
KylinArm: An Arm Gesture Recognition
System for Mobile Devices

Shikun Zhao1, Jingxuan Hong1,2, Zixuan Zhang4, Xuqiang Wang4,
Jin Zhang1,2, and Xiaoli Gong1,2,3(B)

1 College of Computer Science, Nankai University, Tianjin, China
gongxiaoli@nankai.edu.cn

2 Tianjin Key Laboratory of Brain Science and Intelligent Rehabilitation,
Tianjin, China

3 State Key Laboratory of High-End Server and Storage Technology, Jinan, China
4 State Grid Tianjin Information and Communication Company, Tianjin, China

Abstract. Gesture-based Human-Computer Interaction (HCI) has
become a primary means of device control due to its naturalness and
humanized characteristics, making it applicable for tasks such as drone
control and gaming. Gesture recognition using an inertial measurement
unit (IMU) has emerged as a major trend in this field. However, due to
the intricate nature of the arm structure and the diversity of gestures,
relying on a single IMU system for gesture recognition results in lim-
ited accuracy. Modern mobile devices, such as smartphones and smart-
watches, are equipped with IMUs that allow for convenient data acqui-
sition methods and offer computing resources for deep learning model
inference. In this paper, we propose a real-time arm gesture recognition
method, called KylinArm, which achieves high-precision gesture recog-
nition by coordinating 2 IMUs. The KylinArm method is optimized for
mobile devices and based on a dual-branch 1D-CNN classifier. It sup-
ports the classification of 12 arm gestures with an optimized strategy
for mobile devices that have limited computation resources and power
supply. Additionally, we adopt an optimization method based on COR-
relation ALignment (CORAL) to address the decreasing accuracy that
occurs when new users are introduced. Finally, we evaluate KylinArm
and test it in real scenes, achieving a recognition accuracy of over 98%.

Keywords: Arm Gesture Recognition · Inertial Measurement Unit ·
Human-Computer Interaction · Mobile Devices · Deep Learning

1 Introduction

As artificial intelligence develops rapidly, Human Activity Recognition (HAR)
[22,29] has become an important technology in many fields, including health
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care and human-computer interaction (HCI) [11]. There has been a growing
interest in HCI as a research area that caters to the ever-changing needs of
human progress with the integration of smart devices into daily lives. Within
HCI, gesture recognition, a subfield of HAR, presents a flexible and practical
method of transmitting information in complex and dynamic environments.

There are two primary types of gesture recognition: finger gestures and arm
gestures. Finger gestures are more complex and may be affected by hand occu-
pation or injury. Arm gestures can free up the hands, improve efficiency, and be
used by more individuals to control machines.

Advancements in microelectromechanical system have led to the development
of smaller and lighter sensors, making it easier to produce wearable devices based
on inertial measurement units (IMU). Customized devices such as wristbands
and rings can be used in gesture recognition tasks. However, smartwatches and
mobile phones equipped with IMUs offer a cost-effective and convenient way
to acquire data for gesture recognition, while also providing an inference envi-
ronment. This simplifies the hardware composition and makes the HCI process
much more natural and user-friendly. The success of projects like EatingTrak
[33], MoRSE [14] and the work of Wei et al. [28] demonstrates the feasibility of
arm gesture recognition based on IMU in smart mobile devices. However, due to
the intricate nature of the arm structure and the diversity of gestures, relying
on a single IMU system for gesture recognition results in limited accuracy.

To successfully recognize arm gestures and create a HCI process, obtain-
ing data that comprehensively captures the characteristics of arm gestures is of
utmost importance. In this paper, we propose KylinArm, a solution for recog-
nizing arm gestures based on dual IMU data collection and optimized for mobile
devices to address the aforementioned issues. By leveraging two IMUs located
at the wrist and elbow, more data can be obtained to distinguish between arm
gestures with similar wrist motion trends.

In KylinArm, a dual-branch convolutional neural network (CNN) model is
designed that relies on one-dimensional convolution and accounts for data col-
lected by two IMUs to classify 12 arm gestures for HCI with high precision. Addi-
tionally, KylinArm is optimized for the limited computing resources and energy
supply of mobile devices by integrating a Wakeup-Detection-Classification
module.

To enhance the generalization of arm gesture recognition, a real-time data
alignment strategy based on CORrelation ALignment (CORAL) [25] is imple-
mented. This is necessary as different users and the variance of sensor positions
may change the features of data collected during gesture recognition.

The main contributions of this paper are as follows:

– We propose a new arm gesture recognition framework called KylinArm. This
framework supports 12 arm gestures using 2 IMUs for data collection and a
dual-branch convolutional neural network (CNN) model for classification.

– We optimize KylinArm for ubiquitous mobile devices with a Wakeup-
Detection-Classification mechanism and real-time data alignment strategy,
which ensures efficient utilization of limited computing resources and energy
supply.
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– We implement KylinArm on Android-based mobile devices and evaluate its
effectiveness by testing with collected datasets and real-world scenarios. The
results demonstrate the high precision and robustness of KylinArm in recog-
nizing arm gestures.

The rest of the paper is organized as follows. Section 2 presents related works
on IMU-based arm gesture recognition and algorithms for sensor-based gesture
recognition. Section 3 provides details on the design and implementation of Kyli-
nArm. Section 4 evaluates the proposed arm gesture recognition method. Finally,
Sect. 5 concludes the paper.

2 Related Work

2.1 IMU-Based Gesture Recognition

IMU typically includes three sensors: an accelerometer, a gyroscope, and a mag-
netometer, each of which measures data along the XYZ axes. The magnetometer
is an optional component, and the IMU without it is commonly referred to as a
6-axis IMU. The accelerometer measures linear acceleration, while the gyroscope
measures angular velocity.

IMUs are capable of accurately capturing the inertial data generated during
the execution of gestures. Bianco et al. [2] used an IMU wristband to classify 6
letters, 6 numbers, and 12 simple forearm gestures. Cui et al. [6] used three 6-axis
IMUs to recognize three arm activities. Kim et al. [15] identified handwritten
digits with a handheld IMU.

With the advancement of mobile devices, smartphones and smartwatches are
often equipped with built-in IMUs and possess stronger computing capabilities,
which can support deep learning model inference. Kurz et al. [17] utilized a self-
assembled 6-axis IMU and a smartwatch to collect data and successfully recognize
12 different gestures on a smartphone. Kang et al. [12] used a smartwatch to rec-
ognize 7 gestures while walking. Guo et al. [7] used a smartwatch and a camera to
recognize 12 hand gestures. Kasnesis et al. [14] recognized 5 arm gestures repre-
senting different emergency signals using the 6-axis IMU in a smartwatch.

2.2 Algorithms for Sensor-Based Gesture Recognition

The design of the classifier plays a crucial role in achieving high-accuracy gesture
recognition. Classifiers based on time-series data collected from IMUs can be cat-
egorized into two groups: traditional machine learning and deep learning. Com-
mon machine learning methods include KNN [8], Random Forest [10] and SVM
[4,23,27], while deep learning methods can be further divided into three types:
CNN [1,5,14,26], RNN [2,7], and their combinations [21,31]. Ulysse et al. [5] pro-
posed a CNN model based on continuous wavelet transform to classify 7 gestures.
Bianco et al. [2] built an arm gesture recognition system based on GRU and LSTM.
Yuan et al. [31] utilized the CNN+LSTM method to recognize sign language.



KylinArm: An Arm Gesture Recognition System for Mobile Devices 95

Moreover, the generalization of classifiers is also an important issue. Both [2]
and [30] discovered that deep learning models can differentiate the same gesture
done by different people. [4] and [14] noted that the accuracy of arm gesture
recognition is affected when using the model with people whose motion data
are not included in training, but they only described the phenomenon without
proposing improvements. In [7], gesture recognition was performed on smart-
watch. To alleviate the impact of new users on accuracy, data was re-collected
and trained on the server. Although effective, this process can be cumbersome.

3 Design and Implementation of KylinArm

3.1 Framework Design of KylinArm

We develop an arm gesture recognition system, named KylinArm, that is
designed to achieve high-precision recognition and perform real-time inference
on mobile devices. The overall structure of KylinArm is illustrated in Fig. 1.

Fig. 1. Framework of KylinArm

To ensure accurate capture of data that represents the differ characteristics
of arm gestures, we adopt a dual-IMU data acquisition mechanism. Specifically,
the user wears two 6-axis IMUs, one on the wrist and the other on the upper
arm near the elbow. The IMU data is collected at a sampling frequency of 30Hz.
The classifier in KylinArm, which is referred to as the Classification Module in
Fig. 1. From the acquisition of signals to input into the classifier, the continuous
IMU data is filtered using a low-pass Butterworth filter to remove noise caused
by the environment and equipment. In addition, a sliding window with a size of
3 s and a step of 200ms is used to segment the continuous data.

KylinArm is set to sleep mode by default to conserve computing resources
and prevent unintended operations. Wakeup Module is responsible for determin-
ing when the recognition procedure should be activated. The preprocessed data
windows are initially directed to Wakeup Module to determine if they constitute
a wake-up gesture. However, if a wake-up gesture is detected, Wakeup Mod-
ule stops working and the recognition procedure starts. Once the recognition
procedure is woken up, windows are fed directly into Recognition Module. The
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windows are then processed by Detection Module to prepare input for Classifi-
cation Module, with only one window being input to Classification Module for
each arm gesture. Finally, the recognized arm gesture type is output as a control
command.

3.2 Gesture-Controlled Command Set

Gestures are fundamental to HCI, and the design of arm gestures should be
tailored to the actual operational requirements of the devices. It is essential to
consider the distinction between control gestures and daily arm gestures as well.
We are inspired by Zhang et al.’s study [32] on the naturalness of upper limb
movements and design twelve arm gestures that involve movement of the entire
arm, which are illustrated in Fig. 2. The correspondence between these gestures
and their respective potential control commands is also shown in the same figure.

Fig. 2. Designed arm gestures and corresponding control commands

3.3 Classification Module: Dual-Branch 1D-CNN Classifier

For the 12-class arm gesture recognition task, we design a classification
model named dual-branch 1D-CNN (Dual-CNN ). The model is based on one-
dimensional (1D) convolution and uses two convolutional branches to extract
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features from the time-series data obtained from each IMU to enhance classifi-
cation accuracy. The network structure is shown in Fig. 3 and more detail can
be found in Table 1. This model is applied in Classification Module to classify
arm gestures. During training, only windows containing the 12 arm gestures are
used.

Fig. 3. Structure of Dual-CNN

Dual-CNN is designed to run on a mobile device and is composed of two
convolutional branches, each of which includes three 1D convolutional layers. The
input data of each branch has a shape of (6,90). After convolution, a MaxPooling
[20] layer, a Batch Normalization (BN) [9] layer and a Dropout [24] layer are
applied. The MaxPooling and Dropout layers serve to prevent model overfitting,
while the BN layer accelerates the model’s convergence speed. Global Average
Pooling (GAP) [19] is then applied to reduce the number of parameters in Dual-
CNN. The concatenated features are fed into two fully connected (FC) layers,
which map extracted features to classification labels as the final output.

3.4 Arm Gesture Recognition

To adapt limited computing resources of mobile devices, we propose a Wakeup-
Detection-Classification process. This process utilizes Dual-CNN discussed in
Sect. 3.3 for arm gesture classification, as well as two much lighter models trained
separately for the Wakeup Module and Detection Module.

Wakeup Module. utilizes a binary classification model, called CNNwake,
which is lightweight and efficient. CNNwake consists of three 1D convolutional
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Table 1. Details of Dual-CNN

Layer Layer Type Input Size Output Size Kernel Size Activation

Layer 1-1 1DConvolution (6,90) (64,90) 8 ReLU
Batch Normalization
Dropout

Layer 1-2 1DMaxpooling (64,90) (64,45) 3
Layer 1-3 1DConvolution (64,45) (128,45) 5 ReLU

Batch Normalization
Dropout

Layer 1-4 1DMaxpooling (128,45) (128,23) 3
Layer 1-5 1DConvolution (128,23) (64,23) 3 ReLU

Batch Normalization
Dropout

Layer 1-6 1DMaxpooling (64,23) (64,12) 3
Global Average Pooling (64,12) (1,64)

Layer 2-1 1DConvolution (6,90) (64,90) 8 ReLU
Batch Normalization
Dropout

Layer 2-2 1DMaxpooling (64,90) (64,45) 3
Layer 2-3 1DConvolution (64,45) (128,45) 5 ReLU

Batch Normalization
Dropout

Layer 2-4 1DMaxpooling (128,45) (128,23) 3
Layer 2-5 1DConvolution (128,23) (64,23) 3 ReLU

Batch Normalization
Dropout

Layer 2-6 1DMaxpooling (64,23) (64,12) 3
Global Average Pooling (64,12) (1,64)

Layer 3 Fully-Connected (1,128) (1,64)
Dropout

Output Layer Fully-Connected (1,64) 12 Softmax

layers and two fully connected layers. Each convolutional layer is followed by a
Maxpooling layer, a BN layer, and a Dropout layer. With only 4994 parame-
ters, CNNwake is better suited for frequent use on mobile devices compared to
Dual-CNN.

The gesture verticalcircle (shown in Fig. 2) is chosen as the wake-up gesture.
This particular gesture is relatively specific and less commonly used in daily
life, which makes it a suitable choice for ensuring the reliability of Wakeup
Module. CNNwake takes IMU data as input by the sliding window with a size
of 3 s and a step of 200ms. To improve the accuracy of capturing the wake-up
gesture, a window will be classified as positive if it contained data of a gesture
for more than 80%, and negative otherwise. During the verticalcircle gesture,
CNNwake outputs consecutive 1 s. If 0 appears, it indicates that the gesture
has not occurred or has been completed. Therefore, we define the occurrence of
verticlecircle as CNNwake outputting 3 or more consecutive 1.

Detection Module. is responsible for capturing windows that contain the com-
plete gesture as much as possible and ensuring that the gesture classifier only
runs when necessary. This helps to reduce the computational cost of the Recog-
nition Module and improve the accuracy of arm gesture recognition. Detection
Module uses a binary classification model on the IMU data processed by sliding
window mechanism, determining whether it contains data of one of the 12 arm
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Algorithm 1. Main Window Selection Mechanism
Input: The results of Detection(0 or 1), Classifier Dual-CNN
Output: The inference result of Recognition
1: if (0 appear and len(pool)�=0) or len(pool)≥7 then
2: if len(pool) is odd then
3: center_idx = �len(pool) / 2�
4: else
5: center_idx = len(pool) / 2 - 1
6: end if
7: standard_window = pool[center_idx] � Select the main window
8: result = Dual-CNN(standard_window) � Classify the selected window
9: clear pool

10: else if 1 appear then
11: append current window to pool � Accumulate windows
12: end if

gestures. It is similar to the role of CNNwake. Therefore, Detection Module uti-
lizes the same model structure as CNNwake, which called CNNdetect. When the
user performs one of the 12 gestures, CNNdetect first outputs 0, then outputs a
continuous segment of 1, and finally returns to outputting 0. The Main Window
Selection (MWS) mechanism is employed to provide the window that contains
as much gesture data as possible for Classification Module.

As illustrated in Algorithm 1, when an arm gesture is performed, CNNdetect

outputs consecutive 1 s and the corresponding windows are added to the window
pool with a maximum size of 7. Window accumulating process continues until
either a zero appears or the pool reaches its maximum size. Subsequently, a
method similar to finding the median is applied to select the main window,
which is then passed to Classification Module. The pool is cleared and MWS
mechanism awaits the next sequence of 1 s.

3.5 CORAL-Based Generalization Optimization

Arm gesture recognition is a user-sensitive task. There are distributional dif-
ferences even in the performance of the same gesture by different users. Arm
gesture classifier may not perform optimally on data from new users that have
not been previously trained on. In the case of data with different distributions,
Domain Adaption [16] typically involves mapping data from both the source and
target domains to a common distribution space through feature changes. And
then the migrated data is used to train the model improving its performance on
the target domain data. However, implementing this process solely on mobile
devices is often infeasible. Consequently, we propose a new real-time generaliza-
tion strategy based on CORAL [25], named as CORALREV ERSE , which shifts
the focus from a model-to-data fit to a data-to-model fit approach.

CORALREV ERSE migrates the new data (target domain) to the original
data (source domain) in real time. As outlined in Algorithm 2, the new users’
data is represented by Dt, while Ds represents the original data used to train
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the model. The process of data alignment involves two steps: first, the new data
Dt is whitened, and then, the whitened data is re-colored using the statistical
characteristics of original data Ds.

Algorithm 2. CORALREV ERSE

Input: Source Data Ds, New Data Dt

Output: Transferred New Data Dt
∗

1: Cs = cov(Ds) + eye(size(Ds, 2))
2: Ct = cov(Dt) + eye(size(Dt, 2))

3: Dt = Dt ∗ C
− 1

2
t � Whitening New Data Dt

4: D∗
t = Dt ∗ C

1
2
s � Re-coloring New Data Dt

IMU data is continuously input to the inference system. Each new data needs
to choose a source domain to perform whitening and re-coloring, which produce a
lot of repetitive work. Since CORALREV ERSE implements data migration based
on two matrix multiplication operations, the migration matrix coralt, which
represents the data gap between the target and source domains, is calculated in
advance.

coralt = C
− 1

2
t · C 1

2
s (1)

where Ct is the feature matrix of gesture data for new users, and Cs is the
feature matrix of original data. During the real-time inference process, coralt is
dot-producted with the continuously IMU windows to align the new data with
the original data in real-time. It improves the overall recognition accuracy of
Recognition Module.

To effectively employ transfer learning, it is crucial to identify a source
domain that is similar to the target domain. Therefore, for new users with differ-
ent characteristics, we utilize different data transfer strategies for data migration
that incorporated the migration matrix calculation method. The method of using
CORALREV ERSE in KylinArm is shown in Algorithm 3.

The coralt matrix is calculated prior to performing real-time data align-
ment. Therefore, a gesture sample set containing 12 gestures, denoted as D

′
t, is

captured in advance to implement Algorithm 3. D
′
t contains one item for each

gesture. Then, the source domain data is selected based on the distribution of
the pre-collected gestures set D

′
t. The classification accuracy of D

′
t is used as

the criterion for selecting the data transfer strategy. These two data transfer
strategies are referred to as Select_Person and Select_Overall in Algorithm
3. If the accuracy exceeds threshold A, the former strategy is chosen; otherwise,
the latter is chosen.

DO contains all gesture data for all individuals which is the training dataset
of the gesture classifier. In Select_Overall strategy, the global source domain
data Ds is fixed and a K-means [18] method is used to select representative data
from the training dataset for Classification Module. Ds contains the original
data of each class of gestures for each person. In Select_Person strategy, Ds
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Algorithm 3. New Data Transfer Process
Require: Overall Original Data DO, Sample Target Data D

′
t, Classifier Recognition

Input: Real-time IMU Windows DIMU

Output: Transferred Real-time IMU Windows D∗
IMU

1: labelpredict = Recognition(D
′
t)

2: accuracy = accuracy_score(lablesample, labelpredict)
3: if accuracy > A then
4: Source Data Ds = Select_Person(DO)
5: else
6: Source Data Ds = Select_Overall(DO)
7: end if
8: for actti in D

′
t do

9: Select action data actsi with the same label as actti from Ds

10: coralti = CORALREV ERSE(actti , actsi)
11: end for
12: CORALt = Average{coralt0 , coralt1 , . . .}, coralt11
13: D∗

IMU = DIMU · CORALt

includes data from the person who is most similar to D
′
t. We adapt a classifi-

cation accuracy-based method to assess the similarity. Specifically, original data
samples from each person are used as training sets in turn to train corresponding
classifiers. D

′
t of new user is then put into every classifier to obtain the accu-

racy. The data from the person whose classifier achieves the highest accuracy is
selected as the source domain Ds.

Fig. 4. Usage of the transformation migration matrix CORALt

After selecting the source domain data, CORALREV ERSE is used to cal-
culate migration matrix CORALt. In the process of calculating CORALt, the
source and target domain data with the same label are calculated according to
Algorithm 1 to obtain coralti . CORALt is computed as the average of multi-
ple coralti matrices. Once the feature linear transformation migration matrix
CORALt is obtained, CORALREV ERSE can be used to perform whitening and
re-coloring operations via dot product between CORALt and DIMU , resulting
in the aligned data D∗

IMU . And then D∗
IMU is inputted into Recognition Module

for gesture recognition, as shown in Fig. 4.
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4 Evaluation

To fully validate the effectiveness of KylinArm, we evaluate the performance
of Dual-CNN and each module in KylinArm using our datasets. At last, we
implement it on smartphones and test the system in a real scene.

4.1 DataSet Description

We used two IMUs placed on the wrist and upper arm to collect data from
15 volunteers (9 males and 6 females) with ages ranging from 22 to 27 years,
heights ranging from 160–185 cm, and weights ranging from 50–80 kg. Data was
collected at a frequency of 30Hz, with each gesture performed for 3 s. Both
Dataset for Dual-CNN and Dataset for KylinArm are derived from the raw
IMU data collected, and they are processed separately and labeled in different
ways to accommodate different task needs. The former dataset is only used to
train and test the designed classification model. The latter dataset simulates the
data generated in real-world scenarios and contains windows of continuous time,
which is used to train and test each module in the system inference phase.

Dataset for Dual-CNN only contains the data of 12 gestures. Each of the 15
volunteers repeated each action 10 times according to the rule of performing for
3 s and resting for 3 s. The final dataset contains 1800 items, where each item
has the shape of (12,90).

Dataset for KylinArm includes data collected from 15 volunteers, each of
whom performed each gesture 10 times within a 10-minute time frame. The
dataset contains a total of 1800 gestures and spans a duration of 3 h. To segment
the continuous IMU signals, we employed a sliding window approach with a size
of 3 s and a step of 200ms. A window was labeled as 1 if it overlapped with
gesture data for more than 80% of its duration, and as 0 otherwise. Therefore,
Dataset for KylinArm contains 46230 windows data, of which there are 7605
positive windows and 38625 negative windows.

4.2 Performance of Dual-Branch 1D-CNN Model

5-fold cross-validation is performed on five baseline models and Dual-CNN using
Dataset for Dual-CNN to evaluate classification accuracy. Adam optimizer and
cross-entropy loss function are used, batch size is 8, and 50 epochs are trained.
The single-branch feature extraction variant of Dual-CNN is 1D-CNN, which
takes the data from two IMUs and concatenates them as input. CNN-LSTM
[34] and EMGHandNet [13] perform well in HAR tasks.

To provide a comprehensive assessment of the effectiveness of each model, we
utilized four commonly-used metrics: Accuracy, Precision, Recall, and F1 score.
The results of the evaluation, which include the Dual-CNN model and five base-
line models, are presented in Table 2. The Dual-CNN model outperforms all
other models across all metrics. These results highlight the significant difference
in classification ability between machine learning and deep learning methods.
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Table 2. The global 5-fold cross-validation results for the different models

Model Accuracy (%) Precision (%) Recall (%) F1 (%)

SVM 91.61 ± 2.04 92.58 ± 2.44 91.61 ± 2.04 91.61 ± 2.03

Decision Tree 91.94 ± 1.65 92.19 ± 1.61 91.94 ± 1.65 91.94 ± 1.67

1D-CNN 99.56 ± 0.33 99.55 ± 0.35 99.53 ± 0.31 99.53 ± 0.34

CNN-LSTM [34] 99.67 ± 0.22 99.67 ± 0.20 99.65 ± 0.22 99.65 ± 0.21

EMGHandNet [13] 99.50 ± 0.21 99.52 ± 0.20 99.50 ± 0.21 99.50 ± 0.21

Dual-CNN 99.78 ± 0.27 99.78 ± 0.26 99.78 ± 0.27 99.78 ± 0.27

While the accuracy of all tested deep learning models exceeded 99%, our pro-
posed Dual-CNN model stands out as the most efficient solution. It has the least
number of parameters and fewer FLOPs as shown in Table 3. We then evaluate
the inference time cost of Dual-CNN on the Honor 30 smartphone, which runs
on HarmonyOS 2.0, has a memory size is 8.0 GB and is powered by Kirin 985
processor. Dual-CNN takes an average of less than 5ms to perform an infer-
ence on Honor 30. The efficiency of the Dual-CNN model makes it more mobile
device-friendly and enables real-time gesture recognition with greater accuracy.

Table 3. FLOPs and parameters of four deep learning model

Model FLOPs Parameters

1D-CNN 3087616 172428

CNN-LSTM [34] 10816928 504748

EMGHandNet [13] 3572199680 2634572

Dual-CNN 5482752 147788

To evaluate the generalization, we performed 15-fold cross-validation by
selecting one individual’s data as the test set and the data of the other 14 indi-
viduals as the training set. The model settings, training settings are the same as
5-fold cross-validation. The results are shown in Table 4 and Fig. 5. Dual-CNN
exhibits superior generalization performance when facing untrained new data.
Compared to the results of the 5-fold cross-validation, Dual-CNN has the least
decrease in accuracy when classifying unfamiliar data. While the results of 1D-
CNN is comparable to that of Dual-CNN, merging feature extraction appears to
weaken it’s generalization ability across individuals.
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Table 4. Results of the 15-fold cross-validation for different models

Model Accuracy (%) Precision (%) Recall (%) F1 (%)

SVM 80.83 84.27 80.83 77.88

Decision Tree 75.00 74.79 75.00 71.65

1D CNN 94.61 95.58 94.61 93.68

CNN-LSTM [34] 93.50 94.01 93.50 92.49

EMGHandNet [13] 93.94 94.65 93.94 93.66

Dual-CNN 96.00 96.91 96.00 95.33

Fig. 5. Accuracy comparison of four deep learning models in 15-fold cross-validation
(triangles represent means and dotted lines represent medians)

4.3 Performance of Inference Modules

Wakeup Module. The CNNwake is trained based on Dataset for KylinArm.
However, due to the fact that the positive examples of Wakeup Module are only
related to windows of verticalcircle, the number of positive examples is greatly
reduced. This results in severe imbalances between positive and negative labels,
which significantly impacts the model’s discrimination ability. To address this
issue, we use SMOTE [3] to increase the number of positive examples. Wakeup
Module achieves an accuracy of 100% for verticalcircle in a 5-fold cross-validation
experiment conducted on Dataset for KylinArm. When using all data from a
person as the test set and using the remaining data as the training set, the
recognition accuracy of the module is 98.46%. The complexity of verticalcircle
makes it relatively easy to distinguish. Additionally, SMOTE can increase the
diversity of data, which has a positive effect on compensating for differences
between individuals’ gestures.

Recognition Module. The CNNdetect is trained using Dataset for KylinArm.
To fully validate the effectiveness and generalization of Recognition Module, we
designed the same 5-fold and 15-fold cross-validation experiments as in Sect. 4.2.
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As shown in Table 5, continuous windows containing 360 gestures are inputed
into Recognition Module for test. Detection Module achieves an accuracy of
98.67%, while Classification Module achieves an accuracy of 99.72%. As a result,
Recognition Module exhibited an overall accuracy of 98.39% for recognizing ges-
tures. Table 6 shows the results of 15-fold cross-validation. We can find that the
accuracy of Detection Module is 96.72%, which is 1.95% lower than the 5-fold
cross-validation result. The accuracy of Classification Module remains almost
unchanged at 99.54%. The overall accuracy of Recognition Module decreases by
2.11% to 96.28%. While Detection Module alleviates the performance degrada-
tion caused by the sensitivity of gesture classifier to unfamiliar data, data not
included in the training dataset still caused Detection Module to miss a certain
number of windows, limiting the high-precision classification ability of Recogni-
tion Module.

Table 5. Accuracy (%) of global 5-fold cross-validation

Fold # Detect. Classif. Recogn.

0 100 99.44 99.44
1 99.44 99.16 98.61
2 97.78 100 97.78
3 96.94 100 96.94
4 99.17 100 99.17
avg. 98.67 99.72 98.39

Table 6. Accuracy (%) of 15-fold cross-validation

Person Detect. Classif. Recogn.

P0 96.67 100 96.67
P1 100 100 100
P2 100 100 100
P3 99.17 99.16 98.33
P4 100 100 100
P5 94.17 100 94.17
P6 100 99.17 99.17
P7 100 100 100
P8 100 100 100
P9 94.17 99.12 93.33
P10 79.17 98.95 78.33
P11 98.33 100 98.33
P12 89.17 100 89.17
P13 100 100 100
P14 100 96.67 96.67
avg. 96.72 99.54 96.28
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4.4 Performance of CORALREV ERSE

The experiment primarily focuses on verifying the effect of adding
CORALREV ERSE to Recognition Module on the recognition of gestures. As
described in Sect. 3.5, we firstly pre-collect 12 gestures as samples, which are
then verified using the Classification model for initial distribution verification. If
the accuracy is close to 100%, samples are aligned with 12 gestures of one indi-
vidual. Otherwise, they are aligned with the global source gesture library. The
global library contains data for each arm gesture performed by each volunteer,
resulting in a total dataset size of 12× 15.

By adding CORALREV ERSE to Recognition Module, the rate of gestures
captured by Detection Module increased from 96.72% to 97.89%, while the over-
all gesture recognition accuracy increased from 96.28% to 97.56%. The detailed
results of each test group are presented in Fig. 6. The results indicate that
7 groups exhibited varying degrees of improvement, while 6 groups remained
unchanged. Among them, P9 and P10 have an accuracy increase of 6.67% and
7.50%, respectively. However, P6 and P8 experienced a decrease in the number
of recognized gestures by 2. The reduction in accuracy observed in the P6 and P8
groups can be attributed to the transformation of accurately classifiable gesture
data during data alignment based on CORALREV ERSE . This process has the
potential to convert the data into other similar gestures when the arm gesture
is not standard enough.

Fig. 6. Comparison of recognition accuracy before and after generalization optimiza-
tion

4.5 Real-World Evaluation of KylinArm

To assess the real-world performance of KylinArm, we deploy it on two Android
mobile phones. Figure 7 shows the arm gesture recognition system, which con-
sists of two IMUs provided by respective mobile phones. The system utilizes
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MQTT for communication with the broker running on a laptop. The mobile
phone located on the upper arm is responsible for collecting IMU data, while
that located on the wrist handles preprocessing of IMU data, as well as the recog-
nition of arm gestures. The recognition result is then transmitted to the target
device. The mobile application running on the mobile phones plays a crucial
role in the system. It is responsible for preprocessing the IMU data and running
KylinArm for arm gesture recognition. The main GUI of mobile application
is presented in Fig. 8(a) whereas Fig. 8(b) shows the GUI where new users can
perform gesture calibration to achieve data alignment before using the system.

First of all, five volunteers are recruited to test the arm gesture recognition
system. After familiarizing themselves with the actions, each volunteer performed
12 actions according to their own ideas, ensuring that each gesture was completed
10 times. Table 7 presents the statistical results, which indicate that the arm
gesture recognition accuracy of KylinArm is 98.5%.

Fig. 7. System test (As an illustration, we implement KylinArm on two smartphones.
However, the use of two smartphones is not necessarily required, one of them can
be replaced by a smartwatch or other IMU-equipped device.): (a) IMUs Position (b)
Interact with the game through arm gestures

Table 7. Accuracy of arm gesture recognition system

User Num of correct Accuracy (%)

1 120 100
2 118 98.33
3 118 98.33
4 116 96.67
5 119 99.17
avg 98.50
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Fig. 8. Arm gesture recognition system app running KylinArm on Android smart-
phones: (a) Main GUI (b) Pre-collected for data alignment

We also developed a PC interactive game for further evaluation. All com-
ponents are under the same local area network. The game character’s behavior
corresponds to 11 arm gestures, and the gesture verticalcircle used to wake up
the recognition procedure is also used to control the start and end of the game.
As shown in Fig. 7(b), volunteers are able to control the game character to reach
the end point without any prompts. A video which demonstrating the operation
process of each arm gesture during the game, as well as the game instructions,
can be found in the GitHub repository1. KylinArm running on smartphones con-
tinued to provide normal services throughout this process, fully demonstrating
its stability and usability.

5 Summary

We propose a new framework called KylinArm, which is designed to recognize
arm gestures and is optimized for mobile devices. This framework employs two
IMUs for data collection and a dual-branch CNN model called Dual-CNN for
classification, which enables the high-accuracy classification of 12 arm gestures.
In order to achieve real-time arm gesture recognition and conserve resources,
we have optimized KylinArm for ubiquitous mobile devices by implementing
a Wakeup-Detection-Classification mechanism and a real-time data alignment
strategy. As a result, the KylinArm system can operate effectively on mobile
devices that have constrained computing resources and energy supply. Finally,
1 https://github.com/NKU-EmbeddedSystem/KylinArm.

https://github.com/NKU-EmbeddedSystem/KylinArm
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we have implemented KylinArm on Android-based mobile devices and evaluated
its effectiveness by testing it with collected datasets and real-world scenarios. The
results demonstrate the high precision and robustness of KylinArm in recognizing
arm gestures.
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