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Abstract. The proliferation of modern computer architectures brings a
great challenge to sparse matrix-vector multiplication (SpMV), which is
widely used in scientific computing and artificial intelligence. Providing a
suitable sparse matrix format for SpMV is crucial to achieve high perfor-
mance by enhance data locality and cache performance. However, for dif-
ferent architectures, the best sparse matrix format varies. In this paper,
we propose a novel architecture adaptive sparse matrix format selection
method, MANet, to select proper format to optimize performance of
SpMV. This method transforms a sparse matrix into a high-dimensional
image, with the matrix sparseness feature and architecture feature com-
bined as inputs. To evaluate the effectiveness of this method, we gener-
ated a dataset that includes various scientific problems and architectures
with augmentation. Results show that MANet improves sparse matrix
selection accuracy by 6% compared to previous works and can achieve a
speedup of up to 230% compared to methods with a fixed format. When
adapting to an architecture that is not presented in the training, it can
still provide 88% selection accuracy and 14% higher than the previous
approaches, without further training.

Keywords: Sparse Matrix-Vector Multiplication · Sparse Matrix
Format Selection · High-Performance Computing · Architecture
adaptive · Deep Learning

1 Introduction

In high-performance computing, the Sparse Matrix-Vector Multiplication
(SpMV) kernel plays an important role in scientific computing [15] and related
numerical computing fields such as weather forecasting [8], computational fluid
dynamics [10]. High computation efficiency of SpMV is hard to achieve due to
the irregular memory access patterns introduced by sparse matrices.

Many researchers have sought to accelerate SpMV from both architectural
and algorithmic perspectives. In terms of architecture, attempts have been made
to increase CPU and memory frequencies for direct speedup, as well as to employ
larger caches to reduce repetitive data I/O.
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From algorithmic perspective, numerous sparse matrix formats and algo-
rithms have been proposed to improve data locality. Here we focus particularly
on the sparse matrix format level. A number of storage formats have been devel-
oped to address the heterogeneity of nonzeros distribution, with impacts on data
locality, cache performance, and thus overall performance. Examples of such for-
mats include COO, CSR, and BSR, which are designed to meet the demands of
modern architectures and scientific applications. With an appropriate selection
of sparse matrix format, the performance of SpMV can be significantly enhanced
[6]. In this work, we aim to select an appropriate format with different architec-
ture settings.

Existing methods for sparse matrix selection rely on machine learning algo-
rithms [3,12,19], which will extract nonzeros features and predict matrix format
with the support of Convolutional Neural Networks (CNN) or the decision tree.
However, the prediction results of previous studies may not be well-adapted to
different architectures. The rapid progress in computer architecture has made it
challenging to maintain a single optimal format that can be used across differ-
ent CPUs or accelerators [2,9,13]. Therefore, it is necessary to develop a format
selection method that is able to adapt to varying architectures.

To improve the generalizability of the model across various architectures, we
introduce a sparse matrix selection approach with architecture generalization
entitled MANet. Our proposed method utilizes matrix pooling-like normalization
as preprocessing technique and employs a multiple-input CNN to select the most
suitable storage format for the matrix based on the features of the architecture
and the matrix.

Our contribution consists of three parts, and we will provide the correspond-
ing code after finishing the organization process:

– We proposed a format selection network for sparse matrices called MANet,
which is adaptive to architecture. In terms of adaptability, MANet improves
prediction accuracy by 20% when adapting to other platforms with different
architecture settings. When adapting to platforms with architectures that
have not been previously encountered, MANet yields a 14% improvement
compared to related works.

– After adaptation to the approximate platform, the SpMV speedup is 230%
after format selection using MANet compared to the COO storage format.
Moreover, 89.3% of the matrices can reach the minimum time after using
MANet for format selection.

– Our research further probes into the effect of architecture settings on the
format distribution in a CPU platform. We indicate that the computation
speed of SpMV is determined by the hardware architecture setting, including
processor frequency, memory bandwidth, cache size, etc.
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2 Background

2.1 Sparse Matrix Storage Format

The main objective of sparse matrix storage formats is to compress matrices,
thereby improving locality and reducing storage overhead. Various storage for-
mats, custom-tailored to different distributions of nonzeros, have been developed.
The selection of an appropriate format entails consideration of characteristics
associated with the nonzeros distribution and architecture.

Our work focuses on three commonly used formats, COO, CSR, and BSR
[5].

– The Coordinate Format (COO) storage structure organizes a matrix into
three arrays: col, row, and val. The elements in each array specify the column
indices of nonzeros entries, the row indices of nonzeros entries, and their values
respectively.

– The Compressed Sparse Row (CSR) format stores the column coordinates
of the nonzeros into an array ind, as well as containing the nonzeros values
themselves in another array val. Additionally, CSR contains a pointer array
ptr which helps to quickly identify the intervals of each row, as if listing it
out as a list. The CSR format provides a practical approach to representing
sparse matrices in three relatively small arrays.

– The Block Sparse Row (BSR) format divides a matrix into multiple dense
blocks and stores them using the same CSR-style indexing used by the CSR
format. The index array ptr gives an interval for each row of each block, the
value array val contains the nonzeros entries, and the column coordinates of
the nonzeros are given by ind.

2.2 Influence of Nonzeros Distribution

The standard SpMV computation paradigm is y = Ax, where y and x are vectors,
and A is a sparse matrix. When performing SpMV computations, each non-zero
element Aij is accessed only once. Our work explores strategies to reuse both y
and x, enabling the exploitation of data locality opportunities present in SpMV
sessions.

In dense storage format, SpMV multiplication is known to be inefficient
due to the traversal of zero values during updating the vector. Moreover, non-
optimized memory and cache access can lead to significant drops in overall perfor-
mance. A suitable storage format can alleviate these issues while simultaneously
providing opportunities for parallel computing [13].

By taking the matrix stored in CSR format as an example and employ-
ing CSR as a storage structure, the memory access pattern is changed. The
pseudocode of SpMV when dealing with a matrix stored in CSR is presented
in Algorithm 1. This approach only requires m + 3nnz memory accesses when
without cache for a given matrix of size m × n and nonzeros nnz, resulting in
significant speed improvements compared to the traditional dense format, which



314 Z. Sun et al.

Algorithm 1. SpMV using CSR format
Input: A: input matrix with m × n size

val: nonzeros in A
ptr: row offsets in CSR
ind: column index in CSR
x: input vector

Output: y: output vector
1: for i = 0, 1, 2, ...,m − 1 do
2: y[i] ← 0
3: for j = ptr[i], ..., ptr[i + 1] − 1 do
4: y[i] ← y[i] + val[j] ∗ x[ind[j]]
5: end for
6: end for
7: return y

would require m ∗ n memory accesses. And for best case, it will only require
m + n + 2 × nnz.

From the above, it can be found that the access optimization due to the
sparse matrix storage format is directly related to the distribution of nonzeros.
Different storage formats will correspond to different SpMV algorithms, which
will have an impact on the access pattern of x. To select proper format, CNN,
decision tree and graph neural network (GNN) are used.

3 Methodology

3.1 Overview

In this section, we present a multi-input sparse matrix format selector that is
able to adapt to various architectures while overcoming several challenges. Our
proposed approach combines matrix pre-processing with architecture features
that are associated with the distribution of non-zero data. This leads to improved
performance when adapting to platforms with varying architecture settings. We
provide a detailed overview of the construction process, from data pre-processing
to classification.

The left part of Fig. 1 contains 4 steps to preprocess data and construct a
muti-input CNN network. Assuming there is already a sparse matrix dataset D
and target architectures Pi, where i = 1, 2...n.

(1) This work requires a matrix training label for the first step. To achieve
the best performance in sparse matrix format, the training labels are acquired
by running SpMV on Pi 100 times and measuring the SpMV computing time.
By measuring the SpMV computing time, this step selects a format that makes
SpMV execute at the fastest speed as a label and attaches the label to with
matrix ID. (2) The second step will normalize the matrix into a fixed size by
pooling the matrix. With a fixed size, the sample formed by the sparse matrix
can be used for CNN training and classification. (3) The third step of the process
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Fig. 1. Overview of the data preprocessing, network construction and training.

is focused on extracting architecture features from Pi that affect SpMV execu-
tion time. Data preprocessing allows us to obtain high-dimensional image data
associated with both matrix nonzeros features and architecture features. (4) The
final step of the left part in Fig. 1 forms a multi-input CNN network to extract
features from the sample. (5) The right part of Fig. 1 performs the CNN training
and prediction procedure.

The main challenges we face are in Steps 3 and 4. Since architectures have
many features, it is necessary to conduct experiments to determine which of
these features should be encoded into the sample. The high dimension of the
samples makes it difficult for CNN to extract features for training. Designing an
appropriate network structure to remain amenable to an architecture adaptive
format selector remains a problem for our work.

3.2 Matrix Labeling

For the classification task, CNN requires labels to provide ground truth. In order
to achieve this, 100 iterations of SpMV were executed on platform Pi, and the
format with the shortest average time was selected as the label.

As previously discussed, data locality and other factors influencing the speed
of SpMV can be highly variable, depending on the architecture configuration. In
practical computing scenarios, the CPU retrieves data, including requested and
surrounding data, thus creating a data locality. Variations in CPU frequency,
cache size, etc. can have an effect on data locality and other factors that impact
the speed of SpMV.
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Fig. 2. The generated format label distribution on different architecture.

This experiment investigated the performance of SpMV across multiple plat-
forms with different architectures, and also involved labeling matrices from the
entire dataset. The results indicated that the proportions of samples varied
depending on the architecture utilized, as demonstrated in Fig. 2. However, when
selectors lack adaptability to these architecture changes, altering sample pro-
portions could lead to poor performance results as shown in Fig 5. Notably, as
depicted in Fig. 2, for certain parts of the dataset, COO format still outperforms
other formats. Specifically, in the E5 platform, COO performed better than all
other formats for the HB group in SuitSparse Matrix Collection [4].

3.3 Matrix Normalization and Matrix Feature Extraction

The size of matrices may vary, complicating their use in CNN training and
inference. To address this issue, we propose a normalization method that extracts
the matrix features and pools them into a fixed size suitable for CNN utilization.
This method is based on the observation of the matrix non-zeros distribution
features, as described in [2], and the BSR design proposed in [18]. In this part, we
first describe the pooling method before detailing the feature extraction method.

Matrix Pooling. Algorithm 2 outlines a pooling-like Algorithm for normalizing
a given matrix with a size-adjustable sliding window. Given a matrix, the sliding
window slides through matrix A and maps its features to the corresponding
pixel in the sample. After normalization, a three-channel sample is obtained,
containing the matrix features. This sample is further processed to add the
necessary architecture settings.
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Algorithm 2. Matrix pooling with sliding window
Input: A: input matrix with m × n size

val: nonzeros in A
ms: input sample row size
ns: input sample column size
w: sliding window with mw × nw and nonzeros density density

Output: Sample: CNN input sample
1: set mw = m

ms

2: set nw = n
ns

3: for i = 0, 1, 2, ..., m
mw

do
4: for j = 0, 1, 2, ..., n

nw
do

5: moves the top left corner index of the w to the element A(i∗mw,j∗nw)

6: density = nnz
nw×mw

7: if density ≥ threshold then
8: assigns matrix features to the position (i, j) of the sample
9: else

10: assigns zero to the position (i, j) of the sample
11: end if
12: end for
13: end for
14: return Sample

Taking a sparse matrix of size 100×100 as an example, and assuming that the
input size of the CNN is 10×10, the sliding window size according to Algorithm
2 is also 10 × 10. With the stride shown in Eq. (1), the matrix is divided into
100 parts with pooling, each of which is mapped to a set of sample pixels.
If the density of non-zero elements in a given part exceeds the threshold, the
corresponding pixel is assigned with the matrix features; otherwise, it remains
blank.

stride =
m

ms
(1)

Matrix Feature Extraction. We extract key features from the sparse matrix
and store them in the relative dimensions of the sample, as demonstrated in
previous work [2]. The extracted features include:

– matrix size: m ∗ n (require normalization)
– matrix density: nonzeros

matrix size
– nonzeros number of a row which contains most nonzeros: maxrow (require

normalization)

As these features can vary greatly, we normalize them to a range of [0, 255]
using Eq. (2). Limiting the feature values to the range of [0, 255] enables a more
accurate description of the density distribution of non-zero values covered by
the sliding window across all color channels, thereby providing a more refined
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description of the non-zero value distribution for the entire sample. If normaliza-
tion is not used, the significant differences in feature values may have an impact
on the training process.

normalized feature =
feature − min

max − min
× 255 (2)

The density threshold is an important factor to consider when describing
the nonzeros distribution of a sparse matrix. If the threshold is set too low, the
detail of nonzeros distribution will not be described accurately, while setting the
threshold too high will result in too many empty blocks without features. It is
therefore necessary to carefully consider the optimal density threshold to ensure
an accurate description of the sample.

3.4 Architecture Feature Extraction

Architecture has been shown to influence SpMV performance and format selec-
tion (Fig. 2). To ensure our model can adapt to other architectures without
additional training, we incorporate architecture features into extra dimensions
of the sample. The resulting sample has six dimensions: the first three dimen-
sions correspond to matrix features, while the remaining three dimensions refer
to architecture features.

By concatenating the architecture feature matrix with the matrix feature
matrix, we can generate a sample with 6 dimensions. Initially, employing lscpu
and mbw [1], we can retrieve the CPU architecture settings and memory band-
width. Subsequently, according to Eq. (3), the architecture feature is normalized.
Then, three architecture feature matrices are constructed based on correspond-
ing architecture features. Finally, these matrices are stacked onto the sparse
matrix feature matrix, resulting in a high-dimensional sample.

Architecture feature dimensions do not pay attention to the sparse matrix-
related features. Setting the corresponding dimension to a solid value allows the
CNN to focus on the value, eliminating the interference of sparse matrix features,
and thereby improving accuracy.

In Sect. 4.4, our experiments revealed three significant architecture features
that have an impact on the SpMV speed. Features of architecture we extract are
shown below, those features require normalization following Eq. (3):

– The size of L3 cache size: L3.
– The basement frequency of CPU: Frequency.
– The bandwidth of memory: Bandwidth.

normalized feature =
feature

max
× 255 (3)

Normalization methods for matrix features cannot be used for architecture
features. As can be observed by examining the hardware architecture settings in
Table 1, applying the normalization method given in Eq. (2), a transformation in
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the distribution of the sample space can be observed. For instance, the Euclidean
distance of the feature vector with Xeon 6248 and i9 9900K decreased from 2.2176
to 1.833 with the inclusion of the Xeon 6242 processor, indicating an overall 17%
shrinkage and a corresponding shift in the position of the sample in the sample
space. To this end, a scalable normalization approach is presented in Eq. (3),
wherein max represents the maximum value of the matrix feature while feature
stands for the feature value of the matrix.

Table 1. Architecture features of each platform

Architecture Property i9 9900K Xeon 5220 Xeon 6248 Xeon 6242 E5 2640

Basement Frequency 3.6 GHz 2.2 GHz 2. 5 GHz 3.1 GHz 2.6 GHz

Cores 8 18 20 16 6

L3Cache 16 MB 24.75 MB 27.5 MB 22 MB 15MB

Memory 126 GB 119.2 GB 377.6 GB 119.2 GB 119.2 GB

Memory Bandwidth of Node 9137 MiB/s 4353 MiB/s 5024 MiB/s 5583 MiB/s 6069 MiB/s

Launch Date Q4’18 Q2’19 Q2’19 Q2’19 Q1’12

3.5 Network Design

For traditional image classification tasks, images are typically input into a single-
input network, with the variation in the structure of the network mainly in
terms of the number of layers, the internal parameters, and the organization
form. However, in the case of sparse matrix data, the feature distribution has
some distinct differences from traditional image feature distributions, as the
information present in each dimension may be different from other dimensions.

In order to facilitate the network’s ability to extract information from each
channel, we present MANet illustrated in Fig. 3 as an abridged general view. This
network decouples the elements of the samples into six inputs at the beginning.
Further, the tensor with six dimensions is fed into the CNN layer after which it
is concatenated and fed into a fully-connected layer. By separating the samples
at the start and merging the features at the end, this architecture enables the
efficient extraction of relevant features while also reducing the complexity of
training.

The MANet architecture consists of four CNN layers, with each layer contain-
ing six channels. Following each CNN layer, a max pooling layer is connected.
The final CNN layer is followed by three fully connected layers that output the
prediction results. The output channels for the CNN layers are 96, 256, 256, and
256, respectively. Additionally, the kernel size for each CNN layer is 11 × 11,
5 × 5, 3 × 3, and 1 × 1 with padding and stride, respectively. The input and
output sizes for the fully connected layers are 13824 × 4096, 4096 × 4096, and
4096 × 3.
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4 Evaluation

4.1 Experiment Setting

Hardware Platform. We evaluated MANet on five platforms of varying archi-
tectures: i9 9900K (Coffee Lake), Xeon 5220 and 6248 (Cascade Lake), Xeon
6242R (Cascade Lake), and E5 2640 (Broadwell). Nvidia V100 GPU is used
for training acceleration. The architecture features of the CPUs are shown in
Table 1. These CPU platforms encompass a wide range of usage scenarios, from
personal devices (like i9 9900k) to servers (like E5 6242), and span a considerable
time period from Q1’12 to Q2’19.

Software Platform. PyTorch 1.7 [11] was utilized for constructing neural net-
works. To analyze the cache, the PAPI 6.0.0.1 [16] interface was employed to
access the hardware counters during measuring the SpMV computation time.
The memory bandwidth was then measured by the MBW [1] benchmark. To
ensure stable labeling, all SpMV operations were performed with a single core
using the SciPy library [17], which was also used to convert the matrix to the
corresponding format.

Parameter Setting. The shape of the sample is 256×256 after preprocessing.
The density used for normalization is 0.01. For training, the learning rate is
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1e− 4, we use Adam as the optimizer and use cross entropy as the loss function.
The model was trained over 100 epochs with a batch size of 64. The weighting
of each label’s sample was set to 5.74, 1.41, and 8.56, respectively.

Dataset. This paper utilizes the sparse matrices from the Suit Sparse Matrix
Collection [4] as training, testing, and validation data. The same 2150 matrices
are preprocessed and used across five CPU platforms for training, testing, and
validation. Matrix with size less than 256×256 is excluded resulting in 1702 orig-
inal matrix for further argumentation. Furthermore, the data set is augmented
by chunking into four equal parts as four new matrices, transposing, etc., result-
ing in 14168 sparse matrices. Matrix with size less than 256 × 256 is excluded.
As indicated in Sect. 3, the feature to be extracted is as follows.

We employ an 80%–20% split for training and testing, respectively, with
validation data directly sampled from the Suit Sparse Matrix Collection and
excluded from the training and test sets.

Our work mainly focuses on three commonly used formats, COO, CSR, and
BSR, as the storage format for sparse matrices. The three storage formats are
implemented using the methods in Python Scipy Sparse V1.5.4 [17]. BSR is
stored in blocks, and the block size of BSR in this experiment is selected by the
heuristic Algorithm in Scipy Sparse library.

We have attempted to use other formats such as DIA, DOK, and LIL as
labels, but we discovered that these formats only cover a mere 4% of the dataset.
As a result, for SpMV in CPU, the COO, CSR, and BSR formats are capable of
meeting most needs. Therefore, we have chosen to use COO, CSR, and BSR as
labels for our dataset.

Due to the wide range of sparse matrices, the dataset used in this paper
is more universal and challenging than earlier approaches. As matrices are uti-
lized in various scientific computing applications, their feature distributions vary
greatly and exhibit a strong long-tail effect when normalized.

4.2 Speedup

In this section, we use sparse matrix samples from several domains to produce
their format prediction results and compare the time performance of SpMV using
the corresponding formats of our method and two comparison methods.

In light of the potential for architecture adaptation and release time consid-
erations, we compare the two methods proposed by Pichel et al. [12] and Zhao
et al. [19]. The MANet is trained using the data set output from the i9 9900K
and Xeon 6248 platforms, while both the Pichel et al. [12] and Zhao et al. [19]
methods are trained using the data set output from the i9 9900K. Comparing
datasets from two different architectures using traditional methods is not feasible
since the labels for the samples may not match. However, MANet is designed
to extract architecture-specific features, which eliminates this issue. We com-
pare the results of these two methods on five different platforms and measure
the number of best formats each method selects. The final results are shown
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in Fig. 4. Figure 4a demonstrates that MANet is capable of selecting the best
format in common scenarios with an accuracy of 89.3%.

When compared to the commonly used COO format, our proposed MANet
shows a significant increase in SpMV computation speed of up to 230%, as
demonstrated in Fig. 4b. As demonstrated in Sect. 3.2, the COO format remains
an appropriate choice for enhancing the speed of SpMV.

4.3 Adaptation and Accuracy

In this section, we conduct an experiment to investigate the adaptation per-
formance of our proposed method, MANet, in both approximate and non-
approximate architecture adaptation scenarios. The comparison methods are
the same as in the previous section.
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Fig. 5. Prediction accuracy when adapting to other architecture.

By utilizing a novel CNN structure and preprocessing technique, we demon-
strate that MANet is capable of selecting the sparse matrix format in an envi-
ronment that has not been previously encountered.
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Approximate Adaptation. In approximate architecture adaptation, the test-
set generated in Xeon 5220 and Xeon 6242 is used for testing. The architecture of
the Xeon 5220 and Xeon 6242 is more similar to that of the Xeon 6248. Thus we
choose Xeon 5220 and Xeon 6248 for the approximate architecture adaptation
experiment.

The results obtained from the Intel Xeon 6242 and Xeon 5220 platforms
indicate that the MANet architecture significantly outperforms the comparison
works, with an improvement in prediction accuracy of up to 20% as shown in
Fig 5a.

Non-approximate Adaptation. In non-approximate architecture adaptation,
the data generated on an Intel Xeon E5 2640 Broadwell architecture platform
was used to evaluate the performance of the MANet system. As shown in Fig. 5b,
the system achieved a prediction accuracy of over 14%.

4.4 The Influence of Architecture

Architecture setting influence on the sample proportion is investigated in this
section. CPU frequency, memory bandwidth, and cache size as architecture
parameters are discussed in detail. Results indicate that those parameters have
a significant impact on the sample distribution.
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The effect of memory frequency and CPU frequency on the dataset from Intel
i9 9900K was analyzed. Memory overclocking (XMP) and CPU overclocking were
used to study the sample proportion change. The results of the sample proportion
after using memory overclocking (XMP) and CPU overclocking, respectively, are
presented in Fig. 6a. With lower memory frequency leading to a lower share of
COO format and a greater bias towards CSR and BSR formats. Furthermore,
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higher CPU main frequencies have been found to have a greater bias towards
BSR formats.

Experimental results demonstrate a direct correlation between the total num-
ber of L2 cache misses and the elapsed time for SpMV, as illustrated in Fig. 6b.
This relationship is more evident, due to the relatively small size of the L2 cache,
which helps to reduce the impact of noise.

It has been demonstrated that there is a direct correlation between the num-
ber of cache misses and the SpMV computation time, as illustrated in the above
Figure. Utilizing the larger size of the L3 cache, this paper takes advantage
of its more stable performance label during labeling, making it an important
architecture parameter.

5 Related Work

Recent research has focused on utilizing machine learning methods, such as deci-
sion tree and deep neural networks (DNNs), to select the appropriate sparse
matrix format for optimal performance of the sparse matrix-vector (SpMV) prod-
uct. More recently, convolutional neural networks (CNNs) have been employed
to address this problem.

Zhao et al. [19] introduced DNN into the task of format selection for sparse
matrices. However, the feature extraction method only considers the spatial dis-
tribution of non-zeros without architecture features. Pichel et al. [12] propose
an approach that directly turns the matrix into a fixed-size image and encodes
relative features into different dimensions. The single input CNN used are unable
to handle the information of each dimension.

Qiu et al. [14] utilize the features of sparse matrices in GNNs, and use
XGBoost [3] to build a flexible model for format selection during runtime.
Nonetheless, the decision tree-based approach requires the pre-definition of which
feature to use before training.

Due to the rapid development of architecture, the adaptation faces some
challenges including feature extraction and network design. To the best of our
knowledge, this work is the first that aims to solve the CNN format selector
adaptation problem.

6 Conclusion

Previous models for selecting sparse matrices did not consider the influence of
architecture on their performance and typically required retraining or fine-tuning
when adapting to different platforms. To address this limitation, we propose
MANet, a sparse matrix selection model with architectural adaptability. Our
approach incorporates architecture-specific data preprocessing and a multi-input
neural network, enabling MANet to achieve superior accuracy without the need
for retraining or fine-tuning during migration to diverse platforms. Consequently,
it enhances the interoperability of sparse matrix selection models across archi-
tectures. In our future work, we will focus on adaptation across heterogeneous
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computation devices and addressing challenges in unbalanced sparse matrix clas-
sification that have not been adequately resolved.
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