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Abstract. Imbalanced data classification has become one of the hot top-
ics in the field of data mining and machine learning. Oversampling is one
of the mainstream methods to solve the imbalance problem by synthe-
sizing new samples to balance the data distribution. However, due to the
limited sample local information, the data synthetic process is risky in
deteriorating the class overlap phenomenon, showing a vulnerable robust-
ness with respect to data noise. In this paper, we propose a noise robust
gaussian distribution based imbalanced oversampling (NGOS). NGOS
first determines the neighborhood radius based on the global informa-
tion, and then assigns sampling weights to minority class samples based
on the density and the distance information within each of the neighbor-
hoods. Finally, NGOS generates new samples with a Gaussian distribu-
tion model. We validate the effectiveness of our proposed method on the
38 KEEL datasets, DT classifier and eleven comparison methods. Exper-
imental results show that our method outperforms the other compared
methods in terms of Fmeasure, AUC, Gmean. The codes of NGOS are
released in https://github.com/ytyancp/NGOS.

Keywords: Imbalanced data classification - Oversampling - Noise *
Gaussian distribution

1 Introduction

Imbalanced data classification has become a hot topic in the fields of data mining
and machine learning. Data imbalance poses a great challenge to the robustness
of traditional classification algorithms. And they are widespread in fields such as
fraud detection [12], network intrusion monitoring [17], software detect predic-
tion [6]. Researchers have proposed a variety of methods for learning imbalanced
data, which can be roughly divided into two categories: data-level methods,
algorithm-level methods [§]. Algorithm-level methods mainly adapt classifiers
specifically designed for imbalanced data or improve traditional classifiers to
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make them suitable for imbalanced data. Data-level methods mainly resam-
ple the imbalanced dataset by adding minority class samples (oversampling) or
removing majority class samples (undersampling) to balance the dataset.

Data-level methods have become the mainstream method for solving imbal-
anced data classification problems due to their simplicity, efficiency, and indepen-
dence of subsequent classifiers [16]. Data-level methods are mainly divided into
undersampling, oversampling, and hybrid sampling [8]. Undersampling achieves
balance by removing some of the majority class samples. Oversampling synthe-
sizes minority class samples to balance the dataset. Hybrid sampling combines
the above two strategies to achieve better learning results. Recent studies have
shown that oversampling methods are significantly superior to undersampling
methods on traditional classifiers because they provide a higher proportion of
safe samples while reducing the proportion of non-safe samples [7].

SMOTE [4] is the most classic oversampling method, but its mechanism of
randomly selecting the nearest neighbors of minority class samples for linear
interpolation to generate new samples ignores the distribution information of
the samples. To address the shortcomings of SMOTE, researchers have proposed
many oversampling methods in recent years. These include Borderline-SMOTE
[9], which emphasizes synthesizing samples in the boundary region, Safe-Level-
SMOTE |[3], which emphasize synthesizing samples in the safe region. Unlike the
above-mentioned method that only utilizes minority class information, GDO [20]
utilizes the density and distance information of both the majority and minority
classes to weight the minority class samples, simultaneously. However, these
methods either overemphasize synthesizing samples in specific areas, leading to
overfitting, or overemphasize preserving the original data distribution and ignore
the adverse effects of noisy samples on the classification model.

To address these problems, this paper proposes a noise-robust gaussian distri-
bution based imbalanced oversampling (NGOS). NGOS uses an adaptive neigh-
borhood determination method to mine sample neighborhood information and
introduces information entropy to measure the uncertainty of different sample
distributions within the neighborhood to reduce the sampling rate of highly
overlapping samples (even noise samples) and reduce the risk of introducing
additional class overlap and noise samples. To avoid oversampling of the minor-
ity class being too concentrated in the boundary region, the method combines
the distance information between the minority and majority classes in the neigh-
borhood to expand the potential space for synthesizing minority class samples.

The main contributions of this paper are summarized as follows:

— A noise-robust oversampling method (NGOS)based on Gaussian distribution
for imbalanced data is proposed.

— NGOS enhances the robustness of the minority oversampling model to noise
by introducing a fixed neighborhood information mining method and informa-
tion entropy, and reduces the risk of introducing additional class overlap and
noise samples by reducing the sampling rate of highly overlapping samples
(even noise samples).
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— NGOS expands the potential space for synthesizing minority class samples
by combining the distance information between the minority and majority
classes in the neighborhood, and properly synthesizes new samples in the safe
region to avoid overfitting problems in the boundary region.

— We evaluate the performance of NGOS on 38 KEEL datasets by comparing it
with 11 data-level methods. The experimental results show that we achieved
the best performance in terms of Fmeasure, AUC, and Gmean.

The rest of this paper is organized as follows: Sect. 2 introduces related work
and the GDO algorithm. Section3 proposes the NGOS algorithm. Section 4
presents experimental comparisons and analyses. Section 5 concludes the paper.

2 Related Work

2.1 Resampling Methods

Undersampling methods balance the dataset by removing some major-
ity class samples. SDUS [22] uses a supervised constructive process to learn
majority-class local patterns in terms of sphere neighborhoods (SPN) to main-
tain the distribution pattern of original data in selecting majority-class sample
subsets from different perspectives. RUS [2| randomly removes majority class
samples to balance the dataset. It may discard important information. Tomek
[11] links identify Tomek pairs where a minority class sample and a majority
class sample are mutual nearest neighbors, and remove the majority class sam-
ples. ENN [19] removes majority class samples that have mostly minority class
samples among their k nearest neighbors. However, they do not explicitly specify
the number of samples for removing which may lead to undesired level of data
imbalance. CC [15] first clusters the minority class samples and then selects
either the centroid or the majority class sample closest to the centroid of each
cluster. In addition, RBU [13] performs undersampling by calculating inter-class
potentials, which reflect the amount of information contained in the majority
class. However, it requires iterative steps, making it slower.

Oversampling methods balance the dataset by synthesizing minority class
samples. SMOTE [4] synthesizes minority class samples by randomly selecting
seed samples and applying linear interpolation. It may generate a large number of
new noisy samples. To address this, researchers started to restrict the selection of
seed samples in SMOTE. Borderline-SMOTE [9] confines the seed sample selec-
tion to the boundary region, considering samples at the classification boundary
more difficult to classify. In contrast, Safe-Level-SMOTE [3] argues that minority
class samples located in safe regions are better suited as seed samples, because
synthesizing samples in the boundary region is more likely to introduce noisy and
overlapping samples. ADASYN [10] adaptively assigns weights for seed sample
selection based on the density of sample distributions. MWMOTE [1] combines
location and density factors and integrates data clustering to assign weights for
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minority class samples. These methods are all derived from SMOTE [4], and
their synthesis methods use linear interpolation. Therefore, overgeneralization
issues may arise during sample synthesis. GDO [20] samples and proposes a
new sample synthesis method based on Gaussian models. As mentioned above,
it overly emphasizes majority class samples in the weighted selection of seed
samples, which may result in the synthesis of noisy samples.

Hybrid sampling methods balance the dataset by combining oversampling
methods and undersampling methods, which combines the advantages of both.
Most of these methods use SMOTE [4] as the main oversampling process and
then combine it with different undersampling methods to balance the dataset.
SMOTE+TL [2] and SMOTE+ENN [2] combine SMOTE with Tomek links and
ENN, respectively. They first use SMOTE to oversample, and then use Tomek
links and ENN for undersampling. However, using SMOTE for synthesis can
lead to overgeneralization issues. LDAS [21], which is different from the tradi-
tional oversampling-then-undersampling process mentioned above, first cleans
the overlap area using undersampling methods, and then synthesizes minority
class samples using oversampling methods.

2.2 Gaussian Distribution Based Oversampling (GDO)

GDO [20] believes that different minority classes carry different information, so
it considers both density and distance information to assign different weights for
selecting seed samples to different minority classes.

The sample selection weight factor of GDO is shown in Eq. (1). Where C(z;)
represents the proportion of majority class samples in the K nearest neighbors,
and D(x;) represents the proportion of the distance between majority class sam-
ples and the total distance in the K nearest neighbors.

I(z;) = C(EZ) + D(xz) (1)

Then, the weights are normalized as shown in Eq. (2):
BRR LAY (2)

Where |N min| represents the number of minority class samples.

Let o be the origin of the coordinates, and for any seed sample x;, a ran-
dom vector ov is generated. Then, z;0 is the direction vector, and the newly
synthesized sample point is on this direction.

70 = 00 — ox; 3)

—
Next, the length of vector z;x’ is determined, which follows the Gaussian
distribution:
|via'| = di ~ N(p;, ao;) (4)
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Where p; = 0 and o; is the Euclidean distance between the seed sample x; and
its nearest same-class sample.
Therefore, the vector form of the newly synthesized sample is:

N /
P |md]

oxr' = ox; + — - T;¥ (5)
|z

3 Proposed Method

3.1 Analysis of the GDO Algorithm

The GDO algorithm relies on K-nearest neighbor (KNN) calculation to obtain
local distribution information. However, in imbalanced data, the majority class
is the dominant one in the sample space. Therefore, the decision process based
on K is prone to bias towards the majority class, and the method has poor
robustness to noise. In addition, to achieve better performance for different data
distributions, it is usually necessary to find suitable parameter K, which makes
the algorithm less adaptable.

As shown in Fig. 1, when the parameter K in the K-nearest neighbor calcu-
lation is set to 5, the weight of sample A calculated by Eq. (1) is 2 (each sample
can obtain the maximum weight value). Therefore, sample A has the highest
probability of being selected as the seed sample, but synthesizing minority sam-
ples based on sample A as the seed sample will further increase the difficulty
of classification. In addition, GDO believes that samples in the safe region are
easier to identify and ignores these samples. This causes the sampling process to
concentrate too much on the boundary area, which may cause overfitting.

As shown in Fig.1, both B and C have a weight of 0 (they will not be
selected as seed samples). However, compared with C, it can be seen that sample
B is clearly closer to the decision boundary. Synthesizing samples based on B
can strengthen the classification boundary to a certain extent and expand the
potential generation space of synthesized samples, which can avoid the potential
overfitting problem caused by synthesizing too many samples in the boundary
area and improve the subsequent learning performance.

To address the above issues, this paper proposes an improved Gaussian
sampling method, NGOS, which uses a fixed-radius neighborhood partition
method and an information entropy-based neighborhood information measure-
ment method to enhance the performance of imbalance learning.

3.2 Local Information of Samples

The KNN method measures the local distribution information of samples by
finding their K-nearest neighbors. As shown in Fig. 1(a), this method cannot
effectively characterize the differences in sample distributions, as it only considers
the relationship between the target sample and its nearest neighbors, ignoring
the local distribution information of its neighbors. To address this issue, this
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(a) GDO weighted diagram (b) NGOS weighted diagram

Fig. 1. Comparison of the weighting schemes between GDO and NGOS

paper utilizes the global information of sample distributions to achieve adaptive
determination of neighborhoods.

R=2 Z dist(xs, ;) /(| Nerain| (| Nirgin| — 1)) (6)

5,5 € Xtrain

Where |Nypqin| is the number of samples in the training set, and dist(z;, z;) is
the Euclidean distance between sample x; and x;. It can be seen that this radius
R considers the global distribution information of the samples. With R as the
radius and the target sample x,,;, as the center, we obtain a subset X .qnq4; of
all samples whose distance to x,,;, is less than R.

Xcandi = {l‘p S Xtrainy diSt(xminvxp) < R} (7)

Based on X 4,45, it is easy to evaluate the data distribution within the sample
neighborhood.

3.3 Estimation of Weight for Minority Class Sample Selection

In classification tasks, samples located in different regions have different impacts
on the classification model [18]. To characterize the impact of different samples
on the classification model, GDO uses the KNN method to characterize the
importance of minority class samples. Although this method assigns high weights
to boundary samples, it also overly emphasizes minority class samples located
in dense majority class areas, which leads to the synthesis of a large number of
potential noise samples. In other words, the GDO is not robust to noise samples.
To address this issue, this paper uses information entropy [5] and distribution
density to measure the samples and enhance the robustness of the model to
noise.

Specifically, we first measure the distribution differences within the local
neighborhood of a sample using the Eq. (8):
J(|ges

tcandi

leandi

) (®)

= e

tcandi
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Where ‘NZZZ:M ’ represents the number of minority class samples in the candidate
set of sample z;, and ‘NZLQ ‘i]d

represents the number of majority class samples

in the candidate set of sample x;.

E(x;) = —p;logap; — (1 — pi) log 2 (1 — py) 9)

From Eq. (9), it can be seen that when p; = 1/2, Eq. (9) obtains the max-
imum value of 1, and gradually decreases as p; decreases or increases. When
p; = 0 or 1, we set the value to 0. In other words, the closer a sample is to the
decision boundary, the greater its weight, and the further it goes into the major-
ity class area, the smaller its weight. As shown in Fig. 1(b), all the neighboring
samples of sample A are of different classes (sample A is a noise sample), and
synthesizing samples at this position will increase the difficulty of training the
classifier. Therefore, we set its weight to 0 according to Eq. (9). Similarly, sample
D located in the safe area has neighboring samples that are all of the same class
and can be easily identified by the classifier. Therefore, we also set its weight to
0.

However, using Eq. (9) alone will overly focus on samples with high uncer-
tainty in the boundary area, in other words, it will assign higher weights to sam-
ples with higher uncertainty, which may lead to overemphasizing such samples
and causing overfitting problems. Therefore, NGOS introduces distance informa-
tion of the samples within the neighborhood, appropriately expands the selection
range of seed samples, increases the synthesis space of potential synthesized sam-
ples, and enhances the robustness of the model. To achieve this, NGOS proposes
the following distance measurement method:

ijGXTnaj diSt(wi,E]‘)

tcandi

N
“candi
D (z:) = , (10)
v Ez,exm@j dlsr‘(aj’hmj) Em_exm,in diSt(Ihwj)
J ‘candi J ‘candi
maj

tcandi tcandi

‘ Nmin

When |N::La‘i]d| =0 or [N/ | =0, it means that the candidate set of the
sample only contains majority class samples (such as sample A in Fig.2) or
minority class samples (such as sample D in Fig.2). In these cases, the weight
D'(x;) of the sample is set to 0. It can be seen that Eq.(10) uses distance
information between samples to select seed samples for minority class synthesis
that are farther away from the decision boundary for unstable samples (i.e.,
samples with different classes in their neighborhoods), thus avoiding overfitting.

By considering both density and distance factors, the following method is
proposed to calculate the weight of each sample:

I(z;) = D (;) + E(x;) (11)

From Eq. (11), it can be seen that the weight of minority samples that are
deep in the majority class area is 0, while the weight of samples located at or
close to the decision boundary is relatively high.
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3.4 Probabilistic Seed Sample Selection and Time Complexity

After calculating the weight of each minority sample using Eq. (11), we normalize
the weights using Eq. (2) to convert them into probabilities. The selection of seed
samples and generation of new samples follow the iterative process below: at each
iteration, a seed sample is chosen based on its probability I, and new minority
samples are synthesized based on the chosen seed sample. This process continues
until the number of minority samples is equal to the number of majority samples.
The number of samples to be synthesized is determined by the Eq. (12).

G = |Nmaj| o |Nmzn| (12)

The process of NGOS is described in Algorithm 1. To calculate Eq. (9) and
Eq. (10), we first need to compute the candidate set of samples x;, which has
a time complexity O(|Ngrqin|). Then, each minority class sample needs to be
calculated, resulting in a time complexity O(|Nyrainl |N mm|) for the minority
class weighting process (lines 2-8). The data generating process (lines 14-18),
the minority class instances are resampled G times and the time complexity is
O(|G|). Because G is smaller than Ny, the time complexity of Algorithm 1 is
O(|Nt'rain| ’lenb

Algorithm 1. NGOS(«)

Input: the original dataset D , scaling factor «;
Output: balanced dataset S;

1: Divide into minority class Dy,;», and majority class Dpay;
: for x; in Dpmin:
Calculate the radius R; Eq. (6)
Calculate the candidate set Xcanai of zi; //Eq. (7)
Obtain the density factor weight E(z;); Egs. (8) and (9)
Obtain the distance factor weight D’ (z:); //Eq. (10)
Calculate the information weight I(z;); //Eq. (11)
: end for

9: for x; in Dpin:
10:  Calculate the normalized weight I(z;); //Eq. (2)
11: end for
12: Calculate the number of samples needed for balance G; //Eq. (12)
13: Initialize the number of minority class samples to be synthesized n = 0;
14: while n < G:
15:  Synthesizing samples with using Egs. (3)—(5);
16:  Add the synthesized sample to D;m-n;
17 n=n+1,;
18: end while
19: S=DUD,,;

e I ol 4
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4 Experiments and Analysis

To validate the effectiveness of our proposed NGOS algorithm, we designed a
three-stage experimental study. First, we will briefly introduce the evaluation
metrics and settings used in our experiments. Then, we analyzed the influence
of algorithm parameters on its performance. Finally, we compare our proposed
method with other state-of-the-art resampling methods on the KEEL dataset.

4.1 Experimental Settings

Evaluation Metrics. We use Fmeasure, Gmean, AUC (the area under the
ROC curve) [16] which are the most frequently used metircs in imbalance learn-
ing were applied in this study.

Datasets. Table1 provides detailed information about the datasets, includ-
ing the dataset name, the abbreviation of the dataset (Abbr), the number of
attributes (Atts), the size of the dataset (Size), the number of samples in the
minority class (Min), and the imbalance ratio (IR).

Classifiers. In our experiments, we use Decision Tree (DT) classifiers provided
by the scikit-learn library in Python with default parameters. To ensure the
correctness of the experimental results, we used 5-fold cross-validation with 10
repetitions for the training and test set split.

Comparison Methods. In our experiments, we compared our proposed
NGOS algorithm with 11 other resampling methods, including SMOTE(SMO),
Borderline-SMOTE (BSM), ADASYN(ADA), MWMOTE (MWO), SMOTE
Tomek links (STL), SMOTE ENN (SENN), GDO, CC, ROS, RUS, RBU.

4.2 Experimental Results and Analysis

Parameter Analysis. In NGOS, when performing oversampling, the length
of the synthetic minority class mode d is derived from N(u;, ac;), where « is a
scaling factor to control the sampling density of the seed sample. To investigate
the influence of the parameter a on NGOS under different data distributions,
we selected 10 datasets. The best value is highlighted in bold.

Table 2 shows the AUC values and their average values for 10 datasets under
different parameter values for the DT classifier. The average values indicate
that NGOS performs best when « is set to 1.5, with D02, D03, D05, and D12
datasets achieving the best performance at a = 1.5. The D14, D24 and D33
datasets achieve the best performance at o = 1.4, 6 out of 10 datasets perform
best around these values. Therefore, we recommend setting the a to 1.5.
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Table 1. Description of KEEL Datasets

Dataset Abbr | Size | Atts | Min | IR Dataset Abbr | Size | Atts | Min | IR

abalonel9 D01 |4173 | 9 32 | 129.41 | newthyroidl | D20 |214 | 6 35 | 5.11
abalone918 | D02 | 730 | 9 41 | 16.8 |newthyroid2 | D21 214 | 6 35 | 5.11
car-good D03 | 1727 | 7 69 | 24.03 | pbl34 D22 471 |11 28 | 15.82
car-vgood Do4 |1727 | 7 65 | 25.57 | page-blocksO | D23 | 547111 |559 | 8.79
cleveland04 | D05 | 176 |14 13 | 12.54 | pima D24 |767 | 9 267 | 1.87
dermatology6 | D06 | 357 |35 20 | 16.85 | p86 D25 1476 |11 17 | 85.82
e013726 Do7 | 280 | 8 7139 p97 D26 243 |11 8 129.38
e0l D08 | 219 | 8 7 1.84 | segment0 D27 1230720 [329 | 6.01
flare-F D09 | 1065 |12 43 | 23.77|s25 D28 |3315/|10 49 166.65
glassl D10 | 213 |10 76 1.8 |scve D29 | 182810 |123 |13.86
glassh D11 | 213 |10 9 | 22.67  vehicle0 D30 845 |19 |198 | 3.27
haberman D12 | 305 | 4 81 2.77 | vehicle2 D31 845 |19 |218 | 2.88
irisO D13 | 149 | 5 49 2.04 | vowel0 D32 |987 |14 89 [10.09
kgpvs D14 | 1641 |42 52 | 30.56 | wr3b D33 690 |12 10 | 68

krivb D15 |2224 |42 22 |100.09 | wrd D34 | 159812 53 129.15
krvkzovd D16 2900 | 7 |104 | 26.88 | wisconsin D35 1682 |10 239 | 1.85
kvkzvf D17 |2192 | 7 27 | 80.19 | yeastl D36 |1483| 9 429 | 2.46
1024567891 D18 | 442 | 8 37 | 10.95 | yeast6 D37 |1483| 9 35 141.37
Inf D19 | 147 |19 6| 23.5 |z00-3 D38 |100 |17 5119

Comparison with Other Resampling Methods. This section compares
NGOS with 11 resampling methods in Sect. 4.1, which include 6 oversampling
methods, 3 undersampling methods, and 2 hybrid methods.

Due to space limited, we only provide the AUC for each dataset. From
Table 3, it can be seen that NGOS performs the best overall compared to other
comparison methods, achieving the best average values for AUC. For easily clas-
sified datasets such as D13, its evaluation metrics also reach 1, like other compar-
ison methods. Additionally, NGOS achieves the best performance on 12 datasets
for AUC. SENN achieves the best performance on 13 datasets for AUC. It can
be seen that SENN is the biggest competitor of NGOS, although it achieves the
best performance on one more dataset than NGOS for AUC, its overall average
performance is not as good as NGOS.

Therefore, we use Bayesian analysis [14] to further compare the performance
of NGOS and other comparison methods (especially SENN). Unlike other test-
ing methods, Bayesian analysis does not fall into the pitfalls of black and white
thinking and could estimate the probability that the performance of two classi-
fiers is different(or equal). Figure 2 shows the corresponding results of Bayesian
testing.

As shown in Fig. 2(a) and (c), on the DT classifier, the probability that NGOS
outperforms all other comparison methods except SENN is close to 100%, and
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Table 2. Influence of parameter o on DT in terms of the AUC metric

Dataset | 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

D02 0.6501 | 0.6533 | 0.6788 | 0.6576 | 0.6567 |0.6856 | 0.6460 | 0.6465 | 0.6591 | 0.6794 | 0.6623
D03 0.9286 | 0.9227 |0.9216 | 0.9134|0.9137 |0.9390 | 0.9240 | 0.9298 | 0.9347 |0.9273 | 0.9313
D05 0.7453 | 0.7472 |0.7686 | 0.7226|0.7498 | 0.7853|0.7313 | 0.7808 | 0.7659 |0.7738 | 0.7746
D10 0.7305 | 0.7496 | 0.7326 | 0.7418 | 0.7448 |0.7483 |0.7071|0.7361|0.7379 | 0.7251 | 0.7172
D12 0.57470.5763 | 0.5971 |0.5754|0.5858 |0.5974 |0.5842 | 0.5675|0.5725 | 0.5886 | 0.5876
D14 0.98820.9861 |0.9899 |0.9919 | 0.9957 | 0.9862 |0.9919|0.9922|0.9942 | 0.9884 | 0.9859
D24 0.6761|0.6712 |0.6746 | 0.6789|0.68320.6747 |0.6729 | 0.6765 | 0.6736 |0.6727 | 0.6709
D33 0.6475 | 0.6848 | 0.6689 | 0.6640 | 0.7177|0.6909 |0.6586 | 0.6283|0.7072 | 0.6587 | 0.7094
D35 0.94270.9434 1 0.9376 |0.9430|0.9370 |0.9384 |0.9370|0.9431|0.9443 0.9383 | 0.9422
D38 0.6593 | 0.6432 | 0.7201 | 0.6379 | 0.6622 | 0.6982 |0.6591 | 0.6835|0.7043 | 0.6863 | 0.6633
Avg 0.72850.7341 | 0.7432 | 0.7276 | 0.7396 |0.7506 | 0.7227 | 0.7328 | 0.7438 | 0.7375 | 0.7376

(b) Fmeasure (¢) Gmean

Fig. 2. The value in the i-th row and j-th column represents the probability that the
i-th method performs better than the j-th method.

the probability of outperforming SENN is as high as 95%. Although NGOS has
one less best dataset than SENN on AUC, its performance on all 38 datasets far
exceeds SENN. From Fig.2(b), it can be seen that the performance of NGOS
on Fmeasure is very outstanding, significantly better than other comparison
methods, with a probability of almost 100% of outperforming other comparison
methods, including SENN, even though, SENN is a hybrid resampling method.

5 Conclusion

This paper proposed the NGOS to addresses several issues of the GDO: 1) GDO
emphasizes the majority class in local regions, resulting in the generation of
too many synthetic samples around minority class samples deep in the majority
class region, introducing more difficult-to-learn samples that hinder the training
of the learning model. 2) GDO regards that samples in safe regions are easier to
recognize, thus ignoring these samples, but this can lead to oversampling being
too concentrated on the boundary region, which increases the risk of overfitting.
3) Both density and distance information in the GDO method rely on the KNN
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Table 3. AUC results on KEEL datasets obtained by DT

NGOS |GDO |ADA |BSM |CC MWO | ROS RUS SMO |SENN |STL RBU

D01 0.5226 |0.5220 | 0.5460 |0.5426 |0.7073|0.4944 |0.5188 | 0.6448 |0.5402 |0.5816 |0.5739 |0.5237
D02 0.6856 |0.6643 | 0.6879 |0.6968|0.6674 |0.6940 |0.6111 | 0.6870 |0.6495 |0.6920 |0.6616 |0.6624
D03 /0.9390 |0.9108 | 0.7764 |0.7994 |0.8492 |0.8419 | 0.9549 | 0.9567 |0.8192 |0.8214 |0.7943 |0.9660
D04 | 0.9858 | 0.9870 |0.9920 |0.9905 |0.8629 |0.9890 |0.9792 |0.9780 | 0.9935 0.9788 | 0.9766 | 0.9774
D05 0.7853 |0.7533 | 0.7779 |0.7899 |0.7088 |0.6471 |0.6971 | 0.7800 |0.8051 |0.7746 |0.7638 |0.7460
D06 | 0.9985 | 0.9832 | 0.9835 | 0.9635 |0.9546 |0.9885 |0.9835 | 0.9619 |0.9885 |0.9885 |0.9885 |0.9544
D07/ 0.8501 |0.8590 | 0.8294 |0.7387 |0.8380 |0.6087 |0.5905 | 0.7059 |0.8879|0.8372 |0.8198 |0.7205
D08 0.9758 |0.9663 | 0.9708 |0.9789 |0.9732 |0.9724 |0.9647 | 0.9695 |0.9668 |0.9846 | 0.9815 |0.9702
D09 | 0.6227 | 0.5887 |0.5916 |0.6100 |0.6239 |0.6556 |0.6214 |0.7526 |0.5818 | 0.7564 0.6467 | 0.6167
D10 0.7483 |0.7456 | 0.7186 |0.7361 |0.7258 |0.7510|0.7385 | 0.7345 |0.7364 |0.7052 |0.7365 |0.7330
D11/0.9020 |0.8551 |0.9376 |0.8476 |0.9293 |0.8451 |0.9076 | 0.8507 |0.8476 |0.9756 | 0.8576 |0.8388
D12/0.5971 |0.5781 |0.5420 |0.5633 |0.5281 |0.5791 |0.5726 | 0.5828 |0.5297 |0.6177 | 0.5941 | 0.5437
D13 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000  1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
D1410.9976 |0.9832 |0.9979 |0.9980 |0.9978 |0.9978 |0.9979 |0.9927 | 0.9978 | 0.9977 | 0.9999 0.9979
D15/ 1.0000 | 0.9736 | 1.0000 | 1.0000 | 0.9787 |1.0000 | 1.0000  0.9886 |1.0000 | 1.0000 1.0000 0.9992
D16 0.9635 | 0.9538 |0.9446 |0.9525 |0.9238 |0.9579 |0.9463 |0.9646 | 0.9526 | 0.9883 0.9586 | 0.9470
D17/ 1.0000 | 0.9997 | 0.9927 |1.0000 |0.9651 |1.0000 | 1.0000 0.9877 |1.0000 | 0.9960 |0.9853 |0.9982
D18/0.9043 | 0.9038 | 0.8956 |0.8758 |0.8619 |0.8908 |0.8436 | 0.8485 |0.8929 |0.8788 |0.9021 |0.8620
D19 0.8860 | 0.8173 |0.7909 |0.7900 |0.7354 |0.5379 |0.6539 |0.7103 |0.8322 | 0.8250 | 0.8003 | 0.5779
D20/ 0.9530 |0.9425 | 0.9710 |0.9607 |0.9767|0.9574 |0.9355 | 0.9410 |0.9356 |0.9464 |0.9516 |0.9210
D21/0.9582 | 0.9442 | 0.9688|0.9682 | 0.9617 |0.9648 |0.9139 |0.9506 | 0.9482 |0.9556 | 0.9453 | 0.9413
D22/0.99770.9901 | 0.9955 |0.9837 |0.9114 |0.9977 |0.9784 | 0.9562 |0.9977 |0.9644 |0.9898 |0.9636
D23/0.9252 |0.9138 | 0.9296 |0.9194 |0.8959 |0.9236 |0.9065 | 0.9371 |0.9238 |0.93780.9325 | 0.8888
D24 10.6832 | 0.6702 |0.6756 |0.6724 |0.6388 |0.6782 |0.6739 |0.6769 | 0.6621 | 0.7057 0.6690 | 0.6624
D25/0.9380 |0.9761 | 0.7578 | 0.6379 |0.5253 |0.5436 |0.5071 | 0.5999 |0.7409 |0.6634 |0.6898 | 0.6021
D26 | 0.8188 | 0.6484 |0.5426 |0.6932 |0.6020 |0.4907 |0.5370 |0.6099 |0.6041 |0.5956 |0.6719 | 0.7427
D27/0.9908 |0.9883 | 0.9863 |0.9896 |0.9692 |0.9887 |0.9905 | 0.9796 |0.9917 |0.9885 |0.9882 |0.9864
D28 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000  0.9976 |1.0000 1.0000 | 1.0000 | 1.0000
D29 1.0000 | 0.9996 | 1.0000 |1.0000 | 1.0000  1.0000 1.0000 0.9998 |1.0000  1.0000 | 1.0000 | 1.0000
D30/0.9316 |0.9133 | 0.9145 |0.9079 |0.9329|0.9127 |0.9076 | 0.9264 |0.9064 |0.9164 |0.8998 |0.9024
D31/0.9527 |0.9434 |0.9533 |0.9552|0.9358 |0.9472 |0.9499 |0.9403 | 0.9394 | 0.9428 | 0.9490 | 0.9526
D32/0.9725 | 0.9813  0.9564 |0.9522 |0.9547 |0.9674 |0.9223 | 0.9359 |0.9650 |0.9668 |0.9618 |0.9557
D33/0.7177 | 0.6514 | 0.5362 |0.5216 |0.6014 |0.5129 |0.5453 | 0.6339 |0.4905 |0.6614 |0.5097 |0.5103
D34/ 0.6500 | 0.5919 | 0.5599 |0.5752 |0.5887 |0.5698 |0.5376 | 0.6303 |0.5808 |0.6255 |0.5531 |0.5653
D350.9443 10.9392 | 0.9366 |0.9330 |0.9293 |0.9363 |0.9362 | 0.9458 |0.9325 |0.9480 | 0.9335 |0.9404
D36 | 0.6616 | 0.6312 |0.6654 |0.6433 |0.6479 |0.6663 |0.6493 |0.6473 | 0.6524 | 0.6835 0.6616 | 0.6295
D37/0.8012 |0.7248 | 0.7577 |0.7502 |0.7403 |0.7620 |0.7110 | 0.8075 |0.7300 |0.7816 |0.7539 |0.6260
D380.7201 |0.6960 | 0.6676 |0.7800 |0.5032 |0.7150 |0.7147 | 0.6358 |0.6045 |0.6905 |0.6963 |0.6846
Avg | 0.8679 | 0.8471 |0.8355 |0.8347 |0.8196 |0.8154 |0.8131 |0.8381 |0.8323 | 0.8519 | 0.8368 | 0.8187

algorithm, which requires setting an appropriate K value for different datasets,
reducing the adaptability of the algorithm. Experimental results on 38 KEEL
datasets demonstrate that our method outperforms GDO in terms of the aver-
age rank of all evaluation metrics. Moreover, compared to other state-of-the-art
resampling methods, our method also achieves the best performance.
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