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Abstract. The accuracy of electricity demand forecasting is closely related to the
correctness of decision-making in the power system, ensuring stable energy sup-
ply. Stable energy supply is a necessary guarantee for socioeconomic development
and normal human life. Accurate electricity demand forecasting can provide reli-
able guidance for electricity production and supply dispatch, improve the power
system’s supply quality, and ultimately enhance the security and cost-effectiveness
of power grid operation, which is crucial for boosting economic and social ben-
efits. Currently, research on electricity demand forecasting mainly focuses on
the single-factor relationship between power consumption and economic growth,
industrial development, etc., while neglecting the study of multiple influencing
factors and considering different time dependencies.

To address this challenge, we propose a transformer-based forecasting model
that utilizes transformer networks and fully connected neural networks (FC) for
electricity demand forecasting in different industries within a city. The model
employs the encoder part of the transformer to capture the dependencies between
different influencing factors and uses FC to capture time dependencies. We eval-
uate our approach on electricity demand forecasting datasets from multiple cities
and industries using various metrics. The experimental results demonstrate that
our proposed method outperforms state-of-the-art methods in terms of accuracy
and robustness. Overall, we provide a valuable framework in the field of electricity
demand forecasting, which holds practical significance for stable power system
operations.

Keywords: Electricity Demand Forecasting · Time Series Prediction ·
Transformer

1 Introduction

Electricity demand forecasting is crucial for optimizing power supply-demand structures
[1]. With the evolving power industry, renewable energy growth, and unpredictable
weather events, accurately predicting demand across regions and industries is essen-
tial. Recent research, shifting from traditional statistical methods to machine and deep
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learning models, has improved accuracy and service provision [2]. Common methods
include grey system analysis [3] and regression [1], while innovative deep learning
models like LSTM [4] and GRU [5] show promising results. However, these models
lack interpretability. Decision trees and gradient boosting algorithms enhance accuracy
by learning complex patterns within time series [6]. Feature selection and processing,
including dimensionality reduction, are crucial during forecasting. This paper builds on
advanced time series prediction models, capturing dependencies between influencing
factors and improving prediction accuracy by analyzing historical data dependencies.
This paper contributes to electricity demand forecasting in the following aspects:

1. Firstly, the transformermodel can capture the dependency relationship betweendiffer-
ent positions in a sequence, achieving context awareness. We leverage the advantages
of the transformer model to analyze the dependencies between different feature fac-
tors, effectively capturing the complex relationships between multiple input variables
and the target variable. This is crucial for improving the performance of the model.

2. Secondly, we capture the time dependencies between different historical time series
through the decoder layer composed of fully connected networks. This can potentially
improve the accuracy of the prediction results.

3. Finally, we have validated our proposed method on electricity demand datasets from
different cities and industries in the real world to demonstrate its effectiveness in
predicting city electricity consumption.

2 Related Work

2.1 Classical Statistical Methods

In the past century, classical statistical methods dominated time series prediction, relying
on experts’ experience and simple relationships, resulting in lower accuracy. Methods
included time series analysis, regression, exponential smoothing, and grey forecast-
ing. Time series analysis uses historical data to model power load changes, divided into
autoregressive, moving average, and integrated processes [7]. It has fast convergence but
overlooks internal factors. Regression predicts future electricity levels based on histori-
cal data, offering simplicity and generalization but limited adaptability [8]. Exponential
smoothing averages past sequences to predict future trends but struggles with unstable
sequences and complex factors [9]. Grey forecasting suits uncertainty, with ordinary
models for exponential growth and optimized models for fluctuating sequences. Advan-
tages include simplicity, fewer parameters, and strong mathematical foundations, but
they struggle with longer forecasts [10]. Classical methods require small datasets and
lack adaptability to complex relationships, making them suitable formonthly predictions
but challenging for practical applications involving temporal and spatial aspects [11].

2.2 Machine Learning Methods

With the development ofmachine learning, a series of classical algorithms have emerged.
Compared to traditional statisticalmethods,machine learning-based time series forecast-
ing has the advantage of powerful nonlinear fitting capabilities, resulting in higher pre-
diction accuracy. One of the most popular time series techniques for electricity demand
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forecasting is Long Short-Term Memory (LSTM). Recurrent Neural Network (RNN) is
a typical type of recurrent neural network that incorporates internal feedback connec-
tions and feedforward connections between processing units in different layers, enabling
it to associate past information with present tasks. However, as the length of the time
series increases, RNN struggles to learn long-term dependencies across distant time
steps. LSTM, a special type of RNN, overcomes this limitation by incorporating three
gates within the units to control internal states, thus addressing the vanishing gradient
problem. As a result, it not only possesses the short-term dependency learning capabil-
ity of RNN but also learns long-term dependencies. In literature [12], an algorithm for
load forecasting is proposed based on the integration of LGBM and LSTM. In literature
[13], the gate structure of LSTM is adjusted to reduce model parameters and improve
computing speed. In literature [14], the strengths of both RNN and LSTM are combined
for prediction, and an Attention mechanism is used to aggregate the prediction results
of the two models, applied to small-scale monthly electricity sales datasets.

Transformer is a neural network model based on attention mechanisms, originally
proposed by Google for natural language processing tasks such as machine transla-
tion, text summarization, and speech recognition. Compared to recurrent neural network
models such as LSTM and GRU, which are representative of RNN and its variants, the
Transformer model exhibits better parallelization and shorter training time. It performs
well not only in processing long sequences but also in capturing contextual dependencies
within sequences and internal dependencies between different sequences. As a result, it
has found wide applications in various fields. The DehazeFormer approach proposed by
Song et al. [15] modifies the Transformer model for image dehazing tasks. VideoBERT
is a joint representation model based on Transformer for extracting representations from
both image and language data, achieving excellent results in video content recognition
datasets and serving as a fundamental architecture for multimodal fusion tasks [16].
Radford et al. proposed CLIP, a zero-shot learning method based on the ViT network,
which combines language and image data and achieved promising results in various
tasks [17]. Roy et al. introduced a multimodal fusion attention mechanism for extracting
class labels from multimodal data using Transformer with cross-attention weights on
input labels, and verified its performance on multimodal remote sensing classification
tasks [18]. The relatively simple structure and outstanding performance of Transformer
greatly enhance its application potential in the field of machine learning.

3 Proposed Method

This section provides a detailed description of the method proposed in this paper for
predicting the electricity demand of different industries in cities. Firstly, we propose
a general model framework for performing this task. Then, we analyze the different
variables that influence the prediction of city electricity demand based on time series
theory and select relevant covariance features. Finally, we provide a detailed descrip-
tion of the transformer-based model prediction framework and validate it on real-world
datasets. Through this research, we aim to provide an accurate method for forecasting
city electricity demand to support relevant decision-making and planning.
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3.1 Overall Framework

In this article, we employ the combination of transformers and fully connected neural
networks, making full use of the contextual learning ability of transformers, and consid-
ering the dependency among multiple time series. Our algorithm framework, as shown
in Fig. 1, consists of two main parts. The encoder layer of the transformer is mainly
responsible for capturing the spatial dependencies between different features, while the
fully connected neural network primarily captures the temporal dependencies among
different time series.

Fig. 1. Prediction model framework

Our proposed algorithm framework for electricity demand forecasting can be viewed
as two stages: feature aggregation using the encoder layer of the transformer to learn the
relationship between features and past electricity demand values, and prediction using
the fully connected neural network layer. The encoder layer of the transformer is used
to aggregate various features from the input time series data and learn their nonlinear
relationship with electricity demand. The fully connected neural network layer then uses
the aggregated features to predict future electricity demand values.

A high-dimensional time series regarding electricity consumption across various
dimensions is as follows:

{Yt = (
yt1, yt2, . . . , ytp

)
, t = 1, 2, . . . ,N } (1)

as well as time series data for related covariates:

{Xt = (
xt1, xt2, . . . , xtp

)
, t = 1, 2, . . . ,N } (2)

In this context, ‘t’ represents the time step, and ‘p’ represents different dimensions
of time series.
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3.2 Feature Extraction Module

In this section, we analyze and address the factors affecting electricity demand from
meteorological and social perspectives and construct relevant covariates.

From a social perspective, residential electricity consumption levels are generally
lower during working days compared to holidays. The age distribution of the population
in a given region also affects electricity demand. For instance, regions with a higher
number of students during summer vacation experience a significant increase in elec-
tricity demand. Therefore, it is necessary to quantify holidays and summer vacation.
Holidays are non-numeric data and need to be encoded to transform them into numer-
ical values. For the “day of the week” data, we use one-hot encoding. For the data on
“whether it is a holiday” and “festival type,” we use 0–1 encoding, where 1 represents
a holiday, 0 represents a working day, and 1 represents a specific festival, while the rest
are represented as 0.

From a meteorological perspective, weather is the most important factor influencing
electricity demand. Therefore, studying and analyzing meteorological conditions is an
important step in improving the accuracy of the forecasting model.

From the mechanism of variation, it is known that temperature has the most sig-
nificant impact among all meteorological factors, especially in some extreme natural
environments. During cold winters and hot summers, electricity generation is signifi-
cantly higher than in other seasons. Therefore, we construct three types of covariates
to characterize temperature changes in the region: average temperature, maximum tem-
perature, and minimum temperature. We also incorporate humidity information to build
feature sequences that capture the meteorological impacts on electricity demand.

3.3 Time Series Prediction Module

We first introduce how to learn the dependencies of complex features.
Transformer, as the most advanced model in natural language processing, has been

widely used due to its efficiency and strong contextual awareness.
In Transformer, the input to the Encoder is a sequence of text, and the output is a

feature vector that represents the semantic information of the input text. The input to the
Decoder is a specific token, based on which it generates a new sequence of text, and the
output is a sequence of text. The Encoder is typically used for text encoding and repre-
sentation learning. Therefore, we can use the encoder layers of Transformer for feature
encoding and representation learning. The encoder layers primarily include four com-
ponents: Positional Encoding, Multi-Head Attention, Add and Norm, and Feedforward
and Add and Norm.

1. In the Positional Encoding positional encoding is performed using sine and cosine
functions, as shown in the following formula:

PE(pos, 2i) = sin(pos/100002i/dmode;) (3)

PE(pos, 2i + 1) = cos(pos/100002i/dmode;) (4)

Here, pos represents the position of the feature in the entire sequence, and ‘i’
refers to the dimension of the feature vector. After positional encoding, we obtain an
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encoding arrayXpos that is completely consistent with the input dimension.When this
encoding array is added to the original feature embeddings, we obtain new feature
embeddings:

Xembedding = Xembedding + Xpos (5)

2. Themulti-head self-attentionmechanism calculates the similarity between each input
vector and all other input vectors, and then weights and sums them to obtain a new
representation for each input vector. The mathematical expression for multi-head
self-attention is as follows:

Multihead(Q,K,V) = Concat(head1, head2, . . . , headh)W
o (6)

Among them,

head i = Attention(QWQ
i ,KWK

i ,VWV
i ) (7)

In Eq. (6), Q(Query),K(Key),V(Value) represents three vectors obtained from
the input sequence through three linear mapping layers, with dimensions dq, dk , and
dv respectively. ‘Concat’ represents the concatenation function, which combines all
the output results of head i.

In Eq. (7), WQ
i ∈ Rs×dk , WK

i ∈ Rs×dk , WV
i ∈ Rs×dk , WO

i ∈ Rhdv×s, they
respectively represent the weight matrices for the Q, K, and V vectors of the i-th
‘head’, and the weight matrix for the final output after dimension reduction. Here, it
is mentioned that dk = dv = s/h. The computation of the attention mechanism is as
follows:

Attention(Q,K,V) = SoftMax(
QKT

√
dk

)V (8)

In Eq. (8), dh = s/h, ‘SoftMax’ represents an activation function, while
√
dk is

used to transform the attention matrix into a standard normal distribution.
3. In the “Add and Norm” section, the input ‘x’ from the previous layer is connected

with the output from the previous layer through residual connections.
4. In the “Feedforward andAddandNorm” section, the feature representation is obtained

by passing the input through a feedforward network, which includes linear mappings
and activation functions:

Xhidden = Relu(Xhidden ∗ W1 ∗ W2) (9)

In the Eq. (9), W1 and W2 are the weights of the two linear layers, and ‘Relu’
represents the activation function.

Next, we will discuss how to learn the temporal dependencies of different historical
sequences.

A fully connected neural network is a multi-layer perceptron structure.
We use a 2-layer fully connected network to learn the nonlinear temporal dependen-

cies of each time segment. In the current connection layer ‘l’, we have:

X l = f(WlXl−1 + bl) (10)
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In the equation, X l represents the output of the current connection layer ‘l’, Wl

represents the weights of the current layer, bl represents the bias of the hidden layer, and
‘f()’ represents the nonlinear activation function. In this paper, we choose SoftMax as
the activation function.

4 Proposed Method

4.1 Experimental Dataset

The dataset used in this paper includes the electricity demand and related covariate
information for 13 industries from January 1, 2020, to January 31, 2023. The dataset
is divided into a training set and a testing set in a 4:1 ratio. The training set consists of
electricity demand data from January 1, 2020, to June 18, 2022, which is used for model
training. The testing set includes electricity demand data from June 19, 2022, to January
31, 2023. Additionally, the dataset also includes the meteorological feature data and
holiday feature data constructed in the previous section. The data has been preprocessed
to eliminate outliers and missing values. We use Prophet, GBDT, and CNN-LSTM as
experimental baseline methods.

4.2 Data Pre-processing

In this article, we utilize the min-max normalization method, which linearly transforms
data to a specified range to eliminate dimensional impact. The commonly used ranges
are [0, 1] or [−1, 1]:

X ∗ = x − xmin
xmax − xmin

(11)

In theEq. (11), x represents the electricity demand data,while xmax and xmin represent
the maximum and minimum values of the data, respectively.

Furthermore, in terms of the loss function, we use the Mean Squared Error (MSE)
function to measure the average difference between the actual observed values and the
predicted values. As shown in Eq. (12), Yi represents the predicted electricity demand
at the current time step, Yi

∧

represents the true electricity demand at the current time
step, and n represents the number of training samples. Additionally, we utilize the Adam
optimizer [19] to optimize the model gradients.

MSEloss = 1

n

∑n

i=1
(Yi − Yi

∧

)
2

(12)

4.3 Experimental Results and Analysis

The formulas for the daily average error indicator and themonthly average error indicator
are as follows:

month_degreeerror =
∑n

i=1 ypred (i) − ∑n
i=1 ytrue(i)∑n

i=1 ytrue(i)
(13)
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day_degreeerror = 1

n

∑n

i=1

∣∣∣
∣
ypred (i) − ytrue(i)

ytrue(i)

∣∣∣
∣ (14)

In the formulas, ypred (i) represents the predicted electricity demand for the i-th day,
and ytrue(i) represents the true electricity demand for the i-th day.

In the experiment, we conducted electricity demand prediction tasks for different
industries. Here is the specific industry breakdown, consisting of 13 industries. For
the sake of readability, we use abbreviations to represent each industry. 1) Urban and
rural residents’ electricity demand (Ure); 2) Agriculture, forestry, animal husbandry,
and fishery (Afahf); 3) Accommodation and catering industry (Aci); 4) Construction
business (Cb); 5) Real estate industry (Ri); 6) Industrial sector (Is); 7) Information
transmission, software, and information technology services industry (Isit); 8) Total
electricity demand in society (Tes); 9) Financial business (Fb); 10) Wholesale and retail
industry (Wi); 11) Leasing and business services industry (Rbi); 12) Public services and
management services (Pm); 13) Transportation, warehousing, postal industry (Twp).

We selected the prediction results for each industry in August 2022 for comparison,
with the monthly average error abbreviated as M-E and the daily average error as D-
E. To ensure data confidentiality, we refer to the predicted city as X and the proposed
prediction model based on Transformer and fully connected networks in this paper as
Transformer-F:

Table 1. Error Results of Electricity Demand Forecast for 13 Industries of City X in August.

Industry Model Error

Transformer-F Prophet GBDT CNN-LSTM

M-E D-E M-E D-E M-E D-E M-E D-E

Ure −0.18 0.16 3.50 3.50 −0.38 0.38 −0.27 0.17

Afahf −0.019 0.02 1.30 1.30 −0.20 0.30 −0.01 0.09

Aci −0.01 0.01 0.18 0.19 −0.14 0.20 −0.02 0.01

Cb −0.01 0.01 −0.05 0.07 −0.15 0.17 0.04 0.06

Ri −0.02 0.01 0.13 0.14 −0.18 0.20 −0.02 0.01

Is 0.02 0.02 −0.04 0.04 0.12 0.11 0.33 0.33

Isit −0.02 0.02 0.04 0.04 −0.06 0.08 0.02 0.03

Tes 0.03 0.01 0.04 0.65 −0.12 0.16 −0.04 0.01

Fb −0.02 0.01 0.04 0.07 0.10 0.20 0.01 0.02

Wi −0.01 0.11 0.17 0.21 −0.13 0.16 0.02 0.04

Rbi −0.06 0.01 0.37 0.94 −0.20 0.22 −0.01 0.02

Pm 0.01 0.01 0.10 0.11 −0.09 0.17 −0.07 −0.1

Twp 0.02 0.01 −0.19 0.18 0.01 0.06 0.02 0.02
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FromTable 1, it can be seen that, compared to the comparativemethods, the proposed
Transformer-F prediction model in this paper has the lowest monthly average error
and daily average error for 9 industries. This fully validates the effectiveness of the
Transformer-F model. In contrast, the Prophet model performs the worst, indicating that
the Prophet model may have limitations in predicting long-term trends. Additionally, the
Prophet model typically requires the original data to have certain seasonal variations. If
the training set lacks noticeable seasonal patterns, the Prophet model may struggle to
effectively model the data.

Furthermore, the GBDTmodel has higher error results compared to the CNN-LSTM
model and the proposed model in this paper. This is because tree-based models are
generally not suitable for high-dimensional sparse data and are sensitive to parameter
values, requiring careful tuning.

As shown in Fig. 2, we also presented the fitting performance of various models for
the overall societal electricity demand in August. The overall societal electricity demand
is defined as the sum of daily electricity demands across 13 industries. The curves of
different colors in the graph represent the predicted values of different models.

From Fig. 2, it can be observed that our proposed model shows a good fit to the real
curve, and the performance of the CNN-LSTM model is also considerable. However,
the prediction results of the GBDT model are slightly worse compared to our proposed
method and CNN-LSTM.

Fig. 2. Comparative results of different models in predicting the electricity demand of entire
society in August.

In addition, our proposed method also outperforms the comparative methods in the
segmented 13 industries.

As shown in Fig. 3 below, the curve fitting of the model for the real estate industry in
August 2022 is very close to the actual situation on the ground. The GBDT method also
performs well in some industries, but its performance is not as good as CNN-LSTM.
Compared to the other three methods, the Prophet method performs relatively poorly
across all industries:
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Fig. 3. Comparative results of different models in predicting the electricity demand of real estate
industry in August.

Overall, the prediction results, as evidenced by comparing different numerical indi-
cators and examining the fitting of different models to the real curves, demonstrate the
effectiveness of our proposed model in electricity demand forecasting.

5 Conclusion

Translation: In this paper, we utilized time series statistical analysis methods to analyze
historical electricity demand data. We established a multi-category electricity prediction
model.Wevalidated the effectiveness of our proposedmethod using a real-city electricity
demand dataset. By comparing the prediction errors of different models across various
industries, we demonstrated that our proposed method outperforms others in terms of
accuracy.
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