
Service-Aware Cooperative Task
Offloading and Scheduling in Multi-access

Edge Computing Empowered IoT

Zhiyan Chen1(B), Ming Tao1, Xueqiang Li1, and Ligang He2

1 School of Computer Science and Technology, Dongguan University of Technology,
Dongguan, China

z.chen.8@warwick.ac.uk, {taom,lixq}@dgut.edu.cn
2 Department of Computer Science, University of Warwick, Coventry, UK

ligang.he@warwick.ac.uk

Abstract. Multi-access edge computing(MEC) enables computation
task offloading and data processing at close proximity to provide rich end-
users services with ultra-low latency in Internet of things(IoT). However,
the high heterogeneity of the edge node configuration and the diversity
of services pose challenges in fully utilizing the computing capacity in
MEC. In this paper, we consider the problem of service-aware coopera-
tive task offloading and scheduling in a three-tier MEC empowered IoT
where the service requests from IoT devices can be distributed among
edge nodes or further offloaded to remote cloud. As this problem is proven
to be NP-hard, we proposed a two-layer Cooperative workload Initial-
ization and Distribution Algorithm (CIDA) to solve the problem with
low time complexity by decomposing it into two subproblems: 1) the
optimization problem of offloading profile under dynamic resource allo-
cation determined by the workload type, and 2) optimization problem of
computation resources allocation under given offloading profile. Exten-
sive experiments demonstrate that CIDA achieves superior performance
compared to other approaches and scales well as the system size increases.

Keywords: Multi-access edge computing · Services-aware offloading ·
Task scheduling · Resource allocation

1 Introduction

The Internet of Things (IoT) has been introduced to connect and coordinate
the rapidly growing number of smart devices over the past decade [1,2]. And
cloud computing enables IoT devices to enhance their computational capabilities
and extend battery life by offloading the computation requests to cloud servers
for execution. However, the extensive connectivity and data exchange in the
IoT have led to substantial communication latency, which poses challenges in
guaranteeing the quality of IoT services [3]. As a result, edge computing has
emerged as a promising paradigm to address these challenges. By deploying
computing resources at the edge where data is generated, computation requests
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 327–346, 2024.
https://doi.org/10.1007/978-981-97-0801-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_19&domain=pdf
https://doi.org/10.1007/978-981-97-0801-7_19

328 Z. Chen et al.

can be processed at the closer edge node instead of offloading to the remote
cloud, which significantly reduce the latency and save energy [4].

Compared to cloud servers with abundant computational resources, edge
server is generally resource-limited. Severe resource competition and data pro-
cessing congestion could be caused by the offloading of computation intensive
requests without cooperation. Furthermore, the absence of mutual collaboration
among edge servers can result in certain servers being underutilized while pop-
ular edge servers are experiencing an overwhelming computational workload [5].
Additionally, given the diverse range of services in the IoT, the requirements on
response time and computation resources can vary significantly. Both processing
computation-intensive requests on relatively low-capacity edge servers and the
improper allocation of resources on edge servers can lead to a degradation in sys-
tem performance. Therefore, the establishment of collaborative offloading and
scheduling mechanisms between edge servers and remote cloud servers is crucial
to fully utilize the computational resources and achieve efficient operation of the
system.

Core Network

Remote Cloud
Server

Edge node

IoT device

Wired
transmission

Wireless
transmission

Edge node

IoT device

Wired
transmission

Wireless
transmission

Fig. 1. Three-tier multi-access edge computing architecture

In this paper, we consider a multi-access edge computing empowered IoT sys-
tem with N IoT devices, M base stations and a remote cloud server, which forms
a three-tier architecture as shown in Fig. 1. Each base station is seamlessly inte-
grated with an edge server, which is referred to as an edge node. IoT devices are
connected to the edge nodes via wireless channels, while neighbouring edge nodes

Service-Aware Cooperative Task Offloading and Scheduling 329

establish connectivity through local area networks or wired peer-to-peer links [6].
Furthermore, edge nodes possess the capability to further offload computation
tasks to remote cloud server via the core network. In such system, individual
IoT device may requests multiple types of services. And each specific service
request made by an IoT device can be handled in one of the following ways:
offloaded to its associated edge node for processing, transferred to another edge
node within the network for processing, or further offloaded via the core network
to remote cloud server with much higher computing capacity. Different types of
services on an IoT device may offloaded to different destination for processing to
improve the system performance, which can be achieved by a centralized offload
controller such as SDN controller [7,8]. However, ensuring efficient system oper-
ation and resource utilization in such system presents a significant challenge as
it requires an appropriate offloading and computing capacity allocation profiles
to be obtained at low time cost. The close interplay of these profiles and the
large searching space further complicate the problem.

To solve this problem, we discuss the design and implementation of CIDA,
which is a two-layer heuristic Cooperative workload Initialization and Distribu-
tion Algorithm. The first layer of CIDA initialize the system offloading profile
with the transmission delays for system requests are minimized regardless of the
capacity constraint of edge nodes, then CIDA iteratively update the offloading
profile by reallocating the requests to the execution platform with their response
time are minimized. The second layer of CIDA obtains the optimal computing
capacity allocation at each edge nodes by solving the KKT conditions based on
the offloading profile in the first layer.

To summarize, we have made the following contributions in this paper:

(1) The problem of cooperative service-aware task offloading and scheduling in
a three-tier multi-access edge computing system is investigated, which is
formulated as an joint optimization problem of offloading profile and com-
puting capacity allocation profile.

(2) The NP-hardness of the joint optimization problem is proven by demonstrat-
ing a reduction from the well-known NP-hard makespan scheduling problem
to a specific case of the joint optimization problem.

(3) We design a two-layer heuristic algorithm CIDA to solve the joint optimiza-
tion problem at a low time complexity by decompose it into two subprob-
lems. In the first layer, an offloading profile is derived base on allocating
the service requests to the execution platform with minimum response time
iteratively. In the second layer, as the convexity of computing capacity allo-
cation problem in each edge node is proved, the optimal computing capacity
allocation profile could be obtained.

The rest of the paper is organized as follows. We review the related works
in Sect. 2. Section 3 presents the overall system and the joint optimization prob-
lem formulation. In Sect. 5, the design and implementation of algorithm CIDA
is presented. The results of the numerical simulations are provided in Sect. 6.
Finally, this paper is concluded in Sect. 7.

330 Z. Chen et al.

2 Related Work

To fully utilize the potential of multi-access edge computing, the problem of tasks
offloading under various scenarios attracted much attention of the research com-
munity lately. One major objective is to reduce the task completion latency and
energy consumption [9,10]. In [9], an optimization algorithm based on genetic
algorithm and particle swarm optimization is proposed to minimize the energy
consumption of the system in a densely deployed distributed small cell network.
In [10], a distributed association scheme is proposed to minimize the latency of
data flows in a fog computing IoT system by iteratively associating IoT devices
to suitable base station until convergence. Zhu et al. [11] addressed the triple-
objective optimization problem of energy cost, task completion delay and net-
work deployment cost. A metaheuristic algorithm based on whale optimization
is adopted to produce a set of Pareto-optimal solutions for the problem. Besides
the offloading profile optimization, the computation resource allocation optimiza-
tion has been investigated in some research [12]. A cooperative offloading model
based on software defined network is proposed in [12] for optimizing task schedul-
ing in LTE-advanced networks. And [13] proposed an UAV-aided framework in
federated-WSN-enabled IoT for trust-worthy data collection. However, these lit-
erature mainly emphasize the offloading between devices and the edge servers,
without considering the further offloading from edge servers to the remote cloud.

There are also a few work done on the cooperation workload scheduling in
the heterogeneity three-tier MEC network [14–17]. [16] studies the online work-
load scheduling among edge-clouds architecture and introduced an online job
dispatching and scheduling algorithm to minimized the job response time. [18]
proposed a joint optimization approach to allocate the computation resource to
IoT devices in a three-tier fog IoT framework. In [17], the offloading decisions,
communication resources and computation resources are taken into account to
minimize the overhead in a three-tier MEC system. [19] focus on minimizing
the energy cost and allocating the computation resource with the latency dead-
lines of mobile devices are satisfied. Three algorithms are presented to solve
the problem under different time complexity performance. Nevertheless, all the
above work have overlooked that an IoT device might request multiple type
of services. Given the heterogeneous nature of service applications deployed on
IoT devices, incorporating the consideration of various types of service requests
within the same device becomes imperative when optimizing task scheduling in
the IoT. Such an approach facilitates the provision of enhanced and finer-grained
offloading strategies for MEC system.

3 System Model and Problem Formulation

For the sake of readability, we summarize the symbols used in Table 1. Denote
N = {1, 2, 3, ..., N} as the set of IoT devices and M = {1, 2, 3, ...,M} as the
set of edge nodes. Denote J = {1, 2, 3, ..., J} as the set of services provided in
the system, and Ji as the set of services on IoT device i. The service request
of type j is described as (Lj , Cj), where Lj represents the average input data

Service-Aware Cooperative Task Offloading and Scheduling 331

length associated with the request, and Cj represents the average computation
requirements of the corresponding task (in CPU cycles) for type j services. As
in other paper [20], we assume the arrival of each type of service requests on IoT
devices follows a Poisson process with λij denotes the expect arrival rate of type
j service requests on IoT device i.

Table 1. Summary of symbols

Symbol Definition

N The set of IoT devices
M The set of edge nodes
J The set of services provided in the system
Ji The set of services on IoT device i

Lj Average input data length associate with type j service request
Cj Average computation requirements for type j service request
λij Expected arrival rate on type j service request on IoT device i

ae
ijk Indicator to denote if j request on device i is executed on edge node k

ac
ij Indicator to denote if j request on device i is executed on remote cloud

bi Associated edge node of IoT device i

T e
ijk Average response time for j request on device i executed on edge node k

T trans
i,bi

Transmission delay from IoT device i to its associated edge node bi

T trans
bi,k

Transmission delay from edge node bi to edge node k

T exe
ijk Execution delay for j request on device i to be executed on edge node k

Ri,bi Data rate achieved for device i to associated edge node bi

Bi,bi Wireless channel bandwidth between device i to associated edge node bi

Pi Transmission power of IoT device i

Gi,bi Channel gain between device i to associated edge node bi

σ2
i Noise power of device i

L̄i Average input data length of the requests on device i

fk Computing capacity of edge node k

fjk Computing capacity allocated to type j request on edge node k

T c
ij Average response time for j request on device i executed on remote cloud

T trans
bi,c

Transmission delay from edge node bi to remote cloud
A(ij) Indicator of execution platform for type j service requests on IoT device i

A Offloading profile for all the requests on IoT devices in the system
F k Computing capacity allocation profile on edge node k

F Computing capacity allocation profile for all edge nodes in the system
Tij(A, F) Average response time for type j request on device i under profile A and F

ΔTij Improvement on average response time for type j request on device i by
moving it to its optimal edge node

R The set of remaining requests to be reallocated in the system
rij The index of the type j request on device i in the set R

332 Z. Chen et al.

Let ae
ijk and ac

ij be the binary indicator (ae
ijk, ac

ij ∈ {0, 1}) which denote if
type j service requests of IoT device i to be executed on edge node k or the
remote cloud server, respectively. A service request is either be processed on an
edge node or the remote cloud server, thus we have

∑

k∈M
ae

ijk + ac
ij = 1, i ∈ N , j ∈ Ji (1)

3.1 Edge Computing Model

For each IoT device in the system, it is associated to its closest edge node to
offloading the service requests. Note that the associated edge node might not be
the eventual execution platform for the requests on IoT devices. Denote bi as the
associated edge node of IoT device i. When type j requests on IoT device i are to
be executed on edge node k, the total response time consist of the following four
parts: the time it takes for the requests to be transferred from IoT device i to its
associated edge node bi (denoted by T trans

i,bi
), the time it takes for the requests

to be transferred from associated edge node bi to the execution edge node k
(denoted by T trans

bi,k
), the time it takes for the requests to be executed on edge

node k (denoted by T exe
ijk), and the time it takes for sending the computation

outcome back to IoT device i.
Similar to many studies such as [21–23], we omit the time overhead associated

with the transmission of computation outcomes back to IoT device, which is
based on the observation that the length of computation outcomes tends to be
significantly smaller compared to the length of input data for numerous services
such as image recognition and speech recognition. Hence, the total response time
of type j requests on IoT device i to be executed on edge node k is given by

T e
ijk = T trans

i,bi + T trans
bi,k + T exe

ijk (2)

During the wireless transmission between IoT device i and its associated edge
node bi, the data rate Ri,bi can be generally expressed as a logarithmic func-
tion according to the Shannon theorem. Denote Bi,bi as the channel bandwidth
between IoT device i and edge node bi, Gi,bi as the channel gain between them,
Pi as the transmission power and σ2

i as the noise power of IoT device i. The
data rate of IoT device i can be expressed as

Ri,bi = Bi,bi log(1 +
PiGi,bi

σ2
i

). (3)

As mentioned earlier that the arrival of each type of service request on IoT
devices is a Poisson process, the arrival of all the requests on IoT device i, which
is a sum of multiple independent Poisson processes, follows a Poisson process
with expected rate

∑
j∈Ji

λij . Thus, the offloading from IoT device i to its
associated edge node bi can be modelled as an M/M/1 queue, and the average
response time is given by

T trans
i,bi =

1
Ri,bi/L̄i − ∑

j∈Ji
λij

(4)

Service-Aware Cooperative Task Offloading and Scheduling 333

where L̄i denotes the average input data length for the service requests on IoT
device i and L̄i =

∑
j∈Ji

Ljλij/
∑

j∈Ji
λij . To keep the queue stable we have

Ri,bi/L̄i >
∑

j∈Ji
λij .

After the requests being offloaded to associated edge node bi, they will be
transferred to the execution edge node k. The transmission delay from bi to k is
denoted by T trans

bi,k
, which can be measured and recorded by the SDN controller

[24]. Note that T trans
bi,k

= 0 when bi = k. According to [25], the transmission delay
between edge nodes is modelled as a linear function of the distance between them,
which is given by

T trans
bi,k = α · dbi,k + β (5)

where dbi,k denotes the distance between edge node bi and edge node k. And
typically, α = 5 and β = 22.3.

When type j requests on IoT device i are transferred to edge node k for
execution, it shares the computing capacity allocated to type j requests on edge
node k with same type of requests which are offloaded from other IoT devices.
Given that the offloading of individual IoT device follows a Poisson process, it
can be inferred that the arrival of each type of service request on the edge node
also exhibits a Poisson process. The processing for each type of requests on the
edge nodes can be modelled as an M/M/1 queue. Denote fk as the computing
capacity of edge node k and fjk as the computing capacity allocated to type j
request on edge node k. The computation delay for type j requests of IoT device
i on edge node k is calculated as

T exe
ijk =

1
fjk/Cj − ∑

i∈N
ae

ijkλij
. (6)

To ensure the queue is stable, we have
∑

j∈J fjk ≤ fk and
fjk/Cj >

∑
i∈N ae

ijkλij .

3.2 Cloud Computing Model

For the service requests on IoT device i which are offloaded to remote cloud server
for execution, the total response time consist of following four parts: the time it
takes for the requests to be transferred from IoT device i to its associated edge
node bi, the time it takes for the requests to be transferred from edge node bi to
the remote cloud server via the core network, the time it takes for processing the
requests on the remote cloud, and the time it takes for sending the computation
results back to device i.

Similar to the edge computing model in Sect. 3.1, we disregarded the trans-
mission delay of computation results from remote cloud to the IoT devices. Addi-
tionally, as the computing capacity of cloud servers exceeds that of edge nodes
significantly, and the primary source of delay in cloud computing is attributed to
data offloading from IoT devices to the remote cloud server, we have omitted the
service execution delay on the cloud. Thus, denote T trans

bi,c
as the transmission

delay between edge node bi and the remote cloud, the total response time of

334 Z. Chen et al.

type j requests on IoT device i to be executed on remote cloud server is given
by

T c
ij = T trans

i,bi + T trans
bi,c . (7)

4 Problem Formulation

In this section, we present the problem formulation for service-aware task offload-
ing and scheduling, focusing on the minimization of the average response time for
all service requests. Denote A(ij) as the indicator of execution platform for type
j service requests on IoT device i, which is defined as A(ij) = {ae

ijk, ac
ij |k ∈ M}.

And A denotes the offloading profile for all the service requests on IoT devices
in the system, which is defined as A = {A(ij)|i ∈ N , j ∈ Ji}. Furthermore,
Denote F k as the computing capacity allocated to each type of service on edge
node k and F k = {fjk|j ∈ J }. And F denotes the computing capacity alloca-
tion for all the edge nodes, which is given by F = {F k|k ∈ M}. Therefore, the
service-aware task offloading and scheduling problem can be formulated as the
problem of minimizing the average response time for all service requests with
respect to A and F , which defined as:

P1 : min
A ,F

∑

i∈N ,j∈Ji

λij∑
i∈N ,j∈Ji

λij
(
∑

k∈M
ae

ijkT e
ijk + ac

ijT
c
ij) (8)

s.t
∑

k∈M
ae

ijk + ac
ij = 1, i ∈ N , j ∈ Ji (9)

ae
ijk, ac

ij ∈ {0, 1}, i ∈ N , j ∈ Ji, k ∈ M (10)

Ri,bi/L̄i >
∑

j∈Ji

λij , i ∈ N (11)

fjk/Cj >
∑

i∈N
ae

ijkλij , j ∈ J , k ∈ M (12)

∑

j∈J
fjk ≤ fk, k ∈ M (13)

fjk ∈ [0, fk], j ∈ J , k ∈ M (14)

The constraints (9) and (10) delineate the processing of each type of service
requests on IoT devices are either on an edge node or on the remote cloud server.
The constraint (11) ensures that the total traffic data on each IoT device remains
within the wireless channel capacity between the device and its associated edge
node. The constraint (12) guarantees the workload assigned to each type of
requests on each edge node does not exceed the specific computing capacity
allocated to that request type. The constraint (13) ensures that the collective
computing capacity assigned to each type of request within an edge node should
not exceed the overall computing capacity of the edge node. Lastly, constraint
(14) enforces that the computing capacity allocated to each request type remains
within the total computing capacity available of the edge node.

Service-Aware Cooperative Task Offloading and Scheduling 335

However, solving problem P1 optimally with low searching cost could be
quite challenging. The typical size of edge computing models tends to be sub-
stantial, which results in a large searching space that optimization algorithm
need to explore. Additionally, the high heterogeneity on the configuration of
edge nodes and the diversity of services on IoT devices further complicate the
problem. Moreover, the interplay between the IoT devices offloading profile A
and the edge node capacity allocation profile F must be considered during the
optimization process, making problem P1 hard to tackle. We will provide a proof
of its NP-hardness to demonstrate the computational complexity of problem P1
next.

Theorem 1. Problem P1 is at least NP-hard.

Proof. Here, we present an analysis of a simplified case of problem P1 to demon-
strate its NP-hardness. In this particular scenario, only a single type of service
is considered in the system. And we make the following assumptions: the trans-
mission delay from IoT devices to their associated edge node are assumed to be
0, i.e., T trans

i,bi
= 0; the transmission delay between edge nodes are assumed to be

0, i.e., T trans
bi,k

= 0; the transmission delay from edge nodes to the remote cloud
server are assumed to be infinite, i.e., T trans

bi,c
= ∞, which indicates an infinite

response time for requests executed on the remote cloud according to Equation
(7). As a result, all the requests should be processed on edge nodes if capable.

By making these assumptions, problem P1 is reduced to the classic makespan
scheduling problem. In this transformation, the service requests on each IoT
device are projected as jobs to be scheduled, while the edge nodes are projected
as the processing machines in the makespan scheduling problem. As the classic
makespan scheduling problem, which requires exploring all possible combinations
of job allocation to find the optimal solution, has non-polynomial computation
complexity for even there are only two identical processing machines, the NP-
hardness of problem P1 is established.

5 Algorithm Design

As stated above, even the simplified case of problem P1 remain challenging to
be solved in polynomial time complexity. As we can observed that problem P1
involve a jointly optimization of the offloading profile of IoT devices A and the
computing capacity allocation profile of edge nodes F . To solve problem P1, we
carefully decompose the joint optimization involved into two sub problem:

(1) The optimization problem of offloading profile A under a certain computing
capacity allocation policy.

(2) The optimization problem of computing capacity allocation profile F under
a specific offloading profile A.

Accordingly, we present a two-layer Cooperative workload Initialization and
Distribution Algorithm (CIDA) with the first layer minimizing the transmission
delay and distributing the workload among edge nodes and the cloud server to

336 Z. Chen et al.

obtain a suboptimal offloading profile, and the second layer allocate computing
capacity to each type of services optimally on the edge nodes based on the
offloading profile obtained in the first layer.

5.1 Offloading Profile Optimization Problem

To tackle the optimization problem of offloading profile, CIDA follows a two-step
approach. Firstly, the service requests on IoT devices are assigned to their respec-
tive associated edge nodes with the transmission delay is minimized, establishing
the initial offloading profile. Subsequently, an iterative process is performed to
search for and reallocate requests which has the highest response time improve-
ment by moving them from the current execution platform to the optimal execu-
tion platform. This process continues until no further improvement in response
time can be achieved for any remaining requests in the system.

Offloading Profile Initialization. To initialize the offloading profile, we first
focus on minimizing the average transmission delay from IoT devices to corre-
sponding execution edge node for all the requests, which is given by

T trans
ij =

∑

k∈M
ae

ijk(T
trans
i,bi + T trans

bi,k) + ac
ij(T

trans
i,bi + T trans

bi,c) (15)

Thus, the transmission delay minimization problem is formulated as

P2 : min
A

∑

i∈N ,j∈Ji

λij∑
i∈N ,j∈Ji

λij
T trans

ij (16)

s.t
∑

k∈M
ae

ijk + ac
ij = 1, i ∈ N , j ∈ Ji (17)

ae
ijk, ac

ij ∈ {0, 1}, i ∈ N , j ∈ Ji, k ∈ M (18)

Ri,bi/L̄i >
∑

j∈Ji

λij , i ∈ N (19)

It is easy to observe that to minimize T trans
ij , all the requests on IoT devices

will be allocated to its associated edge node for execution, i.e., A(ij) = bi, i ∈
N , j ∈ Ji, as the transmission delay of type j requests on IoT device i from
associated edge node to the execution edge node T trans

bi,k
= 0 when bi = k, and

T trans
bi,bi

< T trans
bi,k

holds when bi �= k according to Equation (5)(15). Denote Aini

as the corresponding offloading profile, i.e., Aini = {A(ij) = bi|i ∈ N , j ∈ Ji}.
However, offloading profile Aini might not be a feasible solution for problem

P1 since the following constraints might be violated:
∑

i∈N ,j∈Ji

ae
ijkλijCj < fk, k ∈ M. (20)

Constraint (20) can be derivated from constraint (12) and (13). Specifically,
allocating the requests on the IoT devices to its associated edge nodes could

Service-Aware Cooperative Task Offloading and Scheduling 337

minimize the transmission delay in the system. Nevertheless, due to the variation
in geographical distribution of IoT devices, the edge nodes with more IoT devices
are associated to will be assigned a greater computational workload which might
exceed the computing capacity of the edge nodes, while the workload on other
edge nodes remain at a relatively low level. To address this issue, the workload
need to be reallocated among edge nodes and remote cloud server to ensure
efficient utilization of computing resources and minimize total response time for
all requests.

Workload Reallocation. This subsection presents the main idea of algorithm
design to reallocate the requests workload in the system. We first define the
computing capacity allocation profile on the edge nodes during the reallocation
process. Let the computing capacity allocated to each type of request to be
determined based on the percentage of corresponding type of workload in the
total workload on the edge node, which is given by

fjk =

∑
i∈N

ae
ijkλijfk

∑
i∈N ,j∈Ji

ae
ijkλij

, j ∈ J , k ∈ M (21)

In addition, denote Tij(A,F) as the total response time of type j service
of IoT device i under the current offloading profile A and computing capacity
allocation profile F . Note that Tij(A,F) = ∞ for the requests on the edge node
with constraint (20) is violated. Denote A−ij as the offloading profile of the
system other than type j service requests on IoT device i. If A−ij is given, it
can be determined that the optimal execution platform for type j service on
device i to minimize its total response time. Denote A(ij)∗ as the indicator of
optimal execution platform and Tij(A(ij)∗,A−ij ,F) as the total response time
of type j request on device i on execution platform A(ij)∗. Denote ΔTij as the
response time improvement for reallocating type j requests on device i from
current execution platform A(ij) to optimal execution platform A(ij)∗. Thus we
have

Tij(A,F) =

⎧
⎨

⎩

∞ ae
ijk = 1,

∑
i∈N ,j∈Ji

ae
ijkλijCj < fk

∑
k∈M

ae
ijkT e

ijk + ac
ijT

c
ij otherwise

(22)

A(ij)∗ = arg min
A(ij)

{Tij(A(ij),A−ij ,F)|i ∈ N , j ∈ Ji} (23)

ΔTij = Tij(A,F) − Tij(A(ij)∗,A−ij ,f) (24)

Through a calculation of response time improvement for the requests which
has not been reallocated in the system, the requests with highest response time
improvement will be put into a set and wait for update. One of them will be
selected randomly and reallocated to its optimal execution platform at each
iteration. If there are multiple execution platforms that can achieve the optimal

338 Z. Chen et al.

response time for a selected request, one of them is randomly chosen for real-
location. This process repeats until all the requests in the system is reallocated
or no further improvement on response time can be achieve for the remaining
requests in the system.

Denote rij as the index of type j request on IoT device i. Denote R as the set
of remaining service requests to be reallocated in the system, i.e., R = {rij |i ∈
N , j ∈ Ji}. Denote Rupdate as the set for the requests having maximum response
time improvement and waiting to be updated. The first layer of CIDA is shown
in Algorithm(1).

Algorithm 1. The first layer: offloading profile optimization
Input: {Lj , Cj |j ∈ J }, {λij |i ∈ N , j ∈ Ji}, {Bi,bi , Pi, Gi,bi , σ

2
i , T trans

bi,c
|i ∈

N}, α, β, {fk|k ∈ M}
Output: A solution of offloading profile A = {A(ij)|i ∈ N , j ∈ Ji}, where A(ij) =

{ae
ijk, ac

ij |k ∈ M}.
1: A(ij) ← bi, i ∈ N , j ∈ Ji

2: for Iteration j = 1, 2, 3, ... do
3: Rupdate ← ∅

4: ΔTmax = 0
5: for Each request rij ∈ R do
6: Calculate A(ij)∗ and ΔTij by Equation (1)∼(7) and (21)∼(24)
7: if ΔTij > ΔTmax then
8: Rupdate ← ∅ ∪ {rij}
9: ΔTmax ← ΔTij

10: else if ΔTij = ΔTmax&&ΔTmax �= 0 then
11: Rupdate = Rupdate ∪ {rij}
12: end if
13: end for
14: if Rupdate �= ∅ then
15: Select rij in Rupdate randomly for update
16: A(ij) ← A(ij)∗

17: R = R − {rij}
18: else
19: return the offloading profile A
20: end if
21: end for

We will now prove the finite termination property of Algorithm 1. Ini-
tially, the size of the set of remaining service requests to be reallocated is
|R| =

∑
i∈N |Ji|. At each iteration, |R| is decreased by one, as the request

with the maximum response time improvement is successfully reallocated to its
optimal execution platform and removed from the set R. Consequently, it takes
|R| iterations to reallocate all the requests in the system, resulting in Algorithm
1 terminating when R = ∅. Alternatively, Algorithm 1 may terminate earlier
if there are no requests in the system that can further improve their response
times through reallocation (ΔTmax = 0).

Service-Aware Cooperative Task Offloading and Scheduling 339

The time complexity of Algorithm 1 is analyzed as follows: Step 1 has a
time complexity of O(|R|), as it performs a certain operation for each request
in R. In the worst case scenario, Step 2 is iterated |R| times. As step 5 and step
6 involve calculating the response time of requests on all execution platforms,
which have the size of |R| and |M + 1|, the time complexity of these steps is
O(|R||M+ 1|). And step 7 to step 20 have a constant time complexity of O(1).
Taking all these steps into account, the overall time complexity of Algorithm 1
can be approximated as O(|R|2(M + 1)).

5.2 Computing Capacity Allocation Profile Optimization Problem

With the offloading profile A is determined, the transmission delay for all the
requests can be calculated. And P1 is transformed to a computing capacity
allocation problem, with the objective of minimizing the execution delay for the
requests in the system. Since the execution delay for requests on one edge node is
independent of requests on other edge nodes, the computing capacity allocation
problem for the system can be decomposed into multiple computing capacity
allocation problems for each individual edge node. Thus the allocation problem
on edge node k is given by:

P3 : min
F k

∑

i∈N ,j∈Ji

ae
ijkλij∑

i∈N ,j∈Ji

λij
T exe

ijk (25)

fjk/Cj >
∑

i∈N
ae

ijkλij , j ∈ J (26)

∑

j∈J
fjk ≤ fk (27)

fjk ∈ [0, fk], j ∈ J (28)

Theorem 2. Problem P3 is a convex optimization problem over the computing
capacity allocation profile F .

Proof. An optimization problem is a convex optimization problem with following
conditions are satisfied: the objective function is a convex function; the constraint
functions are convex functions; the feasible region is a convex set. It is easy to
observed that the constraints (26), (27), (28) are convex and the feasible region is
a convex set. And we can prove the objective function of problem P3 by showing
the positive definiteness of its Hessian matrix.

Denote Zk as the objective function of problem P3, thus we have Zk =∑
i∈N ,j∈Ji

ae
ijkλij∑

i∈N ,j∈Ji

λij
(1

fjk/Cj− ∑

i∈N
ae
ijkλij

). The Hessian matrix of Z is denoted by

H =
[
hjj′

]

j×j′ . When j = j
′
, hjj′ =

∑
i∈N

ae
ijkλij∑

i∈N ,j∈Ji

λij
· 2

C2
j (fjk/Cj− ∑

i∈N
ae
ijkλij)3

,

otherwise hjj′ = 0, meaning that H is a positive definite matrix and Z is a
convex function. Therefore, Problem P3 is a convex optimization problem over
the computing capacity allocation profile F k.

340 Z. Chen et al.

As problem P3 is a convex optimization problem, it can be solved opti-
mally via solving Karush-Kuhn-Tucker(KKT) conditions. We first construct the
Lagrange function of Problem P3 as

Lk(F k,χk , γk,φk ,ωk) = Zk −
∑

j∈J
χjk(fjk −

∑

i∈N
ae

ijkλijCj)

+γk(
∑

j∈J
fjk − fk) +

∑

j∈J
φjk(fjk − fk) −

∑

j∈J
ωjkfjk

(29)

with χk , γk, φk and ωk are the set of Lagrange multipliers, i.e., χk = {χjk|j ∈
J }, φk = {φjk|j ∈ J } and ωk = {ωjk|j ∈ J }.

The KKT conditions of problem P3 is given by constraints (26) ∼ (28) and
equations (30) ∼ (35).

∂Lk(F k,χk , γk,φk ,ωk)
∂fjk

= 0, ∀j ∈ J (30)

χjk(fjk −
∑

i∈N
ae

ijkλijCj) = 0, ∀j ∈ J (31)

γk(
∑

j∈J
fjk − fk) = 0 (32)

φjk(fjk − fk) = 0, ∀j ∈ J (33)
ωjkfjk = 0, ∀j ∈ J (34)
χjk, γk, φjk, ωjk ≥ 0, ∀j ∈ J (35)

As the KKT conditions of problem P3 is solved, an optimal computing capacity
allocation profile of edge node k can be derived. By aggregating the allocation
profiles obtained for each individual edge node F k, the optimal allocation profile
for the entire system F can be acquired.

6 Simulation Results

In this section, extensive simulations are conducted to evaluate the system per-
formance of CIDA. The simulations are implemented with a MATLAB program
on the executing host: 64-bit Windows 11 operating system, Intel Core i5-9600K
CPU@3.70GHz, and 32GB of RAM. In the simulations, 1000 IoT devices and
50 edge nodes are randomly distributed in a 200 km × 200 km area. The system
offers 10 types of services in total, and each IoT device receives five random ser-
vice requests out of the available 10. Unless otherwise stated, the default value
of parameters are specified in Table 2.

We will start by evaluating the convergence of CIDA. Figure 2 illustrates
the average response time of all service requests in the system over iterations.
It can be observed that the system average response time prior to the 877th
iteration remains infinite. This can be attributed to the initial allocation of
requests to the associated edge nodes without considering the capacity of these

Service-Aware Cooperative Task Offloading and Scheduling 341

Table 2. Configuration of Simulation Parameters

Parameter Value/Range Parameter Value/Range

λij [2, 3] Gi,bi 128.1 + 37.5 log di,bi

Lj [80, 120]KB Bi,bi 1MHz
Cj [10, 15] MegaCycles Pi 23dBm
σ2
i −100dBm T trans

bi,c
0.5 s

fk [5.4, 6.6]GHz

nodes. Consequently, requests on overwhelmed edge nodes experience an infinite
execution delay, leading to an overall average response time of infinity for the
system. However, after the 877th iteration, there is a significant decrease in the
system average response time, and it eventually converges at the 2480th iteration
as there are no requests left that can further improve the system’s response time.
Therefore, this observation verifies the convergence of CIDA.

2480 |R|
Iteration index

0

0.5

1

1.5

Sy
st

em
 A

ve
ra

ge
 R

es
po

ns
e

Ti
m

e
(s

ec
on

ds
)

(2480,0.17316)

877

Fig. 2. The system average response time over iterations

We implemented the following algorithms as benchmark for comparison pur-
pose:

(1) Density Based Clustering Strategy (DBCS): All the requests will be
offloaded to the edge node with minimum average response time until the
workload on the edge node exceed the average workload among all the edge
nodes, as in [26].

342 Z. Chen et al.

(2) Distributed Offloading Decision Making (DODM): Service requests
are the entities to make the offloading decision to minimized their own aver-
age response time, as in [27].

(3) Application-aware Workload Allocation (AWA): As in [7], all the
requests are assigned to the edge node with minimum transmission delay
first. Then requests are reallocated to the edge node with minimum response
time iteratively. However, there is no cooperation between edge nodes and
the remote cloud server as service requests are not allowed to be further
offloaded to remote cloud.

6 6.5 7 7.5 8 8.5 9 9.5 10
Average computing capacity of edge nodes (GHz)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Sy
st

em
 A

ve
ra

ge
 R

es
po

ns
e

Ti
m

e
(s

ec
on

d)

CIDA
AWA
DBCS
DODM

Fig. 3. Average response time over average computing capacity of edge nodes achieved
by different algorithms

Figure 3 illustrates the system request average response time of the four algo-
rithms mentioned above under different average computing capabilities of edge
nodes (ranging from 6GHz to 10GHz). It can be observed that the system average
response time of all algorithms exhibits a decreasing trend as the average com-
puting capacity of edge nodes increases. When the average computing capability
of edge nodes is 6GHz, CIDA reduces the system response time by 18.3%, 53.7%,
and 55.8% compared to the AWA, DBCS, and DODM algorithms, respectively.
As the capabilities of edge nodes increase, the performance gap between the
other algorithms and CIDA gradually decreases. This is because the execution
latency of system requests is no longer a performance bottleneck in the DBCS
and DODM algorithms due to the enhanced computing capabilities of the edge

Service-Aware Cooperative Task Offloading and Scheduling 343

nodes. Relatively speaking, there is no significant reduction on the system aver-
age response time of CIDA and AWA algorithms, indicating that the execution
latency of system requests has been effectively optimized.

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

ij

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sy
st

em
 A

ve
ra

ge
 R

es
po

ns
e

Ti
m

e
(s

ec
on

d)

CIDA
AWA
DBCS
DODM

Fig. 4. Average response time over average request arrival rate λij achieved by different
algorithms

To investigate the performance of the above algorithms under different sys-
tem workload level, we increased the average arrival rate of each type of request
from 2 to 3.6. The experimental results are shown in Fig. 4. When λij = 2, CIDA
algorithm exhibits a significantly lower system average response time compared
to the DBCS and DODM algorithms, while the system average response time
of the AWA algorithm is relatively close to the CIDA algorithm. This result
can be explained by the fact that in the DBCS algorithm, the assignment of
system requests depends on the average workload level among edge nodes with-
out considering the heterogeneity of them. In the DODM algorithm, individual
offloading decisions are made by each system request based on its own aver-
age response time, resulting in the poor cooperation among edge nodes. These
factors contribute to the inferior performance of the DBCS and DODM algo-
rithms compared to the CIDA and AWA algorithms. However, as λij increases,
the performance gap between the other algorithms and the CIDA algorithm
gradually widens. When λ equals to 3.6, CIDA algorithm reduces the system
average response time by 49.7%, 71.4%, and 74.4% compared to AWA, DBCS
and DODM algorithms, respectively. For AWA algorithm, since there is no coop-
eration between the cloud server and the edge nodes, the edge nodes are getting

344 Z. Chen et al.

heavy-loaded as the average request arrival rate increases, which leads to much
higher execution delay for the requests. In contrast, CIDA can further offload
a portion of the requests with high computation requirement to the remote
cloud server, ensuring efficient system operation even under high average requests
arrival rate.

1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500
Number of IoT devices

0

0.2

0.4

0.6

0.8

1

1.2

Sy
st

em
 A

ve
ra

ge
 R

es
po

ns
e

Ti
m

e
(s

ec
on

d)

CIDA
AWA
DBCS
DODM

Fig. 5. Average response time over numbers of IoT devices achieved by different algo-
rithms

To further validate the scalability of our algorithm, we increased the number
of IoT devices from 1000 to 1500 while maintaining the average request arrival
rate λij at 3.6. The results are shown in Fig. 5. It can be observed that as
the number of devices increases, the system average response time of AWA,
DBCS, and DODM algorithms dramatically increases, and reach the system
capacity limit as the number of devices approaches 1300. Relatively speaking,
by leveraging the collaboration between edge nodes and the remote cloud server,
CIDA exhibits only a slight increase in the system average response time, which
clearly indicates the effectiveness and high scalability of CIDA.

7 Conclusions

In this paper, we systematically investigate the problem of service-aware coop-
erative task offloading and scheduling in a three-tier multi-access edge comput-
ing IoT environment. This problem involves the joint optimization of the sys-
tem offloading profile and computing capacity allocation profile, which has been

Service-Aware Cooperative Task Offloading and Scheduling 345

proven to be at least NP-hard. To address this problem, we propose a two-layer
heuristic algorithm CIDA, where the first layer obtain a suboptimal offloading
profile with minimized response time for the service requests at a low time com-
plexity, and the second layer allocate the computing capacity on the edge nodes
to each type of services optimally. Simulation results demonstrate that CIDA
outperforms other approaches in terms of minimizing the average response time
for service requests. Additionally, CIDA exhibits high scalability as the system
size increases, making it suitable for large-scale deployment.

Acknowledgements. This work was supported in part by the Guangdong Key Con-
struction Discipline Research Ability Enhancement Project (Grant No. 2021ZDJS086);
in part by the Guangdong University Key Project (Grant No. 2019KZDXM012);
in part by the Natural Science Foundation of Guangdong Province (Grant No.
2021A1515010656); in part by Guangdong Basic and Applied Basic Research Founda-
tion (2022B1515120059); in part by the research team project of Dongguan University
of Technology (Grant No. TDY-B2019009).

References

1. Laghari, A.A., Wu, K., Laghari, R.A., Ali, M., Khan, A.A.: A review and state of
art of internet of things (iot). Archives of Computational Methods in Engineering,
pp. 1–19 (2021)

2. Tao, M., Li, X., Wei, W., Yuan, H.: Jointly optimization for activity recognition in
secure iot-enabled elderly care applications. Appl. Soft Comput. 99, 106788 (2021)

3. Zhu, R., Liu, L., Song, H., Ma, M.: Multi-access edge computing enabled internet
of things: advances and novel applications (2020)

4. Mach, P., Becvar, Z.: Mobile edge computing: a survey on architecture and com-
putation offloading. IEEE Commun. Surv. Tutorials 19(3), 1628–1656 (2017)

5. Xu, J., Chen, L., Zhou, P.: Joint service caching and task offloading for mobile
edge computing in dense networks. In: IEEE INFOCOM 2018-IEEE Conference
on Computer Communications, pp. 207–215. IEEE (2018)

6. Ma, X., Zhou, A., Zhang, S., Wang, S.: Cooperative service caching and workload
scheduling in mobile edge computing. In: IEEE INFOCOM 2020-IEEE Conference
on Computer Communications, pp. 2076–2085. IEEE (2020)

7. Fan, Q., Ansari, N.: Application aware workload allocation for edge computing-
based iot. IEEE Internet Things J. 5(3), 2146–2153 (2018)

8. Tao, M., Xueqiang, L., Kaoru, O., Mianxiong, D.: Single-cell multi-user compu-
tation offloading in dynamic pricing-aided mobile edge computing. IEEE Trans.
Comput. Social Syst. (2023). https://doi.org/10.1109/TCSS.2023.3308563

9. Guo, F., Zhang, H., Ji, H., Li, X., Leung, V.C.: An efficient computation offloading
management scheme in the densely deployed small cell networks with mobile edge
computing. IEEE/ACM Trans. Network. 26(6), 2651–2664 (2018)

10. Fan, Q., Ansari, N.: Towards workload balancing in fog computing empowered iot.
IEEE Trans. Netw. Sci. Eng. 7(1), 253–262 (2018)

11. Zhu, X., Zhou, M.: Multiobjective optimized cloudlet deployment and task offload-
ing for mobile-edge computing. IEEE Internet Things J. 8(20), 15582–15595 (2021)

12. Cui, Y., Song, J., Ren, K., Li, M., Li, Z., Ren, Q., Zhang, Y.: Software defined
cooperative offloading for mobile cloudlets. IEEE/ACM Trans. Netw. 25(3), 1746–
1760 (2017)

https://doi.org/10.1109/TCSS.2023.3308563

346 Z. Chen et al.

13. Tao, M., Li, X., Yuan, H., Wei, W.: Uav-aided trustworthy data collection in
federated-wsn-enabled iot applications. Inf. Sci. 532, 155–169 (2020)

14. Tong, L., Li, Y., Gao, W.: A hierarchical edge cloud architecture for mobile comput-
ing. In: IEEE INFOCOM 2016-The 35th Annual IEEE International Conference
on Computer Communications, pp. 1–9. IEEE (2016)

15. Tao, M., Ota, K., Dong, M.: Dsarp: dependable scheduling with active replica place-
ment for workflow applications in cloud computing. IEEE Trans. Cloud Comput.
8(4), 1069–1078 (2020)

16. Tan, H., Han, Z., Li, X.Y., Lau, F.C.: Online job dispatching and scheduling in
edge-clouds. In: IEEE INFOCOM 2017-IEEE Conference on Computer Communi-
cations, pp. 1–9. IEEE (2017)

17. Chen, M.H., Dong, M., Liang, B.: Resource sharing of a computing access point
for multi-user mobile cloud offloading with delay constraints. IEEE Trans. Mob.
Comput. 17(12), 2868–2881 (2018)

18. Zhang, H., Xiao, Y., Bu, S., Niyato, D., Yu, F.R., Han, Z.: Computing resource
allocation in three-tier iot fog networks: a joint optimization approach combining
stackelberg game and matching. IEEE Internet Things J. 4(5), 1204–1215 (2017)

19. El Haber, E., Nguyen, T.M., Assi, C.: Joint optimization of computational cost and
devices energy for task offloading in multi-tier edge-clouds. IEEE Trans. Commun.
67(5), 3407–3421 (2019)

20. Chen, Z., He, L.: Modelling task offloading mobile edge computing. In: 2022 The 8th
International Conference on Computing and Data Engineering, pp. 15–21 (2022)

21. Lyu, X., Tian, H., Sengul, C., Zhang, P.: Multiuser joint task offloading and
resource optimization in proximate clouds. IEEE Trans. Veh. Technol. 66(4), 3435–
3447 (2016)

22. Chen, M., Hao, Y.: Task offloading for mobile edge computing in software defined
ultra-dense network. IEEE J. Sel. Areas Commun. 36(3), 587–597 (2018)

23. Tao, M., Ota, K., Dong, M., Yuan, H.: Stackelberg game-based pricing and offload-
ing in mobile edge computing. IEEE Wireless Commun. Lett. 11(5), 883–887
(2022)

24. Van Adrichem, N.L., Doerr, C., Kuipers, F.A.: Opennetmon: network monitoring
in openflow software-defined networks. In: 2014 IEEE Network Operations and
Management Symposium (NOMS), pp. 1–8. IEEE (2014)

25. Sun, X., Ansari, N.: Latency aware workload offloading in the cloudlet network.
IEEE Commun. Lett. 21(7), 1481–1484 (2017)

26. Jia, M., Cao, J., Liang, W.: Optimal cloudlet placement and user to cloudlet allo-
cation in wireless metropolitan area networks. IEEE Trans. Cloud Comput. 5(4),
725–737 (2015)

27. Gao, B., He, L., Jarvis, S.A.: Offload decision models and the price of anarchy in
mobile cloud application ecosystems. IEEE Access 3, 3125–3137 (2015)

	Service-Aware Cooperative Task Offloading and Scheduling in Multi-access Edge Computing Empowered IoT
	1 Introduction
	2 Related Work
	3 System Model and Problem Formulation
	3.1 Edge Computing Model
	3.2 Cloud Computing Model

	4 Problem Formulation
	5 Algorithm Design
	5.1 Offloading Profile Optimization Problem
	5.2 Computing Capacity Allocation Profile Optimization Problem

	6 Simulation Results
	7 Conclusions
	References

