
LAST: An Efficient In-place Static Binary
Translator for RISC Architectures

Yanzhi Lan1,2, Qi Hu1,2, Gen Niu1,2, Xinyu Li1,2, Liangpu Wang1,2,
and Fuxin Zhang1,2(B)

1 State Key Lab of Processors, Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, China

{lanyanzhi22b,huqi20s,niugen18z,lixinyu20s,wangliangpu21s,
fxzhang}@ict.ac.cn

2 University of Chinese Academy of Sciences, Beijing, China

Abstract. The lack of software has been a persistent issue for emerging
instruction set architecture (ISA). To overcome this challenge, binary
translation has emerged as a widely adopted solution, enabling pro-
grams written for older ISA to run on new ones. In the past, dynamic
binary translation (DBT) was commonly utilized for software migration,
but this technique required dynamic translation and often suffered from
suboptimal efficiency. In contrast, Static binary translation (SBT) is an
offline technique for translating binary code without runtime translation
overhead. Existing SBT systems always employ address mapping tables
to handle the address relocation problem, but this approach introduces
performance overhead and leads to issues with indirect jump correctness.
To address these limitations, we propose a novel static in-place instruc-
tion translation method for reduced-instruction set computing (RISC)
architectures. This method ensures that the address of the guest program
remains unchanged after translation, leveraging the regular length of var-
ious RISC instructions. We have implemented this method in a portable
SBT tool called LAST, specifically designed to run MIPS or RISCV
programs on the LoongArch platform. Based on the SPEC CPU2000
benchmark results, LAST achieves over 80% performance compared
to the native LoongArch program, demonstrating its effectiveness and
efficiency.

Keywords: Static Binary Translation · In-place instruction
translation · instrumentation

1 Introduction

Binary translation enable software of one architecture to execute on a hardware
platform of another architecture. This technology has a wide range of application
scenarios, such as fast software simulation [4,9,13,22], program runtime analysis
[6,10,20], debugging [11,14,21], and dynamic optimization [5].
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Dynamic binary translation has played a prominent role in software migra-
tion endeavors in the past decades. As diverse instruction sets continue to evolve,
a multitude of exceptional dynamic binary translation systems have emerged,
showcasing the advancements in this field. Notable examples include IA-32 EL,
which enables the execution of IA-32 applications on IA-64 processor family sys-
tems [2]. And Rosetta2, which facilitates the migration of x86 executables to the
ARM platform [1]. Additionally, QEMU is a fast and portable dynamic transla-
tor, which support multiple guest and host ISAs [4]. However, it is important to
note that dynamic binary translation often incurs additional performance and
memory overhead.

Static binary translation not only does not need to translate at execution time
but also can use larger-scale optimization methods, thus it can often achieve
higher execution efficiency. SBT can often achieve higher execution efficiency
because no real-time translation is required, which can be used to complete
software migrations efficiently.

The Address relocation problem is caused by instruction expansion during
translation, breaking the original indirect jump relationship, critically affecting
the efficiency of static binary translators. The correctness of the jump relation-
ship in the guest program is guaranteed by the compiler of the guest platform,
but some address information will be lost during the compilation process, which
makes it particularly difficult for the binary translator to reconstruct the jump
relationship of the translated program. For direct jumps, the translator can eas-
ily calculate the new jump target through the offset value in the instruction.
But for indirect jumps, their targets are unknown during translation. So address
mapping tables is used to look up the targets by guest address at the runtime.
However, this lookup table can introduce extra overhead, we will discuss the
overhead in Sect. 2.2.

Instruction instrumentation technology is widely employed in various binary
analysis tools, enabling the modification of the execution flow of the original
program. These tools incorporate instrumentations into the program to facilitate
statistical analysis and program debugging [23]. However, it should be noted
that these tools are typically limited to programs within the same ISA. One
factor contributing to this limitation is the variability in instruction lengths
across different ISAs. For instance, the X86 instruction set utilizes variable-
length instructions, whereas the MIPS instruction set adheres to a fixed-length
format.

Over the past few decades, RISC architecture has witnessed remarkable
advancements, giving rise to prominent instruction sets such as ARM, MIPS,
RISCV, and LoongArch. These instruction sets have regular instruction encod-
ing, which facilitates efficient addressing and decoding of instructions. Intro-
duced by Loongson Technology in 2020, LoongArch is a new RISC instruc-
tion set that incorporates state-of-the-art advancements in instruction system
design [26]. It offers a favorable environment for the development of low-power,
high-performance CPUs [17–19,27]. With a fixed instruction length of 32 bits and
a regular encoding format, LoongArch ensures simplicity and ease of instruction
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handling. The design of LoongArch also prioritized software compatibility, its
basic software, such as the Linux kernel, GCC compiler, and QEMU simulator,
has already been successfully integrated into the community.

In this paper, we propose a novel approach called in-place instruction trans-
lation, which enables the preservation of address relationships in the translated
guest program, eliminating the need for address relocation. This innovative tech-
nique is implemented in a new SBT tool named LAST, which currently supports
the translation from MIPS or RISCV to LoongArch, called LASTM and LASTR.
Through extensive evaluation using the SPEC CPU2000 benchmark, LASTM
demonstrates remarkable performance. It achieves over 80% of the program effi-
ciency of the native LoongArch platform. These results showcase the effectiveness
and efficiency of our proposed in-place instruction translation approach in the
context of static binary translation.

The main contributions of this paper are as follows:

– We propose an in-place instruction translation method in binary translation
systems that can efficiently solve the address relocation problem encountered
in the mutual translation of RISC architectures. This method can effectively
reduce runtime translation overhead and improve system performance.

– We implement and evaluate LAST, demonstrating the effectiveness of the
in-place instruction translation method. Our experiments show that in-place
instruction translation can solve the address relocation problem in binary
translation with minimal overhead.

– This paper discuss the potential of this instruction translation method to
be efficiently applied to the mutual translation of other RISC architectures,
further expanding its applications beyond LoongArch.

The organization of the rest of this paper is as follows. Section 2 introduces
static binary translation, address relocation problems, and overhead in SBT.
Section 3 describes the design of LAST, and Sect. 4 shows the implementation
details of LAST. Section 5 analyses some experimental results. Section 6 con-
cludes this paper.

2 Background

This section provides a concise overview of static binary translation and high-
lights its key challenges, focusing on the main performance overheads associated
with this technique.

2.1 Static Binary Translation

Binary translation systems fall into two general categories: static binary trans-
lator and dynamic binary translator. Figure 1 shows the difference between
dynamic binary translation and static binary translation. The dynamic binary
translator dynamically translates instructions during the execution of the native
program. While the static binary translator converts the original program to the
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target program offline, and the translated program executes without the assis-
tance of the binary translator. Compared to DBT, SBT is more convenient and
efficient.

Fig. 1. The Difference between DBT and SBT

UQBT [8] is a versatile SBT tool that utilizes an intermediate language
called HRTL to translate source binaries. HRTL can be further transformed
into target binary assemblers, enabling compatibility with multiple platforms.
However, UQBT still relies on a runtime interpreter to handle indirect register
calls that cannot be determined during static translation.

LLBT [24,25] is a portable SBT tool specifically designed for translating
ARM binaries to various target platforms. It employs LLVM IR (Intermediate
Representation) as an intermediate representation and leverages the LLVM com-
piler infrastructure to retarget the LLVM IR to different ISAs. This approach
significantly enhances the quality of the generated code. Nonetheless, LLBT still
requires an address mapping table to effectively handle indirect jumps.

SBT can cause the address of the guest program to change due to instruction
expansion during translation, breaking the original indirect jump relationship.
This leads to the address relocation problem, which is described in detail in
Sect. 2.2.

2.2 Address Relocation Problem in SBT

The best situation is that SBT can complete the instruction translation without
any code expansion, thus avoiding updating the branch target address [28]. Nev-
ertheless, it is obvious that one-to-many translations always exist, which requires
extra space to store the extra instructions. So the branch instructions, especially
indirect branch instructions, need to change their target address to avoid the
incorrect execution flow.

Figure 2 show the Address Relocation Problem. Because the range of imme-
diate numbers that can be used in the LoongArch is smaller than that in the
MIPS, two additional instructions are required in Fragment L1. But the address
of LABEL L3 is not changed, which may misleads some branch instructions into
jumping to the wrong address, like instruction jr ra.
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Fig. 2. The Address Relocation Problem

These problems can be easily solved for direct branches, but updating the
target address for indirect branches sometimes is difficult [16]. To tackle this
problem, Killian’s Pixie uses a translation table in which all indirect branches
need to find their target addresses [7].

Currently, the predominant approach for addressing this issue in static binary
translation systems is to employ an address hash table [25]. However, challenges
related to code discovery and performance persist. Please see Sect. 2.3 for further
details on these challenges.

2.3 Performance Overhead in SBT

The performance of binary translation is significantly influenced by the dispari-
ties between the Guest ISA and the Host ISA. To achieve optimal performance
in SBT tools, two critical issues must be addressed, as they have a substantial
impact on the translation process.

– Instruction expansion. The semantics of instructions on different architectures
directly leads to the inevitable instruction expansion during binary transla-
tion, which increases the number of dynamic instructions and affects effi-
ciency.

– Indirect branch handling overhead. Caused by binary code expansion, one-
to-many translations can affect the address of the original instruction. There-
fore, the translator needs to correctly handle the modified jump relationships,
especially indirect branches.

Instruction expansion is a common outcome of disparities between instruc-
tion sets, but the overhead associated with indirect jumps can be minimized.
Numerous remarkable studies have been conducted to mitigate the impact of
indirect jumps. For instance, Amanieu extensively examined various types of
indirect jumps and implemented optimizations tailored to specific contextual
scenarios in dynamic binary translation [12].

However, static binary translators do not actively participate in program exe-
cution and, as a result, lack the capability to dynamically handle indirect jumps
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during runtime. To address this limitation, a common approach is to employ a
address mapping table within static binary translation systems [3]. However, this
method necessitates hash table queries, thereby introducing additional overhead.

Algorithm 1: Lookup Indirect JMP Target
input : GPC

hash = HASH(GPC);
HPC = Address_Mapping_Table[hash];
if HPC ! = NULL then

jmp to HPC // hit the target;
else

return error // Lookup error;
end

The address mapping table serves as a repository where the guest program
counter address (GPC) is stored as the key, and the corresponding host program
counter address (HPC) is stored as the value. The lookup process is outlined
in Algorithm2. During runtime, the GPC is hashed to generate an index that
corresponds to the HPC stored in the address mapping table. This HPC was pre-
viously stored during the static binary translation (SBT) process. Consequently,
the HPC associated with the given GPC can be swiftly retrieved based on the
hash. Additionally, it is crucial to compare the guest addresses within the lookup
table to ensure that the hash algorithm does not generate any conflicts.

There is no doubt that Algorithm2 is reliable and efficient. However, the
production of instructions required to calculate the address hash, fetch data
from the lookup table and determine if a hit has taken place still imposes a
considerable performance cost. In SPEC2000, as shown in Fig. 3, indirect jumps
account for approximately 1.27% of the total number of instructions, resulting
in approximately 15% performance loss due to its 1:12 instruction inflation.

Fig. 3. Number of indirect jumps per 10K instructions

Furthermore, indirect jumps pose another huge challenge for static binary
translation systems, as those jump entries can be difficult to fully identify. If the
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address entries, such as the switch-case jump table, cannot be recognized fully,
some parts of the program are not being executed correctly because the address
mapping table will lose some entry mappings.

3 Design

3.1 Overview

The design of the LAST architecture is shown in Fig. 4, which mainly includes
the following modules:

Initialize BTtext
Segment

Guest Program
Analysis

Initialize Syscall
Table

Disassembly IR1
translator

One-to-One
translator

Generate IR2
in text segment

One-to-Many
translator

Many-to-Many
translator

Generate IR2
in text segment

Host Platform
Assembly

Object File
Generation

translation core

Host ISA
Executable File

(LoongArch)

Guest ISA
Executable File
(MIPS/RISCV)

Read

Write

Sourse
ISA

Code

IR1 Generate IR2
in BTtext segment

Insert
instrum-
entation

Direct

Direct

LAST System Structure
Environment initialization

Fig. 4. The overall design of the LAST

Guest Program Analysis Module. This module accepts the origin binary
executable file, parses the ELF format and maps each program segment. Then
the segments will be recorded and reordered, making it easier for translator to
analyze, manage, and provide essential information to other modules.

Environment Initialization Module. This module configures the basic struc-
ture related to translation, including initialization translated code segment and
system call table. The translated code segment is the location for the one-to-
many translated code, which will be written to the translated executable file.
The system call table is used to convert different system call numbers between
original and translated programs.

Disassembly Module. This module disassembles the original code segments
and converts each instruction into internal IR-GUEST data.



242 Y. Lan et al.

Translation Module. This module will use the IR-GUEST data to classify
different types of instructions, and then the corresponding translation function
will translate them to the IR-HOST data.

In the translator core, the instructions are divided into three categories: one-
to-one, one-to-many and many-to-many translation. Each translator puts the
translated instruction in the original position, and in addition, one-to-many
translator will place the extra instructions in the translated code segment.

Host Platform Assembly Module. This module integrates and assembles
the IR-HOST data to generate the binary code and store it in the memory.

Object File Generation. This module will reorganize the segments (segment
of the original file and the new segments generated by the translator), fill in the
necessary ELF file header and write to the target file.

3.2 In-place Instruction Translation Design

In this study, we propose an innovative in-place instruction translation method
that preserves the original addresses of each instruction in the program while
minimizing the overhead associated with branches. This method draws inspira-
tion from the principles employed in instruction instrumentation binary transfor-
mation tools but is tailored specifically for Cross-ISA static binary translation.

Fig. 5. Modifications of LAST to ELF Sections

LAST will generate an additional code segment to store translated binary
codes and system call table. Figure 5 shows the difference between original and
translated ELF file.

For the translation of each instruction, we need to consider two cases, the
one-to-one and one-to-many translation. We also consider some optimization by
using many-to-many translation.
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– One-to-one translation. If the guest platform instruction can be converted
into host platform instructions one-to-one, it is simple to place the translated
instruction at the original address.

– One-to-many translation. Some instructions are complex and need to use
multiple instructions to translate them. We put these translated binary codes
at the additional code segment and then replace the original instruction with
a direct jump instruction which can jump to the translated fragment.

– Many-to-many translation. Some instructions are used as a pattern on the
guest platform to achieve a certain function. Usually, the host platform also
has an instruction pattern with equal length to achieve the same function.
In this case, the host instruction pattern can equivalently replace the guest
instruction pattern.

The proposed tool, LAST, effectively addresses the challenges posed by indi-
rect jumps through its in-place instruction translation mechanism. Section 4.2 of
the paper will provide comprehensive implementation details, offering a deeper
understanding of how LAST successfully mitigates the issues related to indirect
jumps.

3.3 System Call Design

To solve the issue of system call incompatibility, LAST employs a system call
table for system call conversion.

Unlike binary translators that “wrap” system calls by modifying call numbers
and handling different structures [15], LAST uses the system call table to handle
these issues, which is particularly useful in static in-place binary translation
where dynamic interception and processing of system calls is challenging.

Algorithm 2: Handle Syscall By Syscall Table
input : Guest Syscall Number

hash = HASH(Guest Syscall Number);
Host Syscall entry = Address_Mapping_Table[hash];
if Host Syscall entry ! = NULL then

jmp to Host Syscall entry // hit the target;
covert Guest Arguments to Host Arguments;
do Host Syscall;
covert Host return Arguments to Guest return Arguments;
return

else
return error // Unsupport Syscall;

end

During the translation process, the initial step of LAST involves the insertion
of the system call table into the translation code segment, as depicted in Fig. 5.
The role and functionality of the system call table are further elucidated in
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Algorithm2. It facilitates several key functions: locating the appropriate table
item based on the Host Syscall number, performing the necessary conversion
from Guest ABI to Host ABI to enable system call invocation and kernel entry,
and addressing any variations in return values that may arise between different
architectures, ensuring a seamless transition back to the normal execution flow.
For a more comprehensive understanding of the implementation specifics, please
refer to Sect. 4.3.

3.4 ISA-Level Support

LAST utilizes some of the binary translation optimizations provided by the
LoongArch instruction set, which are optional. These optimizations are provided
as optional enhancements, and their detailed descriptions are presented below.

To address two efficiency issues in translation, LoongArch has designed
binary translation support into its ISA. The first issue is register shortage, which
may occur due to register mapping during binary translation. To solve this,
LoongArch adds four new scratch registers (SCRs) alongside the 32 general-
purpose registers (GPRs). These SCRs can interact with GPRs through data
move instructions and are used as temporary registers. The second issue is the
jump range limit. In-place instruction translation, as used in LAST, requires
jumping to the translated code block. To address the problem of the limited
jump range of the direct jump instruction, a jump-and-link instruction using
SCRs is also added. By setting the value in one of the SCRs as the address of
the translated code block, it is possible to jump to the translated code block
effectively and return to the original instruction conveniently.

In LAST, the SCR is primarily used in the following situations: first, when
the number of registers is insufficient during instruction translation, the SCR
register is used as a temporary register instead of using a virtual register in
memory. Second, when LAST needs to interrupt the current execution flow, but
cannot jump for a long distance, the SCR is used as the address register for a
long-distance indirect jump, thus reducing the storage and recovery of the source
register.

If the host system does not support SCRs, LAST employs a strategy to
identify the least frequently used registers in the guest program. These registers
are then transformed into memory accesses, allowing the freed registers to be
utilized for the same functionalities as the SCR registers mentioned earlier. As
a result, even in the absence of SCR support on the host, the aforementioned
challenges can still be addressed using additional instructions. However, it is
important to note that this approach may lead to a potential loss of efficiency.

4 Implementation

4.1 Register Mapping

Register mapping, which binds the guest platform’s registers to the host plat-
form’s registers, is an important part of binary translation, directly affecting the
execution efficiency of binary translators.
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Most binary translators, such as QEMU, use translation blocks (TBs) as base
units and perform dynamic register allocation in each TB. This dynamic regis-
ter allocation is convenient for design but tends to cause data transfer overhead.
Regarding the implementation of LAST, it adopts a global static register map-
ping approach. Specifically, we illustrate this with LASTM as an example, and
the corresponding mapping rules are presented in Table 1.

Table 1. Register mapping in LASTM

MIPS LoongArch LASTM
num name num name

0 zero 0 zero zero
1 at 19 t7 tr_at
2, 3 v0, v1 17, 18 t5, t6 tr_v0, tr_v1
4–11 a0–a7 4–11 a0–a7 tr_a0–tr_a7
12–15 t0–t3 12–15 t0–t3 tr_t0–tr_t3
16–23 s0–s7 23–30 s0–s8 tr_s0–tr_s7
24, 25 t8, t9 16, 20 t4, t8 tr_t8, tr_t9
26, 27 k0, k1 21, 22 tp, fp tmp
28 gp 2 gp tr_gp
29 sp 3 sp tr_sp
30 s8/fp 31 s8 tr_s8
31 ra 1 ra tr_ra
hi, lo hi, lo - scr2, scr3 tr_hi, tr_lo
- - - scr0, scr1 tmp

The main reason for using these mapping rules is the difference in the defini-
tion of the ABI and the differences in hardware. For example, register 31 is used
as the Return Address (RA) in MIPS, while the RA in LoongArch is register 1.
In addition, when the branch predictor supports RAS, it is important to map
the RA register of target planform to the host RA register, reducing the over-
head of function returns. Also, four scratch registers (SCRs) are designed in the
LoongArch which provide additional temporary registers for binary translation.
LAST maps SCR2 and SCR3 to the HI and LO registers in MIPS, and SCR0
and SCR1 are used as temporary registers.

In addition, LAST takes into consideration the scenario where the number
of guest registers exceeds that of the host registers. In this case, the translator
can still implement the translation process by using memory as virtual regis-
ters. The translator keeps track of the frequency of register usage, and saves
and restores the less frequently used registers, treating them as temporary reg-
isters. These marked temporary registers can be used when necessary by load-
ing them from memory, where they were saved earlier. It is worth noting that
this load/restore overhead is unavoidable. This case NumRegs(Host) >= Num-
Regs(Guest) requires additional loading and restoring in any translator.
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4.2 In-place Instruction Translation

Instruction translation is the critical part of LAST, which is related to the effi-
cient execution of the translated program.

LAST’s translator disassembles each input instruction and stores the detailed
information in the IR. Then the translator will identify the classification of the
instruction from the IR and translate them using different translation functions.
LAST classifies instruction translations into three types.

One-to-One Translation. Both the host ISA and the guest ISA are RISC
architectures, the behavior of the instructions is relatively similar. So some guest
instructions can be translated into host instructions one-to-one. For such instruc-
tions, LAST can replace them at the original addresses.

Fig. 6. One-to-many translation in LAST

One-to-Many Translation. Because of the differences between the host ISA
and the guest ISA, some instructions require one-to-many translation, such as
system call instruction and some instructions with 16-bit immediate. In this case,
the translator will translate this instruction and put these translated codes in
an additional code segment. At the same time, the original instruction will be
replaced by a direct jump whose target address is this additional code segment.
For example, Fig. 2 will be translated into the case of Fig. 6. The instruction ld
$v0,0x8058($v0) is replaced by b L4, and the segment .trans is used to store
these “one-to-many translated code”. At the end of the translated code, a branch
instruction b L6 will be added to return to the original control flow.

In addition, if multiple consecutive instructions require one-to-many trans-
lation, they need to jump to the translated code segment only once. Thus, b L4
need not to return next instruction.

Many-to-Many Translation. Compilers often combine several instructions as
patterns. If we translate these instructions one by one, it may result in multi-
ple one-to-many translations. However, if we use many-to-many translation to
translate this instruction pattern, we often get good results. LAST can recognize
these instruction patterns and translate them into instruction sequences with the
same function.
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For instance, in the case of MIPS, the instruction sequence Lui +Ori is
utilized to load 32-bits immediate values. Conversely, in LoongArch, the corre-
sponding instruction has a different immediate width. Nonetheless, both archi-
tectures provide instructions capable of loading 32-bits immediate values. In such
scenarios, LAST treats the combination of Lui+Ori as a unit and replaces them
with suitable instructions from the host instruction set.

4.3 System Call Handling

The translated programs cannot execute on the platform directly due to the
differences between the host and guest operating systems. So, System calls must
be handled in binary translation.

LAST stores a system call table in the translation code segment, which is
used to handle system call differences between the guest Kernel and the host
Kernel. Figure 7 shows the execution flow of the system call. Whenever the guest
program needs to run a system call, the program first jumps to the header of
the system call table, where a piece of code is stored for preprocessing. Then,
LAST will use the guest system call number as an index to find the handler’s
entry in the system call table and jump over to execute the handler function. In
these handlers, LAST will convert the system call parameters, including system
call numbers and some structures in memory.

Fig. 7. Syscall Execution Flow in LAST

Another thing we need to consider is that there may be some special system
calls that exist only in the guest platform and cannot be implemented by the host
system calls. It is difficult to implement a non-existent system call in user mode.
To handle those system calls, LAST uses system call simulation by employing
other host system calls to mimic the function of the guest system call. For
instance, the CLONE system call in MIPS can be emulated by the FORK system
call in LoongArch.

4.4 Delay Slot

Due to historical reasons, the MIPS has designed the delay slot. However, delay
slots are not available in the LoongArch, which leads to additional processing in
LASTM.
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In general, the instruction in the delay slot and the branch instruction have
no data dependencies and can be easily translated by swapping the positions of
two instructions.

When data dependencies exist, the relationship between the instructions
needs to be handled with care, as depicted in Fig. 8. The daddiu instruction
is an example of a data-dependent operation instruction, and simply changing
the order of its execution can cause the beq instruction to execute incorrectly,
resulting in program errors. To solve this error, LASTM need to translate accord-
ing to the following steps. First, the value in the dependent register needs to be
copied to a temporary register. Then, the delay slot instruction is executed.
Finally, the branch instruction where the dependent register is replaced by the
temporary register will be executed.

Fig. 8. Data Dependencies Delay Shot Handling

5 Evaluation

5.1 Evaluation Setup

Table 2. Evaluation Platform

Loongson 3A4000 Loongson 3A5000

Architecture GS464V GS464V
ISA MIPS64 Release 5 LoongArch
Compiler gcc 8.3 gcc 8.3 (LoongArch)
Options -Ofast -static -Ofast -static
Frequency 1.8GHz 2.3GHz
L1 cache I/D 64KiB 64 KiB
L2 cache 256KiB 256KiB
LLC 8MiB 16MiB

LAST offers the capability to convert MIPS or RISCV programs into LoongArch
programs, which are referred to as LASTM and LASTR, respectively, for clarity.
To evaluate its performance, we conducted tests in two distinct environments.
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The term MIPS denotes the execution of native MIPS programs on the Loongson
3A4000 platform, while LA represents the execution of LoongArch programs on
the Loongson 3A5000 platform. Although LAST supports RISCV-to-LoongArch
translation, our evaluation was limited to the simulation environment for RISCV.
Therefore, we were unable to perform actual chip tests for RISCV. The detail
information about the experimental environment is shown in Table 2.

For evaluation purposes, we utilized the Coremark and SPEC CPU2000
benchmark testing programs. Coremark is specifically designed to assess the
fixed-point performance of CPUs, and although it has a relatively small test
scale, it serves as a suitable tool for evaluating the performance of binary trans-
lation. In addition to Coremark, we employed SPEC CPU2000 to obtain more
detailed insights into the performance of binary translation. SPEC CPU2000
encompasses both fixed-point and floating-point testing, enabling a more com-
prehensive evaluation of performance details. All benchmarks were compiled by
GCC version 8.3 with -Ofast as the optimization level.

The 3A5000 is an evolution of the 3A4000 and they share the same microar-
chitecture. There are three main differences, ISA, frequency, and LLC capacity.
Other microarchitectural features are unchanged, so the programs behave very
similarly on the 3A4000 and 3A5000. Therefore, for LAST, it is significant to
compare the original MIPS programs on 3A4000 with the LAST-translated pro-
grams on 3A5000.

5.2 Performance

Fig. 9. Coremark Relative Ratio of the Scores-per-GHz The baseline is the scores-per-
GHz of the native LA.

Figure 9 presents a performance comparison of various translators and native
programs, using the score of the native LA as the baseline. It is obvious
that LAST has significant performance advantages over other dynamic binary
translator.
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QEMU [4] is a commonly used binary translator in the industry that sup-
ports mutual translation of multiple architectures, but its efficiency is low due to
the use of TCG as the intermediate code for translation. LATR and LATM are
dynamic translators developed in the research group that use one-to-one instruc-
tion translation and special optimization for indirect jump, resulting in higher
efficiency than QEMU. LASTR and LASTM represent LAST’s translation of
RISC and MIPS programs, respectively, and show much higher efficiency than
dynamic translators, because In-place static translators do not generate indirect
jump overhead and do not require translation time.

Fig. 10. SPEC2000 Relative Ratio of the Scores-per-GHz. The baseline is the scores-
per-GHz of the native LA.

Figure 10 illustrates the SPEC2000 performance of LAST, with the native
LA program serving as the baseline. On average, LASTM achieves over 80%
performance compared to the native LA program, while LASTR achieves over
75% performance. Comparing these results with those of dynamic translators,
it is evident that LAST demonstrates superior performance across most sub-
items. The key factor contributing to LAST’s higher performance is its ability to
address the overhead of indirect jumps through the translation of interpolated
instructions, without incurring the performance loss associated with dynamic
translation techniques.

We further analyze the relevance between the instruction expansion ratio and
the actual performance in LASTM. Figure 11 shows the relationship between the
instruction expansion ratio and the execution time. Due to our translation rules,
the number of LASTM ’s dynamic executed instructions is always bigger than
the number of native MIPS ’s. So the value in the x-axis is always greater than 1.
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Fig. 11. Instruction Expansion Ratio vs Relative Performance. The x-axis is the ratio
of the dynamic instruction count, which stands for the instruction expansion ratio.
The y-axis is the ratio of the number of execution cycles, which stands for the relative
performance.

The y-axis is the ratio of the number of execution cycles. We divide the number
of native MIPS ’s execution cycles by the number of LASTM ’s.

Note that there are two points at the bottom-right corner. They are 177.mesa
and 178.galgel, whose performance is less than 80%. The reason why their
performance is such low is that their instruction expansion ratio is too high.
They contain many instructions that can not be translated by the one-to-one
translator.

5.3 Translation vs. Compilation

Fig. 12. SPEC2000 Relative Ratio of the Scores-per-GHz. The baseline is the scores-
per-GHz of the native MIPS.

Figure 12 shows the SPEC2000 performance of LASTM. The result of native
MIPS is the baseline. On average, the performance for SPEC benchmarks is 96%.
Note that there are only two benchmarks whose performance is lower than 80%.
And they both belong to the floating-point benchmark. In all, we can conclude
from the result that LASTM almost does not lose performance compared to the
native MIPS program. As shown in Fig. 10, the SPEC2000 performance based
on the LA program is only 84%.
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Fig. 13. Relative Ratio of Instruction Count. The baseline is the instruction count of
native LA

However, this result is heavily influenced by compilers on different plat-
forms. Figure 13 shows the relative ratio of the instruction count compared to
the instruction count of the native LA. On average, for integer benchmarks,
the instruction count of native MIPS is 17% more than that of native LA and
LASTM is 27%. Since LASTM is translating MIPS instructions into LoongArch
instructions, a sizeable proportion of the instruction expansion comes from the
difference in the compiler.

In fact, the microarchitecture of 3A4000 and 3A5000 is nearly the same
except for the size of the LLC. Comparing the performance of LASTM in 3A5000
with the performance of MIPS in 3A4000 while considering the difference in the
hardware platform is a better way to describe the actual efficiency of our binary
translator.

6 Conclusion

In conclusion, this paper introduces a novel approach, in-place static binary
translation, which effectively addresses the challenge of address relocation and
significantly improves the efficiency of SBT. The implementation of LAST on
the LoongArch platform successfully converts MIPS or RISCV programs into
the LA program. Experimental results demonstrate that while the translated
program may experience a slight increase in direct jumps, it has minimal impact
on efficiency. In fact, the translated program achieves over 80% performance
compared to the native LA program, confirming the high efficiency of this app-
roach. These findings highlight the effectiveness and potential of in-place static
binary translation for efficient program translation and execution.
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