
Approximate Query Processing Based
on Approximate Materialized View

Yuhan Wu1, Haifeng Guo1, Donghua Yang1(B), Mengmeng Li1, Bo Zheng2,
and Hongzhi Wang1

1 Harbin Institute of Technology, Harbin, China
yang.dh@hit.edu.cn

2 ConDB, Beijing, China

Abstract. In the context of big data, the interactive analysis database
system needs to answer aggregate queries within a reasonable response
time. The proposed AQP++ framework can integrate data preprocess-
ing and AQP. It connects existing AQP engine with data preprocessing
method to complete the connection between them in the process of inter-
action analysis.

After the research on the application of materialized views in AQP++
framework, it is found that the materialized views used in the two parts
of the framework both come from the accurate results of precomputa-
tion, so there’s still a time bottleneck under large scale data. Based on
such limitations, we proposed to use approximate materialized views for
subsequent results reuse. We take the method of identifying approximate
interval as an example, compared the improvement of AQP++ by using
approximate materialized view, and trying different sampling methods
to find better time and accurate performance results.

By constructed larger samples, we compared the differences of time,
space and accuracy between approximate and general materialized views
in AQP++, and analyzed the reasons for the poor performance in some
cases of our methods.

Based on the experimental results, it proved that the use of approx-
imate materialized view can improve the AQP++ framework, it effec-
tively save time and storage space in the preprocessing stage, and obtain
the accuracy similar to or better than the general AQP results as well.

Keywords: Approximate materialized view · Materialized views
reuse · AQP++ optimization · Approximate query processing

1 Introduction

With the increasing amount of data, practical applications have higher require-
ment in query. The query results within the precise or error threshold should

This paper was supported by The National Key Research and Development Program
of China (2020YFB1006104) and NSFC grant (62232005).
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 168–185, 2024.
https://doi.org/10.1007/978-981-97-0801-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_10&domain=pdf
https://doi.org/10.1007/978-981-97-0801-7_10

Approximate Query Processing Based on Approximate Materialized View 169

be returned in the acceptable time. Sampling based approximate query process-
ing and aggregate precomputation are the two methods proposed in the past to
try to solve this problem. During interactive queries, the database will produce
a large number of materialized views, and the queries on certain data sets are
usually concentrated in practice, which makes the query results reusable.

AQP++ framework integrates AQP with aggregate precomputation. AQP
usually transforms query conditions in a reasonable way to get approximate
results, data preprocessing focuses on the reasonable organization of data set for
efficient query. However, the reuse results of the two parts of AQP++ all come
from the precise answer of precomputation, so there is still a time bottleneck in
the case of huge data scale.

Considering the reusability and reduction of the materialized views, we pro-
posed a new perspective of approximate materialized view. That is to say,
data preprocessing is based on sampling set, using general methods to gener-
ate approximate materialized views for reuse in the subsequent query process.

Using an approximate materialized view will approximate the results twice,
so we are faced with the challenge of how to choose a way of view generation
and AQP method. We use the precomputing method based on data aggregation
on the results of simple random sampling to generate the interval results as the
approximate materialized view, and identify the approximate intervals on them,
so as to realize the approximate query.

We make the following contributions in this paper:

– Sampling and aggregation precomputing of data sets, and generate approxi-
mate materialized view on the intervals.

– Identifying the approximate interval and get the approximate result.
– Comparison and improvement of sampling methods: select different sampling

methods, or combine multiple sampling methods to find the relatively optimal
method according to their respective time and accuracy performance.

The remaining sections of this paper are organized as follows. In Sect. 2, we
make overview for this paper. In Sect. 3, we introduce the framework and steps of
using approximate materialized view. In Sect. 4, the experimental results indicate
the performance of our method and we carry out comparative experiments and
error analysis. In Sect. 5, we study the influence of parameters. In Sect. 6, we
survey related work for this paper. In Sect. 7, we provide the conclusions and
give a brief overview of our future work.

2 Overview

For the range query of attributes with continuous values on the dataset, the
data cube based method for data preaggregation is a way of AQP. We will
apply this method to sample sets to generate approximate materialized views.
In this section, we will give the definition of the problem and review the interval
partition method.

170 Y. Wu et al.

2.1 Problem Definition

We consider aggregate queries on continuous attributes. Let the value range of
the query attribute be [x, y], aggregate query is defined as the number of samples
whose values belong to the query interval [a, b]. Suppose through data preaggre-
gation, we have obtained the approximate aggregate value of the attribute on k
different intervals: [a, x1], [x1, x2, ..., [xk−1, b], these results will be reused as our
materialized views. Take the age query on census data as an example, the new
range query is:

SELECT age, COUNT(*) FROM census WHERE a ≤ age ≤ b

We aim to use one or more views as approximate solutions of actual query
intervals. For example, use the sum of aggregate values of interval [xt−1, xt] and
[xt, xt+1] to replace [a, b] if ‖a − xt−1‖ ≤ ε and ‖b − xt+1‖ ≤ ε.

2.2 Data Aggregation

This paper uses the preaggregation and approximate interval recognition meth-
ods based on interval partition provided by previous strudies. It finds some par-
tition points and approximate point of query according to interval evaluation.

Partition Evaluation. The current partition points on the ordered dataset is
x1, x2, ..., xn. For any query point x, Ix and Hx are represented the first partition
point less than x and the first partition point greater than x respectively. The
interval [Ix,Hx] is also divided into two parts Lx and Lx as shown in Fig. 1.

Fig. 1. Interval Partition

Approximate method will select Ix or Hx to replace the query point x, so
the error comes from the smaller value between Lx and Lx. Define error as:

errorx = min{λN√
n

√
var(ALx

),
λN√

n

√
var(ALx

)} (1)

If i and j are the two points with the largest error in the whole dataset, then
the upper bound of the interval error will be errori + errorj .

Approximate Query Processing Based on Approximate Materialized View 171

Data Aggregation and Precomputation. Interval Partition use the adaptive
climbing method, starting from the initial state, trying to move the partition
point to a better position according to the evaluation (1). The specific steps of
the algorithm will be given in Sect. 3.

Aggregation Recognition. After interval pre partition, for query in interval
[a, b], there are four most relevant intervals: [Ia, Ib], [Ia,Hb], [Ha, Ib], [Ha,Hb].
Calculate confidence on these candidate intervals:

λN

√
var(cond(A = 0))

n
(2)

where cond(A = 0) means {x|x ∈ data, x /∈ A}. Calculate the confidence of
candidate interval on subsampling, and choose one of them with the minimum
confidence as the approximate result.

3 Reuse of Approximate Materialized View

In this section, we divide the reuse of approximate materialized view into two
parts: view generation and query approximate interval recognition. In the part of
view generation, we find the partition points of the sampling data according to
the method described in Sect. 2 and store the aggregation results of the partition
intervals. Note that these aggregation results are based on the sampling set, so
they are approximate. In the part of interval recognition, based on the method
described in Sect. 2, we find four candidate values corresponding to the query
interval, and choose the best one according to their confidence. That is to achieve
the approximate treatment of approximate materialized view.

3.1 Aggregation and Precomputing

In this part, we need to sample the dataset, and find a resonable partition of
the sampled data, use the aggregation results of each partition as a materialized
view for subsequent reuse.

Firstly we use simple random sampling, assume that the sampled data has
been sorted, and a parameter k is given to represent the number of partition
points. Starting with an initial partition, each iteration calculates the upper
bound of the current partition error, only when the new iteration reduces the
upper bound can the partition points move. When it need to move the parti-
tion point, we move the point with the minimum moving error to the position
with the maximum error in the dataset. The details will be introduced with the
description of the pseudo code in Algorithm 1.

The pseudo code of partition points generation is shown in Algorithm 1. We
first sample and sort the dataset (Line 1). Then we initialize the partition points,
here we find k points evenly on the sample set (Line 2). We define three condi-
tions to stop the algorithm: (a)iterations exceeds the threshold, (b)new iteration
cannot reduce the upper bound of error, (c)no better partition points can be
found. We initialize the above three conditions (Line 3–5).

172 Y. Wu et al.

Algorithm 1: Interval Partition
Input: dataset D, number of partition points k, maximum iteration Imax

Result: partition points set P = {p1,2 , ..., pk}
1 S ← Sample_Sort(D);
2 P ← EqualPartition(S, k);
3 iterator ← 0;
4 upper ← +∞;
5 stop ← False;
6 while not stop and ErrorBound(P) ≤ upper and iterator ≤ Imax do
7 i1 ← argmaxi error(S);
8 i2 ← argmaxi�=i1 error(S);
9 if i1, i2 ∈ P then

10 stop ← True;
11 else
12 t ← argmint∈[1,k]{maxr∈S∧r∈[pt−1,pt+1] error(Sr)};
13 if i1 /∈ P then
14 pt ← i1;
15 else
16 pt ← i2;
17 end
18 end
19 end

In an iteration, we find two points i1, i2 with the largest error in the sampling
set (Line 7–8). We should move the partition points to i1 or i2 to reduce the upper
bound of error. If i1, i2 are already partition points, means algorithm has found
the partition result (Line 9–10). Otherwise, we need to select a partition point to
move to the location of i1 or i2. Suppose three consecutive partition points are
pt−1, pt, pt+1, after moving pt, only the query on [pt−1, pt+1] will be affected by
pt and may choose other approximate points. So we define the movement error
of pt as the maximum error of interval [pt−1, pt+1], find the partition point with
the minimum moving error to move (Line 12). Note that error of i1 is greater
than that of i2, so we move to the location of i1 preferentially (Line 13–17).

At the end of the algorithm, we get the set of partition points on the sampling
set, the aggregation values on the intervals according to these points will be used
as approximate materialized view.

3.2 Approximate Interval Recognition

In Sect. 3.1, we store approximate aggregation values on several intervals. We aim
to identify the available partition intervals and find the approximate results when
a new query comes. We have reviewed the principle of approximate identification
in Sect. 2.2, details and the pseudo code will be explained in Algorithm 2.

The pseudo code of finding approxiamte result is shown in Algorithm 2. We
first find the four closest partition points to the upper and lower bounds a and b

Approximate Query Processing Based on Approximate Materialized View 173

Algorithm 2: Interval Recognition
Input: sample set S, partition points set P , approximate aggregate values

V = {Vi|sum(pi−1 ≤ x ≤ pi) ∧ x ∈ S}, query interval [a, b]
Result: approximate aggregation value Q̂

1 Ia, Ib, Ha, Hb ← LowAndHighPoint(P, a, b);
2 C ← {[Ia, Ib], [Ia, Hb], [Ha, Ib], [Ha, Hb]};
3 c ← +∞;
4 interval ← ∅;
5 S′ ← Subsample(S);
6 for t in C do
7 tmp ← confidence(t, S′);
8 if tmp < c then
9 c ← tmp;

10 interval ← t;
11 end
12 end
13 Q̂ ← AggregationV alue(interval, V);

of the query (Line 1), according to these four points constructed four candidate
intervals (Line 2). Initialize to find the candidate interval (Line 3–4). In order to
improve the computational efficiency of confidence, the set is subsampled once
(Line 5). Calculate the confidence of candidate interval in subsample set S′ and
find the minimum (Line 6–12). Finally, the approximate result can be obtained
by simple calculation according to the stored aggregated values V and the found
interval (Line 13).

Example 3.2. We want to find out the age distribution in the census data, and
there comes a query:

SELECT age, COUNT(*) FROM census WHERE 23 ≤ age ≤ 67.

Assume that the age distribution on the census is between [10, 100], and after
Algorithm 1 we got a set of 6 partition points as P = {22, 35, 47, 61, 85, 100}. So
we know Ia = 22, Ib = 61,Ha = 35,Hb = 85 and get the four candidate intervals
as [22, 61], [22, 85], [35, 61], [35, 85]. After confidence calculation, we get that the
interval [22, 61] is the best approximate result, then we can get the aggregation
result by adding the precomputed values of [10, 22], [22, 35], [35, 47], [47, 61].

3.3 Analysis for Twice Approximations

We use the following theorem to prove that the error of twice approximation
methods using approximate materialized views is controllable.

Result Estimation. Given dataset D and the sample set S on D, for some
aggregate queries q, the answer can be estimated from the sample:

q(D) ≈ q̂(S) (3)

174 Y. Wu et al.

AQP++ uses samples to estimate the difference between query results and pre
calculated aggregate values. Let q denote user’s query, pre denote precomputed
aggregate quary on complete dataset, i.e.

q: SELECT f(A) FROM D WHERE Condition
q: SELECT f(A) FROM D WHERE Condition

AQP++ estimates the differences in query results as follows:

q(D) − pre(D) ≈ q̂(S) − ˆpre(S)q(D) ≈ pre(D) + q̂(S) − ˆpre(S) (4)

In the general case, after data pre aggregate, the pre(D) obtained by AQP++ is a
known constant. Moreover, AQP++ can estimate the results of user’s query q̂(S)
and the precomputed results ˆpre(S) by formula (3). Bring these two estimates
into formula (4) to get the final approximate results. When data pre aggregation
is based on samples, we use Δ to represent the difference between sample set S
and dataset D, i.e. pre(D) = pre(S) + Δ. Substitute it into formula (??), there
will be:

q(D) ≈ pre(S) + Δ + q̂(S) − ˆpre(S) (5)

where pre(S) has been precomputed. Similarly, we can get q̂(S) and ˆpre(S) by
formula (3).

Error Estimation of Twice Approximation. We use the approximate mate-
rialized views for estimation, formula (5) is further approximated by rounding
off Δ:

q(D) ≈ pre(S) + q̂(S) − ˆpre(S) (6)

Compare formula (4) and (6), the difference is only the constant value pre(D)
and pre(S) in the precomputation part on the right side of the formula, so
Lemma 1 still holds.

Lemma 1. For any aggregation function f , if AQP can anwer queries like:
SELECT f(A) FROM D WHERE Condition, then AQP++ can also answer the
query.

Because the constant value from pre(D) to pre(S), when AQP gets unbiased
estimation, the answer returned by twice approximation is likely to be biased.
If AQP get the unbiased answer, i.e. q(D) = E[q̂(S)] and pre(D) = E[ˆpre(S)].
Based on formula (6) we get the result pre(S) + q̂(S) − ˆpre(S), calculate its
expectation:

E[pre(S) + q̂(S) − ˆpre(S)]
= E[pre(S)] + (E[q̂(S)] − E[ˆpre(S)])
= pre(S) + (q(D) − pre(D))
= q(D) + (pre(S) − pre(D))
= q(D) − Δ

(7)

When precomputation is based on the complete datasetm, i.e. pre(S) equals
pre(D), AQP++ get unbiased estimation. But when the precomputation is based

Approximate Query Processing Based on Approximate Materialized View 175

on the sample set, the expectation difference after twice approximation only
comes from the difference Δ. Then we consider the variance of twice approxima-
tion:

D[pre(S) + q̂(S) − ˆpre(S)]

= E{[pre(S) + q̂(S) − ˆpre(S) − (pre(S) + q̂(S) − ˆpre(S))]2}
= E{[pre(S) + q̂(S) − ˆpre(S) − (q(D) + (pre(S) − pre(D)))]2}
= E{[pre(D) − ˆpre(S)]2}
= E{pre2(D) − 2pre(D) ˆpre(S) + ˆpre2(S)}
= pre2(D) − 2pre(D) ˆpre(S) + D(ˆpre(S)) + E2[ˆpre(S)]
= D[ˆpre(S)]

(8)

Formula (8) explain that the variance of the result estimation is completely
from the error of sample estimation in the pre aggregation stage. Therefore, it
can be inferred from the results of formula (7) and (8) that a reasonable sampling
method can make the preprocessing result on the sample dataset approximate
to that on the complete dataset. It means the error of twice approximation is
controllable.

4 Experimental Results

In this seciton, we exprimentally study the proposed algorithms.

4.1 Experimental Setup

We will introduce the hardware, datasets and some important parameters before
we describe and analyze the experimental results.

Hardware All the experiments were conducted on a laptop with an Intel Core
i7 CPU with 2.20GHz clock frequency and 16GB of GAM.

Datasets We use UCI’s public dataset: Adult Data Set. This dataset is
extracted from census data, with 15 attributes and 32561 instances. Attributes
include numerical (age, income, etc.) and discrete (gender, nationality, etc.) The
attribute fnlwgt is the weight control value, because it has no important mean-
ing in the queries, we ignored it in the experiment. Each row of the dataset has
an instance, the attributes are arranged in order and separated by commas.

Parameters We execute experiments on attribute age, which is a integer
attribute and has the value range [17, 75]. The default number of interval parti-
tion points k = 5.

4.2 Accuracy

The sampling methods are simple random sampling and stratified sampling
based on attribute age, about 10% of the data are extracted from both sampling
methods. We analyze the accuracy of approximate materialized views reuse from
two perspectives:

176 Y. Wu et al.

– The difference between the approximate query results on the approximate
materialized view and the exact query results on the complete dataset: com-
pare absolute error, X and Y axis are the upper and lower bounds of recog-
nition interval, the error is taken as Z axis. The mark lines for X and Y axis
represent the results of interval partition in preprocessing.

– The difference between the approximate query results on the approximate
materialized view and the approximate query results on the complete dataset:
the interval partitions are obtained on the sampling sample and the complete
dataset respectively. Then get the approximate results according to the parti-
tion points. We compare the difference between them and show it in the form
of triangular surface graph. The difference is represented by QC − QAMV ,
where QC is the results on complete dataset, QAMV is the result based on
approximate materialized views. The blue and red mark line of X and Y aixs
represent the repective results of interval partitions.

Simple Random Sampling. Using simple random sampling, the results are
shown in Fig. 2. The processing time to generate the partition is about 627 s.

Fig. 2. Accuracy of simple random sampling

Figure 2(a) indicates the errors are concentrated in the region of 0% and 15%,
few points (only one in Figure) is more than 35%. It shows that the error can
be stablized within 15% by using our method.

Analyze the results in Fig. 2(b), it can be roughly divided into three different
areas: high-rise area, smooth area with error difference about 0% and concave
area. The smooth area represents the approximate query result based on the
approximate materialized view is similar to that using the exact materialized
view. The high-rise area indicates that our method performs better, and concave
area means it is not good as using materialized view from the complete dataset.
Since most of the regions in the graph are smooth and high-rise, it can be shown

Approximate Query Processing Based on Approximate Materialized View 177

that the approximate query based on approximate materialized views has better
performance in accuracy on simple random sampling.

Attribute Stratified Sampling. We set every 10 years as a layer for stratified
sampling and the results shown in Fig. 3. The processing time to generate the
partition is about 624 s.

Fig. 3. Accuracy of stratified sampling

Errors in Fig. 3(a) are also concentrated in the region of 0% and 15%. But
compared with Fig. 2(a), there are more points with large error (more than 35%),
indicating that stratified sampling is not as accurate as simple random sampling
in reusing approximate materialized views. Similarly divide Fig. 3(b) into three
areas. Compared with Fig. 2(b), there is a significant difference in the scale of Y
axis, which indicates that stratified sampling for approximate materialized view
reuse can get a closer result than directly reusing materialized view. And most
of the areas in Fig. 3(b) are above 0%, shows that stratified sampling can get
better accuracy results.

Error Analysis. Based on the precomputation of Fig. 2(a) and 3(b), we take
multiple perspectives of the result graph to analyze the error. We use red arrows
and red dotted line box to identify the parts with lower error in the result of
the diagram, and use black dashed line to mark the line lower = upper on the
lower − upper plane. The results of two sampling methods are shown in Fig. 4
and 5.

Notice the red marked parts in Fig. 4 and 5, the lower errors are concentrated
near the blue border on the lower − upper plane. It shows that the error of
approximate query is lower when query interval approaches the partition interval.
This is corresponding to with the theory, i.e. when query interval is replaced by
the partition intervals, there has lower error. When query interval moves to the
inside of the blue line, the error trends to rise, and reach the peak in the most

178 Y. Wu et al.

Fig. 4. Accuracy on simple random sampling. (Color figure online)

central areas, which also indicates that the query accuracy is lower when query
interval distance from partition intervals.

By observing the scattered points projected near the black dotted line, the
query error varies from high to low, showing an obvious fluctuation trend. The
possible reason is: when the upper and lower bounds of query are close, the
approximate query interval is easily changed to [pi, pi] (pi is a partition point), so
the returned result will be 0. Once the actual data is distributed on [pi−ε, pi+ε],
the approximate result is far from the actual result.

Analyze the Fig. 2(b) and 3(b) more specifically. Use red arrows and red
dotted line box the mark the high-rise part, and use the black dotted line to
mark the line lower = upper on the lower − upper plane. The results are shown
in Fig. 6.

The red mark in Fig. 6 indicates that the error of using approximate materi-
alized view is lower than that of using general views. Moreover, these intervals
show a trend of a lower bound and higher upper bound, that is, when the interval
span is larger, using approximate materialized views can improve the effect obvi-
ously. The projection area near the black dotted line is basically at 0%, which
indicates that when intervals have similar lower and upper bounds, the approx-
imate materialized view has almost the same accuracy as the general method.
It can be seen that this type of query interval is prone to high and low query
error, which is the original limitation of using data aggregation method, and it
can not be improved by using approximate materialized view.

Approximate Query Processing Based on Approximate Materialized View 179

Fig. 5. Accuracy on stratified sampling. (Color figure online)

4.3 The Summary of Experimental Results

We summarize the experimental results as follows:

– In most cases, the performance of reusing approximate materialized view is
better than that of reusing general materialized view. It can not only save
preprocessing time and storage space, but also have better accuracy.

– The error of reusing approximate materialized view is mainly limited by the
method of data pre aggregation.

5 Influence of Parameters

In this section, we modified the experimental parameters to study their influence
on the results. These parameters include sample size and the number of partition
points k.

5.1 Sample Size

We stay the other experimental conditions the same, using simple random sam-
pling, selected 10%, 20%, 30% and 50% from the complete dataset to repeat the
above experiments. The results are shown in Fig. 7. Figure 7 indicates that under
different sample size, the error of using approximate materialized view is about

180 Y. Wu et al.

Fig. 6. Accuracy of stratified sampling

15%, and the increase of sample size has little effect on the accuracy. We think
the possible reason is: the query processing use the data aggregation recognition
method, query error of this method mainly comes from the difference between
the pre partition points and the real query interval. The change of sample size
will not lead to a huge difference of interval partition, so it has no obvious impact
on the accuracy.

We compare the interval partitions under different sample size as shown in
Fig. 8. Figure 8(a) indicates there is no significant difference in the time of interval
partition within the increase of sample size, and Fig. 8(b) shows the results of
interval partition are similar. So we can infer that the sample size has little
effect on improving the pretreatment time and accuracy of reusing approximate
materialized view. But considering the space occupation, lower sample size has
better space performance.

5.2 Number of Partition Points

We stay the other experimental conditions the same, using simple random sam-
pling to take about 10% samples, set the number of partition points as 3, 5, 8,
10 to repeat these experiments. The accuracy are shown in Fig. 9.

Figure 9 shows the error concentration area decreases significantly with the
increase of k, so the parameter k can improve the approximate materialized

Approximate Query Processing Based on Approximate Materialized View 181

Fig. 7. Accuracy under different sampling scale

view. Then we compare the time-consuming of interval partition and the reduced
preprocessing time by using sampling under different k, results are shown in
Fig. 10.

From the results of Fig. 10, the preprocessing time is positively correlated
with number of partition points k, and the use of sampling can effectively reduce
the time of interval partition. Moreover, this performance improvement increases
with the increase of k. It shows that our method can improve the performance
greatly when k is large.

Finally we compared the difference between using approximate materialized
view and general view under different parameter k, as shown in Fig. 11.

According to previous description, the area above 0% in Fig. 11 indicates
that our approximate materialized view have better performance. Figure 11(a)
shows when k is too small, there is almost no high-rise area. As the number of
partition points from k = 5 to k = 8, high-rise area increases obviously, and the
depression area of k = 8 is smaller than that of k = 5. It shows that the increase
of k makes the use of approximate materialized view more efficient than general
views. When k becomes large (k = 10), the increase of high-rise area is no longer
obvious, but the peak value decrease, which indicates that the difference between
our method and general method is reduced. However, most of the areas are still
above the horizontal plane, so using approximate materialized view still has the
advantage of accuracy.

5.3 The Summary of Parameter Setting

We summarize the influence of parameters as follows:

182 Y. Wu et al.

Fig. 8. Different Sample Size

– From the perspective of sampling method, single attribute stratified sampling
and simple random sampling have little influence on the results.

– From the perspective of sample size, increasing the sampling scale can effec-
tively improve the accuracy of AQP. However, the too large sample size
is no longer obviously improve the performance, and the space occupation
increases. The 30% sampling ratio in the experiment can get the best results.

– From the selection of parameter k, it directly affect the accuracy of AQP.
When the number of partition is increased, the accuracy will be improved
but the preprocessing time will be increased too. In our experiment, choosing
the number of partition points with k = 8 can get the best comprehensive
result.

6 Related Work

Tranditional database management systems execute query paradigm based on
blocking. In order to deal with the challenge of interactive analysis database sys-
tem answering aggregate query in a reasonable time under large scale of data, the
technology of pre aggregation (materialized view, data cube) can significantly
reduce query latency. But they need a lot of preprocessing, there are dimension
bottlenecks and the cost of storing a complete data cube is usually very expen-
sive. The methods that try to overcome these problems (such as imMens and
NanoCubes) usually limit the number of attributes that can be filtered at the
same time, and limit the possible exploration paths.

In order to achieve low latency query, the system for interactive data explo-
ration must rely on AQP, which provide query result estimation with bounded
error. Most AQP systems conduct research on sampling, including using some
form of biased sampling (such as AQUA, BlinkDB [2], DICE), and study how to
generate better hierarchical samples [2–6], or trying to supplement samples with
auxiliary index [3,7]. However, these methods usually need a lot of preprocessing
time to obtain prior knowledge, which is still insufficient in the face of unknown
queries. In addition to sampling based AQP, some non sampling techniques are

Approximate Query Processing Based on Approximate Materialized View 183

Fig. 9. Accuracy under different k

also proposed in the study [8,9]. They provide certainty by using indexes rather
than samples. But for interactive query types, their effectiveness is not as good
as sampling based AQP.

Based on the combination of preprocessing and approximate query, the pro-
posed AQP++ framework [10,11] is used to connect any existing AQP engine
with aggpre for the connection of AQP and aggregate precomputation of inter-
action analysis.

In many AQP systems, the ueusability of materialized views is brought into
full play [12]. And there are many sample collection methods to help us study
the generation of approximate materialized view [13,14].

Fig. 10. Time Performance under different k

184 Y. Wu et al.

Fig. 11. Compared with General Views

7 Conclusion

In this paper, we proposed to generate approximate materialized views on sample
datasets and combine it with AQP++ framework to improve its performance in
the data preprocessing stage. The experimental results show that sampling can
reduce the preprocessing time based on data aggregation, thus greatly improving
the overall time performance and reduces the occupation of storage space. And
when the sample size is not too small, using approximate materialized views can
get approximate query results with smaller error than using general view in more
cases. Generate a better approximate materialized view is still a problem to be
studied. Our research is limited to the method of data pre aggregation. We plan
to horizontally select more approximate query methods using materialized views
for comparison, and consider more complex sample extraction methods to test
our views.

References

1. Gray, J., et al.: Data cube: a relational aggregation operator generalizing group-
by, cross-tab, and sub totals. In: Data Mining and Knowledge Discovery, pp. 29–53
(1997)

Approximate Query Processing Based on Approximate Materialized View 185

2. Agarwal, S., Mozafari, B., Panda, A., Milner, H., Madden, S., Stoica, I.: BlinkDB:
queries with bounded errors and bounded response times on very large data. In:
EuroSys (2013)

3. Chaudhuri, S., Das, G., Datar, M., Motwani, R., Narasayya, V.R.: Overcoming
limitations of sampling for aggregation queries. In: ICDE (2001)

4. Acharya, S., Gibbons, P.B., Poosala, V.: Congressional samples for approximate
answering of group-by queries. ACM SIGMOD Rec. 29(2), 487–498 (2000)

5. Chaudhuri, S., Das, G., Narasayya, V.R.: A robust, optimization-based approach
for approximate answering of aggregate queries. In: SIGMOD (2001)

6. Ganti, V., Lee, M., Ramakrishnan, R.: ICICLES: self-tuning samples for approxi-
mate query answering. In: VLDB (2000)

7. Moritz, D., Fisher, D., Ding, B., Wang, C.: Trust, but verify: optimistic visualiza-
tions of approximate queries for exploring big data. In: CHI (2017)

8. Cao, Y., Fan, W.: Data driven approximation with bounded resources. PVLDB
10(9), 973–984 (2017)

9. Potti, N., Patel, J.M.: DAQ: a new paradigm for approximate query processing.
PVLDB 8(9), 898–909 (2015)

10. Peng, J., Zhang, D., Wang, J., et al.: AQP++: connecting approximate query
processing with aggregate precomputation for interactive analytics. In: The 2018
International Conference. ACM (2018)

11. Wang, Y., Xia, Y., Fang, Q., et al.: AQP++: a hybrid approximate query processing
framework for generalized aggregation queries. J. Comput. Sci. 26, 419–431 (2017)

12. Galakatos, A., Crotty, A., Zgraggen, E., et al.: Revisiting reuse for approximate
query processing. Proc. VLDB Endow. 10(10), 1142–1153 (2017)

13. Gibbons, P.B., Matias, Y.: New sampling-based summary statistics for improving
approximate query answers. ACM SIGMOD Rec. 27(2), 331–342 (1998)

14. Babcock, B., Chaudhuri, S., Das, G.: Dynamic sample selection for approximate
query processing. In: The 2003 ACM SIGMOD International Conference on Man-
agement of Data. ACM (2003)

	Approximate Query Processing Based on Approximate Materialized View
	1 Introduction
	2 Overview
	2.1 Problem Definition
	2.2 Data Aggregation

	3 Reuse of Approximate Materialized View
	3.1 Aggregation and Precomputing
	3.2 Approximate Interval Recognition
	3.3 Analysis for Twice Approximations

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Accuracy
	4.3 The Summary of Experimental Results

	5 Influence of Parameters
	5.1 Sample Size
	5.2 Number of Partition Points
	5.3 The Summary of Parameter Setting

	6 Related Work
	7 Conclusion
	References

