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Abstract. Inresponse to the existing challenges associated with manual interpre-
tation, low efficiency, high leakage, and misdetection rates in detecting defects in
urban underground drainage pipes, this study presents a defect detection method of
drainage pipe based on improved YOLOVS5s. The proposed method improves the
detection of large target defects and reduces the leakage detection rate by increas-
ing a deep target detection layer. Additionally, the introduction of deformable con-
volutional networks (DCN) allows for more accurate feature extraction from tar-
gets with complex shapes. Furthermore, the loss function is improved by employ-
ing MPDIoU as the bounding box loss function, which not only accelerates the
convergence speed of bounding boxes but also enhances target recognition accu-
racy. Experimental results demonstrate that the improved model surpasses the
performance of the original YOLOVSs, exhibiting an improvement of 3.8% in
accuracy, 1.9% in recall, and 2.1% in average precision. Additionally, the pro-
posed method achieves an impressive inspection speed of up to 54.64 FPS (frames
per second), enabling real-time and efficient drain defect detection. This method
is highly practical as it provides technical support for the future deployment of
CCTYV pipeline robots.
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1 Introduction

Drainage pipes within urban environments constitute an integral facet of the city’s infras-
tructure. Their primary function lies in efficiently managing the treatment of sewage
and rainwater, thereby ensuring unimpeded urban thoroughfares, facilitating conve-
nient living conditions, and fostering sustainable urban development and social stability.
Nonetheless, the presence of pipeline defects, such as cracks, misalignments, discon-
nections, and obstructions, has become apparent due to factors such as pipeline aging,
urban waterlogging, and the execution of road and bridge construction projects. These
defects bear the potential to instigate environmental contamination, waterlogging, and
traffic predicaments, as well as pose a substantial threat to the structural integrity of
buildings. Furthermore, they may engender nuisances such as odors and pest infesta-
tions, thereby significantly impinging upon the progress of cities and the quality of life
for its inhabitants. Hence, it becomes imperative to promptly and effectively undertake
pipeline defect detection measures to safeguard the integrity of urban construction.
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Presently, the common methods employed for unmanned detection of drainage pipe
defects include sonar detection, periscope detection, and closed-circuit television detec-
tion (CCTV) [1]. Among them, CCTV detection stands as one of the most extensively
utilized approaches in engineering sites. Common CCTV pipe robots are shown in Fig. 1.
However, this method excessively relies on manual interpretation during the defect recog-
nition process, which is not only a complicated process and a large workload, but also
has a high misjudgment rate [2]. Consequently, in recent years, the realization of auto-
matic identification of pipeline defects based on machine vision and artificial intelligence
has become a research hotspot in this field. Dong [3] used support vector mechanism
to build a multi-class classifier model to extract the parameters such as grayscale dif-
ference, equivalent area, and circularity from pipeline weld images to build a feature
database. Through training, they achieved a remarkable accuracy of 90% in identify-
ing weld defects using the MSVM (Multicategory Support Vector Machines) classifier.
Hawari A [4] employed morphological processing, Gabor filtering, and elliptical fitting
algorithms for detecting cracks, deformations, and deposits, respectively. Their average
accuracy rate was recorded at 75%. Huang [5] combined two algorithms to extract gaps
and crack locations in gas pipeline interfaces. By merging morphological processing
with the open top-hat algorithm and the MSER (Maximally Stable Extremal Regions)
algorithm, they achieved a segmentation accuracy of 61.5% for gap detection and an
86.7% accuracy rate for crack segmentation.

Fig. 1. Two different sizes of CCTV pipeline robots.

As deep learning continues to advance, a range of deep learning-based target detec-
tion algorithms have found application in pipeline defect detection research. These
algorithms can be broadly classified into two types: one-stage and two-stage methods.
Notable examples of one-stage target detection algorithms include the YOLO series
[6-9] and the SSD network [10]. On the other hand, the two-stage algorithms include
Faster R-CNN [11] and Mask R-CNN [12]. Wang [13] employed the Faster R-CNN
network to detect and recognize six types of defects in underground drainage pipes with
an average accuracy of 88.99%. Li [14] designed a new two-stage object detection algo-
rithm for defect detection in underground drainage pipes. They utilized a multi-layer
global feature fusion technique and achieved a model mAP value of 50.8%. Lu [15]
employed StyleGAN?2 for preprocessing the original images and made improvements
to the feature fusion layer of YOLOX. They also modified the loss function to CIOU,
resulting in an impressive mAP value of 68.76% for recognizing five types of defects.
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The research achievements of these esteemed experts and scholars demonstrate a cer-
tain level of progress in pipeline defect detection through the integration of machine
vision and artificial intelligence. However, it is worth noting that there are still some
limitations, such as limited variety of defect recognition, lower accuracy rates, slower
detection speed and other shortcomings.

To achieve a more efficient pipeline defect detection, the present study proposes
a method that builds upon the improved YOLOvSs framework. The method incorpo-
rates several key enhancements. Firstly, a deep target detection layer is introduced to
enhance the system’s ability to detect large-area defects. Additionally, the introduction
of DCN enables the extraction of more comprehensive feature information for irreg-
ular defects. Lastly, the optimization of the bounding box loss function to MPDIoU
results in faster convergence speed and more accurate regression results. These advance-
ments collectively contribute to a more efficient and accurate pipeline defect detection
methodology.

2 Methods

The YOLOVS algorithm framework comprises three components: the Backbone, Neck,
and Head networks. The Backbone network is composed of the CBS, C3, and SPPF
modules. The CBS module is responsible for extracting local features and performing
downsampling operations. The C3 module utilizes residual structures to extract features
while enhancing computational speed. The SPPF module achieves the fusion of local and
global features. On the other hand, the Neck network incorporates the Pyramid Attention
Network (PAN) to facilitate multi-scale feature fusion and enhancement. Lastly, the Head
network performs prediction and filtering on the feature maps generated by the Neck
network, ultimately enabling the detection of defect locations and categories.

Atpresent, YOLOVS has been updated to version 7.0, and it is divided into YOLOV5n,
YOLOVSs, YOLOv5m, YOLOvV5I, and YOLOvVS5x based on the model’s width and depth.
To meet the requirements of the pipeline defects detection task and achieve faster detec-
tion results without compromising accuracy, this study selects YOLOvSs as the foun-
dational model due to its smaller parameter count. The proposed improvements include
the addition of a deep target detection layer, replacing the last C3 convolutional layer
in the Backbone with deformable conv, and modifying the bounding box loss function
to MPDIoU. These enhancements contribute to the development of a pipeline defect
detection algorithm that combines high accuracy and efficiency. The overall network
structure is illustrated in Fig. 2.

2.1 Addition of a Deep Target Detection Layer

The original YOLOvVSs model consists of three detection heads in the Head layer, each
responsible for detecting different sizes of objects: large, medium, and small. How-
ever, in pipeline defect images captured by CCTV pipe robots, we frequently encounter
numerous large-sized defects. To improve the detection accuracy of the model for large
targets, we introduce a deeper target detection layer to refine the YOLOv5s model. This
improvement involves incorporating new CBS and C3 layers into the Backbone network,
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Fig. 2. Improved overall network structure.

increasing the final downsampling factor from 32x to 64x. As aresult, the model becomes
more adept at extracting feature information for larger-sized defects, thus improving its
overall performance. Furthermore, an additional upsampling and convolution operation
is introduced in the Neck network, resulting in four different sizes of feature maps: 80px
x 80px, 40px x 40px, 20px x 20px, and 10px x 10px. Subsequently, these feature
maps are inputted into the Head network for prediction and filtering. With the inclusion
of the new detection layer, it is necessary to reconfigure the detection anchor boxes. In
this study, the K-means clustering method is employed to obtain the priori anchor boxes
for the dataset, and the specific configuration is outlined in Table 1.

Through the extraction of deeper features, we can achieve more precise capture
of the features and intricacies of oversized targets, thereby significantly enhancing the
overall accuracy of our detection system. This improvement enables the new model to
better address larger defects such as disconnections and misalignments in pipeline defect
detection tasks.
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Table 1. Anchor box configuration corresponding to different size feature maps.

Feature map size Receptive field size Priori anchor box size

80px x 80px small (44,31) (132,56) (59,139)
40px x 40px middle (117,106) (71,293) (244,127)
20px x 20px large (132,257) (592,104) (283,245)
10px x 10px extra large (630,149) (625,209) (468,343)

2.2 Deformable Convolutional Network Module

The traditional convolution operation in CNN involves dividing the feature map into seg-
ments of the same size as the convolution kernel, with fixed positions for each segment
on the feature map. However, due to the diverse shapes of pipe defects, this convolution
method yields suboptimal results. To address this complexity in target types, this study
introduces Deformable Convolution Networks (DCN) [16]. DCN incorporates a learn-
able offset to the sampling positions in standard convolution, enabling the convolution
kernel to expand its range during the training process. This adjustment allows the kernel
to better conform to the shape of the target, as depicted in Fig. 3. In Fig. 3, the green dots
in (a) represent the standard convolution kernel, while the blue dots in (b), (c), and (d)
represent the updated kernel positions after incorporating the offset. It is evident that the
inclusion of the offset enables the kernel to adapt to various scenarios, including target
movement, size scaling, rotation, and more.

(a) (b) (c) (d)

Fig. 3. Comparison of deformable convolution and standard convolution.

The traditional convolution structure can be defined by Formula 1, where pg rep-
resents each point in the output feature map, corresponding to the center point of the
convolution kernel, and p,, represents each offset of po within the range of the convolution
kernel.

y(po) = ZRWQ’n) - x(po + pn) (1)
pn€

In the case of deformable convolution, each point is introduced with an offset, which
is generated by another convolution from the input feature map. This can be represented
by Formula 2.

y(Po) = X wpn) - x(po + pn + Apn) )
Pn€R
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As the introduced offsets in deformable convolution are typically non-integer values
and do not correspond to actual pixel points on the feature map, it becomes necessary to
employ bilinear interpolation to obtain the final pixel values after the offset. The diagram
illustrating deformable convolution is depicted in Fig. 4.

input feature map output roi feature map

Fig. 4. Illustration of 3 x 3 deformable convolution.

The introduction of offsets and control points in deformable convolution allows for
its adaptability to non-rigidly deformed targets, concurrently enhancing the receptive
field, improving target localization accuracy, and reducing computational requirements.
By precisely adjusting the position of the sampling point, deformable convolution can
effectively capture the intricate details and boundaries of the target, thereby significantly
improving the model’s accuracy in detecting defective targets.

2.3 Improvement of Loss Function

The loss function of the YOLOvSs model comprises classification loss, bounding box
loss and confidence loss, with the total loss being the sum of these three components.
Within this framework, the localization loss function employs the CloU (Complete Inter-
section over Union) metric, which considers parameters such as the distance between
the predicted box and the real box, overlap rate, scale, penalty term, etc. However, this
type of loss function struggles to optimize effectively when the predicted box and the
ground truth bounding box have the same aspect ratio but vastly different width and
height values.

To address the above issue, this study introduces a novel similarity comparison metric
called Minimum Point Distance-based IoU (MPDIoU) as the measurement method for
the new model’s bounding box loss function. This metric considers the distance between
the top-left and bottom-right points of the predicted box and the ground truth bounding
box, in addition to the original IoU calculation, while simplifying the calculation process.
The formula for MPDIoU is as follows:

d? a3
MPDIoU = 453 — —1 — —2 3)

@t = (6 =)+ 0P = 51)’ @
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G = (8 =50+ 0 - 52)° ®

Let A and B represent the ground truth bounding box and predicted bounding box,
respectively. The coordinates (x’{‘, y/f) and (xg‘, yﬁ‘) represent the top-left and bottom-
right coordinates of the ground truth bounding box, while (xlf , y{? ) and (xg, yg ) represent
the top-left and bottom-right coordinates of the predicted bounding box. The MPDIoU
metric incorporates all relevant factors considered in the existing loss function, including
overlapping or non-overlapping regions, center point distance, and deviations in width
and height.

Compared to traditional loss functions, MPDIoU offers a more efficient and concise
computation process, effectively improving the accuracy and efficiency of bounding box
regression in defect detection tasks.

3 Experimental Results and Analysis

3.1 Dataset Construction and Environment Configuration

The dataset used in this study is sourced from the Video Pipe ICPR2022 Video Pipeline
Challenge. It consists of videos captured by CCTV pipeline robots in multiple urban
underground drainage pipeline inspection projects, totaling 575 videos. From these
videos, we extracted and selected 1659 images depicting various types of common
pipeline defects, including misalignment (CK), crack (PL), leakage (SL), disconnection
(TJ), shedding (TL), and obstruction (ZW).

To ensure the robustness and generalization capabilities of the model, we employed
techniques such as rotation, flipping, and brightness adjustment to augment the dataset,
resulting in a final count of 3000 defect images. The annotated samples were divided
into training, validation, and test sets in an 8:1:1 ratio.

The specifications of the software and hardware devices employed in this exper-
iment are presented in Table 2. Additionally, Table 3 provides an overview of the
hyperparameters utilized during the training process.

Table 2. Software and Hardware Device Specifications.

Device Environmental parameters
operating system Ubuntu 20.04

CPU Xeon(R) Platinum 8255C
GPU NVIDIA RTX 3080 (10 GB)
memory 40 GB

programming Language Python 3.8

deep learning framework PyTorch 1.11.0~ CUDA 11.3
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Table 3. Training Hyperparameters.

Hyperparameters Value
image size 640 x 640
epoch 100

batch size 16

initial learning rate 0.01
momentum 0.937

3.2 Evaluation Metrics

In order to assess and evaluate the performance of the improved YOLOv5s model, this
study utilizes several performance evaluation metrics, including Precision (P), Recall
(R), mean Average Precision (mAP) and Frames Per Second (FPS). The formulas for
calculating these metrics are as follows:

P=rtr (©)
R= 7t @)
mAP = Lo ®)
FPS = ij;m )

Among them, T}, denotes the number of positive samples recognized correctly by the
model, F;, denotes the number of positive samples recognized incorrectly by the model,
F\ denotes the number of negative samples recognized incorrectly by the model, p(r) is
the PR curve, N .05 denotes the number of classes of all defects, 77 denotes the total
time of detection, and Njgyr. denotes the number of detection images.

3.3 Analysis of Experimental Results

Compared to the Original YOLOvSs. By inputting the pipeline defect dataset into
the YOLOV5s algorithm model before and after the improvement and incorporating the
pre-trained weights from YOLOVSs on the COCO dataset, we conducted training for
100 epochs. We obtained the mean Average Precision, Precision, and Recall curves,
as depicted in Fig. 5. The figure shows that the improved mAP curve stabilizes after
approximately 70 iterations, exhibiting an obvious enhancement compared to the pre-
improvement stage. Ultimately, the improved YOLOv5s model achieved a mAP value
of 88.0%, surpassing the original YOLOvS5s model by 2.1%. Moreover, the precision
and recall rates improved by 3.8% and 1.9% respectively.

Due to the addition of the deep target detection layer and DCN module in the model
of this paper’s algorithm, the size of the model weights is increased from 14.1 MB
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to 24.7 MB. Nevertheless, the detection speed of our algorithm is 54.6 FPS, which is
comparable to the 54.9 FPS achieved by YOLOvS5s. Both algorithms enable real-time
detection capabilities.

mAP Precision Recall
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Fig. 5. Comparison of curves before and after algorithm model improvement.

Comparison of Other Algorithms. To further validate the superiority of the algorithm
proposed in this study, it is compared with the common target detection algorithms
Faster-RCNN, Mask-RCNN, YOLOv3, YOLOv4, and YOLOvV7 on the same dataset
and calculate the average accuracy of six types of defects separately. The detailed detec-
tion results are shown in Table 4. Notably, the improved algorithm showcased obvious
enhancements in detecting three specific types of defects: misalignment, crack, and
obstruction, with respective increases of 5.9%, 3.5%, and 3.1% compared to the top-
performing alternatives. Moreover, the accuracy of detecting the remaining three defect
types was comparable to the other leading algorithms. In terms of overall performance,
our algorithm outperforms all others.

Table 4. Comparison results of different detection algorithms.

Model AP/% P(%) |R(%) | mAP | FPS
ck |pL s [T L [zw (%) | ({hs)
FastetRCNN | 81.5 |57.8 |822 667 769 1903 |823 697 |759 | 542
Mask-RCNN | 840 | 606 |76.1 702 756 |91 |832 683 762 | 532

YOLOV3 858 |53.8 |8l5 [68.8 |773 |92.1 84.5 70.2 76.6 55.8
YOLOv4 90.1 |682 |81.8 |962 |799 |904 |88.6 78.3 84.4 51.3
YOLOV7 8.9 |71.6 |829 [966 |80.7 |89.1 | 90.0 71.6 84.6 51.6
Improved 96.0 |75.1 826 978 |8l2 (952 |93.0 82.8 88.0 54.6
YOLOVS5s

Ablation Experiments. In order to verify the effects of different improved methods
on the model performance and experimental results, based on the original YOLOvVS5s
model, this study conducted six sets of ablation experiments on the three improved
methods, and the results are shown in Table 5. The mAP value of the original YOLOvS5s
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model is 85.9%. By incorporating a deep object detection layer, the mAP improved by
1.0%. Introducing deformable convolution led to a further mAP improvement of 0.9%.
By changing the bounding box loss function to MPDIoU, the mAP increased by 1.5%.
Additionally, integrating the deep object detection layer with the deformable convolution
module resulted in mAP improvement of 1.6%. Finally, when all three improvement
methods were simultaneously applied to the YOLOvS5s model, the mAP increased by
2.2%, demonstrating the best overall performance.

Table 5. Effect of different improvement methods on model performance.

Deep object detection layer MPDIoU DCN P (%) R (%) mAP_0.5 (%) FPS (1/s)
X X 89.2 80.9 85.9 54.9
v X X 94.3 81.6 86.9 53.1
X N X 91.2 82.1 86.8 52.6
X X J 93.1 82.2 87.4 54.6
Vv Vv X 91.6 83.1 87.5 515
VA N N 93.0 82.8 88.0 54.6

Visualization Result Analysis. To present a more intuitive illustration of the algo-
rithm’s performance before and after improvement in pipeline defect detection, this
study conducted tests on the original YOLOvVS5s model and the improved YOLOvS5s
model using the test dataset. The detection results are depicted in Fig. 6. The first row
showcases the original pipeline defect images, followed by the detection results using the
YOLOVSs model in the second row, and finally the detection results using the improved
YOLOVS5s model as described in this paper, displayed in the third row. The figures are
annotated with the detected defect types and corresponding confidence scores.

(c) SL o

Fig. 6. Comparison of detection effects.
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The detection effect graphs clearly demonstrate that both the original YOLOvVSs
model and the enhanced model can effectively identify the correct pipeline defects.
However, it is evident that the improved model yields higher confidence scores compared
to the original model, and the improved model exhibits enhanced precision in localizing
the detected defects.

4 Conclusion

To address the challenges in urban drainage pipeline defect detection, enhancing both
speed and accuracy, this paper proposes an improved YOLOvSs algorithm model. This
model enhances the precision of defect target detection and reduces the missed detection
rate through means of incorporating a deep target detection layer, introducing deformable
convolutions, and refining the loss function. As a result of these improvements, the
enhanced model demonstrates a 3.8% increase in accuracy, a 1.9% increase in recall rate,
and a 2.1% increase in mean average precision. And the detection speed is similar to that
of the original model, meeting the standards for real-time detection. This algorithmic
model effectively solves the problems of low detection accuracy, high missed detections,
and false positives in drainage pipeline defect detection, making it highly practical.
Moving forward, our future research will involve collecting a more diverse range of
pipeline defect images to further expand the defect dataset. We will also focus on building
a more lightweight network model, reducing parameter size and model complexity.
Furthermore, we plan to deploy the model on CCTV pipeline robots to facilitate improved
pipeline defect detection in collaboration with industry professionals.
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