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Abstract. Frequent happening of disk failures affects the reliability of
the storage system, which can cause jittering of performance or even
data loss of services and thus seriously threaten the quality of service.
Although a host of machine (deep) learning-based disk failure prediction
approaches have been proposed to prevent system breakdown due to
unexpected disk failure, they are able to achieve high performance based
on the assumption that the disk model has plenty of samples (especially
failure samples). However, new disk models continuously appear in data
centers with the evolution of disk manufacturing technology and the
expansion of storage system capacity. Limited by the deploying time,
these disk models have few failure samples and are called minority disks.
The minority disks are widespread in large-scale data centers and contain
amounts of disks while existing approaches cannot reach satisfying per-
formance on such disks due to the lack of failure samples. What’s worse,
failure prediction models trained on other disk models cannot be directly
applied to these minority disks either due to the commonly existing dis-
tribution shift among disk models. In this work, we propose DiskDA,
a novel multi-source domain adaption-based solution that can fully uti-
lize knowledge from other disk models to predict failures for minority
disks having no failure samples. Our experimental results on real-world
datasets show the superiority of DiskDA against previous approaches on
minority disks with a few failure samples. What’s more, DiskDA also
shows its good adaptivity on minority disks having no failure samples,
whereas previous works are unusable.

Keywords: Fault tolerance · Disk failure prediction · Domain
adaption · Cloud computing

1 Introduction

Disk failures are common in modern large-scale data centers, accounting for
more than 70% of hardware replacement events [5,13,16]. Frequent happening
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of disk failure can lead to service performance jitter or even data loss which
severely affects the availability and reliability of cloud applications [7,17]. To
ensure the availability and reliability of cloud applications from unexpected disk
failures, operators should proactively predict the upcoming disk failure events
before they actually happen, so as to take preventive measures in time, such as
virtual machine migration.

The Self-Monitoring, Analysis, and Reporting Technology (SMART) has
been widely implemented by hard disk drive (HDD) and solid-state drive (SSD)
manufacturers to monitor the status of individual disk drives. The values of
SMART attributes related to disk health status are helpful to disk health ten-
dency assessment.

Recently, with the development of machine learning, a host of supervised
learning-based approaches has been proposed to predict disk failures with the
SMART values [10,20,22,23]. With sufficient samples (both healthy and failure
samples) provided, these methods are able to train binary classifiers and classify
newly coming disk samples collected periodically from data centers to predict
failures for each disk with high accuracy.

Table 1. Statistics of Disk Population

Data
Center

Disk
Type

Type

Number

Type

Percentage

Disk
Number

Backblaze Majority 12 11.65% 114,570

Minority 91 88.35% 34,978

Tencent Majority 8 13.33% 52,235

Minority 52 86.67% 18,996

However, the condition of sufficient failure samples can hardly be satisfied by
all disk models. With the evolution of disk manufacturing technology and the
expansion of storage system capacity, disks from different models are continu-
ously added to data centers. Limited by the deploying scale and time, the newly
coming disk models usually have only a few or even no failure samples for most
cases and are named minority disks [11,24]. According to the studies [9,24] in
large-scale data centers (i.e. Backblaze, Tencent, and AliCloud), minority disks
are generally existing in modern data centers. As shown in Table 1 [24], the
minority disks dominate the disk models (over 85%) and contain a great number
of disks (tens of thousands of disks). Unfortunately, the traditional supervised
ML method cannot be applied to predict failures for minority disks, otherwise,
it will suffer from over-fitting or cold-start issues [3,6,24,25]. What’s worse, the
prediction model trained on other disk models cannot be applied to minority
disks either and we illustrate this in our extensive experiments. Because the
commonly existing distribution shifts across disk models break the assumption
of independent identical distribution holding between training and test set.
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More recently, several transfer learning (TL)-based methods [2,9,15,19,24]
and semi-supervised learning approaches [3,6,25] are proposed. Based on the
fact that the failure modes are common for different disk models (e.g. all disks
will fail due to too many bad sectors) [5], the TL-based methods try to adapt
failure prediction knowledge extracted from other disk models to minority disk
models by directly selecting samples similar to the minority disks as training
set or transforming the SMART attribute distribution of minority disks to that
of other disk models via a heuristic statistical model. However, the existing
TL-based approaches can only transfer partial knowledge from a single source
domain (other disk models) since they have to drop many useful samples due to
their dissimilarity to minority disks or abandon critical features that hard to be
transformed. Although using multiple source domains is more likely to introduce
more failure modes, the large number of samples contained in it also means the
complex distribution of source domains, which will lead to negative migration
problems in the existing TL-based methods. In addition, all existing TL-based
approaches need a certain number of failure samples of minority disks in their
transfer procedure, which suggests they can only handle very limited cases. As
for the semi-supervised learning approaches, they though can train their model
with only healthy samples, large quantities of minority disk failure samples are
needed to set appropriate classification thresholds.

In this work, we are exploring extracting the transferable failure modes from
multiple source domains and aligning their semantics across source and target
domains so that the full knowledge can be leveraged to enhance the failure pre-
diction of minority disks. To this end, we model our problem as an unsupervised
domain adaption problem and propose DiskDA, a multi-source domain adaption-
based failure prediction approach for minority disks. It is able to extract failure
modes from samples of multiple disk models and utilize them in minority disk
(even with no failure samples) failure prediction with high performance. The
goal is achieved because of two key designs. Firstly, although minority disks do
not have complete class distribution, we find that the particularity of the dis-
tribution of disk samples can be leveraged to ensure the execution of domain
adaption. Based on this, we use a representor to extract failure modes from
source domain samples and align their semantics across two domains using only
healthy samples in the target domain. And a Wasserstein distance measurement
is adopted to guarantee the effectiveness of the domain adaption even when the
distribution of two domains is distant. We also prove the rationality of this strat-
egy by analyzing the generalization error bound in this case. Secondly, DiskDA
adopts a confidence-based sample selection to filter out irrelevant samples in the
source domains, so as to eliminate the negative transfer issue. By running the
two processes alternatively, DiskDA can successfully extract transferable failure
modes from multiple source domain disk models and utilize them in minority
disk failure prediction with high accuracy.

The main contributions are summarized as:

1) We explore the problem of failure prediction for minority disk without failure
samples so that it can be adaptive to all minority disk models.
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2) To the best of our knowledge, we are the first to propose a Wasserstein
distance-based domain adaption solution for the minority disk failure pre-
diction problem and first analyze the generalization error bound theoretically
under this condition.

3) Guided by the generalization error bound, we design a novel unsupervised
domain adaption framework, DiskDA, to minimize the generalization error of
the failure predictor in the target domain.

4) We conduct evaluations to demonstrate the superiority of DiskDA on 9 disk
models from 3 vendors, collected from 2 large-scale data centers. The eval-
uation results reveal that DiskDA can improve the F1-score by an average
of 20.02% compared with the best competitor when less than a dozen fail-
ure samples are provided. More importantly, DiskDA can still obtain
a satisfactory F1-Score of about 0.93 when no failure samples are
provided (most minority disks face), while all existing TL-based
approaches will fail.

2 Related Work

• Supervised Learning-Based Failure Prediction Approaches. Li et al.
[10] propose a Classification And Regression Trees (CART) based model
which can give disks a health assessment. Xu et al. [20] present a Recur-
rent Neural Networks (RNN [12]) method to leverage sequential information
in hard disk failure prediction. Yang et al. [22] design a disk failure prediction
model by using L1-regularized logistic regression. Zhang et al. [23] adopt the
Siamese network [4] to improve the applicability and adaptivity of the disk
failure prediction model. All these supervised learning-based approaches can
achieve high performance based on the assumption that large quantities of
failure samples are provided. However, this is harsh for minority disks.

• Semi-supervised Learning-Based Failure Prediction Approaches.
The main idea of the semi-supervised learning-based approach is to model
the distribution of healthy samples and predict failure samples based on their
reconstruction errors. Once the reconstruction errors surpass a predefined
threshold, the disk samples are classified as failure samples. Jiang et al. [6]
propose a GAN (Generative Adversarial Network)-based anomaly prediction
approach that adopts an encoder-decoder-encoder architecture. They define
the reconstruction error as the difference between two encoders’ outputs and
predict failures by comparing the error with a threshold. Zhou et al. [25] and
Chakraborttii et al. [3] predict failures for SSDs with similar approaches. The
performance of such approaches relies on the manually set thresholds and the
operators are able to find appropriate thresholds only when a certain num-
ber of reconstruction errors of failure samples are provided. Since the failure
samples of minority disks are limited, it is hard for such methods to reach
satisfying performance in minority disk failure prediction.

• Transfer Learning-Based Failure Prediction Approaches. The target
of the TL-based approach is to adapt a failure prediction model trained from
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existing disk models (source domain) to the minority disk (target domain).
MirelaMadalina Botezatu et al. [2] propose an instance-based de-bias app-
roach. They select samples from the source domain disk model based on
their similarity degree given by a domain classifier and a Regularized Greedy
Forests (RGF [8]) trained on the augmented minority disk dataset is adopted
as the failure prediction model. Xie et al. [19] select the source domain based
on the performance similarity of the failure prediction model on the minor-
ity disk and each candidate source domain disk model. Then the minority
disk failure prediction model is trained on the union set of source and target
domains. Zhang et al. [24] propose to utilize the Kullback-Leibler divergence
(KLD) of the specific SMART attribute to select the source domain disk
model and adopt the Tradaboost algorithm trained on both domains as the
minority disk failure prediction model. Sun et al. [15] take another approach
and propose to use a statistic-based feature transformation to align cumu-
lative SMART attribute (e.g. SMART 5 represents reallocated sector count)
distribution. They find the same cumulative SMART attribute of disks from
different vendors/models have similar distributions and align their distribu-
tions based on the ratio of failed to healthy devices so as to adapt the failure
prediction model trained from one disk model to others. Lan et al. [9] also try
to transfer knowledge from the source domain by utilizing a domain classi-
fier to learn the domain invariant representation of source and target domain
samples. It is worth noting that the domain invariant representation learning
guided by the domain classifier will fail (gradient vanishing) if the distribution
of the source and target domain is distant [18]. And this has been shown in
their experiment where 50% of the transfer process (domain adaption) failed
due to the large distribution divergence of source and target domain samples.
In a word, existing TL-based can only utilize limited information from the
source domain due to the drop of samples and critical attributes. In addition,
they can only work when a certain number of failure samples from minority
disks are provided, while this can be harsh for minority disks.

To sum up, DiskDA differs from previous approaches in three aspects:

– Compared to supervised learning-based approaches, DiskDA extracts failure
prediction knowledge from large amounts of samples from other disk models.
And this strategy protects DiskDA from overfitting caused by the limited
failure samples of minority disks.

– DiskDA adopts a binary classifier built on labeled samples to automatically
discriminate the healthy and failed samples rather than manually setting the
classification threshold as semi-supervised learning approaches.

– Compared to existing TL-based approaches, DiskDA does not choose to drop
samples or critical attributes but tries to fuse the distribution of source and
target domain samples, so as to fully utilize the failure prediction knowl-
edge from source domain disk models. DiskDA avoids the gradient vanishing
problem by adopting the Wasserstein distance to guide the domain invariant
representation learning process. Because the Wasserstein distance can always
provide stable gradients no matter how distant the distributions are [18].
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3 Motivation

3.1 Problem Statement

In the problem of minority disk failure prediction based on domain adaption
(MDFP-DA), we suppose a labeled dataset Xs = {(xs

i , y
s
i )

ns
i=1} including ns

samples from multiple disk models of the data center, which are sufficient
to train a high precision prediction model. Furthermore, we assume a dataset
Xt = {(xt

m, yt
m)m} from the minority disk, where xt

i refers to the sample col-
lected online in future and yt

i is the corresponding label. The samples from Xs

and Xt 1©share the same feature space (this can be ensured by keeping their
common SMART attributes), but 2©follow different marginal distributions, Ps

and Pt. Although Xt is unreachable in reality, we can collect quantities of healthy
samples Xt

H = {(xt
j , 0)nt

j=1} from the minority disk through short-term deploy-
ment, which is always held in disk failure prediction [3,6,25]. And we denote
the marginal distribution of the healthy samples (from both Xt and Xt

H) as
PtH . Here, we regard MDFP-DA as a binary classification problem and label the
healthy samples as ‘0’, and the failure samples as ‘1’. Now we give the definition
of the MDFP-DA problem:

Definition 1. The MDFP-DA problem is to learn a transferable classification
model h(s) to minimize the risk εt(h) = Pr(x,y)∼Xt [h(x) �= y] using Xs and Xt

H .

3.2 Generalization Error Bound Analysis

We analyze the generalization error bound by introducing the unsupervised
domain adaption problem. The unsupervised domain adaption studies the prob-
lem of adapting a classifier trained in the source domain to target domain
1©sharing the same feature space while 2©having different data distribution.

Obviously, in the case of given Xt, the MDFP-DA problem can be converted
to an unsupervised domain adaption problem. Although the failure samples of
the minority disk are lost in the MDFP-DA problem, we have amounts of its
healthy samples Xt

H . Let εt(h) denote the generalization error bound of a clas-
sification function h in target domain t. Let W1(P,Q) denote the Wasserstein
distance between P and Q. In this case, the following Theorem holds.

Theorem 1. For any classification function h to the MDFP-DA problem satis-
fying K-Lipschitz, the following holds:

εt(h) ≤ εs(h) + 2KW1(Ps,PtH ) + λ + C (1)

where C is the Wasserstein distance of distribution of target domain Pt and its
healthy samples PtH .

Proof. See Appendix for details.
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Considering the fact that the healthy samples dominate the whole disk sam-
ples (with an average ratio of 9997:10000 [2]), the distribution of samples of a
disk model is actually similar to its healthy samples, which suggests that C is a
small constant. We have verified this by randomly selecting 4 disk models and
calculating C and W1(PtH ,Ps). And the results show that C is small in scale
of 10−3 and W1(PtH ,Ps) are hundreds of times of C, so it can be ignored in
practice.

Remark. Theorem 3.1 implies that the generalization error of a prediction
model in the target domain (i.e., εt(h)) is smaller than the sum of the gener-
alization error of the prediction model in the source domain (i.e., εs(h)), the
Wasserstein distance of source domain samples and minority disk healthy sam-
ples (i.e., W1(Ps,PtH )), and a constant (i.e., λ + C) much smaller than the
former two. In other words, the generalization error of the prediction model in
the minority disk (εt(h)) can be optimized if we are able to reduce εs(h) and
W1(Ps,PtH ). Once εt(h) is optimized, the performance of the failure prediction
model in the minority disk can be improved. To sum up, it not only proves
the generalization error bound of the MDFP-DA problem but also indicates the
optimization direction in the absence of failure samples.

4 Method

4.1 Overview of DiskDA

Figure 1 illustrates the framework of DiskDA. As seen, the DiskDA consists
of two processes, 1© the domain invariant representation learning and 2© the
confidence-based sample selection.

1© The first process mainly involves three modules:

• Representor: a deep neural network that projects the samples from source
domain disk models (Xs) and minority disk (Xt

H) into a unified latent space
(representation vector in Fig. 1).

• Distance Estimator: measures the Wasserstein distance of representation
vectors from Xs and Xt

H .
• Failure Predictor: classifies whether a sample from Xs is a failure sample

based on their representation vectors.

The representor is able to reduce the Wasserstein distance of the source
domain and minority disk samples (i.e. reducing W1(Ps,PtH )) under the guid-
ance of distance estimator. In the meantime, it helps the failure predictor to reach
high performance in the source domain (i.e., reducing εs(h)) via extracting dis-
criminant information. In this way, the performance of the failure predictor in
the minority disk can be optimized according to Theorem 3.1.

2© The second process mainly includes the sample selector module. Its main
purpose is to avoid negative transfer which may occur in the first process. The
principle is to eliminate the samples in Xs that hinder the further narrow-
ing of the distance between Xs and Xt

H , which also corresponds to reducing
W1(Ps,PtH ).
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Fig. 1. The architecture of DiskDA.

In the training stage, DiskDA iterates the two processes alternatively. For
example, the process 1© runs every N (e.p., 100) iterations, and then the process
2© runs M (e.p.,1) iterations. In this way, DiskDA can fully utilize the failure
prediction knowledge of the source domain and lose the least information. The
alternating iteration can be stopped until the parameters are converged or the
iteration times reach a threshold.

In the online prediction, the SMART instances of a minority disk are collected
daily to a sample pool. And these instances are combined to form samples as
in the training stage. All these samples will be input into the representor to
generate corresponding representation vectors. Then the failure predictor will
predict whether a sample is a failure sample based on its representation. Once
a sample of a disk (minority disk) is predicted as a failure sample, it suggests
that the disk will fail soon and the alarm system will inform the operator to
repair/exchange the disk in time.

4.2 Domain Invariant Representation Learning

To effectively adapt the failure predictor trained in the source domain disks to
the minority disk, we need the representor to learn domain invariant representa-
tions of samples from both domains. That is, the distributions of representations
from both domains projected by the representor should have a small divergence.
Besides, the representations should retain key information that can be used to
classify failure samples.

Firstly, all samples are projected to a d-dimensional space by the representor.
The representations of Xs and Xt

H are denoted as fr(Xs) and fr(Xt
H), where fr

is the mapping function of the representor. The distance estimator is then used
to measure the distribution divergence of representations from source domain
R

s and minority disk R
t
H . Here, we introduce Wasserstein distance as the mea-

surement metric because it can measure the divergence between two arbitrary
distributions even if they are distant.
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Based on Kantorovich Rubinstein theorem, the dual representation of the
first Wasserstein distance of two Borel probability measures P and Q can be
formalized as

W1(P,Q) = sup
||f ||L≤1

Ex∼P[f(x)] − Ex∼Q[f(x)] (2)

where L-Lipschitz condition is defined as ‖f‖L = sup|f(x)−f(y)|
ρ(x,y) ≤ L. Accordingly,

the Wasserstein distance of source domain and minority disk W1(Rs,Rt
H) in the

latent space can be calculated as:

W1(Rs,Rt
H) = sup

||fd||L≤1

Ex∼Ps
[fd(fr(x))] − Ex∼PtH

[fd(fr(x))] (3)

where fd is the function learned by the distance estimator with its parameters
θd to map representations h to real numbers. Then, we can approximate the
empirical Wasserstein distance of representation distribution of source and target
domain via maximizing domain critic loss Lwd with respect to θd:

Lwd =
1
ns

∑

xs∈Xs

fd(fr(xs)) − 1
nt

∑

xt∈Xt
H

fd(fr(xt)) (4)

Note that the fd should satisfy the 1-Lipschitz condition when calculating
the first Wassertein distance. Therefore, a gradient penalty term Lgrad =
Eh∼[Rs,Rt

H ][(||∇hfd(h)||2 − 1)2] is added to Lwd. And the final objective func-
tion of distance estimator (Ldist) can be written as:

max
θd

{Lwd + λLgrad} (5)

where the λ is used to balance the Lwd and Lgrad.
The failure predictor is used to predict failures for the source disk models.

Its inputs are representations from source domain samples and the labels of
representations are consistent with their corresponding source domain samples.
The objective function of failure predictor (LC) can be formalized as:

min
θc

1
N

∑

h∈Rs

−[yi · log(fc(hi)) + (1 − yi) · log(1 − fc(hi))] (6)

The task of the representor is to 1© reduce the representation divergence
of the minority disk and source domain disk models, and 2© extract the dis-
criminative information from samples in representation learning. Therefore, the
objective of representor (LR) can be formalized as:

min
θr

{LC + γLwd} (7)

where γ is the coefficient to balance between discriminative and transferable
feature learning.
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Fig. 2. Visualization of the representations from the target domain and the source
domain at different confidence thresholds (i.e., conf-level-*)

4.3 Confidence-Based Sample Selection

While introducing more disk models into the source domain helps bring in more
failure modes, it also complicates the distribution of the source domain, leading
to negative transfer in representation learning. Therefore, it is necessary to filter
out irrelevant samples from the source domain to avoid the probable negative
transfer.

Specifically, DiskDA achieves this via a confidence-based sample selection
process. The confidence of source domain samples is measured based on the sim-
ilarities of their representations to those from the minority disk. The confidence
is given by the domain classifier which is a supervised learning-based binary
classifier. The inputs are representations of samples from both domains and the
labels are 0/1. The representations from the source domain are labeled as ‘0’
and those from the target domain are labeled as ‘1’. To train a domain classifier,
we randomly select a small proportion of representations of samples from the
source domain and minority disk. And the objective of the domain classifier can
be formulated as:

min
θD

1
N

∑

i

−[yi · log(fc(hi)) + (1 − yi) · log(1 − fc(hi))] (8)

where x ∈ [Rs,Rt
H ], y ∈ {0, 1}.

When the parameters converge, the domain classifier is applied to the
adjusted source domain as a filter. Since the domain classifier is realized by
a deep neural network and the results are given by a sigmoid function in the
last layer, the output of the domain classifier is the probability that a repre-
sentation belongs to the minority disk. So we use this probability to measure
the confidence of a sample. DiskDA discards the samples in the source domain
whose confidence is lower than the pre-defined threshold and uses the remaining
samples in the source domain with higher confidence for further representation
learning. By filtering out the ‘low quality’ samples, the distribution divergence
between the source domain and the minority disk is reduced.
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In Fig. 2, we visualize the distribution of sample representations for the
minority disk and the source domain under different confidence thresholds via
t-SNE, where the colored points denoted as “conf-level-*” represent the represen-
tations of source domain samples with different confidence values and the black
point represent the representations of minority disk samples. t-SNE is short for
t-Distributed Stochastic Neighbor Embedding which allows us to project high-
dimensional embedding spaces into 2D spaces for visualization while keeping
their relative distance. In other words, the points close in the figure have a small
distance in the original space. Since the dimension of representations has been
compressed, the x and y axes of points have no specific meaning. As seen, the
representations of minority disk samples are located closer to that of the source
domain samples when a higher confidence threshold is selected, which indicates
the rationality of our sample selection.

5 Experiment

In this section, we conduct experiments to evaluate the performance of DiskDA.
We first describe the methodology and then show the experimental comparison
results among DiskDA and 7 state-of-the-art solutions. Finally, we show the
results of sensitivity analysis to explore how the critical hyper-parameters affect
the failure prediction performance of DiskDA.

5.1 Methodology

Datasets. The disk models used in our experiments are from two real-
world datasets. We select ST4000DM000 (Disk 1), ST6000DX000 (Disk 2),
ST3000DM001 (Disk 3), Hitachi HDS5 C4040ALE630 (Disk 4), Hitachi
HDS722020ALA330 (Disk 5), Hitachi HDS723030ALA640 (Disk 6), HGST
HMS5C4040BLE640 (Disk 7), HGST HMS5C4040ALE640 (Disk 8), HGST
HUH728080ALE600 (Disk 9) in Backblaze1 with a period from 2015-01-01 to
2019-12-31. We select MC1 (SSD 1), MC2 (SSD 2) and MA1 (SSD 3) from
Alibaba Cloud [21] with a period from 2019-01-01 to 2019-12-31. All disk mod-
els are selected randomly. Each record in both datasets is labeled as healthy or
failed on a daily basis.

Attribute Selection. Not all SMRAT attributes are useful for disk failure pre-
diction, we select SMART 1,4,7,12,190,192,193,194,196,197,199 for HDD failure
prediction and SMART 1,5,9,12,171,172,174,175,183,190,232,233 for SSD fail-
ure prediction via correlation coefficient analysis. Min-max normalization (i.e.
xnorm = x−xmin

xmax−xmin
, where x is the raw value of the SMART attribute, xmax

and xmin are the maximum and minimum values of the SMART attribute in the
training set) is used to normalize the values of different SMART attributes.

1 https://www.backblaze.com/b2/hard-drive-test-data.html.

https://www.backblaze.com/b2/hard-drive-test-data.html
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Experiment Setup. Regarding records, close to actual failure, will disturb the
failure prediction model, a commonly used approach is to label k continuous
healthy samples before the actual failure as failure records too [23,24]. And k is
determined via change-point detection and set to be 3 in our experiments. The
representation vector length is set to 128 for both representation ability and cost
saving (detailed in Sect. 5.2). The coefficient of gradient penalty term λ is set
to 10, which is consistent with the setting commonly used in ML models based
on Wasserstein distance [1,14]. The parameter γ used to balance the weight
of discriminative and domain invariant representation learning is set to 1e-2,
which is determined through grid search. In each domain invariant representation
learning iteration, the distance estimator runs 10 steps then the parameters of the
representor and the failure predictor update once. The sample selection process
runs one time every 500 representation learning iterations. And the confidence
threshold is set to 0.2, which delivers the optimal transfer learning performance
(detailed in Sect. 5.2).

Evaluation Metrics. The failure prediction rate (FDR, also called recall), false
alarm rate (FAR, also called false positive rate), and F1-Score are adopted as the
metrics to measure the disk failure prediction performance. A good disk failure
prediction method should reach a high FDR with a low FAR. And the F1-Score
is the balance between the FDR and FAR, thus is the most important metric to
measure the performance of the prediction model.

Benchmarks. We test three types of benchmarks.

• Supervised Learning-Based: We first measure the performance of three
supervised learning-based failure prediction methods (i.e. GBRT [10], HDDse
[23] and RGF [2]) with only minority disk samples.

• Semi-supervised Learning-Based: We explore the performance of the
semi-supervised learning model (VAE-LSTM [25]) which models the healthy
samples and classifies the failure samples by comparing the reconstruction
error with a pre-defined threshold.

• TL-Based: We evaluate 3 state-of-the-art TL-based failure prediction mod-
els (i.e. TLDFP [24], SSDB [2] and FLBT [15]). Note that TLDFP and SSDB
are instance-based TL approaches, and FLBT is a feature-based TL app-
roach. Note that we also test ADA-CBAN [9] in our experiments while its
performance is not stable. 3 (i.e., Exp 1, Exp 2, and Exp 4) of the 5 experi-
ments failed due to the large distribution divergence of the source and target
domain. In addition, the results of the ADA-CBAN in the last two experi-
ments are worse than those of DiskDA, so we omit to show its results in our
comparison. Since all the TL-based methods require a base failure prediction
model, a bidirectional gated recurrent unit network (Bi-GRU) is adopted as
the base failure prediction model in this paper. Note that the base model can
also be replaced by any neural network-based failure prediction model. In fact,
we choose Bi-GRU because it shows simplicity, robustness, and accuracy in
experiments.
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Table 2. The Details about Dataset Used in Experiments.

No. Training Set Testing Set

Exp.1 Source: Disk 1, Disk 2 Disk 3 (1058, 100)

Target: Disk 3 (110, 6)

Exp.2 Source: Disk 4, Disk 5 Disk 6 (918, 40)

Target: Disk 6 (100, 4)

Exp.3 Source: Disk 7, Disk 8 Disk 9 (985, 15)

Target: Disk 9 (100, 3)

Exp.4 Source: Disk 8, Disk 9 Disk 4 (2360, 38)

Target: Disk 4 (300, 4)

Exp.5 Source: SSD 1, SSD 2 SSD 3 (39563, 1357)

Target: SSD 3 (399, 13)

Considering that the three comparative TL-based methods are all single
source-based TL models, we traverse all source domain disk models and select
the one with the best performance as the source domain.

The detailed setup of training and testing datasets is shown in Table 2. Note
that Disk a (x, y) denotes that the number of healthy disks is x and the number
of the failed disk is y. Generally, the number of healthy samples in a real dataset
is much larger than that of failure samples. In order to avoid model bias caused
by data imbalance, we only use the randomly selected healthy samples with the
same number of failure samples. Cross-validation is done for each method, and
we average their performance as the final result.

Table 3. Performance Comparison of Various Disk Failure Prediction Models

Method Exp.1 Exp.2 Exp.3 Exp.4 Exp.5

FDR FAR F1 FDR FAR F1 FDR FAR F1 FDR FAR F1 FDR FAR F1

RGF 0.382 0.021 0.536 0.698 0.056 0.725 0.621 0.017 0.726 0.618 0.06 0.557 0.747 0.034 0.793

GBRT 0.605 0.106 0.666 0.674 0.035 0.744 0.5 0.014 0.637 0.532 0.017 0.624 0.684 0.013 0.801

HDDse 0.634 0.057 0.702 0.784 0.009 0.891 0.715 0.013 0.757 0.573 0.023 0.649 0.624 0.003 0.799

VAE-LSTM 0.756 0.103 0.807 0.821 0.095 0.886 0.796 0.031 0.848 0.697 0.046 0.723 0.785 0.067 0.815

Bi-GRU 0.491 0.098 0.582 0.684 0.011 0.792 0.68 0.021 0.761 0.355 0.04 0.405 0.51 0.004 0.672

DiskDA 0.917 0.027 0.976 0.991 0.002 0.998 0.913 0.003 0.974 0.907 0.001 0.969 0.973 0.043 0.993

5.2 Experimental Results

Performance Comparison with Supervised and Semi-supervised
Learning Methods. We first show the performance comparison results of
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Fig. 3. Visualization of representation from samples of minority disk and source domain
disk models

DiskDA with supervised learning methods (RGF, GBRT, and HDDse) and semi-
supervised learning methods (VAE-LSTM). The training set used is the dataset
indicated as “Target” in Table 2.

It can be seen from Table 3 that

• The supervised learning-based methods perform poorly due to insufficient
training data. Although HDDse adopts a metric learning method that actually
increases the size of the training set by taking pairs of samples as input, its
prediction performance is only slightly better than the other two.

• Compared with the above supervised-learning methods, the FDR value of
VAE-LSTM is significantly improved. However, because the threshold-based
method adopted by VAE-LSTM cannot well classify the failure samples from
the healthy, the FAR is also higher.

• DiskDA has the best failure prediction performance, with an F1-Score 20.86%
higher than VAE-LSTM on average. In addition, we also find that the F1-
Score of DiskDA is 61.75% higher than that of the base model, which also
proves the necessity and effectiveness of domain adaption. DiskDA can reach
the best performance because 1© it can extract failure prediction knowledge
from large amounts of source domain disk samples rather than the limited
samples provided by the minority disk; 2© it adopts a supervised learning-
based approach that can automatically discriminate the healthy and failure
samples without setting classification threshold manually.

Performance Comparison with TL-Based Methods. Next, we show the
performance comparison results of DiskDA with TL-based methods (SSDB,
TLDFP, and FLBT). Since all these TL-based methods can only work if there
are failure samples in the target domain, DiskDA also uses failure samples in the
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target domain as other methods for fair comparison (see Table 2 for details of
the training set). However, the DiskDA can work without failure samples, which
is superior to other solutions. To highlight that, we further implement DiskDA
in a more restrictive case where no failure sample of minority disks is provided
and the results are indicated as “DiskDA*”. To facilitate analysis, we also test
the performance of the base model trained in the source domain on the testing
set as the baseline (indicated as “Src”). From Table 4 we can see that

• The F1-Score of Src is only 0.592 on average. The root cause is the distribution
shift of SMART attributes among disks, so simply reusing the prediction
model trained upon other disks will fail in practice.

• Among the three TL-based methods, the instance-based TL approach TLDFP
has the best performance. By continuously enhancing the weight of misclassi-
fied samples, the ability of the failure predictor can be improved to a certain
extent. Another instance-based TL approach, SSDS, uses a sample selection
strategy based on similarity to adjust the source domain samples. However, its
performance is even worse than the baseline in some cases. The performance
of FLBT is worse than that of TLDFT. All the TL-based approaches can just
reach sub-optimal performance as they drop useful samples and attributes
and can only utilize partial information from the source domain.

Table 4. Performance Evaluation of Transfer Learning Based Failure Prediction Mod-
els

Method Exp.1 Exp.2 Exp.3 Exp.4 Exp.5

FDR FAR F1 FDR FAR F1 FDR FAR F1 FDR FAR F1 FDR FAR F1

Src 0.486 0.09 0.584 0.979 0.605 0.618 0.916 0.762 0.537 0.97 0.919 0.505 0.977 0.472 0.715

SSDB 0.34 0.467 0.302 0.911 0.384 0.801 0.991 0.84 0.707 0.95 0.68 0.685 0.71 0.672 0.597

TLDFP 0.785 0.094 0.836 0.751 0.001 0.858 0.811 0.422 0.773 0.648 0.001 0.786 0.804 0.117 0.843

FLBT 0.685 0.194 0.636 0.747 0.131 0.834 0.611 0.134 0.683 0.588 0.112 0.716 0.722 0.093 0.837

DiskDA* 0.84 0.048 0.889 0.987 0.002 0.994 0.852 0.005 0.92 0.825 0.002 0.904 0.962 0.092 0.947

DiskDA 0.917 0.027 0.976 0.991 0.002 0.998 0.913 0.003 0.974 0.907 0.001 0.969 0.973 0.043 0.993

• DiskDA performs the best, with the F1-Score 20.02% higher than the best
competitor. This is because 1© DiskDA can extract failure prediction knowl-
edge from multiple source domain disk models while existing instance-based
TL approaches can only benefit from a single source domain (just one disk
model in the source domain) to prevent negative transfer. 2© DiskDA tries
to fully utilize the source domain disk samples by fusing the distribution of
source and target domain samples in the latent space, rather than directly
dropping samples or attributes as existing TL-based approaches. We visu-
alize the fusion of representations from the source and target domain via
t-SNE in Fig. 3, where the red points represent the representations from the
source domain and the green ones represent the representations from the tar-
get domain. As seen, the green and red points are fused constantly as the
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Fig. 4. Performance of introducing more disk models to source domain

increment of iterations, which suggests that the domain invariant representa-
tion learning process can effectively fuse the representations from the source
and target domain and thus the failure prediction knowledge extracted from
the source domain can adapt to the target domain(minority disk).

• In the absence of failure samples from the minority disk, the F1-Score of
DiskDA can still reach a satisfactory 0.93, 66.75% higher than that of the
baseline. The results prove the effectiveness of our theorem that DiskDA can
still adapt the failure prediction knowledge extracted from source domain disk
models to minority disks with no failure sample. And this shows that DiskDA
has much higher adaptivity compared to existing TL-based approaches. We
further explore whether DiskDA can continuously benefit from the increment
of source domain failure modes. And we investigate this problem by measur-
ing the performance of DiskDA as the increase of source domain disk models
because more disk models potentially contain more failure modes. As shown
in Fig. 4, the performance of DiskDA can be continuously improved by adding
more disk models to the source domain. Thanks to the sample selection pro-
cess, DiskDA can timely filter out the source domain samples deteriorating
the domain invariant representation learning process and effectively transfer
failure prediction knowledge from the source domain to the minority disk. The
results motivate us to add more disk models to the source domain to reach
high performance without worrying about the negative transfer problem.

5.3 Sensitivity Study

Impact of Hidden Size. In domain invariant representation learning, the
representor projects samples from both domains to fixed-length vectors as their
representations. And we evaluate how the size of length affects the performance
of DiskDA. As seen in Fig. 5.a, the performance of DiskDA is improved as the
increase of hidden size and then steady until the hidden size reaches 128. The
results indicate that a small size will limit the representation ability and seriously
affect the performance of DiskDA. And we set the hidden size as 128 to reach a
balance between the performance and computation cost.
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Fig. 5. Sensitivity Study

Impact of Confidence-Threshold. The confidence threshold determines
which samples to select in representation learning afterward. And we explore
how different confidence thresholds affect the performance of DiskDA. In the
experiment, we experiment with different confidence threshold values and sum-
marize the results as 3 representative curves corresponding to thresholds of 0.4
(red curve), 0.2 (green curve), 0 (blue curve), shown in Fig. 5.b. As seen, a low
(i.e., ranging from 0 to 0.1) or high threshold (i.e., ranging from 0.4 to 1) can
both deteriorate the performance of DiskDA since the negative transfer caused
by irrelevant samples remaining in the source domain or the loss of relevant
samples filtered out in confidence-based sample selection process. And we set
the threshold as 0.2 to achieve a balance between the performance of domain
adaption and the loss of source domain samples.

6 Conclusion

In this work, we investigate the problem of minority disk failure prediction in
data centers. Based on the fact that the failure modes are common for different
disk models, our basic idea is to utilize full of the failure prediction knowl-
edge learned from other disk models to the minority disk. We model this as an
unsupervised domain adaption problem and analyzed the generalization error
bound of the prediction model in the target domain (minority disk) theoreti-
cally. Guided by the generalization error bound, we design a framework which
can effectively optimize the error bound by elaborately combining the domain
invariant representation and confidence-based sample selection processes. Our
experiments on real-world datasets show the effectiveness of our approach. More-
over, our approach can still reach a satisfying F1-score of 0.93 on average for
minority disks even with no failure samples, which suggests that our approach
can fit for more broad cases compared to existing approaches.
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7 Appendix

Proof. The discrepancy between the source and target domain is measured using
the Wasserstein distance in DiskDA. Specifically, the p-th Wasserstein distance
between two Borel probability measures P and Q is defined as:

Wp(P,Q) = ( inf
μ∈Γ(P,Q)

∫
ρ(x, y)pdμ(x, y))1/p (9)

where the Γ(P,Q) is the set of all joint distributions μ(x, y) whose marginal
distribution are P and Q. The μ(x, y) can be viewed as a policy for transporting
a unit quantity of material from x to y and the ρ(x, y) is the corresponding
cost. And the Wasserstein distance between P and Q represents the minimum
expected transport cost. As Wasserstein distance satisfies the triangle inequality,
the following equation holds

Wp(Ps,Pt) ≤ Wp(Ps,PtH ) + Wp(PtH ,Pt) (10)

Shen et al. [14] prove the generalization error bound of a classification function
h in the target domain for unsupervised domain adaption based on Wasserstein
distance as

εt(h) ≤ εs(h) + 2KW1(Ps,Pt) + λ (11)

where the K means that all hypotheses h are K-Lipschitz continous, λ is the
combined error of the optimal hypothesis h∗ which minimizes the combined
error εs(h) + εt(h), Ps and Pt are distributions of source and target domain,
respectively. Let C denote 2KW1(PtH ,Pt). By substituting inequality (11) for
(10), Theorem 3.1 is derived.
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