
Zahir Tari
Keqiu Li
Hongyi Wu (Eds.)

LN
CS

 1
44

93

23rd International Conference, ICA3PP 2023
Tianjin, China, October 20–22, 2023
Proceedings, Part VII

Algorithms and Architectures
for Parallel Processing

Lecture Notes in Computer Science 14493
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Zahir Tari · Keqiu Li · Hongyi Wu
Editors

Algorithms and Architectures
for Parallel Processing
23rd International Conference, ICA3PP 2023
Tianjin, China, October 20–22, 2023
Proceedings, Part VII

Editors
Zahir Tari
Royal Melbourne Institute of Technology
Melbourne, VIC, Australia

Hongyi Wu
University of Arizona
Tucson, AZ, USA

Keqiu Li
Tianjin University
Tianjin, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-981-97-0861-1 ISBN 978-981-97-0862-8 (eBook)
https://doi.org/10.1007/978-981-97-0862-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2024

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Paper in this product is recyclable.

https://doi.org/10.1007/978-981-97-0862-8

Preface

On behalf of the Conference Committee, we welcome you to the proceedings of the
2023 International Conference on Algorithms and Architectures for Parallel Process-
ing (ICA3PP 2023), which was held in Tianjin, China from October 20–22, 2023.
ICA3PP2023 was the 23rd in this series of conferences (started in 1995) that are devoted
to algorithms and architectures for parallel processing. ICA3PP is now recognized as the
main regular international event that covers the many dimensions of parallel algorithms
and architectures, encompassing fundamental theoretical approaches, practical exper-
imental projects, and commercial components and systems. This conference provides
a forum for academics and practitioners from countries around the world to exchange
ideas for improving the efficiency, performance, reliability, security, and interoperability
of computing systems and applications.

A successful conferencewould not be possiblewithout the high-quality contributions
made by the authors. This year, ICA3PP received a total of 503 submissions from authors
in 21 countries and regions. Based on rigorous peer reviews by the Program Committee
members and reviewers, 193 high-quality papers were accepted to be included in the
conference proceedings and submitted for EI indexing. In addition to the contributed
papers, six distinguished scholars, Lixin Gao, Baochun Li, Laurence T. Yang, Kun Tan,
Ahmed Louri, and Hai Jin, were invited to give keynote lectures, providing us with
the recent developments in diversified areas in algorithms and architectures for parallel
processing and applications.

Wewould like to take this opportunity to express our sincere gratitude to the Program
Committee members and 165 reviewers for their dedicated and professional service. We
highly appreciate the twelve track chairs, Dezun Dong, Patrick P. C. Lee, Meng Shen,
Ruidong Li, Li Chen, Wei Bao, Jun Li, Hang Qiu, Ang Li, Wei Yang, Yu Yang, and
Zhibin Yu, for their hard work in promoting this conference and organizing the reviews
for the papers submitted to their tracks. We are so grateful to the publication chairs,
Heng Qi, Yulei Wu, Deze Zeng, and the publication assistants for their tedious work in
editing the conference proceedings. We must also say “thank you” to all the volunteers
who helped us at various stages of this conference. Moreover, we were so honored to
have many renowned scholars be part of this conference. Finally, we would like to thank

vi Preface

all speakers, authors, and participants for their great contribution to and support for the
success of ICA3PP 2023!

October 2023 Jean-Luc Gaudiot
Hong Shen

Gudula Rünger
Zahir Tari
Keqiu Li

Hongyi Wu
Tian Wang

Organization

General Chairs

Jean-Luc Gaudiot University of California, Irvine, USA
Hong Shen University of Adelaide, Australia
Gudula Rünger Chemnitz University of Technology, Germany

Program Chairs

Zahir Tari Royal Melbourne Institute of Technology,
Australia

Keqiu Li Tianjin University, China
Hongyi Wu University of Arizona, USA

Program Vice-chair

Wenxin Li Tianjin University, China

Publicity Chairs

Hai Wang Northwest University, China
Milos Stojmenovic Singidunum University, Serbia
Chaofeng Zhang Advanced Institute of Industrial Technology,

Japan
Hao Wang Louisiana State University, USA

Publication Chairs

Heng Qi Dalian University of Technology, China
Yulei Wu University of Exeter, UK
Deze Zeng China University of Geosciences (Wuhan), China

viii Organization

Workshop Chairs

Laiping Zhao Tianjin University, China
Pengfei Wang Dalian University of Technology, China

Local Organization Chairs

Xiulong Liu Tianjin University, China
Yitao Hu Tianjin University, China

Web Chair

Chen Chen Shanghai Jiao Tong University, China

Registration Chairs

Xinyu Tong Tianjin University, China
Chaokun Zhang Tianjin University, China

Steering Committee Chairs

Yang Xiang (Chair) Swinburne University of Technology, Australia
Weijia Jia Beijing Normal University and UIC, China
Yi Pan Georgia State University, USA
Laurence T. Yang St. Francis Xavier University, Canada
Wanlei Zhou City University of Macau, China

Program Committee

Track 1: Parallel and Distributed Architectures

Dezun Dong (Chair) National University of Defense Technology,
China

Chao Wang University of Science and Technology of China,
China

Chentao Wu Shanghai Jiao Tong University, China

Organization ix

Chi Lin Dalian University of Technology, China
Deze Zeng China University of Geosciences, China
En Shao Institute of Computing Technology, Chinese

Academy of Sciences, China
Fei Lei National University of Defense Technology,

China
Haikun Liu Huazhong University of Science and Technology,

China
Hailong Yang Beihang University, China
Junlong Zhou Nanjing University of Science and Technology,

China
Kejiang Ye Shenzhen Institute of Advanced Technology,

Chinese Academy of Sciences, China
Lei Wang National University of Defense Technology,

China
Massimo Cafaro University of Salento, Italy
Massimo Torquati University of Pisa, Italy
Mengying Zhao Shandong University, China
Roman Wyrzykowski Czestochowa University of Technology, Poland
Rui Wang Beihang University, China
Sheng Ma National University of Defense Technology,

China
Songwen Pei University of Shanghai for Science and

Technology, China
Susumu Matsumae Saga University, Japan
Weihua Zhang Fudan University, China
Weixing Ji Beijing Institute of Technology, China
Xiaoli Gong Nankai University, China
Youyou Lu Tsinghua University, China
Yu Zhang Huazhong University of Science and Technology,

China
Zichen Xu Nanchang University, China

Track 2: Software Systems and Programming Models

Patrick P. C. Lee (Chair) Chinese University of Hong Kong, China
Erci Xu Ohio State University, USA
Xiaolu Li Huazhong University of Science and Technology,

China
Shujie Han Peking University, China
Mi Zhang Institute of Computing Technology, Chinese

Academy of Sciences, China

x Organization

Jing Gong KTH Royal Institute of Technology, Sweden
Radu Prodan University of Klagenfurt, Austria
Wei Wang Beijing Jiaotong University, China
Himansu Das KIIT Deemed to be University, India
Rong Gu Nanjing University, China
Yongkun Li University of Science and Technology of China,

China
Ladjel Bellatreche National Engineering School for Mechanics and

Aerotechnics, France

Track 3: Distributed and Network-Based Computing

Meng Shen (Chair) Beijing Institute of Technology, China
Ruidong Li (Chair) Kanazawa University, Japan
Bin Wu Institute of Information Engineering, China
Chao Li Beijing Jiaotong University, China
Chaokun Zhang Tianjin University, China
Chuan Zhang Beijing Institute of Technology, China
Chunpeng Ge National University of Defense Technology,

China
Fuliang Li Northeastern University, China
Fuyuan Song Nanjing University of Information Science and

Technology, China
Gaopeng Gou Institute of Information Engineering, China
Guangwu Hu Shenzhen Institute of Information Technology,

China
Guo Chen Hunan University, China
Guozhu Meng Chinese Academy of Sciences, China
Han Zhao Shanghai Jiao Tong University, China
Hai Xue University of Shanghai for Science and

Technology, China
Haiping Huang Nanjing University of Posts and

Telecommunications, China
Hongwei Zhang Tianjin University of Technology, China
Ioanna Kantzavelou University of West Attica, Greece
Jiawen Kang Guangdong University of Technology, China
Jie Li Northeastern University, China
Jingwei Li University of Electronic Science and Technology

of China, China
Jinwen Xi Beijing Zhongguancun Laboratory, China
Jun Liu Tsinghua University, China

Organization xi

Kaiping Xue University of Science and Technology of China,
China

Laurent Lefevre National Institute for Research in Digital Science
and Technology, France

Lanju Kong Shandong University, China
Lei Zhang Henan University, China
Li Duan Beijing Jiaotong University, China
Lin He Tsinghua University, China
Lingling Wang Qingdao University of Science and Technology,

China
Lingjun Pu Nankai University, China
Liu Yuling Institute of Information Engineering, China
Meng Li Hefei University of Technology, China
Minghui Xu Shandong University, China
Minyu Feng Southwest University, China
Ning Hu Guangzhou University, China
Pengfei Liu University of Electronic Science and Technology

of China, China
Qi Li Beijing University of Posts and

Telecommunications, China
Qian Wang Beijing University of Technology, China
Raymond Yep University of Macau, China
Shaojing Fu National University of Defense Technology,

China
Shenglin Zhang Nankai University, China
Shu Yang Shenzhen University, China
Shuai Gao Beijing Jiaotong University, China
Su Yao Tsinghua University, China
Tao Yin Beijing Zhongguancun Laboratory, China
Tingwen Liu Institute of Information Engineering, China
Tong Wu Beijing Institute of Technology, China
Wei Quan Beijing Jiaotong University, China
Weihao Cui Shanghai Jiao Tong University, China
Xiang Zhang Nanjing University of Information Science and

Technology, China
Xiangyu Kong Dalian University of Technology, China
Xiangyun Tang Minzu University of China, China
Xiaobo Ma Xi’an Jiaotong University, China
Xiaofeng Hou Shanghai Jiao Tong University, China
Xiaoyong Tang Changsha University of Science and Technology,

China
Xuezhou Ye Dalian University of Technology, China
Yaoling Ding Beijing Institute of Technology, China

xii Organization

Yi Zhao Tsinghua University, China
Yifei Zhu Shanghai Jiao Tong University, China
Yilei Xiao Dalian University of Technology, China
Yiran Zhang Beijing University of Posts and

Telecommunications, China
Yizhi Zhou Dalian University of Technology, China
Yongqian Sun Nankai University, China
Yuchao Zhang Beijing University of Posts and

Telecommunications, China
Zhaoteng Yan Institute of Information Engineering, China
Zhaoyan Shen Shandong University, China
Zhen Ling Southeast University, China
Zhiquan Liu Jinan University, China
Zijun Li Shanghai Jiao Tong University, China

Track 4: Big Data and Its Applications

Li Chen (Chair) University of Louisiana at Lafayette, USA
Alfredo Cuzzocrea University of Calabria, Italy
Heng Qi Dalian University of Technology, China
Marc Frincu Nottingham Trent University, UK
Mingwu Zhang Hubei University of Technology, China
Qianhong Wu Beihang University, China
Qiong Huang South China Agricultural University, China
Rongxing Lu University of New Brunswick, Canada
Shuo Yu Dalian University of Technology, China
Weizhi Meng Technical University of Denmark, Denmark
Wenbin Pei Dalian University of Technology, China
Xiaoyi Tao Dalian Maritime University, China
Xin Xie Tianjin University, China
Yong Yu Shaanxi Normal University, China
Yuan Cao Ocean University of China, China
Zhiyang Li Dalian Maritime University, China

Track 5: Parallel and Distributed Algorithms

Wei Bao (Chair) University of Sydney, Australia
Jun Li (Chair) City University of New York, USA
Dong Yuan University of Sydney, Australia
Francesco Palmieri University of Salerno, Italy

Organization xiii

George Bosilca University of Tennessee, USA
Humayun Kabir Microsoft, USA
Jaya Prakash Champati IMDEA Networks Institute, Spain
Peter Kropf University of Neuchâtel, Switzerland
Pedro Soto CUNY Graduate Center, USA
Wenjuan Li Hong Kong Polytechnic University, China
Xiaojie Zhang Hunan University of Technology and Business,

China
Chuang Hu Wuhan University, China

Track 6: Applications of Parallel and Distributed Computing

Hang Qiu (Chair) Waymo, USA
Ang Li (Chair) Qualcomm, USA
Daniel Andresen Kansas State University, USA
Di Wu University of Central Florida, USA
Fawad Ahmad Rochester Institute of Technology, USA
Haonan Lu University at Buffalo, USA
Silvio Barra University of Naples Federico II, Italy
Weitian Tong Georgia Southern University, USA
Xu Zhang University of Exeter, UK
Yitao Hu Tianjin University, China
Zhixin Zhao Tianjin University, China

Track 7: Service Dependability and Security in Distributed
and Parallel Systems

Wei Yang (Chair) University of Texas at Dallas, USA
Dezhi Ran Peking University, China
Hanlin Chen Purdue University, USA
Jun Shao Zhejiang Gongshang University, China
Jinguang Han Southeast University, China
Mirazul Haque University of Texas at Dallas, USA
Simin Chen University of Texas at Dallas, USA
Wenyu Wang University of Illinois at Urbana-Champaign, USA
Yitao Hu Tianjin University, China
Yueming Wu Nanyang Technological University, Singapore
Zhengkai Wu University of Illinois at Urbana-Champaign, USA
Zhiqiang Li University of Nebraska, USA
Zhixin Zhao Tianjin University, China

xiv Organization

Ze Zhang University of Michigan/Cruise, USA
Ravishka Rathnasuriya University of Texas at Dallas, USA

Track 8: Internet of Things and Cyber-Physical-Social Computing

Yu Yang (Chair) Lehigh University, USA
Qun Song Delft University of Technology, The Netherlands
Chenhan Xu University at Buffalo, USA
Mahbubur Rahman City University of New York, USA
Guang Wang Florida State University, USA
Houcine Hassan Universitat Politècnica de València, Spain
Hua Huang UC Merced, USA
Junlong Zhou Nanjing University of Science and Technology,

China
Letian Zhang Middle Tennessee State University, USA
Pengfei Wang Dalian University of Technology, China
Philip Brown University of Colorado Colorado Springs, USA
Roshan Ayyalasomayajula University of California San Diego, USA
Shigeng Zhang Central South University, China
Shuo Yu Dalian University of Technology, China
Shuxin Zhong Rutgers University, USA
Xiaoyang Xie Meta, USA
Yi Ding Massachusetts Institute of Technology, USA
Yin Zhang University of Electronic Science and Technology

of China, China
Yukun Yuan University of Tennessee at Chattanooga, USA
Zhengxiong Li University of Colorado Denver, USA
Zhihan Fang Meta, USA
Zhou Qin Rutgers University, USA
Zonghua Gu Umeå University, Sweden
Geng Sun Jilin University, China

Track 9: Performance Modeling and Evaluation

Zhibin Yu (Chair) Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, China

Chao Li Shanghai Jiao Tong University, China
Chuntao Jiang Foshan University, China
Haozhe Wang University of Exeter, UK
Laurence Muller University of Greenwich, UK

Organization xv

Lei Liu Beihang University, China
Lei Liu Institute of Computing Technology, Chinese

Academy of Sciences, China
Jingwen Leng Shanghai Jiao Tong University, China
Jordan Samhi University of Luxembourg, Luxembourg
Sa Wang Institute of Computing Technology, Chinese

Academy of Sciences, China
Shoaib Akram Australian National University, Australia
Shuang Chen Huawei, China
Tianyi Liu Huawei, China
Vladimir Voevodin Lomonosov Moscow State University, Russia
Xueqin Liang Xidian University, China

Reviewers

Dezun Dong
Chao Wang
Chentao Wu
Chi Lin
Deze Zeng
En Shao
Fei Lei
Haikun Liu
Hailong Yang
Junlong Zhou
Kejiang Ye
Lei Wang
Massimo Cafaro
Massimo Torquati
Mengying Zhao
Roman Wyrzykowski
Rui Wang
Sheng Ma
Songwen Pei
Susumu Matsumae
Weihua Zhang
Weixing Ji
Xiaoli Gong
Youyou Lu
Yu Zhang
Zichen Xu
Patrick P. C. Lee
Erci Xu

Xiaolu Li
Shujie Han
Mi Zhang
Jing Gong
Radu Prodan
Wei Wang
Himansu Das
Rong Gu
Yongkun Li
Ladjel Bellatreche
Meng Shen
Ruidong Li
Bin Wu
Chao Li
Chaokun Zhang
Chuan Zhang
Chunpeng Ge
Fuliang Li
Fuyuan Song
Gaopeng Gou
Guangwu Hu
Guo Chen
Guozhu Meng
Han Zhao
Hai Xue
Haiping Huang
Hongwei Zhang
Ioanna Kantzavelou

xvi Organization

Jiawen Kang
Jie Li
Jingwei Li
Jinwen Xi
Jun Liu
Kaiping Xue
Laurent Lefevre
Lanju Kong
Lei Zhang
Li Duan
Lin He
Lingling Wang
Lingjun Pu
Liu Yuling
Meng Li
Minghui Xu
Minyu Feng
Ning Hu
Pengfei Liu
Qi Li
Qian Wang
Raymond Yep
Shaojing Fu
Shenglin Zhang
Shu Yang
Shuai Gao
Su Yao
Tao Yin
Tingwen Liu
Tong Wu
Wei Quan
Weihao Cui
Xiang Zhang
Xiangyu Kong
Xiangyun Tang
Xiaobo Ma
Xiaofeng Hou
Xiaoyong Tang
Xuezhou Ye
Yaoling Ding
Yi Zhao
Yifei Zhu
Yilei Xiao
Yiran Zhang
Yizhi Zhou

Yongqian Sun
Yuchao Zhang
Zhaoteng Yan
Zhaoyan Shen
Zhen Ling
Zhiquan Liu
Zijun Li
Li Chen
Alfredo Cuzzocrea
Heng Qi
Marc Frincu
Mingwu Zhang
Qianhong Wu
Qiong Huang
Rongxing Lu
Shuo Yu
Weizhi Meng
Wenbin Pei
Xiaoyi Tao
Xin Xie
Yong Yu
Yuan Cao
Zhiyang Li
Wei Bao
Jun Li
Dong Yuan
Francesco Palmieri
George Bosilca
Humayun Kabir
Jaya Prakash Champati
Peter Kropf
Pedro Soto
Wenjuan Li
Xiaojie Zhang
Chuang Hu
Hang Qiu
Ang Li
Daniel Andresen
Di Wu
Fawad Ahmad
Haonan Lu
Silvio Barra
Weitian Tong
Xu Zhang
Yitao Hu

Organization xvii

Zhixin Zhao
Wei Yang
Dezhi Ran
Hanlin Chen
Jun Shao
Jinguang Han
Mirazul Haque
Simin Chen
Wenyu Wang
Yitao Hu
Yueming Wu
Zhengkai Wu
Zhiqiang Li
Zhixin Zhao
Ze Zhang
Ravishka Rathnasuriya
Yu Yang
Qun Song
Chenhan Xu
Mahbubur Rahman
Guang Wang
Houcine Hassan
Hua Huang
Junlong Zhou
Letian Zhang
Pengfei Wang
Philip Brown
Roshan Ayyalasomayajula

Shigeng Zhang
Shuo Yu
Shuxin Zhong
Xiaoyang Xie
Yi Ding
Yin Zhang
Yukun Yuan
Zhengxiong Li
Zhihan Fang
Zhou Qin
Zonghua Gu
Geng Sun
Zhibin Yu
Chao Li
Chuntao Jiang
Haozhe Wang
Laurence Muller
Lei Liu
Lei Liu
Jingwen Leng
Jordan Samhi
Sa Wang
Shoaib Akram
Shuang Chen
Tianyi Liu
Vladimir Voevodin
Xueqin Liang

Contents – Part VII

An Efficient Scheduling Algorithm for Multi-mode Tasks on Near-Data
Processing SSDs . 1

Guo Li, Xianzhang Chen, Duo Liu, Jiali Li, Yujuan Tan, and Ao Ren

HR-kESP: A Heuristic Algorithm for Robustness-Oriented k Edge Server
Placement . 17

Haiquan Hu, Jifu Chen, and Chengying Mao

A Hybrid Kernel Pruning Approach for Efficient and Accurate CNNs 34
Xiao Yi, Bo Wang, Shengbai Luo, Tiejun Li, Lizhou Wu, Jianmin Zhang,
Kenli Li, and Sheng Ma

A Collaborative Migration Algorithm for Edge Services Based
on Evolutionary Reinforcement Learning . 47

Yanan Zuo, Xiuguo Zhang, Bo Zhang, and Zhiying Cao

A Graph Generation Network with Privacy Preserving Capabilities 67
Yangyong Miao, Xiaoding Wang, and Hui Lin

Clustered Federated Learning Framework with Acceleration Based
on Data Similarity . 80

ZhiPeng Gao, ZiJian Xiong, Chen Zhao, and FuTeng Feng

An Anonymous Authentication Scheme with Low Overhead
for Cross-Domain IoT . 93

Long Fan, Jianfeng Guan, Kexian Liu, and Pengcheng Wang

UAV-Assisted Data Collection and Transmission Using Petal Algorithm
in Wireless Sensor Networks . 114

Xueqiang Li, Ming Tao, and Shuling Yang

DeletePop: A DLT Execution Time Predictor Based on Comprehensive
Modeling . 126

Yongzhe He, Yueyuan Zhou, En Shao, Guangming Tan, and Ninghui Sun

CFChain: A Crowdfunding Platform that Supports Identity Authentication,
Privacy Protection, and Efficient Audit . 146

Yueyue He, Jiageng Chen, and Koji Inoue

xx Contents – Part VII

TBAF: A Two-Stage Biometric-Assisted Authentication Framework
in Edge-Integrated UAV Delivery System . 168

Zheng Zhang, Huabin Wang, Aiting Yao, Xuejun Li, Frank Jiang,
Jia Xu, and Xiao Liu

Attention Enhanced Package Pick-Up Time Prediction via Heterogeneous
Behavior Modeling . 189

Baoshen Guo, Weijian Zuo, Shuai Wang, Xiaolei Zhou, and Tian He

Optimizing Pointwise Convolutions on Multi-core DSPs . 209
Yang Wang, Qinglin Wang, Xiangdong Pei, Songzhu Mei, and Jie Liu

Detecting SDCs in GPGPUs Through Efficient Partial Thread Redundancy 224
Xiaohui Wei, Yan Wu, Nan Jiang, and Hengshan Yue

FDRShare: A Fully Decentralized and Redactable EHRs Sharing Scheme
with Constant-Size Ciphertexts . 240

Zhichao Li, Zhexi Lu, Lingshuai Wang, Qiang Wang, and Che Bian

An Efficient Fault Tolerance Strategy for Multi-task MapReduce Models
Using Coded Distributed Computing . 253

Zaipeng Xie, Jianan Zhang, Yida Zhang, Chenghong Xu, Peng Chen,
Zhihao Qu, and WenZhan Song

Key-Based Transaction Reordering: An Optimized Approach
for Concurrency Control in Hyperledger Fabric . 272

Haoliang Ma, Peichang Shi, Xiang Fu, and Guodong Yi

Decentralized Self-sovereign Identity Management System: Empowering
Datacenters Through Compact Cancelable Template Generation 292

Junwei Yu, Shaowen Li, Yepeng Ding, and Hiroyuki Sato

Low-Latency Consensus with Weak-Leader Using Timestamp
by Synchronized Clocks . 304

Yue Ni, Guangping Xu, and Yi Tian

AOPT-FL: A Communication-Efficient Federated Learning Method
with Clusterd and Sparsification . 316

Danlei Zhang, Geming Xia, and Yuxuan Liu

A Central Similarity Hashing Method via Weighted Partial-Softmax Loss 328
Mengling Li, Yunpeng Fu, Zhiyang Li, Duo Zhang, and Zhaolin Wan

Contents – Part VII xxi

AIFR: Face Recognition Research Based on Age Factor Characteristics 340
Biaokai Zhu, Zhaojie Zhang, Yupeng Jia, Xinru Hu, Yurong Shen,
Manwen Bai, Jie Song, Ping Li, Sanman Liu, Feng Li, and Deng-ao Li

Author Index . 353

An Efficient Scheduling Algorithm
for Multi-mode Tasks on Near-Data

Processing SSDs

Guo Li, Xianzhang Chen(B), Duo Liu(B), Jiali Li, Yujuan Tan, and Ao Ren

Chongqing University,Chongqing400044, China
liguo@stu.cqu.edu.cn, {xzchen,liuduo,lijiali,tanyujuan,ren.ao}@cqu.edu.cn

Abstract. Near-Data Processing (NDP) architectures have been pro-
posed to alleviate the large overhead of data movement between the
host and the Computational Storage Device (CSD) by offloading tasks
to the CSD. In NDP architectures, each task can run in multiple modes
according to the resource it takes for computing, such as the CPU of
the host, the accelerator or the processor of the CSD. However, exist-
ing task scheduling algorithms on NDP architectures are unaware of
the multi-mode tasks, leading to increased completion time of tasks and
low resource utilization. In this paper, we propose a Multi-Mode Task
Scheduling (MMTS) algorithm to optimize the completion time of the
multi-mode tasks in NDP architectures. MMTS employs a greedy strat-
egy to fully use the computing resources in the host and the CSD and
align the completion time of the tasks by picking the proper modes.
Our experimental results show that MMTS achieves 20.6% performance
improvement on average over the state-of-the-art task scheduling algo-
rithm on NDP-based system.

Keywords: Near data processing · Computational storage ·
Multi-mode task scheduling

1 Introduction

In the context of the vast amount of data being generated, lots of data-intensive
tasks are posing significant challenges to existing storage systems [10]. One
promising solution called Near-Data Processing (NDP) architecture is proposed
to address these challenges. NDP-based system alleviates the issue of large data
movement between the host and the Computational Storage Device (CSD) by
offloading computing tasks to the CSD.

In NDP architectures, a task can be executed in multiple modes that corre-
spond to different types of computing resources in the system, such as the CPU
of the host, the accelerator or the embedded processor of the CSD [9,11,13],
denoted by Host CPU, CSD accelerator, and CSD CPU, respectively. However,
the performance of different resources are various. For example, the performance
of Host CPU is generally higher than that of the CSD CPU. Also, the internal
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14493, pp. 1–16, 2024.
https://doi.org/10.1007/978-981-97-0862-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0862-8_1&domain=pdf
https://doi.org/10.1007/978-981-97-0862-8_1

2 G. Li et al.

I/O bandwidth of the CSD is higher than the bandwidth between the host and
the CSD [7]. Therefore, the completion time of the same task in different modes
is different. In addition, different tasks compete for I/O resources and computing
resources, resulting in reduced resource utilization and increased task comple-
tion time. Therefore, it is critical to design a scheduling strategy to effectively
improve the performance of NDP system.

However, existing NDP efforts do not focus on scheduling strategies from a
system perspective. Some focuses on the offloading task mechanism. This part
of the work can be roughly divided into two categories. One is to study offload-
ing domain-specific tasks to CSD accelerator, such as data retrieval [9]. The
other aims to explore general-purpose near-data processing architecture, which
supports offloading user-defined computational logic to be executed on general-
purpose processors on CSD [2,13]. However, tasks are often performed directly
offloaded to the CSD in these work, ignoring that the computing resources of
the host can also be used.

Several transaction or request work scheduling approaches have been devel-
oped within CSD to mitigate average request delays [8,12]. However, these
approaches are not designed with a system-level perspective in mind. λ-IO [14]
takes into account the utilization of the Host CPU. It models the time overhead
of the task on the host and CSD, and distributes the task to the side with the
minimum time. However, under this strategy, the computing resources on the
other side are still underutilized, when tasks are always offloaded to one side
for execution. Therefore, we can observe that some computing resources are not
taken into account and are idle in existing work.

Besides, we find that not all tasks are suitable for offloading to CSD. There
is a trade-off between the computation overhead associated with near SSD pro-
cessing and the reduction in communication overhead to the host system in NDP
architecture [6]. The internal I/O bandwidth of the CSD is higher than the band-
width between the host and the CSD while the performance of the Host CPU
is generally stronger than that of the CSD embedded processor [7]. Therefore,
when we offload computationally complex tasks to disk, the increase in compu-
tation time may be higher than the decrease in data transfer time, so there is
no performance improvement.

The observations can be summarized as follows:

1. Tasks are multi-mode and can be executed on the Host CPU or offloaded to
CSD accelerators or CSD CPU in near-data systems.

2. Not all tasks are suitable for offloading, e.g. task with high computational
complexity is processed faster on the Host CPU than offloaded to CSD embed-
ded processor.

3. In certain greedy scheduling strategies, the Host CPU and CSD embedded
processor may remain idle for extended periods of time, as these components
are not optimally suited for offloading single tasks.

Based on the above observations, this paper proposes a multi-mode task
scheduling algorithm from the perspective of NDP system, which improves
resource utilization and reduces the waiting time of tasks by scheduling the

An Efficient Scheduling Algorithm for Multi-mode Tasks 3

mode and order of tasks. First, this paper formally defines the Multi-Mode NDP-
task Scheduling Problem (MNSP). In this problem, we model a task into two
phases, I/O phase and computing phase. Based on the general NDP architecture,
we abstract four type of resource, I/O channels, CSD processor, CSD accelera-
tor and Host CPU. Secondly, this paper proposes a heuristic multi-mode task
scheduling algorithm, called MMTS. MMTS first adopts a greedy strategy to
select the mode with the minimum time for each task. On this basis, we sched-
ule the mode of the task to make the completion time of the queue of different
computing resources as equal as possible. We further optimize the average wait-
ing time of tasks by adjusting the order of tasks. Finally, we build a simulator
to test the performance of MMTS. The experimental results show that MMTS
improves the performance of 20.6% and 29.34% on average compared with exist-
ing scheduling strategies.

In summary, we make the following contributions:

1. We formally define the multi-mode NDP-task scheduling problem (MNSP)
and show that it is an NPC problem.

2. We propose a schedule algorithm, called MMTS, to solve this problem. Based
on the idea of parallel and concurrency, MMTS schedules the mode and order
of the task, which effectively reduces the average waiting time of tasks and
improves the parallelism. Based on our understanding, MMTS is the first work
to study multi-mode task scheduling in the near-data process architecture.

3. We construct workloads based on real NDP-based SSD implementations and
built a simulator. The experiment results show that MMTS technology sig-
nificantly reduces the makespan.

The rest of the article is arranged as follows: Sect. 2 describes the background
of MNSP and illustrate MNSP Problem by a motivational example. Section 3
shows a motivation example and formally defines MNSP problem. Section 4
introduces the MMTS algorithm. Section 5 introduces experimental setup and
evaluates the performance of MMTS. Finally, we summarize this work in Sect. 6.

2 Background and Motivation

In this section, we first introduce the general architecture of the NDP-based SSD
and analyze the processing flow of task in different modes. Then, we illustrate
the MNSP Problem in NDP-based SSDs by a motivational example.

2.1 Task Processing of NDP-Based SSDs

NDP-based SSDs are designed to mitigate the storage wall phenomenon by
reducing the data movement between the host and the SSD. Compared
with traditional SSDs, NDP-based SSDs implement accelerators to accelerate
application-specific tasks, or perform tasks on the CSD embedded processor,
making full use of the internal bandwidth of CSD and avoiding huge data move-
ment between host and CSD [2,3,9].

4 G. Li et al.

Application

Driver

Host Interface Controller

Embedded Processor

NFC

NAND
Flash

DRAM

NFC NFC

NAND
Flash

NAND
Flash

Ke
rn

el
U

se
r

Img Data
Retrieval Text

Accelerators

Fig. 1. The general architecture of NDP-based SSDs.

Typically, an NDP-based SSD usually consists of the following six types of
components, as Fig. 1 shows.

1. Host interface controller: It provides a communication channel between a host
system and Cosmos+ OpenSSD, which runs NVMe or SATA protocol.

2. Embedded processor: It is usually ARM processor, which runs firmware com-
municating with host interface controller and storage controller in traditional
SSD. In addition, it is also used to process data in some NDP-based SSDs
[2,13].

3. DRAM memory: It supports for running firmware and provides a temporary
store for data transfer between the host system and flash device. The rest
space could be used for data processing in NDP architecture.

4. NAND flash array: It acts as storage media, composed of multiple NAND
flash devices, whose basic unit of operation is page, which is usually 16 KB
[7].

5. Flash channel controller: There are multiple parallel flash channel controllers
in SSDs, which is responsible for orchestrating the operation of flash devices
attached to the same channel.

6. Domain-specific accelerator: It is used to accelerate domain-specific task in
NDP-based SSDs, such as cognitive SSD [9].

In architecture of NDP-based SSDs, each task can be split into two phases,
data transfer phase and computing phase. In the data transfer phase, the task
occupies I/O resources. Each task contains many requests. Therefore, we can
assume that data transfer phase monopolizes all channels. In the computing
phase, the task occupies one of the computing resources, such as the CPU of
host (denoted by Host-CPU), the accelerator in the CSD (denoted by CSD-
Acce), and the embedded processor in the CSD for data processing (denoted by
CSD-CPU).

When a task is dispatched to Host-CPU, the Host-CPU first send normal
request to CSD. And the data for this task is transferred from Nand flash array
to Host-DRAM. And then Host-CPU accesses Host-DRAM for data-processing.

An Efficient Scheduling Algorithm for Multi-mode Tasks 5

While when a task is dispatched to CSD-CPU or CSD-Acce, the data is trans-
ferred from Nand flash array to CSD-DRAM, avoiding the data movement
between host and CSD. And then the CSD-CPU or CSD-Acce accesses the
CSD-DRAM for data processing.

A task could be dispatched to computing resource when I/O resource is
available and the previous task of corresponding task queue has completed as
shown in Fig. 2.

We assume that the NDP architecture composed of one Host-CPU, one CSD-
CPU and one CSD-Acce in this work.

2.2 Motivation Example

In this section, we illustrate the MNSP Problem in NDP-based SSDs by a moti-
vational example.

Table 1. Detailed requirements of example Tasks.

Task h-io-time h-exe-time d-io-time d-cpu-time d-acce-time

T1 299 552 138 805 276

T2 200 759 115 1265 345

T3 345 920 184 1840 483

Table 1 shows the attribution of the three tasks. The time unit in the table is
us. The h-io-time indicates the transfer time from the NAND flash array to host
DRAM, and the h-exe-time indicates the computing time when task is processed
on Host-CPU. The d-io-time indicates the data transfer time from Nand flash
array to NAND memory in CSD. The d-cpu-time indicates the computing time
when task is processed on CSD-CPU. The d-acce-time indicates computing time
when task is processed on CSD-Acce.

In general NDP-based SSDs architecture, a task has three modes, correspond-
ing to be processed on the Host-CPU, CSD-CPU, and CSD-Acce, respectively.
In this paper, we assume that there is no data dependency between tasks.

Let us try to schedule the mode and order of tasks in Table 1. Each mode
corresponds to a computation resource with a queue. λ-IO adopts shortest-
dispatching strategy to determine the mode of task. Under this strategy, each
task chooses the mode that has minimum process time, and then be appended
in corresponding queue. Figure 2(a) shows the result of adopting shortest-
dispatching strategy, where the total process time is 1518 us. We also give the
optimal scheduling as Fig. 2(b) shown, whose total process time process time is
1097 us, reduced by 27.73%.

In summary, we can get a significant performance improvement by scheduling
the mode and order of tasks. The scheduling for MNSP problem should considers
the resource type and duration consumed by the task in different modes, as well
as the order of tasks.

6 G. Li et al.

Fig. 2. Motivation example.

3 Problem Definition

The input of the MNSP problem contains three sets: resources, tasks, and modes,
and the output is the execution order of the tasks and the modes of each task.
The optimization goal of the MNSP problem is to reduce the makespan.

The MNSP problem can be formulated as follows. The input of MNSP is an
instance <R, J, M>. R = {r1, r2, ..., rRC} is the set of resource, where RC is
the count of resources. J = {j1, j2, ..., jJC} is the set of task, where JC is the
number of tasks. M = {m1,m2, ...,mMC} is the set of mode, where MC is the
count of execution modes. The definition of a task is ji = {DS, T io, T compute}.
DS is the data size that task ji needs to transfer and compute. T io and T compute

are the sets of data transmission time and computation time, respectively, where
each element T io

m and T compute
m denotes the transmission and computation time

of task ji under mode m, respectively.
We define some symbols as follows to represent resource constraints. stjm

indicates the start time of task j choosing mode m. rjmk represents the amount
of type k resource consumed by the task j in m mode. AR = {aRk | k ∈ R, aRk ∈
R} is the set of the total amount of k type resource. T is time slot, indicating
the smallest time unit. tn = (n − 1) × T is the start time of the nth time slot.
We use the following formula to represent resource constraint that a resource
can only process one task at a time.

∑

(j,m,n)

xjmkn × rjmk ≤ aRk, k ∈ R (1)

An Efficient Scheduling Algorithm for Multi-mode Tasks 7

where xjmkn is a binary, indicating that task j choosing mode m occupies k type
resource in the time interval [tn, tn + T) while xjmkn = 1.

For computing resource,

xjmkn =
{

1, if stjm ≤ tc < (stjm + T io
m + T compute

m)
0, if tc < stjm or tc ≥ (stjm + T io

m + T compute
m) (2)

For I/O resource,

xjmkn =
{

1, if stjm ≤ tc < (stjm + T io
m)

0, if tc < stjm or tc ≥ (stjm + T io
m) (3)

where tc indicates the current time.
We also use following formula to represent that a task can select only one

mode, where bjm = 1 refers to task j choose mode m

|J|∑

j=1

|Mj |∑

m=1

bjm = 1, bjm ∈ 0, 1 (4)

The output of the problem is I = (j1, j2,, jN), a queue in which each
task has chosen the mode. Our goal is to minimize the makespan of all tasks.
The objective function is

min max(stjm + T io
m + T compute

m) (5)

The MNSP problem is a hybrid of Multi-mode Resource Constraint Project
Schedule Problem [1] and multi-processors problem [4], which has been proved
to be NP-complete.

4 Multi-mode Task Scheduling

In this chapter, we propose an effective heuristic algorithm, called MMTS, to
solve the MNSP problem. We first analyzed the MNSP problem for optimization.
Then, we cover MMTS technology in detail.

4.1 Problem Analysis

In a ideal scheduling, The utilization of resources should reach 100% as much
as possible and most tasks choose the shortest mode as Fig. 3 shows. First,
let’s analyze the approximate ideal scheduling scheme. We observe that I/O
resources are critical resources, since I/O resources are always occupied no matter
what mode the task select. We could think further that MNSP problem can
be simplified to multi-processors problem if we assume that the I/O resources
are infinite. However, the multi-processors problem was proved to be an NPC

8 G. Li et al.

Fig. 3. Approximate ideal scheduling.

problem [4], and there is no deterministic algorithm for the optimal solution in
polynomial time. We find that making the completion time of each task queue
as equal as possible can be approximated as the optimal solution, assuming the
number of tasks is infinite. Based on this idea, we consider dispatching tasks to
queues of corresponding computing resource, and try to make the completion
time of each task queue approximately equal.

Besides, in order to avoid that most tasks choose the mode that takes the
longest time, although the completion time of task queue is approximately equal.
We select the mode with the shortest time for each task and add it to the
task queue of the corresponding computing resource before dispatching tasks to
queues.

Finally, it is easy to find that the sum of the I/O time of all tasks is a lower
bound for the completion time of the task set, since the I/O resource is an
absolutely critical resource, occupied by each task to transfer data. Therefore,
we propose a task alignment strategy to maximize the utilization of I/O resource
by adjusting the order of tasks in the queue.

4.2 MMTS Algorithm

In this section, we propose a Multi-Mode Task Scheduling (MMTS) algorithm for
solving the MNSP problem. The main idea of MMTS to fully use the computing
resources in the host and the CSD and align the computing time and I/O time
between tasks with a greedy strategy. MMTS chooses the proper mode of each
task according to the completion time of task queues. MMST has three phases,
i.e., Shortest-Mode-First, Try Average, and Task Alignment. We will introduce
the three phases in the following subsections.

Shortest-Mode-First. We build a task queue for each computing resource
corresponding to a mode. It is obviously not a good solution that most
tasks choose the mode that takes the most time, although task queues has

An Efficient Scheduling Algorithm for Multi-mode Tasks 9

Algorithm 1. Phase 1: Shortest mode first
Input: An instance <R, J, M>
Output: Task queue of compute resource:csd acceq, csd cpuq, host cpuq

1: csd acceq ← ∅, host cpuq ← ∅, csd cpuq ← ∅
2: for j in J do
3: Choose mode mj that make (T io

m + T compute
m) minimum for task j

4: if mj == HOST then
5: Append task j to host cpuq

6: if mj == CSD CORE then
7: Append task j to csd cpuq

8: if mj == CSD ACCE then
9: Append task j to csd acceq

approximately equal completion time. Therefore, MMTS chooses the shortest
mode for each task before next step, and adds it to the corresponding queue.

In Algorithm 1, we choose the mode that makes (T io
m + T compute

m) minimum
for each task j ∈ J , and we append it to corresponding task queue.

Algorithm 2. Phase2–Try average
Input: csd acceq, host cpuq, csd cpuq, iteration cnt
Output: csd acceq, host cpuq, csd cpuq

1: function ave f1(list1,list2)
2: flag ← 1
3: while (1) do
4: if The completion time of list1 < that of list2 then
5: if flag == 0 then
6: Break
7: Choose the longest task j of list2
8: list1.append(j), list2.pop(j)
9: else

10: Choose the shortest task j of list1
11: list2.append(j), list1.pop(j), flag ← 0

12: function ave f2(list1,list2)
13: if The completion time of list1 < that of list2 then
14: ave f1(list1, list2)
15: else
16: ave f1(list2, list1)

17: while iteration cnt > 0 do
18: ave f2(host cpuq, csd acceq);
19: ave f2(csd cpuq, csd acceq);
20: iteration cnt − −;

Try Average. We employ iterative procedures to minimize the variance in
completion time across multiple queues.

10 G. Li et al.

In this phase, we schedule the mode of tasks to reduce the idle time of Host-
CPU and CSD-CPU, and improve the utilization of computing resources.

In steps 1–12 of Algorithm 2, we define a function ave f1 that makes the
completion time of two input lists as equal as possible by exchange the tasks
between them. We select the task with the longest time from list 1 with a longer
completion time, and add it to list 2 with a shorter completion time. Then,
we add the task with the minimum time taken from list 2 to list 1 until the
completion time of list 1 exceeds that of list 2. The completion time of list 1
gradually approaches that of list 2 in this procedure, since we choose the task
with minimum time in each iteration. In steps of 13–17 of Algorithm 2, We
define a function ave f2 that first judges the longer list, and then make them
as equal as possible. In steps 18–21, we employ iterative procedures to minimize
the completion time disparity between two queues.

Fig. 4. Example of task alignment.

Task Alignment. We found that unreasonable order of tasks would result in
resources waiting. As shown in Fig. 4(a), the computational tasks are executed
next to each other. This results in all computing resources being occupied and
unable to execute new tasks, resulting in the waiting time of I/O resources.
Figure 4(b) shows the optimized order of tasks. The computing time of task 2 is
equal to the I/O time of task 5, thus filling the waiting time of I/O resources.

An Efficient Scheduling Algorithm for Multi-mode Tasks 11

Therefore, MMTS considers adjusting the order of tasks to minimize the gap
between the computing time of one task and the I/O time of the task following.

We only align the task queue of the CSD accelerator with the task queue
of the Host-CPU without considering the order optimization of the CSD-CPU.
Since the processing performance of CSD-CPU is weak, with long processing
time. So that the wait time of CSD-CPU is relatively small.

Task align phase aims to improve the concurrency of computing resources and
I/O resources to reduce the resource wait time. The specific details of algorithm
are shown in table. The basic idea of task alignment is that for task a, we find
task b, which has the minimum absolute value of difference between the I/O time
of task b and the computing time of task a. And then we repeat this step for
task b (called aligned task) to find task c (called patching task), until finishing
traversing all the tasks.

In steps 1–3 of Algorithm 3, we define two lists Tmp1 and Tmp2 to store the
aligned task and then initial Tmp1 by appending the first element of csd acceq
to Tmp1. In steps 5–8, we find patching task b of host cpuq for aligned task a of
csd acceq, and thus, task b has been the aligned task. And then in steps 9–12,
we find patching task c of csd acceq for aligned task b of host cpuq. We repeat
this procedure until finishing traversing all the tasks.

Algorithm 3. Phase 3–Task alignment
Input: csd acceq, host cpuq, csd cpuq

Output: csd acceq, host cpuq, csd cpuq

1: Tmp1 ← [], Tmp2 ← []
2: Append the first element of csd acceq to Tmp1
3: csd acceq pop the first element
4: while (1) do
5: if len(csd acceq)! = 0 then
6: Find an task j in host cpuq whose T io

m has the smallest absolute value of
the difference with the T compute

m of the last element of Tmp1
7: Append task j to Tmp2
8: Pop task j from host cpuq

9: if len(host cpuq)! = 0 then
10: Find an task j in csd acceq whose T io

m has the smallest absolute value of
the difference with the T compute

m of the last element of Tmp2
11: Append task j to Tmp1
12: Pop task j from csd acceq
13: else
14: Break
15: else
16: Break

12 G. Li et al.

5 Evaluation

In this chapter, we first introduce the experimental setup, including the platform,
the workloads and the algorithms that need to be compared. We will then present
the experimental results and analyze the effectiveness of the proposed MMTS.

5.1 Experimental Setups

Platform: We build a simulator to evaluate the scheduling of tasks in an NDP
system with a Host and a CSD. Since We aims at a general architecture, where
task could be processed on Host-CPU, CSD-Acce, and CSD-CPU. However,
existing platforms either only support the offloading of application-specific tasks
to CSD-Acce, or only general-purpose tasks offloaded to CSD-CPU. This simu-
lator is built according to the architecture and parameters of Cosmos+ [7].

Workloads: As far as we know, there is currently no open-source multi-mode
NDP-task workloads. Therefore, we build it based on the Cosmos platform and
some real-world applications, such as embedding table operations [13], image
training, and string retrieval. First, we deployed RecSSD on Cosmos+ [7] and
collect execution time of the embedded table operation, as a measure of the
performance gap between Host-CPU and CSD-CPU. We also implemented string
retrieval accelerator on Cosmos+, and collect execution time, to measure the gap
between the performance of the Host-CPU and the CSD-Acce. We construct a
workload, based on the above parameters. In this paper, we define a task to be
a computational task (denoted as C) if T io

m < T compute
m when a task is processed

on Host-CPU, vice versa, an I/O-type task (denoted as I/O). As shown in Fig. 5,
we mix I/O-type tasks and computational tasks according to the ratio of 0.2:0.8,
0.4:0.6, 0.6:0.4 and 0.8:0.2.

Strategies: Fist-Come-First-Serve (FCFS) is widely used in existing traditional
SSDs and some NDP-based SSDs [5,9,11]. FCFS strategy distributes tasks to
queues based on the order in their arrival. In this experiment, each mode corre-
sponds to a type of computing resource, Host-CPU, CSD-Acce and CSD-CPU.
Each type of computing resource corresponds to a task queue. We add tasks to
the corresponding queue based on the results of task mode scheduling. Strategies
about the mode scheduling are as follows:

1. Shortest dispatching (SD): λ-IO [14] takes into account the utilization of the
computing resources of the host. It models the time overhead of the task on
the host and CSD, and dispatches the task to the side with the shortest time.

2. Dispatching when available (DWA): Task is dispatched to the computing
resource instantly which becomes available, prioritized to CSD computing
resource if both Host-CPU and CSD computing resource are available at the
same time. Summarizer [6] proposes an approach which saturates the CSD
first. We extend this strategy to DWA.

An Efficient Scheduling Algorithm for Multi-mode Tasks 13

Fig. 5. Makespan of different strategies on workloads with different ratio of I/O-type
tasks and computational tasks.

5.2 Effect on Performance

The proposed MMTS is compared with FCFS+SD (FSD), FCFS+DWA
(FDWA). The results of the makespan of different strategy are shown in Fig. 5.
The horizontal axis represents the number of tasks for the workload. The exper-
iment results show that MMTS outperforms FSD and FDWA.

Compared with FSD, MMTS can reduce the completion time by 25.3% in
best case and 20.6% on average. Since the FSD algorithm offloads all the tasks to
the CSD-Acce, the Host-CPU and the CSD-CPU are both unused for the tasks.
However, MMTS makes the completion time of each queue as equal as possi-
ble, improving the utilization of the Host-CPU and the CSD-CPU. Compared
with FDWA, MMTS can reduce the completion time by up to 62%, and by an
average of 29.34%. We find that FDWA has a wide range of completion time
toggles. There are cases where a long task at the end of the queue is assigned
to CSD-CPU. Furthermore, the tail delay further increases due to the weak per-
formance of CSD-CPU. On the contrary, tasks that take longer are prioritized
under MMTS, which avoids this situation. Even excluding these cases, compared
with FDWA, MMTS reduces completion time by an average of 4.99%. In sum-
mary, we can observe that MMTS outperforms existing strategies on workloads
with different proportions of I/O-type tasks and computational tasks.

14 G. Li et al.

5.3 Resource Utilization

Now, we analyze the performance of the three strategies from the perspective of
resource utilization. As shown in Fig. 6, we collect the utilization of computing
resources and I/O resource in the experiments. Let’s take the workload with 800
tasks and 0.2: 0.8 I/O-type: computational tasks as an example.

Fig. 6. Utilization of computing and I/O resources under different strategies.

We find that compared with FSD, MMTS and FDWA have higher utilization
of I/O, Host-CPU and CSD-CPU. Since FSD always select the shortest mode.
Therefore almost all tasks are distributed to the CSD-Acce, resulting in idle time
of the Host-CPU and CSD-CPU, whose utilization is 0. Compared with FSD,
FDWA and MMTS allocates some tasks to idle Host-CPU and CSD-CPU, which
improves resource utilization.

Compared with FDWA, MMTS has higher utilization of I/O, Host-CPU and
CSD-Acce and lower utilization of CSD-CPU. Since there is a situation where,
the CSD-CPU is idle and CSD-Acce is about to become available at the current
moment. Therefore, it is better to wait for a little time and then distribute the
task to CSD-Acce rather than to the CSD-CPU instantly under FDWA, which
results in more powerful CSD-Acce waiting for I/O resource.

As shown in Fig. 6, there is still room for improvement in the utilization of
computing power by improving the utilization of CSD-Acce, although the sum
of computing resource utilization of FDWA is higher than FSD and MMTS.
Therefore, considering the difference in performance among computing resource,
MMTS makes the completion time of task queues as equal as possible. This
further enhances the utilization of computing power and reduces the overall
task completion time compared with FDWA.

6 Conclusion

The NDP architecture reduces data transfer between the host and the SSD by
offloading tasks to CSD. Tasks with multi modes can be executed on the Host-
CPU, CSD-CPU, and CSD-Acce in a general architecture. Existing NDP related

An Efficient Scheduling Algorithm for Multi-mode Tasks 15

work rarely schedules tasks from a system perspective, ignoring increased com-
puting time when offloading and idle time of Host-CPU. Therefore, it is necessary
to schedule the order and mode of tasks from the perspective of the system. In
this work, we propose a multi-mode task scheduling mechanism called MMTS.
MMTS considers idle computing resources and task waiting time caused by task
competition for I/O resources. It reduces the overall makespan by scheduling
the order and mode of the task. The experimental results show that, compared
with FSD and FDWA, MMTS reduces by an average of 20.6% and 29.34% of
makespan, respectively.

Acknowledgement. This work is partially supported by National Natural Science
Foundation of China under Grant 62072059 and 62102051, Chongqing Post-doctoral
Science Foundation, China (Project No. 2021LY75), and the Funds for Chongqing
Distinguished Young Scholars (No. cstc2020jcyj-jqX0012). We would like to thank the
anonymous reviewers for their valuable comments and improvements to this paper.

References

1. Colak, S., Agarwal, A., Erenguc, S.: Multi-mode resource-constrained project-
scheduling problem with renewable resources: new solution approaches. JBER
11(11), 455 (2013). https://doi.org/10.19030/jber.v11i11.8193

2. Do, J., et al.: Cost-effective, energy-efficient, and scalable storage computing for
large-scale AI applications. ACM Trans. Storage 16(4), 1–37 (2020). https://doi.
org/10.1145/3415580

3. HeydariGorji, A., Torabzadehkashi, M., Rezaei, S., Bobarshad, H., Alves, V., Chou,
P.H.: Stannis: low-power acceleration of DNN training using computational stor-
age devices. In: 2020 57th ACM/IEEE Design Automation Conference (DAC),
San Francisco, CA, USA, pp. 1–6. IEEE, July 2020. https://doi.org/10.1109/
DAC18072.2020.9218687

4. Hou, E., Ansari, N., Ren, H.: A genetic algorithm for multiprocessor scheduling.
IEEE Trans. Parallel Distrib. Syst. 5(2), 113–120 (1994). https://doi.org/10.1109/
71.265940

5. Hu, Y., Jiang, H., Feng, D., Tian, L., Luo, H., Ren, C.: Exploring and exploiting
the multilevel parallelism inside SSDs for improved performance and endurance.
IEEE Trans. Comput. 62(6), 1141–1155 (2013). https://doi.org/10.1109/TC.2012.
60

6. Koo, G., et al.: Summarizer: trading communication with computing near stor-
age. In: Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, Cambridge, Massachusetts, pp. 219–231. ACM, October 2017.
https://doi.org/10.1145/3123939.3124553

7. Kwak, J., Lee, S., Park, K., Jeong, J., Song, Y.H.: Cosmos+ OpenSSD: rapid pro-
totype for flash storage systems. ACM Trans. Storage 16(3), 1–35 (2020). https://
doi.org/10.1145/3385073

8. Li, J., et al.: Horae: a hybrid I/O request scheduling technique for near-data
processing based SSD. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
1 (2022). https://doi.org/10.1109/TCAD.2022.3197518

9. Liang, S., Wang, Y., Lu, Y., Yang, Z., Li, H., Li, X.: Cognitive SSD: a deep learning
engine for in-storage data retrieval, p. 17 (2019)

https://doi.org/10.19030/jber.v11i11.8193
https://doi.org/10.1145/3415580
https://doi.org/10.1145/3415580
https://doi.org/10.1109/DAC18072.2020.9218687
https://doi.org/10.1109/DAC18072.2020.9218687
https://doi.org/10.1109/71.265940
https://doi.org/10.1109/71.265940
https://doi.org/10.1109/TC.2012.60
https://doi.org/10.1109/TC.2012.60
https://doi.org/10.1145/3123939.3124553
https://doi.org/10.1145/3385073
https://doi.org/10.1145/3385073
https://doi.org/10.1109/TCAD.2022.3197518

16 G. Li et al.

10. Reinsel, D., Gantz, J., Rydning, J.: The digitization of the world from edge to core
(2018)

11. Ruan, Z., He, T., Cong, J.: INSIDER: designing in-storage computing system for
emerging high-performance drive (2019)

12. Tavakkol, A., et al.: FLIN: enabling fairness and enhancing performance in modern
NVMe solid state drives. In: 2018 ACM/IEEE 45th Annual International Sympo-
sium on Computer Architecture (ISCA), pp. 397–410, June 2018. https://doi.org/
10.1109/ISCA.2018.00041

13. Wilkening, M., et al.: RecSSD: near data processing for solid state drive based rec-
ommendation inference. In: Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
Virtual USA, pp. 717–729. ACM, April 2021. https://doi.org/10.1145/3445814.
3446763

14. Yang, Z., et al.: L-IO: a unified IO stack for computational storage. Performance
Improvement (2023)

https://doi.org/10.1109/ISCA.2018.00041
https://doi.org/10.1109/ISCA.2018.00041
https://doi.org/10.1145/3445814.3446763
https://doi.org/10.1145/3445814.3446763

HR-kESP: A Heuristic Algorithm
for Robustness-Oriented k Edge Server

Placement

Haiquan Hu , Jifu Chen , and Chengying Mao(B)

School of Software and IoT Engineering, Jiangxi University of Finance and
Economics, Nanchang 330013, China

maochy@yeah.net

Abstract. Mobile edge computing develops a new paradigm to deliver
low-latency services to mobile users by deploying edge servers at base
stations or access points close to the users. From the perspective of ser-
vice providers, in this paper, we consider how to deploy k edge servers
on suitable base stations to maximize network robustness and user cov-
erage. Accordingly, the above two metrics are focused on constructing
an optimization model for deploying a given number (i.e., k) of edge
servers in the edge computing network. In order to solve the model effi-
ciently, a Heuristic algorithm for Robustness-oriented k Edge Server
Placement (HR-kESP) is designed. In the proposed algorithm, the ini-
tial base station is first selected in a greedy manner. Then, a heuristic
policy by considering the increment of network robustness is designed to
gradually expand the deployment solution until the server budget con-
straint is satisfied. The comparison experiments have been conducted on
a public dataset, showing that our HR-kESP algorithm achieves a better
optimization effect than the other four benchmark algorithms in most
cases.

Keywords: Mobile Edge Computing · Edge Server Placement ·
Robustness · Heuristic Algorithm

1 Introduction

In recent years, the massive access to mobile devices has led to a surge of data
volume [1]. As a result, traditional cloud-based mobile networks have struggled
to meet this challenge. Mobile edge computing (MEC) [2], which applies the
edge computing (EC) [3] technology to mobile network scenarios, deploys edge
servers at the base stations near mobile users or some critical network nodes.
Generally speaking, the paradigm of migrating computing and storage resources
to the edge side of a mobile network can conveniently provide computing power
and storage capacity for mobile users with low service latency [4]. This type of
cloud-edge-user hierarchical network structure can effectively deal with the stor-
age, concurrency, and data transfer pressures caused by massive data. However,
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14493, pp. 17–33, 2024.
https://doi.org/10.1007/978-981-97-0862-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0862-8_2&domain=pdf
http://orcid.org/0009-0002-1809-4220
http://orcid.org/0000-0003-4529-5175
http://orcid.org/0000-0001-8178-1205
https://doi.org/10.1007/978-981-97-0862-8_2

18 H. Hu et al.

building a cost-effective and robust network architecture in the MEC environ-
ment is still challenging.

Due to the high cost of building a new network, MEC usually makes full use
of existing infrastructure and data links to provide services, that is, try to make
some minor adjustments and conversions to the existing network structure. As
the critical step in constructing an MEC network, edge server placement (ESP)
is to select several suitable base stations as the server deployment locations in
a given mobile network architecture. Among the existing studies of ESP, most
of them focus on metrics of network service quality and service provider prof-
its [5], such as response latency [6,7], energy consumption [8,9] and deployment
cost [10,11]. A key requirement in providing high-quality network services is
the ability of the edge server network to run stably for a long period. If a net-
work’s anti-failure capability is too weak, its performance is easily affected by
some sudden mishaps. Even if an MEC solution performs well on some standard
metrics, it is still likely to encounter challenges when operating in real-world
network environments. Frequent server network failures may bring high mainte-
nance costs to service providers and significantly affect users’ quality of service
(QoS) [12,13]. At present, the research on network robustness has not received
enough attention. As a representative work, Cui et al. [14] initiated the discus-
sion on constructing a highly robust server network with a fixed edge server
budget. In their solution, the robustness of the MEC network is quantified as
the number of mobile users who are served simultaneously by two edge servers,
i.e., it is guaranteed that in an emergency situation where one server is unable
to serve a user, there are still other servers that can work for that user. Fur-
thermore, their study proposed a means to trade off network robustness and
user coverage by combining them into a unified objective, and aimed to find a
solution that maximises the overall objective [15]. It is worth noting that in the
experimental analysis, they only used the robustness metric to statically measure
the reliability of each edge server deployment solution, and lacked the analysis
of the robustness of the deployment from the perspective of actual application
scenarios (i.e., the dynamic and random failures of edge servers).

In this paper, we attempt to design a cost-effective algorithm for solving the
Robustness-oriented k Edge Server Placement (kESP) problem in a heuristic
manner. The robustness increment is used as heuristic information to find the
appropriate base stations to deploy edge servers. During the process of gradually
generating the server deployment scheme, the candidate deployment locations
are selected in the way of greedy from two subsets of base stations, which are
differentiated and evaluated separately according to the neighbouring relation-
ship with the deployed edge servers. In addition, for evaluating the effective-
ness of solutions, most of the existing methods mainly use some static met-
rics to measure the user coverage and robustness of each placement solution.
However, this way lacks a solid theoretical foundation, and it cannot precisely
reflect the network performance in real-world scenarios. In this paper, we pro-
pose a simulation-based network robustness evaluation method, which simulates
the possible emergencies (some servers crash randomly) to evaluate the real

A Heuristic Algorithm for Robustness-Oriented k Edge Server Placement 19

performance of a network. Through the experimental and comparative analy-
sis, it is confirmed that our proposed algorithm shows significant superiority in
both the basic static metric and the simulation evaluation of network robustness.
The artifacts of this study for reproducibility and future research activities are
available at https://github.com/maochy/HR-kESP.

The main contributions of this paper can be summarized below:

– A Heuristic algorithm for Robustness-oriented k Edge Server Placement
named HR-kESP is proposed to effectively solve the k edge server placement
problem from the viewpoint of multi-objective optimization.

– A simulation-based evaluation method for the network robustness is proposed.
Through simulating the server failures randomly, the network robustness of
a given ESP solution can be indirectly measured by evaluating the impact of
failures on network performance.

– Intensive experiments are conducted on the public dataset by considering
various application scenarios, and the results indicate that HR-kESP outper-
forms other representative algorithms in most cases.

The rest of this paper is structured as follows. In Sect. 2, we describe the
ESP problem and formulate the optimization model for maximizing the network
robustness and user coverage. Section 3 addresses the model-solving framework
and the corresponding heuristic algorithm, namely HR-kESP. The detailed com-
parative experiments are conducted, and the experimental results are analyzed
and discussed in Sect. 4. Section 5 describes the related work. Finally, Sect. 6
concludes this study and discusses some future research directions.

2 Problem and Model Formulation

2.1 Problem Statement

In the MEC scenario shown in Fig. 1, base stations communicate with each other
using wireless connections. If two base stations satisfy that one is within the
coverage of the other base station, they can directly access it, but not in other
cases. The service relationship between the user and the base station follows the
similar rule. If the user u is within the coverage of the base station b, the user
u can directly request the service from the base station b. This direct accessing
relationship can be denoted as a(b, u) ∈ {0, 1} where the value 1 indicates user
u can directly access base station b, otherwise 0. Similarly, a(bi, bj) ∈ {0, 1}
indicates whether the base stations bi and bj can directly access to each other.
In particular, a(bi, bi) = 1.

According to the above accessibility rules, the mobile network environment
shown in Fig. 1 can be modelled as the topology network as shown in Fig. 2.
The communication relationship network of base stations is represented by a
weighted undirected graph G = (B, E), where B = {b1, b2, . . . , bm} is a set
of m base stations, E = {〈bi, bj〉|a (bi, bj) = 1, bi, bj ∈ B} is a set composed
of accessing relations between all base stations. For a given mobile user set

https://github.com/maochy/HR-kESP

20 H. Hu et al.

Fig. 1. A Typical Mobile Edge Computing Scenario.

U = {u1, u2, . . . , un} and the base station set B, the accessibility matrix is
defined as

A =

{
(a(bi, bj) − 1) + a(bi, bj) ×

∑
u∈U

a(bi, u) × a(bj , u)

}
i×j

, (1)

where 1 ≤ i, j ≤ m. It contains the following three types of elements.

– When i = j, Ai,j (or Ai,i) represents the number of mobile users within the
coverage area of the base station bi.

– When i �= j and a(bi, bj) = 1, Ai,j (or Aj,i) represents the number of mobile
users with direct access to base stations bi and bj at the same time.

– When i �= j and a(bi, bj) = 0, Ai,j (or Aj,i) is −1, indicating that the base
stations bi and bj are not directly connected.

As illustrated by Fig. 1, the base station b1 covers four users, then the value
of A1,1 is 4. Meanwhile, the base stations b1 and b3 jointly cover three users, so
the weight of edge 〈b1, b3〉 is 3, i.e., A1,3 = A3,1 = 3. However, the base stations
b1 and b2 have not the direct communication relation, so A1,2 = A2,1 = −1.

Based on the communication relationship network of base stations, the
Edge Server Placement (ESP) in the MEC can be expressed as an assignment
of k out of m base stations (the set B) to deploy edge servers. The com-
plete server deployment scheme is expressed as an m-dimensional binary vec-
tor p = (p1, . . . , pi, . . . , pm), where pi ∈ {0, 1}. pi = 1 means that i -th base
station has been selected as the deployment location of the edge server, oth-
erwise 0. Since the number of deployed servers is set to k, the server deploy-
ment scheme should satisfy the constraint

∑m
i=0 pi = k. Taking the Fig. 1 for an

example, the corresponding deployment scheme can be denoted as 0–1 vector
p = (1, 0, 1, 0, 0, 1, 1, 0), that is, the base stations b1, b3, b6, and b7 are selected
as the deployment location of edge servers.

A Heuristic Algorithm for Robustness-Oriented k Edge Server Placement 21

Fig. 2. The Base Station Communication Network for the Scenario in Fig. 1.

According to the above definitions, given a mobile edge network, the k Edge
Server Placement (kESP) problem is to find a 0–1 vector p whose first-order
norm (i.e. Manhattan norm) ‖p‖1 is k, while satisfying the basic constraints in
the actual application scenarios. In this paper, we investigate the optimization
objectives of kESP problem from the following two aspects: network robustness
and user coverage.

2.2 User Coverage

For the edge server network, providing mobile users with low-latency services is
the most important requirement that needs to be considered. In general, more
users being served means a wider coverage of the network, thus better meeting
the access requirements of mobile users. For this reason, we consider the number
of users severed by edge servers (user coverage for short) as an optimization
objective. Given a base station bi, the set of users covered by the base station is
defined as c(bi), that is,

c(bi) = {uk|a(bi, uk) = 1, uk ∈ U}. (2)

Then, the user coverage of the base station bi is |c(bi)|. For a server deployment
scheme p, the set of mobile users served by edge servers is defined as C(p), which
can be formally represented as

C(p) =
⋃

bi∈B∧pi=1

c(bi). (3)

Finally, the user coverage of an edge server placement solution can be formulated
as

coverage(p) = |C(p)|. (4)

2.3 Network Robustness

In actual network scenarios, if the robustness is low, the edge server network
may not be able to achieve the desired effect for providing services for mobile

22 H. Hu et al.

users. In fact, the edge servers in mobile networks may be affected by different
emergencies such as hardware failures, service loss, and network attacks. It can
make it difficult or impossible for users to connect to the network of edge servers,
significantly reducing the quality of service (QoS). Therefore, the robustness of
the edge network is critical to both the service provider’s long-term revenue and
the mobile user’s experience. For a server deployment scheme p, its robustness
can be calculated by means of Eq. (5).

robust(p) =
m∑
i=0

⎡
⎣ m∑
j=i+1

(Ai,j × pj) × pi

⎤
⎦ , (5)

where m is the number of base stations. Ai,j represents the number of users who
have an accessing relationship with base stations bi and bj at the same time. pi
(or pj) indicates whether an edge server has been deployed on the base station
bi (or bj).

2.4 Robustness-Oriented kESP Optimization Model

According to the above description, to maximize the user coverage and network
robustness at the same time, the robustness-oriented k edge server placement
problem can be formulated as follows:

maximize CR(p) =
√

ωc · (coverage(p))2 + ωr · (robust(p))2, (6)

while satisfying the following constraints:

pi ∈ {0, 1}, (7)

m∑
i=0

pi = k. (8)

The ωc and ωr are the adjustment weights of coverage(p) and robust(p) respec-
tively, and their default values are set to ωc = ωr = 0.5. In this optimization
model, constraint (7) describes the deployment decision of the base station bi,
and pi = 1 means a server is deployed on the base station bi. Otherwise, pi = 0.
Constraint (8) ensures that the total number of edge servers keeps the budget k.

3 The Heuristic Algorithm for kESP

In practical application scenarios, the distribution of base stations and mobile
users is often not uniform. Therefore, from the perspective of edge server place-
ment, priority should be given to deploying servers in high-density areas to
achieve high user coverage. At the same time, in order to ensure the robust-
ness of the deployment scheme, the deployment of servers needs to be gradually
shifted from high-density regions to low-density regions. Based on the above

A Heuristic Algorithm for Robustness-Oriented k Edge Server Placement 23

ideas and the defined optimisation model, in this section we will discuss how
to apply the heuristic strategy and heuristic information (the robustness incre-
ment) to gradually generate a server deployment scheme. In detail, the whole
process can be divided into two stages: the first is to determine the initial base
station for server placement, and the second is to select the candidate placement
locations (i.e., base stations) for the subsequent server placement.

3.1 Selection of Initial Base Station

At first, we select an appropriate base station as the initial deployment scheme
for edge servers. Then, the scheme can be gradually expanded until the number
of the deployed edge servers (also known as budget) reaches k. For a given mobile
network, the initial location of server placement should be as close as possible to
the area where base stations and users are most densely distributed. Here, given
a base station bi (1 ≤ i ≤ m), its area density can be measured by Eq. (9).

dense(bi) = degree(bi) × Ai,i, (9)

where degree(bi) represents the degree of base station bi in the communication
network, Ai,i represents the number of mobile users within the coverage scope
of base station bi.

3.2 Gradual Generation of Server Deployment Scheme

Once the initial base station is picked out for deploying an edge server, the
remaining n − 1 base stations will be divided into two subsets: a set (Nnear) of
base stations adjacent to the server and a set (Nfar) of base stations non-adjacent
to the server, according to whether they have direct access to the initial base
station. With the gradual generation of the server deployment scheme, the above
two subsets will be updated in time. For example, if the base station b is selected
as a new location for deploying an edge server, b is firstly removed from the subset
Nnear or Nfar. Then, its neighbours N(b) will be added into the subset Nnear,
and removed from the subset Nfar simultaneously.

For the subset Nnear, the base station with the largest �robust is selected
as the candidate base station bnear. Given a base station bi ∈ Nnear, its �robust
can be calculated by Eq. (10).

�robustnear(bi) =
∑

bj∈N(bi)

Ai,j × pj (10)

For the subset Nfar, since it cannot directly calculate �robust for the base
stations in it, we estimate the robustness increment (�robust) of base station
bi ∈ Nfar by the average number of the jointly-severed mobile users between bi
and the direct neighbours of bi in the communication network. Specifically, the
estimation is shown in Eq. (11).

� robustfar(bi) =

∑
bj∈N(bi)

Ai,j

2(|N(bi)| + 1)
, (11)

24 H. Hu et al.

where N(bi) represents a set of direct neighbors of base station bi, and |N(bi)|
denotes the cardinality of the set N(bi). Similarly, the base station with the
largest �robust in Nfar is selected as the other candidate location, namely bfar,
for server placement.

3.3 HR-kESP Algorithm

Given a base station communication network G = (B,E) and the accessing rela-
tion matrix A, our heuristic algorithm for solving the robustness-oriented kESP
problem is to build a deployment scheme for k edge servers. The corresponding
pseudo code is presented in Algorithm 1.

Algorithm 1. HR-kESP
Inputs: (1) the base station communication network G = (B,E);

(2) the multi-objective optimization model in Section 2.4;
(3) the server budget k.

Output: the edge server placement solution p with
∑m

i=0 pi = k.
1. initialize the kESP solution p = (0, 0, . . . , 0), and set the subset of adjacent base

stations Nnear = ∅ and the subset of non-adjacent base stations Nfar = B;
2. evaluate the area densities of all base stations in network G, and select the base

station bi with the largest density;
3. update p with pi = 1 and Nfar = Nfar − {bi};
4. obtain bi’s neighboring base stations, denoted as N(bi);
5. update Nnear = Nnear ∪ N(bi) and Nfar = Nfar − N(bi);
6. while

∑m
i=0 pi �= k do

7. evaluate the base stations in Nnear and Nfar respectively according to Equa-
tions (10) and (11), and select two candidate base stations from Nnear and Nfar

respectively (i.e., bnear and bfar), whose �robust are the largest in the two subsets
respectively;

8. compare bnear with bfar to select the one with highest increment of robustness as
b�;

9. update p by b�, and update Nnear = Nnear −{b�} if b� is bnear, otherwise update
Nfar = Nfar − {b�};

10. obtain b�’s neighboring base stations, denoted as N(b�);
11. update Nnear = Nnear ∪ N(b�) and Nfar = Nfar − N(b�);
12. end while
13. return the final solution of edge server placement, that is, p;

The algorithm starts with an initial kESP solution p = (0 . . . 0), and the
two base station subsets Nnear = ∅ and Nfar = B (Line 1). Then, for each base
station bi ∈ B, its area density is calculated, and the base station with the largest
value is selected as the initial location for deploying the edge server (Line 2).
Next, update the kESP solution p, and remove the selected base station from
Nfar (Line 3). Meanwhile, move the neighbours of the initial base station from
Nfar to Nnear (Lines 4 and 5). Subsequently, a while loop is used to expand the
solution p for satisfying the server budget k (Lines 6–12). First, for subsets Nnear

A Heuristic Algorithm for Robustness-Oriented k Edge Server Placement 25

and Nfar, evaluate each base station in them according to Eqs. (10) and (11),
and select two candidate base stations bnear and bfar, whose �robust are the
largest one in the two subsets respectively (Line 7). Then, by comparing bnear
and bfar, the base station with the highest increment of robustness is used for
deploying an edge server (Line 8). Next, the solution p, the subsets Nnear and
Nfar are updated accordingly (Lines 9–11). Finally, the expansion process (the
while loop) is repeated until the number of deployed edge servers reaches k.

In the above HR-kESP algorithm, to select a better location of the base sta-
tion for deploying the next edge server, we divide the candidate base stations
into two different subsets according to their neighbouring relations to the exist-
ing edge servers and measure their robustness increments in two different ways.
Simply, if the candidates are only considered from the base stations which are the
direct neighbours of the deployed edge servers, a basic version of the algorithm
can be obtained, i.e., a degraded version of the HR-kESP algorithm, which we
denote here as HR-kESP0. It should be pointed out that, the HR-kESP0 algo-
rithm also uses the information of robustness increment to guide the selection of
deployment locations of edge servers. The key difference is that the HR-kESP0

algorithm only considers the base stations in Nnear as the candidate locations
for deploying new edge servers, so only Eq. (10) is used in it to compute the
robustness increments of candidate base stations.

4 Experimental Evaluation

4.1 Experimental Settings

To verify the performance of the proposed HR-kESP algorithm, the experiments
are conducted on the widely-used EUA dataset [16] that contains the locations
of 1465 real-world base stations within metropolitan Melbourne in Australia.
The coverage range of each base station is randomly set from 450 to 700m.

To comprehensively evaluate the performance of the algorithms for solving
the kESP problem, the networks in different scenarios are taken into consider-
ation in the experiments. Specifically, the following three kinds of experimental
parameters are used and varied for representing different network environments:
(1) the number of base stations m; (2) the server budget k; (3) the number of
mobile users n. The detailed parameter settings are shown in Table 1.

For evaluating the robustness of the kESP solutions generated by different
algorithms, simulation-based network robustness evaluation are designed
in this paper. Given a network scenario, some servers are randomly shut down
to simulate unexpected situations in the real-world network environment such
as server hardware failure. In our current experiments, the default proportion
of failed servers was set to 50%. Based on this simulation, the User Survival
Rate, that is, the ratio of the number of the covered users after some server
failures to the number of the covered users before server failures, is defined to
measure the robustness of each kESP solution. Each experiment was repeated
100 times, and the results were reported in the form of average values.

26 H. Hu et al.

Table 1. Experimental Parameter Settings.

Parameters m k n

Group 1 5, 10, . . . , 35 4 80
Group 2 20 1, 2, . . . , 8 80
Group 3 20 4 20, 40, . . . , 160

In the experiments, we selected the following four benchmark algorithms for
the experimental and comparative analysis. Among them, Random and Greedy
are the basic algorithms for the kESP problem. ESP-A is an approximation
method proposed by Cui et al. [15]. HR-kESP0 is the basic version of our HR-
kESP algorithm.

– Random, randomly select k base stations to deploy edge servers;
– Greedy, select the top-k base stations to deploy edge servers according to the

metric CR(p);
– ESP-A, the method is proposed in [15] for finding an approximate solution

for kESP problem;
– HR-kESP0, based on the selection of the initial base station, the subsequent

base stations used to deploy edge servers are selected only from the direct
neighbours of the deployed servers until reaching the edge server budget k.

All the above algorithms were implemented in Java. In addition, all the exper-
iments were performed on the PC with an Intel Core i5-10210U CPU processor,
16GB RAM, and Windows 10 operating system.

4.2 Comparison on Different Numbers of Base Stations

By comparison with the four benchmark algorithms, Table 2 shows the algo-
rithm’s performance, which is the value of the comprehensive optimization objec-
tive CR(p), under different numbers of base stations. It is easy to see that, our
proposed HR-kESP and HR-kESP0 algorithms have significant advantages over
other benchmark algorithms. As the degraded version of HR-kESP, HR-kESP0

also has good performance but is slightly worse than the HR-kESP. For differ-
ent numbers of base stations, HR-kESP is the best one, which is 0.49% higher
than the HR-kESP0 on average. Compared with ESP-A and Greedy algorithm,
its CR(p) is 2.24% and 2.80% higher on average respectively. For the Random
algorithm, the advantage of HR-kESP is as high as 139.95%.

To evaluate the network robustness, we used the simulate-based evaluation
method, which randomly switches 50% of edge servers to the unavailable state.
Then, the network robustness is represented by the proportion of mobile users
who can still obtain services from the remaining edge servers, that is, the user
survival rate defined above. As shown in Fig. 3, in terms of the user survival rate,
the algorithms of HR-kESP and HR-kESP0 have roughly the same effects and
have significant advantages over ESP-A and Greedy algorithms. The Random

A Heuristic Algorithm for Robustness-Oriented k Edge Server Placement 27

Table 2. The Performance (CR(p)) of Algorithm with Different Numbers of Base
Stations.

Algorithm\m 5 10 15 20 25 30 35 40

Random 185.86 174.18 178.29 180.18 198.11 180.05 168.11 184.35
Greedy 239.02 350.36 393.46 429.27 472.57 466.55 495.26 514.79
ESP-A 228.72 345.92 398.10 436.62 478.43 476.33 506.70 522.41
HR-kESP0 233.34 350.42 400.68 436.08 493.53 489.34 518.96 531.86
HR-kESP 235.38 353.79 404.71 441.10 491.34 490.65 520.93 530.33

algorithm performed the worst. Specifically, HR-kESP has an improvement of
0.26% compared with the HR-kESP0 algorithm. For the other three benchmark
algorithms (ESP-A, Greedy and Random), our algorithm improves on average
by 1.85%, 2.40% and 18.81%, respectively.

Fig. 3. User Survival Rate after Failures with Different Numbers of Base Stations.

4.3 Comparison on Different Server Budgets

Generally speaking, increasing the number of servers tends to improve user cov-
erage and to make the network more robust. For different server budgets, both
HR-kESP0 and ESP-A algorithms have certain advantages when the server bud-
get is less than 4. But as the budget keeps increasing, HR-kESP gradually shows
significant improvement and performs best. As shown in Table 3, compared with
HR-kESP0, ESP-A and Greedy algorithms, HR-kESP has an average improve-
ment of 0.42%, 2.00% and 3.15% respectively. The CR(p) of the Random algo-
rithm is still the worst. Overall, the performance of HR-kESP remains the best.

28 H. Hu et al.

Table 3. The Performance (CR(p)) of Algorithm with Different Server Budgets.

Algorithm\k 1 2 3 4 5 6 7 8

Random 31.68 62.32 112.29 186.74 287.55 426.51 569.98 763.73
Greedy 52.02 105.01 237.88 433.37 693.00 929.68 1244.87 1597.61
ESP-A 53.00 106.20 246.50 441.28 704.48 933.31 1248.36 1570.70
HR-kESP0 53.00 105.62 251.01 449.66 716.03 967.16 1272.51 1603.55
HR-kESP 51.91 105.49 250.49 455.72 720.87 982.07 1286.63 1621.23

In terms of network robustness, the user survival rate tends to increase grad-
ually as the server budget increases, and tends to be stable when the value of
the budget (k) is large. As the experimental results shown in Fig. 4, the perfor-
mance of HR-kESP and HR-kESP0 algorithms is almost the same, where the
former is just 0.29% higher than the latter. In addition, the ESP-A and Greedy
algorithms are at the second level according to the user survival rate. Compared
with ESP-A and Greedy algorithms, HR-kESP’s performance is improved by
1.32% and 1.82% respectively. Similar to the above experiment, Random has
the worst performance of all five algorithms. It should be noted that the change
in server budget has very little effect on the performance of the HR-kESP algo-
rithm. Even when the server budget is only 2, the HR-kESP still achieves a high
user survival rate of about 90%.

Fig. 4. User Survival Rate after Failures with Different Server Budgets.

A Heuristic Algorithm for Robustness-Oriented k Edge Server Placement 29

4.4 Comparison on Different Numbers of Users

In general, the CR(p) of each algorithm shows an upward trend as the number
of users continues to increase. It is not difficult to see from Table 4 that, the
HR-kESP algorithm performs optimally in almost all cases of the numbers of
users. Even when the number of users is 20 and 140, HR-kESP as the second
is very close to the first HR-kESP0 algorithm. In other cases, it significantly
outperforms the four benchmark algorithms (namely HR-kESP0, ESP-A, Greedy
and Random) on the CR(p) by 0.42%, 2.39%, 4.31% and 155.01%, respectively.

Table 4. The Performance (CR(p)) of Algorithm with Different Numbers of Users.

Algorithm\n 20 40 60 80 100 120 140 160

Random 43.65 91.16 141.12 188.31 219.96 253.56 309.23 350.02
Greedy 118.34 221.56 323.57 434.84 533.93 652.92 737.79 849.94
ESP-A 119.94 226.03 329.31 440.27 546.91 666.93 751.18 868.78
HR-kESP0 123.61 231.40 335.98 446.82 554.25 671.64 776.13 880.68
HR-kESP 122.76 234.73 337.69 447.61 558.88 675.64 771.60 890.16

As the number of users increases, as shown in Fig. 5, the trend of user survival
rates of all algorithms remains stable. The average user survival rates of HR-
kESP and HR-kESP0 algorithms are around 89.7%. Those of the Greedy and
ESP-A algorithms are about 87.5%. The corresponding value of the Random
algorithm is maintained at about 74.5%. Apparently, HR-kESP and HR-kESP0

algorithms always keep an advantage, and HR-kESP has an improvement of

Fig. 5. User Survival Rate after Failures with Different Numbers of Users.

30 H. Hu et al.

0.29% compared to HR-kESP0 algorithm. At the same time, compared with
the other three benchmark algorithms (i.e., ESP-A, Greedy, and Random), the
improvements are 2.09%, 2.85%, and 20.72%, respectively.

5 Related Work

Due to the complexity of application scenarios and the diversity of network
service requirements, the ESP problem in different network environments is often
studied from different aspects. In recent years, many scholars have carried out
research on server deployment cost [11], server provider’s profits [5,9], average
response latency and load balancing [17], network robustness [14,15] etc.

For the cost of deploying servers, Ren et al. [11] focused on minimizing the
number of deployed edge servers while meeting user response latency constraints.
However, service providers often would like an accurate profit model to further
estimate the cost and revenue of servers. Therefore, some scholars incorporate the
server’s energy consumption (cost) and service quality (revenue) into the profit
model and maximize profits by weighing cost and revenue [5,9]. Different from
service providers, mobile users often pay more attention to the QoS, such as the
average response latency of users. Since the response speed of network services
is related to network performance, the balanced distribution of load can make
full use of server resources and effectively reduce the average latency. Therefore,
in the QoS-oriented research, user average response latency and load balancing
indicators are usually jointly considered. Typically, Chen et al. [17] presented
a preference-aware edge server placement approach that offers better workload
distribution in terms of both minimizing query latency and balancing the load of
edge servers. At present, there is relatively little research on network robustness.
Cui et al. [14] first discussed the robustness-oriented k Edge Server Placement
(kESP) problem. To maximize the anti-failure capability of the network, their
strategy is to increase the overlapping area of the server range. However, server
deployment requires a proper trade-off between network robustness and user cov-
erage [15], otherwise, the total coverage area will be too small, thereby reducing
the number of mobile users served.

For a given ESP optimization model, the methods of finding the exact solu-
tion by directly solving the optimization model are widely used in the research
community. For example, the solver is a very convenient model-solving tool to
solve a specific mathematical model such as a (mixed) integer programming
model. The solution effect of the solver depends on the formal definition of the
problem. According to the characteristics of the ESP problem, Wang et al. [18]
proved that the ESP problem is NP-hard and expressed it as a mixed integer
programming problem. Similarly, Cui et al. [14] formalized the problem as an
integer programming model. However, these specific models make it difficult to
accurately describe complex application scenarios. At the same time, due to the
low efficiency of the solver, its time cost is very high for large-scale problems [15].
Therefore, some scholars try to carry out equivalent transformations of problems
and use existing knowledge to solve new problems, such as the cooperative game

A Heuristic Algorithm for Robustness-Oriented k Edge Server Placement 31

problem [19] in game theory and the shortest path problem [20] in graph theory.
However, these approaches are less general.

Although the exact solution method can already obtain a good solution,
it is easy to be trapped in a local optimum. Therefore, by adding randomiza-
tion factors, there is a chance to find the optimal solution in the global search
space. The meta-heuristic algorithm represented by swarm intelligence is a typ-
ical randomization-based solution method, which realizes multi-point optimiza-
tion in the global search space by simulating certain behaviours of creatures
in nature. In recent years, scholars have integrated the K-means algorithm and
Tabu search into the genetic algorithm (GA) [17] or ant colony optimization
(ACO) [21] to solve the ESP problem. In addition, some other classic search
algorithms, such as particle swarm optimization algorithm [5,8], hill climbing
method, simulated annealing [22], whale optimization [23] have also been applied
to this problem. The meta-heuristic algorithm has the ability of global search and
simple reuse of methods. However, it is necessary to readjust the parameters, and
even adjust the specific search strategy. Recently, reinforcement learning (RL)
has performed well on the combinatorial optimization problem (COP) [24]. As
a COP problem, edge server placement is similar to a serialized decision prob-
lem, which is to find suitable server deployment locations one by one. Therefore,
Mazloomi et al. [25] proposed a new reinforcement learning framework, which
modelled the edge server placement as a Markov decision process, and modelled
the state space, action space and penalty function. Similarly, RL methods also
have certain limitations, including changeable action spaces, difficulties in defin-
ing penalty functions for multi-objective problems, and the risk of state space
dimension explosion. Most importantly, all randomization-based search methods
cannot ignore the high time cost of optimizing the search.

To avoid the heavy computation overhead and the trap of local optimum, in
this paper, we propose a heuristic algorithm HR-kESP to solve the robustness
k edge server placement problem. In our algorithm, the increment of robustness
is used as the heuristic information to guide the search process to maximize
network robustness and user coverage.

6 Conclusion and Future Work

In this paper, we formally define two optimization objectives (i.e., network
robustness and user coverage) and a comprehensive optimization model for the
robustness-oriented k Edge Server Placement (kESP) problem. To efficiently
find the server deployment scheme, we designed a robustness-oriented heuristic
algorithm named HR-kESP. In the algorithm, according to the distribution of
base stations and users in the network environment, the base station close to
the user-intensive area is first selected as the initial location for deploying the
edge server. Subsequently, the candidate with the largest robustness increase is
selected from the subset of adjacent base stations and the subset of non-adjacent
base stations respectively, and the optimal one of the two candidate base sta-
tions is selected to expand the server deployment scheme. The above expansion

32 H. Hu et al.

process continues until the number of deployed edge servers reaches the bud-
get constraint. To verify the effectiveness of the proposed HR-kESP algorithm,
the comparative experimental analysis is conducted on the widely-used EUA
dataset. The experimental results confirm that, in most cases, the HR-kESP
algorithm is significantly better than all other benchmark algorithms in both
two evaluation metrics.

At present, the proposed HR-kESP algorithm in this paper is only verified
and compared in the small-scale network environment, and the scenarios in the
large-scale MEC environment can be further investigated. Furthermore, the cur-
rent robustness evaluation method only covers simple server failure cases. In the
ongoing study, the simulation-based evaluation can be improved for handling
some more complex situations.

Acknowledgement. We are grateful to Guangming Cui and Qiang He for pro-
viding the EUA dataset and the implementation of their ESP-A algorithm. This
work is supported in part by the National Natural Science Foundation of China
(Grant No. 62172195), the Science Foundation of Jiangxi Educational Committee
(Grant No. GJJ180276), and the Graduate Innovation Project of Jiangxi Province
(No. YC2022-S459).

References

1. Jonsson, P., Carson, S., Davies, S., et al.: Ericsson Mobility Report. Ericsson,
Stockholm (2022)

2. Hu, Y., Patel, M., Sabella, D., et al.: Mobile edge computing-a key technology
towards 5G. ETSI White Paper 11(11), 1–16 (2015)

3. Satyanarayana, M.: The emergence of edge computing. Computer 50(1), 30–39
(2017)

4. Mao, Y., You, C., Zhang, J., et al.: A survey on mobile edge computing: the
communication perspective. IEEE Commun. Surv. Tutor. 19(4), 2322–2358 (2017)

5. Li, Y., Zhou, A., Ma, X., et al.: Profit-aware edge server placement. IEEE Internet
Things J. 9(1), 55–67 (2022)

6. Tiwary, M., Puthal, D., Sahoo, K.S., et al.: Response time optimization for
Cloudlets in mobile edge computing. J. Parallel Distrib. Comput. 119, 81–91 (2018)

7. Jin, X., Gao, F., Wang, Z., et al.: Optimal deployment of mobile Cloudlets for
mobile applications in edge computing. J. Supercomput. 78, 7888–7907 (2022)

8. Li, Y., Wang, S.: An energy-aware edge server placement algorithm in mobile
edge computing. In: Proceedings of 2018 IEEE International Conference on Edge
Computing (EDGE 2018), pp. 66–73 (2018)

9. Cong, P., Zhou, J., Li, L., et al.: A survey of hierarchical energy optimization for
mobile edge computing: a perspective from end devices to the cloud. ACM Comput.
Surv. 53(2), 1–44 (2020)

10. Bhatta, D., Mashayekhy, L.: Cost-aware Cloudlet placement in edge computing
systems. In: Proceedings of the 4th ACM/IEEE Symposium on Edge Computing
(SEC 2019), pp. 292–294 (2019)

11. Ren, Y., Zeng, F., Li, W., et al.: A low-cost edge server placement strategy in wire-
less metropolitan area networks. In: Proceedings of the 27th International Confer-
ence on Computer Communication and Networks (ICCCN 2018), pp. 1–6 (2018)

A Heuristic Algorithm for Robustness-Oriented k Edge Server Placement 33

12. Mao, C., Zhao, Z.: Predicting QoS for cloud services through prefilling-based matrix
factorization. In: Proceedings of the 7th International Conference on Advanced
Cloud and Big Data (CBD 2019), pp. 25–30 (2019)

13. Chen, J., Mao, C., Song, W.W.: QoS prediction for Web services in cloud envi-
ronments based on swarm intelligence search. Knowl.-Based Syst. 259, 110081:1–
110081:16 (2023)

14. Cui, G., He, Q., Xia, X., et al.: Robustness-oriented k edge server placement. In:
Proceedings of the 20th IEEE/ACM International Symposium on Cluster, Cloud
and Internet Computing (CCGRID 2020), pp. 81–90 (2020)

15. Cui, G., He, Q., Chen, F., et al.: Trading off between user coverage and network
robustness for edge server placement. IEEE Trans. Cloud Comput. 10(3), 2178–
2189 (2022)

16. Lai, P., He, Q., Abdelrazek, M., et al.: Optimal edge user allocation in edge comput-
ing with variable sized vector bin packing. In: Proceedings of the 16th International
Conference on Service-Oriented Computing (ICSOC 2018), pp. 230–245 (2018)

17. Chen, Y., Lin, Y., Zheng, Z., et al.: Preference-aware edge server placement in the
Internet of Things. IEEE Internet Things J. 9(2), 1289–1299 (2022)

18. Wang, S., Zhao, Y., Xu, J., et al.: Edge server placement in mobile edge computing.
J. Parallel Distrib. Comput. 127, 160–168 (2019)

19. Cao, K., Li, L., Cui, Y., et al.: Exploring placement of heterogeneous edge servers
for response time minimization in mobile edge-cloud computing. IEEE Trans.
Industr. Inf. 17(1), 494–503 (2021)

20. Xiang, H., Xu, X., Zheng, H., et al.: An adaptive Cloudlet placement method
for mobile applications over GPS big data. In: Proceedings of 2016 IEEE Global
Communications Conference (GLOBECOM 2016), pp. 1–6 (2016)

21. Guo, F., Tang, B., Zhang, J.: Mobile edge server placement based on meta-heuristic
algorithm. J. Intell. Fuzzy Syst. 40(5), 8883–8897 (2021)

22. Kasi, S.K., Kasi, M.K., Ali, K., et al.: Heuristic edge server placement in industrial
Internet of Things and cellular networks. IEEE Internet Things J. 8(13), 10308–
10317 (2021)

23. Asghari, A., Azgomi, H., Darvishmofarahi, Z.: Multi-objective edge server place-
ment using the whale optimization algorithm and game theory. Soft Comput. 1–15
(2023)

24. Mazyavkina, N., Sviridov, S., Ivanov, S., et al.: Reinforcement learning for com-
binatorial optimization: a survey. Comput. Oper. Res. 134, 105400:1–105400:15
(2021)

25. Luo, F., Zheng, S., Ding, W., et al.: An edge server placement method based on
reinforcement learning. Entropy 24(3), 317, 1–14 (2022)

A Hybrid Kernel Pruning Approach
for Efficient and Accurate CNNs

Xiao Yi1(B), Bo Wang1, Shengbai Luo1, Tiejun Li1, Lizhou Wu1,
Jianmin Zhang1, Kenli Li2, and Sheng Ma1(B)

1 College of Computer Science and Technology, National University of Defense
Technology, Changsha, China

{yixiao,bowang,luoshengbai,tjli,lizhou.wu,jmzhang,masheng}@nudt.edu.cn
2 Hunan University, Changsha, China

lkl@hnu.edu.cn

Abstract. To reduce the overhead of neural network training and infer-
ence, several techniques have been widely used to prune neural net-
work models. Pruning algorithms can significantly reduce the number
of parameters in the model, which in turn reduces the amount of compu-
tation required during model training and inference. Currently, the most
popular pruning algorithm is the structured pruning algorithm, which
prunes the model at the kernel level. Researchers usually use norm-based
criteria to determine which kernels to prune. While this type of algo-
rithms works well, there are some shortcomings. First, the effectiveness
of the norm-based pruning algorithm lacks support from mathematical
theories. Second, this pruning algorithm requires certain conditions to
work well. To address these shortcomings, we propose a novel kernel
pruning algorithm. Based on the observation that convolution kernels
act as feature extractors, we design a functional similarity-based prun-
ing algorithm as the criteria for selecting pruned kernels. Our experimen-
tal results show that when pruning ResNet with a high pruning ratio,
this algorithm can obtain a sparse model with high accuracy. Moreover,
when combined with the norm-based pruning algorithm, our functional
similarity-based pruning algorithm can produce a more accurate model
than either algorithm alone, even at the same pruning ratio.

Keywords: Kernel Pruning Algorithm · Functional-Similarity-Based
Pruning · Hybrid Pruning

1 Introduction

Deep learning pruning algorithms can be categorized into two types: unstruc-
tured pruning algorithms [1] [2] [12] and structured pruning algorithms [10] [15]
[8]. Unstructured pruning algorithms prune models at the parameter granular-
ity. First, they select the pruned parameters according to a particular pruning

X. Yi and B. Wang—Have contributed equally to this research.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14493, pp. 34–46, 2024.
https://doi.org/10.1007/978-981-97-0862-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0862-8_3&domain=pdf
https://doi.org/10.1007/978-981-97-0862-8_3

A Hybrid Kernel Pruning Approach for Efficient and Accurate CNNs 35

criterion. Then they generate a model with sparse parameter matrices. Acceler-
ating the computation of the pruned model in the unstructured pruning algo-
rithms requires support from specific sparse matrix operation libraries or hard-
ware accelerators. In contrast, structural pruning algorithms prune models at
the convolution kernel or channel levels. The computation of the pruned model
does not require support from special software or hardware. Meanwhile, based
on whether the pruning algorithm uses training data to select the pruned con-
volution kernel, we can divide convolution kernel pruning algorithms into data-
based and non-data-based pruning algorithms. Compared to data-based pruning
algorithms, non-data-based pruning algorithms are more effective, because using
training data in data-based pruning adds extra computational overhead.

Liu et al. [9] use the scaling factor of the batch normalization layer in the
convolutional neural network to select which convolutional kernel to be pruned.
First, it calculates the L1 norm of the scaling factor in the batch normalization
layer and then prunes the kernel channels with small L1 norm of the scaling
factor. Experimental results show that this method can reduce the model’s com-
putation cost by up to 95%. Luo et al. [11] selected the pruned kernel based
on the channel information from the next layer. This method reduces the com-
putational overload by 67.99% and compresses the model by 16.63 times when
pruning the VGG16 model. Additionally, It can reduce the calculation amount
by half when pruning the ResNet50 model. Li et al. [7] assumed that convolu-
tion kernels with small L1 norms have a low impact on the output of the model,
and therefore can be pruned. When adopting this pruning algorithm, the com-
putation of VGG and ResNet models can be reduced by 10% and 30% without
compromising the model accuracy. He et al. [5] prunes the convolution kernel
based on the L2 norm of the kernel. In other studies, the pruned kernel is usually
not updated after pruning. However, the pruned convolution kernel in the [5] can
still be updated. This pruning algorithm reduces the computational amount of
the ResNet101 model by 42%. Zhuo et al. [17] utilizes spectral clustering to per-
form correlation analysis on convolution kernels. They grouped similar kernels
into clusters and select pruned convolution kernels from each cluster. This algo-
rithm also adopted a soft pruning strategy, where the pruned kernel can still be
updated. Experimental results confirmed the effectiveness of this method.

Data-dependent kernel pruning algorithms typically require the participa-
tion of training data, which results in a lot of computational overhead. In com-
parison, non-data-dependent kernel pruning algorithms are more efficient. The
norm-based kernel pruning algorithm is simple and effective. Many studies utilize
this algorithm to prune models. However, this algorithm requires the distribu-
tion of kernel’s norm to satisfy two conditions. First, the deviation of the kernel’s
norm should be significant to make it easy to separate kernels based on the differ-
ence among their norms. Second, the kernel’s norm should be small enough, even
close to 0. However, previous research [6] has shown that these conditions are not
always met. Under such circumstances, a new convolution kernel pruning tech-
nology is necessary. Moreover, researchers typically use a single criterion to prune
the model, which means the kernel that has little effect on the model’s result

36 X. Yi et al.

can’t be recognized by this single-criterion-based pruning algorithm. Therefore,
it is necessary to explore a hybrid kernel pruning algorithm that can prune the
model to the possible greatest extent. We study the aforementioned problems in
this paper. Our main contributions are as follows.

(1) We propose a distance-based pruning algorithm, which is a pruning algo-
rithm based on functional similarity. The proposed method can achieve high
sparsity in the ResNet model while maintaining a high level of accuracy.

(2) We propose a hybrid pruning algorithm, which combines distance-based
and norm-based pruning algorithms. This method can maintain the higher
accuracy of the model.

(3) Experimental results show that, compared with the kernel pruning algorithm
based on a single criterion, the hybrid kernel pruning algorithm can obtain
higher model accuracy in most cases under the same pruning ratio.

2 Functional-Similarity-Based Kernel Pruning Algorithm

In this section, we present a pruning algorithm that leverages the kernel func-
tional similarity. The conventional approach of determining the importance of a
convolution kernel based on its norm requires certain conditions to be met, such
as a large variance in norm distribution for the kernels in each layer. However, if
the norm of the convolution kernel in a certain layer is nearly identical, it is dif-
ficult to select a pruned convolution kernel. In such cases, a new kernel pruning
criterion must be designed and adopted.

In convolutional neural networks, the convolution kernel serves as a feature
extractor for images. Different kernels extract different features from pictures.
Kernels near the input layer extract low-dimensional features and kernels near
the output layer extract high-dimensional features. In a certain layer, there may
be numerous convolution kernels, and some of the kernels have similar functions.
Consequently, functional-similar kernels can be pruned without affecting the
model’s accuracy. We characterize the functional similarity by measuring the
distance between kernels. Specifically, kernels that are close to each other are
considered to share the same functionality.

2.1 Distance-Based Kernel Pruning Algorithm

We employ Euclidean distance and Manhattan distance to calculate kernel sim-
ilarity in the distance-based pruning algorithm, which is detailed in Table 1.
During the training process, when kernels require pruning, we first calculate
the Euclidean distance or Manhattan distance between kernels within the same
layer. Next, we compute the cumulative sum of distances between a given kernel
and all other kernels in the same layer. Then we sort the cumulative sum of
distances for all kernels within the layer. A smaller sum of distances indicates
greater functional similarity between a kernel and its peers. The kernel with the
smallest distance sum is more likely to be pruned. By setting the pruning ratio

A Hybrid Kernel Pruning Approach for Efficient and Accurate CNNs 37

for each layer in advance, the number of pruned kernels in each layer is deter-
mined. We primarily present pruning experiments conducted on the ResNet and
VGG models.

Table 1. Distance-based Convolution Kernel Pruning Algorithm

Algorithm

Input: training data : X
1: Given: distance pruning ratio Pd
2: Initialize: model parameter W
3: for epoch = 1; epoch != epochmax; epoch + + do
4: Update the model parameter W
5: for i = 1; i != levelnumber; i++ do
6: Find Ni * Pd filters that are satisfy distance-based pruning strategy
7: Zeroize selected filters
8: End for
9: End for
9: Obtain the compact model W* from W
10: Output :The compact model and its parameters W* and model accuracy

2.2 Hybrid Kernel Pruning Algorithm

The norm-based kernel pruning algorithm is widely used and can achieve high
model sparsity. The distance-based kernel pruning algorithm proposed in this
paper can also achieve good model sparsity. Therefore, we propose a hybrid
pruning algorithm that combines these two algorithms to prune models. The
hybrid pruning algorithm is shown in Fig. 1. Table 2 describes this algorithm. In
this paper, we mainly focus on conducting pruning experiments on the ResNet
and VGG models using our proposed hybrid pruning algorithm and comparing
the results with those of the single criterion kernel pruning strategy.

3 Experimental Method

The experiments in this paper are mainly performed using Pytorch [13]. We
train the ResNet [4] and VGG models [14] on the CIFAR10 dataset. When
training the ResNet model, we set the training duration to 300 epochs and set
the batch size to 16. When training the VGG model, we set the training duration
to 160 epochs and set the batch size to 160. We mainly adopt the kernel pruning
algorithm based on Euclidean distances and Manhattan distances to prune the
model during the training process. However, due to the overfitting phenomenon
of the VGG model, we did not analyze the relationship between the VGG model

38 X. Yi et al.

Table 2. Convolution kernel pruning algorithm based on hybrid strategy

Algorithm

Input: training data : X
1: Given: norm pruning ratio Pn and distance pruning ratio Pd
2: Initialize: model parameter W
3: for epoch = 1; epoch != epochmax; epoch + + do
4: Update the model parameter W
5: for i = 1; i != levelnumber; i++ do
6: Find Ni * Pn filters that are satisfy Norm-based pruning strategy
7: Find Ni * Pd filters that are satisfy distance-based pruning strategy
8: Zeroize selected filters
9: End for
10: End for
11: Obtain the compact model W* from W
12: Output: The compact model and its parameters W* and model accuracy

Fig. 1. Schematic diagram of hybrid convolution kernel pruning technology

training accuracy and pruning ratio. The experimental configuration is shown in
Table 3. In our experiment, we use the same pruning ratio for each layer. To verify
the effectiveness of the distance-based kernel pruning algorithm, experiments are
conducted with a pruning ratio ranging from 0.1 to 0.9. That allows us to analyze
the relationship between the model accuracy and the pruning ratio. We choose
the Euclidean distance-based pruning algorithm as part of the hybrid kernel
pruning algorithm. The hybrid pruning ratio settings are shown in Table 4. We
adopt PFEC in [7] as the norm-based pruning algorithm.

A Hybrid Kernel Pruning Approach for Efficient and Accurate CNNs 39

Table 3. Distance-based pruning algorithm’s pruning ratio setting

model Distance strategy Convolution kernel pruning ratio

ResNet Euclidean/Manhattan 0.1–0.9
VGG Euclidean/Manhattan 0.1–0.9

Table 4. Hybrid pruning algorithm’s pruning ratio settings in ResNet model

model Distance strategy Distance-based pruning ratio Norm-based pruning ratio

ResNet20 Euclidean 0.1–0.5 0.1–0.8

VGG16 Euclidean 0.1–0.5 0.1–0.8

Fig. 2. The model’s accuracy and sparsity during ResNet model training. (Color figure
online)

Fig. 3. The model’s accuracy and sparsity during ResNet model testing. (Color figure
online)

40 X. Yi et al.

4 Experimental Results

4.1 Experimental Results for the Distance-Based Pruning
Algorithm

Figures 2 and 3 show that the accuracy of the ResNet model varies with differ-
ent pruning ratios when the distance-based kernel pruning algorithm is applied.
The accuracy of the unpruned model serves as the baseline. Figure 2 shows the
model’s accuracy trend when training the model with different pruning ratios.

Figure 3 shows the model’s accuracy trend when testing the model with dif-
ferent pruning ratios. The green lines in Figs. 2 and 3 represent the model’s
accuracy trend when using the Euclidean distance-based pruning algorithm. The
yellow lines in Figs. 2 and 3 represent the model’s accuracy trend when using the
Manhattan distance-based pruning algorithm. The blue lines in Figs. 2 and 3 rep-
resent the model’s accuracy trend when using the norm-based pruning algorithm.
As shown in Figs. 2 and 3, the distance-similarity-based pruning algorithm has
a similar effect as the norm-based pruning algorithm. However, when the prun-
ing ratio exceeds 70%, the distance-based pruning algorithm outperforms the
norm-based algorithm.

Fig. 4. The model’s accuracy and sparsity during VGG model testing. (Color figure
online)

The green lines in Fig. 4 represent the model’s accuracy trend for the VGG
model when using the Euclidean distance-based pruning algorithm. The yel-
low lines in Fig. 4 represent the model’s accuracy trend for the VGG model
when using the Manhattan distance-based pruning algorithm. The blue lines in
Fig. 4 represent the model’s accuracy trend for the VGG model when using the
norm-based pruning algorithm. As shown in Fig. 4, the distance-based pruning
algorithm performs as well as the norm-based pruning algorithm.

A Hybrid Kernel Pruning Approach for Efficient and Accurate CNNs 41

4.2 Experimental Results for the Hybrid Pruning Algorithm

Results on ResNet Model. Figure 5 shows the accuracy of the ResNet model
when using the hybrid pruning algorithm with different hybrid pruning ratios.
The x-axis of the figure is the hybrid ratio of the pruning algorithm, and the
y-axis is the accuracy of the model. In the hybrid ratio, the first ratio represents
the distance-based pruning ratio and the second ratio represents the norm-based
pruning ratio. The total pruning ratio is the sum of the distance-based pruning
ratio and the norm-based pruning ratio.

As shown in Fig. 5(a), when the total pruning ratio is 0.2, the pruning algo-
rithm with a hybrid ratio of (0,0.2) achieves the highest accuracy. (0,0.2) means
that only the norm-based pruning algorithm is used. So, in this case, the norm-
based pruning algorithm obtained the highest accuracy of the model.

Fig. 5. ResNet model’s accuracy under hybrid kernel pruning algorithm. The pair in
X-axis represent hybrid pruning ratio, the first represent distance-based pruning ratio,
the second represent norm-based pruning ratio. The Y-axis represent model’s accuracy.

42 X. Yi et al.

As shown in Fig. 5(b), when the total pruning ratio is 0.3, the model accuracy
of the pruning algorithm is the highest when the hybrid ratio is (0.1, 0.2). In this
case, the hybrid pruning algorithm is used, in which the distance-based pruning
ratio is 0.1 and the norm-based pruning ratio is 0.2.

As shown in Fig. 5(c), the hybrid pruning algorithm achieves the highest
model accuracy when the total pruning ratio is 0.4. In this case, the hybrid ratio
is (0.2, 0.2). Similarly, when the total pruning ratio is 0.5, 0.6, 0.7, 0.8, and 0.9,
the hybrid pruning algorithm achieves the highest model accuracy.

Experimental results show that a single pruning algorithm cannot achieve
the highest model accuracy in most cases when different ratios of kernel pruning
are performed on ResNet. The hybrid pruning algorithm can obtain a higher
model accuracy than the single criterion pruning algorithm in most cases.

Results on VGG Model. Figure 6 shows the accuracy of the VGG model
when using hybrid pruning at different pruning ratios. As shown in Fig. 6(a),
the hybrid pruning algorithm achieves the highest model accuracy when the
total pruning ratio is 0.2, and the hybrid pruning ratio is (0.1,0.1).

As shown in Fig. 6(b), when the total pruning ratio is 0.3, the pruning algo-
rithm with a hybrid ratio of (0.3, 0.0) yields the highest model accuracy. In this
case, only the distance-based pruning algorithm is used. So, the distance-based
pruning algorithm obtains the highest model accuracy when the total pruning
ratio is 0.3. Similarly, in Fig. 6(c), the model obtained by the distance-based
pruning algorithm has the highest accuracy, where the hybrid ratio is (0.4, 0.0).

In Fig. 6(f), when the total pruning ratio is 0.7, the pruning algorithm with a
hybrid ratio of (0.0, 0.7) yields the highest model accuracy. In this case, only the
norm-based pruning algorithm is used. So, the norm-based pruning algorithm
obtains the highest model accuracy when the total pruning ratio is 0.7.

In Figs. 6(d), (e), (g), (h), the hybrid pruning algorithm achieves the highest
model accuracy when the total pruning ratio is 0.5, 0.6, 0.8, and 0.9, respectively.
The hybrid ratios that achieve the highest model accuracy are (0.2, 0.3), (0.1,
0.5), (0.2, 0.6), and (0.2, 0.7), respectively.

A Hybrid Kernel Pruning Approach for Efficient and Accurate CNNs 43

Fig. 6. VGG model’s accuracy under hybrid kernel pruning algorithm. The pair in
X-axis represent hybrid pruning ratio, the first represent distance-based pruning ratio,
the second represent norm-based pruning ratio. The Y-axis represent model’s accuracy.

Experimental results show that both the hybrid pruning algorithm and the
distance-based pruning algorithm can achieve higher model accuracy when dif-
ferent ratios of kernel pruning are applied to VGG.

5 Analysis

In our experiment, the distance-based kernel pruning algorithm is first used
to prune models, and high-sparse models were obtained. The distance-based
and norm-based kernel pruning algorithms are both effective when pruning the
ResNet model with a low pruning ratio. However, when the pruning ratio is high,
the distance-based kernel pruning algorithm is found to be more effective than
the norm-based kernel pruning algorithm. This is because the distance-based

44 X. Yi et al.

kernel pruning algorithm selects pruned kernels based on their functional simi-
larity, which allows similar kernels to provide the same functions when a kernel
is pruned. As a result, the model’s accuracy is not greatly affected. This finding
confirms that the norm of a kernel cannot directly represent its importance to
the model.

When pruning ResNet models with increasing pruning ratios, the hybrid
kernel pruning algorithm typically achieves the highest accuracy compared to
single-criterion kernel pruning algorithms. This is because single-criteria algo-
rithms only consider the importance of kernels from a single dimension, while
in reality, kernel importance cannot be accurately reflected by a single dimen-
sion alone. This finding provides valuable insight for designing kernel pruning
algorithms, which should evaluate kernel importance from multiple aspects.

When pruning VGG models with different pruning ratios, the hybrid kernel
pruning algorithm does not always achieve the best results. In some cases, the
distance-based pruning algorithm also achieves the best performance. This indi-
cates that when evaluating the importance of kernels from multiple aspects, the
functionality of kernels should be prioritized when selecting unimportant kernels
for pruning.

In summary, single-criterion kernel pruning algorithms only evaluate the
importance of kernels from certain aspects, which limits their ability to iden-
tify all unimportant kernels in the model. Therefore, in the future, it would be
beneficial to design multi-criterion hybrid kernel pruning algorithms that con-
sider multiple aspects to achieve more effective model pruning.

6 Related Work

To reduce the computational and storage overhead during the neural network
training and inference process, many researchers have developed model sparsi-
fication algorithms to prune deep learning models. Pruning algorithms greatly
reduce the number of parameters in deep learning models, thus reducing the
computational overload during model training and inference process. This ulti-
mately reduces the model’s computational cost and energy consumption. Many
pruning algorithms perform fine-grained pruning on deep learning models. For
example, Han et al. [3] proposed to prune weights based on their importance,
where weights with small values are considered to have little effect on the accu-
racy of models and can be pruned. After pruning, the remaining weights are
fine-tuned to restore the model’s accuracy. This method achieved 89% model
sparsity in the AlexNet model. Zhu et al. [16] used an automatic pruning algo-
rithm that prunes unimportant weights while minimizing retraining time. Li et
al. [7] pruned trained models based on the L1 norm-based kernel pruning algo-
rithm, and then retrained the pruned network to restore the model’s accuracy.
This pruning algorithm can effectively reduce the computation cost and does not
require any support from sparse matrix computing libraries or dedicated accel-
erators. The results of this study showed that pruning algorithms can reduce the
inference overhead by 34% to 38% and will not affect the model’s accuracy.

A Hybrid Kernel Pruning Approach for Efficient and Accurate CNNs 45

7 Conclusion

In this article, we propose a convolution kernel pruning algorithm based on
functional similarity. The Euclidean distance and Manhattan distance are pri-
marily used as measures of functional similarity between kernels. Compared to
the norm-based pruning algorithm, the distance-based pruning algorithm can
achieve a higher accuracy pruning model when model sparsity is greater than
70%. We also introduce a hybrid pruning algorithm that combines the norm-
based pruning algorithm and the distance-based pruning algorithm. The exper-
imental results show that, under the same model sparsity, the hybrid pruning
algorithm can achieve a higher accuracy than a single-criterion pruning algo-
rithm. In the future, it is necessary to explore the optimal pruning ratio for
different convolutional layers, which will lead to more efficient pruning algo-
rithms.

Acknowledgement. This work is supported in part by the National Key R/&D
Project No. 2021YFB0300300, the NSFC (62172430), the NSF of Hunan Province
2021JJ10052, the STIP of Hunan Province 2022RC3065, and the Key Laboratory of
Advanced Microprocessor Chips and Systems.

References

1. Diffenderfer, J., Kailkhura, B.: Multi-prize lottery ticket hypothesis: finding accu-
rate binary neural networks by pruning a randomly weighted network. arXiv
preprint arXiv:2103.09377 (2021)

2. Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable
neural networks. arXiv preprint arXiv:1803.03635 (2018)

3. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for
efficient neural network. In: Advances in Neural Information Processing Systems
28 (2015)

4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

5. He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Soft filter pruning for accelerating
deep convolutional neural networks. arXiv preprint arXiv:1808.06866 (2018)

6. He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y.: Filter pruning via geometric median for
deep convolutional neural networks acceleration. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4340–4349 (2019)

7. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient
convnets. arXiv preprint arXiv:1608.08710 (2016)

8. Lin, M., Ji, R., Zhang, Y., Zhang, B., Wu, Y., Tian, Y.: Channel pruning via
automatic structure search. arXiv preprint arXiv:2001.08565 (2020)

9. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolu-
tional networks through network slimming. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 2736–2744 (2017)

10. Liu, Z., Sun, M., Zhou, T., Huang, G., Darrell, T.: Rethinking the value of network
pruning. arXiv preprint arXiv:1810.05270 (2018)

http://arxiv.org/abs/2103.09377
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1808.06866
http://arxiv.org/abs/1608.08710
http://arxiv.org/abs/2001.08565
http://arxiv.org/abs/1810.05270

46 X. Yi et al.

11. Luo, J.H., Wu, J., Lin, W.: ThiNet: a filter level pruning method for deep neural
network compression. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 5058–5066 (2017)

12. Malach, E., Yehudai, G., Shalev-Schwartz, S., Shamir, O.: Proving the lottery
ticket hypothesis: pruning is all you need. In: International Conference on Machine
Learning, pp. 6682–6691. PMLR (2020)

13. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems 32 (2019)

14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

15. Wang, Z., Li, C., Wang, X.: Convolutional neural network pruning with structural
redundancy reduction. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 14913–14922 (2021)

16. Zhu, M., Gupta, S.: To prune, or not to prune: exploring the efficacy of pruning
for model compression. arXiv preprint arXiv:1710.01878 (2017)

17. Zhuo, H., Qian, X., Fu, Y., Yang, H., Xue, X.: SCSP: spectral clustering filter
pruning with soft self-adaption manners. arXiv preprint arXiv:1806.05320 (2018)

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1710.01878
http://arxiv.org/abs/1806.05320

A Collaborative Migration Algorithm
for Edge Services Based on Evolutionary

Reinforcement Learning

Yanan Zuo, Xiuguo Zhang(B), Bo Zhang, and Zhiying Cao(B)

School of Information Science and Technology, Dalian Maritime University, Dalian
116026, China

{zuoyanan,zhangxg,zhang18831725009,czysophy}@dlmu.edu.cn

Abstract. Multi-access edge computing (MEC) enables users’ smart
devices to execute computing-intensive and delay-sensitive applications
by sinking computing power to edge servers, thereby meeting users’ qual-
ity of service requirements. However, due to the limited computing and
storage resources on the edge server, it is impossible to migrate all user
service requests to the edge server. At the same time, due to the hetero-
geneity of resources among edge servers and the uneven distribution of
user service requirements, it can easily lead to unbalanced loads among
edge servers in the edge system. Consequently, this results in low resource
utilization and a decreased success rate of requests. Therefore, this paper
builds a collaborative edge service migration model based on software-
defined networking (SDN), which supports cloud computing centers and
edge servers to collaboratively process user requests and service request
migration between edge servers. Taking minimizing the response delay
of user requests and the weighted sum of device energy consumption as
the optimization goal and transforming the optimization problem into a
Markov process. A collaborative edge service migration algorithm based
on evolutionary reinforcement learning (ERL) is proposed to solve the
service Migration strategies and resource allocation decisions. Experi-
mental results show that the proposed algorithm (DEDRL) performs
better than other algorithms in response delay, energy consumption and
request success rate.

Keywords: Edge computing · Service migration · Reinforcement
learning

1 Introduction

With the development of wireless communication technology, mobile devices are
increasingly popular and integrated into people’s daily life. A large amount of
data is transmitted in the network, which puts a serious burden on the mobile
core network and backhaul links. In addition, with the advent of the Internet of
Everything era, a large number of new applications have emerged. Such as vir-
tual reality (VR), augmented reality (AR), unmanned driving, face recognition,
etc. These new applications put forward higher requirements on the computing
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14493, pp. 47–66, 2024.
https://doi.org/10.1007/978-981-97-0862-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0862-8_4&domain=pdf
https://doi.org/10.1007/978-981-97-0862-8_4

48 Y. Zuo et al.

power and storage capacity of mobile devices [1–3]. However, due to the limi-
tations of the mobile device itself (computing power, storage capacity, battery
life, etc.) cannot meet the performance requirements of these new applications,
these applications cannot be executed in real time and efficiently.

In order to meet the performance requirements of new applications, the indus-
try has introduced the Mobile Cloud Computing (MCC) service model. However,
due to the long distance between the remote cloud server and the mobile device,
a large transmission delay will be caused. In addition, when users centrally access
the remote cloud server, the huge number of service connections will cause the
core network to be blocked and cause the remote cloud server to be overloaded.
These problems will affect the service request quality. In order to solve these
problems of cloud computing processing service requests, mobile edge comput-
ing is proposed.

Mobile Edge Computing (MEC) is a new computing model that responds
to user requests at the edge of the network. In March 2017, the European
Telecommunications Standards Institute (ETSI) officially changed the name of
the Mobile Edge Computing Industry Specification Working Group to Multi-
Access Edge Computing (Multi-Access Edge Computing MEC), to better meet
the application requirements of edge computing [4]. Compared with cloud com-
puting, in MEC, the user’s service request can be migrated to the edge server
close to the mobile device, thereby reducing the long data transmission delay,
improving the user’s service experience quality [5,6].

The edge server has certain computing power and storage space and is closer
to the mobile device. Users can migrate computing-intensive or delay-sensitive
service requests to the edge server for execution. Therefore, service migration
technology has been an important topic of research in mobile edge comput-
ing. The traditional edge computing service migration strategy is to migrate all
computing-intensive tasks of users to edge servers for processing [5,7,8]. Liter-
ature [9,10] studied the computing offloading problem based on a single edge
server, which cannot solve the migration problem of a large number of service
requests. Therefore, it is necessary to coordinate the management of the remote
cloud server and the edge server, and reasonably migrate service requests. Due to
the uneven distribution of users [11], the load of edge servers in different regions
is uneven. In previous studies, when the edge server is overloaded, requests can
only be migrated to the cloud computing center. This method may cause a
large transmission delay. The collaborative service migration allows high-load
edge servers to migrate service requests to low-load edge servers to make full
use of resources and reduce transmission delays. The heterogeneity of resources
between servers and the dynamic nature of the network make it challenging to
design an effective migration strategy Therefore, under the constraint of limited
resources, how to make decision on the destination of user service migration and
reduce service delay and device energy consumption is one of the most challeng-
ing issues.

In order to solve the above problems, this paper establishes a collaborative
edge service migration model based SDN. Considering factors such as service

A Collaborative Migration Algorithm for Edge Services 49

request response time and server energy consumption, an optimal solution is
proposed by solving the service migration model in a collaborative edge com-
puting environment. The algorithm to improve the overall performance of the
system, the contributions of this paper are as follows:

(1) Aiming at the resource heterogeneity of edge servers and cloud servers,
this paper constructs a collaborative edge service migration model based
on software-defined networks, and optimizes the response delay of service
requests, energy consumption of servers, and request success rate.

(2) This paper proposes an evolutionary reinforcement algorithm based on the
combination of reinforcement learning and deep neural network to solve
high-dimensional nonlinear problems. Reinforcement learning improves the
sampling efficiency of samples through the combination of deep neural net-
work, but because it uses gradient information to update the strategy and its
exploration efficiency for the environment is low, it may cause the agent to
fall into local optimum. The evolutionary algorithm is an optimization algo-
rithm without gradient information, which is suitable for static optimization
problems, but its exploration efficiency for the environment is high, and it
can better jump out of the local optimal solution. Therefore, an improved
enhanced algorithm is proposed to solve the dynamic service migration strat-
egy in the edge system.

(3) In this paper, the effectiveness of the proposed DEDRL algorithm is verified
by simulation experiments. The experimental results show that the DEDRL
algorithm and the baseline algorithm can effectively reduce the total cost
of service migration and ensure a high request success rate in a dynamic
network environment.

2 Related Work

Different service requests have different computing and data transmission
requirements. In order to ensure that the performance of user requests can be
improved through service migration, it is necessary to find the optimal solu-
tion in the migration strategy solution set for service migration. In addition, the
service migration process is also affected by, different factors such as user prefer-
ences, software and, hardware environment, radio interference and backhaul link
quality. Different systems and applications have different requirements, so it is
necessary to formulate corresponding optimization goals for migration strategies
according to specific environments and performance requirements. Currently,
there are two main methods for solving migration strategies. One is a migration
method based on swarm intelligence heuristics, and the other is an intelligent
migration method based on online learning. The following summarizes the opti-
mization objectives of the migration strategy and the solution method of the
migration strategy.

50 Y. Zuo et al.

(1) Traditional heuristic-based migration methods: Since the solution of the
migration strategy needs to consider many factors, the solution of the migra-
tion strategy is usually expressed as a mixed integer non-linear program-
ming (MINP) problem. Since this problem is proved to be NP-hard, many
researchers use heuristic-based algorithms to carry out Quick solution. Lit-
erature [12–14] are based on heuristic algorithm to solve the migration strat-
egy. Literature [12] considers the computing offload of mobile devices with
energy harvesting function to solve the solution using the improved genetic
algorithm, which has a better effect in minimizing time delay. Cao et al.
[13] proposed a service migration strategy based on the particle swarm opti-
mization algorithm, which jointly optimizes the allocation of computing and
communication resources, and minimizes the total energy consumption while
satisfying the user’s computing delay constraints. Zhang et al. [14] proposed
an algorithm based on artificial fish swarms to reduce the total energy con-
sumption of edge systems. Yinl et al. [15] proposed a new Load Balancing
and Cost Genetic Algorithm (LCGA), which can effectively reduce the cost
of completing tasks while ensuring load balancing. Liu et al. [16] proposed an
improved discrete particle swarm optimization algorithm, reducing the task
completion time. Masadeh et al. [17] used the sea-lion optimization algo-
rithm for cloud task scheduling, which can effectively reduce cost, energy
consumption. Literature [18] and others proposed an adaptive task offload-
ing framework to flexibly select the optimal offloading strategy.

(2) Intelligent approach based on online migration methods: Traditional com-
puting offloading solutions based on heuristic algorithms cannot adjust
strategies according to the changing environment, and cannot achieve long-
term effects. Intelligent migration methods based on online learning have
emerged, such as deep learning, Q-learning, and deep reinforcement learning
(Deep Reinforcement Learning DRL), Federal Learning (Federated Learn-
ing FL), etc. Tang [19] modeled the multi-user computing offloading problem
in an uncertain wireless environment as a PT-based non-cooperative game,
and then proposed a distributed computing offloading algorithm to obtain a
Nash equilibrium, thereby minimizing user overhead. Yi [20] et al. consider
that tasks are randomly generated by mobile users, and propose a mecha-
nism based on a queuing model to maximize social welfare and achieve the
equilibrium of a non-cooperative game among mobile users. Wang et al. [21]
introduced a new dynamic edge computing model to improve the general-
ization ability of offloading algorithms, and designed an online primal-dual
algorithm to offload arriving tasks. Qiu et al. [22] proposed a new DRL-based
online computing offloading scheme, which considered both blockchain data
mining tasks and data processing tasks, and expressed the online offload-
ing problem as a Markov decision process. Literature [23–25] all use deep
reinforcement learning to solve computing offloading and task scheduling
problems.

A Collaborative Migration Algorithm for Edge Services 51

3 Service Migration Model

3.1 Scene Description

This paper introduces SDN technology into the edge system, obtains the global
state of the network in the edge system with the help of the SDN controller, and
makes better service migration decisions based on the dynamic information of the
network state in the system, so that users can obtain better service quality expe-
rience. As shown in Fig. 1, a cloud-edge collaboration based on software-defined
network (SDN) and an edge system scenario diagram of edge-edge collaboration
are constructed. The system is divided into user layer, edge service layer and
cloud service layer. Among them, the user layer includes all users in the system.
The edge service layer includes the SDN controller equipped near the macro base
station (MBS) and all edge servers equipped near the wireless access base station
(gNB) within the coverage of the macro base station. Users can communicate
with the edge server through the wireless channel, and migrate the service to
the edge server for execution. Edge servers communicate through wired chan-
nels, enabling collaboration in service migration. The cloud service layer includes
cloud servers. Users can also migrate service requests to cloud servers through
edge servers for execution.

Fig. 1. Service Migration Scenario Diagram

The service migration scenario in Fig. 1 is described in detail as follows:

(1) This article assumes that the current number of users in the system is N .
Un indicates the nth user, n ∈ {1, 2, . . . , N}. A set of users is denoted as
U = {U1, U2, . . . UN}. Use triplets to represent users Un = (fn, pn, γn). fn is
the computing capability of the user devices, pn is the processing power of
the user devices, and γn is the static power of the user devices.

52 Y. Zuo et al.

(2) A total of M edge servers and one cloud server are deployed in the system.
Each edge server has a certain range, and each other’s coverage does not
overlap. Therefore, each user is covered by and communicates with a unique
edge server. MECm indicates the mth edge server, m ∈ {1, 2, . . . ,M}. A set
of users is denoted as MECm = {MEC1,MEC2, . . . MECM}. A two-tuple
is used to represent the edge server MECm =

(
cMEC
m , fMEC

m

)
, cMEC

m is the
storage capacity of the edge server, and fMEC

m is the computing capability
of the edge server. Use a tuple to represent the cloud computing center
Cloud = (fcloud), and fcloud represent the computing power of the cloud
computing center.

(3) Assume that the number of service types requested by the user is K, and
is the kth service of type, k ∈ {1, 2, . . . ,K}. A set of services is denoted as
S = {S1, S2, . . . Sk}. Use a tuple to represent each service Sk = (cs

k), and cs
k

represent the storage capacity required to deploy the service.
(4) Assume that the number of user service requests is L, and Rl is the lth

service request. A set of user service requests is denoted as l ∈ {1, 2, . . . , L}.
Each request is represented by a quintuple Rl = (ul, dl, sl, cl, tl). ul is the
user who generated the service request, dl is the size of the input data of the
request, sl is the type of service requested by the request, cl is the amount
of calculation (CPU cycles) required to process the request, tl is the user’s
tolerance delay for processing this request.

(5) The user’s service requests can be executed through the resources of their
own devices, or the service request can be migrated to the edge server or
cloud computing center for execution. xl denotes the location of request
execution, xl ∈ {0, 1, 2, . . . ,M,M + 1}. xl = 0 indicates that the request is
executed on the user device, xl = m indicates that the request is executed
on the edge server MECm, m ∈ {1, 2, . . . ,M}. xl = M + 1 indicates that
the request is executed on the cloud computing center.

(6) The SDN controller instantly collects global network status information and
service request information, solves the service migration strategy based on
above information, and then sends instructions to each server through the
control plane. Finally, the edge server and cloud server execute the service
migration strategy and return the processed data to the user through the
data plane.

3.2 Service Migration Model Construction

In this paper, from the perspective of quality experience of user service requests.
The two most important factors affecting the user’s service quality experience
are the service request response delay and the energy consumption of the user
devices. Secondly, the request success rate is also an important factor affecting
the quality of service experience.

Communication Cost. Service request data may be transmitted through wire-
less and wired channels in the system. In the wireless channel transmission, the

A Collaborative Migration Algorithm for Edge Services 53

system uses Time Division Multiple Access (TDMA) technology [23–25]. Users
within the coverage of the same edge server use orthogonal uplink transmission
sub-channels for data transmission, so signal interference between user transmis-
sions in the same area can be ignored.

Wireless Channel Transmission. Bn is the wireless channel bandwidth between
the user Un and override its edge server, that is the local server MECm, Gaussian
white noise is σ2, hn,m is the channel gain between the user and the edge server,
and pn is the upload transmission power between the user and the edge server,
then the user passes the data transfer rate at which the wireless channel transmits
data to MECm is shown in Eq. (1).

Rn,m = Bn log2

(
1 +

hn,mpn

σ2

)
(1)

When the request is migrated to the cloud computing center for execution, the
data needs to be transmitted to the cloud computing center by covering its
edge server MECm. Edge servers and cloud computing centers need to transmit
data through the core network. The channel bandwidth between the edge server
MECm and the cloud computing center is denoted as Bc

m, the Gaussian white
noise is σ2

c , hm,c is the channel gain between the edge server and the cloud com-
puting center, and pn is the upload transmission power between the edge server
and the cloud computing center. Considering the congestion of the core network
caused by the competition for channel band-width, which w is the coefficient
reflecting the marginal effect of communication congestion and xc is the number
of requests uploaded to the remote cloud server, and the data transmission rate
uploaded from the edge server to the cloud computing center is shown in Eq. (2).

Rm,c =
Bc

m

xc (1 + wxc)
log2

(
1 +

hm,cpm

σc
2

)
(2)

Wired Channel Transmission. In the system, edge servers are connected by
limited links, such as optical fibers. Compared with the wireless channel trans-
mission signal interference is relatively small, so it is assumed that the signal-
to-noise ratio in the wired channel is a constant value, denoted as ζ. Bi,j is the
bandwidth between MECi and MECj . Therefore, the data transmission power
between edge servers is shown in Eq. (3).

Ri,j = Bi,j log2(1 + ζ) (3)

Response Cost. Request response latency: The response latency of a service
request includes the request transmission latency and execution latency at the
user device, edge server, or cloud computing center. Since user requests can
be responded on their own devices, edge servers, and cloud computing centers,
the following gives the service request response delays in different situations,
and finally gives the calculation formula for the total response delay of system
requests.

54 Y. Zuo et al.

Response Latency Executed by User Devices. When the service request is
executed on the user devices, the computing resource of the devices itself
is used for processing without data transmission. Therefore, for the request
Rl = (ul, dl, sl, cl, tl), its response delay is shown in Eq. (4).

T l
loc =

cl

fn
(4)

fn is the computing capability of the user’s devices, that is the CPU clock
frequency.

Response Latency Executed by the Edge Server. When the service request is
executed on the edge server, the response delay executed by the edge server
includes two parts, data transmission delay and request execution delay. First,
the requested data needs to be uploaded to the edge server, and the transmission
delay of data uploaded to the local server is shown in Eq. (5).

Tup
mec =

dl

Rn,m
(5)

If the local server MECm and the execution server MECi are not the same
server, that is m �= i, then the data needs to be transmitted between the edge
servers, and the data transmission delay between the local server and the exe-
cution server is shown in Eq. (6).

T comm
mec =

dl

Rm,i
(6)

The execution delay of the request at the edge server is shown in Eq. (7).

T exe
mec =

cl

τm,lfMEC
m

(7)

τm,l is the computing resource scaling factor for each request allocated on
MECm. Therefore, the response delay of the request executed by the edge server
is shown in Eq. (8).

T l
mec = Tup

mec + T comm
mec + T exe

mec (8)

Response Latency Executed by the Cloud Computing Center. When the service
request is executed in the cloud computing center, the execution response delay
includes two parts, the data transmission delay and the request execution delay,
as in the edge server. The time for requesting data to be uploaded to the edge
server is obtained by Eq. (5). The transmission delay of uploading the requested
data from the edge server to the cloud computing center is shown in Eq. (9).

Tup
cloud =

dl

Rm,c
(9)

A Collaborative Migration Algorithm for Edge Services 55

The execution delay of the request at the cloud computing center is shown in
Eq. (10).

T exe
cloud =

cl

τc,lfMEC
m

(10)

τc,l is the computing resource scaling factor for each request allocated on the
cloud computing center.

Therefore, the response delay of the request executed by the edge server is
shown in Eq. (11).

T l
cloud = Tup

mec + Tup
cloud + T exe

cloud (11)

For a request Rl, the response delay Tl is shown in Eq. (12).

Tl =

⎧
⎨

⎩

T l
loc xl = 0

T l
mec xl = m

T l
cloud xl = M + 1

(12)

Request Response Energy Consumption: The energy consumption of the user
devices during the service request response process consists of three parts, includ-
ing the energy consumption of the request executed on the device, the energy
consumption of the device for data transmission, and the idle energy consump-
tion of the device waiting for the request to be executed on the edge server or
cloud computing center.

Energy Consumption Executed by User Devices. When the service request is
executed on the user devices, the energy consumption when using the devices
own computing resources for processing is equal to the coefficient κ multiplied
by the square of the CPU clock frequency of the user devices and the number of
CPU cycles required by the service is the energy consumed per CPU cycle, which
depends on the chip architecture. The usual value for this is set to κ = 10−26.
For the request Rl = (ul, dl, sl, cl, tl), the energy consumption of its execution
on the device is shown in Eq. (13).

El
loc = κf2

ncl (13)

Energy Consumption Executed by the Edge Server. When the user requests to
migrate to the edge server, the energy consumption of the user devices is mainly
composed of two parts, the energy consumption for uploading data to the edge
server for transmission and the idle energy consumption for waiting for the task
to be completed. Among them, the power consumption of data transmission is
equal to the delay of data uploading to the edge server multiplied by the power
of the user devices, and the idle energy consumption of the device is equal to the
static power of the device multiplied by the delay of waiting for the edge server
to execute. Therefore, when executing on the edge server, the energy consumed
by the user devices is shown in Eq. (14).

El
mec = Tup

mecpn + γn (T comm
mec + T exe

mec) (14)

56 Y. Zuo et al.

Energy Consumption Executed by the Cloud Computing Center. When the user
requests to migrate to the cloud computing center for execution, the energy
consumption of the user devices is similar to the energy consumption of the
edge server, which is composed of data transmission energy consumption and
idle energy consumption waiting for the task to be completed. Among them, the
power consumption of data transmission is equal to the delay of data uploading
to the edge server multiplied by the power of the user devices, and the idle energy
consumption of the devices is equal to the static power of the devices multiplied
by the delay waiting for the execution of the cloud computing center. Therefore,
the energy consumption of the request when executed in the cloud computing
center is shown in Eq. (15).

El
cloud = Tup

mecpn + γn (Tup
cloud + T exe

cloud) (15)

For a request Rl, the response energy consumption El is shown in Eq. (16).

El =

⎧
⎨

⎩

El
loc xl = 0

El
mec xl = m

El
cloud xl = M + 1

(16)

Request Success Rate. Due to user’s request has a certain delay constraint,
the successful response of the request within the user’s tolerance delay is also a
factor that affects the user’s service quality. If the delay requested by the user
exceeds the user’s tolerance delay, a corresponding penalty will be given. For a
request Rl = (ul, dl, sl, cl, tl), if the response delay is greater than the tolerance
delay or the remaining resources of the device or server executing the request do
not meet the required resources, the penalty cost indicator function is shown in
Eq. (17). ⎧

⎨

⎩

δl
loc = δ{{Tl > tl} ∨ {fn < cl}}

δl
mec = δ{{Tl > tl} ∨ {taum,lf

MEC
m < cl}}

δl
cloud = δ{{Tl > tl} ∨ {tauc,lf

MEC
m < cl}}

(17)

If the request is not completed within the user’s tolerance delay, then δi
l = 1

which means that the request fails. If the request is completed within the user’s
tolerance delay, then δi

l = 0 which means that the request is successful.

3.3 Problem Formulation

In this paper, from the perspective of user service request quality experience, the
two most important factors affecting user service quality experience are service
request response delay and user devices energy consumption. In this paper, the
weighted sum of the response delay of all user service requests in the system
and the energy consumption of user devices is used as the service migration cost
design cost function.

Define two 0–1 variables pl and ql to assist in the calculation of the service
request cost. pl indicates whether to execute on the user devices. As shown in

A Collaborative Migration Algorithm for Edge Services 57

Eq. (18).

pl =
{

1 Executes on the user′s device
0 Not executed on the user′s device (18)

ql indicates that it is executed on the edge server or cloud computing center.
As shown in Eq. (19).

ql =
{

1 Executes on the edge server
0 Executes on the cloud computing center (19)

λt and λe represent the delay weight coefficient and energy consumption
weight coefficient respectively. The value of the requested time weight coefficient
and energy consumption weight coefficient depends on the needs in the current
system. For example, when λe is relatively large, it means that the power of the
user devices is low. When making a migration decision, it is necessary to pay
more attention to the requested energy consumption size. The migration cost
function of all user service requests in the system is shown in Eq. (20).

Cost(pl, ql, τm,l, τc,l) =
L∑

i=1

λtTl+λeEl

=
L∑

i=1

λt(plT
l
loc + (1 − pl)(qlT

l
mec + (1 − ql)T l

cloud))

+ λe(plE
l
loc + (1 − ql)(qlE

l
mec + (1 − ql)El

cloud)

(20)

The smaller the total request cost, the better the corresponding service migra-
tion strategy at this time. Therefore, with the goal of solving the service migra-
tion decision with the minimum total cost of all requests in the system, the
problem is formulated as shown in Eq. (21).

min
L∑

i=1

λt(plT
l
loc + (1 − pl)(qlT

l
mec + (1 − ql)T l

cloud))

+ λe(plE
l
loc + (1 − ql)(qlE

l
mec + (1 − ql)El

cloud)
s.t. λt + λe = 1 (C1)

pl + ql ≤ 1 ∀l ∈ {1, 2, ..., L} (C2)
L∑

i=1

plτm,l ≤ fMEC
m ∀m ∈ {1, 2, ...,M} (C3)

L∑

i=1

plc
s
k

≤ cMEC
m ∀m ∈ {1, 2, ...,M} (C4)

L∑

i=1

qlτc,l ≤ fcloud (C5)

pl, ql ∈ {0, 1} ∀l ∈ {1, 2, ..., L} (C6)
τc,l, τm,l ∈ [0, 1] ∀m ∈ {1, 2, ...,M} (C7)

(21)

Among them (C1) indicates that the delay weight coefficient and energy
consumption weight coefficient add up to 1; (C2) indicates that the user’s service
request can only be executed in one place, that is, executed on the user’s own
device or migrated to the edge server, cloud computing Center execution; (C3)

58 Y. Zuo et al.

indicates that the sum of computing resources allocated by the edge server to
users cannot exceed its own computing resources; (C4) indicates that the sum of
storage resources allocated by edge servers to users cannot exceed its own storage
resources; (C5) indicates that the sum of the computing resources allocated to
users by the computing center cannot exceed the computing resources it owns.

The formalized problem is a mixed integer nonlinear programming problem
(MINP), which is an NP-Hard problem. It is difficult to find a global opti-
mal solution within a polynomial. Heuristic methods and reinforcement learning
algorithms are usually used to solve such problems. As the number of user ser-
vice requests increases, the solution space of the problem will increase exponen-
tially. At the same time, the network resources in the system and the available
resources of the server are dynamically changing. Evolutionary reinforcement
learning combines the advantages of evolutionary computation and reinforce-
ment learning. Therefore, this paper solves problem (21) based on the evolution-
ary reinforcement learning algorithm, which is detailed in Sect. 4.

4 Service Migration Algorithm Based on Evolutionary
Reinforcement Learning

This paper first expresses the collaborative service migration problem in edge
computing as a Markov decision process (MDP Markov Decision Process), and
then designs a service migration algorithm based on DEDRL to solve this
problem.

4.1 MDP Model

Considering that the service migration decision of each time slot in the edge
computing system is only determined by the current system information and
has nothing to do with the system state and decision at the last moment, the
migration cost minimization problem is modeled as MDP, which is usually define
a quintuple <S,A, P,R, T>, which S is the state space; A is the action space; P
is the probability of going to the next state after taking an action in the state;
R is the immediate reward obtained by taking an action in the state; T is a
continuous period of time; the specific meanings are as follows:

Agent: The SDN controller has global network status information, including
MEC server information, user’s devices information, network status information
in each area, and association information between users and MEC servers, etc.,
so we regard the SDN controller as an agent, Service migration decisions and
resource allocation decisions are made by the SDN controller.

State: The system state space is S = {s1, s2, . . . sT}, st = {Rl, Nt,Mt}, Rl

indicates the resources required by the request. Nt indicates the current network
conditions of the system, including between edge servers, edge servers and cloud
computing centers, and data transmission rates. Mt indicates the remaining
resources of edge servers and cloud computing centers in the system.

A Collaborative Migration Algorithm for Edge Services 59

Action: The system action space is A = {a1, a2, . . . at, at+1, . . . sT}, at =
{Xt, Ft}. Xt = {xt

1, x
t
2, . . . x

t
l} indicates the migration decision vector of the cur-

rent request, xt
l is the requested service migration strategy, Ft = {f t

1, f
t
2, . . . f

t
l }

represents the computing resources provided by the current request, and f t
l is

the requested resource allocation strategy.
Reward: After taking action at in state st, the environment returns to the

agent a immediate reward. The cost difference between the cost of non-request
migration and the request migration strategy and the request completion penalty
are used as instant rewards. The request completion penalty is as follows: As
shown in (17), the definition method of the reward function is shown in Eq. (22).

r(s, a) = cos t (pl = 1) − cos t (pl, ql, τm,l, τc,l) + δi
l (22)

Probability: The transition probability function shows the transition proba-
bility from the current state to the next state as shown in Eq. (23).

p (s′ | s, a) = P (st+1 = s′ | st = s, at = a) (23)

The state transition probability function of the limbic system network is
unknown. Therefore, in this paper, a model-free approach is adopted to approx-
imate the state transition probability function with a neural network.

4.2 DEDRL-Based Service Migration Process

Considering that the network resources in the system and the available resources
of the server change dynamically, and the action space of the service migration
strategy involves continuous variables, the reinforcement learning module of this
article uses a reinforcement learning algorithm based on DDPG (Deep Deter-
ministic Policy Gradient). The differential evolution algorithm can converge to a
better solution faster than the genetic algorithm in high-dimensional problems.
Therefore, the differential evolution algorithm is used in the evolution module
to evaluate the fitness of the policy network in DDPG. DDPG combines Actor-
Critic architecture and deep neural network. It is a deep reinforcement learning
algorithm based on deterministic policy gradient, which is used to solve the
reinforcement learning problem of continuous action space. The DDPG algo-
rithm optimizes the Actor network by using deterministic policy gradients, and
optimizes the Critic network by using TD error (Temporal Difference Error). By
alternately updating the parameters of the Actor and Critic networks, the DDPG
algorithm gradually learns and improves the strategy to obtain better reinforce-
ment learning performance, and its framework diagram is shown in Fig. 2. The
evolutionary reinforcement learning algorithm combines the advantages of both.
It not only has high search efficiency in the environment, but also has the abil-
ity to learn and adapt. It is suitable for solving service migration problems in
dynamic environments. As shown in the figure above, the goal of the edge service
migration system is the goal of the agent SDN controller is to find the optimal
policy to maximize the long-term expected return. Using the function μ (s | θμ)
to fit the Actor network, and using the function Q

(
s, a | θQ

)
to fit the Critic

60 Y. Zuo et al.

Fig. 2. DDPG algorithm frame diagram

network, where θμ and θQ are network parameters. The critic network evaluates
the action by the action value function Q (st, at). Its calculation method is shown
in Eq. (24).

Q(st, at) = Eπ[R(t)|st, at]
= Eπ[r(t) + γr(t + 1) + γ2r(t + 2) + ...|st, at]
= Eπ[r(t) + Q(st+1, at+1)|st, at]

(24)

R(t) is the cumulative discounted reward of the agent, as shown in Eq. (25). γ
is the discount factor, γ ∈ [0, 1].

R(t) = r(t) + γr(t + 1) + γ2r(t + 2) + . . . γT−1r(T − 1) (25)

Update the Critic network according to the R(t), and input (st, at) to the Critic
network to obtain the actual value Q(st, at). The error of the main critic net-
work is then calculated according to the error equation, which is updated by
minimizing the error, as shown in Eq. (26).

L
(
θQ

)
=

1
T

Σi

(
ri − Qπ

(
st, at | θQ

))2
(26)

In the update phase, the group is randomly selected from the experience reuse
pool and the Actor network is updated according to the policy gradient. The
calculation is shown in Eq. (27).

∇θµJ =
1
Z

∑

t

∇aQ
(
st, a | θQ

) ∇θµμ (st | θμ) (27)

A Collaborative Migration Algorithm for Edge Services 61

In order to further increase the stability of the learning process, the parameters
and of the target Actor network and the target Critic network are updated
iteratively, and the update formula is shown in Eq. (28).

{
θQ′

= τθQ + (1 − τ)θQ′

θμ′
= τθμ + (1 − τ)θμ′ (28)

As shown in Fig. 3, the DEDRL algorithm is mainly composed of two parts:
the DDPG algorithm and the Differential Evolution Algorithm (DE) algorithm.
The actor network in DDPG is regarded as the individual in the population in
DE algorithm. The fitness function is the cumulative reward for an individual
interacting with the environment once, and the Actor network is sorted from
high to low according to the fitness function value. In the part of differential
evolution algorithm, there are four main steps: population initialization, selection
operation, crossover operation and mutation operation. Initialize the population
with a size of Np, and use to xp represent the individual in the population, that
is, the parameters of the Actor network, xp =

[
θμ′

]
. According to the fitness

value, the individuals in the population are sorted from high to low, and the
top 60% are selected each time. Set the crossover factor CR. In order to obtain
better individuals, it is necessary to perform cross-over operations to increase
the diversity of the population. Set the variation factor F , the search space can
be increased by the variation factor. The pseudo code of the algorithm is shown
in Algorithm 1.

Fig. 3. DEDRL algorithm frame diagram

62 Y. Zuo et al.

Algorithm 1. Service Migration Algorithm Based on DEDRL
Input: User request collection, Edge environment information, number of episode, and

replay memory size
Output: Service Migration Decisions and Resource Allocation Decisions
1: Initialize the actor network θa and θc, initialize the global shared counter t ← 1
2: Randomly initialize the thread-specific parameters θ

′
aand θ

′
c

3: repeat
4: Reset gradients: dθa ← 0 and dθc ← 0
5: Synchronize thread-specific parameters θ

′
a ← dθa and θ

′
c ← dθc

6: tstart = t
7: repeat
8: Enter status information st , perform at according to policy π(at|st; θ′

a)
9: Receive reward Rt and new state st+1

10: t ← t + 1
11: T ← T + 1
12: until t - tstart == tmax or t == tend

13: Enter status information st , perform at according to policy π(at|st; θ′
a)

14: Calculate the state value of st under the last time series t according to R =
V (st; θ

′
c)

15: for i = t − 1, ..., tstart do
16: R ← [Ri + γR]

17: dθc ← dθc + ∂[R − V (st; θ
′
c)]

2/∂θ
′
c

18: dθa ← dθa + ∇θ
′
alog π(at|st; θ′

a)(R − V (st; θc
′
))

19: end for
20: perform asynchronous update of θa and θc using dθa and dθc
21: until T > Tmax

5 Experiment and Results

5.1 Experimental Environment and Parameter Settings

In this paper, the experiment uses the Python language to write a simulation
program on the Pycharm64 platform for experiments. The operating system
used in the experiment is: Windows 11, CPU: Intel Core i7 2.7 GHZ, memory:
16 GB. In order to prove the effectiveness of the algorithm proposed in this
paper, this paper and the migration algorithm based on DDPG [26], the migra-
tion algorithm based on ADQN [27], the scheduling algorithm based on AC and
the migration algorithm DEDRL based on improved reinforcement learning pro-
posed in this paper. The average value of the comparison experiments was taken.
Experimental parameter settings are shown in Table 1.

5.2 Analysis of Results

This experiment analyzes the performance of different algorithms by comparing
the system’s long-term rewards, system migration costs, and request success
rates.

A Collaborative Migration Algorithm for Edge Services 63

Table 1. Experimental parameter setting table.

Variable Meaning Value

dl Request input data size Uniform [3,6] MB
fMEC
m The processing power of the edge server (CPU frequency) Uniform [3,10] MB

CMEC
m Request input data size 5000 Megacycles

fcloud The processing power of the cloud computing center (CPU frequency) 30 GHz
B Transmission Channel Available Bandwidth 20 MHz
σ Noise power −118.4 dB/Hz
pn Transmission power of user devices 0.6 W
λt Delay weight 0.5
λe Delay weight 0.5
γ Discount factor 0.9
τ Soft update factor 0.001
NP Population sizer 40
F Cross factor 0.4
CR Variation factor 0.6

Fig. 4. Comparison results of ablation experiments

(1) Reward Value and Total System Cost: Fig. 4 shows the reward comparison
results of the four algorithms under the computing tasks with different num-
bers of user requests and the comparison results of the total cost of the four
algorithms in different numbers of user requests.
As shown (a) in Fig. 4, as the number of user requests increases, the total
reward value of each algorithm shows a rising trend. The total reward value
of the DEDRL algorithm proposed in this paper is higher than that of other
algorithms. This is because the method in this paper also considers the
request success rate in addition to response delay and energy consumption.
Compared with other algorithms, the penalty is lower when calculating the
reward value. The overall reward value of the AC algorithm is lower than
that of the DDPG-based service migration algorithm and the ADQN-based
service migration algorithm. Among them, the reward value of the DDPG-
based service migration algorithm and the ADQN-based service migration

64 Y. Zuo et al.

algorithm are relatively close. The reward value of the DDPG-based service
migration algorithm is greater than that of the ADQN-based service migra-
tion algorithm before the number of requests is 85, and the opposite is true
after the number of requests is 85.
As shown (b) in Fig. 4, as the number of user requests increases, the system
cost of each algorithm shows a rising trend. The system cost of the DEDRL
algorithm proposed in this paper is lower than other algorithms, because the
method in this paper is based on the evolutionary reinforcement algorithm
and has a better ability to find the optimal solution. The system cost of
the AC algorithm is higher than that of the DDPG-based service migration
algorithm and the ADQN-based service migration algorithm. Among them,
the reward value of the DDPG-based service migration algorithm and the
ADQN-based service migration algorithm are relatively close.

(2) Request success rate: Fig. 5 shows the comparison results of the request
success rate of the four algorithms under the computing tasks with differ-
ent numbers of user requests. The X-axis represents different numbers of
user requests, and the Y-axis represents the success rate of requests after
user requests are responded to. As shown in Fig. 5, as the number of user
requests increases, the request success rate of each algorithm shows a down-
ward trend. This is because the increase in the number of requests occupies
more resources, and the requests may not be completed within the tolerance
delay response. The request success rate of the DEDRL algorithm proposed
in this paper is higher than that of other algorithms. The average request suc-
cess rate is 0.88, which is 20%, 25%, and 29% higher than the DDPG-based
service migration algorithm, ADQN-based service migration algorithm, and
AC-based service migration algorithm, respectively.

Fig. 5. Request success rate for different number of user requests

A Collaborative Migration Algorithm for Edge Services 65

6 Conclusion

In this paper, a collaborative edge service migration model based on SDN is
established, and a collaborative edge service migration algorithm based on evolu-
tionary reinforcement learning is proposed. The simulation experiment compares
the proposed DEDRL algorithm with different baseline algorithms to demon-
strate its superior ability in reducing energy consumption of user devices, reduc-
ing user request delay, and achieving a high request success rate. These improve-
ments contribute to an enhanced user service quality experience.

Acknowledgement. This work is supported by Liaoning Province Applied Basic
Research Program Project (Grant No. 2023JH2/101300195).

References

1. Du, J., Yu, F.R., Lu, G., Wang, J., Jiang, J., Chu, X.: MEC-assisted immersive
VR video streaming over terahertz wireless networks: a deep reinforcement learning
approach. IEEE Internet Things 7(10), 9517–9529 (2020)

2. Deng, S., Xiang, Z., Taheri, J., et al.: Optimal application deployment in resource
constrained distributed edges. IEEE Trans. Mob. Comput. 20(5), 1907–1923 (2020)

3. Dai, B., Xu, F., Cao, Y., et al.: Hybrid sensing data fusion of cooperative perception
for autonomous driving with augmented vehicular reality. IEEE Syst. J. 15(1),
1413–1422 (2020)

4. Shi, W., Cao, J., Zhang, Q., et al.: Edge computing: vision and challenges. Internet
Things J. 3(5), 637–646 (2016)

5. Zhao, J., Li, Q., Gong, Y., Zhang, K.: Computation offloading and resource alloca-
tion for cloud assisted mobile edge computing in vehicular networks. Trans. Veh.
Technol. 68(8), 7944–7956 (2019)

6. Wang, Y., Lang, P., Tian, D., et al.: A game-based computation offloading method
in vehicular multiaccess edge computing networks. IEEE Internet Things J. 7(6),
4987–4996 (2020)

7. Lyu, X., Ni, W., Tian, H., et al.: Optimal schedule of mobile edge computing for
internet of things using partial information. IEEE J. Sel. Areas Commun. 35(11),
2606–2615 (2017)

8. Basu, D., Wang, X., Hong, Y., et al.: Learn-as-you-go with Megh: efficient live
migration of virtual machines. IEEE Trans. Parallel Distrib. Syst. 30(8), 1786–
1801 (2019)

9. Alameddine, H.A., Sharafeddine, S., Sebbah, S., et al.: Dynamic task offloading
and scheduling for low-latency IoT services in multi-access edge computing. IEEE
J. Sel. Areas Commun. 37(3), 668–682 (2019)

10. Lim, W.Y.B., Luong, N.C., Hoang, D.T., et al.: Federated learning in mobile edge
networks: a comprehensive survey. IEEE Commun. Surv. Tutor. 22(3), 2031–2063
(2020)

11. Wang, S., Zhang, X., Yan, Z., Wang, W., et al.: Cooperative edge computing with
sleep control under nonuniform traffic in mobile edge networks. IEEE Internet
Things J. 6(3), 4295–4306 (2019)

12. Zhang, G., Zhang, W., Cao, Y., et al.: Energy-delay tradeoff for dynamic offloading
in mobile-edge computing system with energy harvesting devices. IEEE Trans.
Industr. Inf. 14(10), 4642–4655 (2018)

66 Y. Zuo et al.

13. Cao, X., Wang, F., Xu, J., et al.: Joint computation and communication cooper-
ation for energy-efficient mobile edge computing. IEEE Internet Things J. 6(3),
4188–4200 (2018)

14. Zhang, H., Guo, J., Yang, L., et al.: Computation offloading considering fronthaul
and backhaul in small-cell networks integrated with MEC. In: 2017 IEEE Con-
ference on Computer Communications Workshops (INFOCOM WKSHPS), pp.
115–120. IEEE (2017)

15. Yin, S., Ke, P., Tao, L.: An improved genetic algorithm for task scheduling in
cloud computing. In: 2018 13th IEEE Conference on Industrial Electronics and
Applications (ICIEA), pp. 526–530. IEEE (2018)

16. Liu, S., Yin, Y.: Task scheduling in cloud computing based on improved discrete
particle swarm optimization. In: IEEE 2nd International Conference on Informa-
tion Systems and Computer Aided Education (ICISCAE), Dalian, China, pp. 594–
597 (2019)

17. Masadeh, R., Alsharman, N., Sharieh, A., et al.: Task scheduling on cloud comput-
ing based on sea lion optimization algorithm. Int. J. Web Inf. Syst. 17(2), 99–116
(2021)

18. Tran-Dang, H., Kim, D.S.: FRATO: fog resource based adaptive task offloading
for delay-minimizing IoT service provisioning. IEEE Trans. Parallel Distrib. Syst.
32(10), 2491–2508 (2021)

19. Tang, L., He, S.: Multi-user computation offloading in mobile edge computing: a
behavioral perspective. IEEE Netw. 32(1), 48–53 (2018)

20. Yi, C., Cai, J., Su, Z.: A multi-user mobile computation offloading and transmission
scheduling mechanism for delay-sensitive applications. IEEE Trans. Mob. Comput.
19(1), 29–43 (2019)

21. Wang, H., Xu, H., Huang, H., et al.: Robust task offloading in dynamic edge
computing. IEEE Trans. Mob. Comput. 22(1), 500–514 (2021)

22. Qiu, X., Liu, L., Chen, W., et al.: Online deep reinforcement learning for compu-
tation offloading in blockchain-empowered mobile edge computing. IEEE Trans.
Veh. Technol. 68(8), 8050–8062 (2019)

23. Ren, J., Hou, T., Wang, H., et al.: Collaborative task offloading and resource
scheduling framework for heterogeneous edge computing. Wirel. Netw. 1–13 (2021)

24. Li, Z., Zhou, X., Li, T., Liu, Y.: An optimal-transport-based reinforcement learning
approach for computation offloading. In: 2021 IEEE Wireless Communications and
Networking Conference (WCNC), pp. 1–6. IEEE (2021)

25. Xiao, M., Shroff, N.B., Chong, E.K.P.: A utility-based power-control scheme in
wireless cellular systems. IEEE/ACM Trans. Netw. 11(2), 210–221 (2003)

26. Wang, Y., Fang, W., Ding, Y., et al.: Computation offloading optimization for
UAV-assisted mobile edge computing: a deep deterministic policy gradient app-
roach. Wirel. Netw. 27(4), 2991–3006 (2021)

27. Chen, N., Zhang, S., Qian, Z., et al.: When learning joins edge: real-time pro-
portional computation offloading via deep reinforcement learning. In: 2019 IEEE
25th International Conference on Parallel and Distributed Systems (ICPADS), pp.
414–421. IEEE (2019)

A Graph Generation Network
with Privacy Preserving Capabilities

Yangyong Miao, Xiaoding Wang, and Hui Lin(B)

College of Computer and Cyber Security, Fujian Normal University,
Fuzhou 350117, Fujian, China

18750768639@163.com, {wangdin1982,linhui}@fjnu.edu.cn

Abstract. The use of large datasets for data mining and analysis can
stimulate progress in science and technology while also propelling eco-
nomic growth. Graph-structured data is a crucial component of both
data mining and analysis. However, this type of data often contains sen-
sitive personal information, making it vulnerable to potential attacks and
widespread privacy breaches. Graph data encodes sensitive information,
including personal attributes (nodes) and complex interaction relation-
ships (edges). Rényi differential privacy provides a stricter definition of
privacy protection. This paper introduces the RDP-GGAN framework,
which integrates Rényi differential privacy technology with generative
adversarial networks to offer improved privacy protection capabilities.
The framework utilizes Rényi differential privacy to establish and enforce
strict privacy constraints for deep graph generative models, with a par-
ticular emphasis on preserving edge privacy in graph data to ensure con-
nection privacy in relational data. To enhance edge differential privacy,
appropriate noise is injected into the gradient of link-reconstruction-
based graph generative models.

Keywords: Graph data · Rényi differential privacy · RDP-GGAN ·
edge differential privacy

1 Introduction

With the increasing maturity of big data mining and analysis technology, graph
data that can store data attributes and link relationships at the same time is
flourishing [1], but the privacy leakage of graph data has attracted increasing
attention. Unlike other data types, graphs are typically used to represent data
with a “many-to-many” relationship, storing information in the form of nodes
and edges. In the context of social networks, for example, nodes are commonly
used to represent users in the network, while edges represent the relationships
between users. Therefore, protecting the privacy of these relationships is critical
to safeguarding the overall privacy of graph data. The main focus of this paper is
on secure graph generation, with a particular emphasis on addressing the privacy
concerns surrounding the edges of the graph. Given that edges are necessary to
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14493, pp. 67–79, 2024.
https://doi.org/10.1007/978-981-97-0862-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0862-8_5&domain=pdf
https://doi.org/10.1007/978-981-97-0862-8_5

68 Y. Miao et al.

capture the interactions between different objects in the graph data, protecting
the privacy of these relationships is paramount in ensuring the overall security
of sensitive graph data.

Synthetic Data Generation (SDG) is a highly promising approach for preserv-
ing privacy. This technique involves generating synthetic data that can be shared
publicly without compromising individuals’ privacy. SDG also offers numerous
opportunities for collaborative research, including the development of predic-
tion models and the identification of patterns. Generative Adversarial Networks
(GAN) [2] have gained enormous attention in this research field due to their
success in medical diagnosis [3], image processing [4], image translation [5], etc.

Differential privacy [6] is a privacy protection model that aims to protect
sensitive information in datasets by adding random noise to the data. One key
feature of differential privacy is its ability to provide a strong guarantee that
the addition of random noise will not significantly impact the output results,
even if any piece of data in the dataset is changed. This means that no mat-
ter how powerful the background knowledge is, an attacker cannot infer any
user’s private information by publishing the results. Compared with traditional
privacy protection technologies, differential privacy provides higher privacy pro-
tection and is becoming increasingly popular in the field of graph data privacy
protection. However, there are still challenges in applying differential privacy to
certain types of data and achieving a balance between privacy protection and
data utility.

Differential Private Stochastic Gradient Descent (DP-SGD) is a commonly
used method to ensure differential privacy while maintaining model accuracy
under a modest privacy budget. DP-SGD is the basis of many research works
and is widely used in machine learning. DP-SGD works by limiting the sensitivity
of the algorithm to individuals through the clipping of gradients, adding Gaus-
sian noise, and performing a gradient descent optimization step. This approach
enables privacy-preserving analysis of data without sacrificing the accuracy of
the model.

In graph data privacy protection, perturbing the graph data to meet the
statistical analysis premise can safeguard the privacy of users and their relation-
ships. DP-SGD [7] is a promising privacy-preserving method for this purpose,
as it can effectively protect sensitive information in datasets while allowing for
meaningful analysis and model building.

With the increasing use of differential privacy, practical issues related to
tracking the privacy budget have become a topic of discussion. Although differ-
ential privacy has many advantages, it also has some disadvantages, mainly due
to the composition theorem. [8,9] This theorem states that for some composed
mechanisms, the privacy cost simply adds up, leading to privacy budget restric-
tion. This is especially problematic in deep learning, where model training is an
iterative process, and each iteration adds to the privacy loss.

To address the shortcomings of differential privacy, Rényi Differential Privacy
(RDP) [10] has been proposed as a natural relaxation of differential privacy.

A Graph Generation Network with Privacy Preserving Capabilities 69

RDP is a more robust notion of privacy that can lead to a more accurate and
numerically stable computation of privacy loss.

Overall, the use of RDP can provide a more practical approach to maintain-
ing privacy while also allowing for accurate and efficient computations. However,
there are still ongoing discussions and research regarding the advantages and lim-
itations of RDP compared to relaxed differential privacy. The main contributions
of this work include:

1. The use of data augmentation techniques to improve the performance of
the model. In the context of graph data processing, the dataset can be expanded
by randomly removing, adding, or truncating the original graph data, thereby
enhancing the training effectiveness of the model.

2. The proposed RDP-GGAN model is a novel approach to privacy-preserving
graph generation. It incorporates Rényi differential privacy (RDP) into the graph
generation process based on link reconstruction, and balances the need for pri-
vacy protection and data utility by adjusting the alpha parameter. By adding
RDP to the GGAN framework, the model ensures that the generated graphs
meet a certain level of privacy guarantee. This is achieved by introducing noise
to the gradient updates during training, which makes it difficult for an attacker
to infer sensitive information about the original data. Furthermore, the RDP-
GGAN model provides strict privacy protection for the structured relationships
within the graph, preventing various attacks while maintaining the global graph
structure.

2 Related Works

As privacy, concerns in various fields are becoming increasingly important, and
the availability of sensitive data sets is becoming more and more limited. There-
fore, while protecting the statistical characteristics of sensitive data, it is crucial
to protect the privacy of graph data to ensure that sensitive data can be reused.
To achieve this goal, researchers are focusing on data privacy-preserving meth-
ods based on graph generation. These methods use techniques such as differential
privacy to ensure that the resulting graph preserves the statistical properties of
the original data, while also providing strong privacy guarantees. Graph gener-
ation techniques are particularly useful in situations where raw data cannot be
shared due to privacy concerns. However, by using graph generation techniques,
researchers can generate synthetic data that preserves the statistical properties
of the original data, while also preserving individual privacy.

In 2016, Abadi et al. proposed the DPSGD algorithm [7], which aims to inte-
grate differential privacy protection technology into the deep learning training
process. The algorithm limits the sensitivity of each sample by clipping the gra-
dient, then adds Gaussian noise to the samples in batches. This ensures that
the model training process has differential privacy, which can protect the data
privacy without compromising the robustness of the model, Lu et al. [12] Deploy
Differential privacy in the Generative adversarial network, and re recognize the

70 Y. Miao et al.

wind From a risk perspective, inference attacks are used to evaluate the dif-
ficulty of the attacker in re identifying any individual, in order to defend the
model against privacy attacks.

Wang et al. [13] applied Rényi differential privacy in the deep learning model
to further improve the application utility of privacy protection technology. In the
deep learning training process, Wang et al. applied the Rényi differential privacy
mechanism to the gradient update process of the model to protect the privacy
of training data. They add noise to each gradient vector so that the sensitivity
of the gradient vector does not exceed a certain threshold, thereby preserving
privacy. Torkzadehmahani et al. [14] will Differential Privacy Techniques and
Variations of Generative Adversarial Networks Conditional Generative Adver-
sarial Networks (CGAN), combined with Rényi differential privacy technology,
using gradient perturbation method, during the discriminator optimization pro-
cess, the privacy of the real data optimization process is achieved Protect. Zhang
et al. [15] proposed the dp-GAN algorithm, The algorithm applies the differential
privacy technology to the deployment of the generative confrontation network,
and trains the discriminant model of the generative confrontation network. Dur-
ing training, use the DPSGD algorithm to add noise to the gradient, and use
the mutual game between the generative model and the discriminative model
to improve the synthes is The quality of the dataset. Ma et al. [16] proposed
the RDP-GAN method, in the discriminator update process, Using the method
of target perturbation, adding the corresponding Rényi differential implicit Pri-
vate, to realize the protection of the generated confrontation network model.
[17] proposed PPGAN Privacy-preserving method, combined with generative
adversarial network variant model WGAN, using ladder The degree perturba-
tion method adds the corresponding Gaussian noise to the gradient to realize
the hidden privacy protection. Triastcyn et al. [18] by adding Gaussian noise
to the network of the discriminator layer to achieve privacy protection for the
discriminator.

3 Preliminaries

In this section, we present some background knowledge of DP and GANs.

3.1 Generative Adversarial Networks

In 2014, Ian Goodfellow proposed the concept of Generative Adversarial Net-
works (GANs) [2], which is a type of neural network architecture consisting of
two networks, a generator and a discriminator. The generator model is respon-
sible for generating synthetic data, while the discriminator model is responsible
for distinguishing between the real and generated data. The objective function
of the generated confrontation network model is:

min
G

max
D

V (D,G) =Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1 − D(G(z)))]
(1)

A Graph Generation Network with Privacy Preserving Capabilities 71

where p(z) is a prior distribution of latent vector z, g(·) is a generator func-
tion, and d(·) is a discriminator function whose output spans [0, 1]. d(x) =
0 (resp. d(x) = 1) indicates that the discriminator d classifies a sample x as
generated (resp. real).

The two models are trained in a game-like manner, where the generator tries
to produce synthetic data that can fool the discriminator into thinking it is real,
and the discriminator tries to correctly classify the data as either real or gener-
ated. The goal of the generator is to produce data that is indistinguishable from
the real data, while the goal of the discriminator is to correctly identify whether
the data is real or generated. GANs have been widely used in various research
fields, such as computer vision, natural language processing, and drug discov-
ery, and have shown great research value. They have also been used for various
applications, such as image and video synthesis, text-to-image generation, and
style transfer. The overall structure of GAN is shown in Fig. 1.

Fig. 1. The structure of GAN

3.2 Differential Privacy

Differential privacy [6] is a popular privacy protection technique used in various
research fields. It is a mathematical framework that quantifies the privacy pro-
tection provided by data analysis algorithms. Differential privacy ensures that
the output of an algorithm does not reveal any sensitive information about indi-
vidual data points in the dataset. The relevant definitions and properties are as
follows:

Definition 1 ((ε, δ) − DP): The randomized algorithmA : X → Q, is (ε, δ) -
differentially private for all query outcomes Q and all neighbor datesets D and
D′ if:

Pr[A(D) ∈ Q] ≤ eε Pr [A (D′) ∈ Q] + δ (2)

Two datasets D, D0 that only differ by one record are called neighbor datasets.
The notion of neighboring datasets emphasizes the sensitivity of any individual
private data. The parameters (ε, δ)denote the privacy budget. It only indicates
our confidence level of privacy, given the(ε, δ) parameters. The smaller the (ε, δ)
parameters are, the more confident we become about our algorithm’s privacy as
((ε, δ) indicates the privacy loss by definition.

72 Y. Miao et al.

Definition 2. (Gaussian Mechanism) [10]. For a deterministic function f with
its �2 -norm sensitivity as Δ2f = max‖G−G′‖1=1 ‖f(G) − f (G′)‖2, we have:

Mf (G) � f(G) + N (
0,Δ2f

2σ2
)

(3)

where N (
0,Δ2f

2σ2
)

is a random variable obeying the Gaussian distribu-
tion with mean 0 and standard deviation Δ2fσ. The randomized mechanism
Mf (G)is(ε, δ) − DPifσ ≥ Δ2f

√
2 ln(1.25/δ)/εandε < 1.

Definition 3. (Rényi divergence) [10]. For two probability distributions P and
Q defined over R, the Rényi divergence of order α > 1 is

Dα(P‖Q) � 1
α − 1

logEx∼Q

(
P (x)
Q(x)

)α

(4)

where P(x) denotes the density of P at x . It motivates exploring a relaxation
of DP based on the Rényi divergence.

Definition 4. ((α, ε)−RDP) [10]. A randomized mechanism f : X �→ R is said
to have ε -Rényi D P of order α, or (α, ε) R D P for short, if for any adjacent
X,X ′ ∈ X it holds that

Dα (f(X)‖f (X ′)) ≤ ε (5)

Compared to (ε, δ)-differential privacy, Rényi Differential privacy is a stricter
definition of privacy that provides an operational It is a convenient and quan-
titatively accurate method that can track and calculate the cumulative privacy
loss during the execution of independent differential privacy mechanisms.

Proposition 1 (Composition of RDP [10]): If A : X → U1 is (α, ε1) -RDP
and B : U1 × X → U2 is (α, ε2) -RDP, then the mechanism (M1,M2), where
M1 ∼ A(X) and M2 ∼ B (M1,X), satisfies the (α, ε1 + ε2) -RDP conditions.

4 RDPGGAN

This paper draws on the optimization strategy proposed by Carl Yang et al. [11],
uses its DPGGAN model as the basic framework, and combines Rényi differential
privacy to propose RDP-GGAN for secure graph generation. This model aims to
solve the problems of GAN model stability and performance degradation caused
by the fixed gradient clipping of the traditional DPGAN algorithm, and takes
into account privacy protection and the availability of generated data.

The goal of RDP-GGAN is to securely generate graph data, paying special
attention to the privacy issue of edges.

Since edges are necessary to protect the interaction of graph data objects. In
this model, the gradients of the generator and discriminator are first noised using
Rényi differential privacy to guarantee privacy. Then, the optimization strategy
in DPGGAN is used to optimize the GAN model to improve the stability and
performance of the model.

A Graph Generation Network with Privacy Preserving Capabilities 73

Fig. 2. The overall framework of RDPGGAN

GCNs have shown great potential in computing general-purpose graph rep-
resentations [19]. In order to protect the privacy of individual links without seri-
ously destroying the global network structure, in consideration of edge privacy,
this paper takes advantage of the power and simplicity of GCNs by combining
link reconstruction based graph variational autoencoders (GVAE) [20] adapted
for our backbone graph generative model.

The GVAE model is an autoencoder model whose autoencoder architecture
includes a GCN-based graph encoder and a feedforward neural network (FNN)-
based adjacency matrix decoder. Graph encoders use GCNs to learn graph repre-
sentations that can be used to guide the learning of an adjacency matrix decoder
to generate graphs that are topologically similar to the input graph. In addition,
the GVAE model also introduces a random latent variable z as a latent repre-
sentation of the input graph.

q(Z | X,A) =
N∏

i=1

q (Zi | X,A) =
N∏

i

N (
zi | μi,diag

(
σ2

i

))
(6)

where μ = gμ(X,A) is the matrix of mean vectors μi, and σ = gσ(X,A) is
the matrix of standard deviation vectors σi ·g•(X,A) = ÃReLU

(
ÃXW0

)
W1

is a two-layer GCN model. gμ and gσ share the first-layer parameters W0.Ã =
D− 1

2AD− 1
2 is the symmetrically normalized adjacency matrix of G, with degree

matrix Dii =
∑N

j=1 Aij .gμand gσform the encoder network.

74 Y. Miao et al.

To generate a graph G’, a reconstructed adjacency matrix A’ is computed
from Z by an FNN decoder

p(A | Z) =
N∏

i=1

N∏

j=1

p (Aij | zi, zj) =
N∏

i=1

N∏

j=1

σ
(
f (zi)

T f (zj)
)

(7)

where σ(z) = 1/ (1 + e−z) , f is a two-layer FNN appended to Z before the
logistic sigmoid function. The whole model is trained through optimizing the
following variational lower bound

Lvae = Lrec + Lprior

= Eq(Z|X,A)[log p(A | Z)] − DKL(q(Z | X,A)‖p(Z))
(8)

where Lrec is implemented as the sum of an element-wise binary cross entropy
(BCE) loss between the adjacency matrices of the input and generated graphs,
and Lprior is a prior loss based on the Kullback-Leibler divergence towards the
Gaussian prior p(Z) =

∏N
i=1 p (zi) =

∏N
i N (zi | 0, I) .

The overall framework of RDPGGAN is shown in Fig. 2, and the training
process is detailed.

When performing gradient perturbation on the discriminator optimization
process, random samples from each batch During the training process, calculate
the gradient of the batch of samples gθ. Using the clipping parameter C Clip
the second norm of the gradient, and control the value of the second norm
of the gradient in C. Then, set the value C to the gradient sensitivity and
add the obedience

(
0, (σC)2I

)
distributed random noise, make the lot satisfy

(εi, δ) − DP.Assuming that the number of training batches is m, then accord-
ing to the combination mechanism, it can be known that in a single round of
the discriminator During training, the whole satisfies it (ε1 + . . . + εm, δ) − DP
This paper uses Rényi Accountant finds the privacy budget used in each round
εt(δ), and the privacy budget satisfy εt(δ) ≥ ∑m

i=1 εi, That is, in each round of
iterative process, the discriminator model as a whole satisfies (εt(δ), δ) − DP.
According to nature 1 can Therefore, the model satisfies the overall requirement
in the optimization training process (εT (δ), δ)−DP and The algorithm also sets
the overall privacy budget mathbfε0, when the accumulated hidden When the
private budget is higher than mathbfε0, the algorithm terminates. Assuming
that the algorithm terminates at T’, it can be obtained that ε0 ≤ εT ′(δ) That
is, the algorithm as a whole satisfies (ε0, δ) -DP.

5 Experimental Evaluations

To enable a direct comparison between the original networks and the generated
networks, we utilized two commonly used real-world network datasets: DBLP
and IMDB. DBLP comprises 72 networks consisting of author nodes and co-
author links, with an average node count of 177.2 and an average link count of
258. IMDB comprises 1500 networks of actor/actress nodes and co-star links,

A Graph Generation Network with Privacy Preserving Capabilities 75

with an average node count of 13 and an average link count of 65.9. To enhance
the generalization ability of the model, increase the diversity of data, and reduce
the risk of model overfitting, we augmented the dataset and perturbed the graph
data to obtain better data. The basic parameter configuration of the experiment
is shown in Table 1.

Algorithm 1: algorithm 1
1 Graph data G(A,X) , clipping parameter C , privacy budget ε , noisescaleσ ,

total number of nodes N , batch size B = qN , learning rate η ,decay ratio γ,
maximum number of training epochs T , loss weighing parameters λ1andλ2

Differentially private decoder f . Initialize weights randomly for gμ,gσ, f ,g′

and f ′ .
2 for t ∈ T do
3 for i = 1, 2, . . . , bs do
4 Sample a subgraph Gsub (Asub,Xsub) of size B
5 Mean vector: μ ← gμ (Xsub,Asub) Standard deviation vector:

σ ← gσ (Xsub,Asub)
6 Update

q(Z | X,A) ← ∏N
i=1 N (

zi | μi, diag
(
σ2

i

))
Samplezi, zj ∼ q(Z | X,A)

Reconstruct adjacent matrix A′ ← σ
(
f (zi)

T , f (zj)
)

7 Lprior = DKL(q(Z | X,A)‖p(Z))
8 Lgan = log(D(A)) + log (1 − D (A′))
9 for nodexi ∈ Gsub do

10 | Computegθ (xi) ← ∂ (Lrec − λ2Lgan) /∂xi

11 Perturb gradient: g̃θ ← 1
B

(∑
i ḡθ (xi) +N

(
0, σ2C2I

))

12 Clip gradient: ḡθ (xi) ← gθ (xi) /max
(
1,

‖gθ(xi)‖2
C

)

13 Average gradient: gθ ← 1
B

∑
i gθ (xi)

14 Update gμ,gσ
±←− ·∇g (Lrec + λ1Lprior) Calculate ε about ε0 using

Rényi Accountant
15 if ε ≥ ε0 then End Training.

To evaluate the effectiveness of RDPGGAN, the authors utilized a standard
set of graph statistics to assess its ability to capture the global network structure.
These statistics have been used in previous studies to evaluate the performance
of graph generative models, particularly from a global perspective. Addition-
ally, for a more comprehensive comparison, the authors compared the results of
RDPGGAN with RDPGVAE, NetGAN, and GraphRNN.

During the comparison, the authors trained all models from scratch for each
graph in the dataset. They then used the trained model to generate a graph,
which was compared to the original graph using graph statistics to measure the
difference between them. To more comprehensively evaluate the global utility
of generated graphs, the authors also conducted a study on graph classification,
which is a widely used graph-level downstream task. The graph statistics used in
this study include LCC (size of the largest connected component), TC (triangle

76 Y. Miao et al.

count), CPL (characteristic path length), GINI (Gini index), and REDE (relative
edge distribution entropy).

In Tables 2 and 3(Performance evaluation of comparative models on a critical
set of graph structure statistics is conducted. The statistic being assessed is the
average absolute difference between the networks produced by the various models
and the original network in its raw form. Consequently, lower values indicate a
more accurate representation of the overall network structure, thereby implying
superior utility in terms of global data analysis.), as we gradually increase the
privacy budget υ, it is evident that the data generated under the RDPGGAN
model exhibits the smallest average absolute difference compared to the original
network (the average absolute difference is an indicator used to evaluate the
difference between the generated network by the different models and the original
network. Thus, a smaller value indicates a better performance, which captures
the global network structure more accurately and thus obtains better global data
utility). This demonstrates the effectiveness of our privacy constraints and the
apparent trade-off between privacy and utility. Moreover, under the same privacy
budget, RDPGGAN consistently outperforms RDPGVAE, which highlights the
superiority of the new design of our GAN framework.

In addition to basic statistical metrics, we also analyze the generated graphs
by comparing their degree distributions and motif counts. For the degree distri-
bution, we represent each graph as a 50-dimensional vector (where nodes with
degree greater than 50 are grouped together). As for topic counting, we con-
sider all 29 undirected topics with 3–5 nodes and convert each graph into a
29-dimensional vector by matching topics. To evaluate the similarity between
the original and generated graphs, we compute the average cosine similarity
between them. Furthermore, we evaluate the overall quality of the generated
graphs by employing graph classification, specifically, we measure the accuracy
of GIN using default hyperparameter configurations. In Table 4, we evaluate
performance in terms of degree distribution, motif counts, and GIN accuracy.
The graphs generated by RDPGGAN are competitively similar to the original
graphs regarding both degree distributions and motif counts, while achieving sat-
isfactory graph classification accuracy. All these results demonstrate the global
structure preservation ability of RDPGGAN. Higher values for cosine similarity
and GIN accuracy indicate better utility of the resulting graph. Notably, the

Table 1. Experimental parameters

Variable Name Describe Default

δ Privacy Deviation 1e-5
α RDP Restrain –
σ Noise Scale 5
ε Privacy Budget –
T Maximum iteration times 0.001
γ ratio 0.99

A Graph Generation Network with Privacy Preserving Capabilities 77

Table 2. Data for each model under DBLP Networks

DBLP Networks

Models LCC TC CPL GINI REDE
GVAE 42.1 444.1 0.9867 0.0442 0.0005
GGAN 41.1 302.1 0.7697 0.0972 0.0105
RDPGVAE(ε = 0.1) 6.5 63.1 0.8942 0.1932 0.0505
RDPGVAE(ε = 1) 6.1 21.3 0.8553 0.1822 0.0465
RDPGVAE(ε = 10) 4.7 3.1 0.7133 0.1802 0.0465
RDPGGAN(ε = 0.1) 28.85 28.9 0.8963 0.1932 0.0465
RDPGGAN(ε = 1) 26.46 20.1 0.8773 0.01752 0.0455
RDPGGAN(ε = 10) 11.9 11.1 0.8553 0.1742 0.0435

Table 3. Data for each model under IMDB Networks

IMDB Networks

Models LCC TC CPL GINI REDE
GVAE 9.8 193.3 1.3535 0.0468 0.0264
GGAN 5.6 187.9 0.8615 0.0108 0.0194
RDPGVAE(ε = 0.1) 10.6 236.1 0.7715 0.1258 0.0514
RDPGVAE(ε = 1) 10.6 222.7 0.6725 0.1238 0.0485
RDPGVAE(ε = 10) 9.6 223.3 0.5885 0.1208 0.0454
RDPGGAN(ε = 0.1) 11.4 254.3 0.7435 0.1558 0.0594
RDPGGAN(ε = 1) 11.2 233.5 0.6818 0.1278 0.484
RDPGGAN(ε = 10) 9.8 209.9 0.6025 0.1278 0.0354

GIN model trained on the original network achieves 0.3578 and 0.6212 accura-
cies on the two datasets, respectively. These accuracies serve as upper bounds
for all compared graph generative models.

To demonstrate the effectiveness of DPGGAN in ensuring individual link
privacy, we perform additional training on each dataset using the model shown
in Fig. 3. After training and generation, we align the nodes in the generated
network with those in the original network according to the degree distribution.
Subsequently, we evaluate the accuracy of individual link predictions by com-
paring the predicted links in the generated network with those hidden during
training in the original network.

As shown in Fig. 3, the performance of the RDPGGAN model generated by
link prediction on the two datasets is significantly lower than the prediction
performance on the original network. This indicates that even if an attacker
can identify nodes in the resulting network, they cannot use the information to
accurately deduce whether a link exists between a specific pair of nodes on the
original network.

78 Y. Miao et al.

Fig. 3. model accuracy

Table 4. Model performance

DBLP IMDB

Models Degree Motif Gin Degree Motif Gin
GVAE 0.2643 0.4085 0.2826 0.5244 0.4118 0.5243
GGAN 0.2208 0.4119 0.3012 0.5396 0.4256 0.5356
NetGAN 0.2823 0.4056 0.3504 0.4652 0.3853 0.4848
GraphRNN 0.2796 0.3601 0.3261 0.4347 0.3702 0.4202
RDPGVAE 0.2836 0.4016 0.3043 0.4693 0.3986 0.5215
RDPGGAN 0.3343 0.4123 0.3478 0.4795 0.4053 0.5454

This performance drop is due to the RDPGGAN generative network being
created by randomly perturbing the original network. This generates some incor-
rect node links or misleading information, which affects the accuracy of link
prediction. Therefore, an attacker cannot accurately infer links on the original
network from the generated network.

6 Conclusion

In order to solve the privacy problem of graph generation data, the author pro-
poses the framework of RDPGAN based on Rényi differential privacy. Through
the experimental tests of DBLP and IMDP datasets, it is verified that the frame-
work proposed in this paper is effective in protecting the global graph structure
and protecting the privacy of individual links.

References

1. Ji, S., et al.: Structural data deanonymization: theory and practice. IEEE/ACM
Trans. Netw. 24(6), 3523–3536 (2016)

A Graph Generation Network with Privacy Preserving Capabilities 79

2. Goodfellow, I., et al.: Generative adversarial nets. In: Proceedings of the Advances
in Neural Information Processing Systems, pp. 2672–2680. ACM (2014)

3. Ciresan, D., et al.: Deep neural networks segment neuronal membranes in electron
microscopy images. In: Proceedings of the 25th International Conferences on Neural
Information Processing Systems, pp. 2843–2851. ACM, New York (2012)

4. Hinton, G., Deng, L., Yu, D., et al.: Deep neural networks for acoustic modeling in
speech recognition: The shared views of four research groups. IEEE Signal Process.
Mag. 29(6), 82–97 (2012)

5. Zhu, J.Y., et al.: Unpaired image-to-image translation using cycle-consistent adver-
sarial networks. In: Proceedings of the IEEE International Conference on Computer
Vision. Piscataway, pp. 2223–2232. IEEE (2017)

6. Dwork, C., et al.: The algorithmic foundations of differential privacy. Found.
Trends® Theor. Comput. Sci. 9(3–4), 211–407 (2014)

7. Abadi, M., et al.: Deep learning with differential privacy. In: SIGSAC (2016)
8. Xie, L., Lin, K., Wang, S., Wang, F., Zhou, J.: Differentially private generative

adversarial network. arXiv preprint: arXiv:1802.06739 (2018)
9. Acs, G., Melis, L., Castelluccia, C., De Cristofaro, E.: Differentially private mixture

of generative neural networks. IEEE Trans. Knowl. Data Eng. 31(6), 1109–1121
(2018)

10. Mironoy, I., Talwar, K., Zhang, L.: Rényi differential privacy of the sampled gaus-
sian mechanism [EB/OL]. [2019-08-28]. https://arxiv.org/pdf/1908.10530.pdf

11. Yang, C., et al.: Secure deep graph generation with link differential privacy. In:
International Joint Conference on Artificial Intelligence International Joint Con-
ferences on Artificial Intelligence Organization (2021)

12. Lu, P.H., Wang, P.C., Yu, C.M.: Empirical evaluation on synthetic data generation
with generative adversarial network. In: Proceedings of the 9th International Con-
ference on Web Intelligence, Mining and Semantics, Seoul, Korea, pp. 1–6 (2019)

13. Wang, Y.X., Balle, B., Kasiviswanathan, S.P.: Subsampled Rényi differential pri-
vacy and analytical moments accountant. In: The 22nd International Conference
on Artificial Intelligence and Statistics, pp. 1226–1235. PMLR, Naha, Okinawa,
Japan (2019)

14. Torkzadehmahani, R., Kairouz, P., Paten, B.: DP-CGAN: differentially private
synthetic data and label generation. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Workshops, pp. 98–104. IEEE,
Piscataway (2019)

15. Zhang, X., Ji, S., Wang, T.: Differentially private releasing via deep generative
model (technical report). [Online] https://arxiv.org/abs/1801.01594.. Accessed 28
Mar 2020

16. Ma, C., et al.: RDP-GAN: a Rényi-differential privacy based generative adversarial
network [EB/OL]. [2020-07-04]. https://arxiv.org/pdf/2007.02056.pdf

17. Liu, Y., et al.: PPGAN: privacy-preserving generative adversarial network. In:
Proceedings of the 2019 IEEE 25Th International Conference on Parallel and Dis-
tributed Systems (ICPADS), pp. 985–989. IEEE, Piscataway (2019)

18. Triastcyn, A., Faltings, B.: Generating differebtially private datasets using GANs
[EB/OL]. [2018-03-08]. https://arxiv.org/pdf/1803.03148v1.pdf

19. Maron, H., Ben-Hamu, H., Shamir, N., Lipman, Y.: Invariant and equivariant graph
networks. In: ICLR (2019)

20. Kipf, T.N., Welling, M.: Semisupervised classification with graph convolutional
networks. In: ICLR (2017)

http://arxiv.org/abs/1802.06739
https://arxiv.org/pdf/1908.10530.pdf
https://arxiv.org/abs/1801.01594.
https://arxiv.org/pdf/2007.02056.pdf
https://arxiv.org/pdf/1803.03148v1.pdf

Clustered Federated Learning Framework
with Acceleration Based on Data

Similarity

ZhiPeng Gao(B), ZiJian Xiong, Chen Zhao, and FuTeng Feng

Beijing University of Posts and Telecommunications, Beijing, China
{gaozhipeng,xiongzijian,zc zhaochen,fengfuteng}@bupt.edu.cn

Abstract. Federated Learning is a distributed machine learning frame-
work which allows multiple participants training machine learning model
without exchanging their local data. It addresses critical issues such as
data privacy in distributed machine learning. In real circumstances, the
statistical heterogeneity of data on different devices will cause bad perfor-
mance of training process. In this paper, we propose FedCSA, a clustered
federated learning framework with acceleration algorithm using the simi-
larity of data distribution between federated learning clients. Clients with
similar data distribution are clustered and the acceleration algorithm is
performed among them to obtain group model, which can maximum
the utilization of similarity. The global model is aggregated from group
models in each round of training. The empirical evaluation shows that
FedCSA outperforms state-of-art approaches on datasets with different
non-IID settings.

Keywords: Federated learning · Clustering · Data similarity ·
Distributed machine learning

1 Introduction

With the increasing computing power of mobile devices, artificial intelligence
has become more and more widely used on mobile devices and in the Internet
of Things [1–3]. It become possible to jointly model the same target using local
data on devices of different users, which can improve training efficiency and data
resource utilization. But at the same time, data privacy of user and other security
issues need to be guaranteed, which is a challenge for joint training. Federated
learning is a framework to address this problem, proposed by McMahan et al.
[4] in 2016. In federated learning framework, clients participating in training
collaborate to model with each other under the coordination of a central server,
and in the process devices are allowed to jointly train models without exchanging
local data. Therefore, federated learning can effectively reduce the risk of user
privacy data leakage and the cost of taking privacy protection measures.

But at the same time, statistical heterogeneity brings a lot of challenges
to federated learning. In fact, the assumption of independent and identically

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14493, pp. 80–92, 2024.
https://doi.org/10.1007/978-981-97-0862-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0862-8_6&domain=pdf
https://doi.org/10.1007/978-981-97-0862-8_6

Clustered FL Framework with Acceleration Based on Data Similarity 81

distributed does not hold in data distribution of different clients, which is called
non-IID. In federated learning, this causes a larger number of training epochs
required to meet the training objectives and make model converge, compared
to the IID case. In practical applications, it will cause considerable additional
communication overhead and training time [5,6]. Based on FedAvg algorithm [4],
Li et al. added a proximal term to the loss function of the client-side training
process to limit the deviation of the local update from the global model [7],
so that the training process had better stability and alleviated the impact of
non-IID. However, the superiority of this algorithm is only manifested in the
situation that many clients fail to complete the specified number of rounds of
training within the specified time.

Methods to reduce the impact of data heterogeneity by using the similarity
information of data held by each client are gradually proposed. The algorithm
proposed by Li et al. [8] uses the similarity information of client data to build
decision trees to speed up the convergence of federated learning. But this algo-
rithm broadcasts the hash value of each user data among all clients. The degree
of privacy protection is weaker than traditional federated learning. Also, this
method is only used for the building of decision trees in gradient boosting tree
[9]. It is not applicable to other models such as neural networks which are more
widely used. Other methods [10–12] cluster clients based on the similarity of data
distribution between the clients. The FedAvg algorithm is run inside clusters to
obtain the group model, and then the models of different groups are aggregated
to obtain the global model. These methods can also speed up the convergence
speed of the training process. However, in circumstance of high degree of hetero-
geneity of client data, there is no obvious advantage over traditional federated
learning and the stability of these algorithms declines.

In this paper, we propose a efficient Federated learning framework with
Clustering and Similarity based Acceleration algorithm (FedCSA). We propose
a federated learning acceleration algorithm based on client data similarity. The
similarity information of client data is used to identify the data distribution of
the client first. Then, the clients with similar data distribution are clustered in
a group to train local model and obtain a group model by aggregation. Clients
with similar data distributions can be approximated as IID clients, so the impact
of non-IID is reduced. Finally, these group models are aggregated to obtain a
global model.

At the same time, among clients with similar data distribution, the propor-
tion of data with a certain degree of similarity is increased in the training process.
Thus, the statistical heterogeneity of client data is further reduced to improve
the convergence speed and accuracy of federated learning process.

The main contributions of this paper are listed below:

– we propose a efficient clustered federated learning framework for non-IID
environment.

– we propose an acceleration algorithm based on the similarity of client data dis-
tribution to improve the convergence speed and accuracy of federated learning
process.

82 Z. Gao et al.

– we experimentally prove that our FedCSA algorithm performs better than
the previous state-of-art method such as FedAvg in terms of model accuracy
and convergence speed under heterogeneous environments.

2 Preliminaries

In this section, we introduce the basic background knowledge on federated learn-
ing and locality-sensitive hash.

2.1 Federated Learning

The most widely used federated learning algorithm is FedAvg proposed by
McMahan et al. FedAvg allows clients to collaboratively train models such as
neural networks without sharing their dataset, which provides privacy protection
on private data of clients.

The goal of training is to find global model parameters w∗ which minimized
the global objective function:

w∗ = argminw{F (w)} where F (w) =
n∑

i=1

piFi(wi) (1)

where Fi(w) is the local empirical loss on the local dataset of client i. wi are
the model parameters of client i. n is the number of total client participating in
training process and pi is the contribution rate of client i where

∑
pi = 1.

In each round of the training process, server selects a number of clients to
start training. Clients perform stochastic gradient descent (SGD) on their local
dataset and send the model parameters to server to obtain global model. The
aggregation process of client models is as follows:

wt =
n∑

i=1

|Di|
|D| wt

i (2)

where D is the total data sample size from all clients participating in this round,
and Di is the local dataset of client i. wt denotes the global model parameters
in round t and wt

i denotes the local model parameters of client i in round t.
In FedAvg, the contribution of client is represented by the size of client local
dataset.

2.2 Locality-Sensitive Hashing

Locality-Sensitive Hashing [13] (LSH) is a hashing algorithm. Similar raw data
has a high probability of remaining adjacent after LSH calculation, so it can
be used for data clustering and nearest neighbor search. Locality-sensitive hash
functions can also play a good role in privacy-preserving computing. LSH can
achieve dimensionality reduction and local matching of data, which can reduce
the amount of information carried by the data, enhance its privacy. And the
statistical characteristics of the data are not lost. LSH can take advantage of
similarity to preserve the relationship between data.

Clustered FL Framework with Acceleration Based on Data Similarity 83

3 Design of Our FedCSA Framework

In this section, we introduce the details of the proposed FedCSA framework.
In Sect. 1, we mentioned that exploiting the similarity of client data distribu-

tion can speed up the training process. In the actual federated learning process,
the data distribution of the clients participating in each round of training is dif-
ferent. If the data distribution of a selected client is used to accelerate training
based on data similarity, the global model obtained in this round will be shifted
to this data distribution. However, the data distribution of the client selected in
the next round is usually different from the previous round, so the global model
will shift in a different direction. In this case, the global model will oscillate
between different data distributions, and the use of data similarity will prolong
the convergence of the global model and reduce the model accuracy. Therefore,
our proposed algorithm groups clients with similar data distribution in advance,
and uses the data similarity to speed up the training process within each group,
so that the data similarity can be effectively utilized. And we present a similarity-
based approach named Intra-Group Acceleration to obtain better models within
each client group.

The basic steps of FedCSA are similar to traditional federated learning frame-
work. Figure 1 shows the overall framework of FedCSA. The main steps are pre-
sented as follows:

Preparation Stage. Each client calculates the similarity feature (LSH) of the
local data and sends it to the central server. The central server receives the
similarity information, calculates the similarity matrix and sends the similarity
matrix to each client. The central server divides the clients into different groups
for training according to the similarity of the data distribution of the client.

Training Stage. In each training round, the central server selects a certain
number of clients to participate in training. Clients assigned to the same group
collaborate to train a model, which is called group model. Within each group,
clients receive global model and similarity information from the central server
and execute local SGD to train their local models. Intra-Group Acceleration
algorithm is used in training process to obtain better model. Then clients send
their local models to the central server.

Aggregation Stage. The central server first aggregates the local models of
clients by group to obtain group models. Then the server aggregates group mod-
els to generate new global model for next training round.

84 Z. Gao et al.

Fig. 1. Overall Framework of FedCSA.

The training process will last until the global model reaches the target accu-
racy or converges.

Our proposed FedCSA includes two key parts: Intra-Group Acceleration and
Group Aggregation in clustered federated learning.

3.1 Intra-group Acceleration

Clients in the same group have similar data distribution. On this basis, we further
improve the similarity of the data distribution to generate a better group model.
We use the data distribution of a client in the group as a benchmark, and build
datasets with similar data distribution on each client in the same group.

The Intra-Group Acceleration algorithm consists of algorithms in preparation
stage and training stage.

Before the training process starts, clients first obtain similarity information
and establish similarity matrices. Algorithm 1 describes the process of generating
similarity matrix of each client. Each client first compute parameters qi

m for
similarity computing of each local instance xi

m, and then broadcast them to
the server. After receiving the loss information from all clients, server generate

Clustered FL Framework with Acceleration Based on Data Similarity 85

similarity matrices by finding the instance Sij
m in client cj with the highest

similarity with instance i in dataset Dm of client cm, and then send them to
clients.

The function which computes parameters for similarity computing can be
implemented in many different ways. The gradients or loss of client local dataset
above the global model can be used as parameters for similarity computing [14],
which is widely used in clustered federated learning frameworks [10,11]. And
LSH value of each instance in client local dataset can also be used as parameters
for similarity computing, which is used in SimFL [8]. In this paper, we choose
the LSH method due to privacy requirements.

At the same time, server uses the parameters qi
m of each client to divide

clients into groups by clustering algorithm (K-means algorithm is used in this
paper).

In each round of training, the selected clients are divided into groups accord-
ing to the result of clustering. The acceleration algorithm is performed within
each group. In training round t, server first select a certain client cl from the
group as leader, the data distribution of which will be used as reference for
acceleration.

As the leader, cl only needs to train the model on its local dataset Dl, and
then send the model parameters obtained by training to the central server. For
the client cm that is not the leader, it first queries the similarity matrix Sm to
obtain the partial data Dsim

m in the local dataset which is similar to the data
in Dl. The client then checks the proportion of Dsim

m in its local dataset Dm,
which can describe how similar the local dataset is to Dl. If the proportion is
less than a threshold α, a data augmentation operation is performed on Dsim

m.
In this paper, we use the AUGMIX method proposed by Hendrycks et al. [15]
for data augmentation. Then, the augmented data Dsim

m is combined with the
dissimilar data in the local dataset to generate new train set Dm. The client
trains the model on Dm, and sends the model parameters wt

m obtained in
training round t to the central server.

Our proposed Intra-Group Acceleration algorithm further improves the sim-
ilarity of the data distribution between the leader and other members of the
group by increasing the proportion of similar data. Since the adverse effects of
non-IID can be further reduced, a group model with higher accuracy can be
obtained.

3.2 Group Aggregation

After receiving the model update wt
c sent by clients, the server first performs

model aggregation for each group. The obtained group model after aggregation
is a representative model of the data distribution for this group. For group gj ,
in training round t, the aggregation process of the group model is as follows:

wt
gj =

∑

cm∈gj

|Dm|
|D| wt

m (3)

86 Z. Gao et al.

Algorithm 1: Client Similarity Matrix Preparation
Input: Dataset Dm of client m
Output: Similarity matrix Sm of client m

1 for each client cm ∈ C do
2 for each instance xi

m ∈ Dm do
3 qi

m ← ComputeSimilarityParameters(xi
m);

4 Send Qm to server;

5 Server Execution:
6 for each client cm in C do
7 for each instance xi

m ∈ Dm do
8 for cj ∈ C do
9 if j �= m then

10 Find instance Sij
m which has the highest similarity with xi

m;

11 else
12 Sij

m ← xi
m;

13 return Sm;

where |D| is the total size of datasets in group gj , and wt
gj is the group model

after aggregation. The intra-group aggregation process is basically the same as
the model aggregation process of traditional federated learning in (2).

After group model aggregation is complete, server aggregates the group mod-
els into the global model. In training round t, the aggregation process of the
global model is as follows:

wt =
1
|G|

∑

gj∈G

wt
gj (4)

where G is the set of all groups, |G| is the number of groups, and wt is the global
model in training round t. When there is no member in a group participating
in this round of training, we use the latest group model of this group in the
aggregation process.

The global model is the arithmetic mean of the group models. In our pro-
posed algorithm, data distribution of each group is considered to be of equal
importance.

The whole process of FedCSA is shown in detail in Algorithm 2. Our proposed
method reduces the discrepancy between the global optimization objective and
the optimization objective of groups with different data distribution. Therefore,
global model with higher prediction accuracy can be obtained, and the conver-
gence speed of training process of federated learning can be improved.

3.3 Privacy Analysis

If the number of LSH functions is smaller than the number of training data
dimensions, the privacy in FedCSA can be guaranteed.

Clustered FL Framework with Acceleration Based on Data Similarity 87

Algorithm 2: Clustered Federated Learning with Similarity Acceleration
Input: Cluster numbers nclusters, Initial global model w0, number of total

training round T
Output: global model wT IN training round T

1 G = Cluster(C, nclusters);
2 for each round t = 1, ..., T do
3 Server broadcasts global model wt−1 to all clients;
4 Select K clients ∈ C;
5 for each group gj ∈ G do
6 select leader client cl ∈ gj ;
7 for each client cm ∈ gj do
8 wt

m ← wt−1;
9 wt

m ← ClientUpdate(cl);

10 wt
gj ← ∑

cm∈gj

|Dm|
|D| wt

m;

11 wt ← 1
|G|

∑
gj∈G wt

gj ;

12 return wT ;
13 ClientUpdate (cl):
14 if m �= l then

15 Dsim
m ← {Sim

l, xi ∈ Dl};

16 if |Dsim
m|

|Dm| < α then

17 Dm ← (Dm \ Dsim
m) ∪ DataAugumentation(Dsim

m);

18 for each batch b ∈ Dm do
19 wt

m ← wt
m − η � loss(wt

m, b);

20 return wt
m ;

It can be proved by basic mathematical theories. We define, L1, L2, ..., Lm

are the LSH functions. And we define that d1, d2, ..., dn are the data dimensions.
For one data instance, we obtain that:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L1(d1, d2, ..., dn) = l1

L2(d1, d2, ..., dn) = l2

...

Lm(d1, d2, ..., dn) = lm

(5)

Since m < n, the system of equations in (5) is indeterminate. An indeter-
minate system usually has infinitely many solutions. Therefore, it is difficult to
obtain the original data. The data privacy of using LSH can be guaranteed to
some extent. However, from the perspective of the data transmission, the data
privacy protection of this method is not as good as traditional federated learning
approaches.

88 Z. Gao et al.

4 Experiment and Result

4.1 Experiment Settings

In our experiments, we compare our FedCSA algorithm with FedAvg [4], FedProx
[7] and FedSim [10]. FedAvg and FedProx are traditional federated learning
frameworks and FedSim is a clustered federated learning framework.

We conduct the experiments on a device with an Intel Xeon Processor (Cas-
cadelake) CPU and 2 Nvidia Tesla V100S 32 GB GPUs.

Dataset. We use 2 standard datasets, MNIST and CIFAR-10, in the exper-
iments. MNIST is a handwritten digit recognition dataset with 10 categories
ranging from 0 to 9, with a total of 60,000 images. The training set contains
50,000 images, and the test set contains 10,000 images. Each instance of data
is a 28 × 28 single-channel picture. CIFAR-10 is a real-world object recognition
dataset containing 10 categories, with a total of 60,000 images. The training set
contains 50,000 images, and the test set contains 10,000 images. Each instance
of data is a 3-channel color image with size of 32 × 32 × 3.

Non-IID Settings. In our experiments, we simulate the situation of data het-
erogeneity on class labels. The distributions of class labels of different clients
are different. We use the following method to divide the original dataset into
non-IID datasets. First we select one class label as the main class label among
all classes in the dataset. The proportion of the selected main class label in the
dataset allocated to the client is θ, and the remaining data with a proportion
of 1 − θ are randomly selected from the data of three class labels. The three
classes are also randomly selected from other classes. Obviously, in this data
division method, the value of θ determines the degree of heterogeneity of the
client dataset. The larger the value of θ, the higher the degree of heterogeneity
of the client data distribution. In the experiments on MNIST dataset, we set the
value of θ to 0.8, 0.9, 0.95. In the experiments on CIFAR-10 dataset, we set the
value of θ to 0.7, 0.8, 0.9.

Hyperparameters Settings. For the MNIST and CIFAR-10 datasets, we uni-
formly use LeNet5 model as the training model, SGD as the optimizer, and the
learning rate is set to 0.01 without learning rate decay. For FedSim and FedCSA,
we set the number of clusters to 5. And in each experiment, we set the value of
α to 0.8 for FedCSA.

Real Environment Simulations. The availability of clients in real-world envi-
ronments may not be guaranteed throughout the training process. For both
MNIST and CIFAR10, we set the number of clients to 50. At the beginning of
each round of training, 10 clients are randomly selected from total the 50 clients
to participate in the training.

Clustered FL Framework with Acceleration Based on Data Similarity 89

Fig. 2. Test accuracy curves on MNIST and CIFAR-10 (θ = 0.8, 0.9, 0.95 for MNIST
and θ = 0.7, 0.8, 0.9 for CIFAR-10)

90 Z. Gao et al.

Table 1. The model test accuracy performance of FedCSA, FedAvg and FedProx on
two federated datasets with different degree of data heterogeneity.

Dataset MNIST CIFAR-10

Degree of data heterogeneity θ 0.8 0.9 0.95 0.7 0.8 0.9

FedCSA 0.9738 0.9642 0.9334 0.4892 0.4568 0.3629

FedAvg 0.9624 0.9485 0.9233 0.4202 0.3954 0.3379

FedProx 0.9611 0.9465 0.9198 0.4217 0.3927 0.3390

FedSim 0.9422 0.9305 0.8823 0.4008 0.3734 0.3161

4.2 Result and Analysis

As shown in Table 1, FedCSA outperforms the baseline approaches in different
degrees of data heterogeneity. We note that FedCSA improves model accuracy
by 6.75% on the CIFAR-10 dataset divided according to θ value of 0.7. This
is a huge improvement over other baseline methods. In addition, in other envi-
ronments, FedCSA’s improvement of model accuracy is also higher than other
baseline methods. Even on the MNIST dataset where each algorithm performs
well, FedCSA can achieve model accuracy improvement about 1.2%.

The accuracy curves of the four algorithms in different degrees of data het-
erogeneity environments are shown in Fig. 2. The effect of data heterogeneity on
the four algorithms can be observed. With the increase of θ value, that is, the
level of data heterogeneity, the number of training rounds required to achieve
convergence of each algorithm increases, the accuracy of convergence decreases
to a certain extent, and the stability of training also decreases. Under the same
environment, the number of rounds required of the four algorithms to reach
convergence is similar.

To explore the stability of algorithms in different data heterogeneity envi-
ronments, we tested the four algorithms on two different datasets with different
degrees of data heterogeneity to ensure the accuracy of the results. There are
significant differences in the stability of each algorithm on two different datasets,
due to the complexity of the federated learning task. The training objective of
the experiments on the MNIST dataset is only to classify black and white images
of handwritten digit into ten categories from 0 to 9, while the training goal of the
experiment on the CIFAR-10 dataset is to divide the color images of real world
objects into ten different categories including airplane, cat, etc. Data instances
in CIFAR-10 dataset are much more informative. In the experiments on the
CIFAR-10 dataset, more complex training objectives lead to worse stability.

In the experiments on the MNIST dataset, all four methods suffer to some
extent under different degrees of data heterogeneity (θ = 0.8 to 0.95), since
larger heterogeneity leads to worse and steeper convergence. Under relatively
low degree of data heterogeneity (θ = 0.7), the jitter amplitudes of the accuracy
curves of FedCSA, FedAvg, and FedProx are similar and smaller than which of
the accuracy curve of FedSim. At a relatively high level of data heterogeneity

Clustered FL Framework with Acceleration Based on Data Similarity 91

(θ = 0.95), the jitter amplitude of the accuracy curve of FedCSA is slightly
larger than that of FedAvg and FedProx, but still smaller than that of FedSim.
The experimental results on the CIFAR-10 dataset are similar to that. This
suggests that FedCSA is more robust than FedSim and the stability of FedCSA
is acceptable compared to popular federated learning algorithms.

5 Conclusion

To deal with the problem that the accuracy of the model decreases and the train-
ing convergence speed becomes slower under the heterogeneous environment in
federated learning, we propose a clustered federated learning framework based on
data similarity. By grouping clients for training, the influence of large differences
in the data distribution of different clients is reduced. FedCSA further construct
similar data distribution within client group, thereby increasing the accuracy
of the group model. Therefore, it can aggregate better group models to obtain
global model with better performance. We evaluated the proposed framework
on two datasets with different data heterogeneity settings. In the experimen-
tal results, FedCSA achieves up to a 6.5% improvement of model accuracy on
non-IID dataset. Our evaluation has demonstrated that our FedCSA framework
is superior to the previous state-of-the-art framework, and is robust enough in
heterogeneous environments.

Acknowledgments. This work is supported by the General Program of National
Natural Science Foundation of China (62072049).

References

1. Mukhopadhyay, S.C., Tyagi, S.K.S., Suryadevara, N.K., Piuri, V., Scotti, F.,
Zeadally, S.: Artificial intelligence-based sensors for next generation IoT appli-
cations: a review. IEEE Sens. J. 21(22), 24920–24932 (2021)

2. Shah, R., Chircu, A.: IoT and AI in healthcare: a systematic literature review.
Issues Inf. Syst. 19(3) (2018)

3. Kankanhalli, A., Charalabidis, Y., Mellouli, S.: A research agenda, IoT and AI for
smart government (2019)

4. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data. In:
Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

5. Li, X., Huang, K., Yang, W., Wang, S., Zhang, Z.: On the convergence of FedAvg
on non-IID data. arXiv preprint arXiv:1907.02189 (2019)

6. Li, Q., Diao, Y., Chen, Q., He, B.: Federated learning on non-IID data silos: an
experimental study. In: 2022 IEEE 38th International Conference on Data Engi-
neering (ICDE), pp. 965–978. IEEE (2022)

7. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Feder-
ated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450
(2020)

http://arxiv.org/abs/1907.02189

92 Z. Gao et al.

8. Li, Q., Wen, Z., He, B.: Practical federated gradient boosting decision trees. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 4642–
4649 (2020)

9. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 785–794 (2016)

10. Palihawadana, C., Wiratunga, N., Wijekoon, A., Kalutarage, H.: FedSim: similarity
guided model aggregation for federated learning. Neurocomputing 483, 432–445
(2022)

11. Duan, M., et al.: FedGroup: efficient federated learning via decomposed
similarity-based clustering. In 2021 IEEE International Conference on Paral-
lel & Distributed Processing with Applications, Big Data & Cloud Comput-
ing, Sustainable Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom), pp. 228–237. IEEE (2021)

12. Tian, P., Liao, W., Wei, Yu., Blasch, E.: WSCC: a weight-similarity-based client
clustering approach for non-IID federated learning. IEEE Internet Things J. 9(20),
20243–20256 (2022)

13. Paulevé, L., Jégou, H., Amsaleg, L.: Locality sensitive hashing: a comparison of
hash function types and querying mechanisms. Pattern Recogn. Lett. 31(11), 1348–
1358 (2010)

14. Wang, Y., Wolfrath, J., Sreekumar, N., Kumar, D., Chandra, A.: Accelerated train-
ing via device similarity in federated learning. In: Proceedings of the 4th Interna-
tional Workshop on Edge Systems, Analytics and Networking, pp. 31–36 (2021)

15. Hendrycks, D., Mu, N., Cubuk, E.D., Zoph, B., Gilmer, J., Lakshminarayanan, B.:
AugMix: a simple data processing method to improve robustness and uncertainty.
arXiv preprint arXiv:1912.02781 (2019)

http://arxiv.org/abs/1912.02781

An Anonymous Authentication Scheme
with Low Overhead for Cross-Domain IoT

Long Fan, Jianfeng Guan(B), Kexian Liu, and Pengcheng Wang

School of Computer Science (National Pilot Software Engineering School),
Beijing University of Posts and Telecommunications, Beijing, China

{fanlong,jfguan,kxliu,wpc1021}@bupt.edu.cn

Abstract. In a decentralized Internet of things (IoT) environment, it is
inevitable that devices from different administrative domains communi-
cate and collaborate with each other, yet there is often a lack of trust
among them. In this case, it is necessary to design a reliable authenti-
cation scheme to ensure the secure cross-domain access of devices. How-
ever, existing cross-domain authentication schemes suffer from a number
of issues that have not been fully considered. On the one hand, as one of
techniques commonly used for cross-domain authentication, blockchain
has limitations in storage capacity and throughput speed. On the other
hand, users’ privacy and sensitive information are not strictly protected.
In this paper, we propose a certificateless cross-domain authentication
scheme that combines low overhead and anonymity, named CALA. The
cryptographic theory of CALA is Certificateless Public Key Cryptogra-
phy (CL-PKC) mechanism, which relies on a semi-trusted third party and
gets rid of the key escrow problem. To reduce the storage overhead and
enable light-weight data verification, we design a storage structure named
Merkle Hash Tree Grid Combination (MHTGC) for data management.
To preserve the privacy of users, we propose an anonymous authenti-
cation protocol based on Zero-Knowledge Proof (ZKP) algorithm. The
security analysis and experimental results demonstrate the effectiveness
of our scheme.

Keywords: Cross-domain authentication · Certificateless signature ·
Privacy protection · Blockchain · Storage optimization

1 Introduction

In recent years, researches related to Internet of Things (IoT), such as smart
healthcare [29], smart home [20], intelligent transportation [23] and industrial
Internet [22], have been emerging in an endless stream. Taking the Industrial
Internet of Things (IIoT) as an example, it is difficult for a standalone admin-
istrative domain to produce a product that satisfies customers due to the com-
plexity of product manufacturing process [22]. In order to access the services
or resources unavailable in its own trust domain, communication and collabora-
tion between devices from different administrative domains become inevitable,

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14493, pp. 93–113, 2024.
https://doi.org/10.1007/978-981-97-0862-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0862-8_7&domain=pdf
https://doi.org/10.1007/978-981-97-0862-8_7

94 L. Fan et al.

consequently. In the environment of IoT, especially in the decentralized environ-
ment [31,33], it is urgent to construct trust contracts between different admin-
istrative domains which lack trust relationship. Unlike access within a single
administrative domain, cross-domain access is facing more security risks, such
as unauthorized operations across domains and users’ privacy disclosure.

To enable secure communication between IoT devices, it is permitted to
authorize legitimate users access resources or services in other domains. A more
reliable cross-domain authentication mechanism is therefore essential. Currently,
most cross-domain authentication mechanisms are based on Public Key Infras-
tructure (PKI) [8]. PKI based schemes often rely on a trusted third party named
Certificate Authority (CA), which is prone to single point of failure. Besides, CA
needs to manage numerous public key certificates, which brings a great burden to
the CA [18]. Authentication mechanisms based on Identity-Based Cryptography
(IBC) take the users’ valid identities as public keys (also known as Identity-Based
Public Key Cryptography, ID-PKC) [21], so there is no problem of digital certifi-
cate management. However, private keys of all devices are generated by Private
Key Generator (PKG), which means that private keys are escrowed by a third
party. In contrast, another kind of authentication mechanism based on Certifi-
cateless Public Key Cryptography (CL-PKC) gets rid of certificate management
and key escrow problems [3].

Traditional cross-domain authentication mechanisms rely on trusted third
party, which brings many potential risks, such as single point of failure, high
computational overhead, and low flexibility, etc. [26]. The distributed consensus
mechanism of blockchain inspires researchers to design cross-domain authentica-
tion schemes and construct trust relationship between different administrative
domains by utilizing it [4,12,22]. However, blockchain has storage resource con-
straints, and its query and write delays can slow down the execution of the entire
authentication scheme [25,28].

To tackle the above challenges, we propose a cross-domain authentication
scheme with low overhead and anonymity (CALA) for IoT environment in this
paper. This scheme achieves low computational and storage overhead without
exposing the privacy of devices. Our contributions can be summarized as follows:

(1) We propose a certificateless cross-domain authentication scheme that com-
bines low overhead and anonymity (CALA), which supports authentication
between IoT devices from different administrative domains. By utilizing
Zero-Knowledge Proof (ZKP) algorithm, users’ privacy can be protected
in the process of cross-domain authentication.

(2) We design an efficient data management mechanism. Specifically, we adopt
a data storage structure named Merkle Hash Tree Grid Combination
(MHTGC) for storing and processing most of the data. As an extension
of Merkle Hash Tree (MHT), Merkle Hash Grid (MHG) is leveraged not
only to reduce storage overhead but also to reduce computational overhead
in data verification.

(3) We conduct a theoretical analysis to prove the high security of our scheme.
Simulation experiments are also conducted, and the experimental results
demonstrate that our scheme has lower storage and computational overhead.

An Anonymous Authentication Scheme with Low Overhead 95

The remainder of this paper is organized as follows. In Sect. 2, we review the
existing authentication schemes. The preliminaries of this work are introduced
in Sect. 3. Section 4 gives the overview of the proposed scheme. Then, Sect. 5
describes of the design details. Section 6 provides a theoretical analysis of the
proposed solution in this paper. In Sect. 7, we conduct experiment and evaluate
the performance. Finally, Sect. 8 concludes this paper.

2 Related Work

In recent years, many intra-domain and cross-domain device authentication
schemes have been proposed. Intra-domain authentication schemes are mainly
based on traditional authentication mechanisms, while cross-domain authenti-
cation schemes need to introduce new technologies to construct trust between
different administrative domains. At the same time, due to the improvement of
privacy protection awareness, many papers focus on anonymous authentication
schemes. Du et al. proposed a cross-domain authentication scheme based on
ZKP to protect the privacy of the devices [9], but this scheme made many ideal
assumptions in the communication process, which is quite different from the real
environment and needs further improvement. Moreover, existing literature pays
little attention to the problem of resource constraints in blockchain. These are
also the major concerns of our work.

Intra-domain authentication can be divided into symmetric cryptography and
asymmetric cryptography. The advantage of symmetric cryptography is the high
speed of implementation [2]. However, the distribution and management of keys
are expensive, and it cannot realize the function of non-repudiation. Asymmetric
cryptosystem includes PKI based mechanism [8], IBC based mechanism [21] and
CL-PKC based mechanism [3].

The mechanism based on CL-PKC alleviates the certificate management
problem of PKI and the key escrow problem of IBC. In CL-PKC, a semi-trusted
third party named Key Generation Center (KGC) generates partial private key
for users. The legitimate user then decides on a secret value to generate public
key and the full private key derived from the partial private key. That is, KGC
cannot obtain the full private key, and thus there is no key escrow problem. Due
to the advantages above, encryption and signature schemes based on CL-PKC
have been proposed in quantity. He et al. proposed a certificateless public key
authentication and encryption scheme based on keyword search and deployed it
to the IIoT [11], which is considered to be secure and efficient. Karati et al. pro-
posed a secure and light-weight certificateless signature scheme for IIoT [13]. Ma
et al. proposed a new scheme of outsourcing semi-trusted cloud revocation agent
based on bilinear pairing [17], which solves the identity revocation problem in
CL-PKC and realizes the uniqueness of public key and reliable revocation flexi-
bility under low computing and communication costs. Tomar proposed to apply a
blockchain-based certificateless authentication scheme to intelligent transporta-
tion systems [23], which achieves secure authentication with low computational
and storage costs. In general, the CL-PKC based authentication mechanisms

96 L. Fan et al.

have the advantages of certificateless management, light-weight system, low com-
munication overhead and strong non-repudiation.

For the cross-domain authentication issue, it needs to be addressed how to
construct mutual recognition and trust of identity between different adminis-
trative domains [30]. The existing solutions can be divided into centralized and
decentralized schemes. Centralized solutions include third-party bridge pattern
[16], cross-authentication pattern [6], key exchange pattern [15], and path proof
pattern [5]. These four patterns have the disadvantages of single point of failure,
high computational overhead, low scalability and low efficiency, respectively.
Decentralized solutions are mainly based on blockchain technology, and such
cross-domain authentication solutions mainly construct trust between different
administrative domains through distributed ledgers and consensus.

Shen et al. proposed a blockchain assisted cross-domain identity authentica-
tion scheme [22], in which specific parameter information of different domains is
stored off-blockchain, while domain identifier, unified resource identifier (URI)
and hash value calculated from real data are stored on the chain. Tong et al.
proposed a cross-domain authentication scheme under the condition of limited
computing resources [24], allowing each domain to adopt different authentica-
tion mechanisms, and adopting a robust identity management scheme to protect
device privacy. The identity authentication scheme based on blockchain has alle-
viated the problems of data tampering, single point of failure and the difficulty
in public key revocation in traditional schemes. Meanwhile, considering the limi-
tations of blockchain storage resources and throughput speed, Chen et al. decou-
ples the control layer and storage layer and designs the Multiple Merkle Hash
Tree (MMHT) to improve response speed [7]. In this paper, we make further
improvements to the work of Chen et al.

3 Preliminaries

This section briefly discusses the background knowledge for the proposed scheme.

3.1 MHT and MHG

Merkle Hash Tree (MHT) has been widely used in file systems and P2P sys-
tems. Specifically, MHT is a data structure commonly used in data storage of
blockchain technology, which can ensure data security and verify the integrity
of data. In an MHT, each leaf node stores the hash of one data block, and each
branch node stores the hash of its child nodes. The left of Fig. 1 illustrates an
example of MHT, in which Node1 stores the hash of data block L1, and Node5
stores the hash of the concatenation of the values stored in Node1 and Node2.
As a result, any modification to the data block will change the hash values on
the path from the corresponding leaf node to the root node. This feature gives
MHT the advantage of fast data integrity verification, and thus it has become a
fundamental component of blockchain technology.

An Anonymous Authentication Scheme with Low Overhead 97

Fig. 1. Example of Merkle Hash Tree and Merkle Hash Grid.

Merkle Hash Grid (MHG) is an extension of MHT [19], which arranges the
data blocks into a two-dimensional grid. The hash values are maintained in two
MHTs in the horizontal and vertical directions, respectively. The right of Fig. 1
illustrates an example of MHG, in which each leaf node of the sub-tree on the
upper side stores the hash of all data blocks in the corresponding column, and
each leaf node of the sub-tree on the right side stores the hash of all data blocks
in the corresponding row. In this way, the number of leaf nodes stored in each
MHT is reduced from N to

√
N , and thus the storage overhead is significantly

reduced to a minimum of 50%.
To prove this, suppose that N denotes number of leaf nodes contained in

each MHT or MHG structure. Then, the number of additional hash values that
an MHT needs to store can be estimated as the total number of N leaf nodes
and the branch nodes at each depth:

N + (1 + 2 + 4 + · · · + 2�log2 N�−1) ≈ 2N − 1. (1)

For an MHG, it contains two sub-trees with approximately
√

N leaf nodes
each, N leaf nodes associated with the data, and one additional root node. Thus,
the number of hash values that an MHG needs to store can be estimated as:

N + 1 + 2 × (1 + 2 + · · · + 2�log2

√
N�−1) ≈ N + 4

√
N − 1. (2)

When N → +∞, the limit of the proportion of additional storage overhead
required by MHG to MHT is 0.5:

lim
N→+∞

N + 4
√

N − 1
2N − 1

=
1
2
. (3)

3.2 Zero-Knowledge Proof

Zero-Knowledge Proof (ZKP) is first proposed by S. Gadasser, S. Moali and C.
Radof [10], which is a cryptographic protocol running between the prover and
verifier. The prover makes verifier believe a certain statement, provided that no
useful information is disclosed. Generally, ZKP algorithm can be divided into

98 L. Fan et al.

two categories: interactive and non-interactive, depending on whether there is a
challenge-response interaction between the prover and verifier [14].

Specifically, ZKP algorithm generates a proof π based on a pre-defined func-
tion F (u,w), where u is the common reference input provided by the verifier,
and w is the private input containing secret information that cannot be dis-
closed. The correctness of proof π can be verified by the verifier without expos-
ing the private input w. ZKP algorithm consists of three steps: The first step is
KeyGen(F, λ), in which a public evaluation key EK and a public verification
key V K are generated based on F and the security parameter λ. The second
step is Compute(EK,u,w), in which the prover computes the proof π and the
expected output y. The third step is Verify(V K, u, π, y), in which the verifier
checks whether the proof π can make function F obtain the expected output y.

The ZKP algorithm satisfies the following three properties:

• Correctness: For the validation function F and any inputs u, w, the proof
(y, π) can be obtained through Compute(EK,u,w). If the user identity is
valid, then Verify(V K, u, π, y) = 1 always holds. Otherwise, the output of
function Verify(V K, u, π, y) is 0.

• Soundness: For the prover, it is extremely difficult to generate forged identity
information or evidence that satisfies Verify(V K, u, π, y) = 1. When a mali-
cious adversary generates a zero-knowledge proof using an invalid identity or
evidence, the output of Verify(V K, u, π, y) is always 0. Besides, the proba-
bility that an adversary generates correct evidence by repeated attempts is
negligible.

• Zero-Knowledge: For the verifier, it is extremely difficult to obtain any part
of the private input w based on the proof π, the expected output y, the
function F , and the common reference input u. The process of computing
ZKP is completed locally, and the private input is not leaked to the verifier.
Therefore, our cross-domain authentication scheme is zero-knowledge and the
privacy of devices can be protected well.

4 Proposed Scheme

4.1 System Overview

In the proposed authentication scheme, the architecture consists of three layers,
namely entity layer, blockchain layer and storage layer. The overview of our
authentication architecture is illustrated in Fig. 2.

• Entity Layer: The entity layer consists of IoT devices and KGC. IoT devices
have sensing and processing capabilities, and their main task is to provide
specific services. KGC is unique in an administrative domain, which is a
semi-trusted third party responsible for generating partial private keys for
IoT devices in its domain. Specifically, an IoT device sends a registration
request to KGC. KGC generates the partial private key according to the
identity information submitted. After receiving the partial private key, IoT
device selects a secret value to generate its own public key and full private
key derived from the partial private key.

An Anonymous Authentication Scheme with Low Overhead 99

Fig. 2. Overview of our authentication architecture.

• Blockchain Layer: The blockchain layer is actually a global distributed ledger.
The information stored in the blockchain is written by KGCs from different
administrative domains. The blockchain collects and binds these information
quickly. The data shared by the storage layer must pass integrity and con-
sistency verification. Considering that the blockchain has the limitation of
storage capacity and throughput speed, only the minimum information is
stored in the blockchain.

• Storage Layer: The content maintained in the storage layer includes the pub-
lic key list of IoT devices, system public parameters, blockchain addresses and
verification time. The blockchain address refers to the address of the verifica-
tion value bound to data, and the verification time refers to the latest time of
consistency and integrity verification. Specifically, MHT is still adopted in the
blockchain layer, which does not change the original data storage structure
of blockchain. However, using MHG in the storage layer greatly reduces the
storage overhead. In a MHTGC, the leaf nodes of the upper MHTs actually
store the same value as the root nodes of the corresponding lower MHGs.

4.2 Threat Model

In our model, KGCs from different administrative domains are considered to
have mutual trust, but there is a lack of trust between IoT devices. We assume
that an adversary has the following capabilities:

• The adversary can illegally monitor, collect, forge, replay and tamper with
communication messages.

100 L. Fan et al.

Table 1. List of Notations Used in our Scheme

Symbol Description

G1 additive cyclic group of order q

G2 multiplicative cyclic group of order q

e(·, ·) bilinear pairing
P generator of G1

k system master private key
Ppub system master public key
xf
i secret value selected by device efi

Sf
i private key of device efi

Df
i partial private key of device efi

P f
i full public key of device efi

IDf
i identity information of device efi

AIDf
i anonymous identity of device efi

ti timestamp
EK evaluation key
V K verification key
Hi(·) cryptographic hash functions

• The adversary can illegally read the data in the blockchain or storage server
and try to impersonate a legitimate user. However, the user’s real identity
information will never be exposed.

• The adversary can attack the nodes in blockchain, but cannot control more
than 1/3 of nodes.

5 Design Detail

We use CL-PKC mechanism to deploy CALA. In the CL-PKC mechanism, KGC
only generates the partial private key, and the full private key of the device is
generated locally that will never be transmitted on the Internet. Table 1 describes
the symbols used in our design scheme.

5.1 Initialization Phase

Before registration, each administrative domain needs to initialize the system.
KGC is the executor of system initialization.

(1) The parameters generated by KGC are: a large prime number q as order,
additive group (G1,+) and multiplicative group (G2, ·) of order q, a gener-
ator P of G1, bilinear pair e : G1 × G1 → G2.

An Anonymous Authentication Scheme with Low Overhead 101

(2) KGC selects a random number k ∈ Z∗
q as the master private key of system,

and the public key can be calculated by Ppub = kP . Thus the master key
pair of the system is (k, Ppub). k is kept secretly by KGC, while Ppub is
written into blockchain and exposed to IoT devices in its administrative
domain.

(3) The following four hash functions are adopted, H1 : {0, 1}∗ → G1, H2 :
{0, 1}∗ × T → Z∗

q , H3 : {0, 1}∗ × G2 → Z∗
q , H4 : {0, 1}∗ × Z∗

q → {0, 1}n.
Here n is the bit-length of messages, and T is the set of binary strings
representing the timestamp.

To sum up, the system parameters to be disclosed are: q, G1, G2, e, P , Ppub,
H1, H2, H3, H4.

5.2 Device Registration

Device A submits a registration request and its real identity information IDA

to KGC through a secure channel, where IDA ∈ {0, 1}∗. KGC checks whether
device A is registered repeatedly and is valid. If A is a legitimate user, KGC
selects a random number r ∈ Z∗

q , generates anonymous identity AIDA =
H4(IDA, r) and calculates the partial private key DA = kH1(IDA) ∈ G1. AIDA

and DA are transmitted to device A. AIDA will be regenerated by KGC after
expiration.

After receiving the partial private key, device A verifies the correctness of
DA by checking e(DA, P) = e(H1(IDA), Ppub). Device A selects the secret value
xA based on security parameters and IDA, where xA ∈ Z∗

q . The full private key
SA = xADA ∈ G1 can be obtained if secret value xA and partial private key DA

are set as input. The public key PA of A can be calculated by PA = xAPpub ∈ G1.
Note that the generation of the full private key SA and public key PA of device
A is not necessarily chronological. That is, the signature key pair (SA, PA) of
device A is generated locally. PA is written into the storage server by KGC along
with AIDA, while SA is always kept locally secretly.

Eventually, KGC updates and maintains the list of legitimate users.

5.3 Intra-domain Authentication

When device A applies for services or resources from device B in the same
administrative domain, it needs to complete authentication and get authoriza-
tion. Device A sends an authentication request to device B. If device A is not
in the legitimate user list, it should complete device registration first.

The authentication process is initialized by device A. Device A applies its
own private key to sign message M ∈ M, where message space M = {0, 1}n.
The signing algorithm used in this process can be described as follows:

(1) Generate a random number r ∈ Z∗
q .

(2) Compute integer α = H2(M, t), here t is the timestamp when message M
is generated.

102 L. Fan et al.

(3) Compute element Q = SA + αDA in G1.
(4) Compute element W = e(Q,P)r in G2.
(5) Compute integer u = H3(M,W).
(6) Compute element V = rH1(IDA) in G1.
(7) Output C = 〈u, V 〉 as the signature on message M .

Fig. 3. The process of device registration and intra-domain authentication.

C = 〈u, V 〉 is the signature of device A on message M , and device A sends
the signed message TokenAB = t||M ||C to device B. Device B first checks the
validity of timestamp t. If the difference between t and the current timestamp
of system exceeds a certain threshold, no further process will be performed. If
the timestamp is valid, device B will verify the signature of A with the following
verifying algorithm:

(1) Compute integer α = H2(M, t).
(2) Compute element R = PA + αPpub in G1.
(3) Compute element W ′ = e(V,R) in G2.
(4) Compute integer u′ = H3(M,W ′).
(5) If u′ = u holds, the verification succeed. Otherwise, the verification fails.

If the above steps are correct, the authentication succeeds. Device B will send
a response to Device A to confirm the success of authentication. Then, device
B will allocate relevant resources and services to device A within the expiration
time T . The process of device registration and local authentication is illustrated
in Fig. 3.

After A is authenticated by B, the two parties exchange roles, that is, A
becomes the verifier and B becomes the claimant. Device B sends authentica-
tion request and signed message TokenBA = t||M ||C to device A. Once B is
authenticated by A with the same algorithm, the two parties complete mutual
authentication.

An Anonymous Authentication Scheme with Low Overhead 103

5.4 Cross-Domain Authentication

For the privacy protection in the process of cross-domain authentication, we
use ZKP algorithm to realize the anonymity of the authentication mechanism.
Specifically, the ZKP algorithm generates evidence π based on the predefined
function F (u,w), where u is the common reference input provided by the verifier
and w is the private input provided by the prover. The verifier can confirm the
correctness of π without exposing w.

Fig. 4. The process of anonymous cross-domain authentication based on ZKP.

Suppose that a foreign domain IoT device efi sends a cross-domain access
request to a local domain IoT device elj . At this time, it is necessary for device
elj to verify the identity of device efi . The specific process of applying ZKP
algorithm to cross-domain authentication can be described as follows:

(1) Device efi of foreign domain launches a cross-domain authentication request
(Request1, AIDf

i , t1, SigSf
i
(IDf

i , t1)).
(2) KGCf always monitors various requests from its administrative domain.

When KGCf receives the cross-domain authentication request sent by efi ,
KGCf first checks the validity of the timestamp t1. If t1 is valid, KGCf

leverages the public key P f
i for signature verifying. Afterwards, KGCf gen-

erates evaluation key EK and verification key V K based on predefined
function F and security parameters λ. This process can be described as
KeyGen(F, λ) → (EK,V K). Then, KGCf sends evaluation key EK and
common reference input u to device efi , (EK,u, t2, Sigkf (EK, t2)).

(3) Device efi uses evaluation key EK and common reference input u to prove
its legality without revealing its real identity IDf

i . This process can be

104 L. Fan et al.

described as Compute(EK,u,w) → (π, y), where y is the expected output
of function F , and the evidence π is used to prove the correctness of the
result. Device efi sends the message (AIDf

i , π, y, t3) to KGCf .
(4) After checking the validity of timestamp t3, KGCf adds the verification key

V K and common reference input u to the original message. KGCf signs
the message and sends (V K, u,AIDf

i , π, y, t4, Sigkf (t4)) to KGCl.
(5) KGCl receives the message from KGCf and checks the validity of times-

tamp t4. Then, it uses the public key of KGCf to verifies the signature.
And KGCl uses verification key V K and common reference input u to ver-
ify whether the function F can produce the expected output y, which can be
described as Verify(V K, u, π, y) → {0, 1}. If the verification is successful,
KGCl confirms device efi is a legitimate device from foreign domain. Then,
KGCl sends the verification result and the anonymous identity AIDf

i to
device elj , (Result, t5, AIDf

i , Sigkl(Result, t5)).
(6) Finally, elj checks the validity of t5 and verifies the signature of KGCl.

If efi is considered to pass the cross-domain authentication, elj sends the
authentication response to efi at t6. Otherwise, cross-domain authentication
fails and the access is denied.

If all the above steps are completed, device efi can conduct cross-domain
access and communicate with device elj in an anonymous way. The process of
anonymous cross-domain authentication based on ZKP is illustrated in Fig. 4.

5.5 Key Agreement

The key agreement mechanism is adopted to achieve secure communication
between devices. Here we assume that the two devices share the same elliptic
curve equation E(Fp). For two devices ei and ej , the process of key agreement
is described as follows: First, device ei generates a random number ri ∈ Z∗

q , and
calculates a public value Ri = riPi + riPj , where Pi, Pj are the public keys of
the devices. Then, ei sends Ri and timestamp t to device ej . After receiving the
message from ei, device ej checks the validity of the timestamp t, and generates
another random number rj ∈ Z∗

q . Then, the public value Rj = rjPi + rjPj is
calculated by ej and sent to ei. At this moment, both ei and ej independently
calculate Kij = rjRi = riRj using the random number generated by themselves
and the public value provided by the other. Finally, the session key sk can be
derived based on the following formula:

sk = H2(Kij ||Ri||Rj , t) (4)

5.6 Data Correctness Verification

Most of the information is stored in the storage layer, which includes system
public parameters, domain master public key, public keys and anonymous iden-
tities of IoT devices, etc. The data stored in storage servers is considered to

An Anonymous Authentication Scheme with Low Overhead 105

be at risk of being corrupted or maliciously tampered. Blockchain is leveraged
to verify the correctness of the data. However, if the hash value of each data is
stored separately in the blockchain, it will significantly increase the storage over-
head and the communication overhead of the blockchain layer. Inspired by Ref.
[7], which uses an MMHT structure to manage the data, we design an MHTGC
structure to achieve fast correctness verification of large amounts of data.

Table 2. Comparison of Security Attributes

Scheme Ref. [7] Ref. [13] Ref. [22] Ref. [27] Ref. [32] Ours

Mutual Authentication ✗ ✗ ✓ ✓ ✗ ✓

Key Agreement ✗ ✗ ✓ ✗ ✗ ✓

Anonymity ✓ ✗ ✓ ✓ ✓ ✓

Unlinkability ✓ ✓ ✗ ✓ ✓ ✓

No Trusted Third Party ✗ ✓ ✗ ✗ ✓ ✓

Cross-Domain ✓ ✗ ✓ ✓ ✗ ✓

Common Attacks Resistance ✓ ✓ ✓ ✓ ✓ ✓

The lower layer of our MHTGC structure is located at the storage layer
and consists of MHG with original data as leaf nodes. The upper layer of our
MHTGC structure is MHT located at the blockchain layer, with the root nodes
of MHG in the lower layer as leaf nodes. When the storage layer collects N new
data, an MHG containing N leaf nodes is created to manage the data. Then,
the storage layer sends the root node of the MHG to the blockchain layer. After
receiving the root node, the blockchain layer needs to verify the correctness of
the root of the MHG. Specifically, the blockchain randomly selects b leaf nodes
from the MHG and sends them to the storage layer. Then, the storage layer
generates a Merkle proof π = σ\ρ about these b leaf nodes, where ρ is the set of
nodes on the paths from the leaf nodes to the root node, σ is the set consisting
of the sibling nodes of each node in ρ, and \ denotes the set difference operation.
Finally, the blockchain layer verifies the correctness of the root node. If the root
node is correct, it will be written into the blockchain and an address will be
returned. Otherwise, the root node will be discarded.

6 Theoretical Analysis of CALA

We compare the security attributes between our scheme and existing relevant
schemes. The results are listed in Table 2, where “✓” means the corresponding
security attribute is satisfied, and “✗” means the attribute is not satisfied.

• Mutual Authentication: In our scheme, both devices participating in authen-
tication are required to verify the identity of each other, and to verify the
reliability of received messages. For both intra-domain and cross-domain

106 L. Fan et al.

authentication, such mutual trust is necessary so that attackers cannot imper-
sonate a legal device to pass the authentication.

• Key Agreement: Attackers have the ability to intercept messages sent by
devices through eavesdropping. Therefore, participants in the authentication
process need to negotiate a shared key sk = H2(Kij ||Ri||Rj , t) to further
ensure communication security and avoid the leakage of sensitive informa-
tion. Since our scheme is designed on the elliptic curve discrete logarithm
problem (ECDLP), it is impossible for an adversary to derive the negotiated
session keys in conventional polynomial time.

• Anonymity: Participants use anonymous identities instead of real identi-
ties for communication. In our scheme, no adversary can speculate the real
identity ID through anonymous identity AID, because the hash function
AIDf

i = H4(IDf
i , r) has a strong collision resistance characteristic. There-

fore, even if adversaries illegally access the information stored in blockchain,
they cannot know the real identity of other devices.

• Unlinkability: Even if the attacker illegally accesses the blockchain and con-
tinuously obtains anonymous identity, the attacker cannot induce the user’s
real identity. Since the anonymous identity in CALA is temporary, there is
no mathematical relationship between anonymous identities generated by the
device at different periods. In addition, it is not feasible for an attacker to
obtain the private key of the device by intercepting session messages.

• No Trusted Third Party: In our design, KGC only generates partial private
key, while the full private key is generated by the device and always stored
locally. In other words, KGC is a semi-trusted third party, which is different
from CA in PKI and PKG in IBC. Our scheme is considered that there is no
trusted third party.

• Cross-Domain: There is often a lack of trust between different administrative
domains. Compared with intra-domain authentication, cross-domain authen-
tication faces greater challenges. In this scheme, IoT devices from different
administrative domains construct mutual trust without a trusted third party
involved.

• Common Attacks Resistance: (i) In our scheme, the receiver checks the valid-
ity of the timestamp at the first moment of receiving the interactive message.
At the same time, the sender signs the message containing timestamp with
private key, which ensures that the timestamp is not tampered with. That is,
if attackers replay the messages intercepted, the subsequent operation will
be interrupted because the messages have expired. (ii) During the authenti-
cation process, only legitimate devices have anonymous identities, and their
anonymous identities and public keys will be written to blockchain by KGC.
Even if attackers obtain anonymous identities and public keys, the corre-
sponding private keys cannot be leaked. Thus, it is impossible for imperson-
ation attacks to succeed. (iii) The scheme we designed binds the devices’
anonymous identities to public keys. The same device cannot be registered
repeatedly. If the content of message is tampered by an attacker, the message
will not be verified by the receiver. Our solution can effectively prevent man-
in-the-middle attacks. (iv) The anonymous identities of devices have an

An Anonymous Authentication Scheme with Low Overhead 107

expiration time, thus devices need to reapply for anonymous identities from
KGC if identities expire. If a device has any malicious behavior, KGC will
reject the request and record the device in the revocation list. Therefore, the
scheme we designed can effectively resist internal attacks.

Table 3. Time Consumption in Signature Generation and Verification

Scheme Name Signing Sign.Time Verifying Verify.Time

Ref. [7] Texp 1.34 ms Texp 1.36 ms
Ref. [13] 2Ts + Te 0.85 ms Tp + 2Te 2.65 ms
Ref. [22] Tp + Ts + Te 2.93 ms 2Tp + Ts + Te + 2Ta 5.42 ms
Ref. [27] 6Ts + 2Ta 1.97 ms 8Ts + 6Ta 2.59 ms
Ref. [32] Ts 0.41 ms Tp + Ts + Ta 5.30 ms
Ours Tp + 2Ts + Te + Ta 3.19 ms Tp + Ts + Ta 2.81 ms

7 Experiment and Evaluation

7.1 Experimental Settings

We implement blockchain on the FISCO BCOS platform which adopts PBFT
as the consensus protocol [1]. Blockchain communicates with other entities
through the Web3 library. SHA-256 is chosen as the hash algorithm for the
system. Among the various ZKP algorithms, we choose the Groth16 algorithm
to assist the experiment and complete the authentication process. We simulate
two administrative domains in the experiments. The operations of KGC are exe-
cuted in a laptop with Intel(R) Core(TM) i5-11300H CPU @3.1GHz, 16.0GB
RAM, and Window 11 operating system. The operations of IoT devices are exe-
cuted in a virtual machine with 4GB memory and Ubuntu 16.04 LTS system,
hosted on the desktop using VMware Workstation 15 Pro.

7.2 Performance Analysis

Time Consumption in Authentication. The comparison of the time con-
sumption between our scheme and other relevant schemes is shown in Table 3.
Here, Tp denotes the time of a bilinear pairing operation, Ts denotes the time of a
scalar point multiplication operation in G1, Ta denotes the time of a point addi-
tion operation, Te denotes the time of an exponentiation operation, Tv denotes
the time of a modular inversion operation, and Texp denotes the time of an expo-
nentiation operation in RSA algorithm. We calculate the time consumption of
different authentication schemes in signing and verifying based on the average
of 1,000 runs with various inputs. The results are illustrated in Table 3.

108 L. Fan et al.

To sign a given message M , our authentication scheme requires one bilinear
pairing operation, two scalar point multiplications, one point addition, and one
exponentiation operation. Due to the introduction of timestamp t and partial
private key DA, the computational complexity of the signing process is slightly
increased. Compared with Ref. [22], our scheme only spends an additional 0.26ms
in signing to achieve a trade-off between security and efficiency. Nevertheless, the
process of our signature verifying is more efficient than Ref. [22], Ref. [32], and
the time consumption is close to that of Ref. [13] Ref. [27].

Table 4. Comparison of Signature Length

Scheme Ref. [7] Ref. [13] Ref. [22] Ref. [27] Ref. [32] Ours

Length |Zr| |G1|+ |G2| |G1|+ |Z∗
q | 3|G1|+ 4|Z∗

q | |G1|+ |Z∗
q | |G1|+ |Z∗

q |
Size 128B 128B 96B 256B 96B 96B

Fig. 5. The comparison of storage overhead of different schemes.

Signature Length. We compare the length of signatures generated by different
authentication schemes. In our experiments, an elliptic curve with 512-b group
is utilized, which is equal to 1024-b RSA security level [13]. The results are
listed in Table 4, where |Zr| represents the length of the modulus adopted in
RSA algorithm, |G1|, |G2|, |Z∗

q | represent the length of the elements in each set,
respectively. The length of the signature generated by our scheme is |G1|+|Zq| =
96 Bytes, which is equal to that of Ref. [22], Ref. [32], and is smaller than that of
Ref. [7], Ref. [13] and Ref. [27]. The signature length affects the communication
overhead, which gives our scheme an advantage of communication.

Storage Overhead. The storage overhead is only compared with Ref. [7] and
Ref. [22], because both of them design a storage layer. However, due to the
fact that each scheme stores different data fields in the storage layer and some
fields (e.g., domain names, etc.) are variable in length, it is impossible to obtain

An Anonymous Authentication Scheme with Low Overhead 109

accurate storage overhead. Thus, in our experiment, we assume that storing
relevant information (e.g., public keys, etc.) for each device (or user) consumes
a total of 128 bytes of memory in the storage layer. Meanwhile, we assume that
the sizes of the hash values for data verification stored in the blockchain are all
32 bytes. The number of leaves in each MHT and MHG is set to 64.

Figure 5 illustrates the storage overhead of different schemes at the storage
layer and blockchain layer, respectively. In the storage layer, Ref. [22] has the
lowest storage overhead, because it does not require additional space for data
management. The storage overhead of our scheme is lower than that of Ref. [7].
However, in the blockchain layer, the storage overhead of Ref. [22] is significantly
higher than that of other schemes, since it does not adopt integrated data veri-
fication. In practice, due to the limited storage capacity and throughput speed
of the blockchain, writing excessive amounts of data into the blockchain should
be avoided.

Fig. 6. The comparison of additional storage overhead for data management.

Fig. 7. The computational overhead of generating and verifying Merkle proof.

To further compare the storage overhead of our scheme with Ref. [7], the
additional storage overhead used for data management is illustrated in Fig. 6.
Note that Ref. [22] does not adopt integrated data management, so it is not
comparable with our model in this experiment. It can be observed that the

110 L. Fan et al.

additional storage overhead is proportional to the number of leaf nodes. With
the increase of the number of leaf nodes, the storage overhead that our scheme
can reduce is significantly larger. Specifically, when the number of leaf nodes is
256, the number of additional stored hash values of Ref. [7] is 511 (15.97KB).
In contrast, the number of additional stored hash values of ours is only 319
(9.97KB). The storage overhead is reduced by 37.6%. When the number of leaf
nodes is 1024, the number of additional stored hash values of Ref. [7] and ours
are 2047 (63.97KB) and 1151 (35.97KB), respectively. At this time, the storage
overhead is reduced by 43.7%. Theoretically, when the number of leaf nodes is
sufficiently large, the storage overhead of our scheme is reduced to 50% of that
of Ref. [7], which has been proved in Sect. 3.1.

Computational Overhead in Data Verification. In the process of data
verification, Merkle proofs are need to generate for several randomly assigned
leaf nodes. At the same time, fast verification of the correctness is also required.
In this set of experiments, we compare the computational overhead of our scheme
and Ref. [7] in generating Merkle proofs and verifying data correctness, since
other schemes do not employ an integrated verification mechanism.

Figure 7(a) and (b) illustrate the length of Merkle proof and the compu-
tational overhead of verifying the proof, respectively. Overall, the verification
complexity (i.e., the number of hash operations) is proportional to the proof
length, while the length of the proof is proportional to the logarithm of the
number of leaf nodes (i.e., 	log2 N
). More specifically, when the number of leaf
nodes is 64, our scheme reduces the proof length by 41.6% compared to Ref. [7],
and the verification complexity is reduced by 55.6%. As the number of leaf nodes
increases, there is a slight decrease in the percentage of the reduced complexity
by our scheme. However, even when N = 1, 024, our scheme is still able to reduce
the proof length by 31.2% and the verification complexity by 43.6%. This fully
demonstrates that our scheme can effectively reduce the computational overhead
to achieve light-weight data verification.

8 Conclusion

In this paper, we propose a certificateless cross-domain authentication scheme
that combines low overhead and anonymity, named CALA. Specifically, the
underlying cryptography theory is CL-PKC mechanism, which treats KGC as
a semi-trusted third party. Since the full private key and public key are gen-
erated locally, there is no key escrow problem. Due to the limited resources
of the blockchain, we design an MHTGC structure to achieve fast correctness
verification while reducing a large amount of computational and storage over-
head. Compared with MHT, MHG can significantly reduce the length of Merkle
proofs as well as the complexity of verification. To address the issue of lack of
trust among IoT devices during cross-domain authentication, we implemented
anonymous authentication leveraging ZKP algorithm to protect the sensitive

An Anonymous Authentication Scheme with Low Overhead 111

identity information of users. Both security analysis and experimental results
demonstrate the effectiveness of CALA.

Acknowledgements. This work was supported by the National Key R&D Program
of China under Grant No. 2022YFB3102304 and in part by National Natural Science
Foundation of China Grants (62225105, 62001057).

References

1. FISCO BCOS open source community. https://www.fisco.com.cn/en/about_41.
html. Accessed 8 Jun 2023

2. Abdullaziz, O.I., Wang, L., Chen, Y.: HiAuth: hidden authentication for protecting
software defined networks. IEEE Trans. Netw. Serv. Manag. 16(2), 618–631 (2019)

3. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-40061-5_29

4. Ali, G., et al.: xDBAuth: blockchain based cross domain authentication and autho-
rization framework for internet of things. IEEE Access 8, 58800–58816 (2020)

5. Andersen, M.P., et al.: WAVE: a decentralized authorization framework with tran-
sitive delegation. In: 28th USENIX Security Symposium, USENIX Security, Santa
Clara, CA, USA, 14–16 August 2019, pp. 1375–1392. USENIX Association (2019)

6. Bai, Q.H., Zheng, Y., Zhao, L., Chun, H., Cheng, C.: Research on mechanism of
PKI trust model. Appl. Mech. Mater. 536–537, 694–697 (2014)

7. Chen, J., Zhan, Z., He, K., Du, R., Wang, D., Liu, F.: XAuth: efficient privacy-
preserving cross-domain authentication. IEEE Trans. Dependable Secur. Comput.
19(5), 3301–3311 (2022)

8. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (1976)

9. Du, R., Li, X., Liu, Y.: A cross-domain authentication scheme based on zero-
knowledge proof. In: Lai, Y., Wang, T., Jiang, M., Xu, G., Liang, W., Castiglione,
A. (eds.) Algorithms and Architectures for Parallel Processing, ICA3PP 2021.
LNCS, vol. 13156, pp. 647–664. Springer, Cham (2022). https://doi.org/10.1007/
978-3-030-95388-1_43

10. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

11. He, D., Ma, M., Zeadally, S., Kumar, N., Liang, K.: Certificateless public key
authenticated encryption with keyword search for industrial internet of things.
IEEE Trans. Ind. Inform. 14(8), 3618–3627 (2018)

12. Huang, C., et al.: Blockchain-assisted transparent cross-domain authorization and
authentication for smart city. IEEE Internet Things J. 9(18), 17194–17209 (2022)

13. Karati, A., Islam, S.H., Karuppiah, M.: Provably secure and lightweight certifi-
cateless signature scheme for IIoT environments. IEEE Trans. Ind. Inf. 14(8),
3701–3711 (2018)

14. Lesavre, L., Varin, P., Mell, P., Davidson, M., Shook, J.M.: A taxonomic app-
roach to understanding emerging blockchain identity management systems. CoRR
abs/1908.00929 (2019)

15. Liu, X., Ma, W.: CDAKA: a provably-secure heterogeneous cross-domain authen-
ticated key agreement protocol with symptoms-matching in TMIS. J. Med. Syst.
42(8), 135:1–135:15 (2018)

https://www.fisco.com.cn/en/about_41.html
https://www.fisco.com.cn/en/about_41.html
https://doi.org/10.1007/978-3-540-40061-5_29
https://doi.org/10.1007/978-3-030-95388-1_43
https://doi.org/10.1007/978-3-030-95388-1_43

112 L. Fan et al.

16. Liu, Y., Yang, Z.: The research and design of the proxy for certificate vali-
dation based on distributed cross-certification. In: 5th International Conference
on Applied Computing and Information Technology, 4th International Confer-
ence on Computational Science/Intelligence and Applied Informatics, 2nd Inter-
national Conference on Big Data, Cloud Computing, Data Science & Engineering,
ACIT/CSII/BCD, Hamamatsu, Japan, 9–13 July 2017, pp. 135–140. IEEE (2017).
https://doi.org/10.1109/ACIT-CSII-BCD.2017.18

17. Ma, M., Shi, G., Shi, X., Su, M., Li, F.: Revocable certificateless public key encryp-
tion with outsourced semi-trusted cloud revocation agent. IEEE Access 8, 148157–
148168 (2020)

18. Matsumoto, S., Reischuk, R.M.: IKP: turning a PKI around with decentralized
automated incentives. In: 2017 IEEE Symposium on Security and Privacy, SP
2017, San Jose, CA, USA, 22–26 May 2017, pp. 410–426. IEEE Computer Society
(2017). https://doi.org/10.1109/SP.2017.57

19. Pâris, J., Schwarz, T.J.E.: Merkle hash grids instead of Merkle trees. In: 28th
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, MASCOTS, Nice, France, 17–19 November 2020, pp.
1–8. IEEE (2020). https://doi.org/10.1109/MASCOTS50786.2020.9285942

20. Rathore, M.M., Bentafat, E., Bakiras, S.: Smart home security: a distributed
identity-based security protocol for authentication and key exchange. In: 2019 28th
International Conference on Computer Communication and Networks (ICCCN),
pp. 1–9 (2019). https://doi.org/10.1109/ICCCN.2019.8847034

21. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7_5

22. Shen, M., et al.: Blockchain-assisted secure device authentication for cross-domain
industrial IoT. IEEE J. Sel. Areas Commun. 38(5), 942–954 (2020)

23. Tomar, A., Tripathi, S.: BCAV: blockchain-based certificateless authentication sys-
tem for vehicular network. Peer-to-Peer Netw. Appl. 15, 1733–1756 (2022). https://
doi.org/10.1007/s12083-022-01319-2

24. Tong, F., Chen, X., Wang, K., Zhang, Y.: CCAP: a complete cross-domain authen-
tication based on blockchain for Internet of Things. IEEE Trans. Inf. Forensics
Secur. 17, 3789–3800 (2022)

25. Wang, S., Ma, Z., Liu, J., Luo, S.: Research and implementation of cross-chain
security access and identity authentication scheme of blockchain. Netinfo Secur.
22, 61–72 (2022)

26. Wei, S., Li, S., Wang, J.: A cross-domain authentication protocol by identity-based
cryptography on consortium blockchain. Chin. J. Comput. 44, 908–920 (2021)

27. Xi, N., Li, W., Jing, L., Ma, J.: ZAMA: a ZKP-based anonymous mutual authen-
tication scheme for the IoV. IEEE Internet Things J. 9(22), 22903–22913 (2022)

28. Xu, R., Chen, Y., Li, X., Blasch, E.: A secure dynamic edge resource federation
architecture for cross-domain IoT systems. In: 31st International Conference on
Computer Communications and Networks, ICCCN, Honolulu, HI, USA, July 2022,
pp. 1–7. IEEE (2022). https://doi.org/10.1109/ICCCN54977.2022.9868843

29. Xue, L., Huang, H., Xiao, F., Wang, W.: A cross-domain authentication scheme
based on cooperative blockchains functioning with revocation for medical consor-
tiums. IEEE Trans. Netw. Serv. Manage. 19(3), 2409–2420 (2022). https://doi.
org/10.1109/TNSM.2022.3146929

30. Yang, D., Cheng, Z., Zhang, W., Zhang, H., Shen, X.: Burst-aware time-triggered
flow scheduling with enhanced multi-CQF in time-sensitive networks. IEEE/ACM
Trans. Netw. (2023). https://doi.org/10.1109/TNET.2023.3264583

https://doi.org/10.1109/ACIT-CSII-BCD.2017.18
https://doi.org/10.1109/SP.2017.57
https://doi.org/10.1109/MASCOTS50786.2020.9285942
https://doi.org/10.1109/ICCCN.2019.8847034
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/s12083-022-01319-2
https://doi.org/10.1007/s12083-022-01319-2
https://doi.org/10.1109/ICCCN54977.2022.9868843
https://doi.org/10.1109/TNSM.2022.3146929
https://doi.org/10.1109/TNSM.2022.3146929
https://doi.org/10.1109/TNET.2023.3264583

An Anonymous Authentication Scheme with Low Overhead 113

31. Yang, D., et al.: DetFed: dynamic resource scheduling for deterministic federated
learning over time-sensitive networks. IEEE Trans. Mob. Comput. (2023). https://
doi.org/10.1109/TMC.2023.3303017

32. Zhang, L., Xu, J.: Anonymous authentication scheme based on trust and blockchain
in VANETs. In: Lai, Y., Wang, T., Jiang, M., Xu, G., Liang, W., Castiglione, A.
(eds.) Algorithms and Architectures for Parallel Processing, ICA3PP 2021, Part II.
LNCS, vol. 13156, pp. 473–488. Springer, Cham (2022). https://doi.org/10.1007/
978-3-030-95388-1_31

33. Zhang, W., et al.: Optimizing federated learning in distributed industrial IoT: a
multi-agent approach. IEEE J. Sel. Areas Commun. 39(12), 3688–3703 (2021).
https://doi.org/10.1109/JSAC.2021.3118352

https://doi.org/10.1109/TMC.2023.3303017
https://doi.org/10.1109/TMC.2023.3303017
https://doi.org/10.1007/978-3-030-95388-1_31
https://doi.org/10.1007/978-3-030-95388-1_31
https://doi.org/10.1109/JSAC.2021.3118352

UAV-Assisted Data Collection
and Transmission Using Petal Algorithm

in Wireless Sensor Networks

Xueqiang Li , Ming Tao(B) , and Shuling Yang

School of Computer Science and Technology, Dongguan University of Technology,
Dongguan 523808, People’s Republic of China

{lixq,taom,shulingyang}@dgut.edu.cn

Abstract. With advancements in unmanned aerial vehicle (UAV) tech-
nology, the utilization of UAVs for data collection and transmission has
become widespread in wireless sensor networks (WSNs). In this paper,
the energy consumption of UAVs, the integrity of data collection and full
coverage and so on are taken into account. Consequently, a dynamic UAV
data collection model is formulated, with the objectives of minimizing the
number of UAVs, reducing their flight distances, and optimizing service
quality within WSNs. To address this model, the data collection nodes
are initially determined using the Kmeans algorithm, followed the petal
algorithm is proposed to search for the optimal flight route of UAVs.
Finally, experimental comparisons were conducted, involving four test
problems with different scales of sensors and five classic path planning
algorithms, in comparison with the algorithm proposed in this paper.
The results consistently demonstrate that the proposed algorithm yields
better solution outcomes, effectively addressing the challenge of the UAV-
assisted data collection.

Keywords: Wireless sensor networks · the UAV-assisted data
collection · Path planning

1 Introduction

With the development of big data technology, urban and industrial intelligence
has become a trend in national, societal, and enterprise development [1]. In this
trend, the utilization of UAVs for data collection and transmission, based on the
Internet of Things (IoT) architecture, has been widely applied in various domains
such as disaster management, agricultural protection, environmental monitoring,
and surveillance. It is estimated that by 2030, the number of sensors will be
more than 100 trillion worldwide [2]. Hence, the task of collecting substantial
data from sensors, characterized by low energy consumption, minimal latency,
and high reliability, presents a substantial challenge. Over the years, scholars
have been actively researching the issues in this field [3,4].

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14493, pp. 114–125, 2024.
https://doi.org/10.1007/978-981-97-0862-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0862-8_8&domain=pdf
http://orcid.org/0000-0003-4895-2011
http://orcid.org/0000-0003-1175-5380
http://orcid.org/0000-0002-4242-9986
https://doi.org/10.1007/978-981-97-0862-8_8

UAV-Assisted Data Collection and Transmission 115

Conventionally, data collection in WSNs is achieved through multi-hop trans-
missions scheme, where data collected by sensors is transmitted hop by hop
through intermediate sensors and ultimately access the system to the inter-
net [5,6]. Under this scheme, the distance between adjacent sensors must be
within the communication range. Furthermore, the issue of energy imbalance of
sensors during data transmission is known to result the occurrence of “energy
holes” around the receiver, reducing network lifetime [7]. Additionally, sensors
near the receiver typically experience better Quality of Service (QoS), while
those farther away tend to experience relatively poorer QoS. This QoS imbal-
ance experienced by sensors at different positions adversely affects the timeliness
and reliability of data transmission [8]. Therefore, it is crucial to balance QoS
among sensors. Moreover, it is also required that all data collected by sensors
should be covered by the UAVs. Otherwise, data from uncovered sensors will be
discarded [9].

In order to address the data collection and transmission issues within tradi-
tional WSNs, the UAV-assisted data collection and transmission have gradually
been proposed, due to the high mobility of UAVs. By directly collecting all or
a subset of data from sensors, UAVs can effectively reduce the number of trans-
mission hops in WSN, thereby reducing network energy consumption of sensors
and improving data transmission reliability of WSNs [10,11]. In recent years, a
substantial amount of research work has been conducted by scholars in the field
of the UAV-assisted data collection and transmission.

Miao et al. aimed to achieve both time and energy efficiency in data collec-
tion by incorporating metrics such as the concurrent uploaded data volume, the
number of neighbors, and the moving tour length of the sink into a single met-
ric [12]. Zhou et al. proposed a three-phase energy-balanced heuristic algorithm
for scheduling mobile sinks and prolonging the network lifetime. They employed
a clustering algorithm inspired by the k-dimensional tree algorithm to assign
uniformly divided grid cells to clusters, ensuring similar energy consumption in
each cluster [13]. Chang et al. introduced a novel tree-based power-saving scheme
to reduce the data transmission distances of the sensors [14]. Tao et al. intro-
duce a new concept of ‘great full-coverage subgraph’ to generate candidate area
for UAV deployment and transform the investigated problem into a traditional
K-center problem and build a multi-objective joint optimization problem with
multiple constraints [15].

Although the proposed strategies were demonstrated demonstrate high effec-
tiveness in data collection within specific monitoring regions, most approach still
possesses certain limitations that warrant further discussion. Moreover, none of
the previous studies have considered the dynamic utilization of UAVs for data
collection.

The issue of the UAV-assisted data collection and transmission faces the
challenge of planning the flight path of the UAVs, which is similar to the vehi-
cle routing problem (VRP) and falls under the category of NP problems. Cur-
rently, there exist several well-known deterministic algorithms. Among them are
the nearest neighbor algorithm proposed by Rosenkrantz et al. [16], the sav-
ings algorithm introduced by Clarke and Wright [17], the insertion algorithm

116 X. Li et al.

proposed by Mole and Jameson [18], the sweep algorithm was presented by
Gillett and Miller [19], the Split algorithm developed by Beasley [20], as well
as various randomly generated methods. Additionally, some deterministic algo-
rithms leverage effective inequalities and combine techniques from operations
research, such as branch and bound or integer programming, to continuously
optimize the current path. For instance, Perboli et al. [21] solve the vehicle
routes problems through the application of effective inequality constraints and
branch and bound methods. Baldacci R [22] proposed a deterministic algorithm
based on integer programming to optimize vehicle routes.

The current path is optimized and adjusted by the aforementioned algo-
rithms based on distance, angles, or inequality information. Local information
of the problem is primarily focused on by them without the consideration of the
global optimality characteristics of the optimal solution. By taking inspiration
from previous achievements and utilizing UAVs as mobile sinks, the problem
of the UAV-assisted data collection and transmission is modeled, and the petal
algorithm is proposed to solve this problem.

2 Mathematical Model for the UAV-Assisted Data
Collection in WSNs

The WSN model is designed to facilitate data collection and transmission from
sensors in the region to the data center through UAVs. The data can be trans-
mitted either through intermediate sensors along the communication links or
directly to the UAV. Subsequently, the UAVs transfer the collected data to the
data center.

2.1 WSN Model and Fundamental Concepts

Assuming M UAVs denoted as U = {u1, u2, · · · , uM} are deployed for dynamic
data collection and transmission among N sensors S = {s1, s2, · · · , sN} in a
square area of size R2. The entire WSN can be represented by an undirected
graph G(V,E), where V = (W,C, S) consists of one UAV depot W = {c0} ,
K collection nodes C = {c1, c2, · · · , cK} of UAV and N sensors S. The sets
C = {c0, c1, · · · , cK} and E = {(vi, vj)|vi, vj /∈ W × C} represent the edges
between sensors, the edges between sensors and collection nodes, and the edges
between different collection nodes, respectively.

To establish a reasonable data collection and transmission model for UAVs
in WSN, the following concepts are defined as follows:

Definition 1 (Neighbor Nodes). Assuming the communication radius
between sensors is denoted as r and the communication radius of UAVs is denoted
as R, for any two nodes vi, vj within the collection area, their Euclidean distance
is denoted as dij. vi and vj are considered neighbor nodes if one of the following
conditions is met.

(1) When (vi, vj) ∈ S, dij ≤ r.
(2) When (vi, vj) ∈ C × S, dij ≤ R .

UAV-Assisted Data Collection and Transmission 117

Definition 2 (Path). For a given undirected graph G, let there be an alternat-
ing sequence Γ = v0e1v1e2 · · · elvl that contains the nodes and edges of G. For
any i = 1, 2, · · · , l, the adjacent nodes vi, vj in the sequence, if they are neighbors
of each other, Γ is referred to as a path.

Definition 3 (Reachable Nodes). For any two nodes vi, vj in an undirected
graph G, if there exists a path that connects vi to vj , then vi and vj are said to
be reachable.

Definition 4 (Hop Count). For any two nodes vi, vj in an undirected graph
G, if vi, vj are reachable from each other, and the number of edges connecting vi
and vj is l , then the hop count between vi and vj is H(vi, vj) = l . If vi and vj
are not reachable, the hop count H(vi, vj) = ∞.

As shown in Fig. 1, the data of 30 sensors are collected by two UAVs, and all
sensors are served by and only one collection node. One of the routes is that the
UAV u1 departs from the depot and passes through the three collection nodes
c1, c2 and c3 to collect data and then returns. The other route is that U2 set off
and return to the depot after passing through c4 to c7. During the process of
data collection, except for sensors s5, s11 and s15, which need to be transferred
by s4, s9 and S18 respectively, the data of other sensors can be collected directly
by the UAVs, therefore, the hop count of s5, s11 and s15 is 2, and the hop count
of other sensors is 1.

Fig. 1. Optimization of the UAV-assisted data collection.

2.2 Mathematical Model of the UAV-Assisted Data Collection

In WSNs, when utilizing UAVs for data collection from sensors, several consid-
erations need to be considered. Firstly, due to the expensive nature of UAVs,

118 X. Li et al.

there is a need to reduce their usage quantity. Secondly, considering the battery
energy of UAVs and the timeliness of data collection in different scenarios, it is
necessary to minimize the flying distance of UAVs while satisfying energy con-
straints during flight, hovering, and data collection. Thirdly, taking into account
the battery capacity of sensors and the network’s lifespan, it is necessary to
balance QoS and the hops of data collection.

Objective 1: Cost of UAV usage. Considering the expensive prices of UAVs,
the first objective is to minimize the number of UAVs used for data collection.

min f1 = M (1)

where M represents the number of UAVs.

Objective 2: UAV flight path planning problem. Considering the data trans-
mission efficiency of UAVs and the energy consumption requirements for their
normal operation during flight, data collection, transmission, and return to the
UAV depot, the second objective is to minimize the total UAV flight distance.

min f2 =
M∑

m=1

∑

(i,j)∈C2

dijt
m
ij (2)

where dij represents the Euclidean distance between collection node ci and

ci, tmij =
{
1 the UAV um flies from ci to cj , and i �= j.
0 otherwise. .

Objective 3: Energy consumption of the data collection. On the one hand, it is
desired to collect data efficiently, which implies minimizing the energy required
for transmission between the sensors and the UAVs. On the other hand, it is
necessary to balance the flow of energy between the UAVs and sensors.

min f3 =
K∑

k=1

Hk + p · e1 · Std(HC) (3)

Where Hk =
N∑

n=1
H(ck, sn)xn

k represents the total number of hops from all

sensors at data collection node ck to the UAV, xn
k =

{
1 sn is served by ck.
0 otherwise. ,

HC =
K∑

k=1

Hk/K denotes the average number of hops at each collection node,

Std(HC) =

√
K∑

k=1

(Hk − H)2 represents the standard deviation of hop counts at

each collection node, and p(0 < p < 0.1) is introduced to balance the trade-off
between data collection efficiency and energy balance.

Additionally, several constraints need to be satisfied for the UAV-assisted
sensor data collection, as follows:

UAV-Assisted Data Collection and Transmission 119

Constraint 1: Each UAV departs from the UAV depot, follows a predetermined
planned path to collect and transmit data from multiple collection nodes, and
returns to the UAV depot.

K∑

k=1

tm0k =
K∑

k=1

tmk0,∀m ∈ 1, 2, · · · ,M. (4)

Constraint 2: The energy consumption including data transmission, hovering
and flight of the UAV, must be less than or equal to the battery capacity of the
UAV.

max
m∈1,2,··· ,M

Em ≤ E. (5)

Where Em = q1 · e2
N∑

n=1
yn
mvn + q2 · e3

K∑
k=1

zmkHk + e4
M∑

m=1

∑
(i,j)∈(W∪C)2

dijt
m
ij .

yn
m = xn

k · zmk, yn
m =

{
1 the data from sn is collected by um.
0 otherwise. . zmk =

K∑
i=0

tmik,

ymk =
{
1 the UAV um collects data at collection node ck.
0 otherwise. .

E represents the maximum energy consumption that a UAV can provide
for the service. Em represents the total energy consumption of the m-th UAV
during flight, hovering, and data collection. vn represents the amount of data that
collected from the n-th sensor. Assuming that the energy consumption of the
data collection is positively correlated with the amount of data from the serviced
sensor, with a correlation coefficient of q1, and the hover duration of UAV at
each collection node is proportional to the total hops count, with a correlation
coefficient of q2. e2 represents the energy required per unit of data during data
transmission. e3 represents the energy consumption of the UAV per unit hop
during each stop at a collection node. e4 represents the energy consumption per
unit distance during the UAV flight.

Constraint 3: Considering the practicality of UAV recharging and maintenance,
each UAV is limited to performing at most one complete cycle of flight mission.

K∑

k=1

tm0k ≤ 1,∀m ∈ 1, 2, · · · ,M. (6)

Constraint 4: To improve the efficiency of data collection, it is required that
the data of each sensor is collected only from one collection node.

K∑

k=1

xn
k = 1,∀n ∈ 1, 2, · · · , N. (7)

Constraint 5: To ensure data integrity, the collection nodes must cover all the
sensors in the area, meaning that each sensor is served by only one UAV when
it passing through the collection node.

120 X. Li et al.

M∑

m=1

tmij =
M∑

m=1

tmhi = 1,∀i ∈ C, j, h ∈ W ∪ C. (8)

3 Petal Algorithm for the UAV-Assisted Data Collection

In WSN, assuming the collection nodes and the UAV depot are determined,
the UAV-assisted data collection can be considered as a two-layer optimization
problem. The first layer involves the assignment of sensors, determining which
collection node should be responsible for collecting data from each sensor. The
second layer focuses on UAV path planning, determining the optimal route for
the UAV to collect data from the assigned collection nodes. Therefore, this prob-
lem falls into the category of NP-hard problems that combine two optimization
aspects. To address this challenge, a two-stage approach is employed in this
paper to solve the problem, and the petal algorithm is proposed for the path
planning of UAV.

3.1 Analysis of the UAV-Assisted Data Collection in WSNs

Regarding the first-layer optimization problem, the positions and quantities of
collection nodes not only affect the UAV flight routes in Objective 2, but also
impact the data collection efficiency and flow balance in Objective 3, because the
position of the collection point will affect the affiliation of the sensors. When the
positions of collection nodes are determined, the sensors that serviced by each
collection node can be identified by distance and hop count between sensors and
collection nodes. Thus, the amount of data and hop count required for data
collection and transmission at each collection node can be calculated.

Considering the complexity and difficulty of the problem, we first utilize the
position information of sensors and set the number and positions of multiple
collection nodes using the Kmeans clustering method, while satisfying the full
coverage constraint of sensors as the optimization objective. Then, we discuss the
optimization of UAV quantity and flight routes using the proposed petal model
algorithm under different positions and quantities of collection nodes. Based on
this approach, we propose an algorithm based on clustering and the petal model
to solve the dynamic UAV data collection problem in WSNs. The algorithm can
be divided into two steps to solve the problem:

Based on the above analysis, the position of the collection nodes will first be
determined by Kmeans clustering method, which needs to meet the requirements
of full sensor coverage, while making the objective 3 as small as possible. Then,
the petal algorithm is proposed to optimize the UAV quantity and flight routes
under different positions and quantities of collection nodes.

3.2 Petal Algorithm for the UAV-Assisted Data Collection in WSNs

The petal model is inspired by the non-crossing loop characteristics exhibited
by optimal paths in VRP. It adopts the concept of segmentation to generate

UAV-Assisted Data Collection and Transmission 121

initial paths. The basic principle is as follows: firstly, the starting and ending
points of each path are determined based on angle and distance information;
then, the nodes to be inserted are pre-classified according to the “along the way”
principle; finally, each node is inserted into the corresponding class of paths. The
pseudopod of the petal algorithm is as follow.

Algorithm 1. Pseudocode of Petal Algorithm
Input: the set of sensor S = {s1, s2, · · · , sN}; the UAV depot W = {c0}; the battery

capacity E of UAV;
Output: the data collection nodes and the flight routes of the UAVs;
1: Generate hop count matrix H. The minimum hops between any two sensors can

be calculated by the floyd algorithm.
2: Set K = 1.
3: Obtain K collection nodes through the Kmeans algorithm;
4: while the sensors in each cluster are unreachable do
5: K = K + 1.
6: Obtain K collection nodes through the Kmeans algorithm;
7: end while
8: for k = 1 to K do
9: Calculate the energy consumption Ek for data collection at the k-th collection

node according to Equation (5);
10: end for
11: Calculate the radian of each collection node starting at the UAV and ending at the

collection node.
12: Take a random radian as the starting radian.
13: Initial an empty route start with the UAV depot.
14: while exist an uninserted collection node do
15: if the constraint is violated then
16: Reinitialize an new empty route start with the UAV depot;
17: else
18: Insert the uninsterted collection node into the route one by one in a coun-

terclockwise direction;
19: end if
20: end while

/*Assume that the sum of the generated paths is T */
21: for t = 1 to T do
22: Select the collection node farthest from the UAV depot in t-th route;
23: Removes all nodes from the route except the selected collection nodes;
24: end for
25: Calculate the minimum cost when the deleted point is inserted into the T routes.
26: Reinsert the deleted into one of the T routes in turn according to the order of cost

from large to small with the minimum cost;

122 X. Li et al.

4 Experimental Simulation

4.1 Test Problem and Parameter Description

In order to evaluate the performance of the proposed algorithm, the UAV-
assisted data collection and transmission problem are experimented at N =
500, 1000, 1500, 2000 of sensors. The sensors were randomly distributed in an
area (0,

√
N)2, and the communication radius R = 3 of UAV. The communica-

tion radius r = 1 of sensor. The relevant parameter values in Sect. 2 are set as
follows: p = 1, q1 = 0.01, q2 = 0.1, e1, e2, e3, e4 = 1, E = 150.

All the algorithms proposed and compared in this paper were implemented
using Matlab 2016b. Each algorithm was independently run 50 times to ensure
reliable results.

4.2 Comparative Analysis of Experimental Results

(1) Membership Relationship between Sensors and Collection nodes In order to
address the issue of sensor coverage, the Kmeans algorithm was employed
in this paper to determine the relationship between collection nodes and
coverage rates, as illustrated in Fig. 2(a). Obviously, as the number of col-
lection nodes increases, the coverage of collection points also increases until
full coverage. Additionally, an example of the flight path maps of the UAVs
on Test1 is presented in Fig. 2(b).

(2) Path Planning for UAV Data Collection In the scenario of fixed collection
nodes, a comparative experiment was conducted between the method based
on the petal model and five classical path planning methods. The test results
on four different data sets are presented in Table 1 and Table 2. The bolded
data in the tables represent the best results obtained among the six algo-
rithms. The algorithm proposed in this paper can obtain a shorter flight
path while using a smaller number of UAVs. In addition, since the collection

Fig. 2. (a) Relationship between coverage and number of collection points. (b) an
example of the flight path maps of the UAVs on Test1.

UAV-Assisted Data Collection and Transmission 123

nodes of all algorithms on different problems are obtained by the kmeans
algorithm, the results of objective 3 are the same. The comparison results
for Objective 1–3 are shown in Fig. 3.

Table 1. The average value of six algorithms on Objective 1

Test problem Sweep algorithm Savings algorithm Nearest Neighbor algorithm Insertion algorithm Split algorithm Petal algorithm

Test 1 4 4 4 4 4.42 4
Test 2 11.60 8 8 8 12.32 8
Test 3 15.78 11 12 12 16.48 11
Test 4 23.4 16 16 17 24.94 15

Table 2. The minimum value of six algorithms on Objective 2.

Test problem Sweep algorithm Savings algorithm Nearest Neighbor algorithm Insertion algorithm Split algorithm Petal algorithm

Test 1 220.94 162.51 199.22 196.83 218.97 145.67
Test 2 805.86 492.51 511.02 521.21 801.98 458.68
Test 3 1148.76 669.00 798.82 748.86 1136.51 621.47
Test 4 1825.81 999.27 1073.14 1135.95 1693.01 949.33

Fig. 3. The normalized objective function values obtained by six algorithms on four
test problems.

124 X. Li et al.

5 Conclusion

This paper aims to minimize the number of UAVs, shorten their flying distances,
and optimize the service quality of the sensor network in WSNs. Under the
constraints of UAV energy consumption, integrity of sensor data collection, and
full coverage, we establish and solve the data collection and transmission problem
based on a dynamic UAV data collection and transmission model. Experimental
results demonstrate that the petal algorithm proposed in this paper, achieve
superior results in UAV path planning compared to five traditional path planning
algorithms on four test problems. The solutions affirm the effectiveness of the
proposed model and algorithms in this paper.

Acknowledgements. This work was supported in part by the Guangdong Key Con-
struction Discipline Research Ability Enhancement Project (Grant No. 2021ZDJS086);
in part by the Guangdong University Key Project (Grant No. 2019KZDXM012);
in part by the Natural Science Foundation of Guangdong Province (Grant No.
2021A1515010656); in part by Guangdong Basic and Applied Basic Research Founda-
tion (2022B1515120059); in part by the research team project of Dongguan University
of Technology (Grant No. TDY-B2019009); in part by the PhD Start-Up Fund of Dong-
guan University of Technology (GC300502-3); in part by the Natural Science Founda-
tion of Guangdong Province (Grant No. 2018A030313014); in part by the Guangdong
Basic and Applied Basic Research Foundation (2022A1515010088).

References

1. Tao, M., Ota, K., Dong, M.: Locating compromised data sources in IoT-enabled
smart cities: a great alternative-region-based approach. IEEE Trans. Industr. Inf.
14(6), 2579–2587 (2018)

2. Ehret, M.: The zero marginal cost society: the Internet of Things, the collaborative
commons, and the eclipse of capitalism. J. Sustain. Mobil. 2(2), 67–70 (2015)

3. Tao, M.: Semantic ontology enabled modeling, retrieval and inference for incom-
plete mobile trajectory data. Futur. Gener. Comput. Syst. 145, 1–11 (2023)

4. Bera, S., Misra, S., Roy, S.K., Obaidat, M.S., et al.: Soft-WSN: software-defined
WSN management system for IoT applications. IEEE Syst. J. 12(3), 2074–2081
(2018)

5. Zhao, M., Yang, Y., Wang, C.: Mobile data gathering with load balanced clustering
and dual data uploading in wireless sensor networks. IEEE Trans. Mob. Comput.
14(4), 770–785 (2015)

6. Xie, K., Ning, X., Wang, X.: An efficient privacy-preserving compressive data gath-
ering scheme in WSNs. Inf. Sci. 390, 82–94 (2017)

7. Rani, S., Ahmed, S.H., Talwar, R., et al.: Can sensors collect big data? An energy-
efficient big data gathering algorithm for a WSN. IEEE Trans. Industr. Inf. 13(4),
1961–1968 (2017)

8. Farzana, A.H.F., Neduncheliyan, S.: Ant-based routing and QoS-effective data col-
lection for mobile wireless sensor network. Wirel. Netw. 23(6), 1697–1707 (2017).
https://doi.org/10.1007/s11276-016-1239-6

9. Joshi, Y.K., Younis, M.: Restoring connectivity in a resource constrained WSN. J.
Netw. Comput. Appl. 66, 151–165 (2016)

https://doi.org/10.1007/s11276-016-1239-6

UAV-Assisted Data Collection and Transmission 125

10. Wu, Q., Liu, L., Zhang, R.: Fundamental tradeoffs in communication and trajectory
design for UAV enabled wireless network. IEEE Wirel. Commun. 26(1), 36–34
(2019)

11. Tunca, C., Isik, S., Donmez, M.Y., et al.: Distributed mobile sink routing for wire-
less sensor networks: a survey. IEEE Commun. Surv. Tut. 16(2), 877–897 (2014)

12. Miao, Y., Sun, Z., Wang, N., et al.: Time efficient data collection with mobile sink
and vMIMO technique in wireless sensor networks. IEEE Syst. J. 12(1), 639–647
(2018)

13. Zhou, Z., Du, C., Shu, L.: An energy-balanced heuristic for mobile sink scheduling
in hybrid WSNs. IEEE Trans. Industr. Inf. 12(1), 28–40 (2016)

14. Chang, J.Y., Shen, T.H.: An efficient tree-based power saving scheme for wireless
sensor networks with mobile sink. IEEE Sens. J. 16(20), 7545–7557 (2016)

15. Tao, M., Li, X.Q., Yuan, H.Q., Wei, W.H.: UAV-aided trustworthy data collection
in federated-WSN-enabled IoT applications. Inf. Sci. 532, 155–169 (2020)

16. Rosenkrantz, D.J., Steams, R.E., Lewis, P.M.: An analysis of several heuristics for
the traveling salesman problem. SIAM J. Comput. 6(3), 563–581 (1977)

17. Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number
of delivery points. Oper. Res. 12, 568–581 (1964)

18. Mole, R.H., Jameson, S.R.: A sequential route-building algorithm employing a
generalized savings criterion. Oper. Res. Q. 27(2), 503–511 (1976)

19. Gillett, B.E., Miller, L.R.: A heuristic algorithm for the vehicle-dispatch problem.
Oper. Res. 22(2), 340–349 (1974)

20. Beasley, J.: Route first-cluster second methods for vehicle routing. Omega 11(4),
403–408 (1983)

21. Perboli, G., Tadei, R., Vigo, D.: The two-echelon capacitated vehicle routing prob-
lem: models and math-based heuristics. Transp. Sci. 45(3), 364–380 (2011)

22. Baldacci, R., Mingozzi, A., Roberti, R., Calvo, R.W.: An exact algorithm for the
two-echelon capacitated vehicle routing problem. Oper. Res. 61(2), 298–314 (2013)

23. Li, X., Tao, M.: Location planning of UAVs for WSNs data collection based on
adaptive search algorithm. In: Chen, X., Yan, H., Yan, Q., Zhang, X. (eds.) ML4CS
2020. LNCS, vol. 12487, pp. 214–223. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-62460-6_19

https://doi.org/10.1007/978-3-030-62460-6_19
https://doi.org/10.1007/978-3-030-62460-6_19

DeletePop: A DLT Execution Time
Predictor Based on Comprehensive

Modeling

Yongzhe He1,2, Yueyuan Zhou1, En Shao1,2,3(B), Guangming Tan1,2,
and Ninghui Sun1,2

1 State Key Lab of Processors, Institute of Computing Technology, CAS,
Beijing 100190, China

{heyongzhe22z,zhouyueyuan,shaoen,tgm,snh}@ict.ac.cn
2 University of Chinese Academy of Sciences, Beijing 100049, China

3 Nanjing Institute of InforSuperBahn, Nanjing 211100, China

Abstract. The modeling and simulation of Deep Learning Training
(DLT) are challenging problems. Due to the intricate parallel patterns,
existing modelings and simulations do not consider enough factors that
influence the training, which brings inaccuracy for the prediction of DLT
time. To address these rising challenges, we propose DeletePop, a Deep
Learning Training Execution time Predictor based on comprehensive
modeling at the Operator level. It systematically abstracts the process
of DLT by dividing it into computation, memory access, and commu-
nication three parts. DeletePop could predict the Job Execution Time
(JET) according to the operator dataset obtained from the homogeneous
network. Finally, we integrate the DeletePop into a Job Scheduling Simu-
lator (JSS) DLTSim to make support more efficient scheduling. Although
the implementation of DeletePop is based on the TensorFlow framework,
the theoretical model could adapt to any other frameworks that use static
graphs. DeletePop achieves up to 90% accuracy for Homogeneous Net-
works, and we also provide the theoretical manners to add support for
Heterogeneous Networks.

Keywords: Deep Learning Training · Job Execution Time · Modeling
and Simulation · Job Scheduling Simulator

1 Introduction

Large-scale Deep Learning Training (DLT) jobs require a significant amount of
time and are typically executed in a distributed cluster environment. However,
the diverse neural network topologies used in DLT jobs can lead to decoupling
from large-scale clusters. The DLT software stack lacks optimized solutions for
job load, distributed training methods, and scheduling strategies, resulting in
significantly lower parallel efficiency than its theoretical performance.

In order to improve parallel efficiency and resource utilization, researchers
need to choose or even propose suitable scheduling algorithms. However, the
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14493, pp. 126–145, 2024.
https://doi.org/10.1007/978-981-97-0862-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0862-8_9&domain=pdf
https://doi.org/10.1007/978-981-97-0862-8_9

DeletePop: A DLT Execution Time Predictor 127

adjustment of scheduling algorithms by just-in-time optimizations is difficult.
To achieve this goal, it is imperative to utilize JSS for preemptive verification of
the efficacy of various DLT scheduling algorithms.

The execution time of DLT jobs would influence the resource location decision
of scheduling algorithms. Existing JSSs cannot achieve satisfactory results unless
keeping the execution time prediction of DLT jobs at an accurate level. To extend
the application scope of job scheduling and solve the accuracy issue of execution
time prediction, we firstly explore the execution mode of deep learning jobs to
find the factors that affect program performance. For example, the degree of
parallelism is a kind of execution mode.

Some research works have modeled the training process of deep learning and
provided support for the prediction of JET. However, most of them have only
modeled and predicted the computation part of the job, ignoring the memory
access and communication parts which account for the same large proportion. [3]
presents that when the Bert-Large model is trained in a distributed manner, its
communication overhead accounts for up to 76.8% of the total training time. At
the same time, the proportion of memory access intensive operators in BERT,
Transformer, CRNN, and other networks also exceeds 50% [33].

Unfortunately, the existing JSSs lack the support for predicting JET, they
have narrow application scopes and poor scalability. Job scheduling simulators
need a fine-grained model for scheduling algorithms and cluster environment
configuration. On the one hand, a large number of scheduling algorithms are
based on the execution time of jobs [6], such as longest job priority scheduling
[1,16], deadline-constrained scheduling [12], etc. On the other hand, different
cluster environment configurations will also affect the execution time of jobs. It
is necessary to realize the accurate execution time of DLT jobs in advance when
using a JSS.

In fact, the predictions of JET used in simulators are often different from the
real execution time, reasoning from the difficulty of gaining the exact execution
time. This dilemma worsens the credibility and effectiveness of the scheduling
simulator. Many JSSs require researchers to make statistics of the execution time
frequently and provide it to the simulator as input. Such a modeling method
brings great difficulty to time prediction. It is hard to determine the job’s execu-
tion time in advance with any cluster scale. Researchers face difficulty to confirm
the execution time of different jobs when running on different cluster environ-
ments with different GPU counts.

In order to solve the above issue, we propose DeletePop, a DLT execution
time predictor based on comprehensive modeling at the operator level. We made
the first observation that the execution time of each operator in different parallel
DLT jobs is definite on specific hardware, according to the parameters of the DLT
model. Besides the execution time on computation, we also model and predict the
DLT job’s execution time on each process’s memory access and communication.
In addition, we take each job’s operator as the granularity in the whole execution
prediction.

The development of DeletePop is based in DLTSim. The architecture of
DeletePop is shown in Fig. 1. A DLT job always contains many epochs, each

128 Y. He et al.

epoch is formed by many steps. During a single step, the behavior of pro-
gram could be split into three parts, they are computation, communication,
and memory access respectively. All behaviors are finished by plenty of opera-
tors. DeletePop takes a job as input, then predicts its JET without running a
job. Then DeletePop uses a JSS to optimize the scheduling algorithm according
to the predicted JET. By using DeletePop, researchers could quickly determine
a JET of large-scale DLT job, and further find a optimal scheduling algorithm
with a specific cluster and workload.

The main contributions of this paper are as follows:

1. It provides a fine-grained modeling method of DLT job’s process by three
kinds of resources: computing, memory access, and communication.

2. It provides a time prediction method for DLT job’s operator by the prior
knowledge of similar neural networks. The time prediction method of DLT
operator can reach an average accuracy of 90%.

3. It implements DeletePop, a JSS for distributed DLT job by fine-grained mod-
eling and time prediction method, which is adaptable to TensorFlow frame-
work.

Fig. 1. Architecture of DeletePop

2 Background and Current Challenges

This chapter introduces the background of a JSS. Firstly, we introduce some
distributed strategies of parallel training. Then we introduce some common
scheduling algorithms, job schedulers, and JSSs. Finally, the shortcomings of
the existing methods for predicting JET are discussed.

DeletePop: A DLT Execution Time Predictor 129

2.1 Distributed Strategy for Deep Learning Training

The most common parallelism mode is data parallelism [13], which places model
copies on each device so that each device processes a subset of the training
data and updates network parameters between model copies at the end of each
iteration. Data parallelism is effective for computationally intensive operators
with a small number of parameters, but not for operators with a large number
of parameters. Another common parallel mode is model parallelism [5], which
assigns disjoint subsets of a model to each device respectively. Model parallelism
can avoid parameter synchronization, but it needs data transmission between
devices. Model parallelism can effectively solve the problem of large comput-
ing graphs. Although model parallelism solves the problem that a single device
cannot accommodate the entire large-scale computing graph, there are strong
dependencies among computing graphs among devices, which have a certain
impact on the parallel efficiency. There are also studies using hybrid parallelism
[19,25], that is, both data parallelism and model parallelism, which combines
the advantages of the two parallel modes to achieve better results than the
single parallel mode. In addition, there are some works that use pipeline par-
allelism, which divides the training work into several sub-parts and takes the
form of pipeline to parallel the sub-parts. For example, PipeDream [17] compre-
hensively adopts intra-batch pipeline parallelism and inter-batch pipeline paral-
lelism. Compared with the traditional work that only uses intra-batch pipeline
parallelism, PipeDream achieved a speed increase of 5.3× on model training.

In the data parallel mode, distributed architectures can be further selected.
The most widely used distributed architectures include PS (Parameter Server)
[16] and All-Reduce [20,22]. In PS architecture, data and workload are dis-
tributed on worker nodes, while server nodes maintain global shared parame-
ters, which are expressed as dense or sparse vectors and matrices. However, PS
architecture will bring a lot of communication. All-reduce effectively improves
the problem of massive communication. Ring All-Reduce [9,12] is a commonly
used All-Reduce architecture. Ring All-Reduce organizes devices into a Ring
structure, and each device only needs to communicate with its two neighboring
devices. Ring All-Reduce reduces the amount of data in communication, it has
good scalability but poor fault tolerance. Besides the scheduling algorithm and
the hardware architecture, the greatest difference of DLT jobs comes from the
parallel mode. To avoid mistakes and lower the cost, JSS is essential.

2.2 Job Scheduling Simulator

Each scheduling algorithm has its own design principles and target orientation,
which drive scheduling decisions through fairness, capacity guarantee, resource
availability and other factors. It is very important to test and evaluate the
scheduling algorithm completely before deploying it to the production cluster.
However, testing and evaluating the scheduling algorithm in the real cluster con-
sumes a lot of computing resources and time and energy, which brings difficulties
to the research of scheduling algorithms.

130 Y. He et al.

The scheduling simulator can predict the performance of the scheduling algo-
rithm under some specific workloads and reduce the consumption of resources
and time during testing and evaluation. For example, the YARN scheduling
simulator [28] is a tool that can load applications on machines and simulate
large-scale YARN machines. It also combines the YARN scheduling simulator
with the distributed network simulator MaxiNet to enable it to conduct research
on joint job and flow scheduling. The Slurm simulator [24] can perform sev-
eral months of workload simulations for large HPC systems in a few days to
investigate configuration strategies for large cluster splitting and node sharing,
evaluate their potential benefits, and provide information on the possible ben-
efits of deploying such configurations. CQsim [30] is a Trace-based scheduling
simulator that is used to evaluate various scheduling policies and test the per-
formance of the task power-aware scheduling mechanism proposed in the paper
under different scales. Yang et al. [31] combined inference characteristics with
serverless paradigm in order to make universal servers meet the low latency and
high throughput requirements of machine learning services, then proposed INF-
less, the first specific serverless platform in the field of machine learning, and
tested the scheduling logic under large-scale clusters on the simulator. Evaluate
the effectiveness of controller algorithms and the overhead in INFless. Robson et
al. [21] developed a clock-cycle level accurate performance simulator to simulate
thread startup, scheduling, and communication between host and accelerator
for ProSE, an accelerator for protein design and discovery. Dadu et al. [4] pro-
posed TaskStream, a task execution model for accelerators, in order to make
reconfigurable accelerators such as CGRAs suitable for common task-parallel
workloads, and developed a simulator for its accelerator Delta to provide simu-
lation for small, individually scheduled program units of work. DLTSim [29] is a
GPU cluster scheduling simulator with fault generator, it could simulate the exe-
cution of large-scale jobs under different scheduling policies. Due to its excellent
modularization and flexibility, we develop DeletePop based on DLTSim.

The above functions of the JSS can be summarized in Table 1.

2.3 Major Challenges of Modeling and Simulation of Deep Learning
Training Job

Using the simulator, we can quickly test and evaluate scheduling algorithm.
On the one hand, the use of scheduling simulators needs to know the expected
completion time of the program. On the other hand, many scheduling algorithms
rely on the execution time of operation. Therefore, in an era when the scale
of DLT operations has increased dramatically, how to effectively forecast the
program execution time became a problem to be solved. There are three major
challenges when modeling and predicting the execution time of DLT job.

Challenge I: Current modeling of DLT jobs does not consider the cost of Non-
computing and lacks support for different architectures. Kaufman et al. [11] used
Graph Neural Network to predict the execution time of programs on TPU by
means of machine learning. Their performance model achieved an average error
of 3.7% and an average correlation coefficient of 0.8, which is slightly better than

DeletePop: A DLT Execution Time Predictor 131

Table 1. The Summarization of Job Scheduling Simulators

Job Scheduling
Simulator

Function a© b© c©∗

YARN Scheduling
Simulator

Load applications on the machine to simulate a
large-scale YARN cluster

√ × ×

YARN with
MaxiNet

Research on joint job and flow scheduling
√ × ×

Slurm Simulator Perform workload simulations for large HPC
systems in a short period of time

√ × ×

CQsim A Trace-based scheduling simulator for
evaluating various scheduling policies

√ √ ×

INFless Simulator Scheduling simulations for INFless, the first
serverless platform in the ML domain

× √ ×

PreSE Simulator Accurate performance simulations for ProSE, an
accelerator for protein design and discovery

× √ ×

Delta Simulator Make CGRAs applicable to TaskStream, the
universally loaded task execution model

× √ ×

DeletePop (ours) Provide predicted execution time for DNN jobs
and then simulate the whole time under different
scheduling policies

√ √ √

∗ a©: Support for large-scale clusters.
b©: Design for specific types of jobs.
c©: Consider the difference between theoretical and practical parallelism patterns.

the analysis model. However, this method is based on machine learning and lacks
sorting out the job execution process and distributed architecture. Arafa et al. [2]
built a Trace-driven performance model “PPT-GPU” for GPGPU, which has the
advantages of portability, extensibility, comprehensive, verifiability, open source,
and so on. Compared with the actual NVIDIA Volta hardware, in the scale of clock
cycle level, the average absolute errors for the predicted execution time, occupancy,
L1 and L2 cache hit rates are 15%, 10%, 4% and 16%, respectively. The method can
obtain an accurate calculation for operators in GPGPUs, but did not consider dis-
tributed communication overhead in the job. At the same time, using this method
needs to obtain the program running trace, which takes several hours when pre-
dicting. This is unacceptable in many application scenarios.

Challenge II: Existing prediction methods have limited support for mainstream
deep learning frameworks. Jia et al. [10] built a deep learning framework
FlexFlow by themselves, which is mainly used to search for the optimal dis-
tributed strategy of a task. The test results of FlexFlow on two GPU clusters
with six real DNN benchmarks significantly outperform the state-of-the-art par-
allelization methods. The prediction accuracy of the simulator for the program
execution time is also more than 80%. This method is based on the operator
of deep learning jobs, which can get the prediction result quickly. At the same
time, the distributed architecture is considered. However, this method can only
provide the prediction of execution time for programs based on FlexFlow

132 Y. He et al.

framework, and its support for mainstream deep learning frameworks (such as
TensorFlow) is limited.

Challenge III: Simulation Relies on Actual Execution. TensorBoard [7] is a built-
in JET prediction tool of TensorFlow. The time required for training can be
predicted by the average time of the training steps. This method can obtain
more accurate time prediction, but there are still three disadvantages: first, it
must be practical training to know the expected time consumption, and if we
want more accurate results, we need to train enough steps; Second, the hardware
conditions of large-scale training or reasoning are scarce, so it is difficult for
researchers to obtain the data in the real environment. Third, the prediction
of the execution time cannot adapt to different training parameters. The above
three disadvantages show that the time prediction tool helps researchers a little.

The advantages and applicability coming of the above modeling and simu-
lation methods are summarized in Table 2, where A1, A2 and A3 stand for the
applicability of Challenge I, II and III in Sect. 2.3 individually.

Table 2. Advantages and Applicability of Existing JET Prediction Methods

JET Prediction Methods Advantages A1 A2 A3

TPU Performance Model It achieves high accuracy on TPU
√

PPT-GPU Portable, extensible and high accuracy
√

FlexFlow Fast, automatically find the optimal policy
√ √

TensorBoard Accurate, out of the box
√ √

DeletePop (ours) Accurate, fast, extensible
√ √ √

3 Cost Model Design

A cost model is used to predict the JET. In this Section, we will introduce the
design process and method of the cost model in DeletePop. Firstly, the execution
process of DLT job is divided into three parts: computation, memory access and
communication, which are modeled respectively. Then the execution time of the
operator is tested and statistically analyzed. Finally, the factors affecting the
data parallel execution mode are explored.

3.1 Modeling of the DLT Process

In our cost model, the process of DLT job is composed of three events: com-
putation, memory access and communication. The main influencing factors in
the computation part include the type and quantity of operators, the depen-
dence between operators, training parameters, and parallel mode. As for mem-
ory access, the most important influencing factors are training parameters, data
sets, and bandwidth. While using multi-device or distributed framework, the
number of parameters and devices, and communication mode (bandwidth) influ-
ence communication the most.

DeletePop: A DLT Execution Time Predictor 133

The set of events Δ contains computation, memory access and communica-
tion, which are denoted by cp, ma and cm individually. Then the execution time
T of DLT job can be predicted by Formula 1, where ζ represents the number of
steps in the training. The modeling details of three events are explained in the
following three sections.

T = ζ · Tstep = ζ ·
∑

δ∈Δ

Tδ, where Δ = {cp,ma, cm} (1)

3.1.1 The Cost Model of Computation

For a single GPU, our model defines the computation time of DLT as the sum
of operator execution time top. For multiple GPUs, it is determined according
to the single GPU time and the dependence between each other. For the perfor-
mance reason, most of the TensorFlow programs would run in the form of static
graph, so our model also uses static graph to describe the computation. The
computation graph of TensorFlow is composed of operators, tensors, data flows
and control flows between them. Within the area of time prediction, tensors can
also be regarded as a special kind of operator. When executing a graph, Ten-
sorFlow will analyze its dependencies from the top down in order to obtain an
adaptive order, then submit it to the specific device to execute. In Nvidia GPU,
operators are organized in the form of stream. Operators in the same stream are
executed sequentially, while in different streams can be executed in parallel [32].
However, TensorFlow only creates one GPU stream for computation [14], which
means only one operator will be executed in the GPU at a time. The analysis
above explains why we predict the computation time by the sum of operator
execution time.

The prediction of computation time Tcp is shown in Eq. 2. The Ψ in the
equation represents the set of all operators. For each kind of operator op, ϑop and
fop represent the count in a step and time predict function individually, where
fop is a function of batch_size (B) and image_size (I). Besides, the Ω of device
τ represents its normalized factor of computation capacity. The computation
capacity of GPU is defined as the performance of floating-point computing. We
regard the GPU as standardization where we measured the execution time of
operators, so the normalized factor Ω of another device τ is its floating-point
computing performance divided by the performance of standard GPU.

Tcp =
∑

op∈Ψ

top, where top =
ϑopfop(B, I)

Ωτ
(2)

3.1.2 The Cost Model of Memory Access

For memory access in training tasks, it is defined as the process of transferring
training data from CPU memory to GPU memory and then to the register. It is
comprehensible that the amount of data transferred is proportional to the batch
size and the area of the image, which is proportional to the square of the image

134 Y. He et al.

size. Taking AlexNet network and CIFAR-10 dataset as an example, except for
the transmission of a small number of startup parameters before the training
starts (about tens of bytes), the transmission of the training dataset accounts
for most of the memory access time between CPU and GPU.

Data of memory access is transferred through the PCIe bus between CPU
and GPU, through HBM2 between global memory and shared memory, and
through Reg2Reg between different registers. We denote the set of links as
Γ , which includes the above three memory access ways. Considering the total
amount of data AoD and the bandwidth BD of links in set Γ , the predicted mem-
ory access time can be obtained by Formula 3. While the bandwidth of HBM2
and Reg2Reg is several orders of magnitude faster than PCIe, the memory
access time mainly depends on the PCIe transferring time. PCIe is a full-duplex
bus [15,27], it can simultaneously open the transmission in both directions, and
the transmission rate does not affect each other. Besides, during each batch,
several GB of data needs to be transmitted usually. Therefore, the processing
time of data packets in PCIe protocol can be ignored and the bandwidth of the
bus can be fully used for data transmission.

Tma =
∑

l∈Γ

AoD

BDl
≈ AoD

BDPCIe
(3)

3.1.3 The Cost Model of Communication

For communication in the training task, it is defined as parameter synchro-
nization between GPUs. Depending on the limitations of hardware conditions,
GPU synchronization can be implemented through point-to-point communica-
tion buses such as NVLink or PCIe bus between CPU and GPU. Either way, it
can be abstracted as the collaboration between data volume and bandwidth. The
bandwidth is determined by the hardware parameters, and the amount of data is
determined by the model. At the same time, the total amount of communication
data required by the whole job is also related to the distributed framework [18].
To be specific, if K is the amount of data needed to be transmitted by a single
device and N is the number of devices participating in synchronization, then the
total number of parameters that need to be communicated can be calculated by
Formula 4, where φ is equal to 1 when using Ring All-Reduce and 0 when using
Parameter Server.

Similar to the modeling of memory access time, synchronous communication
usually needs to transmit a large amount of parameter data, so the utilization
of bandwidth can be considered close to the ideal situation. By considering the
parameter data amount PaM with the bandwidth of chip to chip BDc2c (like
PCIe and NVLink), the predicted communication time can be calculated by
Formula 4.

Tcm =
PaM

BDc2c
=

2K · (1 − φ/N)
BDc2c

, where φ =

{
1, for RA
0, for PS

(4)

DeletePop: A DLT Execution Time Predictor 135

3.2 The Predicting Algorithm of the Cost Model

The type of general operator in recent popular DNNs is limited. Therefore,
as long as we build an execution time library for most operators, the predic-
tion is feasible for common DNNs. After profiling and analyzing eight well-
known deep learning networks: ResNet-50, AlexNet, DenseNet-121, DenseNet-
169, DenseNet-201, Bert-Base, Seq2Seq and VGG-16, we found that although
the structure of different networks is very different, the operators that compose
the network are almost the same.

Table 3. The Top 5 Most Frequently Used Operators in DNNs

Operator’s Name Frequency of Occurrence

ReadVariableOp 27%
Identity 16%
Const 10%
VarHandleOp 6%
Switch 5%
Others 16%

Besides, it is feasible and extensible to predict the execution time based on
operators. Furthermore, the ten operators with the highest frequency in the
above network are shown in Table 3. It can be seen that the operator with the
highest frequency is ReadVariableOp, that is, reading the value of a variable,
which accounts for up to 27% of the total 95 operators.

The basic idea to predict the operator execution time is using the prior
knowledge of operators in the same kind of network model. As the Algorithm1
shows, we first train a DNN model in a real machine, then we can obtain the
execution time of operators. Repeat this process until there is enough data.
After that, we would process the data, and generate a suitable function for the
operator’s execution time and batch size and image size. This function stands
for the predicted operator’s execution time. Now we have the prediction of each
operator, so we can use it to predict the execution time of this operator in other
DNNs. For example, the operator’s prior knowledge of DenseNet-169 could be
used to predict the operator execution time of DenseNet-121 and DenseNet-201.
For most operators, their execution time is significantly correlated with Batch
Size and Image Size.

4 Simulator Design and Implementation

In this chapter, we will introduce the design and implementation of DeletePop.
Firstly, the overall architecture of the simulator is introduced. Then we will

136 Y. He et al.

Algorithm 1. The Predicting Algorithm of Operator’s Execution Time
Input: A machine, a DNN and a range <L, H>.
Output: Time prediction function F of the operator.
1: repeat
2: Assign a pair of (B, I) in the range <L, H>.
3: Trace a training.
4: Gain the execution time T of each operator.
5: Process data.
6: Store the relationship r between T and (B, I)
7: until Range <L, H> is traversed.
8:
9: while Operators still not finished do

10: repeat
11: if A relationship r is abnormal then
12: Kick it out.
13: end if
14: until All r in this operators’ R finished.
15: repeat
16: Assign fitting parameters.
17: Fit function by processed R.
18: until Find the best function.
19: end while

introduce the function and principle of the cost model in DeletePop. Finally, a
case study is conducted to help understand its workflow.

DeletePop is based on DLTSim, which is a GPU cluster scheduling simulator
with fault generator. DLTSim contains five basic parts, namely custom workload,
custom cluster environment, custom scheduler, error generator and original data
generator. The core component of DeletePop is the cost model, which is able
to predict the JET. The function and principle of our cost model are shown
in Fig. 2. By a series of processes in the figure, the cost model can obtain the
computation time, communication time and memory access time respectively.
Then it provides the JET to simulators, which allows simulators to optimize the
job scheduling algorithms.

We use a case study to help understand the workflow of the JSS. After the
cost model is added to the simulator, for a DLT job, the predicted execution time
of memory access, computation and communication can be obtained respectively
through some profiling and analysis tools. Combining these three parts, we can
gain the predicted JET. Each job in the queue needs to be labeled with predicted
JET before scheduling. Lastly the workload and predicted time are provided to
the JSS, so that the JSS can select different scheduling algorithms to generate
the execution job queue and calculate the total scheduling time.

5 Evaluation

In this chapter, we test and analyze the simulator, and carry out three experi-
ments in sequence, namely, Prediction of Step Time, Prediction of Epoch Time,

DeletePop: A DLT Execution Time Predictor 137

Fig. 2. The Position of Job Execution Time Prediction Model in Workflow

and Performance Simulation Experiment. The Prediction of Step Time is eval-
uated in three parts, they are calculation, memory access and communication,
as well as the total time of a single Step. As for Prediction of Epoch Time, the
influence of multi-device parallel training on JET is further considered, and the
model is modified according to the experimental results. In the Performance Sim-
ulation Experiment, the JET prediction model is combined with the scheduling
simulator, and the performance of the model in the simulator is compared and
analyzed.

During our experiment, on software, TensorFlow-GPU 1.14.0 and CUDA
10.0 were used in the experiment, and on hardware, we conducted DLT and
experiments on a single Intel(R) Xeon(R) Silver 4110 CPU @2.10GHz CPU and
three Tesla V100 (32GB) GPUs.

5.1 Prediction of Step Time (The Atomic Unit)

To ensure our modeling and prediction are reliable and comprehensive, we first
predict the Step Time. We know that a DLT is composed of many epochs, and
each Epoch is composed of many steps. Step is the minimum repeated unit
in DLT, in other words, the atomic unit. We divided a Step into three parts:
calculation, memory access and communication, predicted the execution time of
these three parts and the whole Step respectively, and analyzed their accuracy.

We choose DenseNet-169 to reveal this experiment. In the experiment, at
each Batch Size, the influence of different Image Sizes on training is tested and
the execution time is obtained, as shown in Fig. 3. Each strip in the figure rep-
resents the experimental results of a fixed Batch Size, and the width of the strip
represents the number of data points located around the execution time. The left

138 Y. He et al.

Fig. 3. The Result Compare for Communication Time, Memory Access Time, Com-
puting Time and Total Time of a Single Step

strip represents the actual test results, and the right one represents the results
predicted by the model. The combination of the two can be used to compare and
analyze the accuracy of the forecast. It can be seen that except for the memory
access time shown in Fig. 3(b), the prediction results of the rest parts and the
overall execution time of Step are accurate, and the average accuracy of the over-
all time prediction of a single Step achieves 90.63%. However, in this experiment,
the memory access time accounted for only a few milliseconds among hundreds
of milliseconds of Step, its impact on the whole process could be ignored.

Although there is little difference between the predicted and actual storage
access time, the prediction accuracy of Step time is relatively high on the whole,
and subsequent experiments can be carried out on this basis.

5.2 Prediction of Epoch Time

To enlarge the area and credibility of prediction, we test the accuracy of
DeletePop on epoch time. A DLT consists of several Epochs, and each Epoch
takes the same behaviors, so we can just analyze one Epoch. Based on 5.1, this
experiment further considers the cooperation and dependence of each device dur-
ing distributed parallel training, as well as the influence of different distributed
strategies on execution mode and execution time. This experiment is formed
by two small experiments, about Homogeneous Networks and Heterogeneous

DeletePop: A DLT Execution Time Predictor 139

Networks respectively. Two small experiments progressively explain the model’s
advantages and disadvantages from the perspectives of specificity and universal-
ity, as well as address its shortcomings in explanation or solution.

Fig. 4. The Result Compare of DenseNet Networks

5.2.1 The Prediction of Homogeneous Networks

This experiment aims to use the operator database obtained from a certain
network to predict the JET of the Homogeneous Networks. Homogeneous Net-
works refer to networks with similar network structures, layers, and parame-
ters. Otherwise, we call them Heterogeneous Networks. For example, DenseNet-
121, DenseNet-169, and DenseNet-201 belong to the Homogeneous Networks,
while AlexNet and Resnet-50 belong to Heterogeneous Networks. The difference
between the Homogeneous Networks mainly comes from the different repeti-
tion times of some layers inside, which also means that they often have similar
execution patterns and characteristics.

A large-scale experiment is carried out for different Batch Sizes and different
networks, whose results are shown in Fig. 4. We can see that the accuracy of pre-
diction is basically above 90%. The prediction of the model for the Homogeneous
Networks achieves very accurate results, which shows high specificity.

140 Y. He et al.

5.2.2 The Prediction of Heterogeneous Networks

This experiment will explore the prediction results of execution time for Het-
erogeneous Networks, so as to discuss the scalability of the model. As shown in
Fig. 5(a), when the operator data measured by AlexNet network is predicted for
the training operation of ResNet-50, although the expected result and the actual
data maintain a consistent growth trend, there is still a constant level difference,
and this difference takes a large proportion in the training time. We call this
situation “structural error”, because it is caused by the structural difference of
the neural network. The error is accompanied by every training, and the value
of the error keeps a relatively stable trend.

According to the analysis by the profiling tool, the error mainly comes from
the inaccuracy of computation time prediction. The reason for this situation is
that in addition to the two “explicit parameters” Batch Size and Image Size,
there are also many “implicit parameters” that are difficult to be quantitatively
analyzed. An example is shown in Fig. 5(b), where “N” and “(224, 224, 3)” cor-
respond to Batch Size and Image Size respectively. These two factors are inde-
pendent of the network and can be modified as needed during training, so they
are called “explicit parameters”. Parameters such as the Kernel Size and Strides
of convolutions are determined by the network itself, they cannot be changed
at will, referred to as “implicit parameters.” The execution time of the operator
should be determined by both “explicit parameters” and “implicit parameters”.
The “implicit parameters” of Homogeneous Networks (such as DenseNet-121 and
DenseNet-169) are almost the same, which means the operator execution time
obtained under the same “explicit parameter” is the same. Therefore the predic-
tion of Homogeneous Networks could succeed. However, the “implicit parame-
ters” of different kinds of networks (such as AlexNet and ResNet-50) are very
different. Even if the “explicit parameters” are kept consistent, more “implicit
parameters” have changed, so there is a big difference in operator execution
time between these networks.

Fig. 5. The “Structure Error” and Its Reason

DeletePop: A DLT Execution Time Predictor 141

The above analysis shows the effective range of time prediction, it can only
work for Homogeneous Networks. The main reason is that DeletePop does not
take into account the“implicit parameters”. However, this conclusion also means
that as long as the “implicit parameters” of the operator are further considered,
DeletePop will be applicable to Heterogeneous Networks.

5.3 Performance Simulation Experiment

This experiment reveals the overall performance of our simulator. We combine
Experiment 5.1 and Experiment 5.2, integrating DeletePop into the workflow of
DLTsim. Then we compare the performance of the actual measured JET and
the predicted JET under different scheduling algorithms.

The workload contains 66 jobs during this experiment, each of them is a
DNN training task, coming from AlexNet, DenseNet-121, DenseNet-169 and
DenseNet-201. In addition, the execution time, resource usage and training
epochs of each job are different. At the same time, we also change the avail-
able resources (the number of GPUs) of the whole cluster, to test the scalability
and consistency. Results are shown in Fig. 6 and Table 4. It can be seen that
no matter for First Come First Service (FCFS), Smallest Resource First (SRF),
Shortest Job First (SJF), or Smallest Area First (SAF), compared with the

Fig. 6. Scheduling Time Under Different Algorithms

Table 4. The Average Accuracy of Prediction Under Different Scheduling Algorithms

Scheduling Algorithm Average Accuracy

First Come First Service (FCFS) 96.90%
Smallest Resource First (SRF) 94.18%
Shortest Job First (SJF) 96.35%
Smallest Area First (SAF) 96.10%

142 Y. He et al.

actual JET, the average accuracy rate of the predicted JET in the scheduling
simulator can reach more than 90%. More importantly, it maintains high accu-
racy as the number of GPUs in the cluster changes.

6 Related Work

Some current JET predictor does not offer a comprehensive model [11] or only
consider partial behavior of DLT [2]. Some are not widely applicable [10] for
open-source frameworks like TensorFlow, PyTorch, etc.

There are many scheduling algorithms. Some algorithms have nothing to do
with the execution time of jobs. such as First-Come-First-Serve (FCFS) Algo-
rithm, Time Slice Rotation Algorithm, Multilevel Feedback Queue Algorithm
[9], and The Lottery Scheduling Algorithm [32]. Some algorithms are based on
the execution time of the job [6], such as the Longest Job First Algorithm [1,16],
Deadline Constrained Scheduling Algorithm [12], The Shortest Remaining Time
First Algorithm [25] and so on.

There are some work studies about job schedulers. Job scheduler is an integra-
tion of scheduling algorithms. It adapts and modifies various algorithms accord-
ing to the working environment of the scheduler. Users can choose different
algorithms to schedule jobs in the cluster according to research work and busi-
ness requirements. At present, a large number of job schedulers have been play-
ing an important role in actual research and production. For example, YARN
(Yet Another Resource Negotiator) Scheduler [26], Fair Scheduler and Capacity
Scheduler are Hadoop-based job schedulers. Mesos [8] developed by Berkeley
can share the cluster among a variety of different distributed computing frame-
works (such as Hadoop and MPI). Omega [23] is a flexible and scalable scheduler
for large computer groups co-developed by Cambridge, Berkeley and Google. It
uses shared state, parallelism, lock-free optimistic concurrency control and other
methods to evaluate the interference between schedulers and propose techniques
to mitigate the interference.

7 Conclusion

We reveal that the high-accuracy modeling and simulation of data parallelism for
DLT is a challenging problem. We propose a three parts model to describe the
process of DLT and offer an abstraction for the leverage of parallel pattern. We
develop a JET predictor DeletePop and integrate it into DLTSim. Results show
that DeletePop achieves an average accuracy of over 90% while predicting the
JET of Homogeneous Networks. We believe DeletePop would benefit researchers
a lot in the field of scheduling, model designing, parallelism optimization, etc.

There are also some limitations of DeletePop. Firstly, DeletePop does not
consider the overlap of different parts, which is a trent of optimization in the
future. Secondly, although the idea of DeletePop is extensible theoretically, our
experiment mainly focus on the neural networks in the area of computer vision,

DeletePop: A DLT Execution Time Predictor 143

while lacking the further research of other area, like NLP. Besides, the applica-
bility of DeletePop on heterogeneous devices is not satisfied, it is necessary to
design a more fine-grained cost model. These problems are still waiting to be
overcome in the future.

Acknowledgment. This work was sponsored in part by NKRDP (2021YFB0300800),
and in part by NSFC (62102396), Beijing Nova Program (Z211100002121143,
20220484217), Youth Innovation Promotion Association of Chinese Academy of Sci-
ences (2021099). Pilot for Major Scientific Research Facility of Jiangsu Province of
China (NO. BM2021800).

References

1. Aida, K.: Effect of job size characteristics on job scheduling performance. In: Feit-
elson, D.G., Rudolph, L. (eds.) JSSPP 2000. LNCS, vol. 1911, pp. 1–17. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-39997-6_1

2. Arafa, Y., et al.: Hybrid, scalable, trace-driven performance modeling of GPGPUs.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2021, pp. 1–15. Association for Computing
Machinery. https://doi.org/10.1145/3458817.3476221

3. Bai, Y., et al.: Gradient compression supercharged high-performance data parallel
DNN training. In: Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles CD-ROM, pp. 359–375. ACM (2021). https://doi.org/10.1145/
3477132.3483553

4. Dadu, V., Nowatzki, T.: TaskStream: accelerating task-parallel workloads by recov-
ering program structure. In: Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, pp.
1–13. ACM (2022). https://doi.org/10.1145/3503222.3507706

5. Dean, J., et al.: Large scale distributed deep networks. In: Advances in Neural
Information Processing Systems, vol. 25. Curran Associates Inc. (2012)

6. Gautam, J.V., Prajapati, H.B., Dabhi, V.K., Chaudhary, S.: A survey on job
scheduling algorithms in big data processing. In: 2015 IEEE International Con-
ference on Electrical, Computer and Communication Technologies (ICECCT), pp.
1–11 (2015). https://doi.org/10.1109/ICECCT.2015.7226035

7. Goldsborough, P.: A Tour of TensorFlow (2016)
8. Hindman, B., et al.: Mesos: a platform for fine-grained resource sharing in the

data center. In: Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation, NSDI 2011, pp. 295–308. USENIX Association (2011)

9. Javed, M.H., Ibrahim, K.Z., Lu, X.: Performance analysis of deep learning work-
loads using roofline trajectories. CCF Trans. High Perform. Comput. 1(3), 224–239
(2019). https://doi.org/10.1007/s42514-019-00018-4

10. Jia, Z., Zaharia, M., Aiken, A.: Beyond data and model parallelism for deep neural
networks, vol. 1, pp. 1–13 (2019)

11. Kaufman, S., et al.: A learned performance model for tensor processing units 3,
387–400

12. Kim, Y., Choi, H., Lee, J., Kim, J.-S., Jei, H., Roh, H.: Towards an optimized dis-
tributed deep learning framework for a heterogeneous multi-GPU cluster. Cluster
Comput. 23(3), 2287–2300 (2020). https://doi.org/10.1007/s10586-020-03144-9

https://doi.org/10.1007/3-540-39997-6_1
https://doi.org/10.1145/3458817.3476221
https://doi.org/10.1145/3477132.3483553
https://doi.org/10.1145/3477132.3483553
https://doi.org/10.1145/3503222.3507706
https://doi.org/10.1109/ICECCT.2015.7226035
https://doi.org/10.1007/s42514-019-00018-4
https://doi.org/10.1007/s10586-020-03144-9

144 Y. He et al.

13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, vol. 25. Curran Associates Inc. (2012)

14. Kwon, W., Yu, G.I., Jeong, E., Chun, B.G.: Nimble: lightweight and parallel GPU
task scheduling for deep learning, vol. 33, pp. 8343–8354 (2020)

15. Li, A., et al.: Evaluating modern GPU interconnect: PCIe, NVLink, NV-SLI,
NVSwitch and GPUDirect. IEEE Trans. Parallel Distrib. Syst. 31(1), 94–110
(2020). https://doi.org/10.1109/TPDS.2019.2928289

16. Li, M.: Scaling distributed machine learning with the parameter server. In: Pro-
ceedings of the 2014 International Conference on Big Data Science and Computing,
BigDataScience 2014, p. 1. Association for Computing Machinery (2014). https://
doi.org/10.1145/2640087.2644155

17. Narayanan, D., et al.: PipeDream: generalized pipeline parallelism for DNN train-
ing. In: Proceedings of the 27th ACM Symposium on Operating Systems Principles,
SOSP 2019, pp. 1–15. Association for Computing Machinery (2019). https://doi.
org/10.1145/3341301.3359646

18. Ouyang, S., Dong, D., Xu, Y., Xiao, L.: Communication optimization strategies
for distributed deep neural network training: a survey. J. Parallel Distrib. Comput.
149, 52–65 (2021). https://doi.org/10.1016/j.jpdc.2020.11.005

19. Park, J.H., et al.: HetPipe: enabling large DNN training on (Whimpy) heteroge-
neous GPU clusters through integration of pipelined model parallelism and data
parallelism. In: Proceedings of the 2020 USENIX Conference on USENIX Annual
Technical Conference, vol. 21, pp. 307–321. USENIX Association (2020)

20. Patarasuk, P., Yuan, X.: Bandwidth optimal all-reduce algorithms for clusters of
workstations. J. Parallel Distrib. Comput. 69(2), 117–124 (2009). https://doi.org/
10.1016/j.jpdc.2008.09.002

21. Robson, E., Xu, C., Wills, L.W.: ProSE: the architecture and design of a protein
discovery engine. In: Proceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, pp.
655–668. ACM (2022). https://doi.org/10.1145/3503222.3507722

22. Sanders, P., Mehlhorn, K., Dietzfelbinger, M., Dementiev, R.: Sequential and Par-
allel Algorithms and Data Structures: The Basic Toolbox. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25209-0

23. Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., Wilkes, J.: Omega: flexible,
scalable schedulers for large compute clusters. In: Proceedings of the 8th ACM
European Conference on Computer Systems, EuroSys 2013, pp. 351–364. Associa-
tion for Computing Machinery (2013). https://doi.org/10.1145/2465351.2465386

24. Simakov, N.A., et al.: Slurm simulator: improving slurm scheduler performance
on large HPC systems by utilization of multiple controllers and node sharing. In:
Proceedings of the Practice and Experience on Advanced Research Computing,
PEARC 2018, pp. 1–8. Association for Computing Machinery (2018). https://doi.
org/10.1145/3219104.3219111

25. Song, L., Mao, J., Zhuo, Y., Qian, X., Li, H., Chen, Y.: HyPar: towards hybrid
parallelism for deep learning accelerator array. In: 2019 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA), pp. 56–68. IEEE
(2019). https://doi.org/10.1109/HPCA.2019.00027

26. Vavilapalli, V.K., et al.: Apache hadoop YARN: yet another resource negotiator.
In: Proceedings of the 4th Annual Symposium on Cloud Computing, SOCC 2013,
pp. 1–16. Association for Computing Machinery (2013). https://doi.org/10.1145/
2523616.2523633

https://doi.org/10.1109/TPDS.2019.2928289
https://doi.org/10.1145/2640087.2644155
https://doi.org/10.1145/2640087.2644155
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1016/j.jpdc.2020.11.005
https://doi.org/10.1016/j.jpdc.2008.09.002
https://doi.org/10.1016/j.jpdc.2008.09.002
https://doi.org/10.1145/3503222.3507722
https://doi.org/10.1007/978-3-030-25209-0
https://doi.org/10.1145/2465351.2465386
https://doi.org/10.1145/3219104.3219111
https://doi.org/10.1145/3219104.3219111
https://doi.org/10.1109/HPCA.2019.00027
https://doi.org/10.1145/2523616.2523633
https://doi.org/10.1145/2523616.2523633

DeletePop: A DLT Execution Time Predictor 145

27. Verma, A., Dahiya, P.K.: PCIe bus: a state-of-the-art-review. IOSR J. VLSI Sig.
Process. 7(4), 24–28 (2017). https://doi.org/10.9790/4200-0704012428

28. Wette, P., Schwabe, A., Splietker, M., Karl, H.: Extending Hadoop’s yarn scheduler
load simulator with a highly realistic network & traffic model. In: Proceedings of
the 2015 1st IEEE Conference on Network Softwarization (NetSoft), pp. 1–2 (2015).
https://doi.org/10.1109/NETSOFT.2015.7116169

29. Yang, K., Cao, R., Zhou, Y., Zhang, J., Shao, E., Tan, G.: Deep reinforcement agent
for failure-aware job scheduling in high-performance computing. In: 2021 IEEE
27th International Conference on Parallel and Distributed Systems (ICPADS), pp.
442–449 (2021). https://doi.org/10.1109/ICPADS53394.2021.00061

30. Yang, X., et al.: Integrating dynamic pricing of electricity into energy aware
scheduling for HPC systems. In: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, SC 2013, pp.
1–11 (2013). https://doi.org/10.1145/2503210.2503264

31. Yang, Y., et al.: INFless: a native serverless system for low-latency, high-throughput
inference. In: Proceedings of the 27th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems, pp. 768–781.
ACM (2022). https://doi.org/10.1145/3503222.3507709

32. Zhang, P., Fang, J., Yang, C., Huang, C., Tang, T., Wang, Z.: Optimizing streaming
parallelism on heterogeneous many-core architectures. IEEE Trans. Parallel Dis-
trib. Syst. 31(8), 1878–1896 (2020). https://doi.org/10.1109/TPDS.2020.2978045

33. Zheng, Z., et al.: AStitch: enabling a new multi-dimensional optimization space for
memory-intensive ML training and inference on modern SIMT architectures. In:
Proceedings of the 27th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, pp. 359–373. ACM (2022).
https://doi.org/10.1145/3503222.3507723

https://doi.org/10.9790/4200-0704012428
https://doi.org/10.1109/NETSOFT.2015.7116169
https://doi.org/10.1109/ICPADS53394.2021.00061
https://doi.org/10.1145/2503210.2503264
https://doi.org/10.1145/3503222.3507709
https://doi.org/10.1109/TPDS.2020.2978045
https://doi.org/10.1145/3503222.3507723

CFChain: A Crowdfunding Platform
that Supports Identity Authentication,
Privacy Protection, and Efficient Audit

Yueyue He1 , Jiageng Chen2 , and Koji Inoue1(B)

1 Kyushu University, Fukuoka 8190385, Japan
inoue@ait.kyushu-u.ac.jp

2 Central China Normal University, Wuhan 430079, Hubei, China

Abstract. Charity crowdfunding is a technique for raising funds that
involves collecting modest contributions from a vast number of individ-
uals or groups via established crowdfunding platforms or other digital
avenues. The objective is to provide support for charitable organiza-
tions, social welfare initiatives, or personal requirements. The widespread
adoption of the Internet and the rapid advancement of digital technol-
ogy have facilitated the global dissemination and promotion of charity
crowdfunding. However, crowdfunding platforms have recently experi-
enced a decline in credibility due to various factors such as fraudulent
donations, inadequate fund management, and other forms of disorder.
The blockchain’s decentralization and anti-tampering features exhibit
a high degree of compatibility with the requirements of a crowdfunding
platform. Most current state-of-the-art techniques do not ensure the non-
linkability of user identities in the face of sybil attacks, nor do they offer
a streamlined auditing mechanism for crowdsourcing modest donations
that simultaneously preserves transactional privacy. This paper presents
a novel crowdfunding system called CFChain based on blockchain tech-
nology. Initially, the distributed identity and BLS signature are employed
to establish a user authentication mechanism, enabling CFChain to with-
stand sybil attacks while preserving the non-linkability of user identi-
ties. Subsequently, a crowdfunding mechanism is constructed utilizing
zero-knowledge proofs to facilitate streamlined auditing procedures while
safeguarding donations’ confidentiality. Additionally, a security analysis
of CFChain is presented. The system prototype is subsequently imple-
mented on the Hyperledger Fabric. Empirical evidence indicates that the
efficiency of CFChain is viable.

Keywords: Crowdfunding · Blockchain · Distributed Identity ·
Zero-knowledge proofs · Private audit

1 Introduction

According to Statista’s compiled data, the global crowdfunding market was val-
ued at USD 13.64 billion in 2022 and is projected to grow at a compound annual
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14493, pp. 146–167, 2024.
https://doi.org/10.1007/978-981-97-0862-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0862-8_10&domain=pdf
http://orcid.org/0000-0002-8190-0689
http://orcid.org/0000-0001-9033-2575
http://orcid.org/0000-0003-3926-0646
https://doi.org/10.1007/978-981-97-0862-8_10

CFChain 147

growth rate (CAGR) of 11.2% to reach USD 28.9 billion by 2028 [2]. Charita-
ble crowdfunding, which is a distinct type of crowdfunding that emphasizes the
philanthropic utilization of funds and social accountability, constitutes 71% of
all campaigns on the primary crowdfunding platforms [1]. Currently, charitable
crowdfunding initiatives have achieved worldwide fundraising via established
crowdfunding platforms, fostering global collaboration in charitable endeavors
and offering effective means for charitable entities and individuals to secure
financial support.

In recent times, an increasing number of scandals pertaining to crowdfunding
platforms have come to light, resulting in a loss of trustworthiness for these plat-
forms. This has, in turn, impeded the progress of charity crowdfunding. Accord-
ing to The New York Times, a couple has been jailed for five years for making
up a story about homeless people on the GoFoundMe platform to raise more
than $400,000 in donations [22]. A leukemia patient’s GoFundMe account was
reportedly hacked by con artists who took images of the patient’s infant daughter
and requested donations for another girl [24]. Furthermore, certain crowdfunding
platforms impose substantial commissions, such as Indiegogo, which levies a 5%
commission upon the attainment of successful fundraising.

In 2008, Satoshi Nakamoto developed a decentralized electronic currency
system called Bitcoin. This system utilizes blockchain technology to document
and authenticate all financial transactions [20]. The advent of blockchain tech-
nology has the potential to address the aforementioned issues and establish a
basis of reliability for charitable crowdfunding with the following advantages.
First, blockchain technology maintains an immutable record of all transactions
and operations, enabling public scrutiny of the flow of funds and utilization of
charitable contributions. This feature ensures transparency and accountability
in tracking and verifying the allocation of donations. Second, the utilization
of encryption technology and distributed storage is a fundamental aspect of
blockchain. This technology ensures that the personal information and dona-
tion records of donors are safeguarded on the blockchain, thereby mitigating the
possibility of data leakage and abuse. Third, the implementation of blockchain
technology has the potential to decentralize the management and oversight of
charity crowdfunding systems, thereby obviating the necessity of intermediary
entities curtailing intermediary expenses.

Despite the gradual expansion of charity crowdfunding in recent years, charity
fundraising remains to represent a significant proportion of overall charitable
efforts. This is due to the longstanding history and broad societal impact of
charity fundraising activities. Although blockchain can potentially enhance the
reliability of charity crowdfunding services, current studies predominantly use it
in charity fundraising. Charity fundraising and crowdfunding are distinct in their
approaches to generating funds. While fundraising focuses on collecting relatively
large amounts from a few sources, crowdfunding aims to gather smaller amounts
from a large group of donors [14]. Hence, in the context of utilizing blockchain for
charitable crowdfunding, it is imperative to tackle the following ensuing obstacles
in a manner that ensures privacy preservation:

148 Y. He et al.

User Authentication: Participants in charitable fundraising are often quali-
fied organizations or foundations, while charitable crowdfunding allows any indi-
vidual or organization to participate. So charitable crowdfunding platforms are
vulnerable to sybil attacks [11], which involve using multiple false identities or
accounts by one or a few individuals to deceive, manipulate, or harm crowdfund-
ing campaigns. In the user authentification phase, maintaining the anonymity of
users’ actual identities while simultaneously adhering to regulatory requirements
such as Know-Your-Customer (KYC) poses a significant challenge.
Transaction Audit: Charitable fundraising places greater emphasis on securing
substantial donations and collaborating with established entities such as corpo-
rations or foundations, as opposed to charitable crowdfunding. To protect the
privacy of the transaction, certain studies [6] document the encrypted transac-
tion data on the publicly accessible ledger. Crowdfunding for charitable purposes
typically incentivizes numerous individuals or entities to engage in fundraising
activities by soliciting modest contributions from a multitude of individuals. The
efficacy of the system would be notably diminished if auditors were to decrypt
and authenticate every donation. Efficiently conducting audits while maintaining
transaction privacy poses a significant challenge.

This study presents a blockchain-based system for charity crowdfunding as
a solution to the aforementioned challenges. The contributions are as follows.

– This paper analyzes the characteristics of charitable crowdfunding and sug-
gests a blockchain-based charity crowdfunding platform, CFChain, that is
not controlled by a third-party organization. Blockchain is utilized to record
crowdfunding records so that every donation can be traced and cannot be
tampered with.

– This paper uses distributed identity to construct the user authentication strat-
egy. The distributed identity is composed of a unique main identifier and
several context-based identifiers. The uniqueness of the main identifier pro-
vides sybil-resistance, while the context-based identifiers are used to prevent
linkage attacks.

– This paper utilizes Pedersen commitment and BLS signature to construct
verifiable credentials so that users can flexibly combine verification materials
according to the needs of different contexts while not exposing their main
identifier during the authentication process.

– This paper employs non-interactive zero-knowledge proof to construct a
crowdfunding scheme, which allows each donor to jointly audit the correctness
and compliance of crowdfunding records while providing transaction privacy.

– This paper presents the implementation of a system prototype using Hyper-
ledger Fabric and demonstrates the viability of the proposed scheme through
rigorous security and performance analyses.

Paper Structure: The rest of this paper is organized as follows. Related work
is introduced in Sect. 2. Section 3 introduces cryptographic primitives that will
be used in the scheme. In Sect. 4, the system model, workflow, and operations in
CFChain are introduced. Then, it will discuss the security definition in Sect. 5.
The details of system operations are introduced in Sect. 6. The security analysis

CFChain 149

and experimental performance of CFChain are presented in Sect. 7 and Sect. 8,
respectively. Finally, the conclusion is in Sect. 9.

2 Related Work

Blockchain-Based Donation Scheme: Blockchain technology is widely used
in charitable donations due to its decentralization, transparency, and immutabil-
ity characteristics [33]. Existing research can be divided into two categories, one
of which primarily focuses on currency, while the other centers on assets. The
first category of research commonly uses cryptocurrencies to construct dona-
tion schemes. Akram and Mayes utilized the pre-existing GMS network and One
Time Password (OTP) to build a blockchain-based charity collection scheme
that accepts Bitcoin donations in both online and offline environments [17].
Some studies use Ethereum [30] to build a charity platform, establish dona-
tion guidelines via smart contracts, and procure on-chain tokens for donations
[27,29]. Muhammad et al. defined a novel cryptocurrency based on Ethereum
and added an external layer with public-private blockchains to provide a secure
charity donation mechanism that is transparent and auditable for governmental
agencies [12]. Osman et al. proposed a donation scheme based on Zerocash [28]
that can protect user privacy and simultaneously use attribute-based signatures
to allow donors to specify beneficiaries’ attributes [6]. These schemes, while pro-
tecting user privacy through the anonymity of cryptocurrencies, make it difficult
to audit donations. The cryptocurrency market exhibits significant volatility,
thereby resulting in instability in the valuation of donations. Furthermore, cer-
tain jurisdictions impose bans or limitations on the use of cryptocurrencies. The
second type of scheme usually uploads donation records to the blockchain, mak-
ing the donation process transparent. For instance, Mehra et al. proposed a
secure and transparent framework based on a consortium chain that connects
with several charity organizations to enable direct donations [19]. The Karma
platform is based on Hyperledger Fabric [5], which allows charitable organiza-
tions to create and manage different charitable projects, accept donations, and
record all transaction information on the chain for auditing [25]. Although this
type of research mitigates the potential hazards associated with cryptocurren-
cies, ensuring the confidentiality of user identities remains a challenging task.
This paper is trying to develop a blockchain-based crowdfunding platform that
aims to facilitate effective auditing and user compliance monitoring while ensur-
ing user identity and transaction privacy.
Distributed Identity: Distributed identity, defined and standardized by the
W3C, forms the three pillars of autonomous identity along with verifiable creden-
tials and blockchain. It allows users to create, hold, and manage their identities
without relying on traditional centralized authentication authorities. There are
several implementations of decentralized identity systems today, such as uPort
[16], and WeIdentity [4]. Although distributed identities can provide users with
different pseudonyms to prevent identities from being associated, it is difficult
to police these identities. CanDID divides user credentials into a master and

150 Y. He et al.

several context-based credentials, binding the master credential to the user’s
real identity to resist witch attacks [18]. SmartDID also uses a similar idea to
set the master identifier for users to implement user identity supervision [31].
CanDID relies on secure multi-party computation (MPC) and zero-knowledge
proof, providing strong privacy but with a large computational overhead. This
paper delegates certain authentications to an authoritative entity to maintain a
balanced performance of CFChain.
Private Transaction Audit: zkLedger is the first system to simultaneously
achieve transaction privacy and auditing, using non-interactive zero-knowledge
proof [21]. The transaction information is encrypted and stored in the table
structure. The auditor can check the transaction amount’s correctness and legal-
ity without knowing the transaction’s specific content. PAChain also uses zero-
knowledge proofs to build transactions, but it is based on the UTXO model and
cannot be used in the account model [32]. Based on zkLedger, FabZK improves it
to obtain higher verification efficiency and realizes the system prototype on the
Hyperledger Fabric [15]. In this paper, CFChain is trying to use zero-knowledge
proofs and Pedersen commitments to construct crowdfunding records for audit-
ing while preserving transaction privacy.

3 Preliminaries

3.1 Bilinear Groups

Consider G1, G2 and GT as multiplicative cyclic groups of prime order p. Let e
be a bilinear map, e : G1 × G2 → GT which has the following properties:

– Bilinearity: For ∀g1 ∈ G1, g2 ∈ G2 and all a, b ∈ Zp, e
(
ga
1 , gb

2

)
= e(g1, g2)ab.

– Non-Degeneracy: e(g1, g2) �= 1
– Computability: For all ∀g1 ∈ G1, g2 ∈ G2, e(g1, g2) can be computed in a

polynomial time.

3.2 BLS Aggregate Signature [7]

Let G1 and G2 be bilinear groups, g1 and g2 are their respective generators,
and the bilinear map e : G1 × G2 → GT , with target group GT , are system
parameters. H is a full-domain hash function H : {0, 1}∗ → G2, viewed as a
random oracle.

– KeyGen: Pick random x
R← Zp as user’s secret key sk and compute v ← gx

1 ∈
G1 as user’s public key pk.

– Sign(sk,m): Input sk = x ∈ Zp, and a message m ∈ {0, 1}∗, compute H ←
H(m), where H ∈ G2, and the signature is σ ← Hx ∈ G2.

– V er(pk,σ,m): Input pk = v ∈ G1, a message m, and a signature σ. Compute
H ← H(m); accept if e (g1, σ) = e(v,H) holds.

CFChain 151

– AggSign: Assign an index i ranging from 1 to n to each user in the aggregating
subset of n users. Each user provides a signature σi ∈ G2 on a message
mi ∈ {0, 1}∗ which mi must all be distinct. The aggregate signature is σ ←∏k

i=1 σi ∈ G2.
– AggV er: Input an aggregate signature σ ∈ G2 for an aggregating subset of

users U , the original messages mi ∈ {0, 1}∗ and public keys vi ∈ G1 for all
users. First, it should be checked that the messages mi are all distinct. Second,
compute Hi ← H (mi) for 1 ≤ i ≤ n, and accept if e (g1, σ) =

∏k
i=1 e (vi,Hi)

holds.

3.3 Commitment and Non-interactive Zero-Knowledge Proofs

The present study integrates Non-interactive zero-knowledge (NIZK) proof [13]
and Pedersen commitment [23] to collaboratively devise a proficient auditing
mechanism that ensures privacy. Pedersen commitment is used to conceal trans-
action amounts and user-specific data. Let G be a cyclic group of order q with
two random generators of g and h. Then, the Pedersen commitment for a secret
integer value v ∈ {0, 1, . . . , q − 1} can be calculated as Cv = gvhr with the
randomness r. The Pedersen commitment has perfect hiding with the random
number r. Zero-knowledge proof (ZKP) is a cryptographic protocol that allows a
prover to convince a verifier of the truthfulness of a statement without revealing
any actual information about the statement. The utilization of Non-interactive
zero-knowledge (NIZK) proof obviates the requirement for immediate interac-
tion, thereby enabling the implementation of privacy-preserving protocols that
are more efficient and adaptable. As an illustration, a prover may know the com-
mitment’s opening and want to persuade the verifier that the committed value
is in some range. The prover can produce a binary string proof Π using NIZK
to persuade the verifier without divulging any knowledge about the value.

3.4 Distributed Identities

Distributed identity is a way of identity management. It includes two parts:
Decentralised identifier DID and Verifiable credential Cred. Each DID corre-
sponds to a DID document, which is used to reveal the user’s public informa-
tion, such as public key, usage contexts, etc. According to the World Wide Web
(W3C) definition, Cred includes metadata, claims, and proofs. The metadata
contains standard entries, such as issuance and expiration dates. The claim can
be written in an attribute-value relationship as Claim = {att, val}. The proof
refers to the digital signature. To the definition of W3C, this paper summarizes
the distributed identity into the following four algorithms.

– DIDGen(pk, context) → (DID): During DID generation, the DID docu-
ment incorporates both the public key pk and its corresponding context.

– CredGen(DIDA, Claim,DIDI , skI) → (CredDIDA
) : The Cred applicant

DIDA will request the Cred issuer DIDI to generate a Cred. DIDI will
verify the Claim provided by DIDA. Then, DIDI will attach its signature
to the Cred. And the final CredDID = {Claim, σI ,DIDI}.

152 Y. He et al.

– CredV er(DID,CredDID, c) → (1/0) : The verifier inputs its challenge c
(against replay attract), DID and credential CredDID. The algorithm out-
puts 1 if all verifications passed; otherwise, 0.

4 CFChain Overview

4.1 System Model

The scheme comprises five distinct entities, namely the Identity Authority (IA),
Authority Agency (AA), User, Charity Platform (CP), and Blockchain. Table 1
enumerates the primary notations employed in this manuscript.

– User: Users can be divided into donors and beneficiaries. Each user holds a
pair of DIDs and uses their DIDctxs to participate in crowdfunding. Users
can only have one DIDmain but many DIDctxs for different contexts.

– IA: Within the framework, there is a high-level IA in every nation, exem-
plified by the Census Bureau, that possesses knowledge of the user’s unique
identifier (UI), such as the social security number (SSN). IA is responsible for
preventing sybil attacks. It will bind the user’s DIDmain to its UI and check
that each user can only have one DIDctx in the same context.

– AA: The entities in question bear the responsibility of verifying Claims and
issuing Creds to users within their respective domains while also providing
associated services, such as banks, schools, hospitals, etc.

– CP: It will execute predefined smart contracts to publish crowdfunding
project (CFP) information and crowdfunding records.

– Blockchain: The blockchain is used to record a digest of user identities and
corresponding Creds and to record crowdfunding records.

Table 1. Notations

Symbol Remark

DIDs Decentralised identifiers, DIDs= {DIDmain, DIDctxs}
DIDmain The unique identity for supervision
DIDctx The pseudonymous identities used in different contexts ctx

Cv Commitment to value v
Cred Verifiable credentials
Claim A statement in format of attribute-value

The system model of CFChain is shown in Fig. 1. The workflow can be divided
into the initialization phase (1), user authentication phase (2–6), and crowdfund-
ing phase (7–10).

CFChain 153

Fig. 1. CFChain architecture overview and workflow.

– Initialization Phase: The system will run the initialization function to set
the system parameters. Since IA and AA are public institutions (PI), they
only need to generate a publicly available DID. Furthermore, use the services
they can provide as attributes to generate Claim and corresponding Cred.
Ultimately, they will upload the Cred’s digest to the blockchain to complete
the registration.

– User Authentication Phase: The user first generates a DIDs pair. DIDmain

is considered sensitive and is therefore embedded in the Claims and Creds
in the form of commitment to establish their authenticity. The user subse-
quently submits the DIDs pair to the IA for verification. After that, the IA
will generate PreCred for DIDctx. The user generates Claims, procures the
corresponding AAs’ endorsement, and combines the required Claims into a
Claimctx under the contextual prerequisites. Then, present Claimctx along
with PreCred to the AA accountable for verifying identity in the given con-
text to acquire Credctx.

– Crowdfunding Phase: Beneficiaries will use their DIDctx to publish crowd-
funding projects (CFP) on CP. For example, beneficiaries can simultaneously
have student and patient identities and use the patient identity to initiate
crowdfunding. After verifying the validity of Credctx, CP will run a prede-
fined smart contract to publish a CFP for the beneficiary and generate a DID
for it to apply for the CFP’s account, which is affiliated with the identical
bank as the account furnished by the beneficiaries. Donors use their DIDctx

to select a CFP for donation, and the bank to which the project account
belongs will generate a transaction record and upload it to the blockchain
and CP for audit after receiving the donation.

4.2 Threat Model and Design Goals

It is assumed that the system parameters are generated in an honest manner.
The present study adopts the subsequent threat model with respect to privacy:

154 Y. He et al.

– This paper assumes that users will try to create multiple fake identities to
masquerade as real users and manipulate them to obtain certification from
IA and AA to defraud donations.

– This paper posits that institutions uploading transactions like banks are dis-
honest. They attempt to upload fake transaction information, such as misrep-
resenting the donation value, with the intention of purloining or concealing
assets.

– AAs are assumed to be honest-but-curious, they endeavor to acquire the user’s
DIDmain and try to find the relevance of different DIDctxs of the user by
analyzing crowdfunding records, but it still follows the protocols.

– This paper assumes that the IA will not disclose user information.

Based on the above assumptions, this paper sets the CFChain’s privacy and
function goals.

– Sybil-resistance: Adversaries cannot use more legitimate user identities than
they control.

– Unforgeability: Adversaries cannot fake the identities of honest users or other-
wise imitate their behavior unless they have control over their real identities.

– Transaction Privacy: In addition to entities that participated in crowdfunding,
no third party is aware of the contents of the transaction.

– Unlinkability: Adversaries cannot discover the linkability of identities used by
users in different contexts.

– Private Audit: Users who participate in crowdfunding can audit crowdfunding
records, but they cannot know the transaction amount of participants other
than themselves.

– Authentication: The system can provide an effective user identity authenti-
cation function for screening legitimate users.

– Decentralization: It should not require trusted third parties such as charity
organizations for the crowdfunding process.

4.3 System Operations

We define the CFChain operations, GlobalSetup, PIRigister, UserRigister,
PreCredGen, ctxCredGen, CFPGen, Donate, and Audit, as follows.

– GlobalSetup(1λ) → (params) : This procedure is executed during the initial-
ization of the system. Input a security parameter 1λ, it outputs system public
parameters params.

– PIRigister(params) → ((pkPI , skPI),DIDPI , CredPI) : This operation is
run by Public Institutions (PI) such as IA and AA for generation of its pub-
lic/private key pair (pkPI , skPI), DIDPI and corresponding CredPI .

– UserRigister(params, contexts) → ((pksU , sksU),DIDsU) : This operation
is run by a user U (donor or beneficiary) for generation of their public/private
key pairs (pksU , sksU) and DIDsU = (DIDU

main,DIDsU
ctx).

CFChain 155

– PreCredGen(DIDsU , UIU ,DIDIA, skIA) → (PreCredU
ctx) : This operation

is instantiated by a two-party protocol between the IA and a user U . U
submits his DIDsU and UIU to the IA. After verification, IA will use its
skIA to issue PreCredU

ctx for U .
– ctxCredGen(PreCredU

ctx, ClaimU
ctx,Πlink, skAA) → (CredU

ctx) : Instantiated
by a two-party protocol between AA and user U . U generates ClaimU

ctx

according to the requirements of the context, as well as zero-knowledge proof
Πlink, and sends them to AA for verification along with PreCredU

ctx. After
verifying the authenticity of ClaimU

ctx and the validity of PreCredU
ctx, AA will

use its skAA to issue CredU
ctx to U . Πlink is used to prove that PreCredU

ctx

and ClaimU
ctx belong to the same user.

– CFPGen(params,DIDB , CredB) → (DIDCFP) : This operation is run
by CP. After verifying the validity of beneficiary B’s CredB , CP will run
the smart contract to create a crowdfunding project (CFP) and generate
DIDCFP for it to apply for a project account. For ease of understanding,
we use DID here to represent the bank account. DIDCFP will transfer the
funds to DIDB only after reaching the crowdfunding goal.

– Donate(DIDDonor,DIDCFP , skAA, donation) → (record): This operation is
run by the AA that manages the project account DIDCFP . After receiving
donation from DIDDonor, AA will generate transaction record and upload it
to the blockchain.

– Audit(sk, record) → (1/ 0) : This operation is run by donor. Donor use his
sk to verify the correctness of transaction record. If it is correct, output 1,
otherwise, output 0.

5 Security Definitions

In this section, security games are conducted to showcase the security of
CFChain. The games in question incorporate interactive protocols that involve
a PPT adversary A, and a challenger C. These protocols enable the adversary
to access protocol transcripts.
Sybil-Resistance. In this game, the adversary creates as many credentials as
are required after initializing n identities. If the adversary generates > n legiti-
mate credentials in the same context, it wins. The process of GSybil is as follows.

– C gives to A the security parameter 1λ, the system parameters gparams
obtained by running GlobalSetup(1λ).

– A can ask C to generate IA and AA by running PIRigister operation. C
shares IA’s and AA’s public keys pkIA and pkAA with A, and provides oracle
access O = (UserRigister, PreCredGen, ctxCredGen) to A.

– A can generate Claims and run Credsctx ← AO(pkIA, pkAA, Claims). A
eventually returns Credsctx to C.

– C runs algorithm CredV er to check their legality. And A wins by producing
more than n valid Credctxs.

156 Y. He et al.

Definition 1. Sybil-resistance: CFChain provides Sybil-resistant if, for any
stateful PPT adversary A, there exists a negligible function negl(·) such that

Pr [Gsybil (λ,A,O) =⇒ 1] ≤ negl(λ)

Unforgeability. The unforgeability property of CFChain ensures that the prob-
ability that A can impersonate users such as forge signatures is negligible. Since
the verification of the Cred needs to sign the challenge sent by the verifier with
the user’s private key, we set up a special oracle OskU

by referring to the method
of [18]. A can get access to skU through OskU

that allows calling any algorithm
with the user key parameter set to skU . The adversary wins by producing a valid
signature over a fresh message. The process of GUF is as follows.

– C gives to A the security parameter 1λ, the system parameters gparams
obtained by running GlobalSetup(1λ).

– A can ask C to generate IA, AA, and user by running PIRigister and
UserRigister operations. C shares their public keys with A, and provides
oracle access O = (PreCredGen, ctxCredGen,CredV er) and Osk to A.

– A get several c in calls to CredV erify and corresponding signatures σ by
running c, σ ← AO,Osk(pkIA, pkAA, pkU).

– A wins by generating a valid signature σ∗ on a new challenge c∗ which can
be verified by C.

Definition 2. Unforgeability: CFChain offers unforgeability if, for any stateful
PPT adversary A, there exists a negligible function negl(·) such that

Pr [GUF (λ,A,O,Osk) =⇒ 1] ≤ negl(λ)

Unlinkability. The unlinkability property of CFChain ensures that the proba-
bility that A can link DIDsctx used by the user in different contexts is negligi-
ble. In this game, A picks two DIDmain. C randomly selects one to generate a
Credctx. If A cannot guess which DIDmain is selected, the system guarantees
the unlinkability of user identities. Note that, we only includes cryptographic
attacks and does not consider other attacks such as network traffic attacks. The
process of GUL is as follows.

– C gives to A the security parameter 1λ, the system parameters gparams
obtained by running GlobalSetup(1λ).

– A can ask C to generate IA and AA by running PIRigister operation. C
shares IA’s and AA’s public keys pkIA and pkAA with A, and provides oracle
access O = (UserRigister, CredV er) to A.

– A runs DID0
main,DID1

main,DIDctx ← AO(pkIA, pkAA). Then A generates
Claim for DIDctx and sends them to C.

– C first checks whether the same DIDmain exists. Then C selects a random bit
b ∈ {0, 1} and run PreCredGen and CtxCredGen to generate Credctx for
DIDb

main.
– A finally sends a guess bit b′ ← AO(Credctx). A wins if b = b′.

CFChain 157

Definition 3. Unlinkability: CFChain offers unlinkability if, for any stateful
PPT adversary there exists a negligible function negl(·) such that,

∣
∣
∣
∣Pr

[
GUL(λ,A,O) → 1

] − 1
2

∣
∣
∣
∣ ≤ negl(λ)

Transaction Privacy. The transaction privacy property of CFChain ensures
that the probability that A can tell the transaction amount from the crowdfund-
ing record is negligible. In this game, A prepares two transactions, C randomly
selects one to generate a record. If the adversary cannot guess which transaction
is selected, the system guarantees the transaction privacy. The process of GTP

is as follows.

– C gives to A the security parameter 1λ, the system parameters gparams
obtained by running GlobalSetup(1λ).

– A can ask C to generate IA and AA by running PIRigister operation. C
shares IA’s and AA’s public keys pkIA and pkAA with A, and provides oracle
access O = (UserRigister, PreCredGen, ctsCredGen,Audit) to A.

– A calls O to register DIDctx for donations. Then, A sends donations with
donation amounts of v1 and v2 to C.

– C selects a random bit b ∈ {0, 1} and run Donate to generate recordvb .
– A finally sends a guess bit b′ ← AO(recordvb

). A wins if b = b′.

Definition 4. Transaction privacy: CFChain offers transaction privacy if, for
any stateful PPT adversary there exists a negligible function negl(·) such that,

∣
∣
∣
∣Pr

[
GTP (λ,A,O) → 1

] − 1
2

∣
∣
∣
∣ ≤ negl(λ)

6 The CFChain Scheme

GlobalSetup and PIRigister are run in the initialization phase, UserRigister,
PreCredGen and ctxCredGen are run in the user authentication phase,
CFPGen, Donate, and Audit are run in the crowdfunding phase. The details
are as follows.

In GlobalSetup, on input a security parameter 1λ, the algorithm chooses
bilinear groups G1, G2, and GT of prime order p, e : G1 ×G2 → GT is a bilinear
map. It randomly picks generators g, h ∈ G1. Suppose H : {0, 1}∗ → G2 is a
collision resistant hash function. It outputs gparams = (g, h, e,H,G1, G2, GT).

PIRigister operation is obtained by PI via execution of KeyGen, DIDGen,
and CredGen. It will first run KeyGen to get the public/private key pair
(pkPI , skPI) where skU ∈ Zp, and pkPI = hskPI . Then PI generates
DIDPI by running DIDGen(pkPI , context). Next, PI will choose the ser-
vice it can provide as an attribute to generate ClaimPI , and run algorithm
CredGen(DIDPI , ClaimPI , skPI) to issue a CredPI for itself.

Likewise, UserRigister is obtained by users via execution of KeyGen
and DIDGen. The user U will generate the required public-private key pairs

158 Y. He et al.

(pksU , sksU) as needed. And choose one of them to generate DIDU
main by run-

ning DIDGen(pkU ,main), and use the rest to generate corresponding DIDctx
U

according to different contexts by running DIDGen(pkU , context). The differ-
ence is that users cannot issue credentials for themselves.

Further, for PreCredGen, the user U submits his DIDs and UIU to the IA
for verification. If (UIU , DIDU

main) /∈ the table MIssueT , IA will add (UIU ,
DIDU

main) to MIssueT . Else, refuse the user’s request. If (DIDU
main, ctx,) /∈ the

table CIssueT , IA will add (DIDU
main, ctx, DIDU

ctx) to CIssueT and generates
Claim = (att, Cv) where v is DIDmain

U . Else, refuse the user’s request. Then,
IA runs CredGen to issue PreCredU

ctx for U and attach its signature σIA =
H(PreCredU

ctx)
skIA on it. PreCredU

ctx = {DIDU
ctx,DIDIA, Claim, ctx, σIA}.

The details of ctxCredGen are shown in Protocol 1. Initially, the user U
generates Claims and authenticates them with the corresponding AAs. The
user then combines the Claims according to the context requirements, execut-
ing AggSign to produce an aggregate signature and finally getting Claimctx.
To ensure the validity of the Claimctx, namely, it belongs to the same user as
PreCredU , it has employed the utilization of DIDU

main as a linking attribute
within the PreCredU , drawing inspiration from [31]. Claimctx contains the com-
mitment value of the linking attribute. We use a non-interactive variant of the
Chaum-Pedersen zero-knowledge proof [9] Πlink to prove that two commitments
have the same commitment value. U submits ClaimsU

ctx, PreCredU , and Πlink

to the contextual AA for authentication. Upon successful authentication, AA
will run CredGen to generate DIDctx

U .

Protocol 1 ctxCred Generation

Input: User U inputs PreCredU
ctx, Claims. AA inputs its skAA

Output: AA outputs success and U gets CredU
ctx (or) fail

1. U run AggSign(Claims) to get Claimctx. U generates Πlink =
ZK-POK{r, v, r′, v′ : Cv = gvhr

∧Cv′ = gv′
hr′ ∧ v = v′}

where v and v′ represent the value of U ’s DIDU
main in ClaimU

ctx and PreCredU
ctx respectively

(r, r′ represent corresponding commitment witness).

2. Randomly select b1,b2,b3 ∈ Zp and compute c1 = gb1hb2 , c2 = gb1hb3

3. Compute β = H(g, h, Cv, Cv′ , c1, c2), s1 = v · β + r, s2 = r · β + b2, s3 = r′ · β + b3

4. U sends {Πlink = (c1, c2, s1, s2, s3), ClaimU
ctx, PreCredU

ctx} to AA.

5. AA first Verifies the signatures on ClaimU
ctx and, PreCredctx

U . Then, Verifies the Πlink.

6. AA extracts Cv from PreCredU
ctx and Cv′ from ClaimU

ctx. Compute
β = H(g, h, Cv, Cv′ , c1, c2).

7. Randomly select α1,α2 ∈ Zp, k = [α1s1 + α0s1, α0s2 + α1s3, −α0β, −α1β, −α0, −α1]

8. Let l = [g, h, P, Q, c1, c2]. If
∏5

i=0 l
ki
i = 1 continue, otherwise, output fail.

9. AA extracts Claims from PreCredU
ctx and use them together with ClaimU

ctx to run CredGen

to get CredU
ctx.

The CFPGen operation is achieved through the execution of CredV er,
KeyGen, and DIDGen by CP. CP first runs the CredV er to check the authen-
ticity of the beneficiary B’s CredB . It then executes a predefined smart contract

CFChain 159

to publish the crowdfunded project (CFP) for B. Smart contracts are collab-
oratively developed by multiple AAs to implement the operational procedures
and regulations of contractual performance. The CP will execute the KeyGen
and DIDGen to produce the DIDCFP , which will be utilized to request access
to the CFP account. Notably, the CFP account is affiliated with an identical
financial institution as that of B’s account. Once the predetermined fundraising
goal is achieved, the transfer of donations from DIDCFP to DIDB takes place.

Protocol 2 Transaction Record Generation

Input: Donation information={DIDD, v}User U inputs PreCredU
ctx, ClaimU

ctx.

Output: record={ΠAmt, ΠAss, ΠC , ATD, ATCFP , AT ′
CFP , Cv}

1. Amount: Cv = gvhr is a commitment to donation amount v with a witness r.

2. Asset: Cv′ = gv′
hr′

is a commitment to account assets v′ =
∑n

i=0 vi. where n represents the

total number of donations so far, r′ is a random number different from r.

3. Audit Token: ATD = pkr
D, ATCFP = pkr

CFP , AT ′
CFP = pkr′

CFP

4. Proof of Amount: This is a range proof which is used to ensure that the donation amount is

not negative. ΠAmt = ZOK(v, r : Cv = gvhr ∧ v ≥ 0)

5. Proof of Asset: This is a range proof which is used to ensure that the donation asset is not

greater than the target value. ΠAss = ZOK(v′, r′ : Cv′ = gv′
hr′ ∧ v′ ≤ target)

6. Proof of Consistency: We use a non-interactive variant of the Chaum-Pedersen
zero-knowledge

proofs ΠC = ZOK1(x
r
1, yr

1 ∧ x
b1
1 , y

b1
1 , c1, s1) ∧ ZOK2(x

sk
2 , ysk

2 ∧ x
b2
1 , y

b2
1 , c2, s2) to prove that

the randomness used in Audit Token and commitment are the same, and AA does use asset v′

to

generate asset proof instead of arbitrary values. where ZOK1 and ZOK2 are used to prove the

knowledge of r and the knowledge of CFP’s secret key sk respectively, xr
1 and xsk

2 are two

generalized Schnorr proofs, b1 and b2 are two random numbers, c1 = H(ATD),
c1 = H(AT ′

CFP),

s1 = b1 + rc1, s2 = b2 + skc2, x1 = pkD, y1 = ATD,

x2 = (
∏n

i=0 Cvi
)/Cv′ , y2 = (

∏n
i=0 ATCFPi

)/AT ′
CFP . Note that, xr

1 = y1, xsk
2 = y2.

After receiving the donor’s donation, the AA to which DIDCFP will execute
the Donate operation to generate a transaction record. Inspired by [21], Pederson
commitments are utilized to hide transaction amounts and produce audit tokens
for the donor to verify the committed transaction. NIZK proofs are utilized for
enabling the validation and auditing of encrypted transactions. The details are
shown in Protocol 2.

The Audit operation ensures the transaction’s legitimacy by computing the
commitments and verifying the zero-knowledge proofs in the record. The donor
D can use his sk to check whether the transaction amount v in the record is
correct by computing ATD ·gsk·v = (Cv)skD . He also need to check whether xs1

1 =
(x1

r)c1x1
b1 , ys1

1 = (y1r)c1y1b1 , xs2
2 = (x2

skCFP)c2x2
b2 , ys1

2 = (y2skCFP)c1y2b1 .
Range proofs ΠAmt and ΠAss can also be verified by other users.

160 Y. He et al.

7 Security Analyse

Theorem 1. If the DL problem holds in group G, then CFChain provides Sybil-
resistance.

Proof. Recall that IA will use table MIssueT to record the correspondence
between the user’s DIDmain and his unique identifier. Similarly, table CIssueT
ensures that each DIDmain can get one DIDctx in the same context. That
is to say, when the adversary controls n users, it can get n DIDsctx and
the corresponding Credctxs. The effectiveness of this scheme relies on Cred’s
validity, which means users cannot create their DIDsctx with someone else’s
DIDmain. We exploit the soundness of Πlink to prove the validity of Cred,
the proof is as follows. During DIDctx generation, the challenger outputs
the DIDmain’s commitment values on the Claim and PreCred, respectively,
together with ΠLink = (s1, s2, s3, β). The simulator rewinds β and receives
another proof Π ′

Link = (s′
1, s

′
2, s

′
3, β

′). Then we have Cβ−β′
v = gs1−s′

1hs2−s′
2 ,

Cβ−β′
v′ = gs1−s′

1hs3−s′
3 . By setting v = (s1 − s′

1)/(β −β′), r = (s2 − s′
2)/(β −β′),

r′ = (s3−s′
3)/(β−β′), we have Cv = gvhr, C ′

v = gvhr′
, which are valid Pedersen

commitments of value v. Since Pedersen commitment has computationally bind-
ing properties based on the discrete logarithm hypothesis [23], Πlink is sound.
Thus, in Gsybil, A cannot generate more than n legitimate Credctxs.

Theorem 2. If the CDH problem holds in group G, then CFChain is unforgeable
in the chosen-text model.

Proof. In the user context-based identity authentication stage, the user needs to
aggregate the BLS signatures on the required Claims to prove the authenticity
of the identity. According to [7], when an aggregate signature is an aggregation
of signatures on distinct messages, it is secure in the chosen-text model. We add
a timestamp when generating the Claim to meet this requirement. Additionally,
while verifying credentials, users need to sign the challenge with their private
key since users’ key never leaves their device, the unforgeability for this phase
follows straightforwardly. So the adversary cannot win in GUF .

Theorem 3. CFChain provides unlikability in the random oracle model.

Proof. In CFChain, users use different DIDsctx in different contexts to prevent
identities from being associated. The user’s DIDmain will be recorded in Credctx

in the form of a commitment. Since the Pedersen commitment provide perfectly
hiding property [23], the adversary cannot associate different DIDsctx through
the Credctx. During the Credctx generation process, Πlink was used to prove the
Claim’s validity. Πlink is zero-knowledge in the random oracle model. The proof
is as follows. The simulator picks some random {Cv, Cv′ , s1, s2, s3}, and computes
c1 = C−β

v gs1hs2 , c2 = C−β
v′ gs1hs3 , the simulator set β = H(g, h, Cv, Cv′ , c1, c2)

in the random oracle model. Hence, Πlink does not leak DIDmain. So in GUL,
A cannot distinguish which DIDmain is used through the generated Credctx.

CFChain 161

Theorem 4. If the DDH problem holds in group G, then CFChain provides
Transaction privacy in the random oracle model.

Proof. If a PPT adversary A wins the game GTP with non-negligible probability,
we can utilize it to construct a PPT adversary ADDH who wins the DDH game
with non-negligible advantage. In GTP , ADDH plays the role of C. We use CDDH
to denote the challenger of ADDH.

– CDDH sends the challenge (h, x, y, z) to ADDH where (x, y, z) are distributed
either as (ha, hb, hab) or as (ha, hb, hc) in the challenge.

– ADDH calls A on input (g, h, x) after sampling a random generator g, with x
now acting as the crowdfunding project’s public key.

– A sends transactions with transaction amounts of v1 and v2 to C.
– ADDH picks a random bit b ∈ {0, 1} and prepares cmk = gvby, Token = z

and sends them to A.
– Finally, if A’s guess for b is correct, ADDH responds a DDH quadruple
(h, ha, hb, hab) otherwise it responds a random quadruple(h, ha, hb, hc).

Its inputs are all appropriately constructed with respect to sk = a and r = b.
Therefore, if A wins the game GTP with non-negligible advantage, so does ADDH
in the DDH game. In addition, through Theorem B.1. and Theorem B.2. in
[28], the zero-knowledge proofs Πamt and Πass do not leak committed values’
information-theoretic privacy. In conclusion, CFChain provides transaction pri-
vacy if the DDH problem holds in group G.

8 Performance Evaluation

8.1 Functionality Comparison

We compare our scheme with traditional international charity organizations
(ICO), the non-anonymous cryptocurrency (NCC) schemes (Bitcoin [20], and
Ether [30]), CharityCoin [12], and eDonation [6], which are shown in Table 2.
Here, √ indicates the scheme has this feature, while × does not have this fea-
ture. Traditional ICOs are centralized, and they can know the real identity of
users and the content of donations. Since attackers can deanonymize users of
Bitcoin and Ether by reusing addresses [8], we classify them as NCC. Charity-
Coin is based on Ethereum and defines seller and buyer authentication using
smart contracts. eDonation builds a donation policy based on Zerocash, which
uses zero-knowledge proof to protect user privacy and uses attribute-based sig-
natures to identify users. Our scheme uses distributed identities to provide user
privacy and unlinkability of identities. User revocability is achieved by revocation
of verifiable credentials. The private audit function is exclusively implemented
by the scheme in the study.

162 Y. He et al.

Table 2. Functionality Comparison with existing schemes.

Scheme Distributed Transaction
privacy

Unlinkability Authentication Sybil
resistance

revocability Private
Audit

ICO × × × √ √ √ ×
NCC √ × × × × × ×
CharityCoin √ × × √ × × ×
eDonation √ √ √ √ √ √ ×
Ours √ √ √ √ √ √ √

8.2 Implementation

The key components of CFChain are the blockchain, user authentication scheme,
and crowdfund scheme.

Blockchain is divided into public chain, consortium chain, and private chain.
Private chains are governed by a singular entity, making them unsuitable for
crowdfunding scenarios that require collaboration among multiple institutions.
In consortium chains, transaction confirmation and processing are achieved
through negotiation among participants, as opposed to the bidding mechanism
employed in public chains. Consequently, it does not necessitate supplementary
transaction expenses, such as gas fees on Ethereum [30]. Therefore, consortium
chains can effectively decrease transaction costs and cater to practical business
requirements in the context of crowdfunding, given the involvement of a signifi-
cant number of small transactions. We deploy CFChain on Hyperledger Fabric
[5], a consortium chain, where each organization owns two peer nodes and one
certificate authority (CA) node. The default settings for the orderer node’s block
creation are a two-second batch timeout and ten transactions per block. Addi-
tionally, the experiment’s node has eight cores.

The Pedersen commitment [23] and BLS signature [7] are utilized in the
creation of verifiable credentials. Users can aggregate BLS signatures obtained
from Claims that have been issued by various agencies into a singular signa-
ture, thereby conserving storage capacity. The BLS signature is comparatively
shorter than the Schnorr or ECDSA signatures as it comprises a single point
on the elliptic curve instead of two [26]. Furthermore, it obviates the necessity
for supplementary communication during key aggregation and the utilization of
random number generators. CFChain uses the elliptic curve secp256k1 of the
btcec library to compute commitments, the bls12_381 elliptic curve in the BLS
signature, and SHA-256 as the default hash function.

Bulletproofs [10] are utilized in the creation of crowdfunding records, specif-
ically for the purposes of zero-knowledge and range proof. Various types of
zero-knowledge proofs have been implemented in practice, including zk-SNARK,
zk-STARK, and Bulletproofs. Despite its efficiency, zk-SNARK necessitates a
trusted setup phase wherein multiple parameters are produced and must be
maintained confidential. zk-STARKs and Bulletproofs do not necessitate a trust
assumption. However, zk-STARK exhibits a greater proof size, which can be a
drawback in scenarios with storage or bandwidth constraints. Although Bullet-
proof’s verification cost is higher than zk-SNARK, it is still much lower than
zk-STARK. Furthermore, proof size in Bulletproofs has a logarithmic relation-

CFChain 163

ship to the number of commitments, which results in relatively small proofs. We
take Barreto-Naehrig 256 (BN256) as the default elliptic curve in Bulletproofs.

8.3 Performance

The experimental environments were set up on a desktop equipped with a
3.60GHz Intel(R) Core(TM) i7-12700K CPU and 32GB of RAM. The CFChain
was constructed on the top of Hyperledger Fabric, with specific versions of Fabric
v2.2.5. The chaincode APIs are written in Go, and the client APIs are written
in NodeJS. Supporting components are Node.js v12.18.2 and NPM v6.14.5. All
evaluations are run on Ubuntu 18.04 VMs. We collect data from 50 runs for
each experiment and take the average as the experimental result. The key com-
ponents’ performance of the CFChain system was evaluated as follows.
User Authentication: User authentication can be divided into two phases:
user material preparation and user material verification. In the first phase, the
user needs to generate Claims according to the context’s requirements and get
the signatures from corresponding AAs. The average time to create a Claim is
about 3ms, which hardly grows with the number of attributes. And the average
time to generate a BLS signature for each Claim is 3.5ms. Users also need to
combine these Claims and generate Πlink, with an average time of 36ms. In
the second phase, AA verifies the Πlink and the signatures on the Claimctx

and generates the Credctx for the user. The average verification time of Πlink

is 37ms. When the number of aggregated Claims is 5, the average verification
time is 97.7ms. The time to generate the Cred and upload it to the blockchain
is 22ms.

The study conducted a comparative analysis of the efficiency of user identifi-
cation schemes employed in CFChain and eDonation. The stage of user material
preparation in CFChain can be considered analogous to the attribute signature
generation stage in eDonation. Similarly, the user material verification stage in
CFChain can be equated to the signature verification stage in eDonation. To
facilitate comparison, a single attribute for the claim has been established. The
comparative outcomes are depicted in Fig. 2 and Fig. 3. The findings indicate
that the process of user authentication in CFChain is characterized by reduced
time consumption. The approach employs BLS aggregate signatures, thereby
preserving the signature size. Every time an attribute is added, the size of the
Cred increases by 64B (commitment’s size), which is almost negligible. With
the presence of five attributes, the overall magnitude of Cred is approximately
0.7KB, which is significantly lesser than the signature size of eDonation, which
stands at 45KB.

164 Y. He et al.

Fig. 2. User material preparation phase Fig. 3. User material verification phase

Crowdfund: The procedure for producing a correct crowdfunding transaction
can be bifurcated into the subsequent two steps. Initially, the crowdfunding
account’s managing entity will invoke the chaincode to generate a record after
receiving the donation, which comprises two tokens, two range proofs, and a
singular commitment. The aggregate duration of the process is about 0.81 s.
Subsequently, the donor triggers the validation chaincode to authenticate the
transaction record across the relevant organization associated with their account.
The total time to run the chaincode to verify the record is approximately 0.19 s.

This study conducts a comparative analysis of the donation performance
exhibited by CFChain in relation to CharityCoin [12] and eDonation [6]. Fur-
thermore, an Ethereum private network was constructed on a local basis, and
the transfer, approve, and transferFrom functions were executed on the smart
contract for CharityCoin to replicate the process of making a donation. More-
over, Hyperledger Caliper is utilized for the assessment of the donation process
of the CFChain and Ethereum network. Additionally, a local simulation of [3]
has been implemented to replicate the donation process in eDonation. Table 3
presents the comparison outcomes, wherein the Sender time denotes the dura-
tion expended by the donor, while the receiver time signifies the time taken for
the recipient to receive a lawful transaction. The Zcash protocol execution in
eDonation necessitates the operation of the protocol by both the donor and the
beneficiary, resulting in a prolonged duration. It is noteworthy to mention that
CharityCoin’s transaction amount is not concealed, resulting in a shorter receive
time. The CFChain network exhibits the highest throughput capacity.

Table 3. Performance comparison in the donation phase.

Scheme eDonation CharityCoin CFChain

Send Time (s) 105.4 4.6 0.81
Receive Time (s) 107.2 0.02 0.19
Throughput (tps) 2.3 6.8 38

CFChain 165

9 Conclusion

This paper proposes a blockchain-based charity crowdfunding platform called
CFChain. The CFChain offers a high degree of transparency regarding the
movement of funds through the utilization of blockchain technology, whereby
crowdfunding records are uploaded onto the blockchain. Furthermore, CFChain
employs distributed identities for the purpose of formulating a user authen-
tication approach. This approach severs the connection between user identi-
ties across various contexts and is capable of withstanding sybil attacks. The
approach involves assigning a distinct DIDmain to each user as a means of
thwarting Sybil attacks. Additionally, users have the ability to create multiple
DIDsctx for varying contexts, thereby achieving identity unlinkability. Pedersen
commitments are utilized to conceal transaction amounts and create crowdfund-
ing records with NIZK. This enables individuals to examine encrypted donation
records and verify the accuracy of donations. Ultimately, the paper demonstrates
the security of CFChain and executes a preliminary model on Hyperledger. The
findings demonstrate the efficacy and feasibility of the subject matter.

Acknowledgements. This work is supported by JST SPRING (Grant No.
JPMJSP2136), the Fundamental Research Funds for the Central Universities (No.
30106220482).

References

1. Yahoo. https://finance.yahoo.com/news/crowdfunding-market-reach-42-93-
150700017.html. Accessed 29 Jun 2022

2. Statista. https://www.statista.com/statistics/1078273/global-crowdfunding-
market-size/. Accessed 22 Aug 2022

3. Zcash “sapling” cryptography. https://github.com/zcash-hackworks/sapling-
crypto. Accessed 28 Feb 2020

4. Weidentity: Digital identity for data sharing on open consortium chain (2022).
Software available, https://fintech.webank.com/en/weidentity/

5. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for per-
missioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, pp.
1–15 (2018)

6. Biçer, O., Küpçü, A.: Anonymous, attribute based, decentralized, secure, and fair
e-donation. Cryptology ePrint Archive (2020)

7. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9_26

8. Béres, F., et al.: Blockchain is watching you: profiling and deanonymizing Ethereum
users. In: 2021 IEEE International Conference on Decentralized Applications and
Infrastructures (DAPPS), pp. 69–78 (2021)

https://finance.yahoo.com/news/crowdfunding-market-reach-42-93-150700017.html
https://finance.yahoo.com/news/crowdfunding-market-reach-42-93-150700017.html
https://www.statista.com/statistics/1078273/global-crowdfunding-market-size/
https://www.statista.com/statistics/1078273/global-crowdfunding-market-size/
https://github.com/zcash-hackworks/sapling-crypto
https://github.com/zcash-hackworks/sapling-crypto
https://fintech.webank.com/en/weidentity/
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26

166 Y. He et al.

9. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-48071-4_7

10. Constantinides, K., et al.: BulletProof: a defect-tolerant CMP switch architecture,
pp. 5–16. IEEE (2006)

11. Douceur, J.R.: The Sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.)
IPTPS 2002, Revised Paper. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45748-8_24

12. Farooq, M.S., Khan, M., Abid, A.: A framework to make charity collection trans-
parent and auditable using blockchain technology. Comput. Electr. Eng. 83, 106588
(2020)

13. Fiege, U., et al.: Zero knowledge proofs of identity. In: Proceedings of the Nine-
teenth Annual ACM Symposium on Theory of Computing, pp. 210–217 (1987)

14. Hossain, M., Oparaocha, G.O.: Crowdfunding: motives, definitions, typology and
ethical challenges. Entrep. Res. J. 7, 1–14 (2017)

15. Kang, H., et al.: FabZK: supporting privacy-preserving, auditable smart contracts
in hyperledger fabric. In: 2019 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pp. 543–555. IEEE (2019)

16. Lundkvist, C., et al.: uPort: a platform for self-sovereign identity (2017). https://
whitepaper.uport.me/uPort_whitepaper_DRAFT20170221.pdf

17. Manda, V.K., Prasada Rao, S.S., Prasadarao, S.S.: Blockchain technology for the
mutual fund industry. In: National Seminar on Paradigm Shifts in Commerce and
Management, pp. 12–17 (2018)

18. Maram, D., et al.: CanDID: can-do decentralized identity with legacy compatibility,
Sybil-resistance, and accountability. In: 2021 IEEE Symposium on Security and
Privacy (SP), pp. 1348–1366. IEEE (2021)

19. Mehra, A., et al.: Vishrambh: trusted philanthropy with end-to-end transparency.
In: HCI for Blockchain: a CHI 2018 Workshop on Studying, Critiquing, Designing
and Envisioning Distributed Ledger Technologies, Montreal, QC, Canada (2018)

20. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized busi-
ness review, p. 21260 (2008)

21. Narula, N., et al.: zkLedger: privacy-preserving auditing for distributed ledgers. In:
15th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 18), pp. 65–80 (2018)

22. Patel, V.: New Jersey man gets 5 years in prison in GoFundMe fraud case. The
Times (2022). https://www.nytimes.com/2022/08/07/nyregion/gofundme-scam-
mark-damico-sentenced.html

23. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9

24. Picard, C.: Scammers hijack crowdfunding campaign for 6-year-old with leukemia
(2016). https://www.goodhousekeeping.com/life/news/a39792/leukemia-patient-
gofundme-hacked/

25. Renat, G., et al.: Karma-blockchain based charity foundation platform. In: 2021
IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pp.
1–2. IEEE (2021)

26. Sahana, S.C., Bhuyan, B.: A provable secure short signature scheme based on
bilinear pairing over elliptic curve. Int. J. Netw. Secur. 21, 145–152 (2019)

27. Saleh, H., et al.: Platform for tracking donations of charitable foundations based
on blockchain technology. In: 2019 Actual Problems of Systems and Software Engi-
neering (APSSE), pp. 182–187 (2019)

https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-45748-8_24
https://whitepaper.uport.me/uPort_whitepaper_DRAFT20170221.pdf
https://whitepaper.uport.me/uPort_whitepaper_DRAFT20170221.pdf
https://www.nytimes.com/2022/08/07/nyregion/gofundme-scam-mark-damico-sentenced.html
https://www.nytimes.com/2022/08/07/nyregion/gofundme-scam-mark-damico-sentenced.html
https://doi.org/10.1007/3-540-46766-1_9
https://www.goodhousekeeping.com/life/news/a39792/leukemia-patient-gofundme-hacked/
https://www.goodhousekeeping.com/life/news/a39792/leukemia-patient-gofundme-hacked/

CFChain 167

28. Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In:
2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE (2014)

29. Singh, A., et al.: Aid, charity and donation tracking system using blockchain.
In: 2020 4th International Conference on Trends in Electronics and Informatics
(ICOEI) (48184), pp. 457–462. IEEE (2020)

30. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151(2014), 1–32 (2014)

31. Yin, J., et al.: SmartDID: a novel privacy-preserving identity based on blockchain
for IoT. IEEE IoT J. 10, 6718–6732 (2022)

32. Yuen, T.H.: PAChain: private, authenticated & auditable consortium blockchain
and its implementation. Futur. Gener. Comput. Syst. 112, 913–929 (2020)

33. Zhang, R., et al.: Security and privacy on blockchain. ACM Comput. Surv. (CSUR)
52, 1–34 (2019)

TBAF: A Two-Stage Biometric-Assisted
Authentication Framework

in Edge-Integrated UAV Delivery System

Zheng Zhang1, Huabin Wang1, Aiting Yao1, Xuejun Li1, Frank Jiang2,
Jia Xu1, and Xiao Liu2(B)

1 School of Computer Science and Technology, Anhui University, Hefei, China
zhengzhang@stu.ahu.edu.cn, {wanghuabin,xjli,xujia}@ahu.edu.cn

2 School of Information Technology, Deakin University, Geelong, Australia
{frank.jiang,xiao.liu}@deakin.edu.au

Abstract. Edge-Integrated Unmanned Aerial Vehicles (UAVs) deliv-
ery systems have demonstrated the advantage of higher efficiency and
lower latency in comparison with traditional intelligent delivery systems.
But with its rapid development, a series of security and privacy issues
have also emerged. For instance, it is of vital importance to maintain
data safety due to UAVs exchanging sensitive data with servers through
public channels, attackers can easily gain access to sensitive informa-
tion by launching attacks including man-in-the-middle and imperson-
ation attacks. Additionally, the requirements of frequent authentications
between UAVs and edge servers can result in increased computation
overhead, while UAVs are fast-moving and resource-constrained, and
excessive computational overhead can degrade the user experience. To
address these challenges, this paper proposes a Two-Stage Biometric-
Assisted Authentication Framework (TBAF) that enhances security and
efficiency. In TBAF, a novel secret sharing method is designed to dis-
tribute storage biometric templates with protection, ensuring the secret
values which are biometric templates can only be accessed by autho-
rized parties. Additionally, the two-stage authentication protocol reduces
computation and communication overhead. Extensive formal and infor-
mal security analysis confirms the superior performance of the proposed
protocol compared to existing solutions.

Keywords: Edge-Integrated · UAVs Delivery System ·
Authentication · Secret Sharing · Protocol

1 Introduction

In recent years, intelligent delivery systems have undergone rapid development
due to their inherent advantages of cost-efficiency when compared to traditional
delivery systems [1,2]. The UAV delivery system utilizes key technologies to
address various challenges, such as 5G, IoT, cloud computing and edge com-
puting. The challenges include data transmission, UAV flight control and user
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14493, pp. 168–188, 2024.
https://doi.org/10.1007/978-981-97-0862-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0862-8_11&domain=pdf
https://doi.org/10.1007/978-981-97-0862-8_11

TBAF: A Two-Stage Biometric-Assisted Authentication Framework 169

identity authentication [3]. Compared to traditional cloud computing environ-
ments, edge computing offers lower communication latency and higher compu-
tational efficiency advantages its closer proximity to user terminals. This can
greatly assist UAV’s flight and real-time communication with better efficiency
and accuracy. Therefore, the edge-integrated UAVs delivery system presents a
promising solution to overcome obstacles such as difficult terrain, traffic conges-
tion, and high labor costs.

However, intelligent delivery system also poses potential risks of data privacy
breaches and communication security threats while delivering its services. In an
edge-integrated UAVs delivery system, the open and public flight environment
of UAVs exposes them and their operators to potential hijacking attacks, cloning
attacks, and physical attacks during mission operations [4]. These malicious acts
by attackers can disrupt the seamless flow of delivery, such as changing the flight
route to steal packages or obtaining the personal information of the package
recipient to violate the recipient’s privacy information.

Additionally, the frequent execution of authentication protocols by UAVs and
multiple edge nodes brings high computational overhead [5]. During the UAV
flight, UAVs need to frequently visit different edge nodes to obtain real-time
airspace traffic flow, weather information and path planning information [6].
Meanwhile, the edge nodes also have to authenticate the UAV’s identity infor-
mation to ensure the safety of the UAV. Frequent authentication brings more
computational overhead. While UAVs are fast-moving and resource-constrained,
the high computational overhead will greatly reduce the flight duration of UAVs,
resulting in a bad user experience [7].

To address the communication security and privacy issues, a Two-Stage
Biometric-Assisted Authentication Framework (TBAF) has been proposed for
the edge-integrated UAVs delivery system. The TBAF included a secure authen-
tication protocol to ensure communication security between server and UAV-
Operator (UO). Furthermore, a three-dimensional space-based secret share
method is designed to enhance system security. In TBAF, a protected biomet-
ric template is regarded as a secret value and storage on multiple servers in
a distributed manner. The secret value can only be recovered with the joint
participation of the cloud, edge and UO. In addition, since the secret value is
a protected biometric template, an attacker cannot obtain the user’s private
information even if the secret value is obtained. This approach offers double
protection of user privacy.

For the sake of reducing the computation overhead caused by frequent
authentication, a two-stage authentication protocol is proposed. In the first
stage, UO end uses biometric information, Physical Unclonable Function (PUF)
and password to complete mutual authentication with the cloud server. Then,
the cloud server sends authentication results and assists information to the edge
server. In the second stage, with the help of assist information, the edge server
can realize authentication of the UO end while minimizing the number of com-
plex operations. So, the two-stage method can degrade the computation over-
head of edge server authentication UO end effectively. Moreover, considering

170 Z. Zhang et al.

edge server diversity and uncertainty, the second stage authentication protocol
has adopted Zero Knowledge Proofs (ZKP) to strengthen the security of the
system. The main contributions of this paper are as follows:

– A two-stage authentication protocol has been designed, the edge server can
quickly complete the authentication process for UO end with the help of
the first stage authentication results. Thus, TBAF reduces the computation
overhead of the edge server when authenticating UO end.

– To enhance the security and privacy of UAVs delivery system, a Two-Stage
Biometric-Assisted Authentication Framework has been proposed. In TBAF,
we have utilized the multi-server environment and cancellable biometric pro-
tection method to develop a novel secret-sharing method. Secret information
can only be recovered if all three parties are involved, which makes it more
challenging for attackers to breach the system.

– The security and privacy of the TBAF have been tested and validated through
formal and informal security analysis. The experimental results present the
TBAF has superior performance in terms of computation and communication
overhead.

2 Related Work

With the prevalence of UAVs, the research of UAVs and Internet of Drones
(IoD) has attracted attention recently [8,9]. Lin et al. [8] analyzed the security
challenges faced by IoD and proposed several possible solutions to improve the
security of IoD, among which the security authentication of UAVs was considered
an extremely important part.

To enable secure authentication, Tian et al. [10] proposed an authentication
framework based on a digital signature mechanism in edge computing environ-
ment to realize secure and efficient authentication of UAVs. However, there are
some scholars argued that the solution of the literature does not provide security
against location threats and other physical attacks [10]. For example, Gope and
Sikdar [11] proposed a double PUF-based authentication and secret key negoti-
ation mechanism that uses PUFs to achieve the physical security of UAVs and
the device does not need to store any secret key information. Shen et al. [5]
proposed a two-stage authentication approach involving the cloud server, edge
server and vehicle. The first stage authentication results were utilized to aid the
second stage authentication, thus reducing the computational burden of per-
forming multiple authentications with the edge server. However, their solution
relied heavily on digital signatures and elliptic curve algorithms, resulting in
significant computational overhead during the first stage authentication process.
Alladi et al. [4] proposed a lightweight authentication protocol that utilizes PUF
technology to achieve mutual authentication between the UAV-Ground station
and UAV-UAV. Tian et al. [12] considered that UAVs need to perform mutual
authentication with different ground stations in fast movement. They proposed
a cross-domain mutual authentication mechanism for UAVs and ground stations.

TBAF: A Two-Stage Biometric-Assisted Authentication Framework 171

Although these work achieve authentication of UAVs in different environments,
they do not consider the data privacy of operators and UAVs Additionally, the
same authentication protocol must be executed for each authentication, resulting
in increased computational overhead [4,12].

Biometric plays a crucial role in uniquely identifying users, and designing
authentication protocols using biometric features has become a popular research
topic. Kumar et al. [13] proposed a framework that combines biometric and
Elliptic Curve Cryptography (ECC) assistance to complete mutual authentica-
tion of vehicle cloud servers in Vehicular Cloud Computing (VCC) environment.
This framework is developed using cloud computing services, but due to the
fast movement and high communication latency of vehicles, it puts a heavy
computational strain on resource-constrained UAVs. Bera et al. [14] proposed a
three-factor authentication protocol based on passwords, biometrics and mobile
devices in smart city environments. However, the protocol introduces a trusted
registry and an access point for relaying messages, and the trustworthiness issues
of the registry and access point produced additional privacy anxiety. Bian et al.
[15] proposed a user authentication and secret key negotiation mechanism based
on PUF and fingerprint features, which achieves secure user authentication.
That mechanism introduced excessive computational overhead due to the use
of multiple fuzzy extractor operations. Zhang et al. [16] designed a biometric
and PUF-based authentication protocol in a multi-server environment and a
new secret-sharing technique for distributed storage of secret values. Whereas
the secret sharing scheme is not suitable for the dynamic environment of edge
computing and may result in authentication failure if some servers go offline.

In a nutshell, the majority of current UAV authentication protocols only
focus on ensuring the identity security of the UAV, without considering the
security of the operator controlling the UAV [4,5,10–12,17] . This creates secu-
rity vulnerability, as the UAV’s flight process still heavily relies on the operator’s
control. Furthermore, most current authentication protocols based on biometrics
has high computation overhead which is not acceptable for resource-constrained
UAVs [13–16] .

3 Preliminaries

In this section, we describe the background knowledge involved in TBAF. Specif-
ically, it includes PUF, secret sharing, zero knowledge proof, and cancellable
biometric template protection.

3.1 Physical Unclonable Function

PUF is a hardware function that generates random values inside the chip due
to differences in the Integrated Circuit (IC) fabrication process. PUF can be
considered a biometric feature embedded in the device [18]. PUF can generate
multiple Challenge-Response Pairs (CRPs), whose mathematical expression for
the response is:

R = PUF (C) (1)

172 Z. Zhang et al.

where C is a set of possible challenge sets, and R is the output of the PUF also
called the response value, the same challenge will generate the same response, and
different challenges will generate different response values. Due to the function
generate random differences arising during the fabrication of the intrinsic chip,
so it is impossible for two different entities to have exactly the same PUF.

3.2 Blakley Secret Sharing

The secret sharing technique was initially proposed by Blakley et al. [19]. It refers
to the encrypted distribution of secrets to multiple participants for joint storage
to improve the security of secret storage. Suppose the secret S is transformed
to a point on the t-dimensional space denoted S = (S1, S2, ..., S(t)) and then
randomly construct n planes passing through this point, the n planes do not
overlap each other, where the plane equation is:

P1 : t11X1 + t12X2 + . . . + t1t Xt = γ1;

P2 : t21X1 + t22X2 + . . . + t2t Xt = γ2;
. . . ;

Pn : tn1X1 + tn2X2 + . . . + tnt Xt = γn;

(2)

where any plane Pi has t11S1 + t12S2 + .. + t1t St = γ1:, send the parameter
ti1, t

i
2, ..., t

i
t, γi to the ith participant.

If any t of these n planes is known, the secret value S can be obtained by
solving the following matrix. But if the information of at most t − 1 of the
participants is known, it is also impossible to obtain any information about S.

⎡
⎢⎢⎣

t11, t
1
2, . . . , t

1
t

t21, t
2
2, . . . , t

2
t

. . .
tt1, t

t
2, . . . , t

t
t

⎤
⎥⎥⎦

⎡
⎢⎢⎣

X1

X2

. . .
Xt

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

γ1
γ2
. . .
γt

⎤
⎥⎥⎦ (3)

3.3 Zero Knowledge Proofs

ZKP is an encryption scheme to achieve data privacy protection. This statement
describes a scenario where a prover can demonstrate to a verifier that they have a
legitimate interest in something without disclosing their confidential information.
ZKP have the following three properties [20]:

(1) Completeness. The prover’s true statement must be able to convince the
verifier.

(2) Soundness. A dishonest prover’s statement must not pass the verifier’s ver-
ification.

(3) Zero-knowledge. During the mutual communication between the prover and
the verifier, the prover cannot disclose any knowledge content, and the ver-
ifier cannot extract any knowledge-related information from the message,
i.e., the knowledge given to the outside world is “Zero”.

TBAF: A Two-Stage Biometric-Assisted Authentication Framework 173

3.4 Cancelable Biometric Template Protection

The cancelable biometric template protection method maps the original bio-
metric to a protected biometric template through a one-way transformation
function. Biometric is matched in the transformation domain. A generic can-
celable biometric system is shown in Fig. 1. In the registration phase, the user
inputs the biometric information to get the origin template, and the origin tem-
plate is transformed to gain the protected biometric. When the user logs in, the
same biometric information and transformation parameters are used to get the
protected biometric and complete the biometric authentication in the transfor-
mation domain.

Fig. 1. A Block Diagram for General Cancelable Biometric System.

In this paper, to enable fast authentication and enhance the user experience,
we adopted the classical Index-of-Maximum (IOM) Hashing [21] as our biometric
template protection method. IOM uses a random matrix projection method to
convert original biometric into protected biometric template and has been proven
to be safe and efficient.

4 The Proposed Scheme

In this section, we describe the proposed scheme. Table 1 provides a list of nota-
tions used in this paper and their corresponding descriptions.

4.1 System Overview

In this subsection, we describe the involved entities of the TBAF with three
main entities: Cloud Server, Edge Server, and UO end. Then, we elaborate on
the five phases of the TBAF delivery process.

– The cloud server is responsible for maintaining the data of the distribu-
tion center, authenticating the identity of the UO that initiates the delivery
request, and executing the route planning process for the authenticated UO.

174 Z. Zhang et al.

– The edge server is an honest-but-cautious party that operates under the con-
trol of the cloud server. The edge server is honest in that it will perform
the authentication process, provide airspace traffic flow conditions, and path
navigation, and assist the UAV flight. However, it is also cautious, as there
is a risk of the edge server maliciously stealing privacy information from the
authentication process at the UO end.

– The UO end is responsible for collecting packages from the distribution center
and completing the logistics distribution process with the assistance of the
edge server.

Table 1. Notations and descriptions.

Variable Description

IDi ID of i − th UO end

CSj , ESk ID of Cloud Server j andEdge Server k

pwd password

Bio Biometric Information

pf Protected Biometric Template

Ci A Challenge of PUF

Ri A Response of PUF Corresponding to Ci

G The Generate the Subgroup of the Elliptic Curve

FA Auxiliary Parameters of Fuzzy Extracctor

PUF () PUF Function

h() Hash Function

FE.Gen() Fuzzy Extroactor Generation Function

FE.Rec() Fuzzy Extroactor Reproduction Function

SKi,j Session Key Between UO End and Cloud Server

SKj,k Session Key Between UO End and Edge Server

As shown in Fig. 2, TBAF is divided into five phases.
Phase 1–2. The logistics center initiates a logistics delivery request, performs

route planning and waits for an available UAV to respond to the demand. Then a
registered UAV responds to the cloud server with a delivery request and requests
an authentication.

Phase 3–4. After receiving the response from the UO, the cloud server must
first verify the authenticity of the UO end. Once the identity of the UO is con-
firmed, the cloud server will send the authentication results and auxiliary authen-
tication information to all subsequent edge nodes that UAV may encounter. Then
the UAV has the right to get the package from the delivery station.

Phase 5. During the UAV flight, UAV may pass through an edge server
controlled by the cloud server. The edge server has to authenticate the UO end
using auxiliary information to ensure that the UO end is secure and provide

TBAF: A Two-Stage Biometric-Assisted Authentication Framework 175

airspace traffic flow, weather conditions, and auxiliary flight information. ZKP
and cancellable biometric template protection methods are adopted to guarantee
that edge servers do not maliciously steal the private information of UO end.
After all edge nodes have authenticated the identity of UAV, the UAV arrives
at destination and delivers the package.

Fig. 2. TBAF Delivery Process.

4.2 Three-Dimensional Space-Based Secret Sharing

All edge servers are not always online simultaneously, the t-out-of-n edge servers
are expected to recover via designated secrets. Furthermore, the true secret value
can only be recovered by the cloud server, the UO end, and multiple edge servers.
This prevents any collusion between parties to steal secret data. The details of
the three-dimensional space-based secret sharing are as follows.

Secret Sharing Process: The protected biometric template pf and transfor-
mation parameter w are considered secret values, w is divided into two parts w1

and w2. Then we can calculate the secret value s = (pf, w1, w2) to be protected.
Finally, 3 secret pieces of information are shared to enhance the protection of
biological data.

Step 1. Select a plane Ps : AX + By + Cz = α randomly through the points
s = (pf, w1, w2), which Apf + Bw1 + Cw2 = α.

Step 2. Make a vertical line l perpendicular to the plane Ps through the point
s, pick any point Q = (x1, y1, z1) from l which Q �= s.

Step 3. Select N planes P = {P1, P1, . . . PN} through point Q as share planes,
which any plane Pi : aix + biy + Ciz = αi has aix1 + biy1 + ciz1 = αi.

Secret Recovery Process: Three secrets are recovered by sharing values. The
secret recovery process for biometric authentication is given below.

Step 1. Obtain the plane Ps where the secret s is located by sharing the value
A,B,C, α.

Step 2. Take any t secret planes from the N secret planes where t ≥ 3, the
shared coordinates Q = (x1, y1, z1) can be obtained by solving the following
system of equations:

176 Z. Zhang et al.

P1 : a1x + b1y + c1z = α1;
P2 : a2x + b2y + c2z = α2;

. . . ;
Pt : atx + bty + ctz = αt;

(4)

Step 3. After obtaining Q = (x1, y1, z1), and making the perpendicular

l :
x − x1

A
=

y − y1

B
=

Z − Z1

C
= t of the plane Ps through the point

Q = (x1, y1, z1), the secret value s = (pf, w1, w2) is obtained by solving the
joint cubic equation with the plane Ps, which:

pf = A
α − (Ax1 + By1 + Cz1)

A2 + B2 + C2
+ x1;

w1 = B
α − (Ax1 + By1 + Cz1)

A2 + B2 + C2
+ y1;

w2 = C
α − (Ax1 + By1 + Cz1)

A2 + B2 + C2
+ z1;

(5)

In this paper, in order to save the secret value s = (pf, w1, w2), four share
values A,B,C, α and N shared planes are created as P , where A, B are stored
in UO end, B, C are stored in the cloud server and the secret plane is stored in
the edge server.

4.3 Registration

Each legitimate UO end should be registered with Cloud Sever CSj before
deployment. A UO end Ui has its own identity respectively. The operation of the
UO end in the registration phase is shown how in Fig. 3. The specific registration
steps are as follows.

In the registration phase, Ui input password pwd, biometric information
Bio, generate a transformation parameter w and get a protected biometric
template pf by IOM_Hashing. Then Ui interacts with the cloud server to get
{PID,Ci,Kuo, A,B} and computes K∗

uo, FA∗,HV,HVFA. Finally, Ui storages
{A,B,K∗

uo, Ci,HV,HVFA}.
CSj gets {pf,Ri, w} from Ui, pf and w are regarded as secret using three-

dimensional space-based secret sharing method to generate A,B,C, α and planes
P . Then CSj generate a privacy key Kuo and challenge Ci of Ui, computes HVcs,
storages {PID,Kuo, B,C, α,Ci,HVcs} and send P to edge server.

4.4 Authentication and Key Negotiation

In this subsection, we describe the detailed design process of the two-stage
authentication protocol and key negotiation, including the mutual authentica-
tion of cloud server and UO, the authentication process of edge server and UO
end.

TBAF: A Two-Stage Biometric-Assisted Authentication Framework 177

Fig. 3. Registration of UO End.

Stage 1: UO End and Cloud Server Mutual Authentication. As shown
in the Fig. 4, the authentications phase procedures. First UO attempts to log in
to the cloud server so that can get a package from the delivery station and start
distribution.

Step 1: Ui inputs biometric information Bio and password pwd. Ui first com-
putes Ri and Kuo, and verifies HV . Only real UO end have the right pwd and Ri.
Then Ui computes HV2 and sends Msg1Auth = {HV2, P IDi, Reqauth} to CSj .

Step 2: Upon receiving Msg1Auth from Ui, CSj checks PIDi to see whether
PIDi in the database and verifies if HV2 and h (Kuo ‖ Ri ‖ PIDi) are equal,
if not true or not in the database, CSj will terminate the authentication. Oth-
erwise, CSj takes out share B and generates a random number r1.Then CSj

computes V1 = h (CSj ‖ Kuo) ⊕ r1, V2 = B ⊕ r and sends Msg2Auth = {V1, V2}
to Ui.

Step 3: On receiving Msg2Auth, computes r1, B and verify that B is equal to
B in the database. If not equal, Ui terminate the authentication, or else takeout
share A and produce a random number r2. Then computes V3 = Kuo ⊕ r2,
V4 = h (Kuo ‖ r2 ‖ B) ⊕ A, V5 = h (Kuo ‖ A ‖ B ‖ r2) and sends Msg3Auth =
{V3, V4, V5} to CSj .

Step 4: When receiving Msg3Auth, CSj computes r2 and verifies V5. If not
equal, CSj terminate the authentication, or else takeout share planes from edge
servers and recovery pf and w. Then, CSj generates a random number r3, com-

178 Z. Zhang et al.

putes V6 = Kuo ⊕w, V7 = h (w ‖ Kuo ‖ r3) and sends Msg4Auth = {V6, V7, r3} to
Ui.

Step 5: Ui receives Msg4Auth from CSj , computes w and verifies V7. If not
true, Ui terminate the authentication, otherwise, Ui uses Bio generate pf

′
by

IOM_Hashing. Then, Ui computes FA, K, verifies HFFA. If not true, Ui ter-
minate authentication, otherwise, Ui computes V8 = Kuo ⊕ K, V9 = K ⊕ Ri,
SKij = h (PIDi ‖ Ri ‖ K ‖ r3) and V10 = h (SKij ‖ Kuo ‖ K ‖ Ri). Finally, Ui

sends Msg5Auth = {V 8, V 9, V 10} to CSj .
Step 6: When CSj receives Msg5Auth from Ui, CSj first computes Ri, SKij =

h (PIDi ‖ Ri ‖ K ‖ r3). Then CSj verifies that V10 and h (SKij ‖ Kuo ‖ K ‖ Ri)
are equivalent, if equivalent, the session key is successfully created.

Fig. 4. UO End and Cloud Sever Mutual Authentication.

TBAF: A Two-Stage Biometric-Assisted Authentication Framework 179

Stage 2: Edge Server Authentication UO End. In an edge-integrated UAV
system, UAVs need to access edge servers more frequently and edge servers are
less trusted than cloud servers. Therefore, in this paper, an authentication pro-
tocol is designed between UO and Edge Sever with ZKP. The specific authenti-
cation steps of the UO and edge server are as follows.

Initialization Phase: the cloud server CSj selects a random point G on the
elliptic curve EC, computes τ = h (Ri) · G and sends {τ, EC,Ci, G, pf} to the
edge server ESk where the UAV may pass, which Ci and Ri are UAV’s CRP-PUF
and pf is the operator’s protected biometric template.

Authentication Phase: Fig. 5 shows the authentication between Ui and ESk

Fig. 5. Edge Sever Authentication UO End.

Step 1: Ui launches an authentication request with pseudo-identity PIDi and
sends MSG1

ES = {PIDi, Req} to ESk.
Step 2: Upon receiving the message Msg1ES , first check if PIDi exists in the

database. If not in the database, ESk terminate the authentication, otherwise,
takes out the challenge Ciand send Ci to Ui.

Step 3: After Ui receiving the Ci from ESk, Ui selects a v random point
and computes Ri, r and S = v · G, which, as per elliptic curve algebra, is v
times the addition of the elliptic curve point G to itself. Ui drafts the message
Msg3ES = {r, S} and delivers it to ESk.

180 Z. Zhang et al.

Step 4: ESk receives the Msg3ES , computes S = r · G + Ci · τ and com-
pares it with the received r. If not valid, ESk terminate the authentication,
otherwise ESk computes SKik = h (PIDi ‖ τ ‖ ESk), SK∗ = h (SKik ‖ S) and
sendMsg4ES = {SK∗} to Ui.

Step 5: After obtaining Msg4ES , Ui computes SK
′
ik =h (PIDi ‖ τ ‖ ESk)

and verifies whether SK∗ = h
(
SK

′
ik ‖ S

)
holds. If not valid, Ui terminate

the authentication, otherwise Ui and ESk successfully establish the session key
SKik.

To protect the security of the operator’s biometric information, this paper
adopts IOM_Hashing cancelable biometric template protection method. After
edge server authentication UAV, edge server can autonomously choose whether
to perform biometric authentication. If an edge server chooses to perform bio-
metric authentication, the UAV performs biometric transformations locally and
sends protected template to edge sever for authentication. Edge server executes
template matching within the transformation domain and cannot obtain any
information about operator’s privacy through the transformed template.

5 Evaluation

The TBAF assumes the attack model is based on previous research [12,22] and
the attacker is a Dolev-Yao [23] intruder who has control of the entire net-
work. The attacker not only tries to get past the server’s authentication but also
eavesdrops on messages in the channel. Then, we performed formal and informal
security analyses based on this attack model. Finally, we performed an efficiency
analysis in terms of computation and communication overhead to demonstrate
the utility of TBAF.

5.1 Formal Security Analysis Using BAN Logic

We utilized BAN [24] logic as a formal analysis tool to verify the security of our
protocol. We introduce some basic definitions and logical inference rules, and
then define the relevant assumptions and design goals to determine whether our
protocol can achieve the desired design goals through detailed logical reasoning.
Based on the proposed scheme, we use Ui and CSi as principals for formal
analysis.

As shown in Table 2, we explain the basic symbols and definitions involved
in BAN logic. The inference rules about BAN logic are shown below, and these
are used to help us complete the subsequent theoretical proofs.

R1: Message-meaning rule:P |≡P
K←→Q,P�XK

P |≡Q|∼X

R2: Nonce-verification rule:P |≡#(X),P |≡Q|∼X
P |≡Q|≡X

R3: Jurisdiction rule:P |≡Q|⇒X,P |≡Q|≡X
P |≡X

R4: Belief rule:P |≡(X,Y)
P |≡X , P |≡X,P |≡Y

P |≡(X,Y) and P |≡Q|≡(X,Y)
P |≡Q|≡X

R5: Fresh rule: P |≡#(X)
P |≡#(X,Y)

TBAF: A Two-Stage Biometric-Assisted Authentication Framework 181

Table 2. Basic Operation Time.

Notation Meanings

#X Statement X is fresh

XK The statement X is encrypted by K

P | ≡ X Principal P believes the statement X

P � X Principal P receives the statement X

P | ∼ x Principal P has send statement X

P | ⇒ X Principal P has jurisdiction over the statement X

P
K←→ Q K is the shared key between P and Q

Hypothetical and Goals: To complete the proof process using BAN, We make
relevant assumptions H1 ∼ H6and preset the goals G1 ∼ G4 between Ui and
GSj .

H1 : CSj |≡ CSj
Ku∞←→ Ui H2 : Ui ≡ CSj

Ku∞←→ Ui

H3 : CSj |≡ #(r2) , CSj | ≡ #(Ri) H4 : Ui |≡ #(r1) , Ui| ≡ #(r3)

H5 : CSj |≡ Ui ⇒ CSj
sKij−→ Ui H6 : Ui ≡ CSj ⇒ CSj

sKij−→ Ui

G1 : Ui |≡ CSj | ≡ CSj
SKij←→ Ui G2 : CSj |≡ Ui| ≡ CSj

SKij←→ Ui

G3 : Ui |≡ CSj
SKij←→ Ui G4 : CSj |≡ Ui

SKij←→ Ui

Inference proof: Based on the aforementioned assumptions and goals, we
complete the proof of the proposed scheme in the following messages. First of
all, we summarize the messages conveyed during the authentication process, as
follows:

Message 1: Ui → CSj : {HVi, P IDi, ReqAuth}
Message 2: CSj → Ui : {V1, V2}
Message 3: Ui → CSj : {V3, V4, V5}
Message 4: CSj → Ui : {V6, V7, r3}
Message 5: Ui → CSj : {V8, V9, V10}

We can reduce the above messages to the following two messages depending on
the content of the transmission.

M1 : Ui → CSj :< HV2, r2, A, Ri, K, SKij > M2 : CSj → Ui :< r1, B, W, r3 >

Convert M1 and M2 to BAN logic basic notation as:

M1 : CSj � {HV2, r2, A, Ri, K, CSj

SKij−→ Ui}KuoM2 : Ui � {w, r3, B, CSj

SKij←→ Ui}Kuo

182 Z. Zhang et al.

Based on the above work, the logical reasoning process is as follows. Accord-
ing to the message M1 and hypothesis H1 and H3, applying the rule R1, R2 and
R5we can get:
S1 : CSj |≡ Ui ≡ {HV2, r2, A,Ri,K,CSj

SKij←→ Ui}
Apply rule R4 according to formula S1, we can get:

S2 : CSj |≡ Ui |≡ {CSj
SKij−→ Ui}(G2)

According to S2, hypothesis H5 and inference rule R3, we get:
S3 : CSj |≡ {CSj

SKij−→ Ui}(G4)
Applying message M2, assuming H2 and H4, rule R1, R5and R2 we get:

S4 : Ui |≡ CSj |≡ {w, r3, B,CSj
SKij−→ Ui}

Apply rule R4 according to formula S4, we can get:
S5 : Ui |≡ CSj |≡ {CSj

SKij−→ Ui}(G1)
According toS5, hypothesis H6 and inference rule R3, we get:

S6 : Ui |≡ {CSj
SKij−→ Ui}(G3)

Through the above derivation process, we can obtain the derivation results
S5, S2, S3, S6, which correspond to our objectives G1-G4, from which can be seen
that the protocol we designed satisfies the BAN logic proof.

5.2 Informal Security Analysis

In this subsection, we conduct a detailed non-formal analysis of our proposed
scheme assuming that the public channel is controlled by an attacker. We aim to
demonstrate more scientifically that the proposed scheme can effectively achieve
mutual authentication, key negotiation, and privacy protection.

User Anonymity. Firstly, during registering, we generate a random set of
pseudo-random identities for UO. The UO selects a pseudo-identity each time
to complete the authentication process. Additionally, we use the CRO PUF to
generate shared secret keys for resource-constrained UAV devices. The personal-
ized hardware configuration structure ensure that different devices have different
CRO response pairs, achieve anonymity of UAVs from a hardware perspective.

Freshness of Session Key. Our proposed scheme combines registration infor-
mation with random numbers to calculate the session secret key SKij and SKik.
The presence of random numbers makes the session secret key different each time
it is created. This property guarantees the freshness of the session secret key of
the proposed scheme.

Database Attack. We propose a combination of using cancelable biometric
template protection method and a secret sharing scheme to generate multiple
shares to be stored by multiple parties. There are no single or two parties can
recover private information about the user. Moreover, due to the presence of
cancelable biometric template protection method, even if the attacker recov-
ers the secret information, they cannot obtain the valid biometric information
through the user’s biometric vector. On the other hand, our proposed proto-
col, the UO, cloud server, and edge server do not directly store the necessary

TBAF: A Two-Stage Biometric-Assisted Authentication Framework 183

parameters regarding operator privacy and mutual authentication. Therefore, it
is completely impossible for an attacker to try to pass authentication or obtain
privacy information by attacking the database.

Impersonation Attacks

Cloud Server Impersonation Attack. In our proposed scheme, UO verifies the
authenticity of the cloud server identity. Only the real cloud server can know
the shared information in the secret sharing, UO will verify whether the cloud
server has the real shared information. In addition, only the real cloud server
can get the shared plane from the multi-party edge server and finally recover
the secret value. Therefore, for a fake cloud server to successfully disguise and
complete the authentication, it not only needs to obtain the secret information
but also to gain the trust of the UO and the edge server. This is very difficult
to achieve.

Edge Server Impersonation Attack. The edge server is under the jurisdiction of
the cloud server. To successfully launch an impersonation attack, the trust of the
cloud server. Additionally, the edge server does not store any data information
about the privacy of the UAV. Authentication of the UAV is completed through
the way of ZKP, making it impossible for the attacker to obtain any valuable
information even if the attack is successful.

UO Impersonation Attack. The attacker may attempt to gain access to the cloud
server by disguising themselves as legitimate operator or UAV. In our proposed
scheme, the UAV uses CRO PUF to complete authentication, which is a hard-
ware facility of the UAV device and difficult for an attacker to obtain. In addition,
for the operator, their biometric information needs to be used, and each authen-
tication needs to be collected in real-time, making it difficult for an attacker to
achieve.

Man-in-the-Middle Attacks (MIMA). During the execution of mutual
authentication of UO and cloud server and authentication of UO by edge server.
The transmission of messages Msg1Auth ∼ Msg5Auth and Msg1ES ∼ Msg4ES is
involved, and the attacker will try to intercept and tamper with them. Firstly,
A and B are messages known only to the UO and the cloud server. An attacker
cannot obtain any private information through the public channel. Furthermore,
UO, cloud servers and edge servers verify the authenticity of messages each time
they are received. Only messages that pass the verification are considered as
reliable transmissions. Therefore, launching a man-in-the-middle attack is not
possible to achieve the purpose of gaining access to the server.

Cross-Matching Attacks. When operators access different servers using the
same biometric traits, each server generates a pseudo-identity for the operator
and uses the unlinkability of cancelable biometric protection to assign unique
transformation parameters to the operator to get the corresponding pf , which
is different for different servers. Thus, the application of these two techniques
ensures that our authentication scheme is resistant to Cross-Matching Attacks.

184 Z. Zhang et al.

5.3 Efficiency Analysis

The computation time and communication overhead of TBAF are considered in
our experiments.

Table 3. Basic Operation Time.

Operation Description Time(ms)

Th Hash Operation 0.0026 ms
Tpuf PUF Operation 0.13 ms
TGen Fuzzy Extractor Gen() 2.67 ms
TRec Fuzzy Extractor Rec() 3.35 ms
Tsm Scalar Multiplication 0.86 ms

Experimental Environment Settings. A Raspberry Pi 3B is adopted as the
emulation environment for the UAV. It was capable of running common math-
ematical and cryptographic operations such as XOR, Pseudo-Random Number
Generation (PRNG), Scalar Multiplication, Hash (SHA-1) and concatenations.
We used Python 3.8 as our programming language for these operations on a 3.61
GHZ Intel Core i7-12700k CPU with 64 GB of RAM, and running on Ubuntu-
20.04.

Fig. 6. Computation Overhead of One Authentication.

Computation Overhead. The computation overhead is measured by the com-
putation time of each device during the authentication process. To evaluate the
computation overhead, we summarize the execution time required for the main
operations, including Hash, PUF, Fuzzy Extractor, and Scalar Multiplication,
as shown in Table 3.

We compare the computation overhead incurred for the first authentication
(UO and cloud server). As shown in Fig. 6, the labels in the figure represent

TBAF: A Two-Stage Biometric-Assisted Authentication Framework 185

the computation time of the device, server and total in performing the authen-
tication and key negotiation process, respectively. In case of one authentica-
tion, the protocol designed by Tian et al. [12] generated a computation time of
3.493ms at the device and 2.683ms at the server, for a total computation time of
6.176ms. The protocol designed by Bian et al. [15] generated a computation time
of 6.6436ms at the device. The computation time is 3.532ms at the server, and
the total computation time is 10.1756ms. The two-stage authentication protocol
has been designed by Shen et al. [5]. In the first authentication, the computa-
tion time at the device and server are 6.244ms and 8.92ms. While the proposed
protocol mostly uses less time-consuming computations such as XOR and Hash
operations. The computation time of the proposed protocol is 3.766ms at the
end device, 0.182ms at the server, and 3.948ms in total, which is much lower
than the computation overhead of the other methods.

Fig. 7. Computational overhead of multiple authentication.

During the flight, multiple authentication protocols need to be executed
because multiple edge servers will be passed in the UAV. We compare the com-
putation overhead variation in the case of multiple authentications. As shown
in Fig. 7, our authentication protocol has better performance in terms of com-
putation overhead as the number of authentications increases. Because we use a
two-stage authentication scheme and minimize the number of scalar multiplica-
tion used while ensuring security.

Table 4. Communication Overhead (bytes).

Scheme
Tian et al. Bian et al. Shen et al. TBAF

UO-Cloud 3020 1080 8784 2080
UO-Edge 3036 846

186 Z. Zhang et al.

Communicational Overhead. The communicational overhead is measured by
the number of bytes in every communication message sent. In TBAF, we set each
hash processing, identity ID, random number, and scalar point multiplication to
the standard size of 160 bytes per message and challenge value, and timestamp to
32 bytes. The communication overhead of our designed authentication protocol
for the initial authentication is 2080 bytes, while for the second authentication,
the communication overhead from the cloud server to the edge is 192 bytes, and
the communication overhead between the edge server and the UAV authentica-
tion is 672 bytes. Resulting in a total communication overhead of 864 bytes in
the second phase. Compared to other methods, TBAF has significantly lower
communication overhead in the second phase. Table 4 shows a comparison of the
communication overhead of TBAF and other methods.

6 Conclusion and Future Work

This paper proposes a two-stage biometric-assisted authentication framework
(TBAF) and designs a three-dimensional space-based secret-sharing algorithm
to ensure communication security and data privacy when UAVs and servers inter-
act. Additionally, a two-stage authentication protocol is designed to reduce the
high computational overhead caused by frequent UAV and edge server authen-
tication. The first-stage authentication result is sent to edge server to assist
the second-stage authentication, significantly reducing the number of calcula-
tions for complex operations and the computational time an caused by frequent
authentication. The security analysis and experimental results demonstrate the
effectiveness of TBAF.

However, TBAF does have some limitations. In order to minimize the compu-
tational overhead, TBAF assumes that the edge server will not provide malicious
information. As a result, the UO does not authenticate the edge server, which
introduces certain security risks. Therefore, implementing mutual authentication
between the UO end and edge servers will be a part of our future work. Addi-
tionally, mutual authentication between UAVs is also an important aspect that
is not considered in this article. Incorporating mutual authentication between
UAVs into TBAF will be included in our future work.

Acknowledgements. This work was supported by the National Natural Science
Foundation of China Project (No. 61972001).

References

1. Lee, S., Kang, Y., Prabhu, V.: Smart logistics: distributed control of green crowd-
sourced parcel services. Int. J. Prod. Res. 54(23), 6956–6968 (2016)

2. Suma, S., Mehmood, R., Albugami, N., Katib, I., Albeshri, A.: Enabling next
generation logistics and planning for smarter societies. Procedia Comput. Sci. 109,
1122–1127 (2017)

TBAF: A Two-Stage Biometric-Assisted Authentication Framework 187

3. Zhang, J., Cui, J., Zhong, H., Bolodurina, I., Lu, L.: Intelligent drone-assisted
anonymous authentication and key agreement for 5G/B5G vehicular ad-hoc net-
works. IEEE Trans. Netw. Sci. Eng. 8(5), 2982–2994 (2020)

4. Alladi, T., Bansal, G., Chamola, V., Guizani, M.: SecAuthUAV: a novel authentica-
tion scheme for UAV-ground station and UAV-UAV communication. IEEE Trans.
Veh. Technol. 69(12), 15068–15077 (2020)

5. Shen, M., Lu, H., Wang, F., Liu, H., Zhu, L.: Secure and efficient blockchain-
assisted authentication for edge-integrated internet-of-vehicles. IEEE Trans. Veh.
Technol. 71(11), 12250–12263 (2022)

6. Xu, J., Liu, X., Li, X., Zhang, L., Yang, Y.: EXPRESS: an energy-efficient and
secure framework for mobile edge computing and blockchain based smart systems.
In 35th IEEE/ACM International Conference on Automated Software Engineering,
pp. 1283–1286 (2020)

7. Alzahrani, B., Barnawi, A., Chaudhry, S.: A resource-friendly authentication pro-
tocol for UAV-based massive crowd management systems. Secur. Commun. Netw.
2021, 1–12 (2021)

8. Lin, C., He, D., Kumar, N., Choo, K., Vinel, A., Huang, X.: Security and privacy
for the internet of drones: challenges and solutions. IEEE Commun. Mag. 56(1),
64–69 (2018)

9. Abualigah, L., Diabat, A., Sumari, P., Gandomi, A.: Applications, deployments,
and integration of internet of drones (IoD): a review. IEEE Sens. J. 21(22), 25532–
25546 (2021)

10. Tian, Y., Yuan, J., Song, H.: Efficient privacy-preserving authentication framework
for edge-assisted Internet of Drones. J. Inf. Secur. Appl. 48, 1–11 (2019)

11. Gope, P., Sikdar, B.: An efficient privacy-preserving authenticated key agreement
scheme for edge-assisted internet of drones. IEEE Trans. Veh. Technol. 69(11),
13621–13630 (2020)

12. Tian, C., Jiang, Q., Li, T., Zhang, J., Xi, N., Ma, J.: Reliable PUF-based mutual
authentication protocol for UAVs towards multi-domain environment. Comput.
Netw. 218, 1–13 (2022)

13. Kumar, V., Ahmad, M., Kumari, A., Kumari, S., Khan, M.: SEBAP: a secure and
efficient biometric-assisted authentication protocol using ECC for vehicular cloud
computing. Int. J. Commun. Syst. 34(2), 1–21 (2021)

14. Bera, B., Das, A., Balzano, W., Medaglia, C.: On the design of biometric-based
user authentication protocol in smart city environment. Pattern Recogn. Lett. 138,
439–446 (2020)

15. Bian, W., Gope, P., Cheng, Y., Li, Q.: Bio-AKA: an efficient fingerprint based
two factor user authentication and key agreement scheme. Futur. Gener. Comput.
Syst. 109, 45–55 (2020)

16. Zhang, H., Bian, W., Jie, B., Xu, D., Zhao, J.: A complete user authentication
and key agreement scheme using cancelable biometrics and PUF in multi-server
environment. IEEE Trans. Inf. Forensics Secur. 16, 5413–5428 (2021)

17. Alladi, T., Chamola, V., Kumar, N.: PARTH: a two-stage lightweight mutual
authentication protocol for UAV surveillance networks. Comput. Commun. 160,
81–90 (2020)

18. Kim, B., Yoon, S., Kang, Y., Choi, D.: PUF based IoT device authentication
scheme. In: 2019 International Conference on Information and Communication
Technology Convergence (ICTC), pp. 1460–1462. IEEE (2019)

19. Blakley, G.: Safeguarding cryptographic keys. In: Managing Requirements Knowl-
edge, International Workshop, pp. 313–313. IEEE Computer Society (1979)

188 Z. Zhang et al.

20. Gaba, G., Hedabou, M., Kumar, P., Braeken, A., Liyanage, M., Alazab, M.:
Zero knowledge proofs based authenticated key agreement protocol for sustain-
able healthcare. Sustain. Urban Areas 80, 1–12 (2022)

21. Jin, Z., Hwang, Y.J., Lai, Y., Kim, S., Teoh, A.: Ranking-based locality sensi-
tive hashing-enabled cancelable biometrics: index-of-max hashing. EEE Trans. Inf.
Forensics Secur. 13(2), 393–407 (2017)

22. Bansal, G., Sikdar, B.: S-MAPS: scalable mutual authentication protocol for
dynamic UAV swarms. IEEE Trans. Veh. Technol. 70(11), 12088–12100 (2021)

23. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory
29(2), 198–208 (1983)

24. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Trans.
Comput. Syst. (TOCS) 8(1), 18–36 (1990)

Attention Enhanced Package Pick-Up
Time Prediction via Heterogeneous

Behavior Modeling

Baoshen Guo1, Weijian Zuo1,3, Shuai Wang1(B), Xiaolei Zhou2(B),
and Tian He3

1 Southeast University, Nanjing, China
{guobaoshen,shuaiwang}@seu.edu.cn

2 The Sixty-Third Research Institute, National University of Defense Technology,
Nanjing, China

zhouxiaolei@nudt.edu.cn
3 JD Logistics, Beijing, China
{zuoweijian1,tim.he}@jd.com

Abstract. The logistics industry has developed rapidly with the pop-
ularity of online-to-offline businesses in recent years. First-mile package
pick-up is one of the most critical and expensive parts of the whole
logistics service chain, which is finished by couriers in practice. Accu-
rate prediction of package pick-up time at the customers’ addresses is
essential to improve customers’ experience and increase platforms’ prof-
its. For some logistics service providers, couriers conduct heterogeneous
tasks (i.e., first-mile pick-up and last-mile delivery) simultaneously in a
certain area to improve efficiency. However, existing works neglect the
impact of the package delivery process, which produces inaccurate pre-
diction results due to the coupling of the pick-up and delivery process.
Considering the delivery process in pick-up time prediction introduces
two additional challenges: (i) Limited pickup requests. In practice, couri-
ers have a limited number of package delivery tasks in a delivery trip,
which hinders the direct application of existing deep learning models
for the prediction. (ii) Dynamic package pickup requests. Package pick-
up requests are generated dynamically, which affects the courier’s route.
In this paper, we propose HTAPT, a heterogeneous tasks aware package
pick-up time prediction framework, which consists of two modules: (i)
Pre-trained stay time prediction module to learn the embedding of the
courier’s stay time. (ii) Attention enhanced pick-up time and route pre-
diction module to predict the delivery route and pick-up arriving time of
the courier under the pick-up influence. The evaluation results with real-
world order data from JD Logistics, which is one of the largest logistics
companies in China show HTAPT improves the prediction accuracy by up
to 10% compared with the state-of-the-art methods.

Keywords: Last-mile delivery · Pick-up time prediction · Machine
learning

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14493, pp. 189–208, 2024.
https://doi.org/10.1007/978-981-97-0862-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0862-8_12&domain=pdf
https://doi.org/10.1007/978-981-97-0862-8_12

190 B. Guo et al.

1 Introduction

With the rapid development of the mobile Internet, the online-to-offline business
has injected huge vitality into the development of the logistics industry. So far,
there are tens of millions of employees in the logistics industry, and the number
of parcels delivered every day has reached hundreds of millions.

To keep up with the advancements of the era, the traditional logistics industry
has also incorporated various personalized services to enhance the overall user
experience. Like the door-to-door pick-up service, the user will not leave the
house. Just make a request on the app, and then the courier will pick up the
packages at the door. Due to the real-time nature of the pick-up task and the
uncertainty of the location, the couriers cannot plan the path in advance. In
addition to the pick-up task, the couriers also have nearly 200 delivery tasks to
complete every day. Therefore, in order to ensure that the delivery task can be
completed on time, the couriers have difficulty immediately responding to the
pick-up task. In addition, due to business process requirements, users need to
wait for the courier check packages and confirm the user identity information. It
is essential to estimate the package pick-up time accurately to reduce the waiting
anxiety of users and promote the user experience.

Existing studies on package pick-up time prediction problems include esti-
mated time of arrival (ETA) in transportation systems [4,7,9,14,20–22] and
mobility prediction applications in logistics [5,8,10,17,24–26]. But these works
are unsuitable for the pick-up time prediction problem because (i) Pick-up time
in last-mile logistics is affected by two heterogeneous tasks (i.e., delivery task
and pick-up task) due to the timeliness and uncertainty, while existing ETA
studies in transportation focus on one task; (ii) Pick-up time prediction should
consider both staying time in residence for delivery packages [13] and outdoor
routing time on the road while existing studies on logistics focus on the route
prediction and routing time on the road.

In this paper, by conducting an in-depth data-driven analysis using real-world
data collected from a large logistics company, we find the following opportuni-
ties to achieve accurate package pick-up time prediction. (i) Couriers patterned
mobility behaviors: In last-mile logistics, each courier is responsible for a small
and relatively fixed delivery zone, resulting in patterned routine delivery and
pick-up behaviors, which help us model the static residence features (e.g., num-
ber of floors) and learn the dynamic relationship between stay time and package
characteristics (e.g., the weight of the package). (ii) Spatial-constrained predic-
tion difficulty reduction: It is complex to predict the delivery sequence at a
single order level because couriers usually deliver more than one hundred orders
one day. Through analyzing couriers’ historical delivery behaviors, we find that
couriers usually send all orders to one building at one time before going to the
next building. So we only need to predict which buildings the couriers will go to
next, which brings the possibility of problem-solving.

Leveraging these opportunities, we still find that there are the following chal-
lenges in practical application: (i) Limited pick-up requests: Compared with the
delivery orders of 100 orders in a day, the number of pick-up tasks is less than

Attention Enhanced Package Pick-Up Time Prediction 191

10. It is challenging to model environmental features and predict pick-up time
with limited historical pick-up data. Moreover, due to the work mobility of the
courier, the data drift problem is caused; (ii) Correlations among heterogeneous
tasks: Dynamic pick-up requests have strong correlations with delivery tasks.
Due to the timeliness and uncertain spatial-temporal distribution of pick-up
orders, couriers may change the existing delivery route to complete the pick-up
task within the time constraints.

To address these challenges, we propose HTAPT, a Heterogeneous Tasks Aware
Package pick-up Time prediction framework. HTAPT consists of (i) a pre-trained
staying time prediction module, which makes use of a large number of delivery
data to address the challenges of limited pick-up data and improve the staying
time prediction accuracy; (ii) an attention-enhanced pickup time and route esti-
mation module to capture the mutual impacts among heterogeneous delivery
and pick-up tasks. The contributions of this paper are summarized as follows:

– To the best of our knowledge, we are the first to conduct package pick-up
time prediction taking both historical couriers’ pick-up behaviors and delivery
behaviors into consideration. Based on the in-depth behavior analysis with
large enterprise logistics data, we utilize patterned couriers’ heterogeneous
behaviors and spatial constraints to make our prediction framework more
practical and applicable to a real-world environment.

– We design a heterogeneous task-aware package pick-up time prediction frame-
work named HTAPT. To address the challenge of limited pick-up data, we first
designed a pre-trained staying time prediction module to obtain the AOI rep-
resentation in the pick-up process leveraging the large number of delivery
data. Then, to capture the impact of the pickup task on the delivery, we
design an attention-enhanced pick-up time and route prediction module to
estimate the uncertain route sequence with both delivery and pickup tasks,
which enables the accurate and parallel pickup time prediction with multiple
on-the-fly pickup requests.

– We conduct extensive experiments based on half-year real-world logistics
data, including 100 thousand orders. The evaluation results show that HTAPT
improves the prediction accuracy significantly compared with some state-
of-the-art baselines. Furthermore, we implement and deploy HTAPT at JD
Logistics [11], which is one of the largest logistics companies in China. After
deployment, the online results show that the number of users’ complaints
declined, which underscores the system’s effectiveness in enhancing user sat-
isfaction and pick-up efficiency.

2 Overview

In this section, we first explain some concepts of last-mile logistics. Then, we
give the formulation of the heterogeneous task-aware pick-up time prediction.

192 B. Guo et al.

2.1 Preliminaries

Definition 1 (Delivery Station and Delivery Zone). In logistics scenar-
ios, considering the delivery ability of the courier and the efficiency of package
transfer, the city is divided into irregular areas (i.e., delivery stations) according
to road networks, administrative divisions, and other geographic information.
Each delivery station has a service point to store and transfer goods and has a
certain number of couriers to finish delivery and transfer. The delivery station is
further divided into delivery regions with finer granularity according to certain
division rules, which are called Delivery Zone.

Definition 2 (AOI). AOI is the abbreviation of the area of interest. In a geo-
graphic information system, a plane enclosed by the boundary of buildings is
called AOI. In the road Zone shown in Fig. 1, we regard a plane enclosed by the
boundary of each building as the AOI of the building, denoted by Ai. A road
zone R1 = {A1, A2, ...An} is actually a collection of AOI.

Definition 3 (Courier track). The routine work of one courier is traveling
between AOI to deliver orders and pick up orders within AOI. We use the access
order of AOI to represent the delivery trajectory of the courier, denoted as
routei = {Ai, Ai+1, ..., An|An ∈ R1}. As shown in Fig. 1, the arrow direction
of the lines indicates the AOI access sequence of the courier C1, then the cor-
responding route1 = {A1, A2, A3, A6, A4, A5, A9, A8, A7|An ∈ R1}. The daily
trajectory of the courier at the AOI level is relatively stable because the delivery
scope of each courier is relatively stable.

Fig. 1. Workflow of Last-mile Logistics

Definition 4 (Staying Time in AOI). We use Oi
L = {ol1, ol2, ...oln} to rep-

resent all orders belonging to one AOI Ai. When the courier delivers orders in
Ai, the courier keeps staying in Ai during this period until all orders in the AOI
are finished. We define the stay time of Ai as Si = F (Ai) = {max(ot

li − ot
lj)|oli,

olj ∈ Oi
L}.

Definition 5 (Workflow of Couriers). Figure 1 shows the workflow of a
courier in last-mile delivery, where C1 represents one courier, R1 represents the
delivery zone of the courier, which is composed of AOIs. OD = {od1, od2, ...odn}

Attention Enhanced Package Pick-Up Time Prediction 193

is the delivery tasks including multiple delivery orders, OL = {ol1, ol2, ...oln}
represents the order set of pick-up requests, P1 represents the location of the
delivery station, which is the service point for express package sorting (s1), the
starting point of the last-mile delivery (s2), and the end point of first-mile pick-
up (s3).

2.2 Problem Formulation

In this paper, we aim to predict the package pick-up time when a new pick-
up request occurs and is assigned to the courier. Given the courier’s current
location Ap, the spatial-temporal factors of the pick-up request in AOI Aq, and
the existing route plan of unfinished delivery tasks Aw = {Ap+1, ..., An}, we
estimate the pick-up time with the following function:

Ti = S(Ap,Aq) + M(Ap,Aq) (1)

We define AOI set Ar = {Ai|Ai ∈ Aw} as AOIs that couriers need to pass
in courier’s route plan from current location Ap to the AOI Aq of pick-up
requests. S(Ap,Aq) represents the sum of the courier’s stay time of AOIs in Ar.
And M(Ap,Aq) represents the travel time in the road from Ap to Aq accord-
ing to the courier’s route plan, where the route is denoted as route(Ap,Aq) =
{Ap, Ap+1, ..., Aq|Ai ∈ R1}.

3 Model Design

In this section, we first overview the framework of HTAPT. Then we give detailed
descriptions of the pre-trained time prediction module and attention-enhanced
route estimation module. Lastly, we introduce the training and inference of the
proposed package pick-up time prediction framework.

3.1 Overview

Figure 2 elaborates the overview of HTAPT, which consists of three modules:

Fig. 2. Overview of HTAPT. In HTAPT, we first perform data preprocessing to inte-
grate pickup order features, delivery order features, and AOI static features into ini-
tial AOI embeddings. Then, we propose a transformer-based encoder to pre-train the
AOI embedding based on stay-time prediction. Lastly, we perform attention-enhanced
pickup time and route prediction.

194 B. Guo et al.

– Order-AOI Matching Construction: Given the sequence of delivery
orders {ol1, ol2, ...oln} of one courier, we first extract the binding relationship
between orders and AOIs. Based on the geocoding service, we convert the
text address information of orders into coordinates (i.e., latitude, longitude).
Then, we establish the mapping between orders and AOIs by matching orders’
coordinates to the boundary fence information of AOIs. However, due to the
certain deviation of the geocoding service and the small fence area of AOI,
some orders cannot match a specific AOI, resulting in the absence of AOI
features, which eventually leads to an inaccurate prediction of staying time
in residence.

– Pre-trained Stay Time Prediction: The stay time of the courier in each
AOI is affected by the number of delivery tasks in the AOI, the static
attributes of the AOI (e.g., number of floors), and the spatial-temporal fac-
tors of pick-up requests. As shown in Fig. 2, we obtain the embedding of AOIs
using massive historical delivery orders based on a pre-trained mechanism,
which embeds the influence of static features of the AOI and order quantity
on the staying time. With the latent representation of each AOI extracted by
the pre-trained AOI embedding module, we further enhance the accuracy of
staying time prediction with pick-up orders in the fine-tuning process.

– Attention Enhanced Pickup Time Prediction: The main objective of
this module is to predict the route plan of the courier and to infer the final
pick-up time. Due to the random appearance of the collection request and
the strong performance time constraint, it will affect the couriers’ decision
of which AOI to deliver next. Different delivery routes will consume different
delivery time and the pick-up time of couriers will be different. Therefore it
is essential to predict couriers’ route considering the uncertainty of pick-up
requests, which also help us to estimate the package pick-up time accurately.

3.2 Pre-trained Stay Time Prediction

Motivation for Stay Time Prediction. Through the data-driven analysis, we
find that couriers usually deliver all orders of one AOI at one time and update
the status information of each order when all orders of the AOI are finished,
which helps us to aggregate delivery and pick-up tasks in the same AOI and
enhance the matching efficiency between orders and AOIs.

As we mentioned before, couriers finish all orders in one AOI at one time. We
think that couriers stay in the AOI without moving from the perspective of AOI,
More specifically, the delivery process of the courier can be abstracted as the
time spent by the courier staying in the AOI to send the packages and moving
between the AOI. As is shown in Fig. 3, the daily stay time of the courier accounts
for more than half of the daily total working time. Therefore, it is important to
predict the stay time of the courier precisely for the pick-up time prediction.

However, pick-up orders are much less than delivery orders in logistics scenar-
ios. For example, the quantity of pick-up orders accounts for less than 10% of all
orders in Beijing. Therefore, according to the method of the traditional training
model, a large number of orders need to be discarded because these orders are

Attention Enhanced Package Pick-Up Time Prediction 195

Fig. 3. Daily Stay Time and Moving Time of Couriers

not affected by pick-up requests. However, the pick-up requests mainly affect the
route of the courier, and the impact on the stay time is limited. So we design a
pre-trained module to leverage delivery orders that are not affected by pick-up
to obtain the staying time-related embedding of each AOI.

Pre-trained Model for Stay Time Prediction. As is shown in Fig. 4, we
divide the stay time into two parts, where Ai represents the AOI static attribute
and Oi represents the order features. Specifically, static attributes of AOI consist
of the height distribution (e.g., number of floors), area (e.g., delivery scope)
of AOI, whether AOI is equipped with elevators, and whether AOI can enter.
Contextual features such as weather conditions, traffic conditions, holidays, and
day of the week are also considered AOI features. These attributes affect the
delivery efficiency of residents of the AOI and thereby affecting their staying
time in the AOI.

As for orders’ features Oi, we consider both individual features and aggregate
features of orders. The individual features of each order include the weight, vol-
ume, floor information, and order types (i.e., delivery orders or pick-up orders).
Only considering the individual impact on the staying time of each order is
not enough because of mutual influence among a batch of orders. Therefore
we design the attention module to capture the mutual impact between orders.
Specifically, we use O = {O1, O2, · · · , ON |Oi ∈ Ai} to represent orders belong-
ing to the Ai and use �hi to represent the characteristics of order i. For Ai, we use
�h = {�h1,�h2, ...,�hN},�hi ∈ R

F to represent the characteristic sequence of nodes,
where N is the number of nodes and F is the dimension of features in each node.

Transformer-Based AOI Encoding. To capture the relationship between dif-
ferent orders and enhance the feature expression ability, we design an attention-
based AOI encode model with N transformer blocks. Each block consists of a
multi-head attention layer and a feed-forward layer.

Firstly, we feed initial AOI embeddings into the multi-head attention layers.
The multi-head attention mechanism has the superior ability to capture effects

196 B. Guo et al.

Fig. 4. Pre-trained Module for Stay Time Prediction

between orders from different perspectives. Each attention head is denoted as

headi = Attention(WQhi,W
Khi,W

V hi)

= softmax(
WQhi(WKhi)T

√
dk

)WV hi

(2)

where WQ, WK , and WV are the parameters for the query, key, and value,
respectively. dk is the dimension of the key K and query vector Q. Then, the
multi-head attention aggregation is calculated as

MHAi(h1, h2, ..., hn) =
N∑

n=1

headnWO (3)

where headn is the single-head attention. WO is the parameter matrix. After
the multi-head attention layer, we have a fully connected feed-forward network
with ReLu activation functions in the feed-forward layer, which is defined as

FF (ĥi) = W 1
ff × ReLu(W 0

ff × ĥi + b0ff) + b1ff (4)

where W 0
ff , W 1

ff , b0ff , b1ff , Wbn and bbn are parameters. ReLu is the ReLu
activation. After the N multi-head attention layers and feed-forward layers, we
obtain the aggregated embedding of AOI representation hagg. The AOI embed-
dings are pretrained through the staying time prediction task.

Pretrained Staying Time Prediction. We divide the daily delivery sequence
of the courier in the pre-trained stage with fixed time intervals (i.e., one hour)
because in one pick-up requests need to be finished in one hour in package pick-
up scenarios. With the multiple transformer encoder, we encode the AOI static
features and different orders’ features into a hidden representation hagg.

Then, we leverage two feed-forward network layers to further transform the
hidden representation of multiple features and to infer the final staying time
of package pick-up requests. Lastly, based on MSE loss between the predicted
staying time and the predicted staying time, the proposed pre-trained staying
time prediction module captures the features of both AOI and orders and outputs
the hidden representation for the pick-up time prediction task.

Attention Enhanced Package Pick-Up Time Prediction 197

3.3 Attention Enhanced Route Estimation

Influence of Pick-Up Behaviors on Delivery Process. The biggest dif-
ference between pick-up and delivery tasks is that there are fulfillment time
constraints (e.g., 1 h) on the pick-up process. Failing to finish the pick-up pro-
cess within time constraints may lead to the cancellation of the pick-up request
by the user and harm the user experience.

To complete the pick-up task within the specified time, the courier needs to
adjust the route of existing delivery tasks. We utilize the editing distance [16] to
represent the similarity of the daily delivery sequence of the courier and measure
the stability of the couriers’ daily delivery route. Noted that the peak period of
pick-up requests starts at 10 o’clock, to capture the impacts of pick-up requests
on delivery routes, we divide couriers’ routes into two intervals (i.e., before 10
o’clock and after 10 o’clock) and calculate their edit distance, respectively.

Fig. 5. Editing Distance of Courier Delivery Sequence

In Fig. 5, the left figure shows the editing distance of the courier’s daily route
sequence before 10 o’clock, with an average edit distance of 1.49. The right figure
shows the editing distance after 10 o’clock, offering an average value of 3.44. To
ensure fairness, the AOIs delivered by the courier are similar every day, and a
smaller edit distance means the route sequences are more stable. Comparing the
edit distance before 10 o’clock (without pick-up requests) and after 10 o’clock
(with pick-up), we find that pick-up requests have a strong impact on couriers’
delivery route and increase the probability of route change.

Attention Enhanced Pickup Time Prediction. We designed an atten-
tion [19] enhanced route prediction module to conduct route estimation in het-
erogeneous task-aware logistics. In Fig. 6, a courier stays in A0 delivery packages
and accepts a pick-up request in A2. At this time, the AOI set that the courier
needs to deliver is D = {A1, A2, A3, A4, A5} and the pick-up request of A3 has
already appeared. The aim is that we need to predict Ai+1 that the courier will
visit. We first feed the embedding of the current AOI sets of the courier into
multiple transformer layers to capture the relationships between these AOIs.

198 B. Guo et al.

Fig. 6. Illustration of Attention Enhanced Pickup Time Prediction

Âi = BNl(Al−1
i + MHAl

i(headl−1
1 , ..., headl−1

nhead
))

Ei = BNl(Âi + FFN(Âi))
(5)

Through the above steps, we obtained the embedding of each AOI, and then we
averaged all AOIs to obtain the mean value to represent the remaining aois, and
as the input of the decoder layer.

Ē =
1
n

n∑

i=1

Ei (6)

As is shown in Fig. 6, we calculate the selecting possibility of the AOI in D using
the output of LSTM.

u(j)i ==

{
αT · tanh(W1Ei ⊕ W2h1) if i �= πt′ ∀t′ < t

−∞ otherwise.
(7)

where W1 and W1 and αT are learn-able parameters. u(j)i is the attention
score, which means the compatibility of couriers’ arrival at this AOI. We finally
use softmax to output the probability.

p(j)i = pθ(πt = i|s, π1:t−1) =
u(j)i∑
m u(j)m

(8)

At each step, our model predicts the next AOI to be visited based on selecting
the possibility and gives the arrival time of the selected AOI.

tarrival = MLP(Ei ⊕ h2) (9)

Based on the next AOI selection and arriving time results, we update the remain-
ing AOI set of the courier as well as the features of these AOI. The updated AOI
set is fed into the proposed prediction model literately until the courier arrives
at the pick-up AOI.

Attention Enhanced Package Pick-Up Time Prediction 199

3.4 Training and Prediction

In the pre-trained stage, to keep the scale consistent between pick-up time pre-
diction and the real-world pick-up time scale, we divide couriers’ entire delivery
process with a one-hour time slice. In the pre-trained stage, we use MSE as the
loss function to predict staying time, which is defined as follows:

�(x, y) = L = {l1, . . . , ln}�, ln = (xn − yn)2 (10)

Apart from the staying time, in the pick-up route prediction and pick-up time
prediction stage, we utilize cross entropy as the loss function of route prediction,
which is defined as follows:

L =
1
N

∑

i

Li = − 1
N

∑

i

M∑

c=1

yic log(pic) (11)

Lastly, we obtain the final package pick-up time prediction results with the
attention-enhanced staying time prediction and pick-up route estimation.

4 Evaluation

In this section, we first show the data utilized in this work, followed by experi-
mental settings and metrics. After that, the evaluation results are presented.

4.1 Dataset Description

To evaluate the performance of our work, we conduct experiments based on a
real-world package pick-up and delivery dataset collected from one of the largest
logistics companies in China. The dataset is collected from Oct. 1, 2021, to
Apr. 1, 2022, and involves 100 thousand orders. Table 1 shows the key fields and
examples of our datasets. The details are as follows:

– Pick-up and delivery order data: For the pick-up data, we record the
order ID, courier id, order creation time, pick-up address, and the promised
pick-up time. The main fields for historical delivery order data consist of order
id, station id, courier id, and destination address.

– Couriers’ reporting data: Couriers working for the platform are required
to report the status of the orders in the last-mile delivery process, e.g., order
collection and delivery time, with the Personal Digital Assistants (PDAs).

– Spatial-temporal contexts: We also obtain the AOI information as our
spatial contexts, which consists of the AOI id and the geographical bound-
aries. The temporal contextual information includes weather, day of the week,
holiday, and traffic conditions.

200 B. Guo et al.

Table 1. A sample of package pick-up and delivery Dataset

Pick-up Order Order ID Create time Destination Promised Time Weight Volume

JDVA***21 2020/9/1 11:25 BeijingXXX 1 h 0.7 kg 10 cm * 20 cm * 10 cm

Delivery Order Order ID Courier ID Destination Delivered Time Weight Volume

JDVA***21 226**21 BeijingXXX 2020/9/1 12:14 0.3 kg 10 cm * 20 cm * 40 cm

Reporting Data Order ID Courier ID Timestamp Status longitude latitude

JDVA***21 226**21 2020/9/1 10:30 Pick-up 116.4460 39.9343

Contexts AOI Weather Holiday Traffic AOI type transportation

POLYGON(.) Rainy National Day busy residence wheelbarrow

4.2 Experimental Settings

Dataset Split: We used six months of data as the pre-trained part of the model,
and then added the pick-up data as input for subsequent fine-tuning of the
model. Use one month’s data as a test for the model. The validation set used t-1
data to verify model accuracy. Implementation: We implement the model and
baselines with Pytorch 1.10.2 and Python 3.8 environment and train these in an
edge server with Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40 GHz (CPU) and one
NVIDIA Tesla P40 (GPU).

4.3 Metrics

Route Prediction Metrics. We utilize edit distance [16], accuracy [27], and
Kendall τ [12,25] as metrics to evaluate the delivery courier’s route prediction.

– Edit distance is used to measure the similarity of two route sequences by
counting the minimum number of operations, (i.e., insertion, deletion, and
substitution for transferring one sequence into the other one).

– Accuracy is the difference between the actual and the predicted route and is
calculated as accuracy =

∑N
i=1 Diff(lai ,lpi)

N , where N is the number of locations
in the delivery courier’s route. lai and lpi are values in the i-th position of the
delivery courier’s actual and predicted route, respectively. Diff(x, y) = 1 if
x = y, otherwise Diff(x, y) = 0.

– Kendall rank correlation coefficient is used to quantify the ordinal asso-
ciation between two sequences. Let s = ((l1, ŷ1, y1), (l2, ŷ2, y2), ..., (ln, ŷn, yn))
as a route, ŷi and yi are the positions of location li in the predicted and
actual route, respectively. For arbitrary two different locations li and lj , if
ŷi > ŷj , and yi > yj , or if ŷi < ŷj , and yi < yj , then the two locations
are concordant. Otherwise, they are discordant. The Kendall τ is defined as:
τ = Nc−Nd

Nc+Nd
, where Nc and Nd are the numbers of concordant and discordant

pairs, respectively.

Pick-Up Time Prediction Metrics. We utilize RMSE and MAPE to mea-
sure the performance of the package pick-up time prediction, which are widely
used in estimating the time of arrival and mobility prediction tasks.

Attention Enhanced Package Pick-Up Time Prediction 201

– RMSE: which computes root mean square error. If ŷi is the predicted value
of the ith sample and yi is the corresponding true value. Then the root mean
squared error (RMSE) estimated over nsamples is defined as

RMSE(y, ŷ) =

√√√√ 1
nsamples

nsamples−1∑

i=0

(yi − ŷi)2

– MAPE: which is the mean absolute percentage error. The idea of this metric
is to be sensitive to relative errors. It is for example not changed by a global
scaling of the target variable.

MAPE(y, ŷ) =
1

nsamples

nsamples−1∑

i=0

|yi − ŷi|
max(ε, |yi|)

where ε is a positive number to avoid undefined results when y is zero.

4.4 Baselines

Baselines for Route Prediction: To evaluate the effectiveness of the route
prediction module, we utilize the following three types of baselines: (i) Tradi-
tional ranking-based methods: In Greedy-distance, the courier selects the nearest
AOI as the next stop each time. XGBoost [3] use the XBG Rank model to pre-
dict the next stop locations of the route. (ii) Optimization-based methods: In
this category, we choose Google Ortools [15] to generate couriers’ routes. (iii)
Attention-based deep learning methods: FDNET [6] predicts the probability of
each feasible location the driver will visit next based on RNN and attention mod-
ules. DeepRoute [23] predict couriers’ future package pick-up routes according
to the couriers’ decision experience and preference.

Baselines for Pickup Time Prediction: We select three types of baselines:
(i) four widely-used machine learning-based time prediction baselines, including
LR, MLP, XGB [3], RF [2]. (ii) Three state-of-the-art learning-based baselines,
including MLP, DeepTTE [20], and DeepMove [4]. (iii) Attention-based pickup
time prediction methods, including FDNET [6] and DeepRoute [23].

4.5 Main Performance

Route Prediction Evaluation. We first give the route prediction perfor-
mance comparisons between the proposed model and baselines. As shown in
Table 2, we compare the route prediction performance of our proposed approach
to other baselines under different settings (i.e., the number of Aois in each route).
We found that HTAPT outperforms other baselines in both three metrics, offer-
ing the highest Accuracy, the highest Kendall, and the lowest Edit Distance,
which demonstrates the effectiveness of the proposed method on accurate route
prediction.

202 B. Guo et al.

Table 2. Performance comparisons of route prediction

Metric aois ∈ (0,4] aois ∈ (4,8] aois ∈ (8,12]

Edit Distance Accuracy τ Edit Distance Accuracy τ Edit Distance Accuracy τ

Greedy-distance 4.31 0.23 0.61 7.93 0.27 0.57 9.9 0.25 0.56

XGBoost Ranking 2.83 0.59 0.89 4.11 0.57 0.84 5.56 0.53 0.82

Google Ortools 2.61 0.63 0.88 3.83 0.61 0.85 4.9 0.55 0.81

FDNET 1.63 0.83 0.91 2.69 0.77 0.88 4.12 0.72 0.84

DeepRoute 1.57 0.87 0.93 2.47 0.79 0.91 3.78 0.75 0.88

HTAPT 1.21 0.91 0.98 2.16 0.88 0.97 3.24 0.85 0.97

Table 3. Performance comparisons of pick-up time prediction

datasets Station1 Station2 Station3

method RMSE MAPE RMSE MAPE RMSE MAPE

LR 10.1 ± 0.6 30.1 ± 0.8 12.4 ± 0.7 35.3 ± 0.9 11.7 ± 1.5 30.5 ± 0.8

XGB 10.7 ± 0.4 27.6 ± 0.9 10.5 ± 0.7 25.9 ± 1.3 9.1 ± 0.5 24.5 ± 0.7

RF 11.3 ± 0.3 32.1 ± 1.8 11.9 ± 0.6 33.4 ± 1.5 10.3 ± 0.8 30.4 ± 1.3

MLP 14.8 ± 0.2 24.4 ± 1.1 12.8 ± 0.3 25.8 ± 0.7 15.6 ± 0.3 25.5 ± 1.6

DeepTTE 10.2 ± 0.5 25.3 ± 2.6 12.2 ± 0.7 27.2 ± 2.1 11.3 ± 0.7 26.3 ± 2.3

DeepMove 9.2 ± 0.6 21.7 ± 3.0 9.7 ± 0.7 22.7 ± 2.6 9.1 ± 0.7 20.7 ± 2.5

DeepRoute 7.5 ± 0.3 17.6 ± 1.1 7.1 ± 0.6 16.7 ± 1.2 7.3 ± 0.5 17.3 ± 1.2

FDNET 7.2 ± 0.5 17.1 ± 1.3 7.4 ± 0.7 17.6 ± 1.6 7.1 ± 0.3 16.7 ± 0.9

HTAPT 6.3±0.3 13.4 ± 0.8 6.2 ± 0.2 13.6 ± 0.6 6.1 ± 0.4 12.7 ± 0.5

Pick up Time Prediction Evaluation. As shown in Table 3, we evaluate
the proposed method and other baselines in three representation stations with
RMSE and MAPE metrics. We find that HTAPT achieves the lowest RMSE and
the lowest MAPE in three stations. Specifically, compared with the FDNET
model, HTAPT reduces around 12.5% of RMSE and reduces 21.6% of MAPE
among these three stations.

Fig. 7. Ablation study of the pre-trained module

Attention Enhanced Package Pick-Up Time Prediction 203

4.6 Ablation Studies of the Pre-trained Module

To verify the effectiveness of the proposed Pre-trained Module, we compared
HTAPT with its variant HTAPT w/o pre, which is the HTAPT without pre-trained
module. As shown in Fig. 7, for our model, if the pre-trained process is removed,
not only will the RMSE and MAPE decline, but also the stability of the model
will decline. Compared with HTAPT w/o pre, HTAPT reduces 12.7% of RMSE and
reduces 15.1% of MAPE.

4.7 Real-World Deployment

System Interface: We implement and deploy the HTAPT at the JD Logis-
tics [11]. Figure 8 shows the interface of HTAPT plugged into the platform, which
real-time displays the predicted pickup arrival time. When the user makes a
pick-up request, the system will obtain the user’s shipping address, the cur-
rent location information of the courier, and the unfinished delivery order. Then
according to the context information such as the traffic situation at that time,
the door-to-door time of the courier will be calculated and pushed to the user
to facilitate their schedule.

Fig. 8. System interface of HTAPT

Real-World Field Study: As is shown in Fig. 9, we provide a case study to
show the effectiveness of HTAPT, which is performed in one representative delivery
station in Beijing.

From Fig. 9, we find that HTAPT achieves accurate pick-up route prediction
and offers a relatively low pick-up time prediction error. Through informing
users of the specific pick-up time of the courier, users’ waiting anxiety can be
alleviated to a certain extent. After deployment, it is found that the number
of users complaint has a certain degree of decline. In the courier order delivery
recommendation system, the door-to-door pick-up time output by HTAPT helps
the system to get a better delivery path.

204 B. Guo et al.

Fig. 9. Real-world case studies. We show two cases comparisons between ground-truth
routes and predicted routes.

5 Discussion

5.1 Lessons Learned

During working on this work, we learned the following two important insights:

– Data-driven findings: Through data-driven analysis of historical couriers’
behavior, we obtain new findings, that couriers will quickly complete the
pick-up order after the user initiates the pick-up request which reduces the
latency time. In general, the delivery order quantity is not determined by the
courier, and the courier can decide the amount of the order. Every time the
user requests an order, the courier can complete the pick-up order in time,
which will improve the user’s experience and bring more customers, so that
the courier’s income will be higher. From the station perspective, stations
with higher average income generally have larger average K-values.

– Couriers’ behavior findings: Due to the high mobility of couriers, the
same road area may have different couriers in history. In the case of the same
site manager and distribution range, the income of couriers varies greatly,
and the analysis of the reason is mainly due to the change in the collection
amount of couriers.

5.2 Limitations and Future Works

In this work, we focus on the courier pickup time prediction problem. However,
there are two main limitations in this work:

– We have evaluated HTAPT with the data collected from delivery stations in
Beijing, which may have a bias in other delivery stations due to different

Attention Enhanced Package Pick-Up Time Prediction 205

densities of population and consumption ability. However, we believe HTAPT
has the potential to perform well with attention considering the courier habit.

– We currently only predict courier pickup times in this paper. In the future,
we think that based on the predicted pick-up time of couriers, we can output
some decision-making methods to help the system schedule the appropriate
couriers or help couriers arrange the appropriate delivery order, improve the
work efficiency of couriers and the user experience at the same time.

6 Related Works

In this section, we introduce existing works related to our heterogeneous tasks
aware package pick-up time prediction problem, including estimate time of
arrival and route prediction problem in logistics and transportation systems.

6.1 Estimate Time of Arrival Applications

Wu et al. [26] propose a novel, spatial-temporal sequential neural network model
to predict package delivery time and take full advantage of the sequential fea-
tures of the latest delivery route and historical frequent and relative delivery
patterns. Wang et al. [20] design an end-to-end multi-task Deep learning frame-
work for Travel Time Estimation (called DeepTTE) to estimate the travel time
of the whole path directly by taking both geographic spatial correlations and
the temporal dependencies into consideration. Jun et al. [18] propose a KNN
regressor to predict staying time in last-mile logistics, but it does not take into
account the fine-grained floor information in waybills. Wang et al. [21] propose
a Wide-Deep-Recurrent (WDR) learning model to accurately predict the travel
time along a given route at a given departure time in ride-sharing services. Hong
et al. [9] propose HetETA in ETA task taking structural spatial-temporal graph
transportation data into account. Ruan et al. [17] a meta-learning-based neu-
ral network model to predict the service time of couriers in each AOI, and it
is helpful for some downstream tasks (e.g., task assignment, route planning) in
last-mile logistics. Arthur et al. [1] utilize an origin-destination (OD) formulation
for the prediction of parcel delivery time.

6.2 Route Prediction in Transportation and Logistics Systems

Gao et al. [5] propose a deep network named FDNET to predict the probability
of each feasible location the driver will visit next and predict the delivery time
based on the routing probability through mining a large amount of food deliv-
ery data. Wen et al. [24] propose a novel attention-based encoder and decoder
model to predict couriers’ future package routes according to couriers’ decision
experience learned from their historical spatial-temporal behaviors. Jie et al.
[4] design an attentional recurrent network for mobility prediction from lengthy
and sparse trajectories leveraging a multi-modal sequential embedding recurrent

206 B. Guo et al.

neural network and a historical attention model to capture the multi-level peri-
odicity. Zhu et al. [29] present the order fulfillment cycle time prediction model
that incorporates representations of couriers, restaurants, and delivery destina-
tions to enhance prediction efficacy. Zhou et al. [28] focus on fully leveraging
multi-source data to improve the accuracy of route prediction and propose a
multi-source data fusion framework. Zhang et al. [27] design multiple features to
model the decision-making of individual couriers in instant delivery and predict
couriers’ routes with an Xgboost-ranking-based learning algorithm.

6.3 Uniqueness of Our Work

The heterogeneous tasks aware package pick-up time prediction problem is essen-
tially different from existing time prediction works and estimated time of arrival
applications in other transportation systems because (i) we conduct pick-up time
prediction by taking heterogeneous tasks’ uncertain route into consideration and
disentangling the correlations between the pick-up process and delivery process.
(ii) we design an attention-enhanced module to model couriers’ delivery behav-
iors and pick-up behaviors simultaneously and leverage massive delivery data to
address the challenges of shortage of pick-up data.

7 Conclusion

In this paper, we propose a HTAPT, a heterogeneous tasks aware package pick-up
time prediction framework to estimate pick-up time considering couriers’ deliv-
ery process via heterogeneous couriers’ behaviors modeling. Specifically, HTAPT
first designed a pre-trained stay time estimation module to predict couriers’
stay duration within each AOI, which utilizes a pre-train mechanism leveraging
massive delivery records to address the challenge of limited pick-up data. Then,
HTAPT adopts an attention-enhanced network to conduct route prediction and
output the final package pick-up time by integrating the above two modules. We
evaluate our framework with a real-world logistics dataset, and the experimental
results show that HTAPT outperforms state-of-the-art baselines.

Acknowledgments. This work was supported in part by Science and Technology
Innovation 2030 - Major Project 2021ZD0114202, National Natural Science Foundation
of China under Grant No. 62272098.

References

1. de Araujo, A.C., Etemad, A.: End-to-end prediction of parcel delivery time with
deep learning for smart-city applications. IEEE Internet Things J. 8(23), 17043–
17056 (2021)

2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
3. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD 2016, pp. 785–794. Association for Computing Machinery, New
York (2016)

Attention Enhanced Package Pick-Up Time Prediction 207

4. Feng, J., et al.: DeepMove: predicting human mobility with attentional recurrent
networks. In: Proceedings of the 2018 World Wide Web Conference, WWW 2018,
pp. 1459–1468. International World Wide Web Conferences Steering Committee,
Republic and Canton of Geneva, CHE (2018)

5. Gao, C., et al.: A deep learning method for route and time prediction in food
delivery service. In: Zhu, F., Ooi, B.C., Miao, C. (eds.) The 27th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, KDD 2021, Virtual Event,
Singapore, 14–18 August 2021, pp. 2879–2889. ACM (2021)

6. Gao, C., et al.: A deep learning method for route and time prediction in food deliv-
ery service. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pp. 2879–2889 (2021)

7. Gao, C., et al.: Applying deep learning based probabilistic forecasting to food
preparation time for on-demand delivery service. In: Zhang, A., Rangwala, H.
(eds.) The 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, KDD 2022, Washington, DC, USA, 14–18 August 2022, pp. 2924–2934.
ACM (2022)

8. Guo, B., et al.: Towards equitable assignment: Data-driven delivery zone partition
at last-mile logistics. In: Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 4078–4088 (2023)

9. Hong, H., et al.: HetETA: heterogeneous information network embedding for esti-
mating time of arrival. In: Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2020 pp. 2444–2454.
Association for Computing Machinery, New York (2020)

10. Hong, Z., et al.: CoMiner: nationwide behavior-driven unsupervised spatial coor-
dinate mining from uncertain delivery events. In: Proceedings of the 30th Inter-
national Conference on Advances in Geographic Information Systems, pp. 1–10
(2022)

11. JD Logistics: JD logistics (2022). https://www.jdl.com/
12. Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1/2), 81–93

(1938)
13. Li, Q., Zheng, Y., Xie, X., Chen, Y., Liu, W., Ma, W.Y.: Mining user similarity

based on location history. In: Proceedings of the 16th ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems, GIS 2008.
Association for Computing Machinery, New York (2008)

14. Mesa, J.P., Montoya, A., Toro, M., et al.: A two-stage data-driven metaheuristic
to predict last-mile delivery route sequences. Eng. Appl. Artif. Intell. 125, 106653
(2023)

15. Perron, L., Furnon, V.: OR-Tools. https://developers.google.com/optimization/
16. Ristad, E.S., Yianilos, P.N.: Learning string-edit distance. IEEE Trans. Pattern

Anal. Mach. Intell. 20(5), 522–532 (1998)
17. Ruan, S., et al.: Service time prediction for delivery tasks via spatial meta-learning.

In: Zhang, A., Rangwala, H. (eds.) The 28th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, KDD 2022, Washington, DC, USA, 14–18 August
2022, pp. 3829–3837. ACM (2022)

18. Song, J., Wen, R., Xu, C., Tay, J.W.E.: Service time prediction for last-yard deliv-
ery. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 3933–3938
(2019). https://doi.org/10.1109/BigData47090.2019.9005585

19. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

https://www.jdl.com/
https://developers.google.com/optimization/
https://doi.org/10.1109/BigData47090.2019.9005585

208 B. Guo et al.

20. Wang, D., Zhang, J., Cao, W., Li, J., Zheng, Y.: When will you arrive? Estimating
travel time based on deep neural networks. In: McIlraith, S.A., Weinberger, K.Q.
(eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), The 30th Innovative Applications of Artificial Intelligence (IAAI-18),
and The 8th AAAI Symposium on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, 2–7 February 2018, pp. 2500–2507.
AAAI Press (2018)

21. Wang, Z., Fu, K., Ye, J.: Learning to estimate the travel time. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD 2018, pp. 858–866. Association for Computing Machinery, New
York (2018)

22. Wen, H., et al.: Graph2Route: a dynamic spatial-temporal graph neural network for
pick-up and delivery route prediction. In: Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, KDD 2022, pp. 4143–4152.
Association for Computing Machinery, New York (2022)

23. Wen, H., et al.: DeepRoute+: modeling couriers’ spatial-temporal behaviors and
decision preferences for package pick-up route prediction. ACM Trans. Intell. Syst.
Technol. 13(2), 1–23 (2022)

24. Wen, H., et al.: Package pick-up route prediction via modeling couriers’ spatial-
temporal behaviors. In: 37th IEEE International Conference on Data Engineering,
ICDE 2021, Chania, Greece, 19–22 April 2021, pp. 2141–2146. IEEE (2021)

25. Wen, H., et al.: Package pick-up route prediction via modeling couriers’ spatial-
temporal behaviors. In: 2021 IEEE 37th International Conference on Data Engi-
neering (ICDE), pp. 2141–2146. IEEE (2021)

26. Wu, F., Wu, L.: DeepETA: a spatial-temporal sequential neural network model
for estimating time of arrival in package delivery system. In: The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Inno-
vative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, 27 January–1 February 2019, pp. 774–781. AAAI Press
(2019)

27. Zhang, Y., et al.: Route prediction for instant delivery. In: Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 3, no. 3, pp.
1–25 (2019)

28. Zhou, Z., Zhou, X., Lu, Y., Yan, H., Guo, B., Wang, S.: Multi-source data-driven
route prediction for instant delivery. In: 2021 17th International Conference on
Mobility, Sensing and Networking (MSN), pp. 374–381 (2021). https://doi.org/10.
1109/MSN53354.2021.00064

29. Zhu, L., et al.: Order fulfillment cycle time estimation for on-demand food delivery.
In: Gupta, R., Liu, Y., Tang, J., Prakash, B.A. (eds.) The 26th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, KDD 2020, Virtual Event,
CA, USA, 23–27 August 2020, pp. 2571–2580. ACM (2020)

https://doi.org/10.1109/MSN53354.2021.00064
https://doi.org/10.1109/MSN53354.2021.00064

Optimizing Pointwise Convolutions
on Multi-core DSPs

Yang Wang1,2,3, Qinglin Wang1,2(B) , Xiangdong Pei1,2, Songzhu Mei1,
and Jie Liu1,2

1 National Key Laboratory of Parallel and Distributed Computing, National
University of Defense Technology, Changsha 410073, China

2 Laboratory of Digitizing Software for Frontier Equipment, National University of
Defence Technology, Changsha 410073, China

wangqinglin.thu@gmail.com
3 Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China

Abstract. Pointwise convolutions are widely used in various con-
volutional neural networks, due to low computation complexity and
parameter requirements. However, pointwise convolutions are still time-
consuming like regular convolutions. As a result of increasing power con-
sumption, low-power embedded processors have been brought into high-
performance computing field, such as multi-core digital signal processors
(DSPs). In this paper, we propose a high-performance multi-level parallel
direct implementation of pointwise convolutions on multi-core DSPs in
FT-M7032, a CPU-DSP heterogeneous prototype processor. The main
optimizations include on-chip memory blocking, loop ordering, vectoriza-
tion, register blocking, and multi-core parallelization. The experimental
results show that the proposed direct implementation achieves much bet-
ter performance than GEMM-based ones on FT-M7032, and a speedup
of up to 79.26 times is achieved.

Keywords: CNNs · Pointwise Convolution · Direct Convolution ·
DSPs · Parallel algorithm

1 Introduction and Related Work

Convolutional neural networks (CNNs) are extensively used in diverse fields such
as computer vision and scientific computing [3,4,15,28]. As CNNs develop, more
convolutional layers with small filters are applied in the models, such as pointwise
convolutions in which the filter size is only 1× 1. And this type of convolutional
layer is commonly utilized in mainstream backbone networks, such as ResNet
[6] and GoogleNet [21], and lightweight networks, such as MobileNetV1 [8] and
MobileNetV2 [20]. Thus, it is very important to implement high-performance
pointwise convolutions on targeted platforms.

supported by the National Natural Science Foundation of China under grant nos.
62002365 and 62025208.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14493, pp. 209–223, 2024.
https://doi.org/10.1007/978-981-97-0862-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0862-8_13&domain=pdf
http://orcid.org/0000-0002-8286-6566
https://doi.org/10.1007/978-981-97-0862-8_13

210 Y. Wang et al.

The dominant methods for implementing convolutions are matrix
multiplication-based, Winograd-based, Fast Fourier Transform (FFT)-based,
and direct algorithms [2,5,7,9,10,12,22,23,26]. For the matrix multiplication-
based method, the convolutions are converted into matrix multiplication opera-
tions in an explicit or implicit way. For example, Wang et al. [26] implemented
two-dimensional convolutions using implicit matrix multiplication. Thus, the
performance of convolutions largely relies on the performance of matrix mul-
tiplication on hardware platforms in this method. The fast methods including
Winograd-based and FFT-based ones can effectively decrease the computational
complexity of convolutions, while they are only applicable to convolutions with
large filters. Since the direct method has no extra memory overhead and can
gain high performance, numerous direct implementations for various types of
convolutions have been proposed on different platforms, such as regular convo-
lutions on Intel CPUs [7] and ARM Mali GPUs [16]. Lu et al. proposed two
novel optimization techniques to improve the performance of pointwise convolu-
tions by enhancing data reuse in row and column directions on NVIDIA mobile
graphics processing units (GPUs) [13,14]. Wang et al. proposed a parallel direct
algorithm for pointwise convolutions on ARMv8 multi-core CPUs [24]. However,
there is little work on the direct implementation of pointwise convolutions on
multi-core DSPs.

Multi-core digital signal processors (DSPs) have been brought into the
high-performance computing field due to the low-power characteristic [11]. To
diminish power consumption, DSPs usually adopt Very Long Instruction Word
(VLIW) architecture, software-controlled on-chip memories, and Direct Mem-
ory Access (DMA) engines for data moving, which are unique and different from
the architectures of modern CPUs and GPUs. There have been many paral-
lel implementations of algorithms and applications on multi-core DSPs, such as
matrix multiplications [19,27], matrix transpose [18], and GEMM-based convolu-
tions [25], but the parallel direct optimization of pointwise convolutions targeting
multi-core DSPs has not been found.

FT-M7032 is a CPU-DSP heterogeneous prototype processor which consists
of one 16-core ARMv8 CPU for process management and four 8-core DSPs
for offering major peak performance [27]. To improve the performance of point-
wise convolutions on FT-M7032, this paper proposes a high-performance parallel
direct implementation for pointwise convolutions targeting multi-core DSPs. In
parallelization, many common optimization techniques are carried out, such as
vectorization, register blocking, and multi-core parallelization. The experimental
results demonstrate that the direct implementation gets the computation effi-
ciency of 11.42% - 58.61% and outperforms the GEMM-based one with speedups
of 1.43×–79.26× on multi-core DSPs in FT-M7032. Compared with the imple-
mentations in Pytorch [17] and ARM Computer Library [1] running on the
ARMv8 CPU in FT-M7032, the proposed direct implementation gets a speedup
of up to 35.84 times. To the best of our knowledge, this is the first work about
the direct parallelization of pointwise convolutions on multi-core DSPs.

Optimizing Pointwise Convolutions on Multi-core DSPs 211

The structure of this paper is as follows. Section 2 outlines the definition of
pointwise convolutions and the architecture of FT-M7032 processors. Section 3
describes our parallel direct implementation of pointwise convolutions on multi-
core DSPs in FT-M7032 processors in detail. Section 4 shows the analyses of the
performance results. Last, the conclusion and future work are given in Sect. 5.

2 Backgound

2.1 Pointwise Convolution

For the forward propagation pass, pointwise convolutions work on input feature
maps tensor I with filters tensor F to produce output feature maps tensor O.
The backward propagation and weight gradient update passes obtain the input
feature maps gradient tensor dI and filter gradient tensor dF based on output
feature maps gradient tensor dO, respectively. With blocked data layout which is
very beneficial to vectorization, the three passes above of pointwise convolutions
are figured by Eqs. 1, 2, and 3.

On,kd,ho,wo,kl
+= In,cd,ho×S,wo×S,cl × Fcd×L+cl,kd,0,0,kl

, (1)

dIn,cd,ho×S,wo×S,cl += dOn,kd,ho,wo,kl
× Fcd×L+cl,kd,0,0,kl

, (2)

dFcd×L+cl,kd,0,0,kl
+= dOn,kd,ho,wo,kl

× In,cd,ho×S,wo×S,cl , (3)

where n ∈ [0, N), kd ∈ [0,Kd), ho ∈ [0,Ho), wo ∈ [0,Wo), kl ∈ [0, L), cd ∈
[0, Cd), cl ∈ [0, L), N is the mini-batch size, C and K are the number of input
and output channels, Cd and Kd represent the number of blocks in C and K
dimensions, C = Cd × L, K = Kd × L, L is the number of lanes in vector units
of DSPs, Hi/o and Wi/o denotes the spatial dimensions of different tensors, and
S is the stride size. In this paper, only the unit-stride pointwise convolutions are
involved so the stride size is 1 in the following.

2.2 Architecture of FT-M7032 Heterogeneous Processors

An FT-M7032 heterogeneous processor consists of a 16-core ARMv8 CPU and
four GDPSP clusters, shown in Fig. 1. The 16-core CPU where the Linux oper-
ating system runs is mainly for process management and multi-node communi-
cation, and its single-precision peak performance is 281.6 GFlops with 2.2GHz
working frequency. Each GPDSP cluster, also called a multi-core DSP, includes
eight DSP cores and global shared memory (GSM), which is connected by an
on-chip crossbar network. Each core can offer 345.6 GFlops single-precision peak
performance with 1.8GHz working frequency so that the total peak performance
of each GPDSP cluster can achieve up to 2764.8 GFlops. The 16-core CPU and

212 Y. Wang et al.

Fig. 1. Architecture of FT-M7032 Processors

four GPDSP clusters share the same memory space. Specifically, the CPU can
access the whole main memory space in FT-M7032, while each GPDSP cluster
can only access a specific part with 42.6 GBytes/s bandwidth. Therefore, four
GPDSP clusters can communicate with each other via the CPU, and be mainly
utilized by process-level parallelization.

The micro-architecture of each DSP core is shown in Fig. 2. Each core pri-
marily includes a scalar processing unit (SPU), a vector processing unit (VPU),
an instruction dispatch unit (IFU), and a DMA engine. SPU is used to support
parallel execution of five scalar instructions, where the size of scalar memory
(SM) is 64 KB. VPU is applied to carry out vector instructions, and the capac-
ity of array memory (AM) is 768 KB. There are three 64-bit float-point fused
multiply-add (FMAC) units in each of 16 vector processing elements (VPEs), so
VPU can perform three vector 32-bit FMAC (VFMAC) operations with 32 lanes
per cycle. VPU also has two parallel vector load-store units (VLoad/VStore),
each of which can convey data of up to 2048 bytes per cycle between AM and
vector registers. There are 64 1024-bit vector registers in total. SPU can directly
transfer data to VPU through broadcast operations and shared registers. These
DSP cores adopt VLIW architecture, and IFU can issue up to 11 instructions per
cycle, including at most five scalar instructions and six vector instructions. The
DMA engine is in charge of fast data transmission between different memories.

3 Parallel Direct Implementation

3.1 Overview of Our Implementation

Pointwise convolutions are computationally equivalent to matrix multiplication.
Therefore, when directly mapping pointwise convolutions on multi-core CPUs
and GPUs, the optimization methods for matrix multiplication are carried out

Optimizing Pointwise Convolutions on Multi-core DSPs 213

Fig. 2. Micro-architecture of each DSP core in FT-M7032 Processors

for high efficiency. This paper also follows this rule above and incorporates the
architectural features of the GPDSP cluster in the FT-M7032 and the relatively
small number of parameters in pointwise convolution for targeted algorithm
design and optimization.

3.2 Multi-level Parallel Forward Propagation Algorithm

When the stride size is 1, the spatial dimensions H and W of feature maps can
be merged into a single dimension denoted as H×W . In this section, we propose
a multi-level parallel direct algorithm named directConv1x1Fwd() for computing
the forward propagation pass of pointwise convolutions in convolutional neural
networks, shown in Algorithm 1. The implementation of the Conv1x1FwdAsm
kernel function within directConv1x1Fwd() is presented in Algorithm 2. Since
the storage cost of the filter tensor F in pointwise convolutions is typically
low, directConv1x1Fwd() prioritizes loading F into the on-chip AM space or
GSM space. To accommodate the unit-strided convolutions, directConv1x1Fwd()
merges the dimensions H and W directly into one (Line 10). In the following, we
primarily employ directConv1x1Fwd() as an exemplar to elucidate the meticu-
lous design of a multi-level parallel forward propagation algorithm for realizing
high-performance pointwise convolution.

On-Chip Memory Blocking and Loop Ordering. GPDSP clusters are
equipped with on-chip storage spaces, namely SM, AM, and GSM spaces. In
order to achieve high-performance computing objectives, algorithms commonly
load relevant tensor data into these spaces in blocking format prior to performing
calculations using the on-chip data. Furthermore, loop ordering is necessary to
optimize the locality of the on-chip data within the storage space and reduce the
overhead of accessing off-chip DDR storage.

214 Y. Wang et al.

Algorithm 1: Multi-level parallel forward propagation direct algorithm
for unit-stride pointwise convolutions on multi-core DSPs
Input : I [N][Cd][Hi][Wi][L], F [C][Kd][1][1][L]
Output: O[N][Kd][Ho][Wo][L]

1 Calculate the block size for each level
2 for cgd = 0: Cdgb : Cd do
3 for kdg = 0: Kdgb : Kd do
4 if Kdab × Cdab != Kd × Cd then
5 Load the F subblock into the GSM space Fgsm via DMA

6 else
7 Directly load the entire F into the AM space Fam via DMA

8 for kda = 0: Kdab : Kdgb do
9 for n = 0: 1: N do in parallel

10 for hw = 0: HWob : Ho ×Wo do in parallel
11 if cgd != 0 then
12 Load the O subblock into the AM space Oam via DMA

13 for cda = 0: Cdab : Cdgb do
14 if Kdab × Cdab != Kd × Cd then
15 Load the Fgsm subblock into the AM space Fam via

DMA

16 for cds = 0: Cdsb : Cdab do
17 Load the I subblock into the SM space Ism via

DMA
18 Call Conv1x1FwdAsm()

19 Store the Oam subblock in the DDR space O via DMA

Within the design of directConv1x1Fwd(), the SM space stores the block-
ing data of the input feature tensor I, while the AM space accommodates the
blocking data of both the output feature tensor O and the filter tensor F . By
prioritizing the loading of the filter tensor F as a whole, this design utilizes
the GSM space to buffer the blocking data of F . In this section, the subscripts
sm, am, and gsm indicate the on-chip storage space positions of the tensors
corresponding to the SM, AM, and GSM spaces, respectively. To load the rel-
evant subblocks into their respective on-chip storage spaces, the corresponding
dimensions of the filter tensor, input feature tensor, and output feature tensor
must be divided for the GSM, SM, and AM spaces, labeled with the subscripts
gb, sb, and ab, respectively.

In the directConv1x1Fwd() algorithm, the blocking data of F is stored in
the GSM space, while the blocking data of tensors I and O need to be loaded
from DDR to the SM space and AM space, respectively, during internal iterative
calculations. To prevent simultaneous reading of both tensors from DDR during
calculation, this section establishes the conditions HWab = HWsb = HWob and

Optimizing Pointwise Convolutions on Multi-core DSPs 215

Cdsb � Cdab to balance the block parameters of the SM space and the AM space.
In total, we derive the on-chip storage blocking limit conditions as presented in
Eq. 4.

sizeof(Fgsm) � sizeof(GSM)
sizeof(Ism) � sizeof(SM)
sizeof(AM) � sizeof(Oam) + sizeof(Fam)

sizeof(Fgsm) = Cdgb × Kdgb × L × L

sizeof(Ism) = Cdsb × HWob × L

sizeof(Oam) = Kdab × HWob × L

sizeof(Fam) = Kdab × Cdab × L × L

Cdsb � Cdab � Cdgb � Cd

Kdab � Kdgb � Kd

HWob � Ho × Wo

(4)

To optimize the data locality in on-chip memories, the loop order in the orig-
inal direct implementation of pointwise convolution was rearranged to achieve
the loop order in directConv1x1Fwd(). The outermost two loops, cgd and kdg,
are utilized to load the largest subblock of F into on-chip storage at once. If
the size of F does not match the size of the allocated AM space for Fam , i.e.,
Ckad × Kdab �= Kd × Cd, then the F subblock will be cached in the GSM space
Fgsm using DMA (Line 5). Otherwise, F will be directly loaded into the AM
space Fam (Line 7). The three loops, kda, n, and hw, are employed to load and
store the output feature map tensor O, followed by the loop cda to determine
the subblock of Fgsm that needs to be loaded into the AM space Fam . The
innermost loop, cds, is used to identify the subblock of the input feature map
tensor I that must be loaded from DDR space to the SM space Ism . Within
the cds loop, a subblock of I is loaded into the SM space using DMA, and then
Conv1x1FwdAsm() is called once with the loaded data to perform the calcula-
tion.

Vectorization and Register Blocking. The employed second optimization
technique is vectorization and register blocking. Once the relevant subblocks of
tensors are loaded into the SM and AM spaces, effectively utilizing the exe-
cution units within a single DSP core to reduce computational costs becomes
a critical concern. The objective of this approach is to minimize the runtime
of Conv1x1FwdAsm() by maximizing the computational capacity of each DSP
core. Specifically, it utilizes vectorization to harness the power of the 16 parallel
VPEs in the VPU of each DSP core. Furthermore, register blocking techniques
are utilized to conceal the pipeline latency of the VPU’s execution units and take
advantage of multiple vector floating-point multiply-add fusion units (VFMAC)
within the VPU.

Vectorization is applied along the K dimension where the calculation asso-
ciated with each element is independent, and there are L consecutive elements

216 Y. Wang et al.

when accessing the K dimension of the related tensors (O and F). To enhance
data locality in registers, this method employs register blocking in the Kdab,
HWob, and C dimensions, as described in Algorithm 2, and fully unrolls the cc,
j, and i loops (Lines 8, 9, and 11) to conceal pipeline latency. The implemen-
tation of register blocking is subject to limitations imposed by the number of
registers and the pipeline latency of the relevant functional units, as specified
in Eq. 5, where LatencyVFMAC and LatencyFP32Bcast represent the latency time
of the VFMAC units and FP32 Broadcasting, and NumVFMAC represents the
number of the VFMAC units in VPUs of DSP cores.

Algorithm 2: Vectorized algorithm for the forward propagation of point-
wise convolutions based on SPU and VPU in each DSP core
Input : Ism [Cdsb][HWb][L], Fam [Cdsb × L][Kdab][L]
Output: Oam [Kdab][HWb][L]

1 for kd = 0: Kdrb : Kdab do
2 for hw = 0: HWrb : HWob do

// Load the Oam ,kd,hw subblock into the vector register
3 for j = 0: 1: Kdrb do
4 for i = 0: 1: HWrb do
5 VRj×HWrb+i = VLoad(Oam ,kd+j,hw+i)

6 for cb = 0: 1: Cdsb do
7 for cl = 0: Clrb : L do

// The following loop will be fully unrolled in the
assembly implementation

8 for cc = cl : 1 : cl + Clrb do
9 for j = 0: 1: Kdrb do

10 VRf = VLoad(Fam ,cb×L+cc,kd+i)
11 for i = 0: 1: HWrb do
12 VRs = SVBcast(FEXT(SLoad((Ism ,cb,hw+j,cc))))
13 VRj×HWrb+i = VFMAC(VRf ,VRs,VRj×HWrb+i)

// Store the data in the vector register to Oam,kd,hw

14 for j = 0: 1: Kdrb do
15 for i = 0: 1: HWrb do
16 VStore(VRj×HWrb+i,Oam ,kd+j,hw+i)

Kdrb × HWrb � LatencyVFMAC × NumVFMAC

Kdrb × HWrb × Clrb � LatencyFP32Bcast × NumVFMAC
(5)

Multi-core Parallelization and Blocking Size Calculation. The third
optimization method involves distributing tasks on multiple DSP cores and

Optimizing Pointwise Convolutions on Multi-core DSPs 217

determining the appropriate block sizes for computation. In the algorithm for
multi-level parallel implementation of pointwise convolution forward propaga-
tion, the calculation tasks are partitioned based on two loops: n and hw. A task
pool is created, where each DSP core independently handles a task from the
pool. The tasks from the task pool are processed in parallel by eight DSP cores
until all tasks are completed.

In the previous parts, we have discussed the constraints that govern the
blocking sizes of on-chip and register storage in this study. However, deter-
mining the appropriate block sizes remains an unresolved issue. The selected
blocking sizes not only affect the efficiency of tensor access but also influence
the overall data communication between off-chip and on-chip memories in the
directConv1x1Fwd() algorithm. In the deep neural network library for the FT-
M7032 heterogeneous general-purpose multi-core DSP, tensors are stored in the
row-major format. After applying blocking, tensors require cross-stride reading.
Larger blocking sizes in the tensor’s inner dimensions facilitate more efficient
access when using cross-stride reading. The Eq. 6 presents the calculation of the
total amount of data transferred between off-chip and on-chip storage in direct-
Conv1x1Fwd(), where sizeof(F), sizeof(I), and sizeof(O) denote the sizes of
tensors F , I, and O, respectively. Therefore, we calculate the blocking size in
directConv1x1Fwd() while satisfying the conditions specified in Eqs. 4 and 5,
guided by the following three principles. First, ensure that the larger blocking
parameter is an integer multiple of the smaller blocking sizes (e.g., HWob must be
an integer multiple of HWrb). Second, minimize the value of Totalconv1x1FwdS1
as much as possible. Third, maximize the blocking size of the tensor’s inner
dimensions.

Totalconv1x1FwdS1 = sizeof(F) +
Kd

Kdab
× sizeof(I) + sizeof(

Cd

Cdgb
) × O (6)

3.3 Multi-level Parallel Algorithms for Backward Propagation
and Weight Gradient Update Propagation

The backward propagation pass of pointwise convolution involves taking the
output feature map gradient dO and the convolution kernel F as input tensors
and generating the input feature map gradient dI as the output tensor, shown
in Eq. 2. The filter gradient dF is computed from the output feature maps
gradient dO and the input feature maps I in the weight gradient update pass,
shown in Eq. 3. The computational mode of the two passes above also is the
matrix multiplication. Compared to the forward propagation pass, the main
difference is that the matrix multiplications involve the matrix transposition in
these two passes. Therefore, we get the multi-level parallel direct algorithms for
the left two passes of pointwise convolutions, based on the parallel optimization
approaches described in Sect. 3.2 and the vectorization matrix transpose kernel
trnKernel-32 on multi-core DSPs proposed in [18].

218 Y. Wang et al.

4 Performance Evaluation

This section gives the test results of our direct implementation on multi-core
DSPs and compares it with other implementations of pointwise convolutions on
FT-M7032.

4.1 Experiment Setup

We chose ResNet50 [6] and MobileNetV1 [8] as representatives of widely-used
backbone networks and lightweight networks, respectively. The performance of
the pointwise convolution implementation is evaluated by employing the point-
wise convolution layers from these models. The specific configurations are pre-
sented in Table 1. For the pointwise convolution tests, a batch size N of 64 is
used for all tested network layers.

This subsection introduces three metrics, namely computing time Tconv, com-
puting performance Pconv, and computing efficiency Econv, to evaluate the per-
formance of convolution implementations. The relation among these metrics is
outlined in Eq. 7. Ppeak represents the peak performance of a given hardware
platform, such as a single GPDSP cluster and a 16-core ARMv8 CPU. Addi-
tionally, TotalOpconv is the total floating-point operations involved in the con-
volution computation. For pointwise convolutions, the formula for TotalOpconv
is given by 2 × N × K × Ho × Wo × C × 1 × 1.

Pconv =
TotalOpconv

Tconv
,

Econv =
Pconv

Ppeak
.

(7)

4.2 Performance

This section compares the direct implementation of pointwise convolutions with
two GEMM-based implementations on FT-M7032. The first is a GEMM-based
implementation method optimized for multi-core DSPs [25], in which matrix mul-
tiplication and all tensor transformations run on multi-core DSPs. The second
is the GEMM-based implementation in Pytorch [17], which runs solely on the
16-core ARMv8 CPU of FT-M7032. These two GEMM-based implementations
are referred to as ftmEconv and Pytorch-conv, respectively. Furthermore, we
compare the performance of the forward propagation pass with ARM Computer
Library (ACL), which does not implement the left two passes. The absolute per-
formance of three passes in different implementations of pointwise convolutions
running on the FT-M7032 processor is presented in Figs. 3, 4, and 5. We can
find that our direct implementation outperforms all the other implementations
on FT-M7032. In addition, ftmDconv-Dlt avoids all additional memory overhead
in ftmEconv and Pytorch-Conv.

Optimizing Pointwise Convolutions on Multi-core DSPs 219

Table 1. The parameter configuration of the pointwise convolutional layers

Layer ID Model C ×Hi ×Wi Hf ×Wf S P

1 Resnet50 [6] 64× 56× 56 64× 1× 1 1 0
2 64× 56× 56 256× 1× 1 1 0
3 256× 56× 56 64× 1× 1 1 0
4 256× 56× 56 128× 1× 1 1 0
5 128× 28× 28 512× 1× 1 1 0
6 512× 28× 28 128× 1× 1 1 0
7 512× 28× 28 256× 1× 1 1 0
8 256× 14× 14 1024× 1× 1 1 0
9 1024× 14× 14 256× 1× 1 1 0
10 1024× 14× 14 512× 1× 1 1 0
11 512× 7× 7 2048× 1× 1 1 0
12 2048× 7× 7 512× 1× 1 1 0
13 Mobilenetv1 [8] 32× 112× 112 64× 1× 1 1 0
14 64× 56× 56 128× 1× 1 1 0
15 128× 56× 56 128× 1× 1 1 0
16 128× 28× 28 256× 1× 1 1 0
17 256× 28× 28 256× 1× 1 1 0
18 256× 14× 14 512× 1× 1 1 0
19 512× 14× 14 512× 1× 1 1 0
20 512× 7× 7 1024× 1× 1 1 0
21 1024× 7× 7 1024× 1× 1 1 0

Figure 3 shows the computational performance of the forward propagation
pass in four implementations, where the horizontal axis denotes the layer ID
of different pointwise convolutional layers and the vertical axis represents the
computational performance Pconv obtained by each implementation. The results
indicate that ftmDconv-Pt achieves performance ranging from 336.57 GFlops to
1593.51 GFlops, resulting in a computational efficiency of 12.17% to 57.64%.
Notably, ftmDconv-Pt has a significant speedup of 5.93 times to 35.84 times and
3.76 times to 24.07 times when compared with Pytorch-Conv and ACL algo-
rithms, respectively. In the comparison with ftmEconv, the speedup is in the
range of 1.55 times to 5.57 times, and the main reason for the observed per-
formance speedup is that the direct implementation has no additional memory
overhead and shows much better on-chip data locality.

For the backward propagation pass, we also compare the computational per-
formance Pconv of ftmDconv-Pt with that of ftmEconv and Pytorch-Conv on all
the tested network layers, as shown in Fig. 4. The ftmDconv-Pt implementation
achieves performance ranging from 315.76 GFlops to 1620.33 GFlops, resulting in
a computational efficiency of 11.42% to 58.61%. When compared with Pytorch-

220 Y. Wang et al.

Fig. 3. Performance of various forward propagation algorithms for pointwise convolu-
tions on FT-M7032 processors

Fig. 4. Performance of various backward propagation algorithms for pointwise convo-
lutions on FT-M7032 processors

Optimizing Pointwise Convolutions on Multi-core DSPs 221

Conv, ftmDconv-Pt achieves a significant speedup of 6.90 times to 29.14 times.
In the comparison with ftmEconv, the maximum speedup is 6.80 times.

Figure 5 compares the computational performance Pconv of the direct imple-
mentation of the weight gradient update pass with that of ftmEconv and
Pytorch-Conv on all the tested network layers. For all the tested network lay-
ers, ftmDconv-Pt achieves the performance of 366.216 GFlops - 1582.35 GFlops,
resulting in a computational efficiency of 13.24% - 57.23%. When compared with
Pytorch-Conv, ftmDconv-Pt obtains a speedup of 2.66 times to 13.27 times. In
the comparison with ftmEconv, the maximum speedup is 79.26 times.

Fig. 5. Performance of various weight gradient update algorithms for pointwise convo-
lutions on FT-M7032 processors

5 Conclusions and Future Work

This paper presents a high-performance parallel algorithm for the direct imple-
mentation of pointwise convolutions on multi-core DSPs in FT-M7032 heteroge-
neous processors. The parallel implementation can take full advantage of the par-
allel functional units and multi-level on-chip memories in multi-core DSPs. The
primary optimizations involve multi-level memory blocking, loop ordering, vec-
torization, and multi-core parallelization. The experimental results on pointwise
convolutional layers of popular networks show the proposed direct implementa-
tion outperforms other implementations on FT-M7032 heterogeneous processors,
and get the maximum speedup of up to 79.26 times.

222 Y. Wang et al.

In the future, we will focus on the direct implementations for other types of
convolutions on multi-core DSPs.

References

1. Arm Corporation: Arm computer library: A software library for machine learning.
https://www.arm.com/technologies/compute-library (2023). Accessed 3 Jan 2023

2. Chaudhary, N., et al.: Efficient and generic 1d dilated convolution layer for deep
learning. arXiv preprint arXiv:2104.08002 (2021)

3. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab:
semantic image segmentation with deep convolutional nets, Atrous convolution,
and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–
848 (2017)

4. Chen, X., Liu, J., Pang, Y., Chen, J., Chi, L., Gong, C.: Developing a new mesh
quality evaluation method based on convolutional neural network. Eng. Appl. Com-
put. Fluid Mech. 14(1), 391–400 (2020)

5. Chetlur, S., et al.: CUDNN: efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759 (2014)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

7. Heinecke, A., et al.: Understanding the performance of small convolution operations
for CNN on intel architecture. In: Poster in the International Conference for High
Performance Computing, Networking, Storage, and Analysis (2017)

8. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile
vision applications. CoRR (2017)

9. Huang, X., Wang, Q., Lu, S., Hao, R., Mei, S., Liu, J.: Evaluating FFT-based
algorithms for strided convolutions on ARMv8 architectures. Perform. Eval. 49,
102248 (2021). https://doi.org/10.1016/j.peva.2021.102248

10. Huang, X., Wang, Q., Lu, S., Hao, R., Mei, S., Liu, J.: NUMA-aware FFT-based
convolution on armv8 many-core CPUs. In: 2021 IEEE International Conference on
Parallel & Distributed Processing with Applications, Big Data & Cloud Comput-
ing, Sustainable Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom), pp. 1019–1026 (2021). https://doi.org/
10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00142

11. Igual, F.D., Ali, M., Friedmann, A., Stotzer, E., Wentz, T., van de Geijn, R.A.:
Unleashing the high-performance and low-power of multi-core DSPs for general-
purpose HPC. In: SC 2012: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, pp. 1–11. IEEE (2012)

12. Kim, M., Park, C., Kim, S., Hong, T., Ro, W.W.: Efficient dilated-winograd con-
volutional neural networks. In: 2019 IEEE International Conference on Image Pro-
cessing (ICIP), pp. 2711–2715. IEEE (2019)

13. Lu, G., Zhang, W., Wang, Z.: Optimizing GPU memory transactions for convo-
lution operations. In: 2020 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 399–403. IEEE (2020)

14. Lu, G., Zhang, W., Wang, Z.: Optimizing Depthwise separable convolution opera-
tions on GPUs. IEEE Trans. Parallel Distrib. Syst. 33(1), 70–87 (2021)

https://www.arm.com/technologies/compute-library
http://arxiv.org/abs/2104.08002
http://arxiv.org/abs/1410.0759
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/j.peva.2021.102248
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00142
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00142

Optimizing Pointwise Convolutions on Multi-core DSPs 223

15. Mehta, S., Rastegari, M., Caspi, A., Shapiro, L., Hajishirzi, H.: ESPNet: efficient
spatial pyramid of dilated convolutions for semantic segmentation. In: Ferrari, V.,
Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp.
561–580. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_34

16. Mogers, N., Radu, V., Li, L., Turner, J., O’Boyle, M., Dubach, C.: Automatic gen-
eration of specialized direct convolutions for mobile GPUs. In: Proceedings of the
13th Annual Workshop on General Purpose Processing using Graphics Processing
Unit, pp. 41–50 (2020)

17. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

18. Pei, X., et al.: Optimizing parallel matrix transpose algorithm on multi-core digital
signal processors (in Chinese). J. Natl. Univ. Defense Technol. 45(1), 57–66 (2023)

19. Safonov, I., Kornilov, A., Makienko, D.: An approach for matrix multiplication of
32-bit fixed point numbers by means of 16-bit SIMD instructions on DSP. Elec-
tronics 12, 78 (2022)

20. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2:
Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

21. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

22. Wang, Q., Li, D., Huang, X., Shen, S., Mei, S., Liu, J.: Optimizing FFT-based
convolution on ARMv8 multi-core CPUs. In: Malawski, M., Rzadca, K. (eds.)
Euro-Par 2020. LNCS, vol. 12247, pp. 248–262. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-57675-2_16

23. Wang, Q., Li, D., Mei, S., Lai, Z., Dou, Y.: Optimizing Winograd-based fast convo-
lution algorithm on Pythium multi-core CPUs (in Chinese). J. Comput. Res. Dev.
57(6), 1140–1151 (2020). https://doi.org/10.7544/issn1000-1239.2020.20200107

24. Wang, Q., Li, D., Mei, S., Shen, S., Huang, X.: Optimizing one by one direct
convolution on ARMV8 multi-core CPUs. In: 2020 IEEE International Confer-
ence on Joint Cloud Computing, pp. 43–47. IEEE (2020). https://doi.org/10.1109/
JCC49151.2020.00016

25. Wang, Q., et al.: Evaluating matrix multiplication-based convolution algorithm on
multi-core digital signal processors (in Chinese). J. Natl. Univ. Defense Technol.
45(1), 86–94 (2023). https://doi.org/10.11887/j.cn.202301009

26. Wang, Q., Songzhu, M., Liu, J., Gong, C.: Parallel convolution algorithm using
implicit matrix multiplication on multi-core CPUs. In: 2019 International Joint
Conference on Neural Networks (IJCNN), pp. 1–7 (2019). https://doi.org/10.1109/
IJCNN.2019.8852012

27. Yin, S., Wang, Q., Hao, R., Zhou, T., Mei, S., Liu, J.: Optimizing irregular-shaped
matrix-matrix multiplication on multi-core DSPs. In: 2022 IEEE International
Conference on Cluster Computing (CLUSTER), pp. 451–461 (2022). https://doi.
org/10.1109/CLUSTER51413.2022.00055

28. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv
preprint arXiv:1511.07122 (2015)

https://doi.org/10.1007/978-3-030-01249-6_34
https://doi.org/10.1007/978-3-030-57675-2_16
https://doi.org/10.1007/978-3-030-57675-2_16
https://doi.org/10.7544/issn1000-1239.2020.20200107
https://doi.org/10.1109/JCC49151.2020.00016
https://doi.org/10.1109/JCC49151.2020.00016
https://doi.org/10.11887/j.cn.202301009
https://doi.org/10.1109/IJCNN.2019.8852012
https://doi.org/10.1109/IJCNN.2019.8852012
https://doi.org/10.1109/CLUSTER51413.2022.00055
https://doi.org/10.1109/CLUSTER51413.2022.00055
http://arxiv.org/abs/1511.07122

Detecting SDCs in GPGPUs Through
Efficient Partial Thread Redundancy

Xiaohui Wei , Yan Wu , Nan Jiang(B) , and Hengshan Yue(B)

College of Computer Science and Technology, Jilin University, Changchun, China
{weixh,yuehs}@jlu.edu.cn, {yanwu21,jiangnan22}@mails.jlu.edu.cn

Abstract. As General-Purpose Graphics Processing Units (GPGPUs)
are widely employed in various precision-sensitive and safety-critical
domains, guaranteeing the execution reliability of such applications
under the impact of soft errors becomes a critical issue. Redundant
Multi-Threading (RMT) provides a potentially low-cost mechanism for
improving GPGPU reliability, but full protection comes with high time
and resource costs. In this paper, we propose a partial thread protec-
tion mechanism for efficient Silent Data Corruption (SDC) detection in
GPGPU programs. Firstly, we establish an accurate and efficient model
for assessing the thread SDC vulnerability by capturing intra-thread
error propagation and inter-thread error propagation. Then, based on
the analysis results, we selectively replicate the SDC vulnerable threads.
Experimental results indicate that our proposed thread SDC vulnera-
bility assessment model closely aligns with the fault injection results,
while introducing much lower execution overhead. Our partial thread
redundancy mechanism provides a better trade-off between reliability
and overhead compared with full RMT.

Keywords: GPGPUs · Soft Error · Silent Data Corruptions (SDCs) ·
Partial Thread Protection

1 Introduction

With remarkably high concurrency and improved programmability [7], Graph-
ics Processing Units (GPUs) have been widely used in various general-purpose
fields, such as scientific computing, financial analysis, automatic driving and
other safety-critical systems [7,12], which is also known as general-purpose com-
puting on GPUs (GPGPUs). Unlike the inherent error tolerance of graphics
applications, GPGPUs applications typically have more stringent requirements
for reliability [6]. However, with the scaling of transistor sizes and operating
voltages, GPGPUs become more vulnerable to high energy particle strikes [10],
which can cause bit flipping during execution, also called soft errors. Soft errors
can potentially cause silent data corruptions (SDCs) in application outputs or

This work is supported by the National Natural Science Foundation of China (NSFC)
(Grants No. 62272190, No. 62302190 and No. U19A2061).

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14493, pp. 224–239, 2024.
https://doi.org/10.1007/978-981-97-0862-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0862-8_14&domain=pdf
http://orcid.org/0000-0001-5597-3625
http://orcid.org/0009-0006-4649-8133
http://orcid.org/0000-0001-6875-9943
http://orcid.org/0000-0003-2189-8385
https://doi.org/10.1007/978-981-97-0862-8_14

Detecting SDCs in GPGPUs Through Efficient Partial Thread Redundancy 225

directly result in application/system hang-ups or crashes. SDC is regarded as
the most critical error type because there is no visible indication of program
corruption, thereby significantly impacting the quality of application outputs.

Most modern GPGPU architectures typically employ Error Correcting Codes
(ECCs) and parity to protect storage structures [21]. However, these mecha-
nisms are unable to detect errors occurring in the execution units [5]. To ensure
reliable execution, some fine-grained protection mechanisms, such as Selective
Instruction Duplication (SelDup) and Redundant Multi-Threading (RMT), are
employed in GPUs to detect SDCs at the software level [10]. The existing SelDup
typically preferentially duplicate instructions with high SDC vulnerability, and
compare their execution results to detect SDCs [16]. Although this partial pro-
tection provides some meaningful performance savings, it has two inherent lim-
itations as shown in Fig. 1. When redundant instructions appear (1) in a non-
branch structure, all threads will execute the redundant instructions sequentially,
increasing the execution time (1© in Fig. 1). (2) in a branch structure, it is pos-
sible that only a subset of threads need to execute the redundant instructions.
However, due to the Single Instruction Multiple Threads (SIMT) scheme fol-
lowed within a warp, the remaining threads in the warp have to wait, resulting
in incurred time overhead and a decrease in resource utilization (2© in Fig. 1).
Redundant Multi-Threading (RMT) creates two copies of a thread, a leading
thread and a trailing thread, that use the same input to execute in parallel and
compare the results while the program is running [15]. With sufficient resources,
the leading thread and the trailing thread can be executed in parallel without
incurring thread wait overhead.

Fig. 1. The instruction duplication execution mode. Redundant instructions are high-
lighted in red. Cycle 1’ and Cycle 4’ denote the additional performance overhead when
executing redundant instructions in non-branching(1©) and branching structures(2©),
respectively. (Color figure online)

In this work, we propose an efficient partial thread redundancy method that
only replicates SDC vulnerable threads for reliability overhead saving. To this

226 X. Wei et al.

end, the first essential task is to establish a model that can accurately assess
the SDC vulnerable thread in GPGPUs. Our key insight is that the resilience of
threads varies based on their unique execution instruction sequences. Further-
more, the SDC vulnerability of a thread may be influenced by other threads
due to inter-thread memory access dependencies. We build an error propagation
model to efficiently predict thread SDC vulnerability without any fault injec-
tion. Firstly, we establish an intra-thread error propagation model using data
flow analysis, while accounting for the error masking and program Crash during
error propagation. In addition, we also consider the effects of inter-thread error
propagation due to thread memory access dependencies. Then, based on the
model prediction results, we selectively protect SDC vulnerable threads within
a block.

Although several studies have utilized RMT techniques to improve the relia-
bility of GPU applications [8,15], these works primarily focus on optimizing the
duplication technique without incorporating selective replication, which can lead
to overprotection. Although there have been efforts proposing selective thread
protection [18], coarse-grained thread resiliency analysis results in lower soft
error coverage.

In summary, our main contributions in this work are as follows:

– We propose an effective error propagation model to estimate thread SDC
vulnerability without any fauit injection experiments.

– We build an intra-thread error propagation model and identify the situations
that cause error propagation masking and program crash to improve the
prediction accuracy of thread SDC probability.

– We build an inter-thread error propagation model, taking into account the
propagation of soft errors between threads caused by memory access depen-
dencies.

– We propose an efficient partial thread protection mechanism that selectively
replicates the SDC vulnerable threads identified by our proposed model.
Experimental results show our partial thread redundancy mechanism pro-
vides a better trade-off between reliability and overhead compared with full
RMT.

2 Background

In this section, we provide a concise overview of the execution patterns of
GPGPU applications. Following this, we introduce our fault model and establish
the definitions of the key terms.

2.1 GPGPUs Architecture and Programming Model

A GPGPU application is composed of a control program launched by host CPU
and one or more computing functions, also called kernels, executed on the GPU.

Detecting SDCs in GPGPUs Through Efficient Partial Thread Redundancy 227

Fig. 2. Thread-Memory access hierarchy during GPGPU execution.

Each kernel is divided into multiple blocks, which are also known as Coop-
erative Thread-Arrays (CTAs). A CTA can guarantee synchronization among
component threads by executing a local barrier instruction, whereas threads
across different CTAs require additional explicit synchronization. Each CTA is
sub-divided into 32 individual threads, referred to as warp, which serve as the
fundamental instruction scheduling unit. The threads within a warp execute the
same instruction accessing different data in a lock step. Such an execution mode
is usually called Single Instruction Multiple Threads(SIMT) execution, which
enables the GPU to achieve high throughput. Both CPU and GPU device main-
tain their own local memory, and there are significant differences between them.
The memory hierarchy of modern GPUs can be categorized into the following
levels: (1) global, (2) texture, (3) constant, (4) shared, and (5) thread-local mem-
ory. Constant and texture memory can be read-only and can be accessed by all
threads, which are designed for special purposes. Figure 2 illustrates the thread-
memory access hierarchy during GPGPU execution. Each thread has a private
local memory. Thread-local memory is usually stored in the fast register file,
which provides fast access and high-bandwidth data transfer for the threads.
Each block has a shared memory that is accessible by all of its threads and lasts
as long as the block itself. The shared memory space can be managed by software
and is much faster than accessing global memory. Additionally, all threads in the
kernel have access to the same global memory, which can be used for inter-thread
communication and data sharing across multiple blocks. Thus, different threads
may depend on each other because the load and store instructions access the
same memory, which is referred to as inter-thread memory dependency. In case
bit flips occur during the execution of an instruction in a thread, it may transmit
the effect of the transient hardware faults to other threads through inter-thread
memory dependencies, leading to potential errors. A thread can be affected by
soft errors in two ways: (1) Intra-thread error propagation, where a transient
hardware failure occurs during thread execution and propagates to memory, and
(2) Inter-thread error propagation, where a thread reads corrupted data written
by another thread and propagates the error to memory.

228 X. Wei et al.

2.2 Fault Model

Many architectural technologies, such as single-error-correction double-error-
detection (SEC-DED) error correction codes (ECCs), are used in existing com-
mercial GPU to protect shared memory, DRAM, L1/L2 cache, register files.
Therefore, this work only considers soft errors occurring in the functional units
(eg., ALUs, LSUs). In this paper, we consider single-bit flip since as it is typ-
ically regarded as the most common error type [2]. Many studies have shown
that multiple-bit flips generally have a similar effect on program resiliency as
single-bit flip [3].

Based on the behavior of corrupted programs, we classify the effects of corrup-
tion into three categories: (1) Masked, the erroneous output is indistinguishable
from the correct output of the program. (2) Silent Data Corruptions (SDCs), the
program successfully completes its execution, but the corrupted output differs
from the expected output. (3) Detected Unrecoverable Errors (DUEs), system
errors manifest obvious symptoms, such as program crashes or hangs.

3 Thread-Level SDC Proneness Analysis

To accurately capture the SDC proneness of each thread, Fault injection is an
intuitive method. But thousands of threads in GPGPU applications results in a
tremendously large fault site space, leading to significant overhead. To mitigate
this issue, we employ graph propagation modeling to analyze thread SDC prone-
ness. Our work attribute the origin of a thread’s vulnerability to two distinct
factors: intra-thread error propagation and inter-thread error propagation. In
this section, we first propose heuristics to explore the error-masking and DUE-
incurring instructions in the propagation chain. Secondly, we consider the effect
of error propagation within threads on thread SDC proneness. Finally, consider-
ing that errors may propagate between threads through memory, we develop an
inter-thread error propagation model to further enhance the accuracy of error
resilience estimation.

3.1 Vulnerability Identification

In order to more accurately identify the SDC proneness of each thread so as
to ensure that threads with high vulnerability are protected in the subsequent
design, we explore certain error-masking and DUE-incurring instructions in the
program that aid us in estimating the probability of error propagation.

Propagation Masking. For a soft error, it may not affect the application out-
put. In this context, we analyze several factors that contribute to error masking.

Detecting SDCs in GPGPUs Through Efficient Partial Thread Redundancy 229

Logical Masking. Due to computational logic or conditional control, the effects of
soft errors may be masked, which we call logical masking. For example, in the 4th
instruction of Fig. 4a, the high 9 bits of register r5 are masked, having no impact
on the final result. Consequently, the propagation probability is reduced to 23/32.
We employ instruction analysis to identify such cases and assign appropriate
weights to the corresponding propagation probabilities.

Dead Store. A soft error propagated to a store instruction may not affect thread
resiliency. Dead store occurs when a value is written to memory by a store
instruction but is never read or utilized, rendering it irrelevant to the final
result [20]. We consider dead storage as two store instructions accessing the same
memory, with the value of the previous store instruction overwritten by the value
of the later instruction before it is used. We identify dead store instructions and
exclude the SDC probability caused by them from the thread SDC vulnerability
estimation.

Propagation Crash. The primary factor causing program crashes due to
soft errors is out-of-bound memory access [1]. We consider a crash occurring
as a result of load/store instruction operations accessing out-of-bounds mem-
ory addresses based on the acquired memory range. The crash probability is
estimated by examining the memory size dynamically allocated to the kernel
function, which will also not be included in the final thread SDC proneness.

Fig. 3. Instruction dependency.

3.2 Intra-thread Error Propagation Analysis

In this step, we utilize the Dependency Graph (DG) to capture the dependencies
among instructions executed by an individual thread. In the DG, each node cor-
responds to an instruction, while edges represent dependencies between instruc-
tions, imposing constraints on the order of instruction execution[1]. Based on
the characteristics of instructions, we classify instruction dependency into three
distinct types: (1) Value dependency: the result of instruction x is used as the
source operand for instruction y. (2) Address dependency, instruction y uses the

230 X. Wei et al.

result of instruction x as a memory address. (3) Control-Flow dependency, it
occurs when the execution of instruction x depends on the outcome of a branch
instruction, denoted as y. Figure 3 exemplifies these three dependencies, one for
each case. The number of cycles of branches in the thread execution sequence is
counted to configure the branch probability. For example, in Fig. 3c, the branch
probability is 0.9, which means that during the execution of the thread, the
branch has a 90% probability of being executed.

We define the impact of intra-thread error propagation for a thread as the
probability that, a bit flip occurring during the execution of instruction i by
a thread, and the error is ultimately propagate to the store instruction. The
probability of SDC corruption for a store instruction can be expressed by Eq. 1:

Pts = 1 −
n∏

k=1

(1 − vkPCk(1 − Pcrashk)) (1)

PCk = 1 −
m∏

j=1

(1 − vjPCj(1 − Pcrashj|maskj) (2)

In the equation, Pts represents the SDC probability of a store instruction, n
refers to the total number of instructions on which the stored instruction directly
depends, PCk denotes the probability that the error propagates to instruction i
on which the store instruction depends, and Pcrashk is the probability of crash,
which is caused by address dependency between instruction k and store instruc-
tion. The branching probability, v, is assumed to be 1 for non-branching depen-
dencies. In Eq. 2, we give the formula for calculating the SDC probability for
each node, which can be derived from the SDC probability of all directly con-
nected nodes. Pcrashj|maskj represents the probability of crash or error masking
when instruction j is corrupted, m is the total number of instructions on which
instruction k directly depends. Consequently, the SDC probability for each node
can be calculated recursively.

We use the example in Fig. 4 to show how to use the above formula to cal-
culate. When a bit flip occurs during 5th instruction execution by a thread, the
probability of SDC in instruction 5 is 1, denoted as PC5 = 1. The 6th instruction
is the load instruction, which needs to consider the probability of crash caused
by soft errors. So the SDC probability of the 6th instruction can be computed
as PC6 = 1− (1−1∗PC5 ∗ (1−Pcrash)) = 1− (1−1∗1∗ (1−0.62)) = 0.38 (where
0.62 represents the crash probability used in the 2mm example). Similarly, the
SDC probability of the store instruction is Pstore = 1 − [(1 − 1 ∗ 1 ∗ 0.38) ∗ (1 −
1 ∗ 0.38 ∗ 1) ∗ (1 − 0.01 ∗ 0.38 ∗ 1)] = 0.617.

Due to the large number of threads in a GPU, constructing a DG for
each individual thread is time-consuming. In order to minimize the number of
threads requiring analysis, we group threads based on their execution instruction
sequences, which provides a more efficient approach compared to considering the
number of instructions executed by individual threads. Since threads in a group
execute the same sequence, the error will propagate along the same path from
where the bit flip occurs to the store instruction, thus merging them will not

Detecting SDCs in GPGPUs Through Efficient Partial Thread Redundancy 231

reduce evaluation accuracy. We first extract the PTX instruction sequences exe-
cuted by the threads and group the threads that execute the same instructions.
From each group, we select a representative thread and model its execution
sequence.

Fig. 4. A thread running example. (a) Shows a sequence of instructions executed by
a thread, blue and red indicate conditions that cause error masking and crash and (b)
shows the sequence of instructions represented by Dependency Graph. The red edges
indicate address dependencies. (Color figure online)

3.3 Inter-thread Error Propagation Analysis

Faults can result in the corruption of memory values and continue to propagate
through memory operations. If the erroneous stored value is accessed by load
instructions executed by other threads, the impact of the soft error is further
amplified. Figure 5 illustrates an instance where a thread stores results via the
store instruction, which are subsequently accessed by other threads. During the
execution of thread 1, a soft error occurs and propagates to memory via the store
instruction, the erroneous value will be accessed by thread 2 and thread 3, as
they access the same memory location, which can potentially lead to incorrect
execution results in thread 2 and thread 3.

We utilize Eq. 3 to show how corrupted data written to memory by thread i
affects the SDC probability of thread j reading corrupted data.

Pldj,s = Ptdi,r (3)

232 X. Wei et al.

Fig. 5. Error propagation among threads.

In the equation, Ptdi,r is the probability that an error propagates to store instruc-
tion r during the execution of thread i. Pldj,s is the probability that the load
instruction s reads the corrupted memory value during the execution of thread
j. Since thread i and thread j access the same address, the SDC probability
of instruction s and instruction r is numerically equal. Then, according to the
error probability of the obtained instruction s, we further calculate the proba-
bility of error propagation to store instructions during the execution of thread
j, according to the intra-thread error propagation rules mentioned above.

4 Partial Thread Protection Framework

To effectively enhance reliability, leveraging the model presented in Sect. 3, we
first profile thread SDC vulnerability. Then we propose an efficient thread redun-
dancy approach to prioritize the protection of SDC vulnerable threads.

4.1 Thread SDC Vulnerability Profiling

Our thread SDC vulnerability profiling phase consists of two stages: (1) Profiling
and (2) Modeling. In the profiling stage, we execute the GPGPU programs and
dynamically collect information about the execution sequences of threads. Once
all the information is gathered, we conduct the static analysis phase of thread
resilience. In the modeling stage, we first merge threads with identical execution
sequences to reduce the number of threads that need to be analyzed. This is
because the same thread execution sequence has the same instruction depen-
dencies, leading to the same error propagation paths. Then, we utilize both the
intra-thread error propagation model and inter-thread error propagation model
to calculate the SDC Vulnerability of individual thread. Additionally, by con-
sidering the SDC probabilities of individual thread, we can estimate the overall
SDC probability of the program.

4.2 Partial Thread Redundancy

The fundamental idea of thread redundancy is to use additional threads to exe-
cute the same instruction sequence with the same data as the original thread,

Detecting SDCs in GPGPUs Through Efficient Partial Thread Redundancy 233

Algorithm 1: The Core Algorithm of Thread Resiliency Evaluation.
input : Instructions set executed by a thread: I;
output: The SDC probability of the thread: PSDC

1 intruNum ← get Intructions Number(I) ;
2 PSDC ← 0;
3 storeNum ← get non-dead Store Intructions Number(I);
4 for all non-dead store instructions S do

// apply intra-thread error propagation model to calculate the
SDC probability of store instruction S

5 Pintra ← Intra SDC Probability(S);
6 PSDC ← PSDC + 1

intruNum × Pintra;
// read corrupt values written by another thread

7 if S corrupt due to inter-thread dependencies then
// apply inter-thread error propagation model

8 Pinter ← Inter SDC Probability(S);
9 PSDC ← PSDC + Pinter;

10 PSDC ← 1
storeNum × PSDC ;

11 return PSDC

with the only difference being their thread ID numbers. Comparisons and noti-
fications are inserted at certain points, often before storing data. We selectively
protect vulnerable threads in a block, as thread synchronization between blocks
requires explicit synchronization [8,15].

Our replication strategy comprises three steps. First, we consider a block as
the unit of thread replication and identify vulnerable threads within the block,
as shown in Fig. 6a, where SDC vulnerable threads are marked in red. Second,
we duplicate these vulnerable threads within the block. We allocate a buffer in
the local memory for thread communication. Before thread communication, the
original thread and redundant thread execute in parallel. Third, before the store
instruction is finished, the original thread reads the stored address and value
operand from the buffer, which were previously stored by the redundant thread,
and compares the values with its own execution result to verify whether an error
has occurred as can be seen in Fig. 6b.

5 Experiment Methodology

We select from 7 benchmarks including 12 kernels from Polybench [14] and
Rodinia [4], to evaluate our approach, which are listed in Table 1. These bench-
marks encompass diverse domains including data mining, linear algebra, and
deep learning, which have been extensively utilized in prior researches on
GPGPU application resiliency and protection [9].

We perform reliability experiments on GPGPU-Sim [2], a widely used GPU
architecture simulator. We obtain the set of instructions executed by the thread,

234 X. Wei et al.

Fig. 6. Thread redundancy methodology.

and subsequently randomly select an instruction destination register to inject one
fault per run. We obtain the ground truth of individual thread SDC vulnerability
through an exhaustive FI experiments. We also use smaller inputs specific to each
benchmark in our FI experiments to ensure accurate evaluation and maintain
experimental control, following the approach of previous studies [1,17,19].

Table 1. Characteristics and modeling overhead of the benchmark used.

Suit Application Kernel name Kernel ID Uses shared
memory

Total
threads

FI Overhead
(in hours)

Ours Overhead
(in minutes)

Polybench 2MM mm2 kernel1 K1 No 65536 32.931 18.466
mm2 kernel2 K2 No 65536

2DCONV Convolution2D kernel K1 No 16384 0.733 0.237
BICG bicg kernel1 K1 No 512 1.162 1.438

bicg kernel2 K2 No 512
MVT mvt kernel1 K1 No 2048 8.552 11.789

mvt kernel2 K2 No 2048
COVAR mean kernel K1 No 128 5.005 11.579

reduce kernel K2 No 4096
covar kernel K3 No 128

CORR corr kernel K1 No 256 27.339 50.662
Rodinia HotSpot calculate temp K1 Yes 9216 1.001 0.843

6 Evaluation

In this section, we first evaluate the accuracy of predicting the SDC probabil-
ity for individual threads and the SDC probability for each benchmark. Subse-
quently, we discuss the overhead associated with partial thread protection.

Detecting SDCs in GPGPUs Through Efficient Partial Thread Redundancy 235

6.1 SDC Probability Prediction Accuracy

Thread SDC Probability Accuracy. We evaluate the predicted SDC prob-
ability for individual thread in each kernel and compared it with the thread
SDC probability obtained by random FI. We select threads appropriately from
the thread group based on thread number proportion and perform multiple FI
experiments on individual thread, totaling 5000 FI experiments for a kernel as
previous work did [1].

Fig. 7. Thread SDC probabilistic correlation comparison of FI and our method.

We use Kullback-Leibler (KL) divergence to measure the differences in thread
SDC probability distributions within a kernel between FI and our method. As
shown in Fig. 7, our method fits well with the distribution of FI results, and
achieves the KL divergence difference of 0.53% on average.

We also used the Mean Square Error (MSE) to assess thread SDC vulnerabil-
ity similarity between the FI and our method. The average MSE for thread SDC
probabilities across all kernels is 0.91%, indicating a small difference between
the FI results and our predicted results.

Benchmark SDC Probability Accuracy. The overall SDC probability of the
program is the accumulation of SDC probabilities across all threads. Therefore,
in order to further evaluate the accuracy of our method in estimating thread SDC
vulnerability, we compare the overall SDC probability of the program obtained
through our method and FI in this section .

As shown in Fig. 8, our method shows a small difference compared to the FI
results, with a mean absolute error of 3.8%. Furthermore, we conducted a com-
parative analysis of Pearson correlation coefficients. The correlation between our
method and the FI results yielded a coefficient of 0.944, implying a substantial
consistency between our method and the results obtained by the FI experiments.

6.2 Overhead

In this section, we evaluate the overhead of our proposed approach from the two
phases of graph modeling propagation and thread replication.

236 X. Wei et al.

Fig. 8. Application SDC probability comparison of FI and our method.

Graph Modeling Propagation Overhead. We conduct analysis of the time
overhead required for FI and our proposed method across each benchmark. As
depicted in Table 1, the time overhead associated with FI typically reaches the
order of hours, and our proposed method can obtain the thread SDC probability
in less than one hour with the average execution time being reduced by one order
of magnitude. We observe that thread execution instructions traced by GPGPU-
sim account for over 95% of time overhead. It is worth noting that we also
observe a relatively longer runtime for the CORR K3 benchmark. This can be
attributed to the presence of numerous loop branches in CORR K3, which results
in a diverse sequence of instructions executed by threads. Consequently, more
dependency graphs need to be built to analyze different kinds of representative
thread resilience.

Thread Redundancy Overhead. We also compare the performance saving of
our partial thread redundancy technique with full RMT. We set the thread SDC
probability threshold to 10%, considering any thread with an SDC probability
below 10% as reliable. Consequently, we apply redundancy to those threads
deemed unreliable. Figure 9 shows the number of additional threads required
for redundant execution at different thread SDC thresholds for our method and
full RMT. We observe that, at a thread SDC threshold of 10%, the number of
redundant threads for 2Dconv and Hotspot decreased by 4% and 33.7%, and
SDC coverage is 99.56% and 82.33%, respectively. However, for the remaining
cases, the reduction in the number of threads is not significant. We note that
in these cases, the thread SDC probabilities were concentrated within a certain
range of (0.35, 0.8), indicating that the impact of these thread execution results
on the application outcomes can not be ignored. As the target output quality
acceptable threshold decreases, the number of additional threads for redundant
execution will be further reduced, resulting in more performance gains.

Detecting SDCs in GPGPUs Through Efficient Partial Thread Redundancy 237

Fig. 9. The number of additional threads required for replication decreases as the
acceptable thread SDC threshold increases.

7 Related Work

Error Propagation Modeling. Error propagation modeling analysis is widely
used to evaluate application reliability because it does not require thousands of
fault injection experiments. Lu et al. [13] proposed the SDCTune model based
on the static and dynamic characteristics of the program, which can identify the
variables in the program that are relatively prone to SDC based on the heuristic
method developed. Khudia et al. [11] propose a pure-software application anal-
ysis scheme, which employs control flow, memory dependency, and value profil-
ing to understand the common-case behavior of applications. However, none of
this work is targeted towards GPU applications. GPU-Trident [1] proposes an
accurate and scalable technique for modeling GPU program error propagation.
However, it is unable to handle situations where there is control flow within a
basic block, and it does not quantify the SDC probability of individual thread.

Redundancy Mechanism. Several software-level efforts have been proposed
to improve the reliability of GPGPU applications. Öz I et al. [22] evaluated vul-
nerabilities in kernel functions using fault injection experiments to quantify the
severity of data corruption by considering metrics other than SDC rates, pro-
viding guidance for selective redundant execution of GPGPU applications. Wei
et al. [16] introduced a partial protection scheme at the instruction level, which
leverages machine learning techniques to intelligently identify all SDC vulnerable
instructions based on observed heuristic features. By duplicating the instructions
associated with high SDC proneness, the scheme aims to reduce the reliability
overhead. Yang et al. [18] proposed a partial thread protection mechanism that
involves changing the mapping of threads to warps, increasing the proportion
of reliable warps and Only replicate the unreliable warps. However, the use of
coarse-grained analysis based on the thread dynamic instruction count as a cri-
terion for distinguishing thread resilience may lead to less accurate analysis of
thread SDC proneness.

238 X. Wei et al.

8 Conclusion

In this paper, we propose an effective partial thread redundancy method that
can effectively improve the execution reliability of GPGPU applications. We use
graph propagation modeling to analyze the SDC tendency of a single thread in
detail. Our method predicts all SDC vulnerable threads based on intra-thread
and inter-thread error propagation, which we choose to protect. As our evalu-
ation experiment shows, the results of thread SDC probability prediction are
in close agreement with the results obtained from fault injection, with an aver-
age KL divergence of 0.53%. Moreover, our partial thread redundancy mecha-
nism provides a good trade-off between reliability and overhead compared to full
RMT.

References

1. Anwer, A.R., Li, G., Pattabiraman, K., Sullivan, M., Tsai, T., Hari, S.K.S.: GPU-
trident: efficient modeling of error propagation in GPU programs. In: SC20: Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, November 2020. https://doi.org/10.1109/sc41405.2020.00092

2. Bakhoda, A., Yuan, G.L., Fung, W.W.L., Wong, H., Aamodt, T.M.: Analyzing
CUDA workloads using a detailed GPU simulator. In: 2009 IEEE International
Symposium on Performance Analysis of Systems and Software. IEEE, April 2009.
https://doi.org/10.1109/ispass.2009.4919648

3. Chang, C.K., Lym, S., Kelly, N., Sullivan, M.B., Erez, M.: Evaluating and accel-
erating high-fidelity error injection for HPC. In: SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis. IEEE (nov
2018). https://doi.org/10.1109/sc.2018.00048

4. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.H., et al.: Rodinia:
A benchmark suite for heterogeneous computing. In: 2009 IEEE International Sym-
posium on Workload Characterization (IISWC). IEEE, October 2009. https://doi.
org/10.1109/iiswc.2009.5306797

5. Dimitrov, M., Mantor, M., Zhou, H.: Understanding software approaches for
GPGPU reliability. In: Proceedings of 2nd Workshop on General Purpose Process-
ing on Graphics Processing Units. ACM, March 2009. https://doi.org/10.1145/
1513895.1513907

6. Gao, Y., Iqbal, S., Zhang, P., Qiu, M.: Performance and power analysis of high-
density multi-GPGPU architectures: a preliminary case study. In: 2015 IEEE 17th
International Conference on High Performance Computing and Communications,
2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and
2015 IEEE 12th International Conference on Embedded Software and Systems.
IEEE, August 2015. https://doi.org/10.1109/hpcc-css-icess.2015.68

7. Grauer-Gray, S., Killian, W., Searles, R., Cavazos, J.: Accelerating financial appli-
cations on the GPU. In: Proceedings of the 6th Workshop on General Purpose
Processor Using Graphics Processing Units. ACM, March 2013. https://doi.org/
10.1145/2458523.2458536

8. Gupta, M., Lowell, D., Kalamatianos, J., Raasch, S., Sridharan, V., Tullsen, D.,
et al.: Compiler techniques to reduce the synchronization overhead of GPU redun-
dant multithreading. In: Proceedings of the 54th Annual Design Automation Con-
ference 2017. ACM, June 2017. https://doi.org/10.1145/3061639.3062212

https://doi.org/10.1109/sc41405.2020.00092
https://doi.org/10.1109/ispass.2009.4919648
https://doi.org/10.1109/sc.2018.00048
https://doi.org/10.1109/iiswc.2009.5306797
https://doi.org/10.1109/iiswc.2009.5306797
https://doi.org/10.1145/1513895.1513907
https://doi.org/10.1145/1513895.1513907
https://doi.org/10.1109/hpcc-css-icess.2015.68
https://doi.org/10.1145/2458523.2458536
https://doi.org/10.1145/2458523.2458536
https://doi.org/10.1145/3061639.3062212

Detecting SDCs in GPGPUs Through Efficient Partial Thread Redundancy 239

9. Kalra, C., Previlon, F., Li, X., Rubin, N., Kaeli, D.: PRISM: Predicting resilience of
GPU applications using statistical methods. In: SC18: International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, November
2018. https://doi.org/10.1109/sc.2018.00072

10. Kalra, C., Previlon, F., Rubin, N., Kaeli, D.: ArmorAll: compiler-based resilience
targeting GPU applications. ACM Trans. Archit. Code Optim. 17(2), 1–24 (2020)

11. Khudia, D.S., Wright, G., Mahlke, S.: Efficient soft error protection for commodity
embedded microprocessors using profile information. ACM SIGPLAN Not. 47(5),
99–108 (2012)

12. Kim, J., Kim, H., Lakshmanan, K., Rajkumar, R.R.: Parallel scheduling for cyber-
physical systems. In: Proceedings of the ACM/IEEE 4th International Conference
on Cyber-Physical Systems. ACM, April 2013. https://doi.org/10.1145/2502524.
2502530

13. Lu, Q., Pattabiraman, K., Gupta, M.S., Rivers, J.A.: SDCTune: a model for
predicting the SDC proneness of an application for configurable protection. In:
Proceedings of the 2014 International Conference on Compilers, Architecture and
Synthesis for Embedded Systems. ACM, October 2014. https://doi.org/10.1145/
2656106.2656127

14. Pouchet, L.N.: PolyBench: the polyhedral benchmark suite (2012). http://www.
cs.ucla.edu/pouchet/software/polybench

15. Wadden, J., Lyashevsky, A., Gurumurthi, S., Sridharan, V., Skadron, K.: Real-
world design and evaluation of compiler-managed GPU redundant multithreading.
In: 2014 ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA). IEEE, June 2014. https://doi.org/10.1109/isca.2014.6853227

16. Wei, X., Jiang, N., Wang, X., Yue, H.: Detecting SDCs in GPGPUs through an effi-
cient instruction duplication mechanism. In: Qiu, H., Zhang, C., Fei, Z., Qiu, M.,
Kung, S.-Y. (eds.) KSEM 2021. LNCS (LNAI), vol. 12817, pp. 571–584. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-82153-1 47

17. Wei, X., Yue, H., Gao, S., Li, L., Zhang, R., Tan, J.: G-SEAP: analyzing and
characterizing soft-error aware approximation in GPGPUs. Future Gener. Comput.
Syst. 109, 262–274 (2020). https://doi.org/10.1016/j.future.2020.03.040

18. Yang, L., Nie, B., Jog, A., Smirni, E.: Enabling software resilience in GPGPU
applications via partial thread protection. In: 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, May 2021. https://doi.org/10.
1109/icse43902.2021.00114

19. Yang, L., Nie, B., Jog, A., Smirni, E.: Practical resilience analysis of GPGPU
applications in the presence of single- and multi-bit faults. IEEE Trans. Comput.
70(1), 30–44 (2021). https://doi.org/10.1109/tc.2020.2980541

20. Yue, H., Wei, X., Li, G., Zhao, J., Jiang, N., Tan, J.: G-SEPM: building an accu-
rate and efficient soft error prediction model for GPGPUs. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. ACM, November 2021. https://doi.org/10.1145/3458817.3476170

21. Yue, H., Wei, X., Tan, J., Jiang, N., Qiu, M.: Eff-ECC: protecting GPGPUs register
file with a unified energy-efficient ECC mechanism. IEEE Trans. Comput. Aid. Des.
Integr. Circ. Syst. 41(7), 2080–2093 (2022)

22. Öz, I., Ömer, F.K.: Regional soft error vulnerability and error propagation analysis
for GPGPU applications. J. Supercomput. 78(3), 4095–4130 (2021). https://doi.
org/10.1007/s11227-021-04026-6

https://doi.org/10.1109/sc.2018.00072
https://doi.org/10.1145/2502524.2502530
https://doi.org/10.1145/2502524.2502530
https://doi.org/10.1145/2656106.2656127
https://doi.org/10.1145/2656106.2656127
http://www.cs.ucla.edu/pouchet/software/polybench
http://www.cs.ucla.edu/pouchet/software/polybench
https://doi.org/10.1109/isca.2014.6853227
https://doi.org/10.1007/978-3-030-82153-1_47
https://doi.org/10.1016/j.future.2020.03.040
https://doi.org/10.1109/icse43902.2021.00114
https://doi.org/10.1109/icse43902.2021.00114
https://doi.org/10.1109/tc.2020.2980541
https://doi.org/10.1145/3458817.3476170
https://doi.org/10.1007/s11227-021-04026-6
https://doi.org/10.1007/s11227-021-04026-6

FDRShare: A Fully Decentralized
and Redactable EHRs Sharing Scheme

with Constant-Size Ciphertexts

Zhichao Li1, Zhexi Lu1, Lingshuai Wang2, Qiang Wang1(B), and Che Bian3

1 Software College, Northeastern University, Shenyang, China
wangqiang1@mail.neu.edu.cn

2 School of Computer Science and Engineering, Northeastern University, Shenyang,
China

3 The Fourth Affiliated Hospital, China Medical University, Beijing, China

Abstract. Blockchain-based Electronic Health Records (EHR) sharing
schemes can enable the owner to outsource the encrypted EHR to the
powerful but untrusted cloud such that only authorized users can search
or access EHRs and check whether the cloud returns valid results or not.
However, these existing schemes suffer from three substantial shortcom-
ings that limit their usefulness: (i) a centralized Trusted Authority (TA)
is introduced to manage keys, which fully conflicts with the decentral-
ized nature of blockchain; (ii) the size of the encrypted EHRs is linear to
the attribute set size, which poses challenges for the blockchain network;
(iii) the efficiency of search seriously impacts the user experience, which
hinders the deployment in practice. To address these issues, we proposed
FDRshare, a fully decentralized EHRs sharing scheme with constant-size
ciphertexts.

Keywords: Searchable Encryption · Blockchain · Attribute-Based
Encryption

1 Introduction

With the explosive increase of global information, cloud computing has been
experiencing unprecedented development. To capture the market as much as
possible, the cloud service providers have been rushing to launch their products,
such as Amazon EC2 and S3, Microsoft Azure, and Google App Engine. Due to
lower cost, higher reliability, better performance, and faster deployment, enter-
prises and individuals have been increasingly outsourcing their storage tasks to
the cloud. As a typical and concrete application instance of cloud storage, the
cloud-based electronic health record (EHR) has been playing a significant role in
the healthcare industry. Unlike traditional paper-based health records, EHR can
be shared among different institutions by outsourcing them to the cloud. It can
vigorously facilitate personalized treatment plans, disease analysis, prediction,

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14493, pp. 240–252, 2024.
https://doi.org/10.1007/978-981-97-0862-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0862-8_15&domain=pdf
https://doi.org/10.1007/978-981-97-0862-8_15

FDRShare: A Fully Decentralized and Redactable EHRs Sharing Scheme 241

etc. However, past real-world incidents [1] and recent research [2] have shown
that the cloud cannot be fully trusted and may expose sensitive data and forge
the query result. To this end, several privacy-preserving EHR sharing schemes
supporting integrity checks (PPShare) [3,4] have been proposed. In terms of pri-
vacy, the owners encode their EHR with some specified access control policies
using attribute-based encryption (ABE) before uploading to the cloud. The users
such as doctors or researchers with different attributes send the search tokens to
make the cloud search the target EHR over all encrypted EHRs. The user can
decode them if and only if the attribute set satisfies the policies embedded into
ciphertexts. In terms of integrity, authenticated data structure (ADS) such as
accumulator [5] or Merkel hash tree [6] is utilized to check the correctness of the
query results with an overwhelming probability.

However, most of the existing PPShare schemes [7,8] rely on the central-
ized cloud to manage EHR and respond to the users’ query requests. In such a
centralized model, it inevitably suffers from DDoS attacks and single-point fail-
ure. To overcome this challenge, Hu et al. [9] proposed a novel blockchain-based
scheme, which utilizes smart contracts to manage and search EHRs rather than
the cloud. Given a search token, each consensus node has to faithfully execute
search operations through the smart contract. If not, everyone can find his mis-
behavior. Due to its importance, several blockchain-based EHR sharing schemes
(BBShare) [10–14] have been proposed over the past decade. However, these
schemes still cannot be applied in practice. The main reasons are summarized
as follows:

Conflict between Centralized TA and Blockchain: Most of the existing
BBShare schemes [10,11,13,15] make use of ciphertext policy ABE (CP-ABE)
[16] to facilitate fine-grained sharing of EHRs. However, CP-ABE depends on
a centralized trusted authority (TA) for key management and attribute dis-
tribution. This seriously contradicts the decentralized nature of blockchain. In
addition, the security of the schemes will be compromised if the fully trusted TA
is corrupted. Hence, it is essential to achieve full decentralization.

Unbearable Storage Overhead: To protect EHR privacy, the existing
BBShare schemes employ the CP-ABE to encode their EHR indexes and store
the encrypted indexes on the blockchain. However, a common issue is that most
of them rely on the traditional CP-ABE scheme, where the size of ciphertext
increases at least linearly with the number of attributes involved in the access
policy. This creates a conflict with the inherent storage limitations of blockchain,
severely restricting its practicality. To address this issue, some schemes [12,14],
such as MedShare and BBF, have been proposed to replace the traditional CP-
ABE with CP-ABE with constant-size ciphertext. However, it is worth noting
that these schemes still depend on a centralized TA as mentioned above. Hence,
it is essential to design a fully decentralized CP-ABE with constant-size cipher-
texts.

Search Efficiency Challenges: Most of the existing BBshare schemes [10–
12] are interactive, where the user needs to interact with the cloud during the

242 Z. Li et al.

search phase. Multiple-round interactions impose a serious impact on the effi-
ciency of search. To tackle this issue, Wang et al. [14] introduced the first non-
interactive BBshare scheme called Medshare based on the work [17]. To the best
of our knowledge, Medshare is the only non-interactive scheme achieving sub-
linear search performance, in line with the standard of plaintext information
retrieval algorithms. However, it requires users to conduct O(n · q) exponentia-
tion operations, where n is the number of matches of the least frequent keyword
in the boolean search and q is the number of terms in the search. These expo-
nentiation operations not only exhibit low efficiency but also cost high gas fees
on the blockchain. Hence, it is essential to design a lightweight search method
that eliminates computationally intensive operations such as exponentiation.

1.1 Our Results and Contributions

To resolve the problems mentioned above, we propose, FDRShare, a fully decen-
tralized EHRs sharing scheme with constant-size ciphertexts. Our results and
contributions can be summarized as follows:

• To achieve decentralized fine-grained access control with constant-size cipher-
texts, we propose a decentralized constant-size CP-ABE (DCS-ABE) scheme,
which employs multiple attribute authorities instead of one single TA for key
management and utilizes an AND∗

m access control structure to generate the
constant-size ciphertext.

• To improve search efficiency, we integrated a bloom filter into the non-
interactive blockchain boolean search protocol. The Bloom filter is utilized
to initially filter out the irrelevant search results, thereby preventing them
from being processed by the search algorithm executed by the smart con-
tract.

2 Related Work

Electronic health record (EHR) makes a transition from paper to digital med-
ical records. This transition has accelerated health information sharing since it
makes the use of them more flexible. To alleviate the maintenance burden of
massive EHRs, the existing EHR sharing schemes commonly resort to the pow-
erful cloud. Nevertheless, as the cloud is untrusted, it inevitably suffers from two
major security challenges: privacy and integrity. To overcome these challenges,
Nayak at el. initialed the first privacy-preserving EHR sharing scheme support-
ing integrity checks [18]. Following this pioneering work, plenty of schemes have
been proposed. According to their architectures, it can be roughly categorized
into two folds: centralized ones [19] and decentralized ones [10,14,20]. The for-
mer relies on the centralized cloud to manage EHR and handle query requests.
In contrast, the latter is an enhanced version that incorporates security mea-
sures. It leverages blockchain techniques to resist DDoS attacks and single-point
failure, which are potential vulnerabilities in the former. All search and upload

FDRShare: A Fully Decentralized and Redactable EHRs Sharing Scheme 243

operations over EHRs are performed through smart contracts rather than the
cloud. Due to the limitation of space, we only focus on the decentralized privacy-
preserving EHR sharing schemes supporting integrity checks (DPPShare) in the
following.

Azaria et al. [20] utilize searchable symmetric encryption (SSE) to construct
the first DPPShare scheme. Since SSE allows only the private key holder (i.e.,
the owner) to produce ciphertexts and to create trapdoors for search, the owners
cannot share their EHRs with others. To overcome this challenge, [11,12] incor-
porated traditional CP-ABE with SSE schemes to achieve fine-grained access
control. The users with different attributes send the search tokens to make the
smart contract search the target EHR over all encrypted EHRs. However, tradi-
tional CP-ABE schemes, which introduce a TA for attribute authentication and
key management, will make the system suffer from the single points of failure
and compromise attacks. Additionally, the linear growth of CP-ABE ciphertext
size with the attribute set’s size imposes a significant storage burden on the
blockchain.

To address these issues, we design a decentralized ABE scheme with a
constant-size ciphertext, which supporting high-efficiency on-chain search. Our
theoretical comparison with the most advanced model proposed by Wang [14] is
presented in Table 1. Although our scheme shares the same time complexity with
[14] in Search algorithm, our Search algorithm improves the search efficiency by
avoiding time-consuming exponential or bilinear pairing operations.

Table 1. Comparison of Computation Cost

Complexities MedShare [14] FDRShare

ParameterSetup O(1) O(1)

IndexGen O(n) O(n)

KeyGen O(k) O(k)

STGen O(q2) O(q)

Search O(n · q) O(n · q)

3 Preliminaries

3.1 Bilinear Pairing

Let Zp be a finite field over prime p. Let G, GT be two cyclic multiplicative
groups of the same prime order p. g is the generator of G. Denote ê a bilinear
pairing map : G × G → GT with the following properties:

1) Bilinear: ∀a, b ∈ Zp, ê
(
ga, gb

)
= ê (g, g)ab.

2) Non-degenerate: ê (g, g) �= 1.
3) Computable: There exists an efficient algorithm to compute ê (g1, g2) for all

g1, g2 ∈ G.

244 Z. Li et al.

3.2 DDH Assumption

Let G be a cyclic group of prime order p, the decisional Diffie-Hellman(DDH)
problem is to distinguish the ensembles

{
(g, ga, gb, gab)

}
from

{
(g, ga, gb, gz)

}
,

where the elements g ∈ G and a, b, z ∈ �p are chosen uniformly at random. We
say that the DDH assumption holds if for all efficient adversary A, advantage

AdvDDH
A (1λ) =

∣
∣Pr[A(G, p, g, ga, gb, gc) = 1]

− Pr[A(G, p, g, ga, gb, gab) = 1]
∣
∣

is negligible.

3.3 Pseudo-Random Function

Let F be a function transforming the element x ∈ X to an output y ∈ Y with
a secret seed k ∈ Kprf . We say F is a pseudo-random function (PRF), if for all
efficient adversaries A, advantage

Advprf
F,A(1λ) = Pr[AF (k,·)(1λ) = 1] − Pr[Af(·)(1λ) = 1]

is negligible, where f is a truly random function from X to Y .

4 System Definition

Fig. 1. The Architecture of FDRShare

The architecture of FDRShare is depicted in Fig. 1. To begin with, Miners initiate
the public parameters denoted as PP and disseminate them across the blockchain
network. Subsequently, HCs employ the same PP to generate encrypted indexes,
denoted as EI , which are then deployed onto the smart contract.

After the system setup, users enter the system and initiate registration
requests directed toward both Miners and HCs. Following the authentication of
these requests, Miners and HCs provide the respective users with sets of secret

FDRShare: A Fully Decentralized and Redactable EHRs Sharing Scheme 245

keys. Armed with these secret key sets, users are able to generate encrypted
search tokens and effectively engage with the smart contract to retrieve search
results. Users can employ their secret key sets to decrypt the obtained search
results. Successful decryption is contingent upon whether users’ attributes fulfill
the access policies integrated within the encrypted search results.

4.1 Threat Model

We make the following threat assumptions for three entities in our system:

• HCs(Healthcare Centers) are always honest. As the builders and sharers of
EHR, they try their best to protect the confidentiality of EHR. They are
responsible for generating and distributing authorized keyword search keys
for users. Besides, they generate the encrypted indexes and deploy them to
the smart contract according to the protocol.

• Miners are honest. We use the term “Miners” to refer to the consensus nodes
in the blockchain. They are responsible for generating public parameters of
the whole system. Meanwhile, they execute the tasks of authorizing attributes
and issuing secret keys for users, as well as faithfully executing search contract
based on a consensus algorithm.

• Users are potential adversaries. They are doctors, nurses, and so on, who
are allowed to access the EHR. While they generate search tokens honestly
according to the protocol, they intend to extract sensitive information from
encrypted indexes, query transactions, and search results. Moreover, they
attempt to collude with each other to gain access privileges beyond their
identity.

4.2 System Model

Formally, the system model of FDRShare consists of the following four algo-
rithms:

1) (PP,MK) ← Setup
(
1λ,DB

)
: The system setup algorithm is run by HCs and

Miners. Given the security parameter 1λand local EHR database DB as
inputs, this algorithm outputs the public parameters PP and the system mas-
ter key MK.

2) SKuid ← KeyGen (PP,MK, uid) : The key generation algorithm is run by Min-
ers and HCs jointly. Given the public parameters PP, the system master key
MK, and the user identity uid as inputs, this algorithm outputs the users’
secret key set SKuid.

3) ST ← STGen (SKuid,Q,PP) : The search token generation algorithm is run by
Users and smart contract jointly. Given the users’ secret key set SKuid, the
query set Q, and the public parameters PP as inputs, this algorithm outputs
the search token ST.

4) Rid ← Search (PP,ST) : The smart contract runs the on-chain search algo-
rithm. Given the public parameters PP and the search token ST as inputs,
this algorithm outputs the result set Rid.

246 Z. Li et al.

5 Building Block

Before delving into the detailed construction of FDRShare, we first introduce
our detailed construction of DSC-ABE in this section. To resolve the tackles
posed by TA and the unbearable storage overhead brought by traditional CP-
ABE, we design a DCS-ABE scheme, which employs multiple authorities and has
constant-size ciphertext, based on the MA-ABE scheme and constant-size CP-
ABE scheme [21,22]. In EHR sharing application scenario, we consider that users
have multiple attributes, and each of them has multiple values. We employ a set
of pre-selected consensus nodes (miners) that serve as attribute authorities. Each
Miner manages a set of mutually exclusive attributes. Let Ak = {i1, i2, ..., inki}
(1 � k � nMiner) denote the set of attributes managed by the k-th Miner, and
ik (1 � ik � nki) represent the i-th attribute managed by the k-th Miner. The set
of attribute values managed by the k-th Miner is denoted as Vk , where vk,n
represents the set of values for the n-th attribute managed by the k-th Miner.
We specify jik as the j-th value of the i-th attribute managed by the k-th Miner.
The decentralizing constant-size CP-ABE (DCS − ABE) scheme consists of the
following four algorithms:

1) (mpk,msk) ← DSCABE.Setup
(
1λ

)
: The DSC-ABE setup algorithm is run

by Miners. Miners negotiate a secure parameter 1λas input to generate a
collision-resistant hash function H0 : {0, 1}∗ → Z

∗
p , system attribute set Ak

, attribute value set Vk , and an integer multiplication cyclic group G . The
cyclic group G has an order of p and generator g . Additionally, each miner
independently chooses a pair of random numbers αk, βkεZN as their private
key and stores them locally, and computes

Mik,jik
= g−H(αk||ik||jik),Nik,jik

= e (g, g)H0(βk||ik||jik). (1)

The ABE public key is mpk =
〈
g,

{
Mik,jik

,Nik,jik

}〉
, and the ABE master key

is msk = {αk, βk} , 1 � k � nMiner. Given access policy A , we can aggregate
mpk according to access policy A :

〈MA,NA〉 =

〈
∏

ik∈A

M̄ik ,
∏

ik∈A

N̄ik

〉

, (2)

where M̄ik = Mik,jik
and N̄ik = Nik,jik

. We can utilize this structure for ABE
encryption then.

2) ASKuid ← DCSABE.KeyGen (msk, uid): The DSC-ABE key generation algo-
rithm is run by Miners. Given the master key msk and the user identity uid
as inputs, this algorithm generates the attribute secret key ASKuid . When
users join the system, they securely transmit uid to all Miners for identity
verification. Once the verification is successful, each miner provides the cor-
responding attribute secret key. The attribute secret key from the k-th miner,
with attribute ik and attribute value jik , is represented as:

askik,jik = gH0(βk||ik||jik)H2 (uid)H0(αk||ik||jik). (3)

FDRShare: A Fully Decentralized and Redactable EHRs Sharing Scheme 247

The users’ secret attribute secret key is ASKuid =
{
askik,jik

}
.

3) C ← DCSABE.Enc (mpk,m, A) : The DSC-ABE encryption algorithm is run
by HCs. Given the master key mpk , message m, and access control policy A

as inputs, this algorithm outputs the ABE ciphertext C . In FDRShare, the
file is encrypted by the AES algorithm and then uploaded to IPFS. The AES
secret key is denoted as Kf . For each file upload, IPFS returns a unique file
identifier id . HCs input mpk and A to generate an access control structure
〈MA,NA〉 , which is used to encrypt m = id||Kf . Finally, HCs select a random
number s ∈ Z

∗
P and encrypt the data:

C = Fid = 〈C0,C1,C2〉, (4)

where C0 = (id ‖Kf) · Ns
A
, C1 = gs , C2 = Ms

A
. Since attributes are aggregated

into exponents, the ciphertext is constant-size.
4) m ← DCSABE.Dec (uid,ASKuid, C) : The DCS-ABE decryption algorithm is

run by Users. Given the user identity uid , attribute secret key ASKuid

, and ABE ciphertext C as inputs, this algorithm outputs the decrypted
result m = id||Kf or an ⊥ . The user aggregates their attribute secret key
ASKuid =

∏
ik∈Luid

askik,jik , where Luid denotes the user’s attribute set, and
decrypts:

m = id ‖Kf =
C0

ê (ASKuid,C1) · ê (H2 (uid) ,C2)
. (5)

If the user’s attribute set Luid satisfies the A embedded in Fid , or in other
words, if L |= A, the user can successfully decrypt and obtain the value id ‖Kf .
Otherwise, an ⊥ will be returned. With result id ‖Kf , the user can use the
file identifier id to locate the corresponding file on IPFS and decrypt the file
using the symmetric key Kf .

6 Detail Construction of FDRShare

The detailed construction of FDRShare is as follows:

1) (PP,MK) ← Setup
(
1λ,DB

)
: The system setup algorithm consists of two sub-

algorithms: ParameterSetup and IndexGen.
• (PK,MK) ← ParameterSetup

(
1λ

)
: The parameter setup algorithm is run

by Miners and HCs. Given 1λas input, Miners invoke DCSABE.Setup to
generate the ABE public key mpk and the ABE master key msk. Then,
Miners choose two cyclic groups G and GT with the same order p . g is the
generator of G. Based on the chosen groups, Miners selects the bilinear
maps e : G × G → GT, e1 : G × GT → G, and three hash functions
H0 : {0, 1}∗ → Z

∗
p , H1 : {0, 1}∗ → {0, 1}λ , and H2 : {0, 1}∗ → G . After

that, Miners choose the pseudo-random function F and the invertible
pseudo-random permutation function P .
Receiving the public parameters, HCs randomly select a seed k and a
generator g1 ∈ Z

∗
n for the pseudo-random function F . Then, HCs initiate

248 Z. Li et al.

Algorithm 1:
Input: IV (w), FW (id), PK and the system masker key MK
Output: EIindex {AIindex, BFindex, PT index}

1 Initialize set AIindex, BFindex, PTindex to empty dict;
2 for each w ∈ DB do
3 Initialize counter int c = 0;

4 wt0 ← {0, 1}λ;
5 for all id ∈ IV (w) do
6 Set the counter c = c + 1;

7 Generate a random nonce tc ← {0, 1}λ ;
8 Set wtc ← P

(
tc, wtc−1

)
;

9 Calculate stagw (Eq.6);
10 Set l ← H1 (stagw);
11 Calculate Fid (Eq.4);
12 Calculate Γid = Fid||tc ⊕ H2 (l||wtc);
13 Set σ ← H1 (stagw ‖wtc);
14 Append AIindex [σ] = Γid;

15 end
16 Append PTindex [l] = wtc ‖c ;

17 end
18 for each id in DB do

19 Initialize �V id
BF to empty vector;

20 Initialize Iid to empty list;
21 for all w ∈ FW (id) do

22 �V id
BF ← storage w into �V id

BF ;

23 calculate Iw = gH1(stagw);
24 Add Iw to Iid;

25 end

26 Append BFilter [Fid] = �V id
BF ||Iid = Bid;

27 end
28 Deploy AIindex, BFindex, PTindex to smart contract

the authorized keyword search keys w = {w1,w2, ...,wn}, where we map
each keyword to a prime number wk for efficient storage [23]. Part of the
w will then be sent to authenticated Users for generating search tokens.
The system public key is PK = (H0,H1,H2,F,P,msk), and the system
master key is denoted as MK = (p, g1, k,msk,w). The order p and the
ABE secret key msk are kept by Miners, while w, g1, and k are kept by
HCs.

• EI ← IndexGen (DB,PK,MK) : The index generation algorithm is run by
HCs. First, HCs process DB to obtain FW (id) and IV (w) . Specifically,
IV (w) establishes a mapping from the keyword w to all identifiers id of files
containing w , while FW (id) establishes a mapping from the file identifier
id to the keywords contained in the corresponding file. HCs generate the

FDRShare: A Fully Decentralized and Redactable EHRs Sharing Scheme 249

encrypted indexes according to Algorithm 1. The HCs then update all
the new indexes on the blockchain.

The final output of the system setup algorithm is the system public key
PP = {PK,EI} and the system master MK.

Algorithm 2: Search token generation
Input: User private key SKuid, Search query set Q, Partial Token index

PTindex
Output: Search Token ST

1 Initialized Trapdoor T to an empty array.;

2 Initialized �V Q
BF to a vector.;

3 Calculate stagwl; Set l ← H1 (stagwl);
4 Get wtc ‖c ← PTindex [l];
5 for each w/ {wl} in Q do

6 �V Q
BF ← Store w to �V Q

BF ;

7 Calculate Iw = gH1(stagw);
8 Add Iw to T ;

9 end

10 return ST
{

�V Q
BF , T rapdoor T, wtc ‖c, stagwl

}

2) SKuid ← KeyGen (PP,MK, uid) : The system pubic key PP can be parsed as
{PK,EI}. Given the msk from MK and the user identity uid , which are
sent to Miners and HCs by Users when registering, as inputs, Miners invoke
DCSABE.KeyGen to generate the users secret attribute secret key ASKuid .
Subsequently, HCs assign authorized user keyword search keys wuid, where

wuid ∈ w, and a keyword private key set WSK = g1
1

∏ i=n
i=1 wi to the user based

on uid . The users’ secret key set is SKuid = (k,wuid,WSK,ASKuid). Finally,
Miners and HCs transmit the secret key set to the user through a secure
channel.

3) ST ← STGen (SKuid,Q,PP) : PP can be parsed as {PK,EI}. Given the users’
secret key set SKuid, boolean query Q , and the encrypted indexes EI as inputs,
the user selects the least frequent word wl from Q and calculates:

stagw = F
(
k, (WSK)

∏
w∈wi/{wl}w

)
, (6)

and submits it to the smart contract. Subsequently, the smart contract exe-
cutes Algorithm 2 and returns the search token ST .

4) Rid ← Search (PP,ST) : The PP can be parsed as {PK,EI}. Given the
encrypted indexes EI and the search token ST as inputs, the smart contract
executes Algorithm 3.

250 Z. Li et al.

Algorithm 3:

Input: Search Token ST
{

�V Q
BF , T rapdoor T, wtc ‖c, stagwl

}
, AIindex,

BFindex
Output: Result set Rid

1 for i = c to 1 do
2 Set σ = H1 (stagwl ‖wtc);
3 Get Γid ← AIindex.find (σ);
4 Fid ‖tc ← Γid ⊕ H2 (stagw ‖wtc) ;

5 Get
{
V id

BF , Iid

} ←BFindex.find(Fid);

6 if V Q
BF ∪ V id

BF ! = V id
BF then

7 continue;
8 else
9 if T ⊆ Iid then

10 Add Fid to result Rid;
11 end

12 end
13 Set wti−1 ← P−1 (ti, wti);

14 end
15 return result Rid;

7 Conclusion

In this paper, we present FDRShare, a new blockchain-based EHR sharing sys-
tem with fully decentralized fine-grained access control. Compared to the existing
solutions, our solution offers a more efficient privacy-protecting search service.
Additionally, we have designed the DCS-ABE scheme based on blockchain char-
acteristics, achieving further decentralization. To the best of our knowledge, our
solution is currently the only one that addresses both of these aspects, making
it highly practical for real-world applications. Future research directions include
further refining the proposed DCS-ABE scheme and on-chain searchable encryp-
tion scheme to enhance their security. Additionally, introducing editability into
the system represents a valuable avenue of investigation, as it can facilitate
the broader adoption of the system. In the initial full version of the paper, we
designed a scheme for an editable blockchain system, which is not presented in
this article due to space constraints.

Acknowledgment. We thank the anonymous reviewers for their fruitful suggestions.
This work was supported in part by the National Natural Science Foundation of China
under Grant 62202090 and 62173101, by Liaoning Province Natural Science Founda-
tion Medical-Engineering Cross Joint Fund under Grant 2022-YGJC-24, by Doctoral
Scientific Research Foundation of Liaoning Province under Grant 2022-BS-077, and by
the Fundamental Research Funds for the Central Universities under Grant N2217009.

FDRShare: A Fully Decentralized and Redactable EHRs Sharing Scheme 251

References

1. Zhang, R., Liu, L.: Security models and requirements for healthcare application
clouds. In: 2010 IEEE 3rd International Conference on Cloud Computing, pp. 268–
275. IEEE (2010)

2. Hasan, M.Z., Hussain, M.Z., Mubarak, Z., Siddiqui, A.A., Qureshi, A.M., Ismail, I.:
Data security and Integrity in Cloud Computing. In: 2023 International Conference
for Advancement in Technology (ICONAT), pp. 1–5, January 2023

3. Reedy, B.E., Ramu, G.: A secure framework for ensuring EHr’s integrity using fine-
grained auditing and CP-ABE. In: 2016 IEEE 2nd International Conference on Big
Data Security on Cloud (BigDataSecurity), IEEE International Conference on High
Performance and Smart Computing (HPSC), and IEEE International Conference
on Intelligent Data and Security (IDS), pp. 85–89 (2016)

4. Su, Y., Sun, J., Qin, J., Hu, J.: Publicly verifiable shared dynamic electronic
health record databases with functional commitment supporting privacy-preserving
integrity auditing. IEEE Trans. Cloud Comput. 10(3), 2050–2065 (2020)

5. Khedr, W.I., Khater, H.M., Mohamed, E.R.: Cryptographic accumulator-based
scheme for critical data integrity verification in cloud storage. IEEE Access 7,
65635–65651 (2019)

6. Wang, Q., Wang, C., Ren, K., Lou, W., Li, J.: Enabling public auditability and data
dynamics for storage security in cloud computing. IEEE Trans. Parallel Distrib.
Syst. 22(5), 847–859 (2011)

7. Joshi, M., Joshi, K., Finin, T.: Attribute based encryption for secure access to
cloud based EHR systems. In: 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD), pp. 932–935 (2018)

8. Li, M., Yu, S., Zheng, Y., Ren, K., Lou, W.: Scalable and secure sharing of personal
health records in cloud computing using attribute-based encryption. IEEE Trans.
Parallel Distrib. Syst. 24(1), 131–143 (2013)

9. Hu, S., Cai, C., Wang, Q., Wang, C., Wang, Z., Ye, D.: Augmenting encrypted
search: a decentralized service realization with enforced execution. IEEE Trans.
Dependable Secure Comput. 18(6), 2569–2581 (2021)

10. Xia, Q., Sifah, E.B., Asamoah, K.O., Gao, J., Du, X., Guizani, M.: MeDShare:
trust-less medical data sharing among cloud service providers via blockchain. IEEE
Access 5, 14757–14767 (2017)

11. Zhang, P., White, J., Schmidt, D.C., Lenz, G., Rosenbloom, S.T.: FHIRchain:
applying blockchain to securely and scalably share clinical data. Comput. Struct.
Biotechnol. J. 16, 267–278 (2018)

12. Wang, S., Zhang, Y., Zhang, Y.: A blockchain-based framework for data sharing
with fine-grained access control in decentralized storage systems. IEEE Access 6,
38437–38450 (2018)

13. Wu, G., Zhu, B., Li, J.: BMKs: a blockchain based multi-keyword search scheme for
medical data sharing. In: IEEE Symposium on Computers and Communications
(ISCC), pp. 1–7. IEEE (2022)

14. Wang, M., Guo, Y., Zhang, C., Wang, C., Huang, H., Jia, X.: MedShare: a privacy-
preserving medical data sharing system by using blockchain. IEEE Trans. Serv.
Comput. 16(1), 438–451 (2023)

15. Yu, G., et al.: Enabling attribute revocation for fine-grained access control in
blockchain-IoT systems. IEEE Trans. Eng. Manage. 67(4), 1213–1230 (2020)

16. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy (SP 2007), pp. 321–334. IEEE
(2007)

252 Z. Li et al.

17. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for Boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 20

18. Nayak, S.K., Tripathy, S.: Privacy preserving provable data possession for cloud
based electronic health record system. In: IEEE Trustcom/BigDataSE/ISPA 2016,
pp. 860–867 (2016)

19. Chenthara, S., Ahmed, K., Wang, H., Whittaker, F.: Security and privacy-
preserving challenges of e-health solutions in cloud computing. IEEE Access 7,
74361–74382 (2019)

20. Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: Medrec: using blockchain for
medical data access and permission management. In: 2nd International Conference
on Open and Big Data (OBD) 2016, pp. 25–30. IEEE (2016)

21. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4 31

22. Zhang, Y., Zheng, D., Chen, X., Li, J., Li, H.: Computationally efficient ciphertext-
policy attribute-based encryption with constant-size ciphertexts. In: Chow, S.S.M.,
Liu, J.K., Hui, L.C.K., Yiu, S.M. (eds.) ProvSec 2014. LNCS, vol. 8782, pp. 259–
273. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12475-9 18

23. Sun, S.-F., et al.: Non-interactive multi-client searchable encryption: realization
and implementation. IEEE Trans. Dependable Secure Comput. 19(1), 452–467
(2022)

https://doi.org/10.1007/978-3-642-40041-4_20
https://doi.org/10.1007/978-3-642-20465-4_31
https://doi.org/10.1007/978-3-319-12475-9_18

An Efficient Fault Tolerance Strategy
for Multi-task MapReduce Models Using

Coded Distributed Computing

Zaipeng Xie1,2(B), Jianan Zhang2, Yida Zhang2, Chenghong Xu2, Peng Chen2,
Zhihao Qu1,2, and WenZhan Song3

1 Key Laboratory of Water Big Data Technology of Ministry of Water Resources,
Hohai University, Nanjing, China

{zaipengxie,quzhihao}@hhu.edu.cn
2 College of Computer and Information, Hohai University, Nanjing, China

{jianan_zhang,zhangyida,chxu,pengchen}@hhu.edu.cn
3 Center for Cyber-Physical Systems, University of Georgia, Athens, GA 30602, USA

wsong@uga.edu

Abstract. MapReduce is a programming framework designed for pro-
cessing and analyzing large volumes of data in a distributed comput-
ing environment. Despite its capabilities, it faces challenges due to silent
data corruption during task execution, which can yield inaccurate results.
Ensuring fault tolerance in the MapReduce framework while minimizing
communication overhead presents considerable challenges. This study
presents CDCFT (Coded Distributed Computing Fault Tolerance), a
novel approach to fault tolerance within the MapReduce paradigm, com-
bining the strengths of TMR (Triple Modular Redundancy) and CDC
(Coded Distributed Computing). By leveraging task-level TMR and vot-
ing mechanisms, CDCFT robustly defends against silent data corrup-
tion. To further optimize, CDCFT employs intra-group broadcasts for
relaying intermediate messages and has a finely-tuned node grouping
combined with a strategic data and task allocation procedure. Through
rigorous theoretical analysis, we establish that CDCFT’s communication
overhead during the Shuffle Stage is notably less than traditional CDC
methods that rely on triple modular redundancy. Experimental results
showcase the efficacy of CDCFT, signifying a substantial reduction in
the overall communication overhead and execution time compared to
the conventional fault-tolerant methods.

Keywords: MapReduce framework · Silent data corruption · Fault
tolerance · Coding distributed computing · Communication load

Supported by The Belt and Road Special Foundation of the State Key Laboratory of
Hydrology-Water Resources and Hydraulic Engineering under Grant 2021490811 the
National Natural Science Foundation of China under Grant 62102131 Natural Science
Foundation of Jiangsu Province under Grant BK20210361.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14493, pp. 253–271, 2024.
https://doi.org/10.1007/978-981-97-0862-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0862-8_16&domain=pdf
https://doi.org/10.1007/978-981-97-0862-8_16

254 Z. Xie et al.

1 Introduction

MapReduce [18] is a prominent distributed computing paradigm for processing
large-scale computational tasks. Apache Spark [17] and Apache Hadoop YARN
[32] are frameworks similar to MapReduce, with Spark offering high-performance
processing engine capabilities and Hadoop YARN excelling in resource manage-
ment and framework support. However, as the distributed clusters scale up,
MapReduce faces challenges [23] due to system failures and data corruption
caused by soft errors, leading to inaccurate or unreliable results.

As the number of nodes and the scale of data increase, the likelihood of fail-
ures rises. Dealing with a large number of potential failures and maintaining fault
tolerance becomes more challenging [6,33]. The occurrence of Silent Data Cor-
ruption (SDC) [16] can substantially impact the accuracy and reliability of com-
putations. SDC alters processed data, introducing erroneous information that
can propagate through subsequent stages, ultimately compromising the overall
validity and reliability [4]. With the growth of MapReduce systems, the commu-
nication overhead and Silent Data Corruption (SDC) escalates, intensifying the
risks of inaccuracies and performance degradation. These challenges become par-
ticularly prominent in large and intricate distributed computing environments.
Thus, it becomes crucial to implement effective measures and advanced tech-
niques to mitigate these challenges successfully.

To achieve fault tolerance, MapReduce [6] makes use of speculative execution
and task replication. Task replication [19] involves creating redundant copies of
tasks on different nodes, where replication-based fault tolerance methods, such
as Triple Modular Redundancy (TMR) [3], can be used. Speculative execution [6]
involves launching multiple duplicate copies of slower-running tasks to expedite
their completion. The result is taken from whichever copy finishes first, while the
redundant copies are terminated. While speculative execution aims to improve
performance, it also provides some fault tolerance if a copy fails. While these
techniques provide fault tolerance, they also introduce substantial communi-
cation overhead. Task replication requires additional communication between
nodes to coordinate the redundant copies. This overhead can impact the overall
performance and efficiency of the MapReduce framework.

For example, the Shuffle stage in MapReduce can encounter a performance
bottleneck due to increased communication load caused by assigning individ-
ual computing nodes to subtasks. Additionally, fault recovery mechanisms, such
as redistributing tasks and data among functioning nodes, contribute to further
communication overhead. The cumulative effect of these factors results in height-
ened network traffic and potential congestion during the Shuffle Stage, requiring
effective management strategies to optimize communication and maintain effi-
cient performance in MapReduce systems.

Coded Distributed Computing (CDC) [20] is a technique that introduces
redundancy through data encoding and distributed task assignments to provide
fault tolerance in distributed systems. CDC can enhance the efficiency and scal-
ability in MapReduce, decreasing communication load during the Shuffle Stage
by assigning repeated Map tasks to different servers and encoding message bits

An Efficient Fault Tolerance Strategy for Multi-task MapReduce Models 255

across keys and data blocks. However, integrating CDC into distributed fault
tolerance in MapReduce can further increase the computation load at each node
and present the challenge of effectively distributing and coordinating coding
tasks across multiple nodes [26], potentially impacting system performance.

Silent data corruption (SDC) can significantly impact the accuracy of compu-
tation results in MapReduce by corrupting the encoded data during the coding
process, potentially introducing errors into the final output and affecting sub-
sequent stages of the MapReduce workflow. SDC can be triggered by various
factors such as cosmic rays, hardware faults, software bugs, and environmental
conditions. Detection and mitigation of SDC in a distributed setting are challeng-
ing [1], as conventional error detection mechanisms may not effectively identify
silent corruptions. While task redundancy can provide some fault tolerance to
SDC, it also incurs additional communication overheads that need to be man-
aged, depending on the level of replication. Therefore, there’s a growing interest
in designing SDC-aware coding schemes that optimize reliability, resilience, and
performance, especially when MapReduce frameworks operate in SDC environ-
ments. However, further research is essential to address SDC concerns effectively.

This study introduces CDCFT (Coded Distributed Computing Fault Toler-
ance), a fault-tolerance solution for the MapReduce framework that combines
the benefits of TMR and CDC to achieve fault tolerance, including silent data
corruption, at a low cost. CDCFT employs triple modular task redundancy and
voting mechanisms for fault tolerance. It reduces communication overhead by
using intra-group broadcasts for intermediate messages. CDCFT also includes
an optimized node grouping scheme and data and task allocation scheme. The
main contributions of this study are as follows:

– We propose a novel fault tolerance strategy, named CDCFT, that leverages
the advantages of CDC and TMR for the MapReduce framework. This strat-
egy distributes the workload between Solver and Helper nodes, enabling the
realization of fault tolerance while minimizing the communication overhead.

– We theoretically prove that the communication overhead of CDCFT in the
Shuffle Stage is always less than or equal to that of a vanilla CDC fault-
tolerant method using triple modular redundancy.

– We evaluate the performance of distributed computing by implementing four
fault tolerance algorithms for MapReduce running the Terasort tasks. Our
experimental results demonstrate that CDCFT can achieve an 86% reduction
in communication overhead and a 13.2% reduction in execution time when
compared with the conventional TMR approach.

The rest of this paper is organized as follows: Sect. 2 outlines fault toler-
ance research in MapReduce and Coded Distributed Computing. Section 3 covers
Preliminaries for understanding CDCFT. Section 4 presents the proposed frame-
work, processes, and mathematical derivations related to CDCFT. Section 5 com-
pares CDCFT with other fault tolerance methods through experimental analysis.
Finally, Sect. 6 summarizes the key findings and contributions.

256 Z. Xie et al.

2 Related Work

MapReduce has emerged as a crucial technology for distributed data processing
in large-scale computing environments [8,25,28]. However, when dealing with
massive datasets, the risk of failures is inherent, necessitating the implementation
of fault tolerance mechanisms to ensure seamless operation [23]. Silent data
corruption (SDC) [2] denotes data corruption without explicit error detection or
notification. It can originate from various factors, impacting data at rest, during
transit, or during processing. In the context of MapReduce, SDC can introduce
errors in intermediate or final computation results, potentially propagating them
to subsequent stages. Detecting and mitigating SDC present challenges [4,29] as
conventional error detection mechanisms may prove inadequate.

Various approaches [5,9,11,22,23,27,29–31] have been proposed to address
fault tolerance in MapReduce. These include speculative execution, task repli-
cation, checkpoint-based recovery, and fault-tolerant coding. Speculative execu-
tion [18], designed primarily for performance enhancement, launches multiple
task copies concurrently on different nodes and selects the result from the ear-
liest completed instance, thereby alleviating straggling tasks’ impact and offer-
ing some degree of fault tolerance. Task replication [23,28] involves creating
redundant copies of tasks on different nodes. If a node fails, the tasks running
on that node can be reassigned to other functioning nodes that hold copies of
the required data. The redundancy ensures that the computation can continue
without interruption, even if a node fails. Checkpoint-based recovery [23] in
MapReduce involves periodically saving the computation state to checkpoints.
In the event of a failure, the system can resume processing from the most recent
checkpoint, reducing data loss and improving fault tolerance. Periodic system
checkpoints allow for swift recovery by restarting from the latest checkpoint
after failure, thereby improving fault tolerance [22]. Fault-tolerant coding [11]
in MapReduce utilizes error-correcting codes to detect and correct errors during
data transmission or storage, but it can introduce communication and compu-
tational overhead. With its stochastic nature, SDC poses a greater detection
and control challenge compared to other errors [16]. Consequently, achieving
effective and cost-efficient SDC fault tolerance with existing solutions remains
challenging.

Among these solutions, Triple modular redundancy (TMR) [1,10] is a simple
yet effective technique for managing silent data corruption (SDC). TMR repli-
cates tasks three times and uses majority voting to determine the final result.
To improve energy efficiency, Salehi et al. [24] propose LE-NMR which divides
execution into indispensable and on-demand phases. Only a subset of task copies
is executed during the indispensable phase, while the on-demand phase executes
the remaining copies for majority voting. Mireshghallah et al. [19] present Reac-
tive TMR, a system that can detect and deactivate malfunctioning components,
reallocating their tasks to operational ones and distinguishing between perma-
nent and transient faults. Through simulations, they show that Reactive TMR
can provide substantial energy savings over conventional TMR while maintaining

An Efficient Fault Tolerance Strategy for Multi-task MapReduce Models 257

high reliability. However, TMR techniques may still incur significant communi-
cation overhead for large-scale systems.

Coded Distributed Computing (CDC) [13,15] aims to minimize communi-
cation overhead and enhance parallel processing in Multi-Stage Computation
Tasks. A local implementation of a generalized CDC scheme is effective, whereas
a global strategy for the whole task graph can significantly reduce bandwidth
usage and response time. Li et al. [13] introduce Coded MapReduce to lessen the
Shuffle Stage communication load in MapReduce settings. This is achieved by
assigning repetitive Map tasks to various servers and using coding techniques for
message bits, significantly reducing inter-server communication. However, fault
tolerance is not addressed in Coded MapReduce. In a related work, Li et al. [14]
unveil CodedTeraSort, a CDC-based distributed sorting algorithm, which lever-
ages structured redundancy in data to overcome the data shuffling bottleneck
of TeraSort. Ozfatura et al. [21] propose Coded Distributed Computation with
Partial Recovery (CCPR) to address straggling workers in distributed comput-
ing. By having the number of subfiles reduced, a trade-off between computation
and communication is enabled by CCPR, resulting in faster operations. Numer-
ical simulations confirm the advantages of the proposed scheme in terms of the
trade-off between computation accuracy and latency.

The CDC technique holds considerable potential for reducing communica-
tion overhead within the MapReduce framework. By leveraging coding method-
ologies, CDC effectively reduces data size, decreasing network bandwidth con-
sumption and the overall communication burden. However, integrating CDC and
TMR to enhance fault tolerance in the MapReduce framework remains relatively
unexplored. Combining these techniques requires careful planning and synchro-
nization, particularly when addressing challenges such as designing appropriate
coding schemes and devising efficient decoding algorithms for redundant tasks.
While this unified approach might introduce added complexity and overhead in
computation, communication, and storage, it is evident that further research is
crucial to formulate efficient algorithms and evaluate the trade-offs between fault
tolerance, performance, and resource utilization in this merged strategy.

3 Preliminaries and Problem Formulation

3.1 The MapReduce Framework

The MapReduce framework has become a cornerstone for distributed data-
intensive tasks [12,13] due to its capability to process vast datasets in a dis-
tributed manner. The intrinsic simplicity and scalability of MapReduce have led
to its widespread adoption. The computational workflow in MapReduce is cat-
egorized into several stages: In the Preparation Stage, the master node breaks
down the main task into numerous subtasks, delegating Map and Reduce func-
tions to the worker nodes. During the Map Stage, these nodes tackle their spe-
cific subtasks and produce intermediate outcomes. In the Shuffle Stage, nodes
exchange these outcomes, preparing data inputs for the Reduce functions. Lastly,
in the Reduce Stage, nodes process the data, leading to the final outcomes which

258 Z. Xie et al.

are then integrated by the system for the final output. Despite the built-in fault-
tolerance features of MapReduce, Silent Data Corruption (SDC) introduces dis-
tinct challenges. Conventional fault-tolerance techniques may prove inadequate
against SDC, highlighting the urgency for more tailored solutions.

Furthermore, the communication load within the MapReduce framework has
been identified as one of the performance bottlenecks [7]. During the Shuffle
stage, each worker node holds a list of key-value pairs, which then need to be
redistributed among all worker nodes. The communication load LMR of the
MapReduce framework can be expressed as:

LMR = 1 − r

K
, (1)

where r represents the number of nodes assigned to each Map function, and K
is the total number of nodes.

In the MapReduce framework, task-level TMR can be realized by dispatching
each task to three distinct nodes. Each of these nodes independently executes the
task. Subsequently, their results are forwarded to a Voter node, which employs
majority voting to determine the final result. This approach is predicated on
assuming that the outputs from at least two nodes are correct.

3.2 Coded Distributed Computing

CDC [13] offers a solution to mitigate communication overhead in the MapRe-
duce framework with multiple Reduce functions, particularly during the Shuffle
stage. The efficiency of the system is enhanced by CDC through two primary
strategies: First, distributing different subtasks across multiple nodes during the
Map stage, ensuring redundancy in the intermediate results. Second, employing
heterogeneous encoding techniques in the Shuffle stage. Instead of transmitting
intermediate results individually, the CDC broadcasts encoded data through-
out the cluster. Nodes subsequently decode the received data utilizing locally
available redundant results, facilitating the retrieval of necessary intermediate
outcomes.

These improvements have the potential to substantially reduce the commu-
nication overhead, especially during the Shuffle stage. The communication load
for CDC, LCDC , can be quantitatively represented as:

LCDC =
1
r

(
1 − r

K

)
=

1
r
LMR. (2)

Here, r denotes the number of nodes assigned to subtasks and each Map
function. Despite nodes not naturally holding redundant information in their
encoded data [20], CDC lacks inherent SDC fault tolerance, necessitating addi-
tional measures for addressing challenges related to SDC.

3.3 Problem Formulation

Consider the scenario where N input files are processed using the MapReduce
framework to generate the results. In this scenario, the multi-Reduce function

An Efficient Fault Tolerance Strategy for Multi-task MapReduce Models 259

setup in MapReduce may result in multiple intermediate results corresponding
to each input file. These intermediate results serve as input variables for different
Reduce functions. The objective is to compute Q Reduce functions denoted as
Rq(·), utilizing a distributed cluster consisting of K nodes and N input files wn.
It is important to note that N is greater than K. Here, q represents the index
of the Reduce functions, n represents the file number, and vq,n represents the
intermediate result of the q-th group corresponding to the n-th file.

The Map function is responsible for mapping an input file to an intermediate
result denoted as vq,n = Mq,n (wn). On the other hand, the Reduce function
denoted as Rq(·) takes all the intermediate results of the q-th group and maps
them to an output result uq = Rq (vq,1, vq,2, . . . , vq,n). To quantify the degree of
redundancy, we define the parameter μ as a function of the number of Reduce
functions, Q, and the file redundancy r, and it can be given by

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

μ = argmin
r∈[0,Q−1]

cm · r

Q
+

cs · (Q − r)
Q · (r + 1)

r = r∗ + 1
r∗ = max {μ}

(3)

where cm denotes the computational node capacity, and 1/cs signifies the com-
munication capacity between nodes. The objective is to minimize μ, representing
the combined communication and computation overhead. We define r∗ as the
maximum of μ, indicating that each file will be allocated to r∗ Solver nodes and
one Helper node. A relationship can be established between the variables K, N ,
and Q as follows:

⎧
⎪⎪⎨
⎪⎪⎩

γ =
(
r∗

Q

)

K = Q +
⌈

Q

r∗

⌉

N = (K − Q) · γ

(4)

For the sake of description, the files deployed to node z are represented by
the set Fz, while the Reduce functions computed by node z are denoted as Wz

and the Map functions computed by node z are denoted as Mz.
In the typical MapReduce framework, we assume SDC events to be infre-

quent and specifically focus on their potential during the Map Stage, a critical
stage of processing raw input into intermediate results. Our fault model concen-
trates solely on SDC within the Map operation’s output, given that soft errors
predominantly lead to silent data corruption with a relatively low occurrence.
This model pertains to executing distributed tasks across Q Reduce operations,
N files, and K nodes, maintaining a predefined redundancy level of r.

4 Fault Tolerance for Multiple Reduce Tasks Using
Coded Distributed Computing

The overall process of CDCFT can be illustrated in Fig. 1. CDCFT involves
four stages: Preparation, Map, Shuffle, and Reduce. This system is designed for

260 Z. Xie et al.

enhanced error tolerance, accommodating SDC. This is achieved through node
grouping, employing TMR strategies, and voting mechanisms. Furthermore, it
efficiently minimizes communication load by using intermediate result coding
and intra-group broadcasting.

Fig. 1. CDCFT Flowchart that illustrates the four main stages of the CDCFT algo-
rithm: Preparation, Map, Shuffle, and Reduce.

In our proposed CDCFT approach, nodes are categorized as either Solver
node sk, k ∈ [1, Q], or Helper nodes pj , j ∈ [Q+1,K]. The Solver nodes execute
Map and Reduce functions, receive data from Helper nodes during the Shuffle
Stage, and act as Voter nodes in the Reduce Stage, utilizing a majority voting
mechanism to ensure fault tolerance and determine the final output. Conversely,
Helper nodes carry out Map functions, encode intermediate outcomes into coded
messages, and relay them to the respective Solver nodes.

4.1 Preparation Stage

The Preparation Stage is dedicated to establishing the distributed framework.
This involves classifying nodes, distributing files, and designating Map and
Reduce functions to specific nodes.

Initially, nodes are segregated into two primary categories: Solver nodes and
Helper nodes. The number of Solver nodes matches the total count of Reduce
functions, amounting to Q nodes. In contrast, the Helper nodes make up the
difference, totaling (K − Q) nodes. Files are then allocated to each node. For
the Solver nodes, a selection mechanism pinpoints r∗ nodes from the pool of
γ options, determining which are most apt to receive a file. Meanwhile, every
Helper node receives a file chosen from a set of (K − Q) possibilities. This file
allocation yields (K − Q) · γ unique configurations, optimizing the distribution
of files between Solver and Helper nodes in the framework.

The rule set, defined in Eq. (5), integrates various allocation methods, sym-
bolized as S. This is mathematically expressed as:

S = {(i, A) | Q + 1 ≤ i ≤ K, |A| = r∗, A ⊆ x | 1 ≤ x ≤ Q,x ∈ Z} . (5)

Here, each pair (i, A) signifies an allocation method, where i represents the
Helper node number assigned to the file, and A defines the set of Solver node

An Efficient Fault Tolerance Strategy for Multi-task MapReduce Models 261

numbers designated to that file. Thus, the entire rule set S embodies (K −Q) ·γ
elements, which corresponds to the total file count. Consequently, every element
(i, A) in the set S epitomizes the deployment strategy tailored for a particular
file. In the construction of the rule set S, elements (i, A) are structured by
consecutively populating node numbers in a cyclical pattern.

We can calculate the number of files assigned to each node using the following
procedure. For each Solver node sk, we iterate through each element (i, A) in
S. If Solver node sk belongs to set A, the file corresponding to that element is
assigned to Solver node sk. This process establishes the total number of files λ
allocated to every Solver node, as depicted below:

λ =

(
Q−1
r−1

) · (K − Q)
γ · (K−Q)

=
r∗

Q
. (6)

Similarly, for each Helper node pj , we consider every element (i, A) in S, as
defined in Eq.(5). When i = j, the file related to that element is allocated to
Helper node j. Using this approach, the total files ψ for each Helper node are:

ψ =
γ

γ · (K−Q)
=

1
K−Q

. (7)

The file set at node z are given as Fz, with the n-th file represented by wn.
Based on this, we introduce the File Allocation Algorithm for Solver and Helper
nodes (FAASH) in Algorithm 1.

Algorithm 1: FAASH Algorithm
Input : Q,K,N
Output: result F

1 for n ← 1 to N do
2 allocate wn to S [n];
3 end
4 for each Solver node sk do
5 if k ∈ A then
6 allocate corresponding wn to Fk;
7 end
8 end
9 for each Helper node pj do

10 if j == i then
11 allocate corresponding wn to Fj ;
12 end
13 end

Next, we proceed to assign Map functions to nodes based on file allocation.
Specifically, when node z is assigned file wi, we allocate to it the set of Map
functions {M1,i(·),M2,i(·), . . . , MQ,i(·)}, with each function utilizing wi as its

262 Z. Xie et al.

input. Subsequently, the algorithm assigns Reduce functions to the Solver nodes.
We represent the Reduce function assignment scheme using a matrix RM ∈
N

3×Q as given by

RM =

⎡
⎣
1 2 · · · Q − 1 Q
2 3 · · · Q 1
3 4 · · · 1 2

⎤
⎦ , (8)

where the elements in the matrix denote the Reduce function numbers. The k-th
column of the matrix RM corresponds to the set of Reduce functions Wk that
Solver node sk is responsible for.

In summary, the Preparation Stage comprises four steps. First, nodes are
categorized into Solver and Helper types. Next, the FAASH algorithm allocates
files across nodes, ensuring an equitable distribution. Then, Map functions are
designated to nodes anchored on their file ownership. Finally, Reduce functions
are distributed using the RM matrix, streamlining task distribution. Collec-
tively, these procedures set the stage, ensuring optimal file, Map function, and
Reduce function allocation to Solver and Helper nodes, setting the groundwork
for the subsequent stages of the CDCFT framework.

4.2 Map Stage

For each file wn, node z applies the corresponding numbered Map function from
each group, yielding an intermediate result set denoted by Ωn(wn) = {v(q,n)|q ∈
N and 1 ≤ q ≤ Q}. Here, v(q,n) symbolizes the intermediate result procured from
the n-th Map functions of the q-th group, serving as input for the q-th numbered
Reduce function related to file wn. The collective intermediate results acquired
by node z during the Map Stage is represented as Vz = {Ωn(wn)}.

4.3 Shuffle Stage

Assuming each file is allocated to r redundancy nodes, the Helper node pj
encodes its local intermediate result set Vj into forwarded messages Xj , which
are then broadcast to the entire node cluster.Then r Solver nodes decode these
messages to acquire the intermediate results.

Consider G as the set of r∗ Solver nodes. In the encoding phase, Helper node
pj generates encoded messages x(j,G) for nodes in G based on its intermediate
results Vj . Given that each Solver node in G has three Reduce functions, the
Helper node transmits three encoded messages to every node, corresponding to
each Reduce function. Denote Fj ⊆ wn as the file set under helper pj and WG

as the Reduce functions for solvers in G. The encoding functions are:

x(j,G) =
{

⊕
j∈G

v(q,n) | Rq (·) ∈ WG, n ∈ Fj

}
, (9)

where the symbol ⊕ denotes a heterogeneous encoding operation [20] enacted
on the intermediate results. This operation activates when the group number in
Vj of the Helper node aligns with the Solver node number within set G.

An Efficient Fault Tolerance Strategy for Multi-task MapReduce Models 263

During the Shuffle Stage, Helper node pj partitions its collection of inter-
mediate results, Vj , into distinct subsets. Each subset is carefully assembled to
meet the specific requirements of r∗ distinct Solver nodes, ensuring no overlap
or redundancy. After this categorization, the Helper node employs heterodyne
encoding on each subset, producing the corresponding encoded message x(j,G).
Consequently, the entire ensemble of these encoded messages is represented by
Xj . The communication overhead associated with the Shuffle Stage can be encap-
sulated by the cumulative count of intermediate results set to be transferred, as
delineated in Eq. (10):

Lf = 3 · (K − Q) ·
(

Q

r∗ + 1

)
. (10)

It can be concluded that the communication overhead of CDCFT in the
Shuffle Stage is always less than or equal to that of a CDC fault-tolerant method
using the vanilla Triple Modular Redundancy, as stated in the theorem below.

Theorem 1. Let CDCFT be a distributed algorithm with Q Reduce functions, N
files, K nodes, and the redundancy set to r. We can conclude the communication
overhead of CDCFT in the Shuffle Stage is always less than or equal to that of
a CDC fault-tolerant method using the vanilla Triple Modular Redundancy.

Proof. The CDC using Triple Modular Redundancy is achieved by running three
instances of CDC. Each instance incorporates an additional 2r∗ redundant files
and 2K supplementary nodes, as elucidated in Eq. (3). The communication
overhead in the Shuffle Stage is determined by the total number of intermediate
results sent in the CDC using Triple Modular Redundancy. The calculation for
the communication overhead in the Shuffle Stage is provided by Eq. (11):

Lc = 3 ·
(
1 − r

K

)
· N

r
, (11)

where K represents the total number of nodes in the CDC system without TMR,
N denotes the total number of files being processed, Q represents the total num-
ber of Reduce functions, and r indicates the degree of redundancy implemented.
The communication overhead in the Shuffle Stage for both CDCFT and the
CDC with TMR is determined by the total number of nodes used, denoted as
K∗, under the same configurations of N , Q, and r. Drawing from Eq. (10) and
Eq. (11), the expression for communication overhead can be delineated as fol-
lows:

Lf

Lc
=

r

(r + 1)
< 1. (12)

As shown in Eq. (11) and Eq. (12), the communication overhead of CDCFT
in the Shuffle Stage is always less than or equal to that of a CDC fault-tolerant
method using the vanilla Triple Modular Redundancy, thereby proving the the-
orem. To demonstrate, let’s examine the case where r = 3, the overhead of

264 Z. Xie et al.

CDCFT is at most 3/4 that of TMR. In summary, the theorem shows CDCFT
is more communication efficient than vanilla TMR redundancy for fault tolerance
in distributed computing for any redundancy configuration.

4.4 Reduce Stage

Solver node sk, applies its specific decode function, Dq
k(·), to decode the encoded

data and retrieve intermediate results. These intermediate results are then com-
bined with the q-th set of local intermediate results to form the complete set
of intermediate results Ωn(wn). Solver nodes repeat this process for their other
Reduce functions to obtain their respective complete sets of intermediate results.
By substituting the q-th set of complete intermediate results into the correspond-
ing Reduce function, the output uq is obtained.

Since Solver node sk has multiple Reduce functions, it generates a set of
outputs denoted as Uk ⊆ {uq|q ∈ N ∩ 1 ≤ q ≤ Q}. Each Solver node hashes its
output set Uk and sends the encoded result to a designated Voter node. Upon
receiving the output sets from all Solver nodes, the Voter node selects the final
output uq by conducting a vote on the corresponding number of outputs and
choosing the result with the highest number of occurrences.

5 Experiments

We evaluate the communication overhead of the Shuffle Stage in different
approaches by using TeraSort [14] as a reference test program. TeraSort is a
sorting task based on the MapReduce paradigm. In the Map Stage of TeraSort,
each Map node partitions the data into R blocks. This ensures that the data in
the (i+1)-th block is greater than the data in the i-th block. Additionally, each
Map node applies a hash code to the data within each block. During the Shuf-
fle Stage, the i-th Reduce node sorts the i-th data block received from all Map
nodes. This ensures that the outcomes produced by the (i + 1)-th Reduce node
are greater than the outcomes of the i-th node. Finally, in the Reduce Stage,
each Reduce node sorts all the received data. The sorting results from the first
to the R-th Reduce nodes are then output sequentially, resulting in the final
sorted output.

The principle of the TeraSort algorithm is depicted in Fig. 2. Each Map node
divides its corresponding data into four blocks and sends them to the respective
Reduce node. In the Reduce Stage, the Reduce node sorts the received data and
outputs them in sequential order, producing the final sorted result.

5.1 Experiment Setups

We perform experiments to assess our proposed approach. The experiments uti-
lize Docker containers to emulate a distributed computing environment with
multiple nodes. Each node in the cluster is equipped with 4GB of memory and

An Efficient Fault Tolerance Strategy for Multi-task MapReduce Models 265

an Intel(R) Xeon(R) Gold 6126 CPU model. To emulate a real distributed net-
work environment, we use Docker network plugins (TC-HTB and NetEM) to
simulate various network conditions between containers. Each container is con-
figured with a unique IP address on Docker’s bridge network to facilitate com-
munication. The cluster architecture consists of one Master node and multiple
Worker nodes. The Master node handles data distribution and task allocation,
while the Worker nodes execute the computational tasks.

Fig. 2. Schematic of the TeraSort sorting algorithm demonstrating the distributed
sorting of integers from 0 to 100 using four nodes.

For the experiment, we generate a 1.6GB file using NumPy, where each line in
the file represents an integer ranging from 0 to 100. The experiment parameters
are set as N = 8 and Q = 4. Here, N = 8 indicates that the input data was
divided into eight smaller files, which are individually transmitted by the Master
node to each Worker node.

Our proposed CDCFT algorithm is benchmarked against three other meth-
ods. We assess each algorithm based on two metrics: the duration of the MapRe-
duce computation tasks and the communication overhead incurred during the
Shuffle Stage. Below, we detail the specific configurations used for each method:

– MapReduce [7]: This approach leverages the MapReduce computing frame-
work within Hadoop. It offers a straightforward and scalable programming
model designed for processing vast amounts of data across large-scale clus-
ters. The framework divides computational tasks into independent Map and
Reduce stages, distributing data across multiple nodes for parallel processing.
Each node is assigned four files in our experimental setup, and two Reduce
functions are applied.

– TMR [1]: The MapReduce computation task is executed in triplicate, run-
ning concurrently in the TMR approach. Fault tolerance is established by

266 Z. Xie et al.

cross-referencing the final results from the three executions. In our specific
experimental configuration for the TMR method, each node is assigned four
files, and it uses two Reduce functions.

– Reactive TMR [4]: This method adopts a two-stage, three-module redun-
dancy technique. Every computational task is executed in triplicate. Initially,
the results of the first two replicas are assessed for consistency. If discrepancies
emerge between these results, the third replica is then executed. The conclu-
sive output is ascertained through a majority vote based on the outcomes of
all three replicas. Analogous to the TMR method, each node is allocated four
files and processes using two Reduce functions in this approach.

– CDCFT: Our proposed CDCFT technique tackles SDCs by augmenting the
redundancy of the Reduce function. We divide the worker nodes into two
groups: four serve as Solver nodes and the remaining two as helper nodes.
With r = 4, each solver node is configured to calculate three unique Reduce
functions.

5.2 Experimental Results

Communication Overhead Evaluation: In this study, we benchmark the
performance of CDCFT against other methodologies, namely MapReduce, TMR,
and Reactive TMR. We focus on the communication overhead during the Shuf-
fle Stage, measuring the data volume transferred across five separate instances.
Table 1 provides a comprehensive overview of this communication overhead, rep-
resenting the average amount of data exchanged during the Shuffle Stage. Specif-
ically, Da represents the average volume of data transferred under fault condi-
tions, whereas Db depicts the average volume of data transferred in a faultless
Shuffle Stage. All data volumes are represented in megabytes (MByte).

Table 1. Amount of data transmitted (MByte) during the Shuffle stage by each algo-
rithm, with and without faults.

Algorithm Da Db

MapReduce 2369.38 2369.23
TMR 2494.94 2494.95
Reactive TMR 1769.05 1613.69
CDCFT 327.42 324.64

Table 1 reveals that CDCFT considerably reduces the volume of data trans-
ferred relative to its counterparts. The primary reason for this reduction is
CDCFT’s implementation of distributed encoding. In this method, helper nodes
distribute encoded information, while solver nodes perform local decoding for
their respective Reduce functions. Further, CDCFT mitigates unnecessary data
exchanges amongst solver nodes, decreasing data transmissions during the Shuf-
fle Stage. A noteworthy observation is the relatively uniform data transmission

An Efficient Fault Tolerance Strategy for Multi-task MapReduce Models 267

volumes in the CDCFT and TMR methods during the Shuffle Stage, irrespec-
tive of fault occurrences. Such consistency can be attributed to the proficiency of
CDCFT and TMR in reliably detecting and rectifying discrepancies based on the
acquired data. This holds even when unnoticeable errors emerge from individual
Map function computations. On the other hand, the Reactive TMR approach
exhibits an increase in data transfer during the Shuffle Stage when it identifies
a silent error by contrasting results from two Reduce functions. This is because
the erroneous detection prompts a third execution of the Reduce function, neces-
sitating the Map node to retransmit intermediate results. This, in turn, leads to
a greater data transfer volume during the Shuffle Stage compared to when no
faults are present.

Execution Time Evaluation: Fig. 3(a) compares the performance of the exe-
cution times of CDCFT, MapReduce, TMR, and Reactive TMR across the map,
shuffle, and reduce stages, examining their duration in these stages as well as
their cumulative times under fault-free scenarios. Given the inherent requirement
of CDCFT to maintain additional redundancy of intermediate results alongside
task redundancy, it registers a longer span in the Map Stage. Nonetheless, during
the Shuffle Stage, CDCFT notably surpasses TMR and Reactive TMR, slashing
execution times by 27.3% and 19.6% compared to TMR and Reactive TMR,
respectively. Moreover, CDCFT reduces the total task execution time by 17.5%
and 10.6% compared to TMR and Reactive TMR, respectively. It is pivotal to
observe that CDCFT’s elongated Map Stage is due to its allocation of six files per
solver node, while both TMR and Reactive TMR allocate four, causing CDCFT
to process a larger volume of data than its peers.

Fig. 3. Comparison of the execution time during the Map, Shuffle, Reduce stages and
total execution time across different methods, (a) without faults, and (b) with faults.

Ablation Studies on Bandwidth Constraints: Fig. 3(b) illustrates the
execution times for each stage of the algorithms in the presence of faults.
Notably, CDCFT consistently outperforms TMR and Reactive TMR, regard-
less of whether faults exist. Specifically, when faults occur, CDCFT’s execution

268 Z. Xie et al.

Fig. 4. Bandwidth ablation study: Execution time of each stage under varied band-
width constraints: (a) 4 Mbps, (b) 8 Mbps, (c) 16 Mbps, and (d) 32 Mbps.

time in the Shuffle Stage is reduced by 23.9% and 36.9% compared to TMR
and Reactive TMR, respectively. The total task execution time is also 16% and
28.6% less than TMR and Reactive TMR, respectively. It’s worth highlight-
ing that, even without failures, Reactive TMR’s Shuffle Stage execution time
exceeds that of TMR. This is attributed to inconsistencies between two copies
of a Reduce function upon a failure, compelling the Reduce node to run a third
copy. Consequently, the Map node has to resend the intermediate results, leading
to a prolonged Shuffle Stage execution time.

We conduct ablation experiments to evaluate the performance of CDCFT,
MapReduce, and CDC-only under different bandwidth constraints: 4 Mbps, 8
Mbps, 16 Mbps, and 32 Mbps. Figure 4 shows the execution times under the
different bandwidth constraints. The findings indicate that MapReduce consis-
tently exhibits the longest execution time. While CDCFT performs faster, it
registers a slightly longer duration than CDC-only due to the additional task
redundancy from the TMR mechanism. However, the superior fault tolerance
of CDCFT relative to CDC-only justifies this minor increment in the execution
time, particularly during the Shuffle Stage.

An Efficient Fault Tolerance Strategy for Multi-task MapReduce Models 269

For instance, at a bandwidth of 4 Mbps, CDCFT lags by roughly 8 s in the
Shuffle Stage compared to CDC-only. But as the bandwidth escalates, this gap
narrows to about 2 s at 32 Mbps. This pattern suggests that with the advent of
the 5G era and the increase in bandwidth availability, the benefits of CDCFT
over CDC-only become even more noticeable.

6 Summary

MapReduce is widely recognized for its capacity to process distributed datasets
efficiently, distributing tasks across multiple nodes to reduce costs. However,
as cluster sizes expand, the emergence of silent data corruption emerges as a
discernible concern in MapReduce. Traditional fault-tolerance strategies that
rely on multiple replicas introduce significant communication overhead when
applied to compute-intensive tasks.

In response to this challenge, this paper presents the CDCFT fault-tolerance
method, which targets the frequent occurrence of silent data corruption in multi-
Reduce function MapReduce applications. CDCFT employs CDC to diminish
the communication load, offsetting the added overhead from task redundancy,
and harnesses result voting to assure fault tolerance against silent data corrup-
tion. Experimental results demonstrate that CDCFT significantly reduces the
execution time of the Shuffle Stage relative to traditional fault-tolerant tech-
niques, concurrently slashing the communication overhead substantially.

Future research can explore applying CDCFT in heterogeneous clusters
where nodes have different capabilities. Node allocation and file deployment
strategies can be developed to balance processing times across heterogeneous
nodes.

References

1. Benoit, A., Cavelan, A., Cappello, F., et al.: Coping with silent and fail-stop errors
at scale by combining replication and checkpointing. J. Parallel Distrib. Comput.
122, 209–225 (2018)

2. Charyyev, B., Alhussen, A., Sapkota, H., et al.: Towards securing data transfers
against silent data corruption. In: 2019 19th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID), pp. 262–271. IEEE (2019)

3. Deveautour, B., Traiola, M., Virazel, A., et al.: Reducing overprovision of triple
modular redundancy owing to approximate computing. In: 2021 IEEE 27th Inter-
national Symposium on On-Line Testing and Robust System Design (IOLTS), pp.
1–7. IEEE (2021)

4. Dixit, H.D., Pendharkar, S., Beadon, M., et al.: Silent data corruptions at scale.
arXiv preprint arXiv:2102.11245 (2021)

5. Dong, Y., Tang, B., Ye, B., Qu, Z., Lu, S.: Intermediate value size aware coded
mapreduce. In: 26th IEEE International Conference on Parallel and Distributed
Systems, (ICPADS), Hong Kong, December 2–4, 2020. pp. 348–355. IEEE (2020)

6. Gandomi, A., Movaghar, A., Reshadi, M., et al.: Designing a MapReduce per-
formance model in distributed heterogeneous platforms based on benchmarking
approach. J. Supercomput. 76, 7177–7203 (2020)

http://arxiv.org/abs/2102.11245

270 Z. Xie et al.

7. Glushkova, D., Jovanovic, P., Abelló, A.: MapReduce performance model for
Hadoop 2.x. Inf. Syst. 79, 32–43 (2019)

8. Khader, M., Al-Naymat, G.: Density-based algorithms for big data clustering using
MapReduce framework: a comprehensive study. ACM Comput. Surv. (CSUR)
53(5), 1–38 (2020)

9. Krishnan, R.M., Zhou, D., Kim, W.H., et al.: TENET: memory safe and fault
tolerant persistent transactional memory. In: 21st USENIX Conference on File
and Storage Technologies (FAST 23), pp. 247–264 (2023)

10. Li, C., Wang, Y.P., Tang, H., et al.: Dynamic multi-objective optimized replica
placement and migration strategies for SaaS applications in edge cloud. Future
Gener. Comput. Syst. 100, 921–927 (2019)

11. Li, C., Zhang, Y., Tan, C.: Fault-tolerant computation meets network coding: opti-
mal scheduling in parallel computing. IEEE Trans. Commun. 71(7), 3847–3860
(2023)

12. Li, P., Guo, S., Yu, S., et al.: Cross-cloud MapReduce for big data. IEEE Trans.
Cloud Comput. 8(2), 375–386 (2015)

13. Li, S., Maddah-Ali, M.A., Avestimehr, A.S.: Coded MapReduce. In: 53rd Annual
Allerton Conference on Communication, Control, and Computing (Allerton), pp.
964–971. IEEE (2015)

14. Li, S., Supittayapornpong, S., Maddah-Ali, M.A., et al.: Coded TeraSort. In: 2017
IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pp. 389–398 (2017)

15. Li, S., Yu, Q., Maddah-Ali, M.A., et al.: Coded distributed computing: fundamental
limits and practical challenges. In: 50th Asilomar Conference on Signals, Systems
and Computers, pp. 509–513. IEEE (2016)

16. Li, Z., Menon, H., Maljovec, D., Livnat, Y., Liu, S., et al.: SpotSDC: revealing the
silent data corruption propagation in high-performance computing systems. IEEE
Trans. Visual Comput. Graphics 27(10), 3938–3952 (2021)

17. Luo, C., Cao, Q., Li, T., et al.: Mapreduce accelerated attribute reduction based on
neighborhood entropy with apache spark. Expert Syst. Appl. 211, 118554 (2023)

18. Maleki, N., Rahmani, A.M., Conti, M.: MapReduce: an infrastructure review and
research insights. J. Supercomput. 75, 6934–7002 (2019)

19. Mireshghallah, F., Bakhshalipour, M., Sadrosadati, M., et al.: Energy-efficient per-
manent fault tolerance in hard real-time systems. IEEE Trans. Comput. 68(10),
1539–1545 (2019)

20. Ng, J.S., Lim, W.Y.B., Luong, N.C., et al.: A comprehensive survey on coded dis-
tributed computing: fundamentals, challenges, and networking applications. IEEE
Commun. Surv. Tutor. 23(3), 1800–1837 (2021)

21. Ozfatura, E., Ulukus, S., Gündüz, D.: Coded distributed computing with partial
recovery. IEEE Trans. Inf. Theory 68(3), 1945–1959 (2022)

22. Saadoon, M., Hamid, S.H.A., Sofian, H., et al.: Experimental analysis in Hadoop
MapReduce: a closer look at fault detection and recovery techniques. Sensors
21(11), 3799 (2021)

23. Saadoon, M., Hamid, S.H.A., Sofian, H., et al.: Fault tolerance in big data storage
and processing systems: a review on challenges and solutions. Ain Shams Eng. J.
13(2), 101538 (2022)

24. Salehi, M., Ejlali, A., Al-Hashimi, B.M.: Two-phase low-energy n-modular redun-
dancy for hard real-time multi-core systems. IEEE Trans. Parallel Distrib. Syst.
27(5), 1497–1510 (2016)

25. Saleti, S., Subramanyam, R.B.V.: A MapReduce solution for incremental mining
of sequential patterns from big data. Expert Syst. Appl. 133, 109–125 (2019)

An Efficient Fault Tolerance Strategy for Multi-task MapReduce Models 271

26. Woolsey, N., Chen, R.R., Ji, M.: Cascaded coded distributed computing on het-
erogeneous networks. In: IEEE International Symposium on Information Theory
(ISIT), pp. 2644–2648. IEEE (2019)

27. Xu, D., Chu, C., Wang, Q., et al.: A hybrid computing architecture for fault-
tolerant deep learning accelerators. In: 2020 IEEE 38th International Conference
on Computer Design (ICCD), pp. 478–485. IEEE (2020)

28. Xu, H., Liu, Y., Lau, W.C.: Multi resource scheduling with task cloning in hetero-
geneous clusters. In: Proceedings of the 51st International Conference on Parallel
Processing, (ICPP), Bordeaux, France, 29 August 2022–1 September 2022, pp.
41:1–41:11 (2022)

29. Yakhchi, M., Fazeli, M., Asghari, S.A.: Silent data corruption estimation and mit-
igation without fault injection. IEEE Can. J. Elect. Comput. Eng. 45(3), 318–327
(2022)

30. Yang, N., Wang, Y.: Predicting the silent data corruption vulnerability of instruc-
tions in programs. In: 25th IEEE International Conference on Parallel and Dis-
tributed Systems, (ICPADS), Tianjin, China, December 4–6, 2019, pp. 862–869
(2019)

31. Zhang, G., Liu, Y., Yang, H., et al.: Efficient detection of silent data corruption in
HPC applications with synchronization-free message verification. J. Supercomput.
78(1), 1381–1408 (2022)

32. Zhang, J., Lin, M.: A comprehensive bibliometric analysis of apache Hadoop from
2008 to 2020. Int. J. Intell. Comput. Cybern. 16(1), 99–120 (2023)

33. Zhu, Y., et al.: Fast recovery MapReduce (FAR-MR) to accelerate failure recovery
in big data applications. J. Supercomput. 76(5), 3572–3588 (2020)

Key-Based Transaction Reordering: An
Optimized Approach for Concurrency

Control in Hyperledger Fabric

Haoliang Ma1,2(B), Peichang Shi1,2, Xiang Fu1,2, and Guodong Yi3

1 National Key Laboratory of Parallel and Distributed Computing,
College of Computer Science, National University of Defense Technology,

Changsha 410073, China
2 Key Laboratory of Software Engineering for Complex Systems,

College of Computer Science, National University of Defense Technology,
Changsha 410073, China

{mhliang0640,pcshi}@nudt.edu.cn
3 Xiangjiang Lab, Changsha 410073, China

Abstract. As blockchain technology garners increased adoption, per-
missioned blockchains like Hyperledger Fabric emerge as a popular
blockchain system for developing scalable decentralized applications.
Nonetheless, parallel execution in Fabric leads to concurrent conflict-
ing transactions attempting to read and write the same key in the ledger
simultaneously. Such conflicts necessitate the abortion of transactions,
thereby impacting performance. The mainstream solution involves con-
structing a conflict graph to reorder the transactions, thereby reducing
the abort rate. However, it experiences considerable overhead during sce-
narios with a large volume of transactions or high data contention due
to capture dependencies between each transaction. Therefore, one crit-
ical problem is how to efficiently order conflicting transactions during
the ordering phase. In this paper, we introduce an optimized reordering
algorithm designed for efficient concurrency control. Initially, we lever-
age key dependency instead of transaction dependency to build a conflict
graph that considers read/write units as vertices and intra-transaction
dependency as edges. Subsequently, a key sorting algorithm generates a
serializable transaction order for validation. Our empirical results indi-
cate that the proposed key-based reordering method diminishes trans-
action latency by 36.3% and considerably reduces system memory costs
while maintaining a low abort rate compared to benchmark methods.

Keywords: Hyperledger Fabric · Reordering Algorithm · Concurrency
Control · Transaction Conflicts

1 Introduction

Originating from Nakamoto’s Bitcoin whitepaper [12], Bitcoin only supports
cryptocurrency. Ethereum [1] was then developed to facilitate Turing-complete
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14493, pp. 272–291, 2024.
https://doi.org/10.1007/978-981-97-0862-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0862-8_17&domain=pdf
https://doi.org/10.1007/978-981-97-0862-8_17

Key-Based Transaction Reordering 273

smart contracts, thus enabling arbitrary data processing logic. Consequently, the
blockchain evolved from merely a cryptocurrency platform to a distributed trans-
action system. Traditional blockchain systems, such as Bitcoin and Ethereum,
employ an Order-Execute(OE) model, whose sequential transaction execu-
tion characteristic restricts performance, as evidenced in an analysis of seven
blockchain systems [14]. In contrast, Hyperledger Fabric leverages an Execute-
Order-Validate (EOV) model to enhance performance: transactions submitted
are first executed by the endorsing peers, then ordered and batched by the order-
ing services, and finally validated by the validating peers. Fabric exploits today’s
multi-core architecture to facilitate transaction processing by supporting parallel
processing of transactions [2]. It overcomes the limitations of the OE model by
providing parallelism of transaction execution on different endorsing peers.

Fig. 1. Effective and aborted throughput under vaying skewness

However, the delay between execution and commitment of a transaction
increases the probability of conflicting transactions, which are subsequently
rejected by peers during the verification stage, thus creating a scalability bot-
tleneck. The Fabric uses an optimistic concurrency control (OCC) mechanism,
terminating conflicting transactions to ensure the consistency of the ledger under
concurrent updates. However, this measure comes with a substantial transac-
tion abort rate exceeding 40% [3] due to many inter & intra-block conflicts,
amplified particularly under high contention workload characterized by a large
number of conflicting transactions. Various degrees of data race conditions can
be simulated by adjusting the skew parameters implying Zipfian distribution.
It reveals that higher skewness corresponds to an increased percentage of con-
flicting transactions, e.g., skew = 0 represents uniform access, and skew = 2.0
represents extremely skewed access. Figure 1 reports Fabric’s throughput under
varying skewness [15], with its blue and red components, respectively, demon-
strating effective and aborted throughput. The raw throughput remains consis-
tent despite the workload type and requests skewness. But with higher skewness,
a larger proportion of transactions are aborted for serializability.

Current studies [15,16] employ conflict graph construction, with Tarjan’s and
Johnson’s algorithms [18] used for cycle detection and removal to decrease dis-

274 H. Ma et al.

carded transactions during the sorting phase of transaction reordering. However,
the overhead associated with conflict graph construction is significant due to
the need to map dependencies between every transaction pair, especially when
large transaction volumes or considerable conflicting transactions are present.
As transactions increase, so do blocks that need to be processed, implying more
conflict graphs need construction and processing. Heightened data contention
amplifies this issue as each transaction potentially conflicts with a larger number
of other transactions, leading to an increase in edges that may trigger out-of-
memory issues. Additionally, Tarjan’s and Johnson’s algorithms require complex
operations on the graph to identify strongly connected components or cycles,
demanding considerable computational and memory resources. This approach
can result in substantial delays and potential system failures. Therefore, an effi-
cient algorithm or strategy for conflict graph construction and transaction pro-
cessing and order is essential to alleviate system resource usage and manage an
increased number of conflicting transactions.

We propose an efficient alternative: a key-based conflict graph (KCG) con-
struction method that leverages key dependency to establish a global transaction
order instead of capturing conflicting relationships between each pair of transac-
tions in the conflict detection of transaction dependency-based strategies. This
key dependency reveals transaction order on different keys, and more dependent
transactions can be obtained on each key. Subsequently, a transaction sorting
method is adopted to obtain a commit order. The advantage of our solution lies
in its efficiency under high data contention. As conflicting transactions increase
on each key, more dependent transactions can be detected, thus reducing sys-
tem resource overhead. Utilizing the key-based reordering method, we can get a
submission of non-conflicting transactions and achieve higher performance under
concurrency conflicts on Fabric. The contributions of our paper are as follows:

• We present a theoretical classification of various types of concurrency-related
transaction conflicts in Fabric and formulate the problem that our study aims
to address.

• We introduce a key-based conflict graph construction approach, leveraging
key dependency instead of the conventional transaction dependency, to effi-
ciently resolve concurrency update conflicts in Hyperledger Fabric. Our solu-
tion proves particularly suitable for large transaction volumes under data con-
tention. Notably, our method remains functional even when the CG method
crashes due to Out-of-Memory (OOM) errors.

• We evaluate the performance of our solution and compare it with methods
employed by vanilla Fabric and Fabric++/FabricSharp. Additionally, we con-
duct a sensitivity analysis to study the impact of different workload parame-
ters on performances. Compared to these existing methods, our model dimin-
ishes transaction latency by 36.3% and considerably reduces system memory
costs while maintaining a low abort rate.

The remainder of this paper is organized as follows. Section 2 reviews the related
work. Section 3 categorizes transaction conflicts and formulates the problem. In
Sect. 4, we present the system model and propose our approach. Performance

Key-Based Transaction Reordering 275

evaluations are provided in Sect. 5, followed by a conclusion and future work in
Sect. 6.

2 Related Work

Efficient handling of concurrency conflicts is a hot research topic in distributed
databases, and conflicting transactions are also existing in Hyperledger Fabric
which is a distributed system. Many studies have proposed the optimization of
the performance for processing conflicting transactions. In this section, we will
introduce these works along three categories according to the Fabric lifecycle:
optimization for endorsement, ordering, and validation.

2.1 Endorsement Phase Optimization

Xu et al. [21] propose a lock mechanism to create a temporary database index for
conflicting transactions, with the subsequent merging of the newly created index
with the original index after the transaction is verified. However, in asynchronous
blockchain systems, lock services are required to create and merge database
indexes synchronously, resulting in substantial communication costs. Minsu et
al. [9] introduce a read and write transactions separating method to accelerate
transaction processing. Consequently, the transaction endorsement latency is
reduced by 60% compared to the traditional Fabric network. Trabelsi et al. [19]
offer a methodology to maintain a cache for conflict transaction detection at this
stage and, based on this, compares three different cache storage strategies.

2.2 Ordering Phase Optimization

For the ordering phase, FastFabric [7] redesigns the ordering service to oper-
ate only with transaction IDs. By separating the transaction header from the
payload, the process for determining transaction order is expedited, thus boost-
ing throughput. Sharma et al. [16] introduce a reordering step immediately
before block formation but after consensus, analyzes transaction conflicts by
constructing a conflict graph, reorders and selectively discard transactions that
cannot be serialized to determine a conflict-free transaction sequence, and elim-
inates Multi-version Concurrency Control (MVCC) Read Conflicts. Although
Fabric++ reduces the number of conflicting transactions in a block, it does not
apply a straightforward discarding strategy for cross-block transactions, lim-
iting its reordering effect. Subsequently, Ruan et al. [15] consider transaction
cross-block conflicts and varying conflict types based on the work of Fabric++.
They proposed FabricSharp, a method capable of handling conflicts in a more
fine-grained manner. However, the reordering algorithm has problems in usabil-
ity and security [17]. In high-concurrency scenarios, the conflict graph becomes
complex, and solving it can become a performance bottleneck and potentially
even cause system crashes. To mitigate the overhead incurred by cycle detection
and removal, Dickerson et al. [4] and FastBlock [11] introduce a happen-before

276 H. Ma et al.

graph for transaction execution and employ assumptions about software and
hardware configurations to detect conflicts. Nevertheless, this reliance is not
supported by all blockchain nodes. The transaction reordering method is also
adopted in other distributed transaction processing systems. Furthermore, this
method is utilized for improving OCC in online transaction processing systems
[5]. Xiao et al. [20] employ the key-based concurrency control method to resolve
conflicting transactions in directed acyclic graph (DAG)-based blockchains.

2.3 Validation Phase Optimization

Multiple articles propose the parallel execution of the validation process (syn-
tax verification, endorsement policy verification, MVCC validation) to accelerate
block validation [6–8]. Gorenflo et al. [6] advocate for the XOX transaction pro-
cess. He believes that if a transaction is only marked as invalid due to conflicts
in the verification phase, there is no trust problem in the entire execution pro-
cess of the transaction, so conflicts can be found during the verification phase.
Then the node executes the transaction locally to get the latest result. However,
this method ignores the trust problem that still exists in the alliance chain built
by Fabric, and different nodes may maliciously write wrong data, resulting in
ledger data errors. FabricCRDT [13] focuses on automatically merging conflict-
ing transactions using CRDT techniques without rejecting them. However, this
approach is only suitable for use cases that can be modeled with CRDT. Skip-
ping MVCC verification makes FabricCRDT lose the ability to detect “double
spend attacks.”

3 Problem Definition

3.1 Types of Transaction Conflicts

There are three categories of transaction conflicts in Fabric [3]:

3.1.1 Endorsement Failure Conflicts: All transactions need to be endorsed
in the execution phase. The reasons for endorsement failure include invalid
endorsement signatures or other reasons such as configuration or network errors.
In this article, we only focus on endorsement policy failures caused by read-
write set mismatches. Every peer independently maintains a ledger using a key-
value store, which will update independently by each peer in the validation
phase. Therefore, transient world state inconsistencies between peers are possi-
ble. Moreover, in the execution phase, the tail delay of block propagation makes
it impossible for each endorsement node in the organization to obtain the latest
ledger status for the first time. Due to the inconsistency of the world state of
peers, the error of read/write set mismatch is called endorsement failure conflict.

As illustrated in the Table 1, when two different endorsement nodes Peer1,
Peer2 ∈ P endorse the same transaction Ti ∈ T , the version numbers of the
same value Key in the read-write set RWSet generated by Peer1 and Peer2 are
inconsistent, and an error occurs in the endorsement phase.

Key-Based Transaction Reordering 277

Table 1. Example of Endorsement Failure Conflicts

Peers Execution Phase World State

Transaction from Client Generated Read/Write Set Key Version

Peer 1 T1[R(A), W(A)] R(A, Version 1), W(A) A 1

Peer 2 T2[R(A), W(A)] R(A, Version 2), W(A) A 2

3.1.2 MVCC Read Conflicts: MVCC Read Conflicts arise in the transac-
tion verification phase. MVCC is a low-cost optimistic concurrent access pro-
cessing method widely utilized in database systems. Its core principle involves
creating historical snapshots for read transactions, and for write transactions, a
new version snapshot is created instead of overwriting original data.

During the verification process, each peer node examines the transactions
within the current block sequentially, and compares the version number of each
transaction’s read set with the current world state. The peer ensures that the
current ledger state is consistent with the state achieved by transaction simu-
lation. If any key’s version number in the read set doesn’t match the present
world state, the transaction is considered as invalid. MVCC Read Conflicts can
happen under two circumstances:

Condition 1: A read-after-write conflict, where a transaction’s read operation
takes place after another transaction’s write operation.

Condition 2: A stale read conflict happens because a node can be either a
committing peer or an endorsing peer. During a transaction’s transition from
the execution to the validation phase, other transactions could get validated
and committed to the chain, thereby updating the world state. Therefore, the
ledger update turns the data read by the transaction into stale data.

Table 2. Example of an MCVV Read Conflict

Transactions Validation Phase World State

Transaction from
Ordering Service

Read Set Version
Matches World State

Status Key Version

1 T1[R(A, Version 1)] Yes Success A 1

2 T2[W(A, Version 1)] / Success A 1

3 T3[R(A, Version 1)] No Fail A 2

4 T4[R(B, Version 1)] No Fail B 2

A typical instance of MVCC read conflict is depicted in Table 2. Transaction
1 (T1) reads key A, whose world state version is the same as the one in the
transaction’s read set. Therefore, the read set contains the latest value of Key
A. Transaction 2 (T2) modifies Key A’s value, giving it a new version 2. For
Transactions 3 and 4 (T3 and T4), that read Key A and Key B respectively, the
world state and read set host different versions. This implies that T3 and T4

278 H. Ma et al.

are accessing an older key version, hence, they fail. Specifically, T3 fails due to
condition 1 and T4 fails owing to condition 2.

3.1.3 Write-Write Conflicts: In traditional databases, “write-write” con-
currency conflicts primarily arise when multiple requests attempt to modify the
same database index concurrently. Similarly, on blockchain platform like Fabric,
when multiple transactions seek to modify the same ledger data simultaneously,
it creates a similar concurrency problem. Although the data written later will
overwrite the previous ones, these transactions in Fabric will eventually be sub-
mitted successfully and not marked as invalid. However, this process consumes
system resources.

3.2 Problem Formulation

The problem we are focusing on is solving MVCC Read conflict with lower system
overhead and acceptable latency. This is in contrast to the current problem
resolved by Fabric++, which uses a CG of consuming a lot of resources. On
EOV blockchain systems like Hyperledger Fabric, in the simulation execution
phase, multiple peer nodes execute transactions in parallel to obtain read and
write sets, which are then sent by the client to the ordering service for sorting and
packaging and then verification. For the Hyperledger Fabric blockchain platform,
its essence as a distributed database also has concurrency problems. We analyzed
the concurrency problems in Sect. 3.1 and defined three types of transactions that
cause transaction conflicts. In order to avoid MVCC Read Conflicts caused by the
order of transactions in the validate phase, a transaction sequence that satisfies
serialized execution can be obtained through a CG reordering method based on
transaction dependencies instead of original first-in-first-out (FIFO) ordering,
thus can reduce the aborted rate of transactions. CG reordering method is used
to guide the ordering of conflicting transactions adopting transactions as vertices
and transaction dependencies as edges. However, a transaction dependency only
indicates the order between two transactions.

When constructing a conflict graph, its memory usage is closely related to
the conflict graph relationship of transactions. As the capacity of transactions
within a block or the skewness of transactions escalate, so does the count of
conflicting transactions. As the skewness increases, the access pattern tends to
concentrate on a small number of hotkeys. Smallbank workload corresponds to
frequent asset update operations on a small number of accounts. In this case, the
potential conflict between transactions will increase because they may more fre-
quently access the same keys. This will increase the number of nodes and edges
of the conflict graph, thereby increasing the complexity of the conflict graph,
which in turn increases memory usage. Johnson’s algorithm, which is used for
identifying cycles in a strongly connected subgraph, can be done in linear time
in O((N + E)(C + 1)), where N is the number of nodes and E is the number
of edges, C is the number of cycles in the graph. Meanwhile, it uses a recur-
sive algorithm called depth-first-search (DFS) for cycle detection, substantially

Key-Based Transaction Reordering 279

increasing the system resources overhead required for cycle detection and trans-
action processing latency. In extreme cases, an Out-Of-Memory (OOM) might
occur, which can potentially lead to a system crash. That is why CG is not
suitable for data contention situations. Hence, it motivates us to find a more
efficient way to generate a commit order.

4 System Design

4.1 System Model

Supposing the client sends two transaction requests (Tu) and (Tv), and the
endorsement node gets the transaction read-write set after execution: RS(Tu),
WS(Tu), RS(Tv), WS(Tv). Assume that Tu and Tv are executed in parallel, and
when any of the following conditions (1)(3) is true, Tu and Tv conflict with each
other. The difference is that conflicting transactions that satisfy condition (1) will
be marked as invalid transactions during the verification phase, while conflicting
transactions that satisfy condition (3) are valid transactions, that is, transac-
tions whose write sets are finally successfully applied to the state database.
(1) WS(Tu) ∩ RS(Tv) �= φ
(2) RS(Tu) ∩ WS(Tv) �= φ
(3) WS(Tu) ∩ WS(Tv) �= φ

Definition 1. Transaction Dependency. Given two transactions Tu and
Tv(u < v), when Tu is verified before Tv, a transaction dependency Tu→Tv

exists if condition (1) is met, Tu
rw−→ Tv, that is, read-write dependency, or when

(3) is satisfied, Tu
ww−→ Tv, that is, write-write dependency.

Definition 2. Conflict Graph. A conflict graph, denoted as CG, is a directed
graph that consists of a set of vertices V = {T1, T2, ..., TN} and a set of edges
E = {(Tu, Tv)|1 ≤ u �= v ≤ N,Tu → Tv}. In this graph, |V | = N .

Based on the captured transaction dependencies, a conflict graph that takes
transactions as vertices and dependencies as edges is build. CG can guide the
ordering of transactions to reduce over-aborting transactions that are still seri-
alizable.

Definition 3. Key Dependency. Let’s consider two distinct keys Ki and
Kj(i �= j). We can say that Ki is dependent on Kj (notated as Ki���Kj) if
there exists a transaction Tv such that TW

v belongs to RWi and TR
v is part of

RWj. Here, TR
v and TW

v denote the read and write units of transaction Tv,
respectively.

Definition 4. Key-based Conflict Graph. A key-based conflict graph,
denoted as KCG = (V,E), is a directed graph where V = {RWj |j = 1, 2, . . . , n},
and E = {(RWi, RWj)|1 ≤ i �= j ≤ n,∃v ∈ [1, Ne], TW

v ∈ RWi ∧ TR
v ∈ RWj}.

Here, n represents the number of keys being accessed.

280 H. Ma et al.

The key dependency is identified between the read and write units of a trans-
action. Contrasting with transaction dependency, we methodically map these
read and write units to the associated key queues and position them accurately
within this sequence. Using the captured key dependency, we build a directed
edge between the write-read units of each transaction across different keys. We
employ these edges to organize the read/write sets of all keys into a novel conflict
graph called KCG.

Table 3. Four concurrent transactions

Transaction T1 T2 T3 T4

R/W Operation R W R W W

Accessed Key K1 K1 K2 K1 K2

Total order T1 ⇒ T2 ⇒ T3 ⇒ T4

Due to the increased conflicts per key, as shown in Table 3, more dependent
transactions can be obtained on each key. Such dependency speeds up the pro-
cessing of all writes and reads by incorporating a relatively small yet fast solution
compared with a transaction dependency.

Fig. 2. Example of obtaining a commit order

Figure 2 presents a concrete example. It shows that employing the transaction
dependency requires four pairs of dependent transactions to obtain the total
order. Instead, it only requires two groups of dependent transactions detected
by key K1 and K2 by relying on key dependency. Specifically, there are four
transactions from T1 to T4 waiting ordering. In transaction dependency, if there
is a dependency between two transactions, an edge is added, and at the same
time, the transaction acts as a node. In key dependency, the read and write
units of transactions that operate on the same key are stored in the same queue.
We can see that employing the transaction dependency requires four pairs of
dependent transactions to obtain the total order. Instead, it only requires two
groups of dependent transactions detected by K1 and K2 by relying on key

Key-Based Transaction Reordering 281

dependency. Hence, comparing to transaction dependency, key dependency is
more suitable for large number of transaction conflicts.

Fig. 3. Overview of System Model

To solve the concurrency conflict problem in Hyperledger Fabric, we propose
a new transaction processing optimization method using a key-based transaction
reordering algorithm. The main workflow of the system is shown in Fig. 3. The
main goal is to get a serialized sorting after ordering service, which produces the
least transaction discard and latency under the lowest system resources overhead.

The system workflow is as follows: the proposal is first signed and executed
by the endorsing peers before it reaches the client. Then, the client will assemble
endorsements into a transaction that contains the read/write sets, the endorsing
peers’ signatures, and the channel ID. Then send them to the Ordering Service
to package and propagate. In the original version, the Ordering Service does not
read the transaction details; it simply receives transactions from all channels
in the network, orders them chronologically by channel, and creates blocks of
transactions per channel. Therefore, you can take advantage of different ordering
strategies to order the transactions inside a block to reduce the production of
invalid transactions, such as transaction-based CG and key-based CG.

The main goal of the reordering algorithm is to generate a serialized sort in
the middle of serialized transactions, ensuring that the least amount of trans-
action discards occur while consistent state transitions occur. The CG reorder-
ing algorithm using transaction dependency mainly includes five steps. They
have directed conflict graph construction, subgraph division, cycle detection and

282 H. Ma et al.

removal, cycle-free conflict graph construction, and topological sorting. With the
increase of conflicting transactions, we discover that each key may exhibit more
transaction dependencies due to the increased conflicts per key. So, we utilize
keys to capture group dependency instead of pair dependency among transac-
tions to alleviate the overhead of detecting all dependent transactions. As shown
above, the main steps of the key-based reordering algorithm include graph con-
struction, keys ranking, and transaction sorting, which realizes identifying the
dependence among transactions. After the ordering, the block will be generated
and delivered to all peers for validation and commitment.

4.2 Algorithm Design

In order to solve the concurrency conflict problems in Hyperledger Fabric, we
propose a key-based transactions reordering algorithm to reduce the demand for
system resources under high data contention and increase performance. Firstly,
the key dependency is used to indicate the order of transactions on different
keys so that more dependent transactions can be obtained on each key. Sec-
ondly, based on the key-based conflict graph (KCG), we use a transaction sort-
ing method using read/write units in each queue of keys to efficiently obtain a
total commit order of transactions. The above methods can effectively improve
the performance of Hyperledger Fabric with MVCC Read Conflicts.

Algorithm 1 presents the Key-based Reordering Algorithm. The Procedure
CreateGraph creates a graph whose nodes contain queues of read and write units,
and the data structure of rwNodes in each node is create to record read/write
sets. During the graph construction, the edges of the graph is first created, and
then in each read-write node (rwNodes), according to its read-write set, (RWSet)
generates queues for the keys and stores these queues in a list. Since each queue
of keys maintains all dependent transactions that read and write to it, we can
obtain a partial order between transactions on each key. As to transactions that
read and write to multiple keys, we need to get their order using key dependency.

After building the KCG, the next step is to determine the specific order of
each transaction. Based on key dependency, we can obtain the sorting priority
of keys. Procedure KeysRank ranks vertices in a graph based on in-degree and
out-degree. There may exist cycles among keys. This phenomenon is caused by
unserializable transactions, which will drop in the final sorting process. After
that, Procedure TransactionSorting is used to generate a commit order based
on KCG. Inspired by Lamport’s logical clock [10], we assign a unified sequence
number for each read/write unit in the queue to represent their sequence in
the total order. After removing unserializable transactions, we got a conflict-free
transaction order by switching transactions with the same sequence number to
a serial order for deterministic state transfer.

Key-Based Transaction Reordering 283

Algorithm 1. Key-based Reordering Algorithm
1: procedure CreateGraph

2: Initialize edges, queueArray, and queues as empty dictionaries

3: Construct a list of read/write nodes named rwNodes from set of transactions S

4: for each rw in rwNodes do

5: Create an edge with rw and an id

6: Add the new edge to edges

7: for each node n in rw do

8: append n to the list of nodes associated with the string key in queueArray

9: end for

10: end for

11: for each key in queueArray do

12: Sort the nodes associated with the key into rSlice and wSlice

13: Create a new queue with rSlice and wSlice, and add it to queues

14: end for

15: return a new QueueGraph with queues and edges

16: end procedure

17: procedure SortingRankDivision

18: Initialize a sequence seq to represent sorting ranks

19: if G.vertices == ∅ then

20: return

21: end if

22: Find the minimum in-degree in G, assign it to min

23: for each Kj in G do

24: if Aj .inDegree == min then

25: Select Aj and append it to seq, then break

26: end if

27: end for

28: if min > 0 then

29: Find the first keys with maximum out-degree in minAddrs, append it to seq

30: end if

31: Remove the vertex and edges of the selected vertex from G

32: Recursively call SortingRankDivision with the updated G

33: end procedure

34: procedure TransactionSorting

35: Initialize initialSeq with seq from SortingRankDivision

36: Find read units with sequence numbers in RWj , assign it to sortedRSet

37: if sortedRSet is empty then

38: Assign initialSeq to sequence in RWj and update maxRead to initialSeq

39: else

40: Find the minimum and maximum sequence numbers in sortedRSet, assign maxRead to maxSeq

and update sequence of remaining units in RWj to minSeq

41: end if

42: Find write units with sequence numbers in RWj , assign it to sortedWSet

43: if sortedWSet contains a unit whose read unit exists in RWj then

44: Increment sequence number

45: end if

46: for each unit in sortedWSet do

47: if its sequence is less than maxRead then

48: Abort the unit

49: end if

50: end for

51: for remaining units in RWj do

52: while writeSeq is assigned do

53: Increment writeSeq and then assign writeSeq to their sequence

54: end while

55: end for

56: end procedure

284 H. Ma et al.

5 Experimental Evaluation

In this section, we present a comprehensive evaluation of our key-based reorder-
ing method. We first describe the experimental setup for our prototype and the
workload in our experiments. Then, we evaluate the performance of KCG against
FIFO adopted by vanilla Fabric and CG used by Fabric++.

5.1 Experimental Setup

Table 4. Experiment Configuration

Parameters Values

Number of users 10,000

World State Database LevelDB

Number of transactions per block(block size) 100

Probability for picking a read transactions (Pr) 50%

s-value of Zipfian distribution 0.8

Environment: This paper designs a blockchain prototype system implemented
in GO 1.19 including simulated execution, sorting and verification of the Fab-
ric. During the simulation phase, we adopt LEVM (Little Ethereum Virtual
Machine) to provide an execution environment for our smart contracts written
in Solidity. The open source panjf2000/ants library is used to provide the ability
to manage and recycle a massive number of goroutines to simulate multiple peer
nodes executing transactions in parallel. In the sorting phase, three ordering
algorithms, FIFO, CG and KCG, are implemented. Table 4 respectively presents
the various parameters that we have configure for system and workload.

Workloads: We use SmallBank as the workload, which simulates typical asset
transfer scenarios. It provides 6 types of transactions for operating the data,
including 5 update transactions and 1 read transaction. The read transaction is
selected with probability Pr, while one of the five update transactions is chosen
with a probability 1 − Pr. The degree of skewness influences the distribution of
read/write operations among the 10,000 available accounts. A higher skewness
indicates a greater concentration of read/write operations on a smaller subset of
accounts, leading to an increased potential for conflicts (Table 5).

Key-Based Transaction Reordering 285

Table 5. Transaction Types in SmallBank Workload

Transaction Implication

CreateAccount Initialize random funds for each customer’s
checking and savings accounts

TransactSavings Add a certain amount of money to a savings
account

DepositChecking Add a certain amount of money to a
checking account

WriteCheck Indicates the removal of an amount from a
customer’s checking account

SendPayment Transfer funds between two checking
accounts

Amalgamate Transfer all funds from a savings account to
a checking account

Query Query about the amount of a customer’s
savings or checking account

5.2 Results

This section presents a comprehensive analysis of the performance metrics of
blockchain systems, specifically focusing on the influence of various parameters
and different ordering strategies. We parameterize three key factors: 1) the skew
parameter of the Zipfian distribution, 2) the block size, and 3) the percentage of
read transactions. Our benchmarking analysis primarily considers latency and
abort rate as the key metrics. It is worth mentioning that the ordering method
employed in Fabric is abbreviated as FIFO, while the conflict graph utilized
in Fabric++ and Fabricsharp is referred to as CG. Our proposed solution is
denoted as KCG. For all experiments, we conduct ten runs for each parameter,
and the reported results are the average values of these sum runs.

5.2.1 Impact of Block Size: To evaluate the impact of block size on per-
formance, we increase the number of transactions in each block from 50 to 200.
We set the percentage of read transactions as 50% and the skew parameter as
0.8. For other parameters, refer to Table 4.

Figure 4(a) shows the transaction abort rate under different strategies. The
results indicate that all three systems experience a drop in transaction rates
ranging from 5% to 15% when the block size is set to 50 and 100. However, the
CG strategy encounters memory-related failures when the block size increases
from 100 to 150. This is attributed to the increasing number of transactions
within a block, leading to a higher likelihood of conflicts and, consequently,
a more complex conflict graph. This is attributed to the increasing number of
transactions within a block, leading to a higher likelihood of conflicts and, conse-

286 H. Ma et al.

Fig. 4. Impact of the block size on transaction (a) aborting rate, (b) latency of FIFO,
CG and ours.

quently, a more complex conflict graph. In the CG strategy, the DFS algorithm is
utilized for searching, and when numerous cycles are present, memory consump-
tion becomes significant as a new object is created for each cycle detected in a
strongly connected subgraph. Our proposed KCG strategy maintains a transac-
tion abort rate that is lower compared to FIFO and equal to or lower than CG.
Moreover, unlike CG, our method can handle larger block sizes such as 150, 200,
or even larger. This is possible because KCG resolves conflicting transactions by
leveraging key dependency rather than transaction dependency. Key dependency
denotes the order of transactions on different keys, allowing for faster processing
of all writes and reads through the incorporation of a relatively small yet efficient
solution.

Figure 4(b) shows the average latency under different block sizes. It is observ-
able that the average latency escalates with the increase in block size, while
FIFO always maintains a low latency. These results are expected since both
CG and our KCG require additional reordering processing to resolve conflicting
transactions in the ordering phase. Additionally, more transactions included in
a block result in longer processing time, thus leading to higher latency. But the
latency in KCG is always lower than CG and is comparable with FIFO. This is
because the KCG method does not require the time-consuming cycle detection
and removal stages under each strongly connected component within the graph.
Furthermore, non-serializable transactions are directly discarded. Consequently,
compared to FIFO, the number of transactions necessitating verification within
KCG is reduced, thereby mitigating the delay. Hence, KCG proves to be a highly
efficient method in high contention scenarios with concurrency conflicts.

Key-Based Transaction Reordering 287

5.2.2 Impact of Transaction Contention: Next, we conduct a comprehen-
sive examination of transaction contention and its effects on overall performance.
We set varying degrees of transaction contention by adjusting the skew param-
eter of the Zipf distribution from 0.2 to 1.2 in steps of 0.2.

Fig. 5. Impact of skew parameter on transaction (a) aborting rate, (b) latency of FIFO,
CG, and ours.

Figure 5(a) summarizes the results of the transaction abort rate under vari-
ous skew parameters. We can see that for a small skew parameter (< 0.6), the
transaction abort rate of all three systems is relatively low because the num-
ber of potentially conflicting transactions is small. However, an increase in the
transaction abort rate of FIFO is witnessed with higher skew parameters (> 0.6),
attributed to the fact that high data skewness in the Smallbank workload leads to
a large number of potentially conflicting transactions. What’s worse, the CG pro-
cess fails due to exhausted memory when the skew exceeds 0.8. On the contrary,
KCG’s abort rate is always lower than FIFO. When the number of conflicting
transactions is small (with skew below 0.8), this can be resolved by CG adopted
by Fabric++. However, when it is set to 1.0 or higher, CG is prone to failure
due to memory exhaustion, and OOM occurs. Contrarily, our KCG allows the
system to operate normally for all skew degrees. KCG is not sensitive to the
increase of contention degree and demands fewer system resources due to avoid
building an edge between each pair of dependent transactions. Specifically, KCG
assigns each transaction to the corresponding keys. Unique keys housing depen-
dent transactions construct a novel scheduling graph, known as the key-based
conflict graph (KCG), where edges capture key dependencies.

288 H. Ma et al.

Fig. 6. Latency and Memory Cost of each sub-phase in CG and KCG.

When a skew parameter is set to 1.0 or higher, the rise in conflicts per key
yields more dependent transactions on each key. This incurs substantial com-
putational overhead to establish total order, rendering it inefficient in scenarios
with high contention and a large volume of conflicting transactions. The result
demonstrates KCG improves the transactions abort rate compared to FIFO. We
compare the average latency in Fig. 5(b). We observe that our KCG latency is
always lower than CG. Moreover, when the skew surpasses 0.8, the CG method
becomes inapplicable. This is due to the increase in conflicting transactions lead-
ing to a larger transaction processing time in CG. In contrast, it has a relatively
minor influence on our KCG system, where the rise in conflicts results in a
limitation of accessed keys.

As presented in Fig. 6, we evaluate the latency and memory cost of each sub-
phase in CG and KCG. The first and second columns represent the utilization
of time. Overall, the latency of KCG is 36.3% lower than that of CG, where
the time excluding the transaction commit stage is nearly equivalent across all
systems. However, latency for other time periods in KCG is markedly lower than
the corresponding stage latency in CG. Particularly under high data contention
scenarios with a skew rising to 1.0, the latency for cycle detection and removal
in CG substantially increases. This change is due to the recursive Johnson’s
algorithm, which has a time complexity of O((|V |+|E|)·(C+1)), and consumes a
significant amount of memory when the number of cycles is large. Turning to the
third and fourth columns, they indicate the utilization of memory resources. The
sorting phase in both systems only constitutes a small fraction, with the KCG
method outperforming CG in the other two stages. We can see that the graph
construction and keys rank/cycle detection occupy a large portion of memory due

Key-Based Transaction Reordering 289

to the overhead involved in establishing an edge between each pair of dependent
transactions and the object overhead created for each cycle during the process
of cycle detection in strongly connected components.

5.2.3 Impact of Read Transaction Percentage: This section presents an
evaluation of how the percentage of read transactions affects the performance
of simulated blockchain systems. We vary the percentage of read transactions
from 0.1 to 0.9 in steps of 0.2. Figure 7(a) illustrates the impact of the per-
centage of read transactions on the transaction abort rate. It can be observed
that as the percentage of read transactions increases, the transaction aborting
rate decreases. This can be attributed to fewer conflicting transactions occur-
ring when a higher proportion of read transactions is present, resulting in fewer
updates to transaction records within a short time slot. Similar to the previous
case, the CG method is not applicable when there are too many cycles in the
conflict graph, while the proposed KCG method remains effective under any read
transaction rate. Hence, the transaction abort rate of KCG outperforms that of
FIFO and CG.

Fig. 7. Impact of the read transaction percentage on (a) aborting rate, (b) latency of
FIFO, CG, and ours.

Figure 7(b) depicts the average latency of the three systems. As the pro-
portion of read transactions increases and the proportion of write transac-
tions decreases, the average latency shows a decreasing trend. Specifically, KCG
demonstrates lower latency compared to FIFO and CG. However, when the read

290 H. Ma et al.

transaction proportion is as low as 10%, there is a possibility of CG experienc-
ing errors or taking significantly longer than expected, primarily due to the
time-consuming cycle detection and removal. To summarize, the aforementioned
experiments demonstrate that the key-based CG construction method enables
efficient concurrency control and yields few transaction aborts in scenarios with
considerable transactions and conflicts. This method proves to be more suitable
for high contention scenarios than the compared schemes.

6 Conclusion and Future Work

This paper focuses on enhancing the efficiency of handling concurrency conflicts
in Hyperledger Fabric. We propose a key-based transaction reordering algorithm
called KCG, which effectively resolves conflicts with minimal overhead. We first
adopted a key-based transaction conflict graph construction method to replace
transaction dependency to support parallel transaction processing. Then, the
keys rank and sorting method is used to generate a transaction commit order.
Through evaluations conducted on a real workload using Smallbank, we demon-
strate that the key-based ordering method outperforms both the original and CG
ordering method adopted by Fabric and Fabric++ permissioned blockchain sys-
tems, particularly as the number of conflicting transactions increases. In future
work, we will further analyze resource consumption in concurrent transaction
processing and strive to improve the abort rate and latency of Hyperledger Fab-
ric.

Acknowledgement. The authors gratefully acknowledge the financial support pro-
vided by National Key R&D Program of China (No. 2022ZD0115302), in part by
the National Natural Science Foundation of China (No. 62202479, No. 61772030), the
Major Program of Xiangjiang Laboratory (No. 22XJ01004) and the Major Project of
Technology Innovation of Hunan Province (No. 2021SK1060-1).

References

1. Ethereum (2023). https://www.ethereum.org/zh/. Accessed 25 May 2023
2. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for per-

missioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, pp.
1–15 (2018)

3. Chacko, J.A., Mayer, R., Jacobsen, H.A.: Why do my blockchain transactions fail?
A study of hyperledger fabric. In: Proceedings of the 2021 International Conference
on Management of Data, pp. 221–234 (2021)

4. Dickerson, T., Gazzillo, P., Herlihy, M., Koskinen, E.: Adding concurrency to smart
contracts. In: Proceedings of the ACM Symposium on Principles of Distributed
Computing, pp. 303–312 (2017)

5. Ding, B., Kot, L., Gehrke, J.: Improving optimistic concurrency control through
transaction batching and operation reordering. Proc. VLDB Endow. 12(2), 169–
182 (2018)

https://www.ethereum.org/zh/

Key-Based Transaction Reordering 291

6. Gorenflo, C., Golab, L., Keshav, S.: XOX fabric: a hybrid approach to blockchain
transaction execution. In: 2020 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), pp. 1–9. IEEE (2020)

7. Gorenflo, C., Lee, S., Golab, L., Keshav, S.: Fastfabric: scaling hyperledger fabric
to 20 000 transactions per second. Int. J. Network Manage 30(5), e2099 (2020)

8. István, Z., Sorniotti, A., Vukolić, M.: StreamChain: do blockchains need blocks?
In: Proceedings of the 2nd Workshop on Scalable and Resilient Infrastructures for
Distributed Ledgers, pp. 1–6 (2018)

9. Kwon, M., Yu, H.: Performance improvement of ordering and endorsement phase in
hyperledger fabric. In: 2019 Sixth International Conference on Internet of Things:
Systems, Management and Security (IOTSMS), pp. 428–432. IEEE (2019)

10. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. In:
Concurrency: the Works of Leslie Lamport, pp. 179–196 (2019)

11. Li, Y., et al.: FastBlock: accelerating blockchains via hardware transactional mem-
ory. In: 2021 IEEE 41st International Conference on Distributed Computing Sys-
tems (ICDCS), pp. 250–260. IEEE (2021)

12. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized busi-
ness review, p. 21260 (2008)

13. Nasirifard, P., Mayer, R., Jacobsen, H.A.: FabricCRDT: a conflict-free replicated
datatypes approach to permissioned blockchains. In: Proceedings of the 20th Inter-
national Middleware Conference, pp. 110–122 (2019)

14. Reijsbergen, D., Dinh, T.T.A.: On exploiting transaction concurrency to speed up
blockchains. In: 2020 IEEE 40th International Conference on Distributed Comput-
ing Systems (ICDCS), pp. 1044–1054. IEEE (2020)

15. Ruan, P., Loghin, D., Ta, Q.T., Zhang, M., Chen, G., Ooi, B.C.: A transactional
perspective on execute-order-validate blockchains. In: Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data, pp. 543–557
(2020)

16. Sharma, A., Schuhknecht, F.M., Agrawal, D., Dittrich, J.: Blurring the lines
between blockchains and database systems: the case of hyperledger fabric. In:
Proceedings of the 2019 International Conference on Management of Data, pp.
105–122 (2019)

17. Sun, Q., Yuan, Y.: GBCL: reduce concurrency conflicts in hyperledger fabric. In:
2022 IEEE 13th International Conference on Software Engineering and Service
Science (ICSESS), pp. 15–19. IEEE (2022)

18. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2),
146–160 (1972)

19. Trabelsi, H., Zhang, K.: Early detection for multiversion concurrency control con-
flicts in hyperledger fabric. arXiv e-prints arXiv:2301.06181 (2023). https://doi.
org/10.48550/arXiv.2301.06181

20. Xiao, J., Zhang, S., Zhang, Z., Li, B., Dai, X., Jin, H.: NEZHA: exploiting concur-
rency for transaction processing in DAG-based blockchains. In: 2022 IEEE 42nd
International Conference on Distributed Computing Systems (ICDCS), pp. 269–
279. IEEE (2022)

21. Xu, L., Chen, W., Li, Z., Xu, J., Liu, A., Zhao, L.: Solutions for concurrency
conflict problem on hyperledger fabric. World Wide Web 24, 463–482 (2021)

http://arxiv.org/abs/2301.06181
https://doi.org/10.48550/arXiv.2301.06181
https://doi.org/10.48550/arXiv.2301.06181

Decentralized Self-sovereign Identity
Management System: Empowering

Datacenters Through Compact Cancelable
Template Generation

Junwei Yu(B) , Shaowen Li, Yepeng Ding , and Hiroyuki Sato

The University of Tokyo, Tokyo, Japan
{yujw,li-shaowen879,youhoutei,schuko}@satolab.itc.u-tokyo.ac.jp

Abstract. Digital identity management functions as a critical infras-
tructure for various information and communications technologies. How-
ever, traditional centralized systems are raising security concerns due
to their reliance on trusted intermediaries, which prompts the develop-
ment of self-sovereign identity (SSI). However, SSI still face challenges
regarding network pressures, blockchain costs, and security vulnerabil-
ities. In this paper, we propose Coconut, a novel system leveraging a
decentralized SSI management architecture to facilitate the establish-
ment of secure, localized digital identity and credential verification mech-
anisms, while obviating the necessity for reliance on trusted intermedi-
aries and blockchain technologies. Coconut reduces the storage overhead
by minimizing the responsibility of data centers and enabling them to
solely store public keys. On the end-user side, individuals retain the pre-
rogative to store their verifiable credentials within local environments.
Besides, we introduce a compact cancelable template generation algo-
rithm to enhance security and efficiency. Additionally, our experiments
demonstrate the effectiveness and performance of Coconut.

Keywords: Self-sovereign identity · Biometric-based cryptography ·
Privacy preservation

1 Introduction

In today’s landscape of information and communications technologies, the man-
agement of digital identities has gained paramount importance. Traditional cen-
tralized identity management systems [1] have long been plagued by vulnerabil-
ities. The realm of digital identity information management within data centers
raises a triad of crucial concerns encompassing storage capacity, computational
power expenditure for identity verification, and the paramount aspect of user
privacy.

This research was partially supported by KAKENHI (Grant-in-Aid for JSPS Fellows)
21J21087.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14493, pp. 292–303, 2024.
https://doi.org/10.1007/978-981-97-0862-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0862-8_18&domain=pdf
http://orcid.org/0009-0004-1657-3310
http://orcid.org/0000-0002-6996-9333
http://orcid.org/0000-0002-2891-3835
https://doi.org/10.1007/978-981-97-0862-8_18

Decentralized Self-sovereign Identity Management System 293

Conventional paradigms often necessitate considerable storage real estate to
accommodate the voluminous identity information. Simultaneously, the compu-
tational outlay for verification processes adds a layer of complexity to the oper-
ational dynamics. Low flexibility results in high costs for simple adjustments in
digital identity management. And, the revelation of sensitive identity data dur-
ing verification procedures can intrude upon user privacy and potentially lead
to adversarial consequences.

These multifaceted challenges underscore the imperative to employ a solution
that addresses these intricacies comprehensively. In this context, the adoption
of Self-Sovereign Identity (SSI) within the digital identity management system
of data centers [2] emerges as a salient and promising strategy.

However, while SSI brings the advantage of decentralization, it introduces
its own set of challenges, notably heightened network communication demands,
substantial blockchain costs, and the intricate task of securely binding digital
identities to physical entities to thwart identity theft [3] and fraud [4].

To address this complex array of challenges, a fresh approach emerges: the
integration of biometric measures into the system of SSI. By establishing a tan-
gible and verifiable link between digital identities and the individuals they rep-
resent, biometric integration presents a compelling solution to the limitations
and vulnerabilities in current SSI models.

The heart of our solution lies in a meticulously crafted compact cancelable
template generation algorithm. This algorithm serves as a robust shield for sen-
sitive biometric information, preserving privacy while allowing for secure verifi-
cation. Most notably, this algorithm’s implementation effectively mitigates the
memory-intensive demands on data centers.

Moreover, our approach significantly alleviates the computational strain dur-
ing authentication procedures. By embedding biometric information within ver-
ifiable credentials, we enable seamless and secure decentralized verification pro-
cesses via trusted edge computing. This strategic distribution of computation
minimizes the computational power needed at any single point, ensuring effi-
cient and flexible authentication while conserving energy.

2 Related Work

2.1 Self-sovereign Identity

Digital identity management is critical in the pervasive adoption of digital ser-
vices. The majority of existing digital identity systems are centralized and rely
on a central authority to manage and verify identity information. This central-
ized approach poses several security and privacy concerns, such as data breaches
and identity theft [5]. As an emerging paradigm, SSI [1,6] allows individuals to
manage, share, and verify their identity information securely and transparently,
which enhances system resilience and security. In addition, the ability to record
consent for data sharing provides transparency and enables individuals to make
informed decisions about sharing their identity information [7].

294 J. Yu et al.

Decentralized Identifiers (DIDs) are a crucial component of the self-sovereign
identity model. The first version of the DID specification was published in 2019
by the World Wide Web Consortium (W3C) [8]. Instead of a centralized author-
ity, DIDs rely on decentralized infrastructure such as blockchain to uniquely
associate an identifier with its owner. DIDs are further leveraged by verifiable
credentials (VCs) to bind entities with their credentials. Numerous DID systems
have been proposed and developed, such as uPort [9], Sovrin [10], Blockstack
[11], and Microsoft ION [12]. These systems are built on blockchains. However,
the adoption of blockchains can potentially increase costs and network commu-
nication demands, as well as limit scalability, interoperability, and sustainability
[6].

2.2 Biometric-Based Key Generation

Biometric-based key generation methods offer promising solutions for secure
authentication, access control, and data transmission. These methods are charac-
terized by their respective modality and revocation approaches. “Modality” refers
to the type or mode of biometric data used for key generation, while “Revoca-
tion” pertains to the ability to revoke or invalidate generated keys in case of
compromise or unauthorized access. We summarize these works in Table 1.

Table 1. Comparison of Biological-based Key Generation Algorithms

Algorithm Key Generation Modality Revocation

BIBE [13] Identity-based Multiple Yes
FIBE [14] Identity-based Single Yes
CBT-KG [15] Template-based Multiple Yes
PBKG [16] Physiological-based Single No
CBAKG [17] Behavioral-based Single No
MBKG [18] Multi-modal Multiple No
RBKG [19] Fuzzy commitment-based Single Yes
HBKG [20] Homomorphic-based Multiple No

However, challenges such as the requirement for precise and reliable biometric
sensors, protection of biometric data from theft or misuse, and ensuring user
privacy need to be addressed.

2.3 Fingerprint Matching Algorithm

There are several types of biometric features that can be utilized for authentica-
tion purposes, such as face, fingerprint, and palm print. Compared with others,
fingerprint biometrics are more accurate, easily acceptable to users, and more
convenient to collect.

Decentralized Self-sovereign Identity Management System 295

Fingerprint recognition algorithms can be classified into three categories:
Minutiae-based, Correlation-based, and Pattern recognition-based algorithms.
Minutiae-based algorithms extract minutiae points, such as ridge endings, bifur-
cations, and dots, to identify unique features of a fingerprint [21]. Correlation-
based algorithms compare an input fingerprint with a pre-stored database of
fingerprints using a correlation-based matching method [22], while Pattern
recognition-based algorithms use advanced techniques to identify unique fea-
tures, such as texture and orientation, of the fingerprint [23].

Fingerprint recognition, owing to its convenience and low cost, has been
widely used and promoted. However, decentralized fingerprint verification is an
area that has received relatively little attention in research. To address this gap,
further exploration is needed to identify suitable algorithms that can ensure data
security and privacy in a decentralized context. Additionally, the size of finger-
print templates and the potential trade-offs between template size and recog-
nition accuracy to optimize the performance of fingerprint recognition systems
should be considered. By addressing these challenges, the use of fingerprints can
be further expanded and enhanced in various fields.

3 Coconut

3.1 Overview

Our goal is to create a system that seamlessly integrates biometric information
into verifiable credentials, establishing a strong and reliable link between digital
identities and the physical individuals they represent. By doing so, we anticipate
overcoming the limitations and vulnerabilities of current SSI technologies, paving
the way for a more secure and privacy-preserving identity management solution.

In pursuit of the aforementioned objectives, we put forth an innovative
ecosystem centered around the utilization of Coconut ID, a secure and privacy-
enhancing identifier, to realize the desired outcomes. Our proposed ecological
system aims to effectively address the challenges associated with existing SSI
technologies, leveraging the integration of biometric measures.

Figure 1 illustrates the key components and interactions within the Coconut
ecosystem. The user, as the holder, plays a central role by generating a local
Coconut ID using the Compact Cancelable Template Generation algorithm. This
algorithm guarantees the creation of a unique and unlinkable identifier, protect-
ing the user’s privacy while maintaining the necessary security.

1. The user, as the holder, initiates the system by locally generating a unique
Coconut ID using the Compact Cancelable Template Generation algorithm.
This algorithm ensures the creation of a secure and privacy-preserving iden-
tifier.

2. The holder has the option to request a verifiable credential from the issuer. To
obtain this credential, the holder’s identity is verified by the issuer. Once the
verification is completed, the issuer digitally signs the verifiable certificate,
incorporating the Coconut ID, and transmits it to the user.

296 J. Yu et al.

Fig. 1. Overview of Coconut System.

3. The holder maintains a local repository for managing the received verifiable
credentials. Optionally, the holder can generate a verifiable presentation that
encapsulates one or more verifiable credentials. This presentation serves as a
concise and structured representation of the holder’s credentials.

4. The holder presents the verifiable credentials, either individually or within
a verifiable presentation, to a verifier. The presentation enables the holder
to provide relevant and trustworthy information to the verifier in a secure
manner.

5. The verifier undertakes the task of verifying the authenticity and integrity
of the received verifiable credentials or verifiable presentation. Additionally,
the verifier verifies the user’s digital identity by using suitable verification
mechanisms. This process includes verifying the credential status to ensure
the non-revocation of the verifiable credentials as provided by the issuer.

Next, we will delve into an in-depth introduction that delves into the funda-
mental concepts and technologies that form the core of the Coconut ecosystem.

3.2 Compact Cancelable Template Generation

Fingerprint Enhancement and Minutiae Extraction. In the phase of fin-
gerprint enhancement, we mainly employ Grayscale Conversion, Contrast Lim-
ited Adaptive Histogram Equalization, and Gaussian Blur Filter, which can
enhance the contrast of the fingerprint and reduces unwanted artifacts in the
image.

Decentralized Self-sovereign Identity Management System 297

The original fingerprint may contain artifacts and noise that can affect the
accuracy of fingerprint recognition systems. After undergoing the enhanced algo-
rithm, which has effectively removed noise and enhanced ridge details to improve
the clarity and fidelity of the fingerprint image.

Then, we have selected to use the Scale-Invariant Feature Transform (SIFT)
[24] algorithm for minutiae extraction in enhanced fingerprint images, utilizing
a Laplacian filter response instead of the Hessian determinant [25]. The SIFT
algorithm is used for detecting and describing local features in images.

D(x, y, θ) =
nBins∑

i=1

w(i) · hi(x, y, θ)

In this formula, D(x, y, theta) represents the SIFT descriptor for a key-
point at location (x, y) with orientation theta. The descriptor is computed by
concatenating nBins orientation histograms, h_i(x, y, theta), weighted by the
values w(i) (Fig. 2).

Fig. 2. Creation of Keypoint and Descriptor. Compute the gradient magnitude
and orientation at each image sample point within a region around the keypoint loca-
tion. The resulting samples are weighted by a Gaussian window and used to generate
orientation histograms that summarize the contents over subregions.

The SIFT algorithm is widely used in fingerprint recognition due to its ability
to detect and describe distinctive local features that are invariant to changes in
scale, rotation, and illumination. In this implementation, the SIFT algorithm is
utilized to detect and compute keypoints and descriptors from the input image.
The resulting keypoints and descriptors are expected to provide a robust repre-
sentation of the fingerprint image.

False Minutiae Removal. The filtering process involves the identification
and removal of various types of keypoints that are not indicative of unique
and discriminative features of the fingerprint. These types of keypoints include
islands, short ridges, bifurcations with sharp angles, endings near the edge of the
fingerprint, and spur or delta features.

The algorithm employs a set of criteria to ascertain the selection of relevant
keypoints to eliminate from the given list, which is based on OpenCV (Open
Source Computer Vision Library). It checks for “islands” in the fingerprint, which

298 J. Yu et al.

are small areas where the ridges converge and then diverges again. Keypoints
with a size of less than 4 are identified as islands and are removed. The function
then checks for short ridges by analyzing the keypoint’s response. If the response
is less than 0.02, the keypoint is removed. Additionally, the algorithm checks for
ending points that are too close to the edge of the fingerprint, and removes them
if they are present. Then, the function checks for spur or delta features, which
are other types of interference in the fingerprint. If a keypoint’s class ID is equal
to 3 or 4, the keypoint is removed (Fig. 3).

The removal of these undesirable keypoints helps to increase the accuracy and
efficiency of subsequent fingerprint matching and recognition tasks by reducing
the noise and redundancy in the extracted feature set.

Fig. 3. False Minutiae Removal processing. It is apparent from the comparison
images that False Minutiae Removal has a significant impact on the accuracy of fin-
gerprint alignment. The image on the left shows a significant amount of interference in
the form of non-discriminative keypoints, while the image on the right demonstrates
the effects of removing these undesirable keypoints.

Following a thorough empirical analysis of the dataset, it was discerned that
the dimensionality of the descriptor linked to 80 standard fingerprint images
underwent a False-Minutiae-Removal process, culminating in an average reduc-
tion to 21.03% of their initial magnitude, which is a significant achievement.
The enhanced robustness and precision of fingerprint matching obtained through
this method increase the reliability of fingerprint-based authentication systems,
which assume a paramount role in safeguarding secure digital identities.

Cancelable Biometrics. Cancelable biometrics is a technique that provides
a means of revocability and update ability in biometric authentication systems
[26]. It allows the user to update or cancel their biometric template when it is
compromised or no longer trusted.

To attain Cancelable Biometrics, we have presented a Homomorphic Obfus-
cation Encryption (HOE) algorithm. HOE is a class of encryption schemes that
are based on the idea of obfuscating the data in such a way that it can still be
processed without being decrypted [27].

Furthermore, the use of HOE in cancelable biometrics enables users to use
a single password to generate multiple template variations, thereby providing

Decentralized Self-sovereign Identity Management System 299

additional security against attacks such as dictionary attacks [28] and brute-
force attacks [29]. The resulting scrambled descriptors have the same statistical
distribution as the original descriptors, which ensures that the matching results
are consistent.

In our algorithm, referred to as Homomorphic Obfuscation Encryption
Scrambling Descriptor (HOE-SD), we introduce the process of generating the
scrambled descriptor vector, which involves the following steps:

Hashing: We apply the hash function hash to the password p to obtain the
salted hash value h. Seed Generation: From the first eight hexadecimal characters
of h, we derive an integer value that serves as the seed for a pseudorandom num-
ber generator. Pseudorandom Permutation: Utilizing the pseudorandom number
generator initialized with the seed value, we generate a random permutation of
the elements in the descriptor vector v. This step results in the creation of the
scrambled descriptor vector sv. Output: Finally, the function returns the scram-
bled descriptor vector sv.

By applying the HOE-SD algorithm, we achieve obfuscation and homomor-
phic encryption of descriptor vectors, allowing for secure processing while main-
taining the confidentiality of the underlying data.

To further enhance the security and usability of the generated cancelable bio-
metric templates, we also employed a combination of compression and symmet-
ric encryption techniques. Specifically, the widely-used and trusted zlib-deflated
compression algorithm [30] and AES mode CBC encryption mode [31] were uti-
lized to efficiently compress and secure the fingerprint feature descriptor data.
These techniques provide high levels of protection for the fingerprint feature
descriptor data.

To recapitulate, the aforementioned algorithm enables the generation of a
compact fingerprint template that integrates multi-layer encryption and Cance-
lable mechanisms.

3.3 Experiment

Fingerprint Database. FVC 2004 DB3 B is a widely utilized fingerprint
database in the research community. This database is a part of the Fingerprint
Verification Competition 2004 and consists of 400 grayscale fingerprint images
from 100 subjects, with four samples per subject. The fingerprints were captured
using a digital camera with a resolution of 500 dpi and a bit depth of 8 bits per
pixel [32]. This makes it an ideal tool for assessing the performance of feature
extraction and matching algorithms and comparing the effectiveness of different
fingerprint recognition techniques. In this study, we use the FVC 2004 DB3 B
database to evaluate the performance of our proposed algorithm under various
acquisition conditions, including variations in image quality, sensor resolution,
and finger placement.

Experimental Data. The present study evaluated the performance of a pro-
posed fingerprint-matching algorithm, and the experimental results demonstrate

300 J. Yu et al.

Fig. 4. (Left): Effects of Similarity Score Boundary on Error Rates. The
Figure shows the effects of the similarity score boundary on the false acceptance rate
(FAR), false rejection rate (FRR), and overall error rate (ER) of a fingerprint recog-
nition system. (Right): Relationship between Compression Rate and Size of
Features. The Figure presents the byte size of fingerprint features for multiple samples
alongside the corresponding compression ratios.

its high success rate. As Fig. 4 (left) shows, at a similarity score boundary of 0.08,
out of a total of 2000 attempts, 1935 successful matches were achieved, result-
ing in an impressively low error rate of 0.0325. Notably, the false acceptance
rate (FAR) was found to be 0, indicating that no impostor fingerprints were
erroneously identified as legitimate. These findings suggest that the proposed
algorithm is highly accurate and effective in distinguishing between genuine and
impostor fingerprints.

Figure 4 (right) reveals a lack of discernible correlation between the size of
fingerprint features and their corresponding compression rates, primarily due
to inherent variations in the fingerprint features themselves. The average size
of fingerprint features is determined to be 1020433.55 bytes, while the average
compression rate achieves 5.86%. Notably, the compression algorithm employed
attains a notable performance, with the worst compression rate reaching 11.98%.
These findings underscore the successful implementation of the encryption com-
pression algorithm, which effectively balances the compression effect while main-
taining a high level of matching accuracy for fingerprint recognition.

Experimental Analysis. The results of the present study indicate that the
proposed algorithm exhibits a high success rate and an impressively low error
rate, which exhibits the advantageous characteristic of a compact cancelable
template. These findings suggest that the proposed algorithm is a promising
solution for fingerprint recognition tasks.

In summary, our developed Compact Cancelable Template Generation algo-
rithm for fingerprint matching successfully achieves our primary goal. The algo-
rithm effectively combines compactness and high-security measures, ensuring its
suitability for deployment in industrial-grade applications. By utilizing our algo-
rithm, enhanced accuracy in fingerprint matching can be achieved while simul-

Decentralized Self-sovereign Identity Management System 301

taneously providing robust privacy protection in real-world scenarios. Notably,
our algorithm excels in its ability to compress fingerprint features and generate
cancelable templates, further enhancing its practicality and versatility in various
applications.

3.4 Evaluation

The proposed algorithm outlines a template-based fingerprint matching algo-
rithm that culminates in the creation of a compact and cancelable template.
This template is bound to the public key through a digital signature as the
Coconut ID, which is the core of the entire system.

The datacenter stores IDs as unique identifiers for user entities for effec-
tive access control and authorization. Through standard interactions, the dat-
acenter can authenticate the VC or VP managed by the user. This approach
empowers the user with a degree of self-governance concerning identity manage-
ment, contributing to a streamlined responsibility system for the data center.
Storage considerations primarily revolve around the Coconut ID, minimizing
storage-related concerns. Verification, in contrast, capitalizes on client-side com-
putational resources, alleviating the computational burden on the data center
effectively.

Evident in this architectural design is the principle of Minimalist Respon-
sibility, whereby the data center’s obligations are judiciously reduced. Storage
obligations narrow down to the singular Coconut ID, while the onus of verifica-
tion is shifted to the client-side computational infrastructure. Such an arrange-
ment significantly mitigates the data center’s computational load. Moreover, this
configuration augments the potential for scaling and flexibility within the access
control system. The data center’s role predominantly entails the formulation of
pertinent protocols and specifications, thus ensuring the secure and seamless
expansion of functionalities.

In sum, this system heralds a sophisticated approach, leveraging a template-
based fingerprint matching algorithm to yield a malleable and secure entity,
intrinsically tied to a Coconut ID via digital signatures. The intricate web of
identity relationships is adeptly managed through refined access control mecha-
nisms, empowering both users and data centers with optimized identity gover-
nance strategies.

4 Conclusion

In this paper, we present Coconut, a self-sovereign identity management system,
which offers a novel approach to address the challenges associated with iden-
tity management. We introduce the Compact Cancelable Template Generation
algorithm, enabling users to securely and affordably manage their identities and
claims independently, eliminating the reliance on third parties and blockchains.

302 J. Yu et al.

The data center identity management system, integrated by Coconut, adheres
to the principle of Minimalist Responsibility. In comparison to conventional iden-
tity management systems, Coconut requires less storage and computing power
while offering enhanced privacy protection mechanisms and greater flexibility.

Through extensive experimentation, we have successfully validated the per-
formance of Coconut. Our results indicate an impressively low error rate of 0.0325
for one-to-one matching of the encrypted fingerprints, with a false acceptance
rate of 0. Additionally, our Compact Cancelable Template Generation algorithm
achieves a noteworthy average compression ratio of 5.86%. These findings under-
score the efficiency and reliability of our proposed solution.

To summarize, our study introduces a robust and cost-effective solution for
self-sovereign identities and claims. Coconut, empowered by the Compact Can-
celable Template Generation algorithm, exhibits exceptional performance and
addresses critical concerns in current identity management practices.

References

1. Mühle, A., Grüner, A., Gayvoronskaya, T., Meinel, C.: A survey on essential com-
ponents of a self-sovereign identity. Comput. Sci. Rev. 30, 80–86 (2018). ISBN
1574-0137

2. Ding, Y., Sato, H., Machizawa, M.G.: Leveraging self-sovereign identity in decen-
tralized data aggregation. In: 2022 Ninth International Conference on Software
Defined Systems (SDS), Paris, France, pp. 1–8. IEEE (2022)

3. Newman, G.R., McNally, M.M., et al.: Identity theft literature review (2005)
4. Willox, N.A., Regan, T.: Identity fraud: providing a solution. J. Econ. Crime Man-

age. 1(1), 1–15 (2002)
5. Anderson, K.B., Durbin, E., Salinger, M.A.: Identity theft. J. Econ. Perspect.

22(2), 171–192 (2008)
6. Ding, Y., Sato, H.: Self-sovereign identity as a service: architecture in practice.

In: 2022 IEEE 46th Annual Computers, Software, and Applications Conference
(COMPSAC), Los Alamitos, CA, USA, pp. 1536–1543. IEEE (2022)

7. Tobin, A., Reed, D.: The inevitable rise of self-sovereign identity. Sovrin Found.
29(2016), 18 (2016)

8. W3C: Decentralized identifiers (DIDs) v1.0. W3C Recommendation, May 2019.
Accessed 12 Mar 2023

9. Lundkvist, C., Heck, R., Torstensson, J., Mitton, Z., Sena, M.: UPORT: a
platform for self-sovereign identity (2017). https://whitepaper.uport.me/uPort_
whitepaper_DRAFT20170221.pdf

10. Khovratovich, D., Law, J.: Sovrin: digital identities in the blockchain era. Github
Commit by Jasonalaw October 17, 38–99 (2017)

11. Ali, M., Nelson, J., Shea, R., Freedman, M.J.: Blockstack: a global naming and
storage system secured by blockchains. In: 2016 USENIX Annual Technical Con-
ference (USENIX ATC 2016), pp. 181–194 (2016)

12. Microsoft ION. https://github.com/decentralized-identity/ion. Accessed Mar 2023
13. Sarier, N.D.: A new biometric identity based encryption scheme. In: 2008 the 9th

International Conference for Young Computer Scientists, pp. 2061–2066. IEEE
(2008)

https://whitepaper.uport.me/uPort_whitepaper_DRAFT20170221.pdf
https://whitepaper.uport.me/uPort_whitepaper_DRAFT20170221.pdf
https://github.com/decentralized-identity/ion

Decentralized Self-sovereign Identity Management System 303

14. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639_27

15. Lee, C., Choi, J.-Y., Toh, K.-A., Lee, S., Kim, J.: Alignment-free cancelable fin-
gerprint templates based on local minutiae information. IEEE Trans. Syst. Man
Cybernet. B (Cybernet.) 37(4), 980–992 (2007)

16. Miao, F., Bao, S.-D., Li, Y.: Biometric key distribution solution with energy distri-
bution information of physiological signals for body sensor network security. IET
Inf. Secur. 7(2), 87–96 (2013)

17. Sitová, Z., et al.: HMOG: new behavioral biometric features for continuous authen-
tication of smartphone users. IEEE Trans. Inf. Forensics Secur. 11(5), 877–892
(2015)

18. Evelyn Brindha, V., Natarajan, A.M.: Multi-modal biometric template security:
fingerprint and palmprint based fuzzy vault. J. Biom. Biostat. 3(3), 100–150 (2012)

19. Zhang, L., Sun, Z., Tan, T., Hu, S.: Robust biometric key extraction based on iris
cryptosystem. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558,
pp. 1060–1069. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
01793-3_107

20. Gomez-Barrero, M., Maiorana, E., Galbally, J., Campisi, P., Fierrez, J.: Multi-
biometric template protection based on homomorphic encryption. Pattern Recogn.
67, 149–163 (2017)

21. Jain, A., Ross, A., Prabhakar, S.: Fingerprint matching using minutiae and texture
features. In: Proceedings 2001 International Conference on Image Processing (Cat.
No. 01CH37205), vol. 3, pp. 282–285. IEEE (2001)

22. Nandakumar, K., Jain, A.K.: Local correlation-based fingerprint matching. In:
ICVGIP, pp. 503–508 (2004)

23. Cole, S.A.: History of fingerprint pattern recognition. Automatic fingerprint recog-
nition systems, pp. 1–25 (2004)

24. Lindeberg, T.: Scale invariant feature transform (2012)
25. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-

put. Vision 60, 91–110 (2004)
26. Patel, V.M., Ratha, N.K., Chellappa, R.: Cancelable biometrics: a review. IEEE

Signal Process. Mag. 32(5), 54–65 (2015)
27. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-

tion, and more. In: Proceedings of the Forty-Sixth Annual ACM Symposium on
Theory of Computing, pp. 475–484 (2014)

28. Pinkas, B., Sander, T.: Securing passwords against dictionary attacks. In: Proceed-
ings of the 9th ACM Conference on Computer and Communications Security, pp.
161–170 (2002)

29. Florêncio, D., Herley, C., Coskun, B.: Do strong web passwords accomplish any-
thing? HotSec 7(6), 159 (2007)

30. Gailly, J., Adler, M.: Zlib compression library (2004)
31. Vaidehi, M., Justus Rabi, B.: Design and analysis of AES-CBC mode for high

security applications. In: Second International Conference on Current Trends In
Engineering and Technology-ICCTET 2014, pp. 499–502. IEEE (2014)

32. Maio, D., Maltoni, D., Cappelli, R., Wayman, J.L., Jain, A.K.: FVC2004: third
fingerprint verification competition. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004.
LNCS, vol. 3072, pp. 1–7. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-25948-0_1

https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-642-01793-3_107
https://doi.org/10.1007/978-3-642-01793-3_107
https://doi.org/10.1007/978-3-540-25948-0_1
https://doi.org/10.1007/978-3-540-25948-0_1

Low-Latency Consensus with Weak-Leader
Using Timestamp by Synchronized Clocks

Yue Ni1,2, Guangping Xu1,2(B), and Yi Tian1,2

1 School of Computer Science and Engineering, Tianjin University of Technology,
Tianjin, China

2 Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology,
Tianjin, China

xugp@email.tjut.edu.cn

Abstract. Weak leader algorithms can improve the efficiency of reach-
ing consensus by reducing the number of communications for distributed
network services. However, they generate a large number of conflicts
during operation, which can lead to expensive cross-region communica-
tions and make them difficult to adapt to WAN environments. So how
to efficiently resolve conflicts becomes a key challenge. In this paper,
we propose an approach applied to weak-leader algorithms, which effec-
tively reduces the happens of conflicts and provides low-latency and high-
throughput consensus in WAN systems, called the Low-Conflict Consen-
sus method (LCC). Our proposed LCC uses timestamps generated by
synchronized clocks to reduce conflicts. We present how LCC determines
the delayed time in message processing and adopts some rules to sort
the received messages. We validate and evaluate LCC through extensive
experiments, which show that LCC can effectively reduce conflicts and
the latency to achieve consensus.

Keywords: Weak Leader · Timestamp · Conflict

1 Introduction

The characteristics of distributed service computing systems [15,16] determine
that they will have many nodes with wide distribution; at the same time, node
crashes and network failures [17,18] may make system failures normal. The avail-
ability and fault tolerance of distributed systems can be implemented by deploy-
ing the replicated data in multiple data centers across geographical locations
[11–13]. Data consistency is the most important question in data replication,
and it means that multiple replicas agree on the same data or on the same order
of multiple data. Various distributed consensus algorithms aim to solve data con-
sistency problem [10]. However, the problem of high consensus latency seriously
affects the performance of the system.

When such algorithms are deployed in a wide area network (WAN), mes-
sage transmission between replicas will take much long time. That is, consensus
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14493, pp. 304–315, 2024.
https://doi.org/10.1007/978-981-97-0862-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0862-8_19&domain=pdf
https://doi.org/10.1007/978-981-97-0862-8_19

Low-Latency Consensus with Weak-Leader Using Timestamp 305

latency is mainly determined by the communication time and the number of
communications for message transmission. In WAN networks, some works, such
as Fast Paxos [4] and EPaxos [3], try to reduce the number of messages communi-
cated across regions if we want to reduce the consensus latency. These algorithms
are the variants of Paxos [1] which have no leader or a weak leader, but differ-
ent from Multi-Paxos [2] and Raft [25] which have a strong leader. Both the
no-leader and weak-leader algorithms reduce the communication time by reduc-
ing the number of communications between replicas to the leader by weakening
the performance of the leader. However, because of this, the Acceptor will pro-
cess messages from different Proposers, thus creating conflicts that affect the
performance of the algorithm. The no-leader algorithm completely offloads the
leader and requires the Acceptor to sort the messages on its own when resolving
conflicts. Taking EPaxos as an example, it easily receives the influence of com-
plex dependency models and generates deadlocks when resolving conflicts. The
leader in the weak-leader algorithm can still assume the role of message ordering
and only needs to recollect the information and resend the Prepare message to
resolve the conflict. Taking Fast Paxos as an example, it only needs the leader to
re-execute the Classic Round to resolve the conflict, which is relatively simple.
Therefore, we conduct research on low consensus delay algorithms for the weak-
leader algorithm like Fast Paxos. Because the leader requires many additional
communication steps in resolving conflicts, and greatly increases the consen-
sus latency of the algorithm. We hope to propose methods for simple conflict
resolution to reduce communication rounds to accommodate WAN.

We observe that conflicts occur mainly because replicas process operations
at different times and in different orders, and that setting rules for the order in
which operations are processed is a key point in resolving conflicts. We propose
LCC, which uses timestamps and synchronized clocks on the replicas to impose
intentional delays on the replicas, and the replicas try to process operations
in order at the same time to reduce conflicts. In Clock-RSM [5], TOQEPaxos
[19,24], and Nezha [23], all propose methods to order the commands based on
clock synchronization while ensuring the correctness of the algorithm, which
shows that it is feasible to use synchronized clocks in consensus algorithms and
to sort messages in consensus algorithms based on their recorded times. We
analyze and evaluate LCC and compare it with Fast Paxos and Multi-Paxos.
Experiments show that LCC can reduce conflict rates by 15% and latency by
10% in a high concurrency state.

Briefly, this paper makes the following contributions:

• We propose an effective consensus algorithm, called LCC, which is a way to
reduce conflicts in Fast Paxos using synchronized clocks and timestamps.

• We analyze the conflict rate and execution latency of Fast Paxos and LCC
and show the latency advantage of LCC.

• We compare and evaluate the throughput of LCC, Fast Paxos, and Multi-
Paxos, and show the throughput advantage of LCC.

306 Y. Ni et al.

The remainder of this paper is organized as follows: Sect. 2 provides some back-
grounds, Sect. 3 describes the implementation of LCC, Sect. 4 evaluates LCC,
Sect. 5 discusses related work, and Sect. 6 provides a conclusion.

2 Background and Motivation

Fig. 1. Fast Paxos conflict resolution example.

We address the conflict problem using Fast Paxos as a representative of weak-
leader algorithms, which is characterized by optimal performance by simplifying
the communication process. However, the conflict problem of Fast Paxos can
cause its advantages to be lost and even have higher consensus latency. In the
rest of this section, we will describe the conflict generation of Fast Paxos and
the conflict resolution idea.

2.1 Conflicts

The execution process of Fast Paxos is divided into Classic Round and Fast
Round. Classic Round works the same as in classic Paxos. The Fast Round allows
consensus to be reached in one round-trip communication, and an Acceptor can
communicate directly with a Proposer if the leader sends Any-val message in
the Fast Round. Each Acceptor will decide on its own which Accept message to
take as the accept value. Therefore, Fast Paxos will create many conflicts. As
shown in Fig. 1, the Proposer and Acceptor can communicate directly after the
leader sends an Any-val message. P1 and P2 send Accept messages with different
values. Due to the different distances between P1 and P2 arriving at A1, A2,
and A3, the Acceptor accepts the first message that arrives. Then, A1 and A2
accept the Accept messages with different values and create a conflict. To ensure

Low-Latency Consensus with Weak-Leader Using Timestamp 307

the correctness of the algorithm, the leader will rejoin the communication and
execute Classic Round to resolve the conflict. In high concurrency scenarios, the
probability of conflict occurrence and the cost of conflict resolution can be very
high. Note that reducing the probability of conflict is the key for the algorithm
to achieve as low as possible for consensus latency.

2.2 Motivation

Based on the above analysis of conflict formation, we can impose an intentional
delay on the replicas to reduce the conflict rate. The replica closer to the Proposer
delays the processing of the Accept message until the farthest replica accepts this
message. Our basic idea is that the replica processes the Accept messages from
the Proposer in an inert manner. After a replica receives Accept messages from
Proposers, it needs to wait for some time and then process them in a certain
order. We want to minimize the generation of conflicts through the way that
replicas process Accept messages in the same order.

2.3 Synchronized Clock

LCC is proposed on the base of synchronizing the clocks of the replicas in the
cluster. About the clock synchronization, we run NTP to keep the physical clock
at each replica synchronized with a nearby public NTP server [9]. NTP is a proto-
col used to synchronize the time of computers. It allows computers to synchronize
to their servers or clock sources, providing highly accurate time correction.

Proposer

Acceptor1
Accept1 Time1

Accept0 Time0

Acceptor2
Accept1 Time1

Accept0 Time0

Acceptor3
Accept1 Time1

Accept0 Time0

Acceptor...

Learner

L
earn

Accept1 Time1

Accept0 Time0

Time1≥
CurrentTime

handle

Fig. 2. System Overview

3 Proposed Approach

3.1 Overview

LCC uses timestamps and synchronized clocks to reduce conflicts, and it enables
weak leader algorithms to reduce consensus latency by minimizing communica-
tion steps while ensuring correctness. We implement LCC based on Fast Paxos.

308 Y. Ni et al.

Figure 2 shows the system overview of the LCC. First, synchronize the clocks
of all replicas in the cluster. We use the Network Time Protocol (NTP) clock
synchronization [9] to synchronize the clocks of multiple replicas in the sys-
tem; Second, replicas calculate the time recorded by the timestamp and sort
the Accept messages that replicas receive based on the calculated time; Finally,
multiple replicas can process messages in the same order, and reduce the impact
of conflicts about the consensus algorithm.

We divide the design of the method into two parts: calculating the one-way
delay time between replicas and constructing the order to process the messages
after the replicas receive them.

3.2 Calculation of One-Way Delay Time

LCC requires each replica to estimate the one-way delay time of message trans-
mission to other replicas. It is difficult to directly calculate the time difference
of message transmission among multiple replicas across geographic regions. In
this paper, timestamps are attached to messages to calculate the one-way delay
between replicas. As shown in Fig. 3, the timestamp records the SendAt time
when A sends an Accept message and the ReceiveAt time when B receives this
Accept message. B records the ReceiveAt time when it receives an Accept mes-
sage from A. B can calculate the one-way delay time between B and A. The
one-way delay time between other replicas is calculated in the same way. Mean-
while, each replica maintains a time set that writes the one-way delay time
between itself and all other replicas, and the existence of the time set allows the
replica to easily query the maximum value.

A

B

C

Accept0
SendAt

ReceiveAt

ReceiveAt

ReceiveAt

Accept1
SendAt

ReceiveAt

ReceiveAt

ReceiveAt

OneWayDelayEwma[BA]= TimeBA0+ TimeBA1

OneWayDelayEwma[CA]= TimeCA0+ TimeCA1

OneWayDelayEwma[DA]= TimeDA0+ TimeDA1

Fig. 3. Calculation of one-way delay time.

In order to accurately reflect the trend of recent time changes, we use a
weighted moving average method to update the time data in the set. Different
weights are assigned to the original data and the updated data, and the moving
average is calculated based on these different weights. As shown in Fig. 3, after
the Accept0 message is transmitted between replicas, the one-way delay time
from other replicas to replica A is recorded. When the Accept1 message begins
to transmit, the recorded time in each replica needs to be updated. Let the
time weight of the Accept0 message be α and the time weight of the Accept1

Low-Latency Consensus with Weak-Leader Using Timestamp 309

message be β. The updated one-way delay time is αTimeBA0+βTimeBA1. See
Algorithm 1 for implementation details.

3.3 Processing of Replica Messages

A

B

C

Accept0

Accept1

Message ProcessAtTime

Accept0 Max0+msg0.src.time

Accept1 Max1+msg1.src.time

Priority queue

Fig. 4. Sorting the messages received by the replica by priority.

After the replicas have recorded the one-way delay time, they need to sort the
received Accept messages in a certain order. The replica first needs to maintain
a priority queue when sorting messages. After receiving an Accept message, the
replica puts this message and its corresponding ProcessAtTime into the priority
queue. The smaller ProcessAtTime is given a higher priority. As shown in Fig. 4,
there will be two columns of messages in the priority queue of B: Accept0 and
its corresponding ProcessAtTime0; and Accept1 and its corresponding Proces-
sAtTime1. In the priority sequence, the ProcessAtTime1 recorded in B is larger
than ProcessAtTime0. Then in the priority sequence of B, the Accept0 message
is first as the queue head message out of the queue for execution, and on the
other replicas as well. See Algorithm 2 for implementation details.

Table 1. Definition of symbols used in the algorithm.

Symbols Definitions

Config All surviving replicas in the current configuration
Clock Current time
Log Command logging to stable storage
ClockSyncPQ Priority Queue
PeakPriority The head element of the priority queue
OneWayDelayEwma [] Array holding one-way delay times

310 Y. Ni et al.

3.4 Implementation

Algorithms 1 and 2 provide the pseudo-codes for LCC. Table 1 defines the sym-
bols used in the algorithm.

One-Way Time Determination: The first part of the method is given in
Algorithm 1, which explains how to calculate one-way delay time.

Algorithm 1. Time Compute at Replica r
1: upon receive <Request cmd> from client
2: ProcessAt ← Clock
3: SendAt ← ProcessAt
4: send <ACCEPT cmd, ProcessAt> to replica in Config
5:
6: upon receive <ACCEPT cmd, ProcessAt> from r
7: ProcessAt ← Clock
8: ReceiveAt ← ProcessAt
9: OneWayDelayEwma[r] ← ReceiveAt − SendAt

10: ProcessAtT ime ← ComputT ime()
11: append <ACCEPT cmd, ProcessAtTime > to ClockSyncPQ
12:
13: function ComputT ime()
14: return SendAt+max(OneWayDelayEwma[r])

Sorting Steps: The second part of the method is given in Algorithm 2, which
describes the steps of message execution by priority.

Algorithm 2. Message Execution
1: if TimestampSorting = true & ClockSyncPQ! = null then
2: PeakPriority = ClockSyncPQ.Top()
3: CurrentT ime ← Clock
4: end if
5:
6: if CurrentT ime >= PeakPriority.T ime then
7: send Accept< ACCEPT cmd, ProcessAtTime > to Log
8: remove Accept< ACCEPT cmd, ProcessAtTime > from ClockSyncPQ
9: end if

4 Evaluation

In the performance evaluation, the variations of the number of conflicts generated
in the execution of the algorithm is quantified and analyzed, as well as the
variations of the execution latency and the throughput of the algorithm are
analyzed under different levels of message interference.

Low-Latency Consensus with Weak-Leader Using Timestamp 311

4.1 Experimental Setup

We use Centos 7 operating system with replicas. The commands submitted on
the replicas are processed by Fast Paxos and LCC separately, comparing their
latency time during execution. Replicas use the NTP protocol to keep each
clock synchronized of replicas with a nearby public NTP server. For the message
interference case, we simulate the level of concurrency of multiple clients sending
messages by modifying the percentage of Shuffle in the experiment.

4.2 Conflict Rate

The experiment mainly depends on the percentage of Shuffle to affect the conflict
rate. As shown in Fig. 5, For the Fast Paxos, the high the percentage of Shuffle,
the more conflicts are generated. For LCC, the advantage becomes more and
more obvious as the conflict rate increases, and it can effectively reduce the
conflict rate.

Fig. 5. Comparing the conflict rate of Fast Paxos and LCC with different Shuffle
percentages.

4.3 Latency

In the above experiments, it is shown that LCC can effectively reduce the conflict
rate. However, our ultimate goal of reducing the conflict rate is to reduce the
latency, so the latency time also needs to be evaluated.

Average Latency: In order to observe the effect of LCC in comparison with the
Fast Paxos in terms of latency, we evaluated the average latency of the replicas
during the execution of the algorithm. Figure 6(a) shows the average latency of
each replica, and it can be seen that LCC provides a better average latency than
the Fast Paxos.

P99 Latency: To more completely evaluate the latency aspect of LCC, we
measure the P99 latency of the replica during the execution of the algorithm.
Figure 6(b) shows the P99 latency of the replicas, and LCC has a lower P99

312 Y. Ni et al.

latency than the Fast Paxos. Because the Fast Paxos will generate many conflicts
in high concurrency scenarios, LCC can effectively reduce conflicts and reduce
message communication between replicas in high concurrency scenarios. And just
waiting for a period of time before executing an Accept message, the waiting time
is relatively short than the time generated by message communication. Therefore,
LCC has smaller P99 latency than the Fast Paxos.

Execution Latency: We also compare and evaluate LCC, Fast Paxos, and
the now widely used Multi-Paxos. As shown in Fig. 6(c), for Multi-Paxos, as
Shuffle increases, the leader creates a bottleneck problem and the execution
delay of Multi-Paxos increases significantly. For Fast Paxos and LCC, the exe-
cution latency of LCC is similar to that of Fast Paxos during execution with less
interference. However, the conflict rate increases significantly when the message
interference becomes greater, and the advantage of LCC increases significantly.

Fig. 6. Comparing the latency of Fast Paxos, LCC and Multi-Paxos at the seven sites.

4.4 Throughput

The request message volume in the experiments is the number of Requests ini-
tiated by the client. Figure 7 shows the throughput comparison of Multi-Paxos,
Fast Paxos, and LCC. The change in throughput for low conflict rates is shown
in Fig. 7(a). At low conflict rates, the advantage of LCC is not obvious. At high
conflict rates, as shown in Fig. 7(b). Fast Paxos will reach the throughput bottle-
neck quickly as the message volume increases significantly during the execution.

Fig. 7. Comparing the throughput of Multi-Paxos, Fast Paxos, and Timestamp Sorting
Method for low and high conflict cases.

Low-Latency Consensus with Weak-Leader Using Timestamp 313

LCC can reduce many conflicts and has a more obvious advantage in terms of
throughput.

5 Related Work

As distributed systems are more and more widely deployed in WAN, the problem
of high consensus latency is frequently mentioned. Optimization of the funda-
mental consensus algorithm has been frequently proposed in order to achieve
low latency [6,14,20,21]. FPaxos [7,22] provides a more flexible quorum selec-
tion. It reduces the consensus latency caused during communication by reducing
the number of nodes in the system that need to communicate across regions.
WPaxos [8] uses dynamic partitioning and local commits to regions to reduce
the consensus latency during algorithm execution. Clock-RSM [5] is a low latency
timestamp-based replication algorithm for inter-data center state machines.
Sequencing the instances depending on the timestamp of the synchronized clocks
allows state machine replication to be done in less time. Which advantage lies
mainly in the fact that the replica broadcasts an answer to all other replicas,
which is also possible for Fast Paxos.

6 Conclusion

In this paper, we take the Fast Paxos algorithm as an example to analyze the
impact of conflicts on performance in weak leader algorithms, and then propose
the LCC method, which uses synchronized clocks and timestamps to reduce the
conflicts and consensus delay in Fast Paxos. Most weak leader algorithms reduce
the consensus delay by reducing the number of communications between each
replica and the leader, but result in many conflicts that make them unsuitable
for the WAN. LCC allows the replicas to impose intentional delays on incoming
messages and to order the messages to process, which allows most replicas to
execute messages in the same order, which effectively reduces the number of
conflicts and lowers the delay to reach consensus.

Acknowledgement. This work was supported in part by grants from National Nat-
ural Science Foundation of China (Project number: 61971309).

References

1. Lamport, L.: Paxos made simple. In: ACM SIGACT News (Distributed Computing
Column), pp. 18–25 (2001)

2. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst., 133–169
(1998)

3. Moraru, I., Andersen, D.G., Kaminsky, M.: There is more consensus in egalitarian
parliaments. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pp. 358–372 (2013)

4. Lamport, L.: Fast paxos. In: Distributed Computing, pp. 79–103 (2006)

314 Y. Ni et al.

5. Du, J., Sciascia, D., Elnikety, S., Zwaenepoel, W., Pedone, F.: Clock-RSM: low-
latency inter-datacenter state machine replication using loosely synchronized phys-
ical clocks. In: 2014 44th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks, pp. 343–354 (2014)

6. Arun, B., Peluso, S., Palmieri, R., Losa, G., Ravindran, B.: Speeding up consensus
by chasing fast decisions. In: 2017 47th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN), pp. 49–60 (2017)

7. Howard, H., Malkhi, D., Spiegelman, A.: Flexible Paxos: quorum intersection revis-
ited. In: International Conference on Principles of Distributed Systems, pp. 1–14
(2016)

8. Ailijiang, A., Charapko, A., Demirbas, M., Kosar, T.: WPaxos: wide area network
flexible consensus. IEEE Trans. Parallel Distrib. Syst. 31, 211–223 (2020)

9. The network time protocol (2014). http://www.ntp.org/
10. Burrows, M.: The Chubby lock service for loosely-coupled distributed systems. In:

Symposium on Operating Systems Design Implementation, pp. 335–350 (2006)
11. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-

roach: a tutorial. ACM Comput. Surv. 22, 299–319 (1990)
12. Baker, J., Bond, C., Corbett, JC., et al.: Megastore: providing scalable, highly

available storage for interactive services. In: Conference on Innovative Data Sys-
tems Research, pp. 223–234 (2011)

13. Calder, B., Wang, J., Ogus, A., et al.: Windows azure storage: a highly available
cloud storage service with strong consistency. In: Symposium on Operating Systems
Principles, pp. 143–157 (2011)

14. Zieliński, P.: Low-latency Atomic Broadcast in the presence of contention. In:
Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 505–519. Springer, Heidelberg
(2006). https://doi.org/10.1007/11864219_35

15. Corbett, C., Dean, J., Epstein, M., et al.: Spanner: Google’s globally-distributed
database. ACM Trans. Comput. Syst. 31, 1–22 (2013)

16. Baker, J., Bond, C., Corbett, C., et al.: Megastore: providing scalable, highly avail-
able storage for interactive services. In: Conference on Innovative Data Systems
Research, pp. 223–234 (2011)

17. Waldo, J., Wyant, G., Wollrath, A., Kendall, S.: A note on distributed computing.
In: Vitek, J., Tschudin, C. (eds.) MOS 1996. LNCS, vol. 1222, pp. 49–64. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-62852-5_6

18. Rotem-Gal-Oz, A.: Fallacies of distributed computing explained[EB/OL] (2006).
http://www.rgoarchitects.com/Files/fall/

19. Geng, Y., et al.: Exploiting a natural network effect for scalable, fine-grained clock
synchronization. In: Proceedings of the 15th USENIX Conference on Networked
Systems Design and Implementation, pp. 81–94 (2018)

20. Seo, H., Park, J., Bennis, M., Choi, W.: Communication and consensus co-design
for distributed, low-latency, and reliable wireless systems. IEEE Internet Things
J. 8, 129–143 (2021)

21. Wang, Y., Hu, H., Qian, W., Zhou, A.: Migratable Paxos. In: Nah, Y., Cui, B.,
Lee, S.-W., Yu, J.X., Moon, Y.-S., Whang, S.E. (eds.) DASFAA 2020. LNCS, vol.
12112, pp. 296–304. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
59410-7_20

22. Howard, E., Mortier, R.: Relaxed Paxos: quorum intersection revisited (again). In:
Proceedings of the 9th Workshop on Principles and Practice of Consistency for
Distributed Data, pp. 16–23 (2022)

http://www.ntp.org/
https://doi.org/10.1007/11864219_35
https://doi.org/10.1007/3-540-62852-5_6
http://www.rgoarchitects.com/Files/fall/
https://doi.org/10.1007/978-3-030-59410-7_20
https://doi.org/10.1007/978-3-030-59410-7_20

Low-Latency Consensus with Weak-Leader Using Timestamp 315

23. Jinkun, G., Sivaraman, A., Prabhakar, B., Rosenblum, M.: NEZHA: deployable and
high-performance consensus using synchronized clocks. In: Proceedings of VLDB
Endowment, pp. 629–642 (2022)

24. Tollman, S., Jin Park, S., John, O.: EPaxos revisited. In: Symposium on Networked
Systems Design and Implementation, pp. 613–632 (2021)

25. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm.
In: 2014 USENIX Annual Technical Conference (USENIX ATC 2014), pp. 305–319
(2014)

AOPT-FL: A Communication-Efficient
Federated Learning Method

with Clusterd and Sparsification

Danlei Zhang, Geming Xia(B), and Yuxuan Liu

College of Computer Science and Technology, National University of Defense
Technology, Changsha 410000, China

546143539@qq.com, xiageming@163.com

Abstract. Federated Learning is a distributed machine learning tech-
nique that allows multiple devices to learn a shared model collaboratively
without exchanging their data. It can be used to improve model accu-
racy while preserving user privacy. But traditional Federated Learning
incurs significant communication overhead and does not perform well
when the training data are not independent and identically distribute
(Non-IID). Therefore, a Federated Learning algorithm based on adap-
tive Top-k sparsification and OPTICS method is proposed, which solves
the problem that Federated Learning has low accuracy and high com-
munication overhead on Non-IID data. Compared to existing Federated
Learning algorithm, our algorithm has improved the accuracy of the
model and reduced communication overhead.

Keywords: Cluster · Federated Learning · Sparsification · Residual

1 Introduction

With the rapid development of the Internet of Things and edge computing tech-
nologies, there is an increasing need for devices and organizations to share data
and train machine learning models collaboratively [1]. However, traditional cen-
tralized machine learning methods face important challenges, such as the need
to centralize data in one place for training, which can lead to issues related to
data leakage and privacy concerns [2]. In addition, cross-domain data exchange
between devices and organizations also presents a number of technical challenges.

To address these issues, Google first proposed the Federated Learning theory
in 2016 [1]. Federated learning allows multiple devices or organizations to con-
duct joint model training through data sharing without centralizing raw data
in one place. This decentralized model training approach can effectively pro-
tect data privacy and security while achieving more efficient model training and
resource utilization [3].

However, one of the main problems in Federated Learning is the excessive
cost of communication. The model size of a simple four-layer convolutional neural
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14493, pp. 316–327, 2024.
https://doi.org/10.1007/978-981-97-0862-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0862-8_20&domain=pdf
https://doi.org/10.1007/978-981-97-0862-8_20

A Communication-Efficient Federated Learning 317

network is about 800KB, and training on large datasets and multiple clients
at the same time can easily increase communication overhead to more than
1PB [4]. At the same time, the edge environment itself has the characteristics
of small communication bandwidth, and if methods are not taken to reduce
communication overhead, the application scenarios of Federated Learning will
be greatly limited.

Another problem with Federated Learning is that it does not perform well
on data that is Non-IID [5]. Training data in Federated Learning is directly
generated by the data owner, so the distribution characteristics of the data are
no longer controllable [6]. When client data is not independent and identically
distribute, model training will be directly affected.

To solve the above problems, this paper proposes an efficient Federated
Learning method that combines gradient compression and clustering methods.
The main contributions of this paper are as follows:

– An Adaptive Sparse Ternary Compression (ASTC) algorithm is proposed.
Based on the original STC algorithm [2], according to the convergence char-
acteristics of machine learning, Newton’s law of cooling is used to fit the
convergence curve. Use the depreciation rate λ to optimize residuals. Experi-
mental results on different datasets and models have shown that our method
effectively improves the accuracy of Federated Learning.

– Based on the idea of multitasking learning, we use OPTICS method in the
Federated Learning process to improve the accuracy of Federated Learning
on Non-IID data. The current DBSCAN algorithm [7] is sensitive to origi-
nal parameters. OPTICS solves this problem. Compared to DBSCAN, our
algorithm has better performance in most cases.

2 Related Work

Although Mcmahan et al. [1] claim that FedAvg can handle Non-IID data to
some extent, numerous studies have shown that Degradation of Federated Learn-
ing accuracy on Non-IID data is almost inevitable [8]. The performance degra-
dation is mainly due to the divergence of the weights of the local model due to
Non-IID data.

Sparsification is a commonly used method for reducing communication
overhead. It limits parameter updates to a small portion. Storm [9] proposed
a method that only sends elements that exceed the threshold while keeping
the rest in the residue. They proved that 1-bit quantization is sufficient and
carries no significant degradation in neither accuracy nor convergence speed.
Golomb-Rice [10] coding the gaps reduces the average size per weight update to
10–11 bits, representing an additional 3x compression. However, the threshold
is difficult to determine, so Aji et al. [11] proposed using sparsity p to select a
portion of each gradient. Their method has little impact on accuracy. SignSGD
alleviates communication overhead by transmitting only the symbols of each
batch’s random gradient. Bernstein et al. [12] proved that it can get the best of
both worlds: compressed gradients and SGD-level convergence rate. Sattler et al.

318 D. Zhang et al.

[2] applied the sparsization to both upstream and downstream communication
in Federated Learning. Their method requires both fewer gradient evaluations
and communicated bits to converge to a given target accuracy and performs well
on Non-IID data.

Cluster belongs to the category of unsupervised learning in machine learn-
ing, which refers to the process of dividing a data set into multiple subsets of
data with high similarity according to a certain strategy, and the divided data
subsets are called clusters. Avishek Ghosh et al. [13] used one-time clustering and
cluster-to-cluster dissharing to reduce the impact of Non-IID data. However, it is
necessary to specify the number K of clusters in advance. And the distance-based
clustering algorithm does not perform well in practical applications. Clustering
using the K-means method cannot exclude the interference of outliers, and may
be attacked by malicious clients [13]. Y.Kim et al. [14] proposed a three-stage
data clustering algorithm namely: generative adversarial network-based cluster-
ing, cluster calibration, and cluster division. Cluster calibration handles dynamic
environments by modifying clusters. Cheng Xiet al. [15] aiming at the problem
of data heterogeneity, an iterative joint clustering algorithm is proposed. IFCA
divides clients into many clusters and lets clients in the same cluster optimize
the shared model. However, in IFCA, clusters are not overlapping, which leads
to inefficient use of local information because only one cluster uses the client’s
knowledge in each round.

The OPTICS clustering method is a density-based clustering algorithm,
which can find arbitrarily shaped clusters in noisy spaces and find noise
points compared to distance-based algorithms such as K-means. Compared with
DBSCAN [16], it is not sensitive to input parameters, and it is difficult to deter-
mine the characteristics of data in advance in Federated Learning, so the method
in this paper is more adaptable and widely used.

3 Preliminaries

In this section, we introduce building blocks of our approach and explain how
to implement our algorithm.

3.1 Adaptive Top-K Sparsification

A common method to improve communication efficiency in Federated Learning is
sparsification. Sparsification reduces the communication overhead of Federated
Learning by limiting the range of parameter updates. The client only sends
gradients that are above the threshold. All other gradients are accumulated in
a residual.

According to Sattler Felix et al.’s research [2], Top-k sparsification shows
the most promising performance in distributed learning environments with Non-
IID data. Based on this conclusion, we design an adaptive top-k sparsification
method to improve the communication efficiency of Federated Learning.

A Communication-Efficient Federated Learning 319

Top-k Sparsification: Top-k sparsification can be written as:

Gt+1 =
1
n

n∑

i=1

topk(Gt+1
i + At

i) (1)

At+1 = At + Gt+1
i − topk(Gt+1

i + At
i) (2)

Gt
i means the gradient parameter of client i when the communication rounds

is t. And At
i means the residual.

In the early stages of model training, the model changes rapidly. The gradient
g is large enough that the low sparsity rate p is acceptable. In the later stages of
model training, the gradient g tends to flatten, and the initially harsh sparsity
rate p will affect the speed of model convergence. To solve this problem, we
propose applying Newton’s cooling law to fit the gradient descent curve and
dynamically adjust the value of a sparsity rate p. The processing of sparsity p
can be written as:

pt = p × e−α×(E−Et) + p (3)

where Et is current communication round, E is maximum communication round,
α is the adjustment coefficient that defaults to 0.1.

Based on the method proposed in [4] and [2], combining sparsification and
Binarization, we propose an adaptive sparse compression algorithm. In contrast
to the previous algorithm, our approach is able to adjust the sparsity dynamically
throughout the training process, which enhances the overall training efficiency.

The algorithm is formalized in Algorithm 1.
In the adaptive sparse ternary compression(ASTC) algorithm, first, we use

Newton’s cooling law to obtain sparsity pt based on the current epoch. The
parameter k is obtained by sparsity pt, which is an important parameter of
Top-k algorithm and is used to limit the number of saved parameters. Then, we
find the smallest of the largest k parameters which is v and the mean of these
k parameters which is u. Finally, iterate through each dimension of tensor T ,
setting values greater than v to u, values less than −v to −u, and the rest to 0.
This gives us a ternary tensor T with only u, −u, and 0.

Figure 1 shows the accuracy of RNN, VGG9 and CNN model when trained
with and without adaptive algorithm. It can be seen that the accuracy of ASTC
exceeds that of STC in all models, especially on CIFAR10, which is 11.61% higher
than STC. On MNIST, the accuracy of ASTC increased by 5.81%. Performance
is not significant on the EMNIST dataset because accuracy is already high and
difficult to improve.

320 D. Zhang et al.

Algorithm 1. Adaptive Sparse Ternary Compression
Input :Tensor T , sparsity rate p, parameter α, current epoch Et

Output :Tensor T

pt ← p × e−α×(E−Et) + p
k ← npt

v ← min(Ttopk)
u ← 1

k

∑k
i=0 topk{|T [i]|}

for i in range(0, n) do
if T [i] > v then

T [i] = u
else if T [i] < −v then

T [i] = −u
else

T [i] = 0
end if

end for
Return T

Fig. 1. Accuracy of Different Methods on Three Non-IID Datasets

Adjusting the sparsity p will increase the impact of outdated gradient on
model convergence. The combination of ASTC and residual processing method
can significantly improve the accuracy of model.

Residual Processing: During the sparsization process, using residual A to
save the unused gradients can avoid the loss of gradient information. However,
outdated gradient can deviate from the current gradient and be detrimental
to model training. Therefore, it is necessary to reduce the weight of outdated
gradient based on gradient’s unuploaded rounds.

We introduce depreciation rate λ to achieve it. So the update rule for top-k
sparsified communication can be written as:

Gt+1 =
1
n

n∑

i=1

topk(Gt+1
i + λAt

i) (4)

At+1 = At + Gt+1
i − topk(Gt+1

i + λAt
i) (5)

A Communication-Efficient Federated Learning 321

When λ = 1, the algorithm is the same as Eq. (1) (2). It should be noted
that the number of communication rounds in Federated Learning is very large.
The residuals decrease exponentially, and a depreciation rate that is too small
can lead to a loss of information after a few rounds with the residuals too small.
After many experiments, we chose the depreciation rate λ = 1 to start at 0.99.

Figure 2 shows the accuracy of RNN, VGG9 and CNN model when trained at
different depreciation rates with and without adaptive algorithm. In the case of
Non-IID, each client holds only two random labels. Setting the depreciation rate
to 0.99 and 0.999, it can be seen that on MNIST, the accuracy increased 39.9%
when the dataset is Non-IID; on CIFAR10, the accuracy was improved by 22.93%
when the dataset is Non-IID. It can be seen that the accuracy decreases at the
later stage of training, mainly due to the deviation of the convergence direction
caused by outdated gradient accumulation. Using depreciation rate to reduce
the weight of outdated gradients can solve this problem. Especially in the case
of Non-IID dataset, the depreciation rate is particularly significant in improving
accuracy. Because the gradient accumulated during training on Non-IID dataset
is more complex than in the case of IID dataset.

Fig. 2. The accuracy of the model under different depreciation rates.

Deflate Encode: Deflate Encode is a popular lossless compression algorithm
commonly used to compress data such as files, images, and videos. This algorithm
was developed by Phil Katz [17], the author of Zlib software library, in 1993 and
is widely used in a variety of applications. In the compression section, Deflate
Encode uses two techniques: LZ77 algorithm and Huffman encoding to reduce file
size. LZ77 [18] algorithm achieves data compression by finding duplicate data
blocks, while Huffman encoding encodes different data frequencies to achieve
more efficient data storage.

322 D. Zhang et al.

In our algorithm, there are only three symbols {−v, 0, v} for gradients, and
most of them are 0. Huffman encoding is based on the probability of symbol
occurrence. Symbols with a high probability of occurrence use shorter encod-
ings, while symbols with a low probability of occurrence use longer encodings.
This feature is very suitable for our sparse data. Subsequent experiments will
demonstrate that Deflate Encode can effectively reduce communication overhead
in our method.

3.2 Clustered Federated Learning

The advantage of Federated Learning is that it can effectively use distributed
data. However, due to the characteristics of edge environments, datasets from
different clients are likely to be heterogeneous. This leads to difficulty or even
non convergence of the model. Therefore, clustered Federated Learning based on
the idea of multi-task learning is proposed to solve this problem. Partitioning
clients into different clusters according to certain rules can effectively reduce the
impact of Non-IID data. Clients in the same cluster are considered a learning
task and trained separately in the cluster, in order to share knowledge among
clients and reduce the negative impact of Non-IID data.

OPTICS Method: DBSCAN [19] (Density-Based Spatial Clustering of Appli-
cations with Noise) is a popular density-based clustering algorithm. It groups
together data points that are close to each other based on their density. On the
other hand, OPTICS [20] (Ordering Points To Identify the Clustering Struc-
ture) is an extension of DBSCAN. OPTICS produces a reachability plot, which
represents the density connectivity of points in the dataset. The advantages of
the OPTICS algorithm can be summarized as less parameter dependence and
better noise resistance. Compared to DBSCAN used in Sarhad’s approach [21],
our approach performs better.

AOPT-FL: In our AOPT-FL algorithm, it is mainly divided into two stages,
the first stage is the global training stage, the goal is to obtain the optimal
clustering solution, and at the same time train an acceptable global model, the
formula is defined as:

min
w∈Rd

f(w) where f(w) =
1
N

N∑

i=1

fi(w) (6)

In the second stage, the local training stage, the goal is to train a global
model in the Ci cluster. The server no longer performs global aggregation, and
the client only trains an intra-cluster model with other clients in the cluster.

min
w∈Ci

fCi
(w) where fCi

(w) =
1

NCi

NCi∑

i∈Ci

fi(w) (7)

NCi
is the number of cluster Ci.

A Communication-Efficient Federated Learning 323

Algorithm 2 gives the entire process of AOPT-FL. First, the server per-
forms OPTICS clustering on the parameter model(w1, w2, ...wk) uploaded by
the client for the first time, divides the client into C clusters. Then in global
aggregation stage, before each round of aggregation begins, the server calculates
the Silhouette Coefficient of the current cluster, and if it is less than the input
threshold, it recluster all clients. Otherwise, server decodes the received sparse
gradient and aggregates them. When it comes to in-cluster aggregation stage, the
server divides clients into several clusters, and each cluster trains a model sepa-
rately. The client’s operation is relatively simple, accepting the gradient from the
server, and sparsing, encoding, and uploading the generated gradient after local
training.

Algorithm 2. AOPT-FL
Input :initial paramenters w, set of clients C, Silhouette coefficient threshold α
while not converged do

Server does:
αt ← OPTICS(w0

1,w
0
2,...,w

0
i)

if epoch ≤ globalepoch then
if αt ≤ α then

αt ← OPTICS(gt
1,g

t
2,...,g

t
i)

end if
for each client i do

Msg ← ClientUpdate(k, Encode(ĝt
i))

ĝt
i ← Decode(Msg)

end for

gt+1 ← ∑n
i=1

1

n
ĝt

i

return gt+1 to each Client i
else

for each client i do
Msg ← ClientUpdate (k, Encode(ĝt

i))
ĝt

i ← Decode(Msg)
end for
for each Class Ck do

gt+1
Ck

← ∑nk
i=1

1

nk
ĝt

i

end for
return gt+1

Ck
to each Class Ck

end if
Client i does:
receive gt from server
gt

i ← local train(gt + wt−1
i)

ĝt
i ← Adaptive Sparse Compression(gt

i)
Msg ← encode(ĝt

i)
return Msg to server

end while

324 D. Zhang et al.

4 Experimental

4.1 Experimental Environment

The experimental environment of this paper is AMD Ryzen 7 5800H with Radeon
Graphics @3.20 GHz processor and NVIDIA GeForce RTX 3060 Laptop GPU.
The experiment simulated a server and 50 local client nodes. Non-IID data was
constructed based on the MNIST, EMNIST and CIFAR10 datasets. In the case
of NON-IID data, each client was randomly assigned two kinds of labels. Models
parameters are shown in Table 1.

Table 1. Details of datasets and models

Dataset #Records #Features #Classes Model #Parameters

MNIST 70000 784 10 RNN 24714

EMNIST 814255 784 62 CNN 206922

CIFAR10 60000 1024 10 VGG9 3491530

4.2 Accuracy

Figure 3 shows the accuracy of our method on MNIST, CIFAR10, and EMNIST
datasets. The accuracy of our method on MNIST is 14.09% higher than that of
STC when p = 0.001, 4.08% higher than that of STC when p = 0.01 and 2.99%
higher than that of STC when p = 0.1. For CIFAR10, the accuracy of AOPT is
7.46% higher than that of STC when p = 0.001, 5.17% higher than that of STC
when p = 0.01 and 10.24% higher than that of STC when p = 0.1. For EMNIST,
the accuracy of AOPT is 0.39% higher than that of STC when p = 0.001, 0.17%
higher than that of STC when p = 0.01 and 0.45% higher than that of STC when
p = 0.1. The accuracy of SignSGD on RNN models is 60.12%, but it does not
converge on VGG9 and CNN models.

As shown in Fig. 3, our algorithm generally has higher accuracy than STC.
Especially when the baseline performs poorly or the model is complex, the
improvement is more significant. Compared to no-comp line, it is worth noting
that there has been a significant improvement in accuracy when p = 0.1. The rea-
son is that the greater the sparsity, the more gradients are uploaded. Therefore,
the clustering effect is better, so the accuracy is significantly improved compared
to no-comp line. Correspondingly, communication overhead will increase, as will
be shown in the next section.

4.3 Communication Overhead

Table 2 shows the amount of communication overhead required to train model
for the different methods in megabytes. Nan means that the model has not con-
verged. On the MNIST learning task AOPT at a sparsity rate of p = 0.001 only

A Communication-Efficient Federated Learning 325

Fig. 3. The accuracy of our proposed method on different datasets and models. (a) is
based on MNIST and CNN model. (b) is based on CIFAR10 and VGG9 model. (c) is
based on EMNIST and CNN model.

communicates 2.84 MB worth of data, which is a reduction in communication by
a factor of ×81.5 as compared to the baseline with requires 231.6 MB. And when
is comes to CIFAR10, communication overhead has been reduced by a factor of
×562.1 as compared to the baselinet a sparsity rate of p = 0.001. On EMNIST
learning task AOPT’s communication overhead has been reduced by a factor of
×307.1 as compared to the baseline at a sparsity rate of p = 0.001. On CIFAR10
and EMNIST learning tasks, SignSGD did not converge within the communi-
cation rounds. At the same time, we can note that compared to the STC, the
communication overhead of AOPT is lower at a sparsity rate of p = 0.1 and the
model accuracy has been greatly improved, especially in complex model. Due
to the large sparsity, AOPT can converge faster and have lower communication
overhead.

Table 2. Bits required to train models on different learning tasks in a Non-IID learning
environment. A value of “Nan” in the table signifies that the method has not converged
within the iteration budget.

RNN@MNIST VGG9@CIFAR10 CNN@EMNIST

Baseline 231.6 MB 133253.81 MB 3961.30 MB

SignSGD 23.04 MB Nan Nan

STC p = 0.001 2.66 MB 235.55 MB 12.80 MB

STC p = 0.01 1.86 MB 762.77 MB 29.86 MB

STC p = 0.1 2.95 MB 3883.01 MB 132.20 MB

AOPT p = 0.001 2.84 MB 237.09 MB 12.96 MB

AOPT p = 0.01 2.64 MB 790.62 MB 31.71 MB

AOPT p = 0.1 2.94 MB 3796.25 MB 130.49 MB

4.4 Experimental Details

In all of our experiments, the local learning rate was 0.01, the batch size was 16,
the communication rounds were 200. In AOPT-FL, the first 100 communication

326 D. Zhang et al.

rounds were global aggregations and the last 100 communication rounds were
in-cluster aggregations. The number of local epochs was 3 and the optimizer was
SGD. The loss function was CrossEntropyLoss.

5 Conclusion

In the paper, we propose AOPT-FL, a communication-efficient Federated Learn-
ing method with clusterd and sparsification. Based on Newton’s law of cooling,
AOPT-FL dynamically adjusts the sparsity p and update the weight of the resid-
ual by depreciation rate λ. In addition, AOPT-FL uses the OPTICS algorithm
to divide clients into different clusters, so that the clients in the cluster have
similar data structures. At the same time, in order to avoid the overall dataset
becoming smaller and affecting the training effect due to the division of clusters,
we dynamically adjust the members of the cluster by monitoring the Silhouette
coefficient parameters of the cluster to ensure knowledge sharing between each
cluster.

Finally, we construct a Non-IID dataset and verify it with RNN, VGG9 and
CNN networks, and the experimental results show that the AOPT-FL algorithm
can improve the accuracy of Federated Learning on Non-IID data. The communi-
cation overhead of AOPT-FL is much smaller than that of the original algorithm.
Compared to STC, AOPT-FL improves accuracy with similar communication
overhead.

Research by Geming X. et al. [22] points to the growing attack on Federated
Learning. In future work, we will explore the method of introducing differential
privacy [23] into AOPT-FL algorithm, while better compressing the parame-
ters of the model, improving communication efficiency [24] while improving the
security of Federated Learning.

References

1. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-
efficient learning of deep networks from decentralized data. In: Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR (2017)

2. Sattler, F., Wiedemann, S., Müller, K.R., Samek, W.: Robust and communication-
efficient Federated Learning from non-IID data. IEEE Trans. Neural Netw. Learn.
Syst. 31(9), 3400–3413 (2019)

3. Chaodong, Y., Jian, C., Geming, X.: Coordinated control of intelligent fuzzy traffic
signal based on edge computing distribution. Sensors 5953 (2022)

4. Sattler, F., Wiedemann, S., Müller, K.R., Samek, W.: Sparse binary compression:
towards distributed deep learning with minimal communication. In: 2019 Interna-
tional Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019)

5. Li, X., Huang, K., Yang, W., Wang, S., Zhang, Z.: On the convergence of FedAvg
on non-IID data. arXiv preprint arXiv:1907.02189 (2019)

6. Hsieh, K., Phanishayee, A., Mutlu, O., Gibbons, P.: The non-IID data quagmire of
decentralized machine learning. In: International Conference on Machine Learning,
pp. 4387–4398. PMLR (2020)

http://arxiv.org/abs/1907.02189

A Communication-Efficient Federated Learning 327

7. Agrawal, S., Sarkar, S., Alazab, M., Maddikunta, P.K.R., Gadekallu, T.R., Pham,
Q.V., et al.: Genetic CFL: hyperparameter optimization in clustered federated
learning. Comput. Intell. Neurosci. 2021 (2021)

8. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning
with non-IID data (2018)

9. Ström, N.: Scalable distributed DNN training using commodity GPU cloud com-
puting (2015)

10. Rice, R., Plaunt, J.: Adaptive variable-length coding for efficient compression of
spacecraft television data. IEEE Trans. Commun. Technol. 19(6), 889–897 (1971)

11. Aji, A.F., Heafield, K.: Sparse communication for distributed gradient descent.
arXiv preprint arXiv:1704.05021 (2017)

12. Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., Anandkumar, A.: signSGD: com-
pressed optimisation for non-convex problems. In: International Conference on
Machine Learning, pp. 560–569. PMLR (2018)

13. Ghosh, A., Hong, J., Yin, D., Ramchandran, K.: Robust federated learning in a
heterogeneous environment (2019)

14. Kim, Y., Hakim, E.A., Haraldson, J., Eriksson, H., Silva, J., Fischione, C.: Dynamic
clustering in federated learning (2021)

15. Cheng, X., Gang, L., Pramod, K., V.: Federated learning with soft clustering. IEEE
Internet Things J. 7773–7782 (2022)

16. Khan, K., Rehman, S.U., Aziz, K., Fong, S., Sarasvady, S.: Dbscan: past, present
and future. In: The Fifth International Conference on the Applications of Digital
Information and Web Technologies (ICADIWT 2014), pp. 232–238. IEEE (2014)

17. Deutsch, P.: RFC 1951: Deflate compressed data format specification version
1.3(1996)

18. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theory 23(3), 337–343 (1977)

19. Bryant, A., Cios, K.: RNN-DBSCAN: a density-based clustering algorithm using
reverse nearest neighbor density estimates. IEEE Trans. Knowl. Data Eng. 30(6),
1109–1121 (2017)

20. Ankerst, M., Breunig, M., Kriegel, H.P., Sander, J.: Optics: ordering points to
identify the clustering structure. ACM SIGMOD Rec. 49–60 (1999)

21. Arisdakessian, S., Wahab, O.A., Mourad, A., Otrok, H.: Towards instant cluster-
ing approach for federated learning client selection. In: 2023 International Confer-
ence on Computing, Networking and Communications (ICNC), pp. 409–413. IEEE
(2023)

22. Geming, X., Jian, C., Chaodong, Y., Jun, M.: Poisoning attacks in federated learn-
ing: a survey. IEEE Access 1 (2023)

23. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan,
Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79228-4 1

24. Liu, R., Cao, Y., Yoshikawa, M., Chen, H.: FedSel: federated SGD under local
differential privacy with top-k dimension selection. In: Nah, Y., Cui, B., Lee, S.W.,
Yu, J.X., Moon, Y.S., Whang, S.E. (eds.) DASFAA 2020. LNCS, vol. 12112, pp.
485–501. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59410-7 33

http://arxiv.org/abs/1704.05021
https://doi.org/10.1007/978-3-540-79228-4_1
https://doi.org/10.1007/978-3-030-59410-7_33

A Central Similarity Hashing Method
via Weighted Partial-Softmax Loss

Mengling Li1, Yunpeng Fu1, Zhiyang Li1,2(B) , Duo Zhang1,
and Zhaolin Wan3

1 Dalian Maritime University, Dalian, China
lizy0205@dlmu.edu.cn

2 Haikou University of Economics, Haikou, China
3 Harbin Institute of Technology, Harbin, China

Abstract. Image hashing techniques that map images into a set of hash
codes are widely used in many image-related tasks. A recent trend is the
deep supervised hashing methods that leverage the annotated similarity
of images measured point-wise, pairwise, triplet-wise, or list-wise. Among
these methods, central similarity quantization (CSQ) introduces a state-
of-the-art point-wise metric called global similarity, which encourages
aggregation of similar data points to a common centroid and dissimi-
lar ones to different centroids. However, it sometimes will fail and lead
to several data points drifting away from their corresponding hash cen-
ters during training, especially for multi-labeled data. In this study, we
propose a novel image hashing method incorporating pair-wise similar-
ity into central similarity quantization, which enables it to capture the
global similarity of image data and pay attention to drift points simul-
taneously. To this end, we present a novel learning objective based on
the weighted partial-softmax loss and implement it with a deep hash-
ing model. Extensive experiments are conducted on publicly available
datasets, demonstrating that the proposed method has achieved perfor-
mance gains over the competitors.

Keywords: Hash centers · Supervised deep hashing · Central
similarity

1 Introduction

Nowadays, images on the internet have been growing at an explosive rate, which
poses several challenges in people’s daily lives, such as the problem of storing and
retrieving these massive images efficiently. Inspired by the low storage space and
high search speed of binary codes, the image hashing technique that transforms
images into binary codes has provided a promising solution, which is widely
used in many image-related areas, i.e., large-scale image retrieval [16], object
detection [20], cross-modal remote sensing [3].

Supported by the Natural Science Foundation of China (Nos. 62102059, 61672379,
61370198), the National Key R&D Program of China (No. 2021YFF0900503), the
High-Performance Computing Center of Dalian Maritime University.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14493, pp. 328–339, 2024.
https://doi.org/10.1007/978-981-97-0862-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0862-8_21&domain=pdf
http://orcid.org/0000-0002-5396-3447
https://doi.org/10.1007/978-981-97-0862-8_21

A Central Similarity Hashing Method via Weighted Partial-Softmax Loss 329

Fig. 1. Two-dimensional t-SNE visualization for hash codes of 1,000 test images, gen-
erated by representative deep hashing methods and our method (WCSH) on CIFAR-10
database using 32 bits. DPSH [12] and CSQ [18] are two representative hashing meth-
ods based on pairwise similarity and point-wise similarity, respectively.

Generally, image hashing methods can be classified into two categories: data-
independent hashing like locality-sensitive hashing (LSH) [10] and its variants
[14], and data-dependent hashing like spectral hashing (SH) [17] and iterative
quantization (ITQ) [6]. Among these data-dependent hashing methods, super-
vised hashing especially deep supervised hashing that incorporates the super-
vised information into the process of hash function learning, usually achieves
promising retrieval performances even with small code-length of hash bits.

The common supervised information is the annotated labels of the images.
The annotated similarity of images is usually measured pairwise, triplet-wise, or
list-wise [8]. Although recent deep hashing methods using pairwise, and triplet-
wise data similarity have shown a performance gain over traditional hashing
methods. They often suffer from problems such as low-level similarity relations,
insufficient data distribution coverage, and low effectiveness on unbalanced data.

One reason for the above problem is that the pairwise or triplet-wise data sim-
ilarities are only the partial relationships between images. To this end, a global
similarity metric is introduced by the central similarity quantization (CSQ)
method [18]. CSQ measures the data similarity by images and their hash centers
generated by the image labels beforehand, and encourages the aggregation of
similar images to a common centroid and dissimilar ones to different centroids.
Even when dealing with severe data imbalance, this point-wise similarity manner
can still learn the hash function well from the global relationship while making
the generated hash codes more distinguishable.

Since the hash code of an image is trained to converge to its hash center,
the performance of the obtained hash codes largely depends on the quality of
hash centers. Given the code length, CSQ tries to produce hash centers from the

330 M. Li et al.

categories that are dispersed enough in the binary space. It is usually possible for
a single-label database. However, it will become infeasible when the categories of
the database increase, especially for multi-label databases. At this time, we find
that many drift points are located at the periphery of the hash center during
training, which has affected the final retrieval performance.

To address the above issue, we introduce pairwise similarity between image
data which can be used to identify the drift points. The drift points will be set
more weight in the loss calculation, and the weight will be dynamically adjusted
during the multiple training epochs. Compared with CSQ, our method WCSH
obtains hash codes with better inter-cluster separation and intra-cluster closure,
which is shown in Fig. 1. The main contributions of this paper are summarized
as follows.

– We propose a novel image hashing method incorporating pairwise similarity
into central similarity quantization, which enables it to capture the global
similarity of image data and pay attention to drifting points during the train-
ing process simultaneously.

– We propose a novel learning objective based on the weighted partial-softmax
loss, and implement it by a deep learning model, so that the losses in the
objective have jointly collaborated to optimize the hash codes.

– We conduct various quantitative experiments on three publicly available
datasets, demonstrating that our method always performs best against the
state-of-the-art.

2 Method

Generally, a labeled image dataset consists of n images Y = {yi}n
i=1 and a

label matrix L = {li}n
i=1 ∈ {0, 1}c×n, where yi ∈ Rd is the i-th image and its

label vector li = {li1, li2, ..., lic}T ∈ {0, 1}c represents the category information
to which the image belongs. Here, c is the total number of categories in the
dataset, satisfying that lij = 1 if yi belongs to the j-th category, and lij = 0
otherwise.

The goal of deep hashing is to find a function f : Rd → {0, 1}k using the deep
network that maps each d-dimensional image to a k-bit binary code, satisfying
that if two images yi and yj share the same label, their encoded binary codes
bi = f(yi) and bj = f(yj) are also similar. By this way, the image set Y =
{yi}n

i=1 ∈ Rd×n is transformed to a binary set B = {bi}n
i=1 ∈ {0, 1}k×n.

2.1 Network Architecture Overview

It is unfeasible to learn the function f from the entire dataset Y when the size
n is huge. Usually, a subset X ⊆ Y is randomly chosen as the training set. For
the given training set X and its label set LX , the framework of our method is
shown in Fig. 2. It consists of three key components: a hash center component,
a feature learning component, and a loss function component.

A Central Similarity Hashing Method via Weighted Partial-Softmax Loss 331

The hash center component is to obtain the centers of the hash codes of
images. An ideal case is that the hash centers are generated from the image
categories and dispersed enough in binary space. Specifically, one category has
its individual hash center, which will be taken as the ideal hash representation
of the images belonging to this category.

Fig. 2. The general framework of our model consists of three key components: the fea-
ture learning component, the hash center component, and the loss function component.
The binary codes colored blue and green indicate that they belong to different hash
centers, and the binary codes colored red indicate that they are drift points to their
center during training. (Color figure online)

The feature learning component is to extract the features of images in
Euclidean space. Besides the commonly chosen CNN networks such as AlexNet
and ResNet, we also choose a transformer as the backbone network and employ
a fully-connected layer as the output layer to project the features to the space
with the same dimension as the hash codes.

The loss function component is to measure the difference between the output
image feature and its hash center. To this end, given a set of training images,
the parameters of the network can be learned by minimizing the loss above. The
design of loss plays an important role in the learning process.

Noting that many drifting points are located at the periphery of the hash
centers during training, illustrated as the hash codes colored red in Fig. 2, we
propose a novel weighted partial-softmax loss that incorporates the pairwise sim-
ilarity into central similarity quantization. The loss can take more consideration
to the drift points, and achieve an obvious performance gain over the existing
central similarity losses. In the following, we will discuss the implementation
details of the three components.

332 M. Li et al.

2.2 Implementation Details

Hash Center Generation. The concept of hash centers is proposed in the
central similarity quantization (CSQ) method, and later improved by several
recent deep hashing methods. Motivated by their ideas, we define the hash center
as a set of hash codes C = {ci}m

i=1 ⊂ {0, 1}k and satisfy the following constraints:

1
T

m∑

i�=j

dH(ci, cj) ≥ t (1)

where m is the number of hash centers, T is the number of pairs of different
hash centers, and t is the threshold value of Hamming distance between hash
centers. Specifically, in an ideal case, the Hamming distance dH(ci, cj) between
every two different hash centers ci and cj should satisfy dH(ci, cj) ≥ t.

Obviously, the threshold t has a great influence on the dispersion of hash
centers. If the threshold t is set to be larger, the hash centers will be more dis-
persed. Therefore, we set the threshold t to k

2 as suggested by the CSQ method,
and generate hash centers by Algorithm 1.

Algorithm 1. Hash center generation
Input: k: the length of binary code, m: the number of categories, t1: the
number of iterations.
Output: C = {ci}m

i=1 ⊆ {0, 1}k: the set of hash centers.
1: Initialization: Construct H2k = [Hk,−Hk]T , where Hk is a k×k Hadamard

matrix
2: if k is a power of 2 and m ≤ 2k then
3: C = H2k(1 : m, :)
4: else if k is a power of 2 and m > 2k then
5: for each i ∈ [1, t1] do
6: Compute L

′
with m − 2k centers by random sampling.

7: C = arg maxH2k∪L′ avg({dH(ci, cj)|i > j})
8: end for
9: else

10: Compute C with m hash centers by random sampling.
11: end if

In Algorithm 1, lines 1 to 3 is to generate the hash centers by Hadamard
matrix [9], which is known to be a binary matrix with orthogonal rows whose
elements are -1 or 1. It is obvious that a subset of Hadamard matrix H2k(1 : m, :)
satisfies Eq. (1) above. Line 6 or 10 is to generate the hash centers by random
sampling based on Bernoulli distribution to deal with the conditions that m > 2k
or k is not a power of 2. Specifically, for each bit x of the hash center ci, a random
real number l ∈ (0, 1] is generated. If l ≤ 0.5, the current bit x = −1, otherwise,
x = 1. The expectation of the distance between every two hash centers ci and cj

satisfies E(dH(ci, cj)) = k/2. That is to say, Eq. (1) is satisfied by expectation.

A Central Similarity Hashing Method via Weighted Partial-Softmax Loss 333

Suppose we have obtained the hash center set C for the categories by Algo-
rithm 1. If the tag set li = {li1, li2, ..., lic}T of the i-th image contains a single cat-
egory, we randomly assign its corresponding hash center to this image. However,
if the tag set contains multiple tags, we will adopt a voting strategy. For example,
the j-th image has three class tags, and their hash codes are c1 = [−1, 1,−1, 1],
c2 = [1,−1,−1, 1] and c3 = [1, 1, 1, 1], and the hash center of the j-th image will
be c123 = [1, 1,−1, 1]. If there is no dominant value for a particular bit, i.e., −1
and 1 have 50% of the votes each, we will set the value of that bit to 1 or −1
randomly.

Feature Learning. We employ multiple neural network models for feature
learning. In the area of image hashing, CNN is the first choice to extract the
features of images and is widely used in recent deep hash methods. We take two
representative CNN networks AlexNet and ResNet as the backbone network. In
addition, we replace the original fully-connected layer with a new hash layer that
the image features can be converted to a k-dimensional continuous hash code.

Besides the above CNN networks, we also choose a transformer network [7]
to learn the features more efficiently, inspired by the wide application and excel-
lent robustness of the transformer in natural language processing. Our network
involves the use of an encoder and a decoder with multiple transformer lay-
ers. Each transformer layer consists of a multi-head self-attention mechanism,
a feedforward neural network, and layer normalization. We also add some con-
volutional and fully connected layers to extract more useful features from the
original image.

Compared to CNNs like AlexNet and ResNet, the above transformer struc-
ture can better improve the performance of image hash coding. This is because a
transformer, unlike CNN, can adaptively consider long-range dependencies when
processing sequential data and can model the global information of the input
data. Moreover, using a transformer, we do not need to consider the adjust-
ment of parameters such as convolutional kernel size and step size, while we can
control the complexity and training difficulty of the model more flexibly.

Considering the limitation of backpropagation in neural networks, we use
the hyperbolic tangent function as the activation function of the last layer, to
approximate the threshold process and compress the continuous codes into inter-
vals, which reduces the gap between the continuous codes and the binary hash
codes, thus improving the quality of the hash codes.

Loss Function Design. Upon obtaining the hash centers C and hash network
F (x; θ) above, for a training images dataset < X,L >= {< xi, li >}m

i=1, the ideal
output of the hash networks F (xi; θ) should be c(li) ∈ C, where c(li) represents
the hash center of the tags set li. The hash representation {c(li)}m

i=1 not only
satisfies that images within the same class have the same hash code but also
satisfies that the hash codes of images between different classes reach at least
a Hamming distance of k

2 . To achieve this, we designed a partial-softmax loss
shown in Eq. (2).

334 M. Li et al.

LC =
m∑

i

∑

j∈Γi

−log
exp(η(cos(hT

i , cj) − μk))
exp(η(cos(hT

i , cj) − μk)) +
∑

q∈ψi
exp(ηcos(hT

i , cq))
(2)

where η is a hyperparameter, μ ∈ [0, 1] is a predefined margin, Γi is the index
set of the category to which xi belongs, i.e., the index of element “1” in the
label vector li, ψi is the index set of the category to which xi does not belong,
i.e., the index of element “0” in the label vector li. It can be found that Eq.
(2) is composed of a series of softmax-like losses, and the denominator of each
softmax-like loss contains part of the categories of the dataset, i.e., the categories
to which xi does not belong and the one category to which xi does belong.

The softmax loss is widely used in the central similarity quantization (CSQ)
method and its variants [15]. However, since multi-label data will generate quite
a number of hash centers larger than |C| by the mentioned voting strategy, the
Hamming distance between the hash centers at this time will be far from the
expected dH(ci, cj) = 1

2 (k − cT
i cj) = k

2 . In practice, it leads to many drifting
points at the periphery of the hash center during training, which will seriously
affect the final retrieval performance. To solve this problem, we introduce pair-
wise similarity of the dataset in the training process without losing the advan-
tages of the central similarity.

LC =
m∑

i

∑

j∈Γi

−wilog
exp(η(cos(hT

i , cj) − μk))
exp(η(cos(hT

i , cj) − μk)) +
∑

q∈ψi
exp(ηcos(hT

i , cq))
(3)

The improved loss function is given in Eq. (3). Specifically, during training,
we use the loss function in the first epoch with a weight w = 1. In the subsequent
training epochs, we calculate the loss weights for each data point based on the
analysis of the previous epoch of training results, and introduce these weights
into the softmax loss function to pay more attention to the drifting points.

wk
i =

∑
j∈I(i) dh(hk−1

i , hk−1
j)

∑
i,j∈I(i) dh(hk−1

i , hk−1
j)

(4)

The calculation of weights wk = {wk
i }n

i=1 used in the k-th epoch is given
in Eq. (4). Here, I(i) represents the index of all the images sharing the same
label with the image xi, and dh(hk−1

i , hk−1
j) is the Hamming distance between

hk−1
i and hk−1

j . If a data point is the drift point of a class, the sum of distances
between it and other data points in this class will be larger, and therefore the
weight in Eq. (4) and the corresponding loss in Eq. (3) will be larger. In this way,
we can control the training process of each data point more precisely, improving
the accuracy and retrieval performance of the hash code.

Since each hash center is binary, which creates inherent optimization diffi-
culties, we introduce a quantization loss LQ to refine the generated hash code

A Central Similarity Hashing Method via Weighted Partial-Softmax Loss 335

hi. It is quantized by a bi-modal Laplace prior with a log cosh smoothing [18] in
Eq. (5).

LQ =
m∑

i

K∑

k=1

(log cosh(|2hi,k − 1| − 1|) (5)

Then the final loss function can be formulated as in Eq. (6). Here, λ is a
hyperparameter to balance the two terms of hashing error LC and quantization
error LQ.

arg min
θ

L = LC + λLQ (6)

3 Experiments

3.1 Datasets and Settings

Three datasets are used in this study to evaluate the image hashing models,
ImageNet [5], MS-COCO [13] and NUS-WIDE [4]. ImageNet is a single-label
dataset, and MS-COCO, NUS-WIDE are two representative multi-label datasets.
The experimental settings for all datasets are summarized in Table 1.

Table 1. The datasets in experiments

Datasets Size Type #Classes #Train #Test

ImageNet 128,495 single-label 10 10,000/all 5,000
MS-COCO 112,217 multi-labels 80 10,000/all 5,000
NUS-WIDE 149,685 multi-labels 21 10,500/all 2,040

For performance evaluation of hashing methods on single-labeled images, two
images are considered ground-truth neighbors if they share the same label, while
on multi-label image datasets, two images are considered ground-truth neighbors
if they share at least one category label. Meanwhile, we adopt Hamming ranking
as the search strategy and exploit the widely-used performance metric of mean
average precision (mAP).

In our implementation, when training the image hash network, all parame-
ters are initialized using the parameters of the pre-trained network, except for
the last layer. The last layer of the image hash network is initialized with the
Xavier initialization method to avoid the problem of gradient disappearance or
explosion. To optimize the model performance, we use the small-batch stochastic
gradient descent (SGD) algorithm and set the learning rate to 10e-5. Also, we fix
the batch size of training images to 128 and set the weight decay parameter to
10e-5 to avoid the overfitting problem. In addition, we set the hyperparameters
λ to 0.001, η and μ to 1 and 0.2 for ImageNet, and 0.2 and 0.2 for two multi-label
datasets as default values, respectively, to further improve the performance of
the model.

336 M. Li et al.

Table 2. The mAP of hashing methods on ImageNet.

Datasets Methods 16-bit 32-bit 64-bit

ImageNet LSH 0.059 0.128 0.173
SH 0.171 0.300 0.456
ITQ 0.266 0.436 0.576
DPSH 0.285 0.405 0.452
DHN 0.367 0.523 0.627
HashNet 0.602 0.716 0.807
DCH 0.652 0.737 0.758
DSEH 0.735 0.780 0.801
CSQ 0.717 0.763 0.804
PSLDH 0.734 0.792 0.817
WCSH 0.860 0.886 0.900

3.2 Experimental Results

For a comprehensive evaluation of our approach, this study is compared with ten
classical or state-of-the-art methods. These methods include a data-dependent
hashing method LSH [10], two unsupervised hashing methods SH [17], ITQ [6],
and six deep supervised methods DPSH [12], DHN [19], HashNet [2], DCH [1],
DSEH [11], CSQ [18], and PSLDH [15].

Table 2 shows the results of different methods with different code-lengths from
{16, 32, 64} on ImageNet. ImageNet is a representative single-label database.
For all the deep hashing methods, we choose ResNet as their backbone network.
From the result, we can see that deep hashing methods outperform non-deep
hashing ones like LSH, SH and ITQ. Among the deep hashing methods, the CSQ
and its variant PSLDH always achieve a higher mAP value, and our method gets
the highest mAP.

The experimental results on the multi-label datasets MS-COCO and NUS-
WIDE are shown in Table 3. Compared to the single-label dataset, it is more
challenging to retrieve images in these two datasets. Most hashing methods could
not get satisfactory performance on them. To increase performance, we choose a
transformer as the backbone network of deep hashing methods. Our method has
achieved an obvious performance gain over other deep hashing methods. The
reason may be that the drift points frequently emerge during the training of
the multi-label database, and our proposed loss function is more efficient in this
scenario than other losses like BCE loss and softmax loss.

3.3 Ablation Study

The learning objective of our method WCSH includes two terms: the hash error
LC and the regularization error LQ. In LC , a weight w is introduced to control

A Central Similarity Hashing Method via Weighted Partial-Softmax Loss 337

the training process more precisely. In this part, we discuss the roles of LQ and w.
The results on MS-COCO and NUS-WIDE datasets are summarized in Table 4.

Table 3. The mAP of hashing methods on two multi-label datasets.

Datasets Methods 16-bit 32-bit 64-bit

MS-COCO LSH 0.350 0.419 0.498
SH 0.492 0.534 0.549
ITQ 0.566 0.562 0.502
DPSH 0.634 0.676 0.726
DHN 0.719 0.731 0.745
HashNet 0.696 0.741 0.761
DCH 0.700 0.691 0.680
DSEH 0.735 0.773 0.781
CSQ 0.742 0.806 0.829
PSLDH 0.782 0.835 0.853
WCSH 0.828 0.874 0.893

NUS-WIDE LSH 0.388 0.406 0.183
SH 0.444 0.534 0.502
ITQ 0.656 0.713 0.660
DPSH 0.812 0.821 0.831
DHN 0.712 0.759 0.771
HashNet 0.757 0.775 0.790
DCH 0.773 0.795 0.818
DSEH 0.812 0.827 0.825
CSQ 0.801 0.818 0.835
PSLDH 0.820 0.843 0.851
WCSH 0.838 0.862 0.865

Our method WCSH using LQ and w achieves the highest mAP values in most
cases. When removing the weight w, i.e. w = 1, it can be seen that the mAP
value will decrease significantly on various code-lengths in these two datasets.
It shows the positive effect of the introduction of w. Moreover, when removing
the quantization term LQ, i.e., λ = 0, the mAP value will decrease slightly in
the dataset of MS-COCO, and almost remain the same in the dataset of NUS-
WIDE. The reason is that the proposed central loss LC in Eq. (3) encourages the
hash code of an image converging to its hash center which has played a similar
role as LQ.

338 M. Li et al.

Table 4. Ablation study

Datasets w λ 16-bit 32-bit 64-bit

MS-COCO 1 1e-3 0.782 0.835 0.853√
0 0.793 0.867 0.887√
1e-3 0.828 0.874 0.893

NUS-WIDE 1 1e-3 0.820 0.843 0.856√
0 0.840 0.862 0.868√
1e-3 0.838 0.862 0.865

4 Conclusion

In this study, a novel image hashing method is presented, which takes both the
pairwise similarity and central similarity of images into account. The pairwise
similarity can be used to identify the drift points, so as to control the training pro-
cess more precisely and produce hash codes with better inter-cluster separation
and intra-cluster closure. Extensive experiments on three benchmark datasets
have demonstrated that the proposed method outperforms several state-of-the-
art methods.

References

1. Cao, Y., Long, M., Liu, B., Wang, J.: Deep cauchy hashing for hamming space
retrieval. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1229–1237 (2018)

2. Cao, Z., Long, M., Wang, J., Yu, P.S.: Hashnet: deep learning to hash by continu-
ation. In: Proceedings of the IEEE International Conference on Computer Vision,
pp. 5608–5617 (2017)

3. Chen, Y., Xiong, S., Mou, L., Zhu, X.X.: Deep quadruple-based hashing for remote
sensing image-sound retrieval. IEEE Trans. Geosci. Remote Sens. 60, 1–14 (2022)

4. Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: NUS-WIDE: a real-world
web image database from national university of Singapore. In: Proceedings of the
ACM International Conference on Image and Video Retrieval, pp. 1–9 (2009)

5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: Imagenet: a large-scale
hierarchical image database. In: IEEE Conference on Computer Vision & Pattern
Recognition (2009)

6. Gong, Y., Lazebnik, S., Gordo, A., Perronnin, F.: Iterative quantization: a pro-
crustean approach to learning binary codes for large-scale image retrieval. IEEE
Trans. Pattern Anal. Mach. Intell. 35(12), 2916–2929 (2013)

7. Han, K., Xiao, A., Wu, E., Guo, J., Xu, C., Wang, Y.: Transformer in transformer.
Adv. Neural. Inf. Process. Syst. 34, 15908–15919 (2021)

8. Hoe, J.T., Ng, K.W., Zhang, T., Chan, C.S., Song, Y.Z., Xiang, T.: One loss for all:
deep hashing with a single cosine similarity based learning objective. Adv. Neural.
Inf. Process. Syst. 34, 24286–24298 (2021)

9. Horadam, K.J.: Hadamard matrices and their applications. In: Hadamard Matrices
and Their Applications. Princeton University Press, Princeton (2012)

A Central Similarity Hashing Method via Weighted Partial-Softmax Loss 339

10. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, STOC 1998, pp. 604–613. ACM, New York (1998)

11. Li, N., Li, C., Deng, C., Liu, X., Gao, X.: Deep joint semantic-embedding hashing.
In: IJCAI, pp. 2397–2403 (2018)

12. Li, W.J., Wang, S., Kang, W.C.: Feature learning based deep supervised hash-
ing with pairwise labels. In: Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, pp. 1711–1717 (2016)

13. Lin, T.Y., et al.: Microsoft coco: common objects in context. In: Fleet, D., Pajdla,
T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

14. Liu, H., Zhou, W., Zhang, H., Li, G., Zhang, S., Li, X.: Bit reduction for locality-
sensitive hashing. IEEE Trans. Neural Netw. Learn. Syst. 1–12 (2023)

15. Tu, R.C., Mao, X.L., Guo, J.N., Wei, W., Huang, H.: Partial-softmax loss based
deep hashing. In: Proceedings of the Web Conference 2021, pp. 2869–2878 (2021)

16. Wang, L., Pan, Y., Lai, H., Yin, J.: Image retrieval with well-separated semantic
hash centers. In: Proceedings of the Asian Conference on Computer Vision, pp.
978–994 (2022)

17. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Advances in Neural Infor-
mation Processing Systems, vol. 21 (2008)

18. Yuan, L., et al.: Central similarity quantization for efficient image and video
retrieval. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 3080–3089 (2020)

19. Zhu, H., Long, M., Wang, J., Cao, Y.: Deep hashing network for efficient similarity
retrieval. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30
(2016)

20. Zou, Z., Chen, K., Shi, Z., Guo, Y., Ye, J.: Object detection in 20 years: a survey.
Proc. IEEE (2023)

https://doi.org/10.1007/978-3-319-10602-1_48

AIFR: Face Recognition Research Based
on Age Factor Characteristics

Biaokai Zhu1 , Zhaojie Zhang1, Yupeng Jia1, Xinru Hu1, Yurong Shen1,
Manwen Bai1, Jie Song2(B), Ping Li3, Sanman Liu1(B) , Feng Li4,

and Deng-ao Li4

1 Shanxi Police College, No. 799 Qingdong Road, Taiyuan 030401, Shanxi, China
hongtaozhuty@gmail.com, lsm601719@126.com

2 Intelligent Policing Key Laboratory of Sichuan Province, No. 186, Luzhou 646000,
Sichuan, China

scjcxysj@163.com
3 Anhui University, Hefei 230601, Anhui, China

20145@ahu.edu.cn
4 Taiyuan University of Technology, No. 79 West Street Yingze, Taiyuan 030024,

China
lidengao@tyut.edu.cn

Abstract. As we all know, the facial appearance change caused by age
change leads to the low accuracy of face recognition, which is a signifi-
cant difficulty in cross-age face recognition tasks. How to overcome the
age problem, face feature extraction has become the key. This paper pro-
poses a cross-age face recognition method based on deep learning. This
method uses the Arcface loss function to realize cross-age face recogni-
tion by improving the residual neural network, combining it with the
attention mechanism. Firstly, the face image is enhanced, and the Reti-
naface algorithm detects the face to complete the look preprocessing.
Then the preprocessed face image is extracted by this model to achieve
the purpose of cross-age face recognition. In addition, due to the lack
of Asian face datasets in public data sets, this paper makes a self-use
dataset based on the public data sets. It conducts experiments with FG-
NET and CALFW datasets to confirm the universality of this method.
The effect of the experimental training set reaches 92.67%, which makes
other progress in cross-age face recognition.

Keywords: Deep learning · Retinaface · Arcface loss · AIFR
(Age-invariant face recognition)

1 Introduction

As an important research hotspot in computer vision, face recognition has a wide
range of application scenarios in real life, such as face unlocking of smartphones.
As a branch of face recognition, cross-age face recognition also plays an extremely

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14493, pp. 340–352, 2024.
https://doi.org/10.1007/978-981-97-0862-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0862-8_22&domain=pdf
http://orcid.org/0000-0001-7661-3266
http://orcid.org/0000-0001-9586-4618
https://doi.org/10.1007/978-981-97-0862-8_22

AIFR: Face Recognition Research Based on Age Factor Characteristics 341

important role in real life, such as finding lost children, identifying criminals who
have absconded for many years, and optimizing face recognition systems.

Although face recognition technology has entered a mature period, it has
endured many influences, such as illumination, posture, object occlusion, age
and so on. At present, face recognition technology is not very suitable for face
recognition with age change. With the increase of age, a person’s appearance will
change greatly, which will directly lead to the decline of recognition rate. Aiming
at the problems of low recognition accuracy and poor robustness of AIFR, we
modify it based on Resnet network model and extract multi-level features. Using
attention mechanism to focus on the characteristics of important areas of the
image and suppress irrelevant information can efficiently and quickly analyze
the information in complex environment and enhance the weight of its identity
characteristics. Due to the lack of data sets and the difficulty in obtaining them,
most researchers use GAN to generate faces, so that the generated face images
and the target face age group images can be matched in similarity. We also
set up a unique data set of young Asia for this event. When classifying AIFR
recognition faces, the dataset itself has a large age span, and the distance between
classes will be greater than the distance between classes. In order to remove this
situation, we use arcface loss to reduce this kind of influence.

The main contributions of this paper are as follows:

(1) Aiming at the problems of reduced model robustness and difficulty in fea-
ture extraction caused by uncertainties in cross-age recognition, the research
group proposed a cross-age face recognition model combining deep learning
and loss function on the basis of the proposed system model. The model
can effectively acquire image face features and improve the performance
and recognition rate of cross-age face recognition systems. In addition, the
model is optimized on the basis of the Resnet network model, and multi-level
features are extracted to make it more robust.

(2) In order to strengthen the weight of identity features, an attention mech-
anism is introduced, which focuses attention on the features of important
areas of the image, suppresses irrelevant information, and can efficiently and
quickly analyze information in complex environments.

(3) In order to solve the problem of the dataset, we introduce a self-made
cross-age face dataset and use the public datasets FG-Net and CALFW
for experimental training, which achieves the expected effect and proves the
effectiveness and reliability of this experiment.

We also compare the model designed in this paper with existing methods to
demonstrate the breadth and feasibility of the system.

2 Related Work

Looking back at past face recognition, early research [1] focuses on how tradi-
tional face recognition methods can be applied to cross-age face recognition, such
as using handmade models to make features and methods based on traditional
machine learning. Image processing technology is used to extract face features

342 B. Zhu et al.

for matching, but these traditional methods not only have low accuracy in cross-
age tasks, but also are limited by the design of artificial features, which has a
series of problems. Based on the mainstream framework of traditional machine
learning [2] methods to identify faces, extract features, perform face recognition,
and finally compare similarities, although this mode plays a pivotal role in the
field of cross-age face recognition, it is still susceptible to external factors such
as lighting, posture, and occlusion, and cannot guarantee identity features. All
in all, traditional face recognition methods are not suitable for recognizing faces
with significant age changes.

Deep learning in the field of face recognition is essentially a method of learn-
ing features, compared with traditional artificial methods, deep learning through
multi-layer neural self-learning of data to obtain the best features, no longer
need to manually design face features. The following are two applications of
deep learning in cross-age face recognition.

2.1 Cross-Age Face Recognition Based on Generative Adversarial
Networks

Generative Adversarial networks (GAN) are an important generative model in
the field of deep learning. By extracting the changing features of face age and
generating face image through GAN network, similarity matching is carried out
with target face age group image, which has an absolute contribution to cross-age
face recognition. Chen et al. [3] used GAN to generate face age data of the same
person at different ages for sample enhancement, and trained age-invariant face
recognition models, which improved recognition accuracy to a certain extent.
Wang et al. [4] proposed a future face prediction system for missing children,
combining StyleGAN2 and FaceNet methods to quickly confirm the biological
relationship between parents and any possible children at a low cost. The system
injects the face image of the missing child and the face image of the related
family member before the disappearance, uses StyleGAN2 mixed face image,
and compares the similarity of the two face images by FaceNet to generate the
current age appearance of the missing child. Zhao et al. [5] proposed DR-RGAN
network, which uses non-entangled representation learning and residual universal
adversarial network. Based on the analysis of facial features and age changes,
the dual encoder structure and the unique training discriminator generate facial
features to overcome the age interference and obtain the real ideal aging effect
and high precision face verification results.

The age accuracy of the images generated by the Gan network is not ideal.
There are issues such as lack of authenticity, preservation of generated image
identity features, insufficient diversity, and fine-grained facial age images, which
are currently heavily dependent on in most studies. If the output of a certain
model is incorrect, it will affect the performance of the entire model. The unique
dataset established has to some extent alleviated these issues.

AIFR: Face Recognition Research Based on Age Factor Characteristics 343

2.2 Cross-Age Face Recognition Based on Convolutional Neural
Networks

In recent years, Convolutional Neural Networks (CNN) are a common method
for deep learning to analyze and process images, which have the ability of rep-
resentation learning and can realize end-to-end learning. Methods for cross-age
face recognition based on the convolutional neural networks model have been
proposed successively.

In 2012, Hinton [6] and his students increased the depth of convolutional
neural network on the famous ImageNet problem, improved the training mode
of convolutional neural network, greatly reduced the error rate, achieved good
results, and made great strides in image recognition. In 2014, FaceBook [7] pro-
posed that DeepFace adopted the process of “face detection - face alignment -
CNN feature extraction - classification” to achieve good results in face recogni-
tion, which can be regarded as the foundation work of CNN in face recognition.
Li et al. [8] proposed JLA (joint learning approach) model, and used deep con-
volutional neural network to construct joint learning of features and matching,
so as to learn the best measure function and improve the accuracy of cross-age
recognition and matching.

In this paper, based on deep learning method, transfer learning model is intro-
duced to integrate the residual neural network architecture Resnet34 and Arc-
face loss function in convolutional neural network. Convolutional neural network
Resnet34 was used to extract features from input images, and Arcface algorithm
was combined to conduct training and classification to realize face recognition
across ages. The methodological content of this article will be detailed later.

3 Basic Principles

3.1 Convolutional Neural Network - Residual Neural Network
(Resnet)

Convolutional neural network system is usually output by one or more fully con-
nected layers after alternating convolutional layer and pooling layer. However,
the early stacked network structure models, such as AlexNet [9], VGGNet [10],
etc. these models have simple structures and are easy to deepen the depth of the
model. When they finally reach a certain depth, there will be gradient disappear-
ance or gradient explosion or even model degradation. In 2015, He Kaiming [11]
proposed Resnet network model structure, which solved this degradation prob-
lem to a certain extent and became a sensation in the world’s major classification
tasks at that time.

The residual mechanism module introduced by the Resnet network uses the
skipping mechanism to directly transmit the information to the output part to
realize a deeper network structure. For the common stacked network structure,
the feature g (x) will be learned when x is input, and it is difficult to directly
learn g (x). Therefore, the residual network wants to learn the RESNET function:
F (x). It is worth noting that the residual function F (x) can only be added when

344 B. Zhu et al.

the dimensions of the jump connection X are the same. When the dimensions
are different, the dimensions of X can be adjusted by 1*1 convolution operation
to make the dimensions consistent.

3.2 Attention Mechanism

Attention mechanism has made rapid progress in deep learning research in recent
years, and has been deeply applied in computer vision fields such as target clas-
sification and detection, semantic segmentation, etc. It has quickly become a
research hotspot in the field of deep learning.

This mechanism has the characteristic of dynamic extraction. Attention
mechanism selectively pays attention to and learns all the information obtained,
ignores other information, and efficiently collects key information for relevant
processing.

The existing attention mechanism can automatically learn, so that the net-
work model can focus on the main features, eliminate noise and quickly obtain
the most important information, thus improving the recognition accuracy of the
model. The attention mechanism further strengthens the weight of identity fea-
tures. We try to combine the advantages of the channel and spatial attention
mechanisms, so that the network model knows what to pay attention to, while
also enhancing the representation of specific regions, improving the correlation
of each feature in the channel and space, and better extracting effective features.
And because of its high degree of lightweight, it can bring stable performance
improvement after embedding the model. Moreover, the mechanism can be bet-
ter embedded in the CNN model due to its strong versatility and high portability
to achieve end-to-end training. That is, in our research, we found that the com-
bination of dual attention mechanisms is very effective.

3.3 Loss Function

In our investigation, we found that Additive Angular Margin Loss (Arcface)
function was published in January 2018 by Deng Jian-kang et al. [12] which is
an improvement of the traditional Softmax Loss function.

Traditional Softmax loss function is shown in Eq. (1):

L=− 1
N

N∑

i=1

log
eWT

yi
xi+byi

∑
n
j=1e

WT
j xi+bj

(1)

CosFace [13] is to normalize the feature vector x and weight w on the basis of
softmax loss, and then subtract a positive m from the cosine space, and multiply
the feature scale S on this basis, and finally obtain s(cos (θ − m). As shown in
Formula (2):

CL =
1
N

∑

i=1

− log
em(cos(θj,i)−t)

em(cos(θj,i)−t) +
∑

j �=yi
em cos(θj,i)

(2)

AIFR: Face Recognition Research Based on Age Factor Characteristics 345

Arcface is similar to Cosface. The core idea of Arcface is to normalize the
feature vector X and weight W first on the basis of softmax loss, so that the
predicted value only depends on the angle between the feature and weight. The
angle interval q is added to the Angle θ between the feature vector x and the true
weight w, which will reflect the maximization of the decision boundary between
classes in the Angle space. On this basis and multiplied by the characteristic
scale S.

Finally, the original softmax function is substituted to more reasonably and
effectively calculate the probability of each category and finally calculate the loss
value. As shown in Formula (3):

AL = − 1
N

N∑

i=1

log
em(cos(θyi

+t))

em(cos(θyi
+t)) +

∑n
j=1,j �=yi

em cos θj
(3)

Both are similar. The comparison between arcface and cosface shows that the
arcface function trains the angle between the depth feature and its corresponding
weight in an additive manner, and the angle interval is more direct than the
cosine interval in terms of the impact on the angle, In addition, Arcface Loss
is different from CosFace and SphereFace [14] in that the geodesic distance and
Angle have accurate correspondence, so it has good geometric attributes and
constant linear Angle. In addition, Arcface Loss is based on the segmentation of
Angle space, so it has the minimum distance on the hypersphere instead of the
minimum distance on the feature points, and the range of feature comparison
is more comprehensive. Compared with other loss functions, Arcface has the
advantages of high performance, easy programming, low complexity, and high
training efficiency, which is an improvement of its functions. This improvement
allows Arcface to not need joint supervision with other loss functions, the model
will converge more easily on different datasets, and the training process will be
more stable.

4 Data Sets and Experimental Design

4.1 Experimental Data Set

Cross-age facial recognition plays an important role in finding missing persons,
tracking down criminals who have been on the run for years, and identifying
people of different ages. However, in the process of deep learning research, the
lack of multi-background and multi-posture database has been a difficult problem
that cannot be ignored. So the experimental group collected Asian face data from
a public database to build its own dataset. In this experiment, the cross-age face
databases used for training and detection were FG-NET, CALFW and self-made
data sets.

Self-made Dataset: Due to the influence of FG-NET data set and CALFW
data set, face images related to Asian race could not meet the accuracy of exper-
imental results. Therefore, in order to ensure the accuracy and universality of
the experiment, the experimental group collected FG-NET data set and CALFW

346 B. Zhu et al.

data set and made data set about Asian race. The homemade data set contains
images of the same person at different ages, as well as a variety of scenes, poses
and lighting, while ensuring image quality. The data set obtained 191 individuals
with face age information, a total of more than 1300 cross-age face images, the
age of the selected images ranged from 5 years old to 25 years old, an average of
7 images per person, the average age span is 3 years old, the maximum age span
of a single individual face image is 5 years old. In the training set, some photos
of people of different ages were selected, and the images of each age group were
selected to form positive sample image pairs and negative sample image pairs.

Fig. 1. Flow chart of cross age face recognition experiment

4.2 Experimental Design and Deployment

The deployment diagram of the cross-age face recognition based on deep learning
designed in the experiment is shown in Fig. 1:

1) According to the ratio of 7:3, the used face database data is divided into
training set and test set;

2) According to the data enhancement method described below, process the
collected face image data in the database, then use the Retinaface algorithm
to detect the face, and obtain the preprocessed face image;

3) The processed image is input into the improved Resnet network to obtain the
image features of its training set. The detailed acquisition steps are shown
below, and the training is conducted on this basis.

4) By introducing attention mechanism and Arcface loss function, the Resnet
network model can improve the performance of the model and make the model
more robust, so as to realize cross-age face recognition with high accuracy.

5) Finally, the results are compared with the existing AIFR algorithms.

AIFR: Face Recognition Research Based on Age Factor Characteristics 347

Face Detection. Face detection is the first step to realize face recognition. We
use a single-stage face detection algorithm called Retinaface [15]. This algorithm
has better detection performance than cascade methods (such as MTCNN) and
faster detection speed than two-stage face detection method, which is a method
to balance detection speed and performance. Through the network backbone
network, the image to be detected is extracted through three stages of feature
extraction. Feature Pyramid (FPN) and SSH network are used to add features
in the output layer of feature extraction, and then the prediction results are
obtained from the features, and the prediction results are adjusted. Finally,
redundant prediction frames are removed by maximum suppression (NMS).

After the process of face detection, we obtain the region image of the detected
face, and then carry out face recognition with the help of face alignment.

4.3 Model Building

In the work of cross-age face recognition, the experiment put the preprocessed
face images into convolution neural network for training, and optimize the model
to get the corresponding results. Experimental results believe that the depth net-
work can reasonably and effectively extract the age-invariant features of the input
face images. However, when the network depth reaches a certain degree, the cor-
responding error will increase, and the over-fitting phenomenon will appear, and
the model effect will become worse. Gradient disappearance and gradient explo-
sion will increase sharply, which makes the network model unable to converge
and leads to the failure of normal training of deep network model. In related
research, we find that Resnet network model can solve this problem well. Resnet
model uses residual network to transform the function G(x) learned by orig-
inal convolution network into F(x)+x. This optimization proposed by Resnet
greatly improves the training speed. At the same time, the attention mecha-
nism is added to the Resnet network structure of the experimental group, which
can save parameters and computation and significantly improve its performance.
Classification is also an important research direction of cross-age face recognition.
When solving the classification problem of cross-age face recognition, experiment
designer decided to adopt the idea of Arcface Loss to solve the situation that
the distance within classes is greater than the distance between classes when the
age span is large. In addition, the experimental results significantly improve the
intra-class similarity and inter-class differences of face recognition, and reduce
the impact on the performance of face recognition system.

The experimental model adopts the Resnet-50 model in Resnet. The original
Resnet 50 network model refers to the VGG19 network model and is modified
on this basis. The 7*7 convolution kernel and convolution with step size of 2
are used for downsampling, and the average pool layer is replaced by the fully
connected layer. Resnet also adds a short circuit mechanism between every three
layers of the normal network, which leads to residual learning. The activation
function is ReLu.

Summarize the following model architecture: First model input data for train-
ing a 112× 112 face image, Through 3× 3 layer convolution kernel (step size 1)

348 B. Zhu et al.

and normalized PRuLe activation function, At the beginning and end of the
network, channel attention and spatial attention mechanisms are connected by
residual structure. Then, after four residual structure layers (3, 8, 11, 3), after
a series of normalization and pre-activation functions, the matrix is processed
in one dimension by flat layer, and then input into fully connected layers. After
multiple classifications, output results. Finally, the R-Resnet-50 face recognition
model is established.

5 Experimental Settings and Basic Parameters

5.1 Experimental Equipment

All the experimental operations are carried out and completed under the Win-
dows 11 64-bit operating system and Pytorch environment, and the training
model and test model use the unified GPU server environment. The main hard-
ware and software parameters are shown in Table 1.

Table 1. Parameters of experimental equipment

Name of software and hardware Equipment

CPU Intel(R) Core(TM) i7-10700K CPU @ 3.80GHz 3.79 GHz
GPU NVDIA GeForce RTX3080
Operating system Windows11 21H2 X64
Machine with RAM 32.0G
Hard disk Western Digital WDBEPK0020BBK-2TB
Experimental environment Pytorch Pycharm

5.2 Experimental Parameters

For experiments, In the experiment, SGD is regarded as an optimizer, and
dynamic deep learning is carried out under the condition that the learning rate
range is preset as (1E-2, 1E-4). Optimizer internal parameters momentum 0.9
and weight_decay 5E-4. In order to ensure that the convergence loss value is the
global optimal solution of Resnet neural network, COS principle is used as the
periodic attenuation strategy of learning rate. The sample size of data captured
in a training session (Batch_size) is set to 32. The batch size has an epoch value
of 200.

6 Experimental Results and Evaluation

6.1 Experimental Comparison on Different Data Sets

This paper has made extensive attempts in the existing public data sets and self
built data sets, and found that it performs well in each data set. The experimental
comparison results are shown in Table 2.

AIFR: Face Recognition Research Based on Age Factor Characteristics 349

In FG-Net database, the model method designed is also compared with other
cross-age face recognition methods, including JLA, MHFA, PCA+SVM, GAN,
HFA and other currently proposed methods. The comparison results are shown
in the chart. As can be seen from the data in the table. The accuracy of the
training set of the proposed method reaches 92.67%, which is better than most
methods and can effectively realize cross-age face recognition, as shown in Table 3

Table 2. Accuracy of training sets of dif-
ferent data sets

Data Accuracy of Rank-1
Self made data set 99.9%
Fg-Net 99.7%
Maegage 99.7%

Table 3. Cross age face recognition train-
ing set accuracy of different methods

Algorithm Accuracy of Rank-1
JLA 93.65%
MHFA 87.94%
PCA+SVM 91.25%
GAN 86.5%
HFA 91.14%
R-Resnet 92.67%
LF-CNN 88.1%

6.2 Experimental Evaluation

After repeated experiments, research found that the accuracy rate of the training
set reached 99.9%, the accuracy rate of the lfw test set reached 92.67%, and the
difference between positive and negative values was between 90.56% and 95.83%.
In this paper, the face threshold distance is used as an indicator for experimen-
tal research. Through Openface to calculate the distance of face threshold, find
the main feature point of the face, through the calculation of the feature point
of the real sample, the distance value from the database sample feature point,
the smaller the face distance, the higher the face recognition rate, the successful
threshold of this experiment recognition is 1.26. The loss value is as low as 0.02,
and the Roc curve also indirectly proves the feasibility of the model. According
to the above experimental results, the designed R-ResNet-50 model is compared
with the traditional ResNet-50 model. Obviously, the improved model achieves
better results. Therefore, it can be seen that the success of cross-age face recog-
nition is inevitable.

Accuracy: Fig. 2 depicts the Accuracy results of the training set and valida-
tion set of R-Resnet-50 respectively.

Loss: The size of the loss value generated by the loss function is an indicator
to measure the quality of the designed model. The smaller its value, the more
successful the model is Fig. 3 depicts the loss value results for R-Resnet-50.

Confusion matrix: used to observe the performance of the designed model on
each test category. Figure 4 depicts the confusion matrix results for some classes.

350 B. Zhu et al.

Fig. 2. Experimental accuracy curve

Fig. 3. Experimental loss value curve Fig. 4. Some types of cross-age face
detection models and their detection
accuracy

7 Conclusion

This paper first proposes a cross-age face recognition model combining deep
learning and loss function, which improves the residual neural network. We incor-
porate the attention mechanism to extract features and better achieve stable
performance effectively. Experiments on public FG-NET and CALFW datasets
demonstrate the feasibility of the recognition model. At the same time, we also
propose a self-made dataset containing Asian faces, which achieves the exper-
imental group’s expected effect and effectively improves the accuracy and uni-
versality of cross-age face recognition. The experimental results show that the
proposed method can achieve the high recognition rate of the current cross-age
face task and achieve relatively ideal results.

Limited by environmental conditions, this paper still needs to further improve
and improve some contents, as follows:

AIFR: Face Recognition Research Based on Age Factor Characteristics 351

(1) There are still some shortcomings in the self-made data set, among which
there are few data that can meet the large age span, mainly concentrated in
5 to 25 years old. Most of the data are positive face effect, and do not involve
multi-pose face image. Therefore, further collection of qualified diversity data
will be more conducive to the final effect of the experiment.

(2) At present, the accuracy of the test set needs to be enhanced, and the extrac-
tion of relevant features of cross-age faces may need to be refined. In the next
step, face features can be decomposed into identity features and age-invariant
features.

Declarations.
– Funding
The research is supported by NSFC (No. 62306207), Intelligent Policing Key Labora-
tory of Sichuan Province (No. ZNJW2022KFZD004), Basic Research Plan of Shanxi
Province (No. 202303021211339), Virtual Teaching and Research Office of Cyber Secu-
rity (BJPC) of Ministry of Education (No. WAXVKF-2202), Anhui Natural Sci-
ence Foundation (No. 2108085MF207), Shanxi Provincial Higher Education Teaching
Reform and Innovation Project, Teaching Reform Project of Shanxi Police College.
– Competing interests
The authors declare that they have no competing interests.
– Availability of data and materials
Not applicable.

References

1. Ouarda, W., Trichili, H., Alimi, A.M., Solaiman, B.: Face recognition based on
geometric features using support vector machines. In: 2014 6th International Con-
ference of Soft Computing and Pattern Recognition (SoCPaR), pp. 89–95. IEEE
(2014)

2. Filali, H., Riffi, J., Mahraz, A.M., Tairi, H.: Multiple face detection based on
machine learning. In: 2018 International Conference on Intelligent Systems and
Computer Vision (ISCV), pp. 1–8. IEEE (2018)

3. Chen, S., Zhang, D., Yang, L., Chen, P.: Age-invariant face recognition based on
sample enhancement of generative adversarial networks. In: 2019 6th International
Conference on Systems and Informatics (ICSAI), pp. 388–392. IEEE (2019)

4. Wang, D.-C., Tsai, Z.-J., Chen, C.-C., Horng, G.-J.: Development of a face predic-
tion system for missing children in a smart city safety network. Electronics 11(9),
1440 (2022)

5. Zhao, S., Li, J., Wang, J.: Disentangled representation learning and residual GAN
for age-invariant face verification. Pattern Recogn. 100, 107097 (2020)

6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Commun. ACM 60(6), 84–90 (2017)

7. Taigman, Y., Yang, M., Ranzato, M.A., Wolf, L.: Deepface: closing the gap to
human-level performance in face verification. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)

352 B. Zhu et al.

8. Li, H., Hu, H., Yip, C.: Age-related factor guided joint task modeling convolutional
neural network for cross-age face recognition. IEEE Trans. Inf. Forensics Secur.
13(9), 2383–2392 (2018)

9. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition, arXiv preprint arXiv:1409.1556 (2014)

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

11. Mnih, V., Heess, N., Graves, A., et al.: Recurrent models of visual attention. In:
Advances in Neural Information Processing Systems, vol. 27 (2014)

12. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: additive angular margin loss for
deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4690–4699 (2019)

13. Wang, H., et al.: Cosface: large margin cosine loss for deep face recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 5265–5274 (2018)

14. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: deep hypersphere
embedding for face recognition. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 212–220 (2017)

15. Deng, J., Guo, J., Ververas, E., Kotsia, I., Zafeiriou, S.: Retinaface: single-shot
multi-level face localisation in the wild. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 5203–5212 (2020)

http://arxiv.org/abs/1409.1556

Author Index

B
Bai, Manwen 340
Bian, Che 240

C
Cao, Zhiying 47
Chen, Jiageng 146
Chen, Jifu 17
Chen, Peng 253
Chen, Xianzhang 1

D
Ding, Yepeng 292

F
Fan, Long 93
Feng, FuTeng 80
Fu, Xiang 272
Fu, Yunpeng 328

G
Gao, ZhiPeng 80
Guan, Jianfeng 93
Guo, Baoshen 189

H
He, Tian 189
He, Yongzhe 126
He, Yueyue 146
Hu, Haiquan 17
Hu, Xinru 340

I
Inoue, Koji 146

J
Jia, Yupeng 340
Jiang, Frank 168
Jiang, Nan 224

L
Li, Deng-ao 340
Li, Feng 340
Li, Guo 1
Li, Jiali 1
Li, Kenli 34
Li, Mengling 328
Li, Ping 340
Li, Shaowen 292
Li, Tiejun 34
Li, Xuejun 168
Li, Xueqiang 114
Li, Zhichao 240
Li, Zhiyang 328
Lin, Hui 67
Liu, Duo 1
Liu, Jie 209
Liu, Kexian 93
Liu, Sanman 340
Liu, Xiao 168
Liu, Yuxuan 316
Lu, Zhexi 240
Luo, Shengbai 34

M
Ma, Haoliang 272
Ma, Sheng 34
Mao, Chengying 17
Mei, Songzhu 209
Miao, Yangyong 67

N
Ni, Yue 304

P
Pei, Xiangdong 209

Q
Qu, Zhihao 253

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14493, pp. 353–354, 2024.
https://doi.org/10.1007/978-981-97-0862-8

https://doi.org/10.1007/978-981-97-0862-8

354 Author Index

R
Ren, Ao 1

S
Sato, Hiroyuki 292
Shao, En 126
Shen, Yurong 340
Shi, Peichang 272
Song, Jie 340
Song, WenZhan 253
Sun, Ninghui 126

T
Tan, Guangming 126
Tan, Yujuan 1
Tao, Ming 114
Tian, Yi 304

W
Wan, Zhaolin 328
Wang, Bo 34
Wang, Huabin 168
Wang, Lingshuai 240
Wang, Pengcheng 93
Wang, Qiang 240
Wang, Qinglin 209
Wang, Shuai 189
Wang, Xiaoding 67
Wang, Yang 209
Wei, Xiaohui 224
Wu, Lizhou 34
Wu, Yan 224

X
Xia, Geming 316
Xie, Zaipeng 253
Xiong, ZiJian 80
Xu, Chenghong 253
Xu, Guangping 304
Xu, Jia 168

Y
Yang, Shuling 114
Yao, Aiting 168
Yi, Guodong 272
Yi, Xiao 34
Yu, Junwei 292
Yue, Hengshan 224

Z
Zhang, Bo 47
Zhang, Danlei 316
Zhang, Duo 328
Zhang, Jianan 253
Zhang, Jianmin 34
Zhang, Xiuguo 47
Zhang, Yida 253
Zhang, Zhaojie 340
Zhang, Zheng 168
Zhao, Chen 80
Zhou, Xiaolei 189
Zhou, Yueyuan 126
Zhu, Biaokai 340
Zuo, Weijian 189
Zuo, Yanan 47

	 Preface
	 Organization
	 Contents – Part VII
	An Efficient Scheduling Algorithm for Multi-mode Tasks on Near-Data Processing SSDs
	1 Introduction
	2 Background and Motivation
	2.1 Task Processing of NDP-Based SSDs
	2.2 Motivation Example

	3 Problem Definition
	4 Multi-mode Task Scheduling
	4.1 Problem Analysis
	4.2 MMTS Algorithm

	5 Evaluation
	5.1 Experimental Setups
	5.2 Effect on Performance
	5.3 Resource Utilization

	6 Conclusion
	References

	HR-kESP: A Heuristic Algorithm for Robustness-Oriented k Edge Server Placement
	1 Introduction
	2 Problem and Model Formulation
	2.1 Problem Statement
	2.2 User Coverage
	2.3 Network Robustness
	2.4 Robustness-Oriented kESP Optimization Model

	3 The Heuristic Algorithm for kESP
	3.1 Selection of Initial Base Station
	3.2 Gradual Generation of Server Deployment Scheme
	3.3 HR-kESP Algorithm

	4 Experimental Evaluation
	4.1 Experimental Settings
	4.2 Comparison on Different Numbers of Base Stations
	4.3 Comparison on Different Server Budgets
	4.4 Comparison on Different Numbers of Users

	5 Related Work
	6 Conclusion and Future Work
	References

	A Hybrid Kernel Pruning Approach for Efficient and Accurate CNNs
	1 Introduction
	2 Functional-Similarity-Based Kernel Pruning Algorithm
	2.1 Distance-Based Kernel Pruning Algorithm
	2.2 Hybrid Kernel Pruning Algorithm

	3 Experimental Method
	4 Experimental Results
	4.1 Experimental Results for the Distance-Based Pruning Algorithm
	4.2 Experimental Results for the Hybrid Pruning Algorithm

	5 Analysis
	6 Related Work
	7 Conclusion
	References

	A Collaborative Migration Algorithm for Edge Services Based on Evolutionary Reinforcement Learning
	1 Introduction
	2 Related Work
	3 Service Migration Model
	3.1 Scene Description
	3.2 Service Migration Model Construction
	3.3 Problem Formulation

	4 Service Migration Algorithm Based on Evolutionary Reinforcement Learning
	4.1 MDP Model
	4.2 DEDRL-Based Service Migration Process

	5 Experiment and Results
	5.1 Experimental Environment and Parameter Settings
	5.2 Analysis of Results

	6 Conclusion
	References

	A Graph Generation Network with Privacy Preserving Capabilities
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Generative Adversarial Networks
	3.2 Differential Privacy

	4 RDPGGAN
	5 Experimental Evaluations
	6 Conclusion
	References

	Clustered Federated Learning Framework with Acceleration Based on Data Similarity
	1 Introduction
	2 Preliminaries
	2.1 Federated Learning
	2.2 Locality-Sensitive Hashing

	3 Design of Our FedCSA Framework
	3.1 Intra-group Acceleration
	3.2 Group Aggregation
	3.3 Privacy Analysis

	4 Experiment and Result
	4.1 Experiment Settings
	4.2 Result and Analysis

	5 Conclusion
	References

	An Anonymous Authentication Scheme with Low Overhead for Cross-Domain IoT
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 MHT and MHG
	3.2 Zero-Knowledge Proof

	4 Proposed Scheme
	4.1 System Overview
	4.2 Threat Model

	5 Design Detail
	5.1 Initialization Phase
	5.2 Device Registration
	5.3 Intra-domain Authentication
	5.4 Cross-Domain Authentication
	5.5 Key Agreement
	5.6 Data Correctness Verification

	6 Theoretical Analysis of CALA
	7 Experiment and Evaluation
	7.1 Experimental Settings
	7.2 Performance Analysis

	8 Conclusion
	References

	UAV-Assisted Data Collection and Transmission Using Petal Algorithm in Wireless Sensor Networks
	1 Introduction
	2 Mathematical Model for the UAV-Assisted Data Collection in WSNs
	2.1 WSN Model and Fundamental Concepts
	2.2 Mathematical Model of the UAV-Assisted Data Collection

	3 Petal Algorithm for the UAV-Assisted Data Collection
	3.1 Analysis of the UAV-Assisted Data Collection in WSNs
	3.2 Petal Algorithm for the UAV-Assisted Data Collection in WSNs

	4 Experimental Simulation
	4.1 Test Problem and Parameter Description
	4.2 Comparative Analysis of Experimental Results

	5 Conclusion
	References

	DeletePop: A DLT Execution Time Predictor Based on Comprehensive Modeling
	1 Introduction
	2 Background and Current Challenges
	2.1 Distributed Strategy for Deep Learning Training
	2.2 Job Scheduling Simulator
	2.3 Major Challenges of Modeling and Simulation of Deep Learning Training Job

	3 Cost Model Design
	3.1 Modeling of the DLT Process
	3.2 The Predicting Algorithm of the Cost Model

	4 Simulator Design and Implementation
	5 Evaluation
	5.1 Prediction of Step Time (The Atomic Unit)
	5.2 Prediction of Epoch Time
	5.3 Performance Simulation Experiment

	6 Related Work
	7 Conclusion
	References

	CFChain: A Crowdfunding Platform that Supports Identity Authentication, Privacy Protection, and Efficient Audit
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Bilinear Groups
	3.2 BLS Aggregate Signature ch10BLS
	3.3 Commitment and Non-interactive Zero-Knowledge Proofs
	3.4 Distributed Identities

	4 CFChain Overview
	4.1 System Model
	4.2 Threat Model and Design Goals
	4.3 System Operations

	5 Security Definitions
	6 The CFChain Scheme
	7 Security Analyse
	8 Performance Evaluation
	8.1 Functionality Comparison
	8.2 Implementation
	8.3 Performance

	9 Conclusion
	References

	TBAF: A Two-Stage Biometric-Assisted Authentication Framework in Edge-Integrated UAV Delivery System
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Physical Unclonable Function
	3.2 Blakley Secret Sharing
	3.3 Zero Knowledge Proofs
	3.4 Cancelable Biometric Template Protection

	4 The Proposed Scheme
	4.1 System Overview
	4.2 Three-Dimensional Space-Based Secret Sharing
	4.3 Registration
	4.4 Authentication and Key Negotiation

	5 Evaluation
	5.1 Formal Security Analysis Using BAN Logic
	5.2 Informal Security Analysis
	5.3 Efficiency Analysis

	6 Conclusion and Future Work
	References

	Attention Enhanced Package Pick-Up Time Prediction via Heterogeneous Behavior Modeling
	1 Introduction
	2 Overview
	2.1 Preliminaries
	2.2 Problem Formulation

	3 Model Design
	3.1 Overview
	3.2 Pre-trained Stay Time Prediction
	3.3 Attention Enhanced Route Estimation
	3.4 Training and Prediction

	4 Evaluation
	4.1 Dataset Description
	4.2 Experimental Settings
	4.3 Metrics
	4.4 Baselines
	4.5 Main Performance
	4.6 Ablation Studies of the Pre-trained Module
	4.7 Real-World Deployment

	5 Discussion
	5.1 Lessons Learned
	5.2 Limitations and Future Works

	6 Related Works
	6.1 Estimate Time of Arrival Applications
	6.2 Route Prediction in Transportation and Logistics Systems
	6.3 Uniqueness of Our Work

	7 Conclusion
	References

	Optimizing Pointwise Convolutions on Multi-core DSPs
	1 Introduction and Related Work
	2 Backgound
	2.1 Pointwise Convolution
	2.2 Architecture of FT-M7032 Heterogeneous Processors

	3 Parallel Direct Implementation
	3.1 Overview of Our Implementation
	3.2 Multi-level Parallel Forward Propagation Algorithm
	3.3 Multi-level Parallel Algorithms for Backward Propagation and Weight Gradient Update Propagation

	4 Performance Evaluation
	4.1 Experiment Setup
	4.2 Performance

	5 Conclusions and Future Work
	References

	Detecting SDCs in GPGPUs Through Efficient Partial Thread Redundancy
	1 Introduction
	2 Background
	2.1 GPGPUs Architecture and Programming Model
	2.2 Fault Model

	3 Thread-Level SDC Proneness Analysis
	3.1 Vulnerability Identification
	3.2 Intra-thread Error Propagation Analysis
	3.3 Inter-thread Error Propagation Analysis

	4 Partial Thread Protection Framework
	4.1 Thread SDC Vulnerability Profiling
	4.2 Partial Thread Redundancy

	5 Experiment Methodology
	6 Evaluation
	6.1 SDC Probability Prediction Accuracy
	6.2 Overhead

	7 Related Work
	8 Conclusion
	References

	FDRShare: A Fully Decentralized and Redactable EHRs Sharing Scheme with Constant-Size Ciphertexts
	1 Introduction
	1.1 Our Results and Contributions

	2 Related Work
	3 Preliminaries
	3.1 Bilinear Pairing
	3.2 DDH Assumption
	3.3 Pseudo-Random Function

	4 System Definition
	4.1 Threat Model
	4.2 System Model

	5 Building Block
	6 Detail Construction of FDRShare
	7 Conclusion
	References

	An Efficient Fault Tolerance Strategy for Multi-task MapReduce Models Using Coded Distributed Computing
	1 Introduction
	2 Related Work
	3 Preliminaries and Problem Formulation
	3.1 The MapReduce Framework
	3.2 Coded Distributed Computing
	3.3 Problem Formulation

	4 Fault Tolerance for Multiple Reduce Tasks Using Coded Distributed Computing
	4.1 Preparation Stage
	4.2 Map Stage
	4.3 Shuffle Stage
	4.4 Reduce Stage

	5 Experiments
	5.1 Experiment Setups
	5.2 Experimental Results

	6 Summary
	References

	Key-Based Transaction Reordering: An Optimized Approach for Concurrency Control in Hyperledger Fabric
	1 Introduction
	2 Related Work
	2.1 Endorsement Phase Optimization
	2.2 Ordering Phase Optimization
	2.3 Validation Phase Optimization

	3 Problem Definition
	3.1 Types of Transaction Conflicts
	3.2 Problem Formulation

	4 System Design
	4.1 System Model
	4.2 Algorithm Design

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Results

	6 Conclusion and Future Work
	References

	Decentralized Self-sovereign Identity Management System: Empowering Datacenters Through Compact Cancelable Template Generation
	1 Introduction
	2 Related Work
	2.1 Self-sovereign Identity
	2.2 Biometric-Based Key Generation
	2.3 Fingerprint Matching Algorithm

	3 Coconut
	3.1 Overview
	3.2 Compact Cancelable Template Generation
	3.3 Experiment
	3.4 Evaluation

	4 Conclusion
	References

	Low-Latency Consensus with Weak-Leader Using Timestamp by Synchronized Clocks
	1 Introduction
	2 Background and Motivation
	2.1 Conflicts
	2.2 Motivation
	2.3 Synchronized Clock

	3 Proposed Approach
	3.1 Overview
	3.2 Calculation of One-Way Delay Time
	3.3 Processing of Replica Messages
	3.4 Implementation

	4 Evaluation
	4.1 Experimental Setup
	4.2 Conflict Rate
	4.3 Latency
	4.4 Throughput

	5 Related Work
	6 Conclusion
	References

	AOPT-FL: A Communication-Efficient Federated Learning Method with Clusterd and Sparsification
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Adaptive Top-K Sparsification
	3.2 Clustered Federated Learning

	4 Experimental
	4.1 Experimental Environment
	4.2 Accuracy
	4.3 Communication Overhead
	4.4 Experimental Details

	5 Conclusion
	References

	A Central Similarity Hashing Method via Weighted Partial-Softmax Loss
	1 Introduction
	2 Method
	2.1 Network Architecture Overview
	2.2 Implementation Details

	3 Experiments
	3.1 Datasets and Settings
	3.2 Experimental Results
	3.3 Ablation Study

	4 Conclusion
	References

	AIFR: Face Recognition Research Based on Age Factor Characteristics
	1 Introduction
	2 Related Work
	2.1 Cross-Age Face Recognition Based on Generative Adversarial Networks
	2.2 Cross-Age Face Recognition Based on Convolutional Neural Networks

	3 Basic Principles
	3.1 Convolutional Neural Network - Residual Neural Network (Resnet)
	3.2 Attention Mechanism
	3.3 Loss Function

	4 Data Sets and Experimental Design
	4.1 Experimental Data Set
	4.2 Experimental Design and Deployment
	4.3 Model Building

	5 Experimental Settings and Basic Parameters
	5.1 Experimental Equipment
	5.2 Experimental Parameters

	6 Experimental Results and Evaluation
	6.1 Experimental Comparison on Different Data Sets
	6.2 Experimental Evaluation

	7 Conclusion
	References

	Author Index

