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Abstract. The paper studies the problem of designing interval observers for
discrete-time linear dynamic systems under the external disturbances, measure-
ment noises, and unknown system parameters. To construct such observers, we
use not the original system but its reduced-order model of the original system of
minimal dimension which is insensitive to the disturbances. The observers are
designed in such a way to estimate the prescribed linear function of the original
system state vector. Canonical form of the observer is used that allows to simplify
the design procedure. The obtained results are displayed by example of the electric
servoactuator.

Keywords: Linear systems · estimation · interval observers · uncertainties ·
canonical form

1 Introduction

In [1], a concept of intelligent control-emergency systemswas proposedusingknowledge
bases for a comprehensive analysis of autonomous underwater vehiclesmalfunctions and
developing solutions to adapt to them. Knowledge bases allow obtaining formal descrip-
tion of malfunctions and attributes to identify them. Besides, an ontological approach
to construction of these databases makes it possible to unify their structure and include
domain experts in the development process who provide its qualitative content. For
realization of intelligent control-emergency systems, it is necessary to promptly receive
information about the correct functioning and operability of individual subsystems of
the underwater vehicles. This can be done by using interval observers.

The problem to estimate the system vector of state is very important for many
practical applications. The main difficulties in designing an estimator are the system
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complexity and uncertainty (unknown parameters, measurement noises, and external
disturbances). It is known that sliding mode observers can solve this problem [2–4];
under uncertainties, however, the estimation error is not equal to zero. Recently, this
problem has been successfully solved on the basis of interval observers evaluating the
state of system. An advantage of such observers is that they allow to consider many
types of the system uncertainties: measurement noise, external disturbances, parametric
uncertainties.

Such an approach can be used to deal with significant disturbances and provide
component-wise information on possible solutions. Therefore, this approach is funda-
mentally different from conventional techniques of robust stability analysis or control
law construction for different perturbed processes. An advantage of interval observer
is that it allows to take into account many types of uncertainties in the system. The
main peculiarity of interval observation is that it is necessary to ensure positivity of the
estimation error dynamics in addition to their stability.

For many types of dynamic systems different interval observers have been devel-
oped in many papers: for linear and non-linear continuous-time [5–15], discrete-time
linear and non-linear [16, 17], for time-delay systems [18, 19], for Takagi-Sugeno fuzzy
systems [20], for switched systems [21–23], and singular systems [19]. Many practical
problems also successfully have been solved [24–26]. Exhaustive reviews are in [18, 27,
28].

Note that the above-mentioned papers solve the problem of estimation of full state
vector.Contrary to these papers, the interval observers in the present paper are designed to
estimate the prescribed linear function of the original system state vector. Such a solution
may be useful in some practical applications. Our approach is closed to that based on the
functional interval observers developed in [29–31] which enable estimating some linear
function of the state vector. In comparison with [30, 31], we take into account system
parametric uncertainties; unlike [29], our approach considers measurement noise.

The main contribution of the paper is that interval observers estimate not the state
vector but its some prescribed linear function. The suggested solution is based on the
reduced order model of minimal dimension which is invariant with respect to the dis-
turbances. This allows to reduce the interval width and the dimension of observer in
comparison with [11, 16, 18] and similar papers. Besides, in Sect. 2 we design interval
observers insensitive to the external disturbances and parametric uncertainties. In com-
parison with [32] where measurement noise and external disturbances are considered,
the present paper takes into account parametric uncertainties additionally. Based on the
reduced order model, one can obtain more precise estimates for the full state vector.
Besides, a new method to design such observers on the basis of the identification canon-
ical form is suggested. As a result, this enables designing such observers for broadened
class of dynamic systems.

2 The Main Models

Consider the following model of a linear system

x(t + 1) = A(μ)x(t) + Bu(t) + Qρ(t),
y(t) = Cx(t) + w(t)

(1)
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with states x ∈ Rn, inputs u ∈ Rm, and outputs y ∈ Rl ; the matrix A(μ) is of the form
A(μ) = (A + �A(μ(t))),whereA ∈ Rn×n is constantmatrix, thematrix function�A(μ)

is known for a given value of μ, μ(t) ∈ � ⊂ Rs is the bounded vector of parameters
where � is known; it is assumed by analogy with [18] that the values of μ(t) cannot
be measured. The matrices B ∈ Rn×l , C ∈ Rl×n, and Q ∈ Rn×p are known constant
matrices; ρ(t) ∈ Rp is a bounded unknown function with ‖ρ(t)‖ ≤ ρ∗ describing the
unmatched disturbance; w(t) ∈ Rl is a bounded unknown function with ‖w(t)‖ ≤ w∗
describing the measurement noise.

The objective is to develop the method of interval observer design generating func-
tions v(t) and v(t) under the condition v(t) ≤ v(t) ≤ v(t) for all t ≥ 0 where v(t) is such
that v(t) = Mx(t) for known matrixM . For matrices A(1),A(2) and vectors x(1), x(2), the
inequalities A(1) ≤ A(2) and x(1) ≤ x(2) one understands elementwise.

In comparisonwith [11, 16, 18] where the problem of estimation of full state vector is
studied, the suggested solution is based on the reduced ordermodel ofminimal dimension
which is invariant with respect to the disturbances. This allows to reduce the interval
width and the dimension of interval observer.

Note that the problem when the parametric uncertainties are absent, that is
�A(μ(t)) = 0 was solved in [32]. Recall briefly the main results of this solution.

The solution is based on the reduced-order model of the initial system:

η(t + 1) = A∗η(t) + B∗u(t) + G∗Cx(t) + Q∗ρ(t),
v(t) = C∗η(t) + P∗y0(t).

(2)

Here η ∈ Rk is the vector of state, thematrixA∗ is specified in the identification canonical
form

A∗ =

⎛
⎜⎜⎝

0 1 0 ... 0
0 0 1 ... 0
... ... ... ...

0 0 0 ... 0

⎞
⎟⎟⎠, (3)

thematricesB∗,G∗,Q∗,P∗, andC∗ of the appropriate dimensions have to be determined,
y0(t) will be determined later. Since the matrix A∗ is stable and nonnegative, system (2)
is cooperative [18].

Remark 1. The term G∗Cx(t) in the model (2) is used instead of G∗y(t) due to the
necessity to account measurement noise since y(t) = Cx(t)+w(t). We will use the term
G∗y(t) in the interval observers (10) and (17).

We assume that x∗(t) = �x(t) for some matrix � satisfying the conditions [4, 34]

�A = A∗� + G∗C,B∗ = �B,Q∗ = �Q. (4)

The variable y0(t) in (2) must be free of the disturbance ρ(t). The method to obtain
such a variable was suggested in [32]; it is based on the equation

(N1 − N2)

(
Q0

C

)
= 0
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for some matrices N1 and N2 of maximal rank. Solution of this equation produces
y0 = N2y(t) = N2Cx. Here Q0 is the maximal rank matrix satisfying the condition
Q0Q = 0.

The relation v(t) = Mx(t) and (2) result in

M = C∗� + P∗N2H = (C∗ P∗)
(

�

N2C

)
. (5)

This equation is solvable if

rank

(
�

N2C

)
= rank

⎛
⎝

�

N2C
M

⎞
⎠. (6)

The best observer generating the minimal interval width is when the model is free
of the parametric uncertainties �A(μ(t)) and the disturbance ρ(t). Such a model can be
designed based on the equation

(
�1 −G∗1 ... −G∗k

)(
W (k) Q(k) �(k)

)
= 0, (7)

generalizing the equation suggested in [4, 34] where

W (k) =

⎛
⎜⎜⎝

Ak

CAk−1

...

C

⎞
⎟⎟⎠,

Q(k) =

⎛
⎜⎜⎝

Q AQ ... Ak−1Q
0 CQ ... CAk−2Q
... ... ... ...

0 0 ... 0

⎞
⎟⎟⎠,

�(k) =

⎛
⎜⎜⎝

�A(μ) A�A(μ) ... Ak−1�A(μ)

0 C�A(μ) ... CAk−2�A(μ)

... ... ... ...

0 0 ... 0

⎞
⎟⎟⎠,

G∗i is the i-th row of the matrixG∗. The matricesQ(k) and�(k) guarantee invariance
of the model with respect to the disturbance and parametric uncertainties, respectively,
W (k) enables to design the model (2). The Eq. (7) is solvable when

rank
(
W (k) Q(k) �(k)

)
< n + lk. (8)

To design the model, one has to find minimal k from (8); the matrix
(�1 − G∗1 ... − G∗k) is determined from (7) and the rows of the matrix � are found
from the equations

�iA = �i+1 + G∗iC, i = 1, ..., k − 1,�kA = G∗kC (9)
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which can be obtained based on (3) and (4). Finally, the matrices B∗, C∗, and P∗ are
found from (5) and (4).

Based on the model (2), the interval observer is designed:

η
_
(t + 1) = A∗η

_
(t) + B∗u(t) + G∗y(t) − |G∗|Elw∗ − |Q∗|Epρ∗,

η(t + 1) = A∗η(t) + B∗u(t) + G∗y(t) + |G∗|Elv∗ + |Q∗|Epρ∗,
η
_
(0) = η

_0
, η(0) = η0.

(10)

HereEk is (k × 1)-matrix:Ek = (1 1 ... 1)T , thematrix |G∗| contains the absolute values
of the corresponding entries of G∗.

Theorem 1. [32] When η
_
(0) ≤ η(0) ≤ η(0), then it follows for all t ≥ 0.

η(t) ≤ η(t) ≤ η(t), v(t) ≤ v(t) ≤ v(t), (11)

where

v(t) = C∗η(t) + P∗y0(t), v(t) = C∗η(t) + P∗y0(t) (12)

if C∗ ≥ 0 and

v(t) = C∗η(t) + P∗y0(t), v(t) = C∗η(t) + P∗y0(t) (13)

if C∗ ≤ 0.
Note that when (8) is true for some k, then Q∗ = 0 in (10) and the interval width is

minimal. If (8) is not true for all k, one has to check the condition

rank
(
W (k) �(k)

)
< n + lk. (14)

If it is satisfied, then Q∗ �= 0, that is the disturbance affects the model, and the
interval width becomes greater. It can be reduced by applying robust method based on
singular value decomposition described in [32]. If (14) is not satisfied for all k, one has
to use the method developed in Sect. 3.

3 Parametric Uncertainty

Assume that (14) is not satisfied for all k and �A
_

≤ �A(μ(t)) ≤ �A for all μ(t) ∈ �

with some �A
_

,�A ∈ Rn×n. The interval

(
�A
_

,�A

)
can be calculated for known �

and �A(μ) [18]. To simplify the procedure, assume initially that w = 0 and ρ = 0.
The model estimating the variable v(t) is based on the model

η(t + 1) = (A∗ + �A∗)η(t) + B∗u(t) + (
G∗ + G′)y(t),

v(t) = Cvη(t) + Py0(t).
(15)
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The matrices �A∗ and G′ can be found as follows. It follows from (1) and (15)

�(A + �A(μ)) = (A∗ + �A∗)� + G∗C + G′C.

Since � satisfies (4), one obtains ��A(μ) = �A∗� + G′C, or

��A(μ) = (
�A∗ G′)

(
�

C

)
. (16)

After obtaining the matrix � we find �A∗ and G′ from (16). Generally, the matrix
G′ depends on �A. Assume for simplicity that G′ does not depend on �A.

Assumption. �A
_ ∗

≤ �A∗ ≤ �A∗For some �A
_ ∗

and �A∗.
Given a matrix �A, define by analogy with [18] �A+ = max(0,�A) and �A− =

�A+ − �A; clearly, �A+ ≥ 0 and �A− ≥ 0.

Lemma 1. [19] If �A∗ ∈ Rk×k is constant and η
_

≤ η ≤ η, then

�A+∗ η
_

− �A−∗ η ≤ �A∗η ≤ �A+∗ η − �A−∗ η
_
.

If �A
_ ∗

≤ �A∗ ≤ �A∗ for some �A
_ ∗

, �A∗, �A∗ and η
_

≤ η ≤ η, then

�A
_

+
∗
η
_

+ − �A
+
∗ η
_

− − �A
_

−
∗
η+ + �A

−
∗ η− ≤ �A∗η

≤ �A
+
∗ η+ − �A

_
+
∗
η− − �A

−
∗ η
_

+ + �A
_

−
∗
η
_

−.

The interval observer is given by

η
_
(t + 1) = A∗η

_
(t) +

(
�A
_

+
∗
η
_

+ − �A
+
∗ η
_

− − �A
_

−
∗
η+ + �A

−
∗ η−

)

+B∗u(t) + (
G∗ + G′)y(t),

η(t + 1) = A∗η(t) +
(

�A
+
∗ η+ − �A

_
+
∗
η− − �A

−
∗ η
_

+ + �A
_

−
∗
η
_

−
)

+B∗u(t) + (
G∗ + G′)y(t),

η
_
(0) = η

_0
, η(0) = η0,

(17)

The estimation errors are as follows:

e∗(t + 1) = A∗e∗(t) + �A∗η(t) − (�A
_

+
∗
x+(t) − �A

+
∗ η
_

−(t)

−�A
_

−
∗
η+(t) + �A

−
∗ η−(t)),

e∗(t + 1) = A∗e∗(t) + (�A
+
∗ η+(t) − �A

_
+
∗
η−(t) − �F

−
∗ η
_

+(t)

+�A
_

−
∗
η
_

−(t)) − �A∗η(t).
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Theorem 2. If �A
_ ∗

≤ �A∗ ≤ �A∗ and η
_
(0) ≤ η(0) ≤ η(0), then the relations (11)

with (12) and (13) are true for the observer (17) and all t ≥ 0.

Proof. The condition η
_
(0) ≤ η(0) ≤ η(0) implies ex(0), ex(0) ≥ 0. Since A∗ ≥ 0 and

ex(0) ≥ 0, it follows from Lemma that ex(1) ≥ 0 that is η
_
(1) ≤ η(1). It can be shown

by induction that η
_
(t) ≤ η(t) is true for all t ≥ 0. The relation η(t) ≤ η(t) one can prove

analogously.
If C∗ ≥ 0, it follows from (12)

ev(t) = v(t) − v(t) = C∗η(t) + P∗y0(t) −
(
C∗η

_
(t) + P∗y0(t)

)
= C∗e∗(t),

ev(t) = v(t) − v(t) = C∗η(t) + P∗y0(t) − (C∗η(t) + P∗y0(t)) = C∗e∗(t).

Since ex(t), ex(t) ≥ 0, one obtains ev(t), ev(t) ≥ 0 which is equivalent to v(t) ≤
v(t) ≤ v(t). If C∗ ≤ 0, one has from (13)

ev(t) = v(t) − v(t) = C∗η(t) + P∗y0(t) − (C∗η(t) + P∗y0(t)) = −C∗e∗(t),
ev(t) = v(t) − v∗(t) = C∗η

_
(t) + P∗y0(t) − (C∗η(t) + P∗y0(t)) = −C∗e∗(t).

Taking into account C∗ ≤ 0, the relations ev(t), ev(t) ≥ 0 can be obtained as well.
Theorem has been proved. �

The case when w �= 0 and ρ �= 0 can be taken into account by additional addends
−|G∗|Elw∗ − |Q∗|Epρ∗ and |G∗|Elw∗ + |Q∗|Epρ∗ in (17) by analogy with (10).

4 Example

Consider the control system

x1(t + 1) = γ1x2(t) + x1(t),
x2(t + 1) = (γ2 + δ1(t))x2(t) + γ3x3(t) + ρ(t),
x3(t + 1) = γ4x2(t) + (γ5 + δ2(t))x3(t) + γ6u(t),
y1(t) = x1(t) + w1(t),
y2(t) = x3(t) + w2(t).

(18)

Equation (18) constitute the sampled-data model of the robot electric servoactuator.
The coefficients γ1 ÷ γ6 depend on the servoactuator parameters and the sampling time;
the function ρ(t) is induced by the external loading moment; the uncertainty δ1(t) is due
to change of inertia properties, δ2(t) is due to change of active resistances.

The matrices describing the system are given by

A =
⎛
⎝
1 γ1 0
0 γ2 γ3

0 γ4 γ5

⎞
⎠,B =

⎛
⎝

0
0
γ6

⎞
⎠,C =

(
1 0 0
0 0 1

)
,

Q =
⎛
⎝
0
1
0

⎞
⎠,�1A(t) =

⎛
⎝
0 0 0
0 δ1(t) 0
0 0 0

⎞
⎠,�2A(t) =

⎛
⎝
0 0 0
0 0 0
0 0 δ2(t)

⎞
⎠.



Interval Observers Design for Discrete-Time Linear Systems with Uncertainties 21

The problem is to estimate the variables x1(t), x2(t), and x3(t) that is

M =
⎛
⎝
1 0 0
0 1 0
0 0 1

⎞
⎠.

It should be noted that to solve this problem, the approaches suggested in [11, 16,
18] and similar papers design full-order interval observer. Our approach allows reducing
the observer dimension and interval width.

Since y1(t) = x1(t) + w1(t) and y2(t) = x3(t) + w2(t), then

x1(t) = y1(t) − w∗1, x1(t) = y1(t) + w∗1

and

x3(t) = y2(t) − w∗2, x3(t) = y2(t) + w∗2.

To estimate the variables x2(t), solve the Eq. (7) with k = 1:

(� − G∗)

⎛
⎜⎜⎜⎜⎜⎝

1 γ1 0
0 γ2 γ3

0 γ4 γ5

1 0 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎠

= 0.

Its solution is � = (1/γ1 − 1/γ2 0) and G∗ = (1/γ1 − γ3/γ2) that gives B∗ = 0
and Q∗ = −1/γ2. Clearly, C∗ = −γ2, P∗ = (γ2/γ1 0), �A∗1(t) = δ1(t), G′

1 =
(−δ1(t)/γ2 0); �A∗2(t) = 0 and G′

2 = 0 according to (16).
The reduced order model is given by

η(t + 1) = δ1(t)η(t) + (1/γ1 − δ1(t)/γ2)C1x(t) − (γ3/γ2)C2x(t) − ρ(t)/γ2,
v(t) = −γ2η(t) + (γ2/γ1)y1(t).

The observer has the following description:

η
_
(t + 1) = δ1

_
η
_
(t) +

(
1/γ1 + Sg/γ2

)
y1(t) − (γ3/γ2)y2(t)

−(
1/γ1 + δ1

)
w∗1 − (γ3/γ2)w∗2 − ρ∗/γ2,

η(t + 1) = δ1η(t) + (
1/γ1 + Sg/γ2

)
y1(t) − (γ3/γ2)y2(t)

+(
1/γ1 + δ1

)
w∗1 + (γ3/γ2)w∗2 + ρ∗/γ2,

v(t) = −γ2η(t) + (γ2/γ1)y1(t),
v(t) = −γ2η

_
(t) + (γ2/γ1)y1(t),

(19)

where

Sg = 0.5
(
(1 − sign(y1(t)))δ1 + (1 + sign(y1(t)))δ1

)
,

Sg = 0.5
(
(1 − sign(y1(t)))δ1 + (1 + sign(y1(t)))δ1

)
.
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Comparing the obtained results and the resultswhich can be obtained for this example
by methods developed in [11, 16, 18] and similar papers, we may conclude that the
dimension of the observer (19) is fewer than that in [11, 16, 18] and the suggested
approach produces the estimations with smaller interval width since the ones for x1(t)
and x3(t) do not contain the disturbance ρ∗ and the uncertainties. Besides, the observer
(19) does not contain the uncertainty δ2(t).

For simulation consider the model (18) and the observer (19); the measurement
noises w1(t) are w2(t) are random processes evenly distributed on [−0.01, 0.01], the
parametric uncertainty δ1 is modeled as δ1 = 0.03(1 + sin(10t)). Set for simplicity γ1 =
γ2 = γ5 = γ6 = 1, γ3 = γ4 = −1; set δ1 = 0 and δ1 = 0.06; w∗1 = w∗2 = ρ∗ = 0.01.
Figures 1 and 2 illustrate simulation results, where v(t), v(t), and x2(t) are presented for
η(0) = 0, η(0) = −0.05, and η(0) = 0.05. In Fig. 1, the control u(t) = 0.2; in Fig. 2,
u(t) = 0.2sin(t/20).

Fig. 1. Behavior of x2(t) and v(t) and v(t) with u(t) = 0.2

Fig. 2. Behavior of x2(t) and v(t) and v(t) with u(t) = 0.2sin(t/20)
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5 Conclusion

The paper has studied the problemof interval observer design for linear discrete-time sys-
tems under the disturbance, measurement noise, and unknown parameters. The reduced-
order model which does not depend on the disturbances or has minimal sensitivity to
them and is realized in identification canonical form has been used to solve the problem.
The designed interval observer has minimal dimension and estimates the prescribed
linear function of the original system state vector with the reduced interval width. The
limitation of the proposed approach is that it can be applied for limited class of nonlinear
systems; nonlinearities should satisfy some requirements. A future research direction is
the interval observer design for hybrid dynamic systems.
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