the corresponding
dimensions of the filter tensor, input feature tensor, and output feature tensor
must be divided for the GSM, SM, and AM spaces, labeled with the subscripts
gb, sb, and ab, respectively.

In the directConv1x1Fwd() algorithm, the blocking data of F is stored in
the GSM space, while the blocking data of tensors I and O need to be loaded
from DDR to the SM space and AM space, respectively, during internal iterative
calculations. To prevent simultaneous reading of both tensors from DDR during
calculation, this section establishes the conditions HWab = HWsb = HWob and
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Cdsb � Cdab to balance the block parameters of the SM space and the AM space.
In total, we derive the on-chip storage blocking limit conditions as presented in
Eq. 4.

sizeof(Fgsm ) � sizeof(GSM)
sizeof(Ism ) � sizeof(SM)
sizeof(AM) � sizeof(Oam ) + sizeof(Fam )

sizeof(Fgsm ) = Cdgb × Kdgb × L × L

sizeof(Ism ) = Cdsb × HWob × L

sizeof(Oam ) = Kdab × HWob × L

sizeof(Fam ) = Kdab × Cdab × L × L

Cdsb � Cdab � Cdgb � Cd

Kdab � Kdgb � Kd

HWob � Ho × Wo

(4)

To optimize the data locality in on-chip memories, the loop order in the orig-
inal direct implementation of pointwise convolution was rearranged to achieve
the loop order in directConv1x1Fwd(). The outermost two loops, cgd and kdg,
are utilized to load the largest subblock of F into on-chip storage at once. If
the size of F does not match the size of the allocated AM space for Fam , i.e.,
Ckad × Kdab �= Kd × Cd, then the F subblock will be cached in the GSM space
Fgsm using DMA (Line 5). Otherwise, F will be directly loaded into the AM
space Fam (Line 7 ). The three loops, kda, n, and hw, are employed to load and
store the output feature map tensor O, followed by the loop cda to determine
the subblock of Fgsm that needs to be loaded into the AM space Fam . The
innermost loop, cds, is used to identify the subblock of the input feature map
tensor I that must be loaded from DDR space to the SM space Ism . Within
the cds loop, a subblock of I is loaded into the SM space using DMA, and then
Conv1x1FwdAsm() is called once with the loaded data to perform the calcula-
tion.

Vectorization and Register Blocking. The employed second optimization
technique is vectorization and register blocking. Once the relevant subblocks of
tensors are loaded into the SM and AM spaces, effectively utilizing the exe-
cution units within a single DSP core to reduce computational costs becomes
a critical concern. The objective of this approach is to minimize the runtime
of Conv1x1FwdAsm() by maximizing the computational capacity of each DSP
core. Specifically, it utilizes vectorization to harness the power of the 16 parallel
VPEs in the VPU of each DSP core. Furthermore, register blocking techniques
are utilized to conceal the pipeline latency of the VPU’s execution units and take
advantage of multiple vector floating-point multiply-add fusion units (VFMAC)
within the VPU.

Vectorization is applied along the K dimension where the calculation asso-
ciated with each element is independent, and there are L consecutive elements
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when accessing the K dimension of the related tensors (O and F ). To enhance
data locality in registers, this method employs register blocking in the Kdab,
HWob, and C dimensions, as described in Algorithm 2, and fully unrolls the cc,
j, and i loops (Lines 8, 9, and 11) to conceal pipeline latency. The implemen-
tation of register blocking is subject to limitations imposed by the number of
registers and the pipeline latency of the relevant functional units, as specified
in Eq. 5, where LatencyVFMAC and LatencyFP32Bcast represent the latency time
of the VFMAC units and FP32 Broadcasting, and NumVFMAC represents the
number of the VFMAC units in VPUs of DSP cores.

Algorithm 2: Vectorized algorithm for the forward propagation of point-
wise convolutions based on SPU and VPU in each DSP core
Input : Ism [Cdsb][HWb][L], Fam [Cdsb × L][Kdab][L]
Output: Oam [Kdab][HWb][L]

1 for kd = 0: Kdrb : Kdab do
2 for hw = 0: HWrb : HWob do

// Load the Oam ,kd,hw subblock into the vector register
3 for j = 0: 1: Kdrb do
4 for i = 0: 1: HWrb do
5 VRj×HWrb+i = VLoad(Oam ,kd+j,hw+i)

6 for cb = 0: 1: Cdsb do
7 for cl = 0: Clrb : L do

// The following loop will be fully unrolled in the
assembly implementation

8 for cc = cl : 1 : cl + Clrb do
9 for j = 0: 1: Kdrb do

10 VRf = VLoad(Fam ,cb×L+cc,kd+i)
11 for i = 0: 1: HWrb do
12 VRs = SVBcast(FEXT(SLoad((Ism ,cb,hw+j,cc))))
13 VRj×HWrb+i = VFMAC(VRf ,VRs,VRj×HWrb+i)

// Store the data in the vector register to Oam,kd,hw

14 for j = 0: 1: Kdrb do
15 for i = 0: 1: HWrb do
16 VStore(VRj×HWrb+i,Oam ,kd+j,hw+i)

Kdrb × HWrb � LatencyVFMAC × NumVFMAC

Kdrb × HWrb × Clrb � LatencyFP32Bcast × NumVFMAC
(5)

Multi-core Parallelization and Blocking Size Calculation. The third
optimization method involves distributing tasks on multiple DSP cores and
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determining the appropriate block sizes for computation. In the algorithm for
multi-level parallel implementation of pointwise convolution forward propaga-
tion, the calculation tasks are partitioned based on two loops: n and hw. A task
pool is created, where each DSP core independently handles a task from the
pool. The tasks from the task pool are processed in parallel by eight DSP cores
until all tasks are completed.

In the previous parts, we have discussed the constraints that govern the
blocking sizes of on-chip and register storage in this study. However, deter-
mining the appropriate block sizes remains an unresolved issue. The selected
blocking sizes not only affect the efficiency of tensor access but also influence
the overall data communication between off-chip and on-chip memories in the
directConv1x1Fwd() algorithm. In the deep neural network library for the FT-
M7032 heterogeneous general-purpose multi-core DSP, tensors are stored in the
row-major format. After applying blocking, tensors require cross-stride reading.
Larger blocking sizes in the tensor’s inner dimensions facilitate more efficient
access when using cross-stride reading. The Eq. 6 presents the calculation of the
total amount of data transferred between off-chip and on-chip storage in direct-
Conv1x1Fwd(), where sizeof(F ), sizeof(I), and sizeof(O) denote the sizes of
tensors F , I, and O, respectively. Therefore, we calculate the blocking size in
directConv1x1Fwd() while satisfying the conditions specified in Eqs. 4 and 5,
guided by the following three principles. First, ensure that the larger blocking
parameter is an integer multiple of the smaller blocking sizes (e.g., HWob must be
an integer multiple of HWrb). Second, minimize the value of Totalconv1x1FwdS1
as much as possible. Third, maximize the blocking size of the tensor’s inner
dimensions.

Totalconv1x1FwdS1 = sizeof(F ) +
Kd

Kdab
× sizeof(I) + sizeof(

Cd

Cdgb
) × O (6)

3.3 Multi-level Parallel Algorithms for Backward Propagation
and Weight Gradient Update Propagation

The backward propagation pass of pointwise convolution involves taking the
output feature map gradient dO and the convolution kernel F as input tensors
and generating the input feature map gradient dI as the output tensor, shown
in Eq. 2. The filter gradient dF is computed from the output feature maps
gradient dO and the input feature maps I in the weight gradient update pass,
shown in Eq. 3. The computational mode of the two passes above also is the
matrix multiplication. Compared to the forward propagation pass, the main
difference is that the matrix multiplications involve the matrix transposition in
these two passes. Therefore, we get the multi-level parallel direct algorithms for
the left two passes of pointwise convolutions, based on the parallel optimization
approaches described in Sect. 3.2 and the vectorization matrix transpose kernel
trnKernel-32 on multi-core DSPs proposed in [18].
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4 Performance Evaluation

This section gives the test results of our direct implementation on multi-core
DSPs and compares it with other implementations of pointwise convolutions on
FT-M7032.

4.1 Experiment Setup

We chose ResNet50 [6] and MobileNetV1 [8] as representatives of widely-used
backbone networks and lightweight networks, respectively. The performance of
the pointwise convolution implementation is evaluated by employing the point-
wise convolution layers from these models. The specific configurations are pre-
sented in Table 1. For the pointwise convolution tests, a batch size N of 64 is
used for all tested network layers.

This subsection introduces three metrics, namely computing time Tconv, com-
puting performance Pconv, and computing efficiency Econv, to evaluate the per-
formance of convolution implementations. The relation among these metrics is
outlined in Eq. 7. Ppeak represents the peak performance of a given hardware
platform, such as a single GPDSP cluster and a 16-core ARMv8 CPU. Addi-
tionally, TotalOpconv is the total floating-point operations involved in the con-
volution computation. For pointwise convolutions, the formula for TotalOpconv
is given by 2 × N × K × Ho × Wo × C × 1 × 1.

Pconv =
TotalOpconv

Tconv
,

Econv =
Pconv

Ppeak
.

(7)

4.2 Performance

This section compares the direct implementation of pointwise convolutions with
two GEMM-based implementations on FT-M7032. The first is a GEMM-based
implementation method optimized for multi-core DSPs [25], in which matrix mul-
tiplication and all tensor transformations run on multi-core DSPs. The second
is the GEMM-based implementation in Pytorch [17], which runs solely on the
16-core ARMv8 CPU of FT-M7032. These two GEMM-based implementations
are referred to as ftmEconv and Pytorch-conv, respectively. Furthermore, we
compare the performance of the forward propagation pass with ARM Computer
Library (ACL), which does not implement the left two passes. The absolute per-
formance of three passes in different implementations of pointwise convolutions
running on the FT-M7032 processor is presented in Figs. 3, 4, and 5. We can
find that our direct implementation outperforms all the other implementations
on FT-M7032. In addition, ftmDconv-Dlt avoids all additional memory overhead
in ftmEconv and Pytorch-Conv.
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Table 1. The parameter configuration of the pointwise convolutional layers

Layer ID Model C ×Hi ×Wi Hf ×Wf S P

1 Resnet50 [6] 64× 56× 56 64× 1× 1 1 0
2 64× 56× 56 256× 1× 1 1 0
3 256× 56× 56 64× 1× 1 1 0
4 256× 56× 56 128× 1× 1 1 0
5 128× 28× 28 512× 1× 1 1 0
6 512× 28× 28 128× 1× 1 1 0
7 512× 28× 28 256× 1× 1 1 0
8 256× 14× 14 1024× 1× 1 1 0
9 1024× 14× 14 256× 1× 1 1 0
10 1024× 14× 14 512× 1× 1 1 0
11 512× 7× 7 2048× 1× 1 1 0
12 2048× 7× 7 512× 1× 1 1 0
13 Mobilenetv1 [8] 32× 112× 112 64× 1× 1 1 0
14 64× 56× 56 128× 1× 1 1 0
15 128× 56× 56 128× 1× 1 1 0
16 128× 28× 28 256× 1× 1 1 0
17 256× 28× 28 256× 1× 1 1 0
18 256× 14× 14 512× 1× 1 1 0
19 512× 14× 14 512× 1× 1 1 0
20 512× 7× 7 1024× 1× 1 1 0
21 1024× 7× 7 1024× 1× 1 1 0

Figure 3 shows the computational performance of the forward propagation
pass in four implementations, where the horizontal axis denotes the layer ID
of different pointwise convolutional layers and the vertical axis represents the
computational performance Pconv obtained by each implementation. The results
indicate that ftmDconv-Pt achieves performance ranging from 336.57 GFlops to
1593.51 GFlops, resulting in a computational efficiency of 12.17% to 57.64%.
Notably, ftmDconv-Pt has a significant speedup of 5.93 times to 35.84 times and
3.76 times to 24.07 times when compared with Pytorch-Conv and ACL algo-
rithms, respectively. In the comparison with ftmEconv, the speedup is in the
range of 1.55 times to 5.57 times, and the main reason for the observed per-
formance speedup is that the direct implementation has no additional memory
overhead and shows much better on-chip data locality.

For the backward propagation pass, we also compare the computational per-
formance Pconv of ftmDconv-Pt with that of ftmEconv and Pytorch-Conv on all
the tested network layers, as shown in Fig. 4. The ftmDconv-Pt implementation
achieves performance ranging from 315.76 GFlops to 1620.33 GFlops, resulting in
a computational efficiency of 11.42% to 58.61%. When compared with Pytorch-
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Fig. 3. Performance of various forward propagation algorithms for pointwise convolu-
tions on FT-M7032 processors

Fig. 4. Performance of various backward propagation algorithms for pointwise convo-
lutions on FT-M7032 processors
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Conv, ftmDconv-Pt achieves a significant speedup of 6.90 times to 29.14 times.
In the comparison with ftmEconv, the maximum speedup is 6.80 times.

Figure 5 compares the computational performance Pconv of the direct imple-
mentation of the weight gradient update pass with that of ftmEconv and
Pytorch-Conv on all the tested network layers. For all the tested network lay-
ers, ftmDconv-Pt achieves the performance of 366.216 GFlops - 1582.35 GFlops,
resulting in a computational efficiency of 13.24% - 57.23%. When compared with
Pytorch-Conv, ftmDconv-Pt obtains a speedup of 2.66 times to 13.27 times. In
the comparison with ftmEconv, the maximum speedup is 79.26 times.

Fig. 5. Performance of various weight gradient update algorithms for pointwise convo-
lutions on FT-M7032 processors

5 Conclusions and Future Work

This paper presents a high-performance parallel algorithm for the direct imple-
mentation of pointwise convolutions on multi-core DSPs in FT-M7032 heteroge-
neous processors. The parallel implementation can take full advantage of the par-
allel functional units and multi-level on-chip memories in multi-core DSPs. The
primary optimizations involve multi-level memory blocking, loop ordering, vec-
torization, and multi-core parallelization. The experimental results on pointwise
convolutional layers of popular networks show the proposed direct implementa-
tion outperforms other implementations on FT-M7032 heterogeneous processors,
and get the maximum speedup of up to 79.26 times.
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In the future, we will focus on the direct implementations for other types of
convolutions on multi-core DSPs.
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