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Abstract. Source code summarization is the process of generating a
concise and generalized natural language summary from a given source
code, which can facilitate software developers to comprehend and use
the code better. Currently, most research on source code summarization
generation focuses on either converting the source code into abstract
syntax tree (AST) sequences or directly converting it into code segments
and then feeding these representations into deep learning models. How-
ever, these single representation approaches ignore the semantic features
of source code and destroy the structure of the abstract syntax tree,
which affects the quality of the generated source code summarization.
In this paper, we propose a novel source code summarization approach
that fuses multiple code features into self-consistency output (FCSO).
Our approach is based on a graph neural network encoder and a Code-
BERT encoder with a self-attention mechanism. It extracts the sentence
feature attention vector and the AST feature attention vector of the
source code for feature fusion. Then, it inputs them into the Transformer
decoder. Furthermore, to generate more accurate source code summaries,
we adopt a new decoding strategy called self-consistency. It samples dif-
ferent inference paths, uses a penalty mechanism to calculate their sim-
ilarity scores, and ultimately selects the most consistent answer. Our
experimental results demonstrate that our proposed approach outper-
forms standard baseline approaches. On the Python dataset, the BLEU
score, METEOR score, and ROUGE L score increase by 11.13%, 9.12%,
and 7.88%, respectively. These results show that our approach provides
a promising direction for future research on source code summarization.

Keywords: Source code summarization · Code feature Fusion ·
Self-consistency · Transformer

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 112–129, 2024.
https://doi.org/10.1007/978-981-97-0801-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_7&domain=pdf
https://doi.org/10.1007/978-981-97-0801-7_7


FCSO: Source Code Summarization 113

1 Introduction

In the current era, the Internet is growing rapidly, expanding the size of software
systems for companies. Unfortunately, every software development and mainte-
nance operation requires developers to re-familiarize themselves with the source
code, ultimately reducing operational efficiency [1]. To address this concern,
high-quality source code summarization is essential as it enables programmers
to swiftly comprehend and use the source code, thereby enhancing their work
efficiency. High-quality code summaries improve software development and main-
tenance efficiency by providing accurate information on the function of the mod-
ule’s code [2], promoting rapid industry growth.

Research work in the area of Source Code Summarization generally falls into
three categories: artificial templates, information retrieval, and deep learning
models. The first approach, based on artificial templates for generating source
code summaries, is the most traditional approach. Sridhara et al. [3] utilized
the Software Word Usage Model (SWUM) to produce descriptive summaries
of Java approaches, while Merono et al. [4] employed heuristics and natural
language processing to generate Java code summarization. The second approach,
based on information retrieval, involves extracting code semantic information by
marking code feature information and applying information retrieval techniques
to generate code summaries. Wong E et al. [5] proposed a probabilistic and
statistical AutoComment model based on a large dataset and fed the mapping
relationship of a vast amount of data into the AutoComment model to generate
a code summary. However, the first two approaches have limitations due to their
poor reusability and low accuracy of the generated code summaries. Researchers
have gradually shifted to new models to carry out their work.

The most promising approach in current research on Source Code Summa-
rization is the third category - deep learning-based models. In earlier studies,
deep learning networks were commonly used for code summarization tasks. Iyer
et al. [6] employed LSTM (long short-term memory network), a widely-used
deep learning model, to build CODE-NN, an automatic code summary genera-
tion model capable of creating code summaries for SQL query statements. Hu
et al. [7] proposed TL-CodeSum, which utilizes API information to enhance the
quality of code summary generation. This approach uses two encoders to process
API information and source code vocabulary information separately to improve
the accuracy of generated summaries. To capture the code’s semantic informa-
tion more comprehensively, researchers have started focusing on generating code
summaries by improving the abstract syntax tree of the code. Hu et al. [8] con-
verted the source code into AST using an attention mechanism and presented the
DeepCom approach, which inputs the AST sequence into the encoder for encod-
ing. Wang et al. [9] fine-tuned the Transformer model and introduced the TranS
approach, which leverages the Actor-Critic network to encode code vocabulary
and indentation structure. The results indicate that this technique generates
better summaries corresponding to source code fragments.

Although the research mentioned above has achieved the goal of code sum-
mary generation, there are still some limitations. First of all, the single use of
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code sequence or AST path in the task ignores the structural characteristics of
AST, which will lose part of the code information. The second problem is that
the previous decoder output uses the traditional Beam Search [10] strategy for
path reasoning and finally selects the sequence with the highest score from all
candidate sequences in the termination state as the output. However, the code
summary candidate sequence obtained in this way only considers the candidate
with the highest local score and cannot guarantee the global optimal solution, so
there may be some repetitions or unreasonable situations in the output sequence.

To solve the above problems, we propose a source code summarization app-
roach (FCSO) that fuses code features into self-consistent output to solve it. We
found that CodeBERT [11], as a Transformer-based pre-training model, learned
the semantic representation of code. It provides a robust feature extraction func-
tion, which can better capture the semantic information of the code. We have
also seen that the graph neural network (GCN) can aggregate the information
of AST neighbor nodes to help the model learn code structure information and
context dependencies. Therefore, as an inspiration, we take whether they can
integrate the semantic information and structural information of the code as
a challenge to get the answer to the problem. For the first question, we use
CodeBERT encoder and GCN encoder to extract sequence and AST features
and then perform feature fusion so that the fused code feature self-attention
vector can be input into the Transformer decoder to preserve the source code
to the greatest extent-semantic and syntactic information to improve the accu-
racy of code summary generation. For the second question, since the current
code summary generation task requires higher and higher accuracy and consis-
tency, we abandoned the previous greedy random output strategy. To achieve
this goal, we introduce a new decoding approach, Self-consistency in the Trans-
former decoder. After Beam search calculates the probability distribution of the
final time step, it randomly samples the output inference path. Then, it obtains
the most consistent answer by judging the similarity score.

In the following experiments, we used Java code and Python database as the
corpus to train the model. After comparing the standard baseline method, we
found that the BLEU and METEOR indicators have been improved accordingly,
and the ablation experiment proved the feasibility of the FCSO approach. The
main contributions of this paper are as follows:
• A source code summarization approach that fuses code features into self-

consistency output (FCSO) is proposed. This approach can extract and fuse
code sequence and AST features, improving code summarization generation
quality.

• We break the traditional decoding strategy and add a new decoding strategy,
Self-consistency. By defining a penalty mechanism, calculating the similarity
score of multiple output sequences ensures the consistent output of the code
summary and improves the generation accuracy.

• We compare the standard baseline approach in the experiment, and the BLEU
score, METEOR score, and ROUGE L score on the Python dataset increase
by 11.13%, 9.12%, and 7.88%, respectively. It proves that our approach is
effective and provides a good idea for future research.
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2 Related Work

At present, the field of code summarization is mainly based on deep learn-
ing research, which is generated by improving AST traversal approaches, GCN
embedding approaches, commonly used LSTM networks, encoder-decoder archi-
tectures, and Transformer models. Huo et al. [12] used the LSTM and CNN
networks to learn a control flow graph (CFG) representation so that valuable
information can be focused on a graphical representation. LeClair et al. [13] feed
the AST as a sequence into the encoder to generate Java code annotations. Shi
et al. [14] built a neural network encoder to recursively decompose the subtree
of AST and then encode the processed data to generate a code summary. Hu et
al. [8] proposed a structure-based traversal (SBT) approach by improving AST
into a flattened sequence to solve the problem of the traditional AST sequence
losing the global information of the code. LeClair et al. [15] used the SBT app-
roach to conduct experiments and found that decoupling the code structure and
code tags can better generate code summaries.

The above research mostly starts with improving code structure and AST
structure. In recent years, researchers have gradually begun to use deep learn-
ing networks to solve the problem of code summarization generation. Due to
the inability of traditional RNN models [16] or LSTM networks with atten-
tion mechanisms [17] to capture long-term dependency relationships, researchers
have found that the Transformer model [18] utilizes self-attention mechanisms
to solve this problem. Ahmad et al. [19] used a relatively encoded Transformer
model to ensure the dependency of code information, and experiments found
that using only an unimproved model resulted in much higher performance in
code summarization generation than common deep learning networks such as
RNN, indicating that using an encoder-decoder is a good approach.

In addition, some researchers have begun to start with code feature fusion,
providing a new idea for code summary generation. The online learning of social
performance (DeepWalk) proposed by Bryan et al. [20] is applied to CFG in a
learning manner. Then it connects nodes through a convolutional neural network
to achieve the goal of error positioning. Wang et al. [21] applied Self-consistency to
the language model, allowing a complex reasoning problem to allow many differ-
ent ways of thinking, and finally selected the only correct answer, which improved
the reasoning ability of the thinking chain. Cheng et al. [22] proposed the GN-
Transformer approach, which combines sequence and graph learning representa-
tions to improve the quality of code summarization generation. Wang et al. [23]
constructed two encoders to fuse code-informed attention weights by learning
mixture representations of codes. Similarly, Gao et al. [24] innovatively proposed
a multi-modal and multi-scale approach to fuse the feature information of the
code and input the code feature into the modified Transformer model decoder to
improve the code summary generation performance. The above research mainly
focuses on how to decompose each feature of the code. Their research more or less
ignores the attention weight of the code feature or all randomly generates sum-
mary results in the traditional Beam Search method. The accuracy of the code
generated is insufficient, so further research is needed.
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3 The Architecture of Approach

The FCSO approach proposed in our paper consists of four main parts: data
preprocessing, feature extraction, feature fusion, and self-consistency output.
Firstly, the input source code is preprocessed and parsed into an abstract syntax
tree and a token sequence. Next, these two parts of data are embedded into the
GCN encoder and CodeBERT encoder we set up for feature extraction. The
token feature vector and AST feature vector generated by the encoder are then
input into the Transformer decoder for source code summarization. Finally, the
self-consistency penalty mechanism is utilized in the decoder to calculate the
similarity score, and the sequence with the highest similarity is retained by
comparison to derive a consistent summary answer. The overall framework of
the FCSO is illustrated in Fig. 1.

Fig. 1. The overall framework of our approach.

3.1 Data Preprocessing

In order to preserve the information of the source code more completely, we
divide the code of the Java dataset and the Python dataset into two parts for
data preprocessing. Part of it is processed as code sequence information, and
part is converted into AST to save code structure information. In the former,
we use the word segmentation toolkit to convert each piece of input code into
a sequence and save it as an original suffix file as the input for the next stage.
When the latter is converted into an abstract syntax tree since our experimental
training is Java code and Python code, the javalang3 toolkit [23] is used to
parse the Java code into AST, and the asttokens toolkit [24] is used to parse the
Python code into AST.

At the same time, for the consistency of the data sets during training, we
set the same length limit for the two data sets. This includes setting code tags,
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the average length of natural language, maximum node tree, maximum depth,
and other parameters. For tag sequences that are less than or greater than the
maximum length in the dataset, we pad and truncate them, respectively. In
addition, we also divided the data set. Java data set and Python data set are
set into the training set, validation set, and test set, which are divided into 6:2:2
and 8:1:1, respectively, to ensure that it has the same segmentation ratio as the
standard baseline [4].

As shown in Fig. 2, it is an example of implementing the Java code of the
decrement function and converting it to AST. In Fig. 2 (b), the gray color refers
to nodes and branches and does not represent a complete tree structure. As
can be seen from the figure, the AST branches from the MethodDeclaration
node, and the type attribute indicates the return type of the method, which is
void as a leaf node. The name attribute represents the method’s name, which is
also decreasingForLoop. The Param attribute represents the method’s parameter
list, which contains two FormalParameter nodes, representing the startValue and
endValue parameters, respectively.

Fig. 2. Example of converting Java code to AST.
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3.2 Feature Extraction

After the data preprocessing in the previous step, to obtain the code’s local and
global information, we need to continue processing the obtained sequence and
AST. Based on the Transformer model, we retained the original self-attention
mechanism, improved the embedding method of the encoder, and constructed
two encoders: GCN Encoder and CodeBERT Encoder.

GCN Encoder: In this encoder, we treat each node in the AST as a node in the
graph data. Each node is a code block, and each edge connects two adjacent code
blocks, and the normalized adjacency matrix is constructed using the connection
relationship between them [25]. Initially, each node has an eigenvector and then
uses the weighted average of the eigenvectors of neighboring nodes to update
the eigenvector of the node. In each layer, GCN uses this method to update
the feature vector of each node until the desired number of layers or feature
convergence is reached [26]. Specifically, graph convolution is applied to each
node, and two-layer graph convolution is used to capture AST structure infor-
mation and dependencies between nodes. The computed neighbor node features
are then combined with the initial features of the nodes to update the features
of each node. Finally, this embedding vector is input into the encoder, and the
AST feature attention vector is obtained through the self-attention mechanism.
The formula for GCN propagation between layers and GCN calculation of node
eigenvectors is as follows:

˜Dii =
∑

j ˜Aij (1)

H(l+1) = σ( ˜D− 1
2 ˜A ˜D− 1

2 H(l)W (l)) (2)

h
(l+1)
i = σ

(
∑

j∈N(i)

1
cij

W (l)h
(l)
j + θ(l)h

(l)
i

)

(3)

where the H is the characteristics of these nodes to form an N × D dimensional
matrix, the relationship between each node will also form an N ×N dimensional
matrix A, also known as the adjacency matrix. In (1) and (2) formulas, each H

is the feature of each layer, ˜A is the sum of the A matrix and I identity matrix,
˜D is the degree matrix of ˜A, and σ is the nonlinear activation function. Formula
(3) can calculate the eigenvector of the GCN node. In the neighbor set N(i) of
node i, the eigenvector h

(l)
i of node i in the l layer is multiplied and summed

by the weight matrix W (l) in the l layer, and then the bias item θ(l) is added.
cij is a normalization factor, which is used to alleviate the problem of different
degrees of different nodes.

CodeBERT Encoder: There are two parts: CodeBERT and Encoder. Code-
BERT is used to extract code features, and the encoder continues to process
feature vectors to generate self-attention vectors. We first tokenize the code and
divide each word or symbol into tokens. For the CodeBERT model to distin-
guish different types of text sequences, it is also necessary to add the “[CLS]”
tag at the beginning of the code and the “[SEP]” tag at the end of the sentence.
Appropriate tags also need to be added at the start and end of the abstract. Then
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concatenate the code fragment and its abstract to form an input sequence and
map the word-segmented sequence to BERT’s vocabulary to obtain the digital
ID representation of each token. Finally, input the preprocessed code dataset,
load the trained BERT model, and extract the corresponding features. Among
them, the feature vector of each code fragment can be obtained through the
output of the last layer of BERT. Specifically, the vector corresponding to the
last layer “[CLS]” tag can be used as the feature vector of the code fragment;
similarly, the vector corresponding to the last layer “[SEP]” tag can be used as
the feature vector of the summary [27]. The formula for extracting code features
by the CodeBERT model is as follows:

hcode = [BERT ([p1, p2, p3, ..., pn])] (4)

where [p1, p2, p3, ..., pn] is the token sequence obtained after the code sequence
is mapped through the vocabulary, and the BERT function converts it into the
corresponding feature vector matrix.

Continuing to process the feature vectors generated by CodeBERT in the
encoder can further improve the efficiency of the model. First of all, the massive
text data used in CodeBERT pre-training has carried out unsupervised learning
on the model so that it has a stronger semantic understanding ability; secondly,
when extracting code features, CodeBERT can effectively capture the critical
information in code fragments to improve the representation ability and expres-
sion efficiency of the encoder. Therefore, combining CodeBERT features with
Transformer encoders can lead to better code generation results [28]. At the
model structure level, both CodeBERT and Transformer use the same attention
mechanism and multi-layer perceptron structure, and there are similar network
structures and parameter settings between them, so they are compatible with
each other. Therefore, we use the CodeBERT pre-trained model to take the out-
put of the last layer as the input of the Transformer encoder and proceed to the
next step. The sequence representation output in this encoder is the extracted
sequence feature vector. The formula for the encoder using the self-attention
mechanism is as follows:

Qi = XW q
i ,Ki = XW k

i , Vi = XW v
i (5)

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (6)

where Qi(Query), Ki(Key), and Vi(Value) is obtained by multiplying the weights
W q

i , W k
i , and W v

i , respectively, and finally, the softmax activation function is
calculated.

3.3 Feature Fusion

After obtaining the sequence feature attention vector and AST feature atten-
tion vector of the source code in the previous two steps, we need to fuse these
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two vectors before entering the multi-head attention mechanism in the Trans-
former decoder. The specific way of fusion is described below. First, the similarity
between two vectors is calculated by the dot product operation, and a scalar value
can be obtained. Then, we use the Softmax function to normalize the similarity
and convert it into an attention weight to indicate the importance of the two fea-
tures in the fusion process. Finally, the attention weight is weighted and summed
with the corresponding feature vector to obtain the fusion of the subsequent
feature representation. This method determines the importance of features by
calculating the similarity and normalization weights and then weights and sums
the features according to the attention weights. This enables the adaptive fusion
of different features to better capture the correlation and importance between
features. At the same time, in the fusion process, we minimize the cross-entropy
loss function and use the gradient descent algorithm and dropout to optimize the
parameters in the model. The negative log-likelihood loss function is as follows:

L = − 1
N

N
∑

i=1

Z
∑

t=1

log[p(yi
t)] (7)

where Xi is a source code segment given in the formula, Yi = [yi
1, y

i
2, y

i
3, ..., y

i
N ]

is the target digest segment prepared, N is the number of data points in the
training decoder, and Z is the maximum length of the target digest given to
training.

3.4 Self-consistency Output

In the inference process on the decoder side, we use parameter weights after
training and fusing multiple code features to load. Then Beam Search calculates
the probability distribution of each time step and stores the updated candidate
path ranking in a heap for subsequent summary output. For the self-consistency
output, we use first samples these candidate inference paths, use the cosine sim-
ilarity method to calculate the similarity score, compare the scores through the
penalty mechanism of the Self-consistency scoring function, and finally retain
the sequence with the highest similarity to obtain more accurate and consistent
answers [21]. The calculation formula for cosine similarity and penalty mecha-
nism is as follows:

cos(x, y) =
x · y

||x|| · ||y|| =
∑n

i=1 xiyi
√

∑n
i=1 x2

i

√
∑n

i=1 y2
i

(8)

f(s) = g(s) − w

K
∑

j=1

Di,j (9)

where D is the penalty score, K is the number of candidate sequences obtained
by the Beam Search algorithm, and Di,j represents the penalty score between
the i and j candidate sequences. Formula (8) uses the cosine similarity method to
measure the similarity between n dimensional vectors x and y. At the same time,
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using this similarity formula, we define a new scoring function f(s) for scoring
each sequence and analyzing the optimal solution. Where g(s) represents the
initial score of the sequence s, and w is a non-negative weight coefficient used to
control the degree of similarity penalty. The penalty mechanism is to subtract
the penalty degree between the sequence s and other candidate sequences based
on the original score g(s) to save the sequences with higher similarity and filter
out the sequences with lower similarity.

Figure 3 below is a Python code example of a function to find the longest
common prefix of a string, showing the principle of self-consistency output. First,
the source code is decoded by the trained Transformer model, and then the
similarity calculation is performed on the candidate sequences in Beam Search.
Because the value set by our beam size is 5, after processing the Self-consistency
scoring function among the five random output sequences, sequence 4, with the
highest similarity score, is reserved for output.

Fig. 3. Self-consistency output example.

4 Experiment

In the experiment, we first set up the database, evaluation indicators, model
parameters, benchmark methods, etc., required for the experiment. Then, we per-
formed model training to compare the evaluation indicators with the benchmark
method. To demonstrate the effectiveness of our approach, we conduct qualitative
ablation experiments. Finally, compare the summary generated by the benchmark
method and the summary generated by our approach as an example.

4.1 Experiment Settings

Experimental Datasets: Our experiments are based on two databases well-
recognized in source code summarization research, the Java database [7] and the
Python database [29]. There are as many as 80,000 training sets, verification
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sets, test sets, and millions of Tokens which can fully train the parameters of the
model. At the same time, we only use words with high frequency, and other words
will be replaced by marks. For words beyond the maximum length, we perform
a data truncation. Table 1 shows the number of training sets, AST nodes, and
total number of tokens for Java and Python datasets.

Table 1. Statistical analysis of the Java and Python dataset.

Dataset Java Python

Train 69708 55538

Validation 8714 18505

Test 69708 18502

Unique nodes in ASTs 57478 101283

Unique tokens in code 66650 307596

Unique tokens in summary 46895 56189

Avg.node in AST 131.72 104.11

Avg.tokens in code 120.16 47.98

Avg.tokens in summary 17.73 9.48

Evaluation Metrics: To qualitatively compare the effect of the experimen-
tal generation, this paper adopts three indicators recognized in the field of
machine translation and code summarization, BLEU [30], METEOR [31], and
ROUGE L [32].

The BLEU (Bilingual Evaluation Understudy) indicator is a standard
machine translation indicator that measures the quality of translation by com-
paring the n-gram coincidence between the translation result and the reference
translation.

The METEOR (Metric for Evaluation of Translation with Explicit ORdering)
indicator combines various linguistics and machine learning techniques to obtain
a comprehensive score by comparing the similarity in vocabulary, grammar, and
semantics between the translation output and the reference translation.

The ROUGE L (Recall-Oriented Understudy for Gisting Evaluation) indi-
cator is often used to evaluate tasks such as text summarization and machine
translation. It is more comprehensive, using the longest common subsequence
(LCS) algorithm to measure the matching between the translation output and
the reference translation. This enables a more comprehensive translation of the
resulting code summary score.

Baselines: In order to prove that our research work is effective, the represen-
tative baseline models and methods in recent years are selected below. Metrics
are generated by summarizing code replicating these methods and compared to
our scores.

• CODE-NN [4]. The basic architecture of the model is LSTM with attention,
which is an entirely driven generative model. The code is embedded through
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the encoder and decoder framework, resulting in the final C and SQL code
digest.

• Code2Seq [33]. By inputting the processed AST path into the LSTM model as
a sequence and outputting a fixed-length vector, the code summary is finally
output under the calculation of the attention mechanism.

• Tree2Seq [34]. The model is based on end-to-end syntax, which extends from
tree structure to sequence structure for input. At the same time, the model
decoder also has a code summary corresponding to the output of the attention
mechanism.

• DeepCom [6]. This method proposes a reversible AST traversal sequence
method (SBT) for code comment generation, which provides a suitable
method for future research under the same conditions as a reference.

Hyper-Parameters Setting: To better train the encoder and decoder archi-
tecture, we set appropriate parameters, as shown in Table 2. We set the size de
in the embedding layer to 768 and the number of embeddings lg in the GCN
encoder to 300. Note that the number of headg is 8, and the number of Lg layers
is 4. Similarly, the number of self-attention layers Lb in the CodeBERT encoder
is 12, the dk and dv values are 64, and finally, the output size of the feed-forward
network dff is 2048. At the same time, the length ls in training in the decoder
will be truncated to 100. During training, we set the embedding layer dropout
to 0.2, the learning rate to 0.0001, and the batch size to 32.

Table 2. Hyper-Parameters Setting.

Hyper-Parameters Value

Embedding de 768

GCN-Encoder lg 300

hg 768

headg 8

Lg 4

CodeBERT-Encoder lb 400

Lb 12

headb 12

dmodel 768

dk,dv 64

dff 2048

Decoder ls 100

ld 6

Training dropout 0.2

optimizer Adam

learning rate 0.0001

batch size 32

Testing beam size 5
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4.2 Comparison Experiment and Ablation Experiment

After preparing the experimental setup, we conduct our experiments. First, we
look for more excellent methods and models in recent years as the baseline and
obtain the corresponding evaluation index data by reproducing their methods.
Then, on the two data sets, Java code and Python code, we trained our model
for 56 h before and after and compared the calculated evaluation index data
with the baseline. Finally, we performed ablation experiments by removing each
module to demonstrate that our various code feature attention vectors can help
improve code summarization performance.

For comparative experiments, we compare the obtained baseline evaluation
index data with the FCSO data, as shown in Table 3 below. The approach column
in the table is each method, and the BLEU column, METEOR column, and
ROUGE L column are the corresponding method indicator percentages. It can
be seen from the table that the standard baseline method is DeepCom [6], which
has a BLEU score of 39.25%, a METEOR score, and a ROUGE L score of 23.06%
and 52.67% on the Java dataset. And our approach to FCSO is in bold in the
table. It can be observed that with the baseline method DeepCom, the BLEU
score, METEOR score, and ROUGE L score on the Java dataset are increased
by 5.45%, 3.80%, and 1.84%, respectively. On the Python dataset, the BLEU
score, METEOR score, and ROUGE L score increased by 11.13%, 9.12%, and
7.88%, respectively. From these data, it can be seen that our approach has a
corresponding improvement compared with the baseline method on the Java
dataset and the Python dataset, and it also shows that the FCSO approach we
proposed is beneficial to the research work of source code summarization. At the
same time, it can also be found that the evaluation index data on the Python
dataset is lower than that of the corresponding Java dataset. This is because
the Python code itself is lower than the semantic information contained in the
Java code, so when converting the sequence to a semantic map such as AST,
When it contains less information, there is a gap between the final generated
summary and the reference value matching. Future research seems to improve
the accuracy of Python dataset generation by modifying the nodes of the AST
semantic tree to increase the semantic information on the Python dataset.

For the ablation experiments, we split the FCSO approach and removed each
module. Then, increase quantitatively one by one and observe the change of the
corresponding evaluation index data for each module added. The specific data
is shown in Table 3 below. The first is to add a separate CodeBERT encoder
and GCN encoder module and put the generated code feature attention vec-
tor into the Transformer decoder for scoring output. Their respective evaluation
index data in the Java dataset are as expected, with BLEU scores of 32.68% and
38.55%. This data shows that a single code sequence feature and AST feature
are not enough to reflect the semantic information of the code. The second is
our multiple code feature attention fusion, using GCN-Encoder and CodeBERT-
Encoder on the Java dataset, to score BLEU, METEOR score and ROUGE L
score 42.64%, 26.13%, and 53.12% have corresponding improvements. Finally,
the Self-consistency module is added based on the above experiment. Compared
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with the previous experiment, the BLEU score, METEOR score and ROUGE L
score on the Java dataset increased by 1.31%, 1.74%, and 2.20%, respectively.
The ablation experiments show that each module in our approach is indispens-
able, and the fusion of multiple features and Self-consistency output can improve
the evaluation index of code summarization. For the experimental device, the
experiments in this paper are conducted on an Ubuntu GPU server, with two
GPUs of Tesla P40 and a graphics memory of 24 GB.

Table 3. Comparison of our proposed approach with the baseline approaches.

Approach Java Python

BLEU METEOR ROUGE L BLEU METEOR ROUGE L

CODE-NN 27.51% 12.59% 40.30% 17.28% 9.16% 37.68%

Code2Seq 37.12% 20.14% 51.37% 19.88% 10.33% 37.80%

Tree2Seq 37.75% 21.95% 51.49% 20.07% 8.96% 35.64%

DeepCom 39.25% 23.06% 52.67% 20.78% 9.98% 37.35%

FCSO 44.70% 26.86% 54.51% 31.91% 19.10% 45.23%

Ablation Study

CodeBERT-Encoder 32.68% 18.71% 43.59% 19.50% 8.64% 36.57%

GCN-Encoder 38.55% 21.43% 49.74% 20.86% 8.92% 37.31%

(GCN+BERT) Encoder 42.62% 25.13% 52.12% 30.29% 17.98% 43.67%

Self-consistency 43.93% 26.87% 54.32% 31.41% 18.38% 44.58%

4.3 Code Summarization Examples

At the end of the experiment, we compared the summary generated by the pre-
vious benchmark model with the summary generated by our approach, as shown
in Fig. 4 and Fig. 5. In the examples of Java and Python codes, we use a section
of the MYSQL database connection method code to observe the differences in
abstracts generated by various models and methods. The blue color in the figure
indicates the key information of the code, while the red color indicates the infor-
mation that our approach has not lost compared to the benchmark method. In
Java functions, the first few methods, such as CODE-NN and Code2Seq, are
only summaries and do not involve the Class. forName method used to connect
to the database. In Python functions, the same benchmark method is a single
grab header function, and our approach diagram is highlighted in blue, where
we found the connect method and the judgment statement.

Specifically, it can be found from the figure that in the CODE-NN method,
because the LSTM structure is used, it is not easy to process the semantic
information of long sequences, and the key information is lost in the summary.
At the same time, the Code2Seq method adds self-attention weights to the LSTM
framework, and the summary output can briefly explain the connection method
of the database. The SBT method implemented by DeepCom also processes AST
sequences in a single way, and the summary cannot retain important judgment
statements. The approach FCSO we proposed can retain the connect and if
statements, and express the summary more completely, which is beneficial to
the programmer’s code development.
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Fig. 4. Comparing Summary Results with Baseline on Java Code Methods. (Color
figure online)

Fig. 5. Comparing Summary Results with Baseline on Python Code Methods. (Color
figure online)
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5 Conclusion

In this paper, we propose a source code summarization approach that fuses code
features into self-consistency output (FCSO). This approach first constructs a
GCN encoder and a CodeBERT encoder. It outputs the AST feature attention
vector and sequence feature attention vector of the source code, respectively.
Then, input these two feature vectors into the Transformer model decoder for
feature fusion to ensure subsequent model training. Finally, we use the self-
consistency decoding strategy to calculate the similarity score of the sequence
output by beam search and output a consistent code summary answer, which
improves the accuracy of the generated summary. In particular, we conducted
comparative benchmark experiments and ablation experiments on two data sets,
Java and Python, and the indicators of the experimental results have been sig-
nificantly improved. It proves that our approach can learn and express the global
and local features of the code more accurately and retain the semantic informa-
tion of the code more completely to help programmers better understand and
use the code and improve the development efficiency of software code.

In the future, our research will pay more attention to modifying the structure
in the decoder and think about how to realize the fusion of the front encoder
information and the back decoder information to improve the performance of
source code summarization. Or it may also study code summary generation in
other fields, such as helping the summary generation of the current popular
blockchain smart contract code, which can promote the rapid development of
this field.
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