
Zahir Tari
Keqiu Li
Hongyi Wu (Eds.)

LN
CS

 1
44

88

23rd International Conference, ICA3PP 2023
Tianjin, China, October 20–22, 2023
Proceedings, Part II

Algorithms and Architectures
for Parallel Processing

Lecture Notes in Computer Science 14488
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Zahir Tari · Keqiu Li · Hongyi Wu
Editors

Algorithms and Architectures
for Parallel Processing
23rd International Conference, ICA3PP 2023
Tianjin, China, October 20–22, 2023
Proceedings, Part II

Editors
Zahir Tari
Royal Melbourne Institute of Technology
Melbourne, VIC, Australia

Hongyi Wu
University of Arizona
Tucson, AZ, USA

Keqiu Li
Tianjin University
Tianjin, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-981-97-0800-0 ISBN 978-981-97-0801-7 (eBook)
https://doi.org/10.1007/978-981-97-0801-7

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2024

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Paper in this product is recyclable.

https://doi.org/10.1007/978-981-97-0801-7

Preface

On behalf of the Conference Committee, we welcome you to the proceedings of the
2023 International Conference on Algorithms and Architectures for Parallel Process-
ing (ICA3PP 2023), which was held in Tianjin, China from October 20–22, 2023.
ICA3PP2023 was the 23rd in this series of conferences (started in 1995) that are devoted
to algorithms and architectures for parallel processing. ICA3PP is now recognized as the
main regular international event that covers the many dimensions of parallel algorithms
and architectures, encompassing fundamental theoretical approaches, practical exper-
imental projects, and commercial components and systems. This conference provides
a forum for academics and practitioners from countries around the world to exchange
ideas for improving the efficiency, performance, reliability, security, and interoperability
of computing systems and applications.

A successful conferencewould not be possiblewithout the high-quality contributions
made by the authors. This year, ICA3PP received a total of 503 submissions from authors
in 21 countries and regions. Based on rigorous peer reviews by the Program Committee
members and reviewers, 193 high-quality papers were accepted to be included in the
conference proceedings and submitted for EI indexing. In addition to the contributed
papers, six distinguished scholars, Lixin Gao, Baochun Li, Laurence T. Yang, Kun Tan,
Ahmed Louri, and Hai Jin, were invited to give keynote lectures, providing us with
the recent developments in diversified areas in algorithms and architectures for parallel
processing and applications.

Wewould like to take this opportunity to express our sincere gratitude to the Program
Committee members and 165 reviewers for their dedicated and professional service. We
highly appreciate the twelve track chairs, Dezun Dong, Patrick P. C. Lee, Meng Shen,
Ruidong Li, Li Chen, Wei Bao, Jun Li, Hang Qiu, Ang Li, Wei Yang, Yu Yang, and
Zhibin Yu, for their hard work in promoting this conference and organizing the reviews
for the papers submitted to their tracks. We are so grateful to the publication chairs,
Heng Qi, Yulei Wu, Deze Zeng, and the publication assistants for their tedious work in
editing the conference proceedings. We must also say “thank you” to all the volunteers
who helped us at various stages of this conference. Moreover, we were so honored to
have many renowned scholars be part of this conference. Finally, we would like to thank

vi Preface

all speakers, authors, and participants for their great contribution to and support for the
success of ICA3PP 2023!

October 2023 Jean-Luc Gaudiot
Hong Shen

Gudula Rünger
Zahir Tari
Keqiu Li

Hongyi Wu
Tian Wang

Organization

General Chairs

Jean-Luc Gaudiot University of California, Irvine, USA
Hong Shen University of Adelaide, Australia
Gudula Rünger Chemnitz University of Technology, Germany

Program Chairs

Zahir Tari Royal Melbourne Institute of Technology,
Australia

Keqiu Li Tianjin University, China
Hongyi Wu University of Arizona, USA

Program Vice-chair

Wenxin Li Tianjin University, China

Publicity Chairs

Hai Wang Northwest University, China
Milos Stojmenovic Singidunum University, Serbia
Chaofeng Zhang Advanced Institute of Industrial Technology,

Japan
Hao Wang Louisiana State University, USA

Publication Chairs

Heng Qi Dalian University of Technology, China
Yulei Wu University of Exeter, UK
Deze Zeng China University of Geosciences (Wuhan), China

viii Organization

Workshop Chairs

Laiping Zhao Tianjin University, China
Pengfei Wang Dalian University of Technology, China

Local Organization Chairs

Xiulong Liu Tianjin University, China
Yitao Hu Tianjin University, China

Web Chair

Chen Chen Shanghai Jiao Tong University, China

Registration Chairs

Xinyu Tong Tianjin University, China
Chaokun Zhang Tianjin University, China

Steering Committee Chairs

Yang Xiang (Chair) Swinburne University of Technology, Australia
Weijia Jia Beijing Normal University and UIC, China
Yi Pan Georgia State University, USA
Laurence T. Yang St. Francis Xavier University, Canada
Wanlei Zhou City University of Macau, China

Program Committee

Track 1: Parallel and Distributed Architectures

Dezun Dong (Chair) National University of Defense Technology,
China

Chao Wang University of Science and Technology of China,
China

Chentao Wu Shanghai Jiao Tong University, China

Organization ix

Chi Lin Dalian University of Technology, China
Deze Zeng China University of Geosciences, China
En Shao Institute of Computing Technology, Chinese

Academy of Sciences, China
Fei Lei National University of Defense Technology,

China
Haikun Liu Huazhong University of Science and Technology,

China
Hailong Yang Beihang University, China
Junlong Zhou Nanjing University of Science and Technology,

China
Kejiang Ye Shenzhen Institute of Advanced Technology,

Chinese Academy of Sciences, China
Lei Wang National University of Defense Technology,

China
Massimo Cafaro University of Salento, Italy
Massimo Torquati University of Pisa, Italy
Mengying Zhao Shandong University, China
Roman Wyrzykowski Czestochowa University of Technology, Poland
Rui Wang Beihang University, China
Sheng Ma National University of Defense Technology,

China
Songwen Pei University of Shanghai for Science and

Technology, China
Susumu Matsumae Saga University, Japan
Weihua Zhang Fudan University, China
Weixing Ji Beijing Institute of Technology, China
Xiaoli Gong Nankai University, China
Youyou Lu Tsinghua University, China
Yu Zhang Huazhong University of Science and Technology,

China
Zichen Xu Nanchang University, China

Track 2: Software Systems and Programming Models

Patrick P. C. Lee (Chair) Chinese University of Hong Kong, China
Erci Xu Ohio State University, USA
Xiaolu Li Huazhong University of Science and Technology,

China
Shujie Han Peking University, China
Mi Zhang Institute of Computing Technology, Chinese

Academy of Sciences, China

x Organization

Jing Gong KTH Royal Institute of Technology, Sweden
Radu Prodan University of Klagenfurt, Austria
Wei Wang Beijing Jiaotong University, China
Himansu Das KIIT Deemed to be University, India
Rong Gu Nanjing University, China
Yongkun Li University of Science and Technology of China,

China
Ladjel Bellatreche National Engineering School for Mechanics and

Aerotechnics, France

Track 3: Distributed and Network-Based Computing

Meng Shen (Chair) Beijing Institute of Technology, China
Ruidong Li (Chair) Kanazawa University, Japan
Bin Wu Institute of Information Engineering, China
Chao Li Beijing Jiaotong University, China
Chaokun Zhang Tianjin University, China
Chuan Zhang Beijing Institute of Technology, China
Chunpeng Ge National University of Defense Technology,

China
Fuliang Li Northeastern University, China
Fuyuan Song Nanjing University of Information Science and

Technology, China
Gaopeng Gou Institute of Information Engineering, China
Guangwu Hu Shenzhen Institute of Information Technology,

China
Guo Chen Hunan University, China
Guozhu Meng Chinese Academy of Sciences, China
Han Zhao Shanghai Jiao Tong University, China
Hai Xue University of Shanghai for Science and

Technology, China
Haiping Huang Nanjing University of Posts and

Telecommunications, China
Hongwei Zhang Tianjin University of Technology, China
Ioanna Kantzavelou University of West Attica, Greece
Jiawen Kang Guangdong University of Technology, China
Jie Li Northeastern University, China
Jingwei Li University of Electronic Science and Technology

of China, China
Jinwen Xi Beijing Zhongguancun Laboratory, China
Jun Liu Tsinghua University, China

Organization xi

Kaiping Xue University of Science and Technology of China,
China

Laurent Lefevre National Institute for Research in Digital Science
and Technology, France

Lanju Kong Shandong University, China
Lei Zhang Henan University, China
Li Duan Beijing Jiaotong University, China
Lin He Tsinghua University, China
Lingling Wang Qingdao University of Science and Technology,

China
Lingjun Pu Nankai University, China
Liu Yuling Institute of Information Engineering, China
Meng Li Hefei University of Technology, China
Minghui Xu Shandong University, China
Minyu Feng Southwest University, China
Ning Hu Guangzhou University, China
Pengfei Liu University of Electronic Science and Technology

of China, China
Qi Li Beijing University of Posts and

Telecommunications, China
Qian Wang Beijing University of Technology, China
Raymond Yep University of Macau, China
Shaojing Fu National University of Defense Technology,

China
Shenglin Zhang Nankai University, China
Shu Yang Shenzhen University, China
Shuai Gao Beijing Jiaotong University, China
Su Yao Tsinghua University, China
Tao Yin Beijing Zhongguancun Laboratory, China
Tingwen Liu Institute of Information Engineering, China
Tong Wu Beijing Institute of Technology, China
Wei Quan Beijing Jiaotong University, China
Weihao Cui Shanghai Jiao Tong University, China
Xiang Zhang Nanjing University of Information Science and

Technology, China
Xiangyu Kong Dalian University of Technology, China
Xiangyun Tang Minzu University of China, China
Xiaobo Ma Xi’an Jiaotong University, China
Xiaofeng Hou Shanghai Jiao Tong University, China
Xiaoyong Tang Changsha University of Science and Technology,

China
Xuezhou Ye Dalian University of Technology, China
Yaoling Ding Beijing Institute of Technology, China

xii Organization

Yi Zhao Tsinghua University, China
Yifei Zhu Shanghai Jiao Tong University, China
Yilei Xiao Dalian University of Technology, China
Yiran Zhang Beijing University of Posts and

Telecommunications, China
Yizhi Zhou Dalian University of Technology, China
Yongqian Sun Nankai University, China
Yuchao Zhang Beijing University of Posts and

Telecommunications, China
Zhaoteng Yan Institute of Information Engineering, China
Zhaoyan Shen Shandong University, China
Zhen Ling Southeast University, China
Zhiquan Liu Jinan University, China
Zijun Li Shanghai Jiao Tong University, China

Track 4: Big Data and Its Applications

Li Chen (Chair) University of Louisiana at Lafayette, USA
Alfredo Cuzzocrea University of Calabria, Italy
Heng Qi Dalian University of Technology, China
Marc Frincu Nottingham Trent University, UK
Mingwu Zhang Hubei University of Technology, China
Qianhong Wu Beihang University, China
Qiong Huang South China Agricultural University, China
Rongxing Lu University of New Brunswick, Canada
Shuo Yu Dalian University of Technology, China
Weizhi Meng Technical University of Denmark, Denmark
Wenbin Pei Dalian University of Technology, China
Xiaoyi Tao Dalian Maritime University, China
Xin Xie Tianjin University, China
Yong Yu Shaanxi Normal University, China
Yuan Cao Ocean University of China, China
Zhiyang Li Dalian Maritime University, China

Track 5: Parallel and Distributed Algorithms

Wei Bao (Chair) University of Sydney, Australia
Jun Li (Chair) City University of New York, USA
Dong Yuan University of Sydney, Australia
Francesco Palmieri University of Salerno, Italy

Organization xiii

George Bosilca University of Tennessee, USA
Humayun Kabir Microsoft, USA
Jaya Prakash Champati IMDEA Networks Institute, Spain
Peter Kropf University of Neuchâtel, Switzerland
Pedro Soto CUNY Graduate Center, USA
Wenjuan Li Hong Kong Polytechnic University, China
Xiaojie Zhang Hunan University of Technology and Business,

China
Chuang Hu Wuhan University, China

Track 6: Applications of Parallel and Distributed Computing

Hang Qiu (Chair) Waymo, USA
Ang Li (Chair) Qualcomm, USA
Daniel Andresen Kansas State University, USA
Di Wu University of Central Florida, USA
Fawad Ahmad Rochester Institute of Technology, USA
Haonan Lu University at Buffalo, USA
Silvio Barra University of Naples Federico II, Italy
Weitian Tong Georgia Southern University, USA
Xu Zhang University of Exeter, UK
Yitao Hu Tianjin University, China
Zhixin Zhao Tianjin University, China

Track 7: Service Dependability and Security in Distributed
and Parallel Systems

Wei Yang (Chair) University of Texas at Dallas, USA
Dezhi Ran Peking University, China
Hanlin Chen Purdue University, USA
Jun Shao Zhejiang Gongshang University, China
Jinguang Han Southeast University, China
Mirazul Haque University of Texas at Dallas, USA
Simin Chen University of Texas at Dallas, USA
Wenyu Wang University of Illinois at Urbana-Champaign, USA
Yitao Hu Tianjin University, China
Yueming Wu Nanyang Technological University, Singapore
Zhengkai Wu University of Illinois at Urbana-Champaign, USA
Zhiqiang Li University of Nebraska, USA
Zhixin Zhao Tianjin University, China

xiv Organization

Ze Zhang University of Michigan/Cruise, USA
Ravishka Rathnasuriya University of Texas at Dallas, USA

Track 8: Internet of Things and Cyber-Physical-Social Computing

Yu Yang (Chair) Lehigh University, USA
Qun Song Delft University of Technology, The Netherlands
Chenhan Xu University at Buffalo, USA
Mahbubur Rahman City University of New York, USA
Guang Wang Florida State University, USA
Houcine Hassan Universitat Politècnica de València, Spain
Hua Huang UC Merced, USA
Junlong Zhou Nanjing University of Science and Technology,

China
Letian Zhang Middle Tennessee State University, USA
Pengfei Wang Dalian University of Technology, China
Philip Brown University of Colorado Colorado Springs, USA
Roshan Ayyalasomayajula University of California San Diego, USA
Shigeng Zhang Central South University, China
Shuo Yu Dalian University of Technology, China
Shuxin Zhong Rutgers University, USA
Xiaoyang Xie Meta, USA
Yi Ding Massachusetts Institute of Technology, USA
Yin Zhang University of Electronic Science and Technology

of China, China
Yukun Yuan University of Tennessee at Chattanooga, USA
Zhengxiong Li University of Colorado Denver, USA
Zhihan Fang Meta, USA
Zhou Qin Rutgers University, USA
Zonghua Gu Umeå University, Sweden
Geng Sun Jilin University, China

Track 9: Performance Modeling and Evaluation

Zhibin Yu (Chair) Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, China

Chao Li Shanghai Jiao Tong University, China
Chuntao Jiang Foshan University, China
Haozhe Wang University of Exeter, UK
Laurence Muller University of Greenwich, UK

Organization xv

Lei Liu Beihang University, China
Lei Liu Institute of Computing Technology, Chinese

Academy of Sciences, China
Jingwen Leng Shanghai Jiao Tong University, China
Jordan Samhi University of Luxembourg, Luxembourg
Sa Wang Institute of Computing Technology, Chinese

Academy of Sciences, China
Shoaib Akram Australian National University, Australia
Shuang Chen Huawei, China
Tianyi Liu Huawei, China
Vladimir Voevodin Lomonosov Moscow State University, Russia
Xueqin Liang Xidian University, China

Reviewers

Dezun Dong
Chao Wang
Chentao Wu
Chi Lin
Deze Zeng
En Shao
Fei Lei
Haikun Liu
Hailong Yang
Junlong Zhou
Kejiang Ye
Lei Wang
Massimo Cafaro
Massimo Torquati
Mengying Zhao
Roman Wyrzykowski
Rui Wang
Sheng Ma
Songwen Pei
Susumu Matsumae
Weihua Zhang
Weixing Ji
Xiaoli Gong
Youyou Lu
Yu Zhang
Zichen Xu
Patrick P. C. Lee
Erci Xu

Xiaolu Li
Shujie Han
Mi Zhang
Jing Gong
Radu Prodan
Wei Wang
Himansu Das
Rong Gu
Yongkun Li
Ladjel Bellatreche
Meng Shen
Ruidong Li
Bin Wu
Chao Li
Chaokun Zhang
Chuan Zhang
Chunpeng Ge
Fuliang Li
Fuyuan Song
Gaopeng Gou
Guangwu Hu
Guo Chen
Guozhu Meng
Han Zhao
Hai Xue
Haiping Huang
Hongwei Zhang
Ioanna Kantzavelou

xvi Organization

Jiawen Kang
Jie Li
Jingwei Li
Jinwen Xi
Jun Liu
Kaiping Xue
Laurent Lefevre
Lanju Kong
Lei Zhang
Li Duan
Lin He
Lingling Wang
Lingjun Pu
Liu Yuling
Meng Li
Minghui Xu
Minyu Feng
Ning Hu
Pengfei Liu
Qi Li
Qian Wang
Raymond Yep
Shaojing Fu
Shenglin Zhang
Shu Yang
Shuai Gao
Su Yao
Tao Yin
Tingwen Liu
Tong Wu
Wei Quan
Weihao Cui
Xiang Zhang
Xiangyu Kong
Xiangyun Tang
Xiaobo Ma
Xiaofeng Hou
Xiaoyong Tang
Xuezhou Ye
Yaoling Ding
Yi Zhao
Yifei Zhu
Yilei Xiao
Yiran Zhang
Yizhi Zhou

Yongqian Sun
Yuchao Zhang
Zhaoteng Yan
Zhaoyan Shen
Zhen Ling
Zhiquan Liu
Zijun Li
Li Chen
Alfredo Cuzzocrea
Heng Qi
Marc Frincu
Mingwu Zhang
Qianhong Wu
Qiong Huang
Rongxing Lu
Shuo Yu
Weizhi Meng
Wenbin Pei
Xiaoyi Tao
Xin Xie
Yong Yu
Yuan Cao
Zhiyang Li
Wei Bao
Jun Li
Dong Yuan
Francesco Palmieri
George Bosilca
Humayun Kabir
Jaya Prakash Champati
Peter Kropf
Pedro Soto
Wenjuan Li
Xiaojie Zhang
Chuang Hu
Hang Qiu
Ang Li
Daniel Andresen
Di Wu
Fawad Ahmad
Haonan Lu
Silvio Barra
Weitian Tong
Xu Zhang
Yitao Hu

Organization xvii

Zhixin Zhao
Wei Yang
Dezhi Ran
Hanlin Chen
Jun Shao
Jinguang Han
Mirazul Haque
Simin Chen
Wenyu Wang
Yitao Hu
Yueming Wu
Zhengkai Wu
Zhiqiang Li
Zhixin Zhao
Ze Zhang
Ravishka Rathnasuriya
Yu Yang
Qun Song
Chenhan Xu
Mahbubur Rahman
Guang Wang
Houcine Hassan
Hua Huang
Junlong Zhou
Letian Zhang
Pengfei Wang
Philip Brown
Roshan Ayyalasomayajula

Shigeng Zhang
Shuo Yu
Shuxin Zhong
Xiaoyang Xie
Yi Ding
Yin Zhang
Yukun Yuan
Zhengxiong Li
Zhihan Fang
Zhou Qin
Zonghua Gu
Geng Sun
Zhibin Yu
Chao Li
Chuntao Jiang
Haozhe Wang
Laurence Muller
Lei Liu
Lei Liu
Jingwen Leng
Jordan Samhi
Sa Wang
Shoaib Akram
Shuang Chen
Tianyi Liu
Vladimir Voevodin
Xueqin Liang

Contents – Part II

LearnedSync: A Learning-Based Sync Optimization for Cloud Storage 1
Yuxuan Zhou, Suzhen Wu, Shengzhe Wang, Chunfeng Du, Jiayang Guo,
Yijie Pan, Naian Xiao, and Bo Mao

Optimizing CSR-Based SpMV on a New MIMD Architecture Pezy-SC3s 22
Jihu Guo, Jie Liu, Qinglin Wang, and Xiaoxiong Zhu

Intrusion Detection Method for Networked Vehicles Based
on Data-Enhanced DBN . 40

Yali Duan, Jianming Cui, Yungang Jia, and Ming Liu

A Multi-source Domain Adaption Approach to Minority Disk Failure
Prediction . 53

Wang Wang, Xuehai Tang, Biyu Zhou, Yangchen Dong, Yuanhang Feng,
Jizhong Han, and Songlin Hu

Sequenced Quantization RNN Offloading for Dependency Task in Mobile
Edge Computing . 73

Tan Deng, Shixue Li, Xiaoyong Tang, Wenzheng Liu, Ronghui Cao,
Yanping Wang, and Wenbiao Cao

KylinArm: An Arm Gesture Recognition System for Mobile Devices 92
Shikun Zhao, Jingxuan Hong, Zixuan Zhang, Xuqiang Wang,
Jin Zhang, and Xiaoli Gong

FCSO: Source Code Summarization by Fusing Multiple Code Features
and Ensuring Self-consistency Output . 112

Donghua Zhang, Gang Lei, Jianmao Xiao, Zhipeng Xu, Guodong Fan,
Shizhan Chen, and Yuanlong Cao

Graph Structure Learning-Based Compression Method for Convolutional
Neural Networks . 130

Tao Wang, Xiangwei Zheng, Lifeng Zhang, and Yuang Zhang

Reliability-Aware VNF Provisioning in Homogeneous and Heterogeneous
Multi-access Edge Computing . 147

Haolin Liu, Zehang Tan, Zhetao Li, Saiqin Long, Shujuan Tian,
and Xiaoshan Li

xx Contents – Part II

Approximate Query Processing Based on Approximate Materialized View 168
Yuhan Wu, Haifeng Guo, Donghua Yang, Mengmeng Li, Bo Zheng,
and Hongzhi Wang

Schema Integration on Massive Data Sources . 186
Tianbao Li, Haifeng Guo, Donghua Yang, Mengmeng Li, Bo Zheng,
and Hongzhi Wang

A Hybrid Few-Shot Learning Based Intrusion Detection Method
for Internet of Vehicles . 207

Yixuan Zhao, Jianming Cui, and Ming Liu

Noise-Robust Gaussian Distribution Based Imbalanced Oversampling 221
Xuetao Shao and Yuanting Yan

LAST: An Efficient In-place Static Binary Translator for RISC
Architectures . 235

Yanzhi Lan, Qi Hu, Gen Niu, Xinyu Li, Liangpu Wang, and Fuxin Zhang

Personalized Privacy Risk Assessment Based on Deep Neural Network
for Image Sharing on Social Networks . 255

Hongyun Cai, Ao Zhao, Shiyun Wang, Meiling Zhang, and Yu Zhang

A Pipelined AES and SM4 Hardware Implementation for Multi-tasking
Virtualized Environments . 275

Yukang Xie, Hang Tu, Qin Liu, and Changrong Chen

Blockchain-Assisted Privacy-Preserving Public Auditing Scheme
for Cloud Storage Systems . 292

Wenyu Xiang, Jie Zhao, Hejiao Huang, Xiaojun Zhang, Zoe Lin Jiang,
and Daojing He

MANet: An Architecture Adaptive Method for Sparse Matrix Format
Selection . 311

Zhenglun Sun, Peng Qiao, and Yong Dou

Service-Aware Cooperative Task Offloading and Scheduling
in Multi-access Edge Computing Empowered IoT . 327

Zhiyan Chen, Ming Tao, Xueqiang Li, and Ligang He

Dynamic Multi-bit Parallel Computing Method Based on Reconfigurable
Structure . 347

Lin Jiang, Shuai Liu, Jiayang Zhu, Rui Shan, and Yuancheng Li

Contents – Part II xxi

A Heuristic Method for Data Allocation and Task Scheduling
on Heterogeneous Multiprocessor Systems Under Memory Constraints 360

Junwen Ding, Liangcai Song, Siyuan Li, Chen Wu, Ronghua He,
Zhouxing Su, and Zhipeng Lü

ACDP-Floc: An Adaptive Clipping Differential Privacy Federation
Learning Method for Wireless Indoor Localization . 381

Xuejun Zhang, Xiaowen Sun, Bin Zhang, Fenghe Zhang, Xiao Zhang,
and Haiyan Huang

Label-Only Membership Inference Attack Against Federated Distillation 394
Xi Wang, Yanchao Zhao, Jiale Zhang, and Bing Chen

Efficient Proactive Resource Allocation for Multi-stage Cloud-Native
Microservices . 411

Pengfei Liao, Guanyan Pan, Bei Wang, Xingzhen He, Wenbing Peng,
Minhui Fang, Fanding Huang, Yifei Chen, and Yuxia Cheng

Reliable Function Computation Offloading in Cloud-Edge Collaborative
Network . 433

Shaonan Li, Yongqiang Xie, Zhongbo Li, Jin Qi, and Yumeng Tian

A Fast, Reliable, Adaptive Multi-hop Broadcast Scheme for Vehicular Ad
Hoc Networks . 452

Ping Liu, Xingfu Wang, Ammar Hawbani, Bei Hua, and Liang Zhao

A Grouping-Based Multi-task Scheduling Strategy with Deadline
Constraint on Heterogeneous Edge Computing . 468

Xiaoyong Tang, Wenbiao Cao, Tan Deng, Chao Xu, and Zhihong Zhu

Real-Time Driver Fatigue Detection Method Based on Comprehensive
Facial Features . 484

Yihua Zheng, Shuhong Chen, Jianming Wu, Kairen Chen, Tian Wang,
and Tao Peng

Author Index . 503

LearnedSync: A Learning-Based Sync
Optimization for Cloud Storage

Yuxuan Zhou1, Suzhen Wu1,2, Shengzhe Wang1, Chunfeng Du1, Jiayang Guo3,
Yijie Pan4,5, Naian Xiao6, and Bo Mao1(B)

1 Department of Informatics, Xiamen University, Xiamen, China
maobo@xmu.edu.cn

2 Wuhan National Laboratory for Optoelectronics, Wuhan, China
3 Department of Hematology, School of Medicine, Xiamen University, Xiamen, China

4 Department of Computer Science and Technology, Tsinghua University,
Beijing, China

5 Eastern Institute for Advanced Study, Eastern Institute of Technology,
Ningbo, China

6 Department of Neurology, The Third Hospital of Xiamen, Xiamen, China

Abstract. Cloud sync refers to the synchronization (sync) between
devices for files that live on cloud storage. Its efficiency is critical to deliver-
ing on the promise of anywhere and anytime access for individuals, groups,
or enterprises for cloud storage. However, existing cloud sync optimiza-
tions can be characterized as either full or delta sync with human-driven
configurations. This paper proposes a machine learning-based cloud sync
optimization, LearnedSync, that utilizes machine learning to optimize the
cloud sync process. LearnedSync combines three sync methods with differ-
ent characteristics based on workload characteristics and environmental
conditions. It can learn from actual sync scenes and achieve the learning
effect of offline training. The key idea of LearnedSync is to (1) record the
sync information during each sync and verify whether the sync method is
optimal, (2) train the verified records by using the multilayer perceptron
(MLP) network to select for appropriate sync method, and (3) regularly
update the network to improve the accuracy of decision-making continu-
ously. Our experimental results show that the efficiency of LearnedSync is
higher than existing full sync, FSC-based delta sync, and CDC-based delta
sync. Moreover, LearnedSync increases the cloud sync speed by at least
41.4% when compared to PandaSync, the state-of-the-art sync scheme,
and sync traffic is reduced by 9.6%.

Keywords: Cloud Storage · Sync Optimization · Machine Learning

1 Introduction

The cloud is no longer optional, with over 48% companies planning to move most
of their data to the cloud, and the global cloud computing market has reached
$623.3 billion by the end of 2022. By 2025, cloud-native platforms will host
95% of all new workloads, making cloud usage essential for businesses to remain
competitive [1]. As a result, cloud vendors such as Amazon, Microsoft, Google,
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 1–21, 2024.
https://doi.org/10.1007/978-981-97-0801-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_1&domain=pdf
https://doi.org/10.1007/978-981-97-0801-7_1

2 Y. Zhou et al.

and Alibaba have invested in cutting-edge work to address the performance of
distributed cloud infrastructures on a global scale [2]. Cloud synchronization
(sync) technology is desirable and urgent, with about a third of an average
company’s IT expenses going toward cloud services.

For companies to stay competitive, embracing the cloud and modernizing
IT is essential. To achieve cloud migration for enterprises and users, an efficient
and cost-effective data sync technology is required. This technology, known as
cloud sync, synchronizes different devices for real-time files stored on the cloud.
Changes or updates to these files and any new uploads are reflected across devices
within a short time. Maximum cloud sync performance is not only desirable
from an end-user’s perspective, but also brings advantages to the cloud storage
provider. Specifically, fast sync latency increases system throughput, ultimately
improving data center performance and reducing costs. As such, it has an enor-
mous impact on the user experience, and so sync performance must be managed
carefully to ensure accuracy between clients/devices and the cloud data center
[3,4].

Existing cloud sync approaches can be divided into two categories: full sync
and delta sync [5–9]. Full sync involves sending the entire file to the cloud and
replacing the old version with it. Delta sync, on the other hand, uploads only
the changed parts of the file, verifying the existence of the older file in the
cloud and then calculating the hash fingerprints of the new file. In order to
determine which pieces of the file have been modified, it divides the file into
chunks and computes the respective fingerprints to compare them. Delta sync
can be further demarcated into Fixed-Size Chunking (FSC)-based delta sync
and Content Defined Chunking (CDC)-based delta sync. FSC-based delta sync
is more straightforward but could possibly miss some redundant data, whereas
CDC-based delta sync while being more computationally intensive, is able to
discern more data redundancies.

Further studies of enterprise and cloud environments have found that 80% of
user operations involve small files [10,11]. As these small files form a substantial
portion of the employed working files, the access performance of these small
files directly affects enterprise efficiency and user experience [12]. In the past,
solutions such as QuickSync [5], DeltaCFS [6], WebRSync [7], and Dsync [8] have
all relied on delta sync with limited efficiency in segmenting small files. However,
PandaSync [13] presents a hybrid sync scheme which takes into account essential
environmental factors of file size and network RTT and is thus more adaptive
and responsive to changing conditions. Our empirical evaluations and analysis
in Sect. 4 have revealed that PandaSync may not be as efficient in networks with
fluctuating bandwidth.

Recent progress and achievements in machine learning (ML) have demon-
strated the feasibility and potential of enhancing system and cloud efficiency
[14,15]. Inspired by this research, we propose LearnedSync, a learning-based
cloud sync scheme. LearnedSync can dynamically switch between full sync,
FSC-based delta sync, and CDC-based delta sync to adapt to workload char-
acteristics and environmental conditions, including file size, redundancy rate,

LearnedSync: A Learning-Based Sync Optimization 3

bandwidth, RTTs, and the number of running threads. The guiding principle
behind LearnedSync is the multilayer perceptron (MLP), which uses historical
sync records to train on environmental information, sync method, and sync time
and dynamically selects between the three sync methods based on the environ-
ment. Specifically, this paper makes the following contributions:

1. Our experiments demonstrate that the sync time of full sync, FSC-based delta
sync, and CDC-based delta sync varies significantly in different environments,
and each method can only achieve the minimum sync time under specific
conditions, indicating that no single method is universally applicable.

2. We propose a learning-based sync scheme, LearnedSync, which trains the
verified records using the MLP network to select appropriate sync methods
according to environmental conditions.

3. We implement a prototype of LearnedSync and conduct extensive experi-
ments. Our performance results show that LearnedSync achieves the lowest
sync time compared to other cloud sync schemes and improves cloud sync
speed by at least 41.4% when compared to PandaSync, the state-of-the-art
sync scheme, and sync traffic is reduced by 9.6%.

The remainder of this paper is organized as follows: Sect. 2 presents the back-
ground and motivation, Sect. 3 describes the design of LearnedSync, Sect. 4
presents the performance evaluation, Sect. 5 reviews related work, and Sect. 6
concludes the paper.

2 Background and Motivation

This section provides background information on cloud sync and some essen-
tial observations from our preliminary experiments and analysis. We introduce
machine learning methods as a motivation for the LearnedSync study (Fig. 1).

Fig. 1. Workflow and procedure for full sync and delta sync.

4 Y. Zhou et al.

2.1 Cloud Sync

Cloud storage is a service provider that allows users to purchase storage space to
store file data [1]. The cloud service provider is responsible for ensuring the data
is available anytime, anywhere via the Internet. Cloud sync ensures that cloud
data is up-to-date and consistent across all user devices. There are two cloud
sync methods: full sync and delta sync. Full sync involves transferring the entire
new file to the cloud and overwriting the old file, whereas delta sync matches
the changed contents between two files and transfers only the changed parts to
the cloud.

In addition, Content-Defined Chunking (CDC) and Fixed-Size Chunking
(FSC) divide delta sync into two forms. CDC-based delta sync calculates the
hash value of the sliding window during the chunking, while FSC-based delta
sync divides the chunks quickly but leads to many undetected redundant chunks.
Figure 2 illustrates the working mechanism of these two methods for a 10KiB file
with a 4KiB chunk size and 2KiB of new content inserted. FSC employs a fixed
chunk length, so the chunk changes after the insert and redundant data chunks
go undetected. In contrast, CDC generates boundaries only at specific bytes, so
the insertion does not easily affect the previous chunk location [5]. However, the
byte-by-byte detection used by CDC adds time-consuming overhead [8].

Fig. 2. Mechanisms for Fixed-Size Chunking and Content-Defined Chunking.

Our performance results for synchronizing a single file using three differ-
ent sync methods in various environments are presented in Fig. 3. Specifically,
Fig. 3(a) illustrates the outcome obtained in environments with 96Mbps band-
width, 60ms network round-trip time and 40% file redundancy rate; Fig. 3(b) and
(c) reflected the results obtained in environments with 16Mbps bandwidth, 10ms
network round-trip time and 80% file redundancy rate. Additionally, we have
additionally introduced several unrelated threads in the Fig. 3(c). In Fig. 3(a),
full sync is shown to have the shortest sync time for small files, high bandwidth,
and high network RTT. In Fig. 3(b), for large files with high redundancy, low
bandwidth, and low network RTT, CDC-based delta sync (CDCSync) is the

LearnedSync: A Learning-Based Sync Optimization 5

most efficient method as it can discover the most redundancy. In Fig. 3(c), with
further increased file size and the addition of unrelated threads, FSC-based delta
sync (FSCSync) outperforms CDCSync due to its low computational overhead.

Fig. 3. The sync time results of the three sync methods in different environments. The
respective bandwidth, RTT, and redundant rate in (a) 96 Mbps, 60 ms, and 40%; (b)
and (c) 16 Mbps, 10 ms, and 80%. Note that some additional threads are added in (c).

The performance results show that each method performs optimally under
specific conditions. Full sync is more efficient than delta sync for small files,
as the contribution of small files to reducing sync time is relatively insignifi-
cant [13]. CDC-based delta sync performs well in large files and low bandwidth
environments, while FSC-based delta sync performs well in compute-intensive
environments. Table 1 summarizes the differences among three sync methods.

Table 1. Features of the three sync methods.

Sync Method Calculation Overhead Detect Redundancy Network Rond-Trip
Frequency

Full sync Low None Low

FSC-based delta sync Medium Medium High

CDC-based delta sync High High High

2.2 Workload Characteristics and Environmental Conditions

Efficient upper-layer applications rely on a well-designed storage system that
considers workload characteristics and environmental conditions. Our evalua-
tions highlight several factors that are critical to sync performance. For instance,
recent research on cloud tracking has shown that most files (77%) are small, less
than 100 KB in size, yet receive the majority of file accesses (over 80%) [10]. This
emphasizes the need for storage systems that optimize performance for small files

6 Y. Zhou et al.

[13]. Additionally, the redundancy rate of files affects delta sync performance, as
higher redundancy rate between new and old files result in fewer delta chunks
needing to be transferred, leading to faster sync speed.

CPU performance is also critical, particularly in CDC-based delta sync,
where CPU utilization changes significantly impact sync performance. More-
over, the relationship between CPU utilization and computing resources is often
nonlinear [16], making the study of sync time complex. Network conditions are
another critical factor frequently fluctuating, with bandwidth and network RTT
being crucial metrics [17]. Since the cumulative size of files sent over a device
connection in any period is not fixed, the device’s bandwidth often changes [18].
Network RTT also varies due to various factors, including geographic distance,
wireless network impacts, etc. [19].

We also took into consideration the chunk size of the delta sync. Nevertheless,
our investigations revealed that the chunk size has little impact on the timing
of delta sync. To perform a delta sync, we chose a 3MB file as the old version
file and replaced 10% of its content at the beginning, middle, and end as the
new version file. For FSC-based delta sync, we chose various chunk sizes, and for
CDC-based delta sync, we chose various chunk maximum and minimum ranges.
Figure 4 depicts the results of our measurements of the sync time under differ-
ent circumstances. It can be observed that the sync time stays nearly constant
regardless of the chunk size. Though larger chunks could accelerate the chunk-
ing process, they can lead to inefficient redundancy detection and reduce sync
efficiency.

Fig. 4. Performance impact of chunk size on FSCSync and CDCSync when synchro-
nizing 3MB files.

2.3 Motivation

Due to various environmental factors, no single sync method can achieve the
minimum sync time in multiple environments. Moreover, the workload char-
acteristics and the network conditions directly affect the sync efficiency. Their
effect on the sync efficiency is complicated and interference. Meanwhile, it is
impractical to analyze the effect of each factor on the sync time, and various

LearnedSync: A Learning-Based Sync Optimization 7

challenges will be encountered. The previous human-driving configurations are
not comprehensive and ineffective from our preliminary experiments.

On the other hand, the recent achievements in ML show that ML-based meth-
ods are very effective in computer systems and cloud computing [14,15]. These
studies inspire us to propose LearnedSync, which effectively exploits the work-
load characteristics and environmental conditions to select the sync methods.
LearnedSync is committed to dynamically selecting sync methods by sensing
the workload and network to obtain the minimum sync time.

3 The Design of LearnedSync

This section first introduces the system overview of LearnedSync and then illus-
trates in detail the three modules of LearnedSync, including State Monitor, Sync
Method Selector and Sync Record Directory.

3.1 System Overview

LearnedSync is a learning-based sync scheme that aims to select the most effi-
cient sync method based on workload characteristics and environmental condi-
tions. It dynamically switches among three methods: full sync, FSC-based delta
sync, and CDC-based delta sync to achieve the minimum sync time.

The guiding principle behind LearnedSync is the multilayer perceptron
(MLP), one of the most well-known models of artificial neural networks [20].
MLP is well-suited to learning from large datasets, making it ideal for scenar-
ios where a continuous stream of samples can improve prediction accuracy. The
cloud sync scenario is particularly well-suited to MLP because: (1) different sync
methods are appropriate for different scenarios, so the optimal application sce-
nario of a single sync method can be easily aggregated; (2) files are continuously
synchronized from the client to the cloud server, and all kinds of synchronized
information constitute a continuous sample flow; and (3) if the sample feature
is environmental information and the label is the optimal method, then exist-
ing samples can be trained to predict the optimal method of new samples to
complete the decision, which is also the responsibility of MLP. We have con-
sidered other learning methods but chose MLP for its fast decision-making and
lightweight computing. This shows that LearnedSync is not rigidly bound to a
particular learning method but is a framework for efficient and low-cost cloud
sync.

Figure 5 illustrates the system architecture of LearnedSync on the client side.
It comprises three modules: State Monitor, Sync Method Selector, and Sync
Record Directory. These modules are integral to the sync process of LearnedSync,
which works as follows: the State Monitor first gathers environmental data and
conveys it to the Sync Method Selector; Sync Method Selector then utilizes the
decision model to identify the proper sync method and carry out the sync; follow-
ing this, the environmental information and sync time are recorded as training
samples in the Sync Record Directory. While the mechanism of LearnedSync is

8 Y. Zhou et al.

simple to comprehend, an essential consideration for its efficient functioning is
that several questions must be answered. We need to investigate how the Sync
Method Selector makes informed decisions and predicts the most suitable sync
method, as well as how prediction errors may influence the synchronizing of sam-
ples. Likewise, as the number of synchronizations grows, the quantity of training
samples may impact sync performance. In the rest of the chapter, we will discuss
in detail the mechanism of LearnedSync and answer these inquiries.

Fig. 5. System architecture of LearnedSync.

It is worth mentioning that the sample format of LearnedSync is octets,
which contain seven characteristic values and a label. The sample first obtains
five environmental parameters from the State Monitor, then obtains the sync
method and sync time from the Sync Method Selector. The label is “unreliable”
by default and becomes “reliable” when the sample meets the conditions in the
Sync Record Directory.

3.2 State Monitor

Figure 6 shows the structure of the State Monitor. It obtains five environmental
parameters: bandwidth, RTTs, the running threads, file size, and redundancy
rate between the new and old files. It is necessary to detect the file size and
redundancy rate before synchronizing for different files. The file size is easy to
obtain, while the redundancy rate must be obtained by comparing the server’s
old files with the client’s new files. To do this, the client should first receive the
weak hash value of the old file from the server and then complete the file chunk
matching to get the redundancy before sync. Additionally, the device bandwidth
and network RTT will be changing dynamically, the former being calculated from
the file size ratio to transmission time, the latter being determined by the propa-
gation time of the file. Lastly, it isn’t easy to accurately measure CPU utilization
as it fluctuates. To better estimate the CPU’s working capacity, we measured
the number of running threads, as CPU utilization depends on this number.

LearnedSync: A Learning-Based Sync Optimization 9

Specifically, the current number of running threads was considered for single-
core devices. For multi-core devices, the ratio of the current number of running
threads to the number of CPUs was supposed to reflect the CPU utilization
level.

Fig. 6. Structure of State Monitor

The five parameters discussed above are independent of each other. File trans-
fer volume depends on file size and redundancy rate, while network performance
depends on bandwidth and RTT. File size indicates the maximum transmission
capacity and redundancy rate means the amount of transfer that can be saved.
Combining the size and redundancy between an old and a new file is arbitrary
and unrelated. Moreover, the redundancy detection and transmission reduction
of small files is small compared to the overall transmission time, leading most
deduplication schemes to ignore them. Bandwidth is the maximum data transfer
rate on a given path, and RTT is the time taken for sending a signal and con-
firming its receipt. Therefore, there is no correlation between the two. Finally,
CPU utilization measures thread execution efficiency and has nothing to do
with the other parameters. In conclusion, these five environmental factors are
independent and have no relation.

The State Monitor acquires these parameters in real time and transmits
them to the Sync Method Selector. It is worth noting that LearnedSync is
not restricted to specific environmental parameters; it can even leverage other
quantifiable environmental data. In the future, if we find that chunk size,
method, or other factors negatively or positively impact sync performance, we
can parametrize and factor this into the model. This article, however, focuses
on analyzing and evaluating five key parameters that have the most significant
effect on sync performance.

3.3 Sync Method Selector

Sync Method Selector periodically learns the reliable samples in the Sync Record
Directory (the reliable samples are described in Sect. 3.4) and uses the training
model for prediction. It uses MLP to build a four-layer neural network, with five
neurons in the input layer, which is used to obtain five environmental parameters;
The output layer neuron is three, which is used for the output sync method.

10 Y. Zhou et al.

There are also two hidden layers, each with 64 neurons. The activation function
is the sigmoid activation function, which trains the sample 2000 times each time.
However, since no samples are trained prior to its execution, the prediction model
cannot be generated at the outset. Consequently, the Sync Method Selector
outputs the sync method randomly until enough synchronizations are completed,
and only then is a prediction model generated. Once the State Monitor sends the
five-dimensional parameters, the model identifies and executes the optimal sync
method. The sync time is recorded once the sync is completed and is essential
for training the model. The Sync Method Selector adds the sync method and
sync time based on the five-dimensional parameters and submits this seven-
dimensional parameter to the Sync Record Directory.

In addition to MLP, we have taken into account various learning methods
when exploring the decision-making problem of sync methods, such as K-Nearest
Neighbor (KNN) and Support Vector Machines (SVM). KNN operates by classi-
fying objects based on pre-classified data and proximity to the object [21], while
LearnedSync’s training data is derived from the sync process, making it prob-
lematic to provide quick and accurate sync decisions. SVM exhibits efficiency
with linear and nonlinear image classification, yet can be problematic when pre-
sented with large quantities of training data [22]. In contrast, MLP, which is a
neural network with detailed mesh structure features and capable of processing
huge datasets, is a favorable choice for LearnedSync. It is important to note,
however, that LearnedSync is not confined to certain learning methods and will
select and compare more suitable learning methods with the advancement of
machine learning to ensure the learning process of LearnedSync is upheld.

3.4 Sync Record Directory

Sync Record Directory accepts and stores samples from the Sync Method Selec-
tor. However, these samples cannot be used for training because (1) LearnedSync
is not to predict the sync time of each method but to predict the optimal sync
method and (2) Sync Method Selector is not always reliable because there may

Fig. 7. Sync Record Directory continuously collects samples and selects reliable sam-
ples from a two-dimensional perspective.

LearnedSync: A Learning-Based Sync Optimization 11

be deviations in the prediction. Therefore, the label of these samples is “unreli-
able” by default.

Figure 7 illustrates the process of generating reliable samples in a two-
dimensional environment. Sync Record Directory first partitions the possible
range of environmental parameters. In Fig. 7(a), all partitions are blank since
no initial samples exist. In Fig. 7(b), the status of each partition is shown after
a certain number of samples have been accumulated. The best methods in the
partition are represented by the colors blue, red, and yellow, which stand for
full sync, CDC-based delta sync, and FSC-based delta sync, respectively. The
performance of the ideal approach is more obvious the darker the partition color
is. Thus, it can be found that the optimal method for different partitions has
been different, and the partition with the same optimal method has a clustering
effect. In Fig. 7(c), the Sync Record Directory calculates the average time of the
three sync methods for each partition separately and sets a maximum value α.
When the ratio of the average value of the optimal method of a partition to
the average value of the suboptimal method (the second least time-consuming
method among the three methods) is lower than α, this partition is called the
“firm partition” of method M (colored partition); otherwise, it is called the “swing
partition” (gray partition). The samples with method M in the firm partition of
method M will transform their label into “reliable,” while the samples without
method M or in the swing partition still need to be verified over time.

The Sync Record Directory regularly calculates the average time of the three
methods for all non-blank partitions to increase firm partitions and obtain more
samples. Subsequent samples appearing in the firm partition will adopt method
M, while the result of model prediction will be used in the swing partition. Over
time, the Sync Method Selector learns more and more samples to predict the
swing partition more accurately, making the performance of the optimal method
gradually generated in the swing partition more apparent, thus converting part
of the swing partition into a firm partition. Although it may be challenging to
identify the optimal method for certain partitions, utilizing multiple methods
for these partitions can result in comparable sync times. Because the optimal
method is selected in almost all samples, the objective of LearnedSync to reduce
sync time is achieved, as verified in the performance evaluation (Sect. 4).

3.5 The Training Process for LearnedSync

LearnedSync’s predictive ability is trained in a random environment. In this
environment, we generated files of random sizes and changed the redundancy rate
between new and old versions, while bandwidth, network RTT, and the number
of additional threads were randomly changed at each sync completion. Their
variation ranges were 10KB–100MB, 0–100%, 8–96Mbps, 20–100ms, and 0–20,
respectively. LearnedSync kept synchronizing, accumulating, training samples,
and establishing network prediction models.

We have set up 3000 partitions for the Sync Record Directory, each of which
records its coverage range, the number of samples in the partition, the average
time of the three sync methods, and the sample information of the ten recent

12 Y. Zhou et al.

synchronizations for each method. This limited sample information is retained as
too many samples can hinder training speed and adversely affect the sync method
decision-making. A partition with less than 30 samples is considered a blank
partition and needs to be synchronized later to ensure each method is chosen
ten times. In contrast, the partition is deemed “firm” if the optimal method
is 10% lower than the sub-optimal method (i.e., α = 0.9) when the sample size
reaches 30. For every 1000 files synchronized, the Sync Record Directory retrieves
the firm partition, using the samples from the optimal method to complete the
training of the prediction model. This operation is conducted in tandem in a
separate thread without disrupting the file sync process. In an ideal scenario,
the Sync Record Directory preserves the recent 90000 samples and 30000 reliable
samples to perform quality training and keep the training period smaller than
the sync period for LearnedSync to operate harmoniously.

We assessed the performance of LearnedSync by testing and comparing the
time required to synchronize files using the “MechSync” and “Optimal” meth-
ods. MechSync is a mechanism-based sync method developed through extensive
testing across a total of 32,000 different simulated environments. This testing
incorporated eight different file sizes, five redundancy rates, eight bandwidths,
ten network RTTs, and ten thread counts, which are included in the LearnedSync
training environment previously mentioned. Results were used to establish a lin-
ear regression to chart the relationship between sync time and environmental
variables. All data was used to develop formulas to determine the appropriate
sync method for each environment. We organized the MechSync time prediction
formula to choose three sync methods:

TimeFullSync = 1.179 ∗ Size/Band. + 1.304 ∗ RTT (1)

TimeDeltaSync = 1.179 ∗ (1 − Rdd.) ∗ Size/Band. + 2.871 ∗ RTT (2)

To produce TFullSync and TDeltaSync, the environmental parameters file size,
bandwidth, network RTT, and redundancy rate are added. If TFullSync is less
than TDeltaSync, FullSync is adopted since the predicted sync time is shorter. If
TDeltaSync is smaller, the number of running threads is determined. If the num-
ber is less than 4.4, the FSCSync should be used; otherwise, the CDCSync is
selected. And the “Optimal” sync method endeavors to select the most efficient
sync method for each file. To achieve this, we compare the results of FullSync,
FSCSync, and CDCSync to identify the method which requires the least amount
of time. Thus, Optimal can be seen as a God’s perspective method, as it consis-
tently opts for the most efficient solution. The experimental results are shown
in Fig. 8.

Firstly, LearnedSync was not as good as MechSync in the initial stage.
Figure 8(a) shows that the slope of MechSync and Optimal is almost fixed, and
their sync time tend to the expected time of random changes in the environment.
However, LearnedSync cannot train samples for prediction at the initial stage
and can only randomly select the sync method, thus having the highest initial
slope. This was further reflected in the increasing number of “firm” partitions
and accuracy from 0 and 33%, respectively, as shown in Fig. 8(b). Secondly,

LearnedSync: A Learning-Based Sync Optimization 13

Fig. 8. Training effect experiment of LearnedSync.

after synchronizing a certain number of files, LearnedSync exceeded the per-
formance of MechSync. LearnedSync accumulated some samples with the label
“reliable” and could start to train the model to make decisions. At this point,
LearnedSync outperformed MechSync in performance and time consumption
with 13,000 and 32,000 files, respectively. This is because the number of “firm
partitions” has expanded quickly, generating a rapid improvement in accuracy.
Finally, LearnedSync maintained high accuracy after stabilization, and its per-
formance was close to Optimal. The number of “firm” partitions and accuracy
eventually reached 2648 and 94% in Fig. 8(b), respectively, with an almost fixed
slope similar to that of Optimal in Fig. 8(a), showcasing that LearnedSync has
achieved satisfactory training results, which can be maintained continuously in
subsequent sync processes.

4 Performance Evaluations

This section describes the prototype implementation of LearnedSync, followed
by the experimental setup and methodology. Finally, we present trace-driven
performance results for different sync methods and sensitivity analysis.

4.1 Prototype Implementation

The LearnedSync prototype is implemented based on FastCDC [23] and
hashmap. We use Python code to link the C codes of the three sync methods and
establish an MLP training model. After the network connection is established,
the SmokePing [24] module embedded in the network-aware dynamic threshold
module starts to monitor the network RTT, the nload command monitors the
network bandwidth and htop command monitors the running threads.

14 Y. Zhou et al.

4.2 Experimental Setup and Methodology

The evaluations are performed on two cloud servers with the same specifications:
Intel Xeon (Ice Lake) Platinum 8369B 2.7GHz quad-core processor and 16GB
memory. Their operating system is Ubuntu 20.04 (Linux kernel version 5.15).
By default, the client bandwidth is 98.1Mbps, and the network RTT is 20ms,
which is dynamically changed. We use the tc command to adjust the network
bandwidth and RTT between the client and server and the stress command to
add additional worker threads to obtain various environments. We use scripts
to adjust the network bandwidth and RTT periodically to change the network
environments dynamically. We compare LearnedSync with full sync (we created
in C language), rsync-3.2.3 (FSC-based delta sync), Seafile (CDC-based delta
sync), and the state-of-the-art PandaSync. For rsync, We set the chunk size to
4KiB. For Seafile, we use variable chunk sizes ranging from 2KiB to 32KiB, with
an average of 8KiB.

4.3 Performance Results and Analysis

Trace-Driven Experiments: We collect the sync files from publicly available
websites, such as Linux kernel [25] and GitHub [26]. Table 2 shows the character-
istics of these trace-driven experiments in terms of initial and updated version
and volume. We conducted experiments to measure the sync time of six tracking
drivers using multiple cloud sync methods under fluctuating bandwidth, network
RTT, and the number of additional threads ranging from 8-96Mbps, 20–100ms,
and 0–20, respectively. Each experiment was run at least three times, and we
report the average cloud sync time in Fig. 9. We separated the sync time and
distinguished it with different colors since some of the experimental methods are
single sync methods or mixed sync methods. In the bar graph, blue, yellow, and
red show the sync time used with full sync, FSC-based delta sync, or CDC-based
delta sync.

Table 2. The workload characteristics of the six traces.

Trace Name Initial Version Initial Volume Update Version Update Volume

OpenCV 4.6.0 193.3 MB 4.7.0 198.7 MB
Seafile 9.0.9 235.4 MB 9.0.10 239.7 MB
Tensorflow 2.10.0 260.6 MB 2.10.1 260.7 MB
Linux-4.9 4.9.2 666.2 MB 4.9.336 669.4 MB
Linux-5.8 5.8.13 947.8 MB 5.8.14 947.8 MB
Linux-6.1 6.1.1 1316.6 MB 6.1.3 1316.8 MB

Our results show that LearnedSync consistently achieves the minimum sync
time compared to multiple methods, with a speed of at least 41.4% faster than

LearnedSync: A Learning-Based Sync Optimization 15

Fig. 9. The cloud sync times under the six traces for the different cloud sync methods.

Fig. 10. The total data volume transferred over the network driven by the six traces
for the different cloud sync methods.

16 Y. Zhou et al.

state-of-the-art PandaSync. FullSync performed well in the last four experiments
due to the large proportion of small files, which makes delta sync more time-
consuming. We have also discovered that when selecting full sync, LearnedSync’s
sync time is lower than that of PandaSync. This is because PandaSync is designed
to operate with higher bandwidth and cannot adapt to bandwidth changes,
whereas LearnedSync effectively adjusts to varying network conditions.

Figure 10 shows the total amount of data transferred over the network driven
by the six traces for different cloud sync schemes. We observed that rsync and
Seafile significantly reduce sync traffic by 33.9% and 36.8%, respectively, primar-
ily due to the optimization of large files, as small files often exceed their traffic
after delta sync. In contrast, the sync traffic of LearnedSync was 9.6% lower
than that of PandaSync, since LearnedSync chooses less full sync, and the sync
traffic of delta sync is also lower than that of PandaSync.

Sensitivity Analysis: To evaluate the impact of bandwidth, network RTT, and
number of threads on sync performance, we conducted sensitivity experiments on
LearnedSync and PandaSync using six different traces with varying parameter
values. The results are presented in Fig. 11.

Firstly, the performance difference between LearnedSync and PandaSync
remains consistent as the bandwidth increases. This demonstrates that the
unique CDC-based delta sync of LearnedSync significantly reduces the time
expense. Secondly, with the increase in RTT, the performance difference between
LearnedSync and PandaSync gradually increases. PandaSync assumes that the
number of delta sync will increase with the rise of RTT, causing more over-
head when the RTT is high [13]. Finally, the performance gap between the two
schemes reduces gradually with an increase of unrelated threads. This is because

Fig. 11. Sensitivity analysis of bandwidth, RTT, and CPU utilization. -PS and -LS in
the legend indicate that the PandaSync or LearnedSync is used for testing.

LearnedSync: A Learning-Based Sync Optimization 17

the CDC-based delta sync in LearnedSync is computationally expensive, making
it more vulnerable to changes in CPU utilization than PandaSync.

5 Related Work

Synchronization is a vital and indispensable technique for cloud storage services,
enabling clients to keep their local files synchronized with those stored in the
data centers in the cloud. Existing cloud sync schemes can be classified as full
sync or delta sync, with delta sync being the most widely studied [13]. Delta
sync only transmits the altered parts of the file instead of synchronizing the
entire file, thereby decreasing sync time and conserving bandwidth during the
sync process.

There is already a range of delta sync algorithms, such as Vcdiff [27] and rsync
[28], which were among the first and provided an essential foundation for their
subsequent development. More and more cloud storage providers have adopted
delta sync, including Dropbox, which was the first to add this for PC-based
file sync, and Seafile [29], which uses an approach known as Content-Defined
Chunking (CDC). Furthermore, various studies have enabled improvements to
rsync, including DeltaCFS [6], WebRsync [7], and PandaSync [13] - DeltaCFS
presents a new framework for cloud storage services that minimize client and
server overhead while still maintaining network efficiency, while WebRsync was
the initial attempt at delta sync on the web browser and was further improved by
WebR2sync+ as a viable solution for cloud storage services; PandaSync balances
the advantages of full and delta sync depending on file size and round-trip-time.

Other studies based on delta synchronizations, such as QuickSync [5], Dsync
[8], and FeatureSync [30], leverage the advantage of CDC to reduce sync times.
QuickSync is the first model to analyze the sync efficiency of mobile cloud stor-
age services [5]. It optimizes bandwidth utilization by employing an adaptive
partitioning and deduplication strategy based on real-time network conditions.
Dsync introduces a new weak hash, FastFp, to streamline the chunk-matching
process and revamps the client-server communication protocol to minimize com-
putational overhead and network traffic [8]. FeatureSync, a feature-based encryp-
tion sync system, is characterized by its lightweight matching algorithm. All the
investigations and studies of various cloud storage services reaffirm that no one
cloud sync method suffices for all users [30].

Some studies have also extensively explored cloud storage services, examining
various sync services’ effectiveness and potential optimizations. Li et al. devel-
oped the CloudCmp system comparator to evaluate the performance and cost of
cloud service providers; they found that many of the major providers had vari-
ations in implementation [31]. Drago et al. then designed a method to monitor
the Dropbox cloud storage traffic and proposed countermeasures to enhance its
performance [32]. Additionally, they researched and compared five cloud storage
services, uncovering their various system architectures and functions and point-
ing out potential areas for improvement [33]. Li et al. then proposed the UDS
update batch delayed sync mechanism [34] and the TUE (traffic usage efficiency)

18 Y. Zhou et al.

metric [10], which is applied for research and characterization of 6 popular cloud
storage services to reduce overhead and boost file sync speed.

Recent advances in machine learning show that learning-based approaches are
much more viable and effective than human-driven ones. Zhang et al., with the
AutoSync end-to-end pipeline, provided automated optimization of sync strate-
gies given the model architecture and resource specifications, achieving signif-
icantly better results than manual optimization strategies [14]. Li et al. used
reinforcement learning in an IoT device scanning system, demonstrating that the
system was able to detect more IP-device changes than random and sequential
scanning methods [35]. Laskaridis et al. proposed SPINN, a distributed inference
system that deploys devicecloud computing and progressive inference, enabling
rapid and robust Convolutional Neural Network (CNN) inference in various set-
tings [36]. Notably, SPINN features a scheduler that co-optimizes the early-exit
policy and CNN division during runtime, allowing adaptation to fluctuating con-
ditions and meeting user-defined service-level requirements.

In conclusion, existing studies show that the success of a sync scheme is con-
tingent on both the workload characteristics and the network conditions. To this
end, we propose LearnedSync, a learning-based sync scheme that selects the most
advantageous sync method using machine learning models. This approach lets
us consider dynamic workload characteristics and current network conditions,
significantly reducing sync latency. To our knowledge, this is the first study to
apply machine learning to cloud sync procedures for improved efficiency.

6 Conclusion

To ensure data remains accurately synchronized between the device and cloud
storage, we must strive for optimum sync performance. This paper introduces
LearnedSync, an ML-based sync scheme that can dynamically select one of three
cloud sync methods - full sync, FSC-based delta sync, and CDC-based delta
sync - based on environmental conditions by building an MLP network model
with sync records. This helps to improve the cloud sync efficiency and shorten
the sync time. Moreover, LearnedSync records each environment parameter, the
method used, and the sync time after the completion of every file sync so that it
continues to learn how best to synchronize data between the device and the cloud
storage. Experiments on the lightweight prototype LearnedSync demonstrate
that it boosts the sync performance better than other cloud sync methods.

LearnedSync is an ongoing research project with two main future directions:
(1) studying the impact of other factors on cloud sync efficiencies, such as file
modification and wireless networks, which can have a significant impact on sync
performance; and (2) exploring other ML methods, such as deep reinforcement
learning, to improve the learning process and accuracy.

Acknowledges. This work was supported in part by the National Natural Science
Foundation of China under Grants U22A2027 and 61972325, in part by the Open
Project Program of Wuhan National Laboratory for Optoelectronics under Grant

LearnedSync: A Learning-Based Sync Optimization 19

2021WNLOKF011, and in part by the Research Project of Zhejiang Lab under
Grant 2021DA0AM01/002, Key Research and Development (Digital Twin) Program of
Ningbo City under Grant No. 2023Z219, and Young Tech Innovation Leading Talent
Program of Ningbo City under Grant No.2023QL008.

References

1. Six Cloud Computing Trends for 2022 (and Beyond) (2022). https://phoenixnap.
com/blog/cloud-computing-trends

2. Pan, T., et al.: Sailfish: accelerating cloud-scale multi-tenant multi-service gate-
ways with programmable switches. In: Proceedings of the ACM SIGCOMM 2021
Conference (2021)

3. Abebe, M., Daudjee, K., Glasbergen, B., Tian, Y.: EC-store: bridging the gap
between storage and latency in distributed erasure coded systems. In: Proceedings
of the 38th IEEE International Conference on Distributed Computing Systems
(2018)

4. Singh, A.K., Cui, X., Cassell, B., Wong, B., Daudjee, K.: MicroFuge: a middle-
ware approach to providing performance isolation in cloud storage systems. In:
Proceedings of the IEEE 34th International Conference on Distributed Computing
Systems (2014)

5. Cui, Y., Lai, Z., Wang, X., Dai, N., Miao, C.: QuickSync: improving synchroniza-
tion efficiency for mobile cloud storage services. In: Proceedings of the 21st Annual
International Conference on Mobile Computing and Networking (2015)

6. Zhang, Q., et al.: DeltaCFS: boosting delta sync for cloud storage services by
learning from NFS. In: Proceedings of the 37th IEEE International Conference on
Distributed Computing Systems (2017)

7. Xiao, H., et al.: Towards web-based delta synchronization for cloud storage services.
In: Proceedings of the 16th USENIX Conference on File and Storage Technologies
(2018)

8. He, Y., et al.: Dsync: a lightweight delta synchronization approach for cloud storage
services. In: Proceedings of the 36th Symposium on Mass Storage Systems and
Technologies (2020)

9. Wu, S., et al.: FASTSync: a FAST delta sync scheme for encrypted cloud storage
in high-bandwidth network environments. ACM Trans. Storage (2023)

10. Li, Z., et al.: Towards network-level efficiency for cloud storage services. In: Pro-
ceedings of the 14th Internet Measurement Conference (2014)

11. Zhang, S., Catanese, H., Wang, A.: The composite-file file system: decoupling the
one-to-one mapping of files and metadata for better performance. In: Proceedings
of the 14th USENIX Conference on File and Storage Technologies (2016)

12. Meyer, D.T., Bolosky, W.J.: A study of practical deduplication. In: Proceedings of
the 9th USENIX Conference on File and Storage Technologies (2011)

13. Wu, S., Liu, L., Jiang, H., Che, H., Mao, B.: PandaSync: network and workload
aware hybrid cloud sync optimization. In: Proceedings of the 39th IEEE Interna-
tional Conference on Distributed Computing Systems (2019)

https://phoenixnap.com/blog/cloud-computing-trends
https://phoenixnap.com/blog/cloud-computing-trends

20 Y. Zhou et al.

14. Zhang, H., Li, Y., Deng, Z., Liang, X., Carin, L., Xing, E.P.: AutoSync: learning
to synchronize for data-parallel distributed deep learning. In: Proceedings of the
34th Annual Conference on Neural Information Processing Systems (2020)

15. Tang, Y., Lu, H., Li, X., Chen, L., Yuan, M., Zeng, J.: Learning-aided heuris-
tics design for storage system. In: Proceedings of the International Conference on
Management of Data (2021)

16. Wang, Z., et al.: DeepScaling: microservices AutoScaling for stable CPU utilization
in large scale cloud systems. In: Proceedings of the 13th Symposium on Cloud
Computing (2022)

17. Miyazawa, K., Yamaguchi, S., Kobayashi, A.: Mechanism of cyclic performance
fluctuation of TCP BBR and CUBIC TCP communications. In: Proceedings of
the 44th IEEE Annual Computers, Software, and Applications Conference (2020)

18. Sackl, A., Casas, P., Schatz, R., Janowski, L., Irmer, R.: Quantifying the impact
of network bandwidth fluctuations and outages on Web QoE. In: Proceedings of
the 7th International Workshop on Quality of Multimedia Experience (2015)

19. Dang, T., Mohan, N., Corneo, L., Zavodovski, A., Ott, J., Kangasharju, J.: Cloudy
with a chance of short RTTs: analyzing cloud connectivity in the Internet. In:
Proceedings of the 21st Internet Measurement Conference (2021)

20. Meyer, B.H., Zola, W.M.N.: Towards a GPU accelerated selective sparsity multi-
layer perceptron algorithm using K-nearest neighbors search. In: Workshop Pro-
ceedings of the 51st International Conference on Parallel Processing (2022)

21. Chern, F., Hechtman, B., Davis, A., Guo, R., Majnemer, D., Kumar, S.: TPU-
KNN: K nearest neighbor search at peak FLOP/s. In: Advances in Neural Infor-
mation Processing Systems (2022)

22. Lv, S., Wang, J., Liu, J., Liu, Y.: Improved learning rates of a functional lasso-type
SVM with sparse multi-Kernel representation. In: Advances in Neural Information
Processing Systems (2021)

23. Xia, W., et al.: FastCDC: a fast and efficient content-defined chunking approach
for data deduplication. In: Proceedings of the 13th USENIX Annual Technical
Conference (2016)

24. SmokePing (2018). https://oss.oetiker.ch/smokeping/
25. Linux Kernel Archive (2022). https://www.kernel.org/
26. Github (2022). https://github.com/
27. Korn, D.G., Vo, K.: Engineering a differencing and compression data format. In:

Proceedings of the 2002 USENIX Annual Technical Conference (2002)
28. RSYNC Open Source Utility (2022). https://rsync.samba.org/
29. Seafile (2022). https://www.seafile.com/en/home
30. Wu, S., Tu, Z., Wang, Z., Shen, Z., Mao, B.: When delta sync meets message-locked

encryption: a feature-based delta sync scheme for encrypted cloud storage. In:
Proceedings of the 41st IEEE International Conference on Distributed Computing
Systems (2021)

31. Li, A., Yang, X., Kandula, S., Zhang, M.: CloudCmp: comparing public cloud
providers. In: Proceedings of the 10th ACM SIGCOMM Internet Measurement
Conference (2010)

32. Drago, I., Mellia, M., Munafò, M.M., Sperotto, A., Sadre, R., Pras, A.: Inside
dropbox: understanding personal cloud storage services. In: Proceedings of the
12th ACM SIGCOMM Internet Measurement Conference (2012)

33. Drago, I., Bocchi, E., Mellia, M., Slatman, H., Pras, A.: Benchmarking personal
cloud storage. In: Proceedings of the 13th Internet Measurement Conference (2013)

https://oss.oetiker.ch/smokeping/
https://www.kernel.org/
https://github.com/
https://rsync.samba.org/
https://www.seafile.com/en/home

LearnedSync: A Learning-Based Sync Optimization 21

34. Li, Z., et al.: Efficient batched synchronization in dropbox-like cloud storage ser-
vices. In: Proceedings of the ACM/IFIP/USENIX 14th International Middleware
Conference (2013)

35. Qu, J., et al.: Landing reinforcement learning onto smart scanning of the Internet
of Things. In: Proceedings of the IEEE Conference on Computer Communications
(2022)

36. Laskaridis, S., Venieris, S.I., Almeida, M., Leontiadis, I., Lane, N.: SPINN: syner-
gistic progressive inference of neural networks over device and cloud. In: Proceed-
ings of the The 26th Annual International Conference on Mobile Computing and
Networking (2020)

Optimizing CSR-Based SpMV on a New
MIMD Architecture Pezy-SC3s

Jihu Guo1,2 , Jie Liu1,2(B), Qinglin Wang1,2 , and Xiaoxiong Zhu1,2

1 Laboratory of Digitizing Software for Frontier Equipment,
National University of Defense Technology, Changsha 410073, China
2 National Key Laboratory of Parallel and Distributed Computing,
National University of Defense Technology, Changsha 410073, China

{guojihu,liujie}@nudt.edu.cn

Abstract. Sparse matrix-vector multiplication (SpMV) is extensively
used in scientific computing and often accounts for a significant portion
of the overall computational overhead. Therefore, improving the perfor-
mance of SpMV is crucial. However, sparse matrices exhibit a sporadic
and irregular distribution of non-zero elements, resulting in workload
imbalance among threads and challenges in vectorization. To address
these issues, numerous efforts have focused on optimizing SpMV based
on the hardware characteristics of computing platforms. In this paper,
we present an optimization on CSR-Based SpMV, since the CSR for-
mat is the most widely used and supported by various high-performance
sparse computing libraries, on a novel MIMD computing platform Pezy-
SC3s. Based on the hardware characteristics of Pezy-SC3s, we tackle poor
data locality, workload imbalance, and vectorization challenges in CSR-
Based SpMV by employing matrix chunking, applying Atomic Cache for
workload scheduling, and utilizing SIMD instructions during performing
SpMV. As the first study to investigate SpMV optimization on Pezy-
SC3s, we evaluate the performance of our work by comparing it with the
CSR-Based SpMV and SpMV provided by Nvidia’s CuSparse. Through
experiments conducted on 2092 matrices obtained from SuiteSparse, we
demonstrate that our optimization achieves a maximum speedup ratio
of x17.63 and an average of x1.56 over CSR-Based SpMV and an aver-
age bandwidth utilization of 35.22% for large-scale matrices (nnz ≥ 106)
compared with 36.17% obtained using CuSparse. These results demon-
strate that our optimization effectively harnesses the hardware resources
of Pezy-SC3s, leading to improved performance of CSR-Based SpMV.

Keywords: SpMV · Optimization · CSR-Based SpMV · Pezy-SC3s

1 Introduction

Sparse matrix-vector multiplication (SpMV) is a fundamental operation denoted
by y = Ax, where A is a sparse matrix and x and y are dense vectors. SpMV finds
widespread application in high-performance computing domains such as graph

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 22–39, 2024.
https://doi.org/10.1007/978-981-97-0801-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_2&domain=pdf
http://orcid.org/0009-0002-9811-0234
http://orcid.org/0000-0002-8286-6566
https://doi.org/10.1007/978-981-97-0801-7_2

Optimizing CSR-Based SpMV on a New Architecture Pezy-SC3s 23

analysis, machine learning, deep learning, and more. Its significance extends
to solving sparse linear systems, eigenvalue systems, Krylov subspace methods,
and similar problems [5,9–11,21,23,26,27,31]. Given the impact of SpMV per-
formance on these domains, improving the efficiency of sparse matrix-vector
multiplication becomes crucial, as SpMV often dominates the computational
overhead of related tasks.

However, optimizing SpMV poses significant challenges. Sparse matrices
exhibit a sparse and irregular distribution of non-zero elements, with different
matrices having distinct sparse patterns. Consequently, unbalanced workload dis-
tribution among threads and difficulty in vectorization. Numerous studies have
introduced well-designed sparse matrix storage formats, including ELL [4], DIA,
and BCSR [8], among others, tailored to different sparse patterns. Workload
balancing approaches such as CSR5 [17], Merge-based CSR [19], yaSpMV [35],
and HCC [16] have also been proposed to address workload imbalance between
threads. Additionally, methods like CVR [33], SpV8 [14], ELL-R [28], ELLR-T
[29], BiELL [36], have tackled the issue of limited vectorization. These endeavors
have predominantly focused on CPU and GPU platforms. However, this paper
presents SpMV optimization on a novel MIMD platform called Pezy-SC3s, as
illustrated in Fig. 1. Pezy-SC3s comprises two Prefectures, each equipped with an
Atomic Cache and an HBM2 module. The Atomic Cache facilitates atomic oper-
ations on internal data, and Table 1 presents the specific parameters associated
with the Atomic Cache. Max Operations/Clock column refers to the maximum
32 operations per clock cycle that can be maintained when the number of oper-
ations performed by the atomic cache in each clock cycle is not greater than this
value. Otherwise, the performance will drop dramatically.

Each Prefecture encompasses 16 cities, and each city contains 4 villages.
Within each city, there exists an L2 Cache that is shared by 128 threads.

Fig. 1. Pezy-SC3s Block Diagram

Table 1. Parameters of Atomic Cache

Size (Chip Total) WAY Line size Max Operations/Clock

1 KB (16KB) 4 256 B 32

24 J. Guo et al.

Additionally, a Special Function Unit is present in each city to handle division,
modulo, and square root operations. Within each Village, there are 4 Processing
Elements (PEs), each accompanied by an L1 Cache. The PEs house a Local
Storage of up to 24 KB, and the size of the Local Storage can be adjusted
by modifying the stack space size of threads. Furthermore, Pezy-SC3s supports
128-bit SIMD instructions.

We have selected CSR-based SpMV as the fundamental basis for our opti-
mization approach. There are several reasons for this choice. Firstly, no SpMVs
have been specifically designed for Pezy-SC3s thus far. Secondly, CSR-based
SpMV has been extensively utilized and established as benchmarks in numerous
previous studies [14,17,19,33,35]. Lastly, CSR-based SpMV is also the supported
SpMV in various high-performance scientific sparse computing libraries such as
MKL [30] and CuSparse [3]. Please refer to Fig. 2 for an illustration of the CSR
format. rowDelimiters stores the indexes range of non-zero elements of rows,
and colIdx and vals store the corresponding column indexes and values of the
non-zero elements.

Fig. 2. CSR Format

The parallel CSR-Based SpMV algorithm on Pezy-SC3s is presented in Algo-
rithm 1.

Unlike Nvidia’s SIMT GPUs, parallel CSR-Based SpMV on Pezy-SC3s neces-
sitates a for-loop instruction to specify the operations required for each thread. In
Fig. 1, each thread handles computations for a single row at a time and updates
the corresponding values in the y array. Here, rowNums and threadNums
represent the total number of rows in the matrix and the maximum num-
ber of threads supported by the hardware platform, respectively. However, this
straightforward parallelization approach can result in workload imbalance among
threads and limited data reuse in the cache, especially when the number of
threads (threadNums) becomes excessively large, leading to row-based workload
imbalance [20]. Furthermore, the parallel CSR-Based SpMV primarily focuses
on inter-row parallelism, with all scalar operations performed within each row.

To address these issues, we optimize the CSR-Based SpMV based on hard-
ware characteristics of Pezy-SC3s. Firstly, we introduce matrix chunking to

Optimizing CSR-Based SpMV on a New Architecture Pezy-SC3s 25

Algorithm 1. Parallel CSR-Based SpMV on Pezy-SC3s
Input: x, rowDelimiters, colIdx, vals;
Output: y;

1: gid = getgid(); // Get thread id.
2: for i = gid; i < rowNums; i += threadNums do
3: sum = 0.0;
4: for j = rowDelimiters[i]; j < rowDelimiters[i+1]; j ++ do
5: sum += x[colIdx[j]] × vals[j];

6: y[i] = sum;

7: flush L2(); // Write back y by flush L2.
8: return y;

enhance data locality. The number of matrix chunks is determined through care-
ful testing of various chunking parameters. Additionally, we utilize the Atomic
Cache to dynamically guide threads in fetching the next row to be computed,
thereby achieving intra-block workload balance. Finally, we incorporate 128-bit
SIMD instructions within each row to improve vectorization. By fully leveraging
the hardware capabilities of Pezy-SC3s, we effectively mitigate issues related to
poor data locality, workload imbalance, and difficult vectorization in CSR-Based
SpMV.

Through extensive experiments conducted on 2092 matrices obtained from
SuiteSparse [6], our optimization demonstrates remarkable results. We achieve a
maximum speedup ratio of x17.63 compared to the CSR-Based SpMV. For small-
scale matrices (nnz < 106), we achieve a maximum speedup ratio of x10.84 and
an average speedup ratio of x1.24. Similarly, for large-scale matrices (nnz ≥
106), we achieve a maximum speedup ratio of x17.63 and an average speedup
ratio of x2.97 (average speedup on the total 2092 matrices is x1.57). Moreover,
our average bandwidth utilization on large-scale matrices reaches 35.22%, which
can further increase to 62.54% when the matrix size becomes larger (nnz ≥
107). These figures demonstrate a satisfactory performance compared with the
corresponding figures of 36.17% and 45.56% obtained using the Nvidia CuSparse
library, highlighting the effective utilization of Pezy-SC3s hardware resources in
our approach.

2 Related Work

Sparse matrices typically contain a small percentage (usually only 1%) of non-
zero elements compared to the total number of elements in the matrix. To con-
serve space and enhance operation efficiency, we commonly utilize sparse matrix
formats to store and perform operations solely on the non-zero elements. How-
ever, the distribution of these non-zero elements often exhibits irregular patterns.
As a result, significant variations in the number of non-zero elements between
rows arise, leading to issues such as unbalanced load across operating units and
challenging vectorization during SpMV computations.

26 J. Guo et al.

Various types of sparse matrices exhibit distinct sparse patterns, prompting
numerous studies to propose novel storage formats tailored to different patterns.
For instance, the ELL format compresses all elements to the left and employs
two-dimensional arrays to store the values and column coordinates of the non-
zero elements. The row coordinate in the array corresponds to the y coordinate
for writing, and the length of each row depends on the maximum number of non-
zero elements in the matrix. The DIA format arranges non-zero elements in a
diagonal structure, using an OFFSET array to record the offset of each column
relative to the main diagonal. BCSR, on the other hand, adopts a blocked CSR
format, storing non-zero elements in matrix blocks. It employs two arrays to
track row offsets and column coordinates of these blocks, utilizing dense matrix
operations within the blocks.

Efforts to address workload imbalance between threads have also been
explored. CSR5 [17], for example, chunks the matrix into tiles based on the
CSR format to ensure that each block contains an equal number of non-zero
elements. These blocks are then evenly distributed among the threads. Merge-
based CSR [20] not only prioritizes balancing the number of non-zero elements
but also considers the load associated with writing back to the y array. It accom-
plishes this by merging the rowDelimiters array of CSR into the colIdx array,
which is subsequently divided equally among threads to achieve workload bal-
ance. Another approach employed in yaSpMV [35] involves chunking matrices
in a row- and column-insensitive manner, resulting in significant compression
ratios. HCC [16] utilizes fixed-distance chunking in the column direction and
further chunks based on the number of non-zero elements in the row direction.
This strategy ensures both data locality of x and workload balance.

To tackle the challenge of insufficient vectorization, various techniques have
been proposed. CVR [33] schedules tasks to each thread based on row granular-
ity, enabling full utilization of SIMD instructions. Other works [15,34] also aim
at the full utilization of SIMD components. SpV8 [14] separates vectorization
and scalarization, maximizing vectorization operations for aligned non-zero ele-
ments and resorting to scalarization for non-aligned elements, thereby achieving
enhanced vectorization. BiELL [36], an extension of the ELL format, further
compresses ELL by employing folding techniques to avoid excessive padding
resulting from excessively long lines with numerous zero elements.

These advancements have predominantly focused on CPU or GPU architec-
tures. However, in this paper, we aim to optimize the widely used CSR-Based
SpMV specifically for the Pezy-SC3s, a MIMD computing platform. Our goal
is to address challenges associated with poor data localization, workload imbal-
ance, and insufficient vectorization encountered during SpMV computations in
the CSR-Based SpMV on Pezy-SC3s and fully utilize the MIMD computing
resources.

Optimizing CSR-Based SpMV on a New Architecture Pezy-SC3s 27

Algorithm 2. Optimized Parallel CSR-Based SpMV on Pezy-SC3s
Input: x, rowDelimiters, colIdx, vals, blockDelimiters;
Output: y;

1: GLOBAL nextRowIdx[4096];
2: blockSize = 64;
3: gid = getgid(); // Get thread id.
4: beginRow = blockDelimiters[gid / blockSize], endRow = blockDelimiters[gid /

blockSize + 1];
5: i = beginRow + gid % blockSize;
6: pz atomic store(&nextRowIdx[gid / blockSize × 64], beginRow + blockSize);
7: for i do = 0; i < endRow; i = pz atomic inc(&nextRowIdx[gid / blockSize]
8: sum2 = {0.0, 0.0};
9: eleBegin = rowDelimiters[i], eleEnd = rowDelimiters[i + 1];

10: span = (eleEnd - eleBegin) & ∼ 1 ;
11: tail = (eleBegin ∧ eleEnd) & 1;
12: for j do = eleBegin; j < eleEnd; j ++
13: vv = {vals[j], vals[j+1]};
14: vx = {x[colIdx[j]], x[colIdx[j+1]]};
15: sum2 += vv × vx;

16: y[i] = sum2.x + sum2.y + tail × (x[colIdx[eleEnd-1]] × vals[eleEnd-1]);

17: flush L2(); // Write back y by flush L2.
18: return y;

3 Methodology

SpMV is an operation that is memory-intensive and constrained by limited band-
width. The inherent sparsity of the matrices introduces workload imbalance, lim-
iting the efficient utilization of computing resources. Furthermore, the irregular
distribution of non-zero elements in sparse matrices presents an additional chal-
lenge in achieving optimal hardware performance. The irregularity hinders the
full vectorization of the operation [1,2,7,12,18,22]. To address these challenges,
we propose optimizations for CSR-Based SpMV for the Pezy-SC3s platform.
Our approach involves chunking the matrix based on row granularity to enhance
data locality, utilizing the Atomic Cache for efficient workload balance, and lever-
aging SIMD instructions to improve intra-row computational parallelism. The
optimized algorithm is presented in Algorithm 2, and detailed explanations of
the algorithm will be provided in the subsequent subsections.

3.1 Row Granularity Matrix Partition

Based on the hardware architecture of Pezy-SC3s, it is observed that there is
no Last Level Cache (LLC). Instead, data is delivered directly to the L2 Cache
through HBM2 when required by the PEs. As a result, the L2 Cache stores
almost all the reusable data among threads. To improve data locality in the L2
Cache, we partition the matrix into chunks to make threads that share the same

28 J. Guo et al.

L2 Data Cache to compute the adjacent rows, enabling threads to collaborate
effectively.

The performance is tested with various matrix chunking numbers, and we
select af 1 k101 and F1 matrices which have the sufficient number of non-zero
elements to test the performance of SpMV to plot the results in Fig. 3. The
findings demonstrate that SpMV performance improves with an increase in the
number of matrix chunkings but sharply drops when the number becomes exces-
sively high. The optimal performance is achieved with 64 chunkings, with 64
threads assigned to each chunking, respectively. These threads share the L2
Cache. Since the best performance is observed with 64 chunkings, it is chosen as
the chunking number (Algorithm 2, line 2).

Fig. 3. Bandwidth obtained in different number of matrix chunks

During chunking, the number of non-zero elements in each row is deter-
mined using the rowDelimiters array. The matrix is then divided into
64 blocks using row granularity division, aiming to ensure an approx-
imately equal total number of non-zero elements in each block. Based
on the rowDelimiters, the total number of non-zero elements in the
range is calculated as rowDelimiters[numRows] − rowDelimiters[0]. The
division point, denoted as m, corresponds to the maximum coordinate
to make rowDelimiters[m] − rowDelimiters[0] less than or equal to
(rowDelimiters[numRows]−rowDelimiters[0])/2. Using m, the original range
is divided into [0,m) and [m,numRows). The chunk with a higher number of
non-zero elements, assuming it to be [m,numRows), is further partitioned, and
this step is repeated until 64 segments are obtained. Subsequently, each segment
is assigned to the corresponding thread block in order. The chunking process
is illustrated in Fig. 4. Finally, an array of blockDelimiters with a length of 65
is obtained, where blockDelimiters[i] represents the starting row of the matrix
block assigned to the ith thread group, and blockDelimiters[i + 1] represents
the ending row of the matrix block assigned to the ith thread group (line 3 of
Algorithm 2).

Optimizing CSR-Based SpMV on a New Architecture Pezy-SC3s 29

Fig. 4. In this matrix partition process, we first divide the matrix (Large Chunk) with
28 rows into 2 Medium Chunks. Then, divide Medium Chunk 1 since Medium Chunk
1 has more non-zero elements (97 ≥ 95). Finally, divide Medium Chunk 2.

3.2 Workload Balance Within Matrix Chunks

During the chunking phase, the matrix is divided based on row granularity, with
each chunk consisting of complete rows. When a thread is assigned a single row,
it can directly write back the result once its computation is complete. However,
when multiple threads are responsible for a row, they must wait for each other to
finish their computations before performing the write-back. In this case, only one
thread needs to write back, but multiple threads have to wait for this write-back
operation. On Pezy-SC3s with 4096 threads, using multiple threads to compute
a row introduces significant delays as threads wait for each other. Conversely,
assigning a single thread to a row causes load imbalance within the Chunk. To
address this issue, we utilize the atomic cache hardware in Pezy-SC3s, which has
high performance and supports atomic operations, for single thread computing
single row workload balance.

In Algorithm 1, threadNums instructs the next row to be computed by a
thread. For example, with 4096 threads, thread i would compute lines i, i+4096,
i+4096×2, and so on. This approach results in workload imbalance, as depicted
in Fig. 5(a). The red thread is assigned most of the total tasks, while the blue and
yellow threads are assigned only a small percentage. Consequently, the yellow,
blue, and green threads spend considerable time waiting for the red thread,
leading to the underutilization of computing resources. By leveraging Atomic
Cache, we can guide the computation order for each group of threads, ensuring
a roughly equal distribution of tasks among threads and reducing the waiting
time between them, thereby improving workload balance.

30 J. Guo et al.

Fig. 5. Workload Assignment by Atomic Cache. (Color figure online)

The array nextRowIdx (line 1 of Algorithm 2) is an int (sizeof(int) =
4Byte) array of size 4096. It stores a value at every 64 locations, corresponding
to the cache line size of the atomic cache (256Byte). This arrangement ensures
that the values used by each thread group are stored in a single cache line, and
the cache line is exclusively accessed and modified by the threads in the same
group, enhancing the performance of atomic operations. The value stored in
nextRowIdx guides the threads in a thread group to the next line they should
operate on. For instance, if the group size is 64, there will be 4096/64=64 threads
in each group. The value in nextRowIdx is loaded into the atomic cache using
the pz atomic store instruction (line 6 of Algorithm 2), and each thread incre-
ments the value when it fetches the value. The fetch-increment operation is
achieved through pz atomic inc(&nextRowIdx[gid/blockSize]), which returns
the value stored in nextRowIdx[gid/blockSize] and adds 1 to it in the atomic
cache (Algorithm 2, line 6).

The atomic add operation on Pezy-SC3s’ atomic cache differs from that
on Nvidia GPUs. Pezy-SC3s’ Atomic Cache delivers exceptionally high perfor-
mance, capable of executing up to 32 operations in a single clock (refers to
Table 1 for details). Each operation retrieves the nextRowIdx for one thread,
enabling the thread to identify the corresponding row for computation. More-
over, since the distribution of elements within each row of the sparse matrix is
typically uneven, the time required to complete a row varies among most threads
in the group. Consequently, it is uncommon for all threads to wait together for
the atomic cache to compute nextRowIdx. This dynamic scheduling of thread
tasks effectively achieves workload balance among threads with row-granularity
partitioning, as illustrated in Fig. 5(d).

Moreover, it is also essential to minimize the Interval between threads, which
refers to the number of rows between any two threads, since increasing the
Interval leads to reduced data reuse between threads, as depicted in Fig. 6.
In this figure, assuming there are 4 threads processing a matrix chunk and

the workload of each row equals to x2 L2 Cache Line Size. When the Interval
between threads is less than or equal to 3, data can be well reused. However,

Optimizing CSR-Based SpMV on a New Architecture Pezy-SC3s 31

Fig. 6. Minimizing the Interval between threads to reduce cache miss.

if the Interval exceeds 3, it results in Cache Miss, which increases with the
workload of each row. By applying Atomic Cache, we ensure that every thread
will compute the adjacent row (Interval = 1), which also dramatically improves
the data locality in the shared cache level [33].

3.3 Vectorization

Two basic vectorization strategies in SpMV are cross-row and in-row vectoriza-
tion [14]. Pezy-SC3s owns 4096 threads, enables simultaneous processing of 4096
rows, resulting in inherent cross-row parallelism. To leverage this parallelism, we
have partitioned the matrix, ensuring that each block contains complete rows.
Within each block, 64 threads work in parallel to compute the result for each row,
without any dependencies among the threads. Additionally, Pezy-SC3s provides
128-bit SIMD instructions, allowing us to increase the in-row computation par-
allelism by processing two numbers per thread at a time. This further enhances
the SIMD parallelism of SpMV (see Algorithm 2, lines 8, 13–16).

4 Experimental Results and Evaluation

We conducted SpMV performance testing on 2092 matrices collected from the
SuiteSparse [6] sparse matrix database, comparing our optimized SpMV imple-
mentations to the CSR-Based SpMV and CuSparse SpMV. Each SpMV execu-
tion consisted of 1000 warm-up executions and 3000 actual executions. On Pezy-
SC3s, we evaluated the optimized SpMV based on double-precision floating-point
performance, bandwidth utilization, and the speedup ratio achieved compared
to the CSR-Based SpMV [13]. On Nvidia 3090ti GPU with CuSparse, due to the
different hardware configurations, we mainly evaluate the bandwidth utilization
achieved by our optimized CSR-Based SpMV and CuSparse SpMV. We used
the CSR-Based SpMV code provided by CuSparse for its double floating-point
performance and bandwidth utilization test.

32 J. Guo et al.

4.1 Preprocessing Overhead

In our method, the only preprocessing step involved is the chunking process. As
mentioned in Sect. 3.1, we select 64 as the chunking number, resulting in a fixed
total of 63 chunking operations and a size of 65 × sizeof(int) space overhead.
Since the number of chunks remains constant regardless of matrix size, the pre-
processing time for chunking is negligible compared to the time required for exe-
cuting a single SpMV. We measured the preprocessing time and the average time
of a CSR-Based SpMV for each of the 2092 matrices. The results are illustrated
in Fig. 7, demonstrating that the preprocessing time overhead is minimal and
consistently lower than the time required for two CSR-Based SpMV. Regarding
space overhead, the additional space required is a size of 65× sizeof(int) due to
the fixed number of chunks. This means that the number of bytes added is fixed
to 65 × sizeof(int) for any matrix, which is negligible compared to the overall
memory usage in real applications and the space occupied by sparse matrices.

Fig. 7. Preprocessing Time (Normalize to average single CSR-Based SpMV time)

4.2 Floating-Point Performance

To obtain the floating-point performance, we considered one multiplication and
one addition operation for each non-zero element. Assuming a total of nnz non-
zero elements and a SpMV execution time of time, GFlops is denoted as follows:

GFlops =
2 × nnz

time
(1)

Optimizing CSR-Based SpMV on a New Architecture Pezy-SC3s 33

We performed tests on the 2092 matrices by running CSR-Based SpMV, our
optimized SpMV on Pezy-SC3s, and the CSR-Based SpMV provided by CuS-
parse on 3090ti. We measured the corresponding GFlops achieved by executing
SpMV for each matrix, and the results are shown in Figs. 8 and 9.

Fig. 8. Pezy-SC3s SpMV GFlops Fig. 9. 3090ti SpMV GFlops

The results indicate that the computing power of the hardware platform
becomes more evident as the number of non-zero elements increases. When the
number of non-zero elements is small (nnz < 106), all three SpMVs achieve rela-
tively low GFlops, which gradually increase as the number of non-zero elements
in the matrix grows. When the number of non-zero elements becomes suffi-
ciently large (nnz ≥ 106), our optimization of CSR-Based SpMV on Pezy-SC3s
demonstrates a more significant improvement. CSR-Based SpMV also performs
better when the data volume is very small (nnz < 104) due to shorter waiting
times between threads and no need to wait for Atomic Cache workload balance.
However, for practical applications, larger matrices are more commonly encoun-
tered and tend to have a more significant time overhead. The optimization effect
becomes noticeable when the number of non-zero elements reaches around 106

and continues to improve with increasing non-zero elements.

4.3 Bandwidth Utilization

Bandwidth utilization is a crucial performance metric for SpMV implementa-
tions [13]. Due to the bandwidth-constrained and access-intensive nature of
SpMV, achieving high bandwidth utilization is a critical optimization goal in
computing platform with many cores [24,32]. In our experiments, we focused on

34 J. Guo et al.

the number of bytes occupied by non-zero elements as the key factor in band-
width calculations, which is a common approach in SpMV optimization efforts
[17,20,35]. Assuming the floating-point type is double, a matrix with nnz non-
zero elements, and an average time of time required for a single SpMV operation,
the bandwidth calculation formula is:

Bandwidth =
nnz × sizeof(double)

time
(2)

Figures 10 and 11 present the achieved bandwidth values for 2092 matrices
on Pezy-SC3s and 3090ti using the three SpMV implementations, respectively.

Fig. 10. Pezy-SC3s SpMV BandWidth Fig. 11. 3090ti SpMV BandWidth

The results demonstrate that the bandwidth values for all three methods
increase as the number of non-zero elements increases. This trend aligns with
the measured GFlops in Figs. 8 and 9 and holds consistent in general. On Pezy-
SC3s, our method exhibits more significant improvements in bandwidth uti-
lization as the number of non-zero elements increases compared to CSR-Based
SpMV. The effect of our optimization may not be apparent when the number
of non-zero elements is less than 26, but as the number of non-zero elements in
the matrix grows, the importance of workload balance between threads becomes
more pronounced. The workload imbalance between different threads increases
as the number of non-zero elements in the matrix rises, making our optimization
increasingly effective in addressing the workload imbalance issue. Notably, for
matrices with the number of non-zero elements larger than 26, our optimization
demonstrates considerable advantages and even achieves multiplicative perfor-
mance gains compared to CSR-Based SpMV on certain matrices.

Optimizing CSR-Based SpMV on a New Architecture Pezy-SC3s 35

Furthermore, we conducted a comparison of SpMV bandwidth utilization on
Nvidia GPUs. We evaluated the bandwidth of Pezy-SC3s and 3090ti using the
open-source bandwidth test code STREAM benchmark [25]. The maximum value
from the STREAM benchmark test results is denoted as Rmax (307.62 GB/s on
Pezy-SC3s and 929.88 GB/s on 3090ti), and the average bandwidth measured
for each matrix during SpMV execution on both platforms is represented as R.
The bandwidth utilization formula is as follows:

BandwidthUtilization =
R

Rmax
× 100% (3)

We tested SpMV on the 3090ti using Nvidia’s highly optimized sparse library
CuSparse. For each matrix, we performed 1000 warm-up SpMV operations fol-
lowed by 3000 SpMV operations, averaging the total elapsed time to obtain the
single SpMV elapsed time. The final comparison results are presented in Fig. 12.
Our optimization method achieves an average bandwidth utilization of 35.22%
on large-scale matrices (nnz ≥ 106), reaching 62.54% on very large-scale matrices
(nnz ≥ 107). This result surpasses the bandwidth utilization achieved by Nvidia
CuSparse libraries on very large-scale matrices (nnz ≥ 107), which is 36.17%
and 45.56%, respectively. The analysis reveals that our method achieves better
bandwidth utilization compared to CuSparse when the matrix contains a suffi-
cient number of non-zero elements. However, our bandwidth utilization slightly
lags behind CuSparse for matrices with fewer non-zero elements (nnz ≤ 107).
As shown in Fig. 12, the performance of our method is similar to CuSparse on
average, but the performance variance is higher (some points are close to the
X-axis in Fig. 12). This can be attributed to our workload balance approach,
which involves assigning at least one entire row at a time. As a result, we can

Fig. 12. Bandwidth Utilization On Pezy-SC3s and Nvidia 3090ti GPU

36 J. Guo et al.

not obtain a complete workload balance, making it unsuitable for matrices with
specific sparse patterns. Consequently, this leads to relatively significant perfor-
mance variance across different matrices.

4.4 SpeedUp

We also calculated the speedup ratio of the optimized SpMV over the CSR-Based
SpMV for the 2092 matrices on Pezy-SC3s. Assuming the average time of the
optimized SpMV is denoted as timeopt, and the average time of the CSR-Based
SpMV is denoted as timebaseline, the speedup ratio (SpeedUp) can be expressed
as:

SpeedUp =
timebaseline
timeopt

(4)

As shown in Fig. 13, our optimized SpMV achieves a maximum speedup ratio
of x17.63 compared to the CSR-Based SpMV. CSR-Based SpMV also performs
better when the data volume is very small (nnz ≤ 104). However, for practical
applications, larger matrices that impose significant time overhead are more com-
mon. Our optimized SpMV demonstrates increasingly noticeable benefits as the
number of non-zero elements reaches approximately 106, and the performance
improvement continues to grow with a higher number of non-zero elements.

Fig. 13. SpeedUp Rate

5 Conclusion

In summary, we have optimized the CSR-Based SpMV on a new MIMD platform
Pezy-SC3s. Our optimization approach involves matrix chunking at the cache

Optimizing CSR-Based SpMV on a New Architecture Pezy-SC3s 37

level, with the best performance achieved when the number of chunks is set to
26. Fast matrix partitioning with less than two CSR-Based SpMV average time
in most cases. Additionally, we utilize the Atomic Cache, a high-performance
component provided by Pezy-SC3s, to schedule thread workload distribution
in CSR-Based SpMV. This workload scheduling ensures that as many threads
as possible are actively working simultaneously, avoiding thread waiting and
computing resource waste, thereby addressing the workload imbalance prob-
lem. Finally, we apply 128-bit SIMD instructions to enhance parallelism. We
test our method on 2092 matrices from the SuiteSparse collection, with the final
results showing a maximum speedup ratio of x17.63 compared to the CSR-Based
SpMV. Besides, we significantly improve bandwidth utilization. A comparison
with Nvidia’s highly optimized sparse library CuSparse on the 3090ti GPU indi-
cates that our optimization method achieves an average bandwidth utilization of
35.22% on large-scale matrices (nnz ≥ 106), reaching 62.54% on very large-scale
matrices (nnz ≥ 107). This result surpasses the bandwidth utilization achieved
by Nvidia CuSparse libraries on very large-scale matrices (nnz ≥ 107), which
is 36.17% and 45.56%, respectively. These results highlight that our optimiza-
tion method can effectively utilize the bandwidth and computing resources of
Pezy-SC3s.

Acknowledgments. This research was funded by the R&D project 2023YFA1011704,
and we would like to thank the ICA3PP 2023 reviewers for their valuable revision
comments. We will continue our research in the future to explore more efficient SpMV
implementations on Pezy-SC3s and other platforms.

References

1. Ashari, A., Sedaghati, N., Eisenlohr, J., Parthasarathy, S., Sadayappan, P.: Fast
Sparse Matrix-Vector Multiplication on GPUS for Graph Applications. IEEE

2. Ashari, A., Sedaghati, N., Eisenlohr, J., Sadayappan, P.: An efficient two-
dimensional blocking strategy for sparse matrix-vector multiplication on GPUs
(2014)

3. Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In: Conference on High Performance Computing
Networking (2009)

4. Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In: Conference on High Performance Computing
Networking (2009)

5. Bolz, J., Farmer, I., Grinspun, E., Schrder, P.: Sparse Matrix Solvers on the GPU:
Conjugate Gradients and Multigrid. ACM (2003)

6. Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM Trans.
Math. Softw. 38(1), 1–25 (2011)

7. Heller, M., Oberhuber, T.: Adaptive row-grouped CSR format for storing of sparse
matrices on GPU. Comput. Sci. (2012)

8. Karakasis, V., Goumas, G.I., Koziris, N.: Perfomance models for blocked sparse
matrix-vector multiplication kernels. In: International Conference on Parallel Pro-
cessing (ICPP 2009), Vienna, 22–25 September 2009 (2009)

38 J. Guo et al.

9. Kepner, J., Bade, D., Buluc, A., Gilbert, J., Mattson, T., Meyerhenke, H.: Graphs,
matrices, and the graphblas: seven good reasons. arXiv preprints (2015)

10. Kepner, J., Gilbert, J.: Graph algorithms in the language of linear alge-
bra. In: Opencoursesfree Org, pp. 315–337 (2011). https://doi.org/10.1137/1.
9780898719918

11. Khairoutdinov, M.F., Randall, D.A.: A cloud resolving model as a cloud parameter-
ization in the ncar community climate system model: preliminary results. Geophys.
Res. Lett. 28(18), 3617–3620 (2001)

12. Krotkiewski, M., Dabrowski, M.: Parallel symmetric sparse matrix-vector product
on scalar multi-core cpus. Parall. Comput. 364, 181–198 (2010)

13. Langr, D., Tvrdik, P.: Evaluation criteria for sparse matrix storage formats. IEEE
Trans. Parallel Distrib. Syst. 27(2), 428–440 (2015)

14. Li, C., Xia, T., Zhao, W., Zheng, N., Ren, P.: Spv8: pursuing optimal vectorization
and regular computation pattern in SPMV. In: 2021 58th ACM/IEEE Design
Automation Conference (DAC), pp. 661–666. IEEE (2021)

15. Li, Y., et al.: VBSF: a new storage format for SIMD sparse matrix-vector multi-
plication on modern processors. J. Supercomput. 76, 2063–2081 (2020)

16. Liang, Y., Tang, W.T., Zhao, R., Lu, M., Huynh, H.P., Goh, R.S.M.: Scale-free
sparse matrix-vector multiplication on many-core architectures. IEEE Trans. Com-
put. Aided Des. Integr. Circuits Syst. 36(12), 2106–2119 (2017). https://doi.org/
10.1109/TCAD.2017.2681072

17. Liu, W., Vinter, B.: Csr5: an efficient storage format for cross-platform sparse
matrix-vector multiplication. In: Proceedings of the 29th ACM on International
Conference on Supercomputing, pp. 339–350 (2015)

18. Maggioni, M., Bergerwolf, T.Y.: Adell: an adaptive warp-balancing ell format for
efficient sparse matrix-vector multiplication on gpus. IEEE Comput. Soc. 11–20
(2013)

19. Merrill, D., Garland, M.: Merge-based parallel sparse matrix-vector multiplication.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC 2016) (2017)

20. Merrill, D., Garland, M.: Merge-based sparse matrix-vector multiplication (SPMV)
using the CSR storage format. ACM Sigplan Notices 51(8), 1–2 (2016)

21. Mohri, M.: Semiring frameworks and algorithms for shortest-distance problems. J.
Automata. Lang. Combinator. (2002)

22. Mu, S., et al.: GPU accelerated sparse matrix-vector multiplication and sparse
matrix-transpose vector multiplication. Concurr. Comput. Pract. Exp. (2015)

23. Ravishankar, M., et al.: Distributed memory code generation for mixed irregu-
lar/regular computations. In: Proceedings of the 20th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pp. 65–75 (2015)

24. Shalf, J., Dosanjh, S.S., Morrison, J.: Exascale computing technology challenges.
In: High Performance Computing for Computational Science - 9th International
conference, Berkeley, 22–25 June 2010 (VECPAR 2010), Revised Selected Papers
(2010)

25. STREAM: Sustainable memory bandwidth in high performance computers. http://
www.cs.virginia.edu/stream/

26. Sundaram, N., et al.: Graphmat: high performance graph analytics made produc-
tive. arXiv preprints (2015)

27. Venkat, A., Hall, M., Strout, M.: Loop and data transformations for sparse matrix
code. ACM SIGPLAN Notices 50(6), 521–532 (2015)

28. Vázquez, F., Fernández, J., Garzón, E.: A new approach for sparse matrix vector
product on nvidia gpus. Concurr. Comput. Pract. Exp. 23(8), 815–826 (2011)

https://doi.org/10.1137/1.9780898719918
https://doi.org/10.1137/1.9780898719918
https://doi.org/10.1109/TCAD.2017.2681072
https://doi.org/10.1109/TCAD.2017.2681072
http://www.cs.virginia.edu/stream/
http://www.cs.virginia.edu/stream/

Optimizing CSR-Based SpMV on a New Architecture Pezy-SC3s 39

29. Vázquez, F., Ortega, G., Fernández, J., Garzón, E.: Improving the performance of
the sparse matrix vector product with gpus. In: IEEE International Conference on
Computer and Information Technology (2010)

30. Wang, E., et al.: Intel math kernel library. In: Wang, E., et al. (eds.) High-
Performance Computing on the Intel R© Xeon PhiTM: How to Fully Exploit MIC
Architectures, pp. 167–188. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-06486-4 7

31. Wang, Y., et al.: Gunrock: GPU Graph Analytics (2017)
32. Wright, M.: The Opportunities and Challenges of Exascale Computing (2010)
33. Xie, B., et al.: CVR: efficient vectorization of SPMV on x86 processors. In: Proceed-

ings of the 2018 International Symposium on Code Generation and Optimization,
pp. 149–162 (2018)

34. Yan, J., Chen, X., Liu, J.: CSR&RV: an efficient value compression format for
sparse matrix-vector multiplication. In: Liu, S., Wei, X. (eds.) Network and Parallel
Computing: 19th IFIP WG 10.3 International Conference, NPC 2022, Jinan, 24–25
September 2022, Proceedings, pp. 54–60. Springer, Cham (2022). https://doi.org/
10.1007/978-3-031-21395-3 5

35. Yan, S., et al.: YASPMV: yet another SPMV framework on GPUS. ACM SIGPLAN
Notices (2014)

36. Zheng, C., Gu, S., Gu, T.X., Yang, B., Liu, X.P.: Biell: a bisection ellpack-based
storage format for optimizing SPMV on GPUS. J. Parall. Distrib. Comput. 74(7),
2639–2647 (2014)

https://doi.org/10.1007/978-3-319-06486-4_7
https://doi.org/10.1007/978-3-319-06486-4_7
https://doi.org/10.1007/978-3-031-21395-3_5
https://doi.org/10.1007/978-3-031-21395-3_5

Intrusion Detection Method
for Networked Vehicles Based

on Data-Enhanced DBN

Yali Duan1, Jianming Cui1, Yungang Jia2, and Ming Liu2(B)

1 School of Information Engineering, Chang’an University, ShaanXi 710064, China
cjianming@chd.edu.cn

2 National Computer Network Emergency Response Technical Team/Coordination
Center of China, Beijing 100029, China

liuming@cert.org.cn

Abstract. At present, cyber attacks on vehicle network have are pro-
liferating, one of the most significant difficulties in the current detection
methods is that the malicious flows are small and discrete in the whole
link. In view of the above issues, this paper proposed a detection model
based on the integration of Generative Adversarial Networks (GANs)
and Deep Belief Networks (DBN). In this model, GANs is first used to
enhance the few malicious flow samples, and then an improved DBN is
used to evaluate the effect of data generation, so as to improve the uneven
distribution of samples in the data set. In the testing section, open data
set CIC-IDS2017 was selected for data enhancement and evaluated the
performance of the proposed model. The experimental results show that
the proposed model has significantly improved the detection performance
of few cyber attacks samples compared with traditional detection algo-
rithms. In addition, compared with the method of merge-generate data
set approach, the accuracy rate, recall rate, F1 value and other evalua-
tion indexes of the proposed model for the few samples detection have
been greatly improved. Therefore, it can be considered that the proposed
model is effective than current methods in dealing with the uneven dis-
tribution of data sets in traditional cyber attack detection.

Keywords: Generative Adversarial Networks · Networked vehicles ·
Intrusion detection · Sample distribution

1 Introduction

Traditional vehicular networks (VANETs) [1] are gradually evolving into intel-
ligent vehicular networks. While achieving network communication, vehicles are
vulnerable to malicious network flow and may lead to privacy leakage due to
the lack of security mechanisms such as firewalls and gateways in some of the
devices [1–3]. Improving the active defense capability and security of vehicular

This work is financially supported by the National Natural Science Foundation of China
under Grant 62106060.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 40–52, 2024.
https://doi.org/10.1007/978-981-97-0801-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_3&domain=pdf
https://doi.org/10.1007/978-981-97-0801-7_3

Intrusion Detection Method for Networked Vehicles 41

networks is an important and popular research direction [3,4]. Traditional intru-
sion detection techniques can detect ongoing and existing malicious attacks in a
timely manner. However, in uneven distribution massive network flow, malicious
cyber attacks often hide in a large amount of normal data, making traditional
intrusion detection methods difficult to deal with evolving malicious attacks and
network threats [1,5].

Currently, the main methods for handling uneven distribution data [6] include
resampling methods [7], cost-sensitive algorithms, ensemble methods, feature
representation and classification decoupling, etc. These methods attempt to
rebalance the class weight norms in the machine learning model by increasing
the number of samples of minority attacks. However, these traditional algorithms
still have some problems. Generative adversarial networks (GANs) [8,9] can learn
the distribution of given data and generate new sample data. Currently, GANs
are mostly used in natural images [10,11], and have achieved significant results.
Inspired by its success in these fields, scholars are gradually starting to use GANs
to generate adversarial network flow for intrusion detection.

It can be argued that the current intrusion detection approach for vehicular
networks has the following two drawbacks: (1) The network flow data is uneven
distribution and the number of samples in the minority class is too small. The
commonly used data augmentation algorithm, SMOTE algorithm [12,13] does
not consider noise data and boundary issues, which may cause overlap between
different categories, leading to decreased accuracy and overfitting problems. (2)
Some current intrusion detection models for vehicular networks perform a lower
detection rate and weak classification ability. On this basis, a new intrusion
detection model is proposed, which combines GANs with DBN [14], and uses
a GAN-based data augmentation method [15] to generate adversarial attack
samples for the minority class, in order to expand the dataset CIC-IDS2017, an
improved DBN classifier is designed to evaluate the effectiveness of this method
[14,16]. How to achieve better classification effect, higher classification accuracy
and higher precision, which is the main innovation and challenge of this paper.

2 Intrusion Detection Model Based on Data
Augmentation

2.1 Data Processing and Augmentation

Dataset Analysis and Preprocessing. In this paper, since the vehicle data
set may lead to user privacy leakage, the general vehicle data set is not open to
the public, so the open source network intrusion detection data set is adopted.
In the existing open source datasets, CIC-DDOS2019 dataset proposes an attack
classification method for DDOS, and the CSE-CIC-IDS2018 is mostly used for
anomaly detection. However, this paper studies data enhancement and intrusion
detection for a few categories in the vehicle network. So, the dataset used is the
CIC-IDS2017 dataset [17] provided by the Canadian Institute for Cybersecurity.
It contains 5 d of normal and attack flow data collected by the institute, with

42 Y. Duan et al.

each record having 78 network features. The dataset includes the latest cyber
attacks and meets all standards of real-world attacks, and can fully simulate the
attack to vehicle network [18].

After merging the 8 csv files of the CIC-IDS2017 dataset, missing instances
were removed from the dataset along with NaN values to avoid redundancy and
exploding gradients when training the model. The dataset was then transformed
into numerical values and normalized, with the most frequently occurring class
being labeled as ’Normal’ and all other classes labeled as ’Attack’ to meet the
conditions of inputting the dataset into the GAN network.

GANs-Based Data Augmentation Methods. To address the problem of
highly uneven distribution data in vehicle network datasets, a data augmentation
method based on Generative Adversarial Networks (GANs) is used to generate
adversarial attack samples for the minority class, in order to expand the dataset
CIC-IDS2017 [17] used in the study.

Algorithm 1. Data Augmentation Algorithm based on GANs
Input: s = (r, y) r is the eigenvector y is the category label
Output: SG = [G (z, y′) , y′]
1: while 0 <= pdata <= 1

2
do /∗ train GAN∗/

2: for k steps do /∗ train Discriminator∗/

3: Sample random noise
{

z(1), z(2), . . . z(m)
}

from pz(z)

4: Sample real data
{

x(1), x(2), . . . x(m)
}

from pdata (x)

5: ηθD ← ∇θD
1
m

∑m
1

[
log D

(
x(i)

)
+ log

(
1 − D

(
G

(
z(i)

)))]

6: /∗ update the weight parameters and gradients ∗/
7: θD ← θD + αD · Adam (θD, ηθD)

8: end for
9: Sample random noise

{
z(1), z(2), . . . z(m)

}
from pz(z)/∗ train Generator*/

10: ηθD ← ∇θG
1
m

∑m
1

[
log

(
1 − D

(
G

(
z(i)

))]
/∗ update the weight parameters

and gradients ∗/
11: θD ← θG − αG · Adam (θG, ηθG)

12: end
13: return data /∗ Generate data ∗/

Algorithm 1 is the data augmentation training process of GANs. Where ΘG,
ηθG

, θD, ηθD
are the generated weight parameters, gradients, and discriminator

weight parameters and gradients, respectively. Its main steps are:

– (1) The category label y′ of the preprocessed minority data is input to the
generator G with the random noise vector z for training and the data sample
SG generated;

– (2) Fix the generator G, train the discriminator D, and gradually update the
weight parameter θD of the discriminator;

Intrusion Detection Method for Networked Vehicles 43

– (3) Fixed discriminator D, train generator G, and gradually update the weight
parameter θG of the generator;

– (4) Loop (1)–(3) until pg = pdata = 1/2, the discriminator cannot distinguish
between the two distributions, so that the generated sample keeps approach-
ing the real data sample.

Figure 1 shows the occurrence of classes in the original dataset and the minority
class after data augmentation, it can be observed that data augmentation is
effective in increasing the number of samples in classes with fewer than 5000
samples in the dataset, particularly for extremely rare classes such as Heartbleed
and Infiltration, which are increased from 11 and 36 samples, respectively, to
5632 and 8704 samples.

Fig. 1. Comparison of Original Data and Quantity after Data Augmentation

2.2 Improved DBN Model

Structurally, Deep Belief Networks [19] is a probabilistic generative model com-
posed of multiple layers of unsupervised Restricted Boltzmann Machines (RBM)
and a supervised Back-Propagation (BP) network, DBN is composed of multiple
stacked RBMs, each consisting of a hidden layer and a visible layer.

The training of DBN [20] consists of the layer-wise pre-training stage and
the back-propagation fine-tuning stage. In the pre-training stage, it uses the
Contrastive Divergence (CD) algorithm proposed by Hinton to quickly train
RBM to obtain an approximate representation of the input vector v. In the
back-propagation fine-tuning stage, the BP algorithm and stochastic gradient

44 Y. Duan et al.

descent are used to optimize the connection weights in the DBN to obtain the
optimal model parameters. For the pre-training stage, the Mean Square Error
(MSE) and Pseudo-Likelihood (PL) loss functions were used to evaluate the
accuracy of RBM training. The calculation method for MSE is Eq. (1):

MSE =
1
m

m∑

i=1

(xi − x̄)2 (1)

where m is the number of samples, xi(i = 1, 2, 3 . . . m) is the sample, x̄ is the
average of m samples. For the reverse tuning stage, in order to determine the
learning rate of the model, the loss and accuracy of the training set and the
validation set are used to evaluate its performance.

Algorithm 2 is the specific algorithm trained by DBN. Where W ,W k are
the weight matrix with the training stage and the fine-tuning stage respectively,
ai(i = 1, 2, 3 . . . M), bj(j = 1, 2, 3 . . . N) are the biases of the visible layer and
the hidden layer respectively, ε,εft are the learning rate of the pre-training stage
and the fine-tuning stage, V = v1, v2 . . . , vm is the training sample of RBM, l is
the number of layers of RBM, ak, bk (k = 1, 2, 3 . . . l) are the bias of the visible
layer and the hidden layer at the kth layer, respectively.

3 Experimental Design and Result Analysis

The experiments were conducted in a Win10 environment, with a 64-bit Intel(R)
Xeon(R) Silver 4100 CPU and 32 GB RAM. The implementation was done using
Python 3.8 language and the Pytorch 1.9 framework.

3.1 Dataset Labels

The proposed intrusion detection model was evaluated using the CIC-IDS2017
dataset. After data enhancement, similar attack classes with similar characteris-
tics and behaviors were merged into a new class, and the dataset was re-labeled.
The final standard dataset was divided into 9 classes. Table 1 shows the number
of labels in the standardized dataset after re-labeling.

3.2 Experiments and Analysis

To evaluate the detection performance of the proposed intrusion detection model,
the following experiments were designed.

Experiments on Training GANs-DBN Model. GANs were used to gen-
erate samples for the 8 minority classes in the dataset. The GANs training
parameters are shown in Table 2. After training, the dataset was re-labeled to
generate the standard dataset, which was then divided into training set, testing
set, and validation set in a 60%, 20%, 20% ratio. Finally, the data was input into

Intrusion Detection Method for Networked Vehicles 45

Algorithm 2. DBN Training Algorithm
Initialize W = W k = ai = bj = 0

1: the first phase: Train RBM
2: for s steps do/∗Set the number of iterations s∗/
3: for vi do i = 1, 2 . . . m
4: for k do /∗Gibbs sampling∗/
5: for i do i = 1, 2 . . . M

6: h
(k)
j ← p

(
hj | v(k)

)

7: end for
8: for j do j = 1, 2 . . . N

9: v
(k+1)
i ← p

(
vi | h(k)

)

10: end for
11: for i, j do
12: i = 1, 2 . . . Mj = 1, 2 . . . N /∗ Update weights and biases ∗/

13: Wij
(k) ← Wij

(k+1) + ε
(
p

(
hj | v(0)

))

14: a
(k+1)
i ← a

(s)
i + ε

(
v
(0)
i − v

(k)
i

)

15: b
(k+1)
i ← b

(s)
i + ε

(
p

(
hj | v(k)

))
− p

(
hj | v(k)

)

16: end for
17: end for
18: end for
19: end for
20: the second phase: Fine Tune DBN
21: % Forward propagation
22: for l do
23: Initialization W k = ak = bk = 0, ε = ε0
24: Train RBM /∗ Traverse each layer RBM∗/

25: end for
26: for i do
27: i = 1, 2 . . . m
28: Compute oi (xi)

29: end for
30: % Backpropagation
31: for k do k = l, l − 1 . . . 1
32: if k = l
33: δk ← ok (1 − ok) (tk − ok)
34: else
35: δh ← oh (1 − ok)

∑
k∈ outputs εkhδk

36: θji ← θji + Δθji, θji = εftδjxj

37: end if
38: end

46 Y. Duan et al.

Table 1. Number of Labels After Relabeling

New labels Origin labels Numbers

Benign BENIGN 2260360

Brute Force SSH-Patator 13755

FTP-Patator

DoS DoS-Hulk 250743

DoS-GoldenEye

DoS-slowloris

DoS-Slowhttptest

Heartbleed Heartbleed 5632

Infiltration Infiltration 8704

Web Attack Web Attack-Brute Force 16548

Web Attack-XSS

Web Attack-Sql Injection

DDoS DDoS 127082

PortScan PortScan 157703

Bot Botnet ARES 7772

Table 2. GANs Training Parameters

Parameter

Activation function Leaky ReLU

Learning rate 0.0002

Optimister Adam

Loss function Cross-entropy

Batch size 5

Table 3. DBN Network Parameters

Parameter Pre-training phase Fine-tuning phase

Epochs 10 5

Learning rate 0.015 0.005

Batch size 64 128

Optimister SGD Adam

Gibbs steps 1

the DBN classifier for model evaluation. The parameter settings for the DBN
classifier are shown in Table 3.

During the training of the DBN classifier, in the pre-training stage, the learn-
ing rate of the RBM were determined by changing the learning rate within an
approximate range of [0.001, 0.1]. As shown in Fig. 3, when the learning rate lr
= 0.015, MSE = 0.538, PL = -0.818. Compared with other learning rates, the
training accuracy of RBM is optimal at this learning rate. Therefore, this method

Intrusion Detection Method for Networked Vehicles 47

Fig. 2. Dataset Classification Results:(a) Training Set Classification Results.
(b)Testing Set Classification Results. (c) Verification Set Classification Results.

selected the learning rate lr = 0.015 as the learning rate for RBM training. In the
back-propagation fine-tuning stage, the performance of the model was evaluated
using the loss and accuracy of the training set and the validation set to determine
the optimal learning rate for this stage. From Fig. 4, it can be clearly seen that
when the learning rate is lr = 0.005, the loss reaches its minimum value with
train-loss = 0.453 and val-loss = 0.419, and the accuracy of the training set and
validation set reaches its maximum value with train-acc = 0.993 and val-acc =
0.990. However, when the learning rate is too high, such as lr = 0.1, the model’s

48 Y. Duan et al.

Fig. 3. Comparison of RBM Training
Performance at different learning rates.

Fig. 4. Comparison of Accuracy and Loss
at different learning rates

Table 4. Testing Set Confusion Matrix

True Label Predicted Label Recall

Benign Bot Brute Force DDoS DoS Heartbleed Infiltration PortScan Web Attack

Benign 451120 0 30 33 988 3 4 188 203 0.994

Bot 0 0 0 0 0 0 0 0 0 0

Brute Force 12 0 2733 0 1 0 0 0 0 0.989

DDoS 51 0 0 25138 3 0 0 0 0 0.998

DoS 167 0 0 0 49741 0 0 0 46 0.978

Heartbleed 0 0 0 0 0 1100 0 0 0 0.997

Infiltration 455 0 0 0 0 0 1270 0 0 0.997

PortScan 24 0 0 6 17 0 0 31440 2 0.994

Web Attack 276 0 0 0 92 0 0 0 2976 0.922

Precision 0.997 0 0.995 0.998 0.996 1.000 0.736 0.998 0.890

loss reaches 0.98 and the model fails to converge. Therefore, based on the above
results, this method selected the learning rate lr=0.005 as the training learning
rate for the back-propagation fine-tuning stage of the model.

The classification results of the proposed model for the training set, test set,
and validation set are shown in Fig. 2, and the confusion matrix for the predicted
classes in the test set is presented in Table 4. It show that the proposed model
can correctly classify most of the network flow, with high precision, recall, and F1
score. The precision, recall, and F1 score for the minority classes such as Brute
Force, DDoS and PortScan are close to 1. Additionally, the precision, recall, and
F1 score for extremely rare classes like Heartbleed and Infiltration are also above
70%, with a recall rate of 99.7% and a precision rate of 100% for Heartbleed.
Therefore, the proposed model has strong detection performance for attacks on
minority classes in the vehicular networks while maintaining high performance
in detecting other attacks.

Intrusion Detection Method for Networked Vehicles 49

Performance Comparison Experiments of Different Data Augmenta-
tion Methods. To verify the effectiveness of the proposed data augmentation
method, this study compared different data augmentation methods, including
the SMOTE algorithm, class weight strategy, combination of SMOTE algorithm
and class weight strategy, and GANs and combines it with DBN classifier for
model evaluation. The parameters of the DBN network were kept consistent for
each method, and the specific parameter settings are shown in Table 3.

Table 5. Comparison of GANs with Other Data Augmentation Methods

Model Accuracy F1-score AUC

Class Weights+DBN 96 84 97

SMOTE+DBN 98 82 96

SMOTE+Class Weights+DBN 95 80 91

GANs+DBN 99 86 99

Table 5 shows that compared to the other three commonly used data aug-
mentation methods, the proposed model improves accuracy, F1 score, and AUC
by at least 1%, 2%, and 2%, respectively. Figure 5 compares the offline AUCs for
different classes using various data augmentation methods. It can be concluded
that the proposed intrusion detection method based on GANs-DBN outperforms
other classification algorithms in overall performance, although it may not per-
form as well as some other methods for certain classes. Overall, this method
greatly improves the accuracy of intrusion detection for each class.

Fig. 5. Comparison of AUC for Different
Data Augmentation Methods

Fig. 6. Performance Comparison of Dif-
ferent Models

50 Y. Duan et al.

Performance Comparison Experiment of Different Models. To verify
the intrusion detection performance of the proposed model, the performance of
GANs-DBN was compared with several existing intrusion detection models using
the CIC-IDS2017 dataset. Othmane Belarbi [21] To verify the intrusion detection
performance of the proposed model, the performance of GANs-DBN was com-
pared with several existing intrusion detection models using the CIC-IDS2017
dataset. Monika Roopak et al. [22] proposed deep learning models including
LSTM, CNN + LSTM, and SVM, and evaluated DDoS attack detection using the
CIC-IDS2017 dataset. For the LSTM model, the final accuracy reached 86.34%;
for the CNN + LSTM model, the final accuracy reached 97.16%; for the SVM
model, the accuracy reached 95.5%. By comparing the performance data of the
above reference papers with the GANs-DBN model used in this paper, the detec-
tion performance of various intrusion detection models was evaluated.

From Fig. 6, it can be seen that the proposed model outperformed other
models in all three indicators, reaching 99.27%, 99.80%, and 99.70% respectively,
which represents at least a 1.03%, 1.36%, and 0.58% improvement, respectively.
Thus, the proposed model significantly improved the detection performance for
multi-class intrusion detection compared to other models.

4 Conclusion

This paper presents an integrated network intrusion detection model, GANs-
DBN, designed to address the issue of low detection performance for small
quantities of malicious flow in vehicle networks due to the discrete distribu-
tion of network attacks. The performance of the model is evaluated using the
CIC-IDS2017 dataset. Specifically, GANs are employed for data augmentation,
expanding the dataset and enriching its distribution, while an improved DBN
classifier is utilized to assess the model’s classification capability. Experimental
results demonstrate that the proposed model outperforms alternative methods
in overall detection performance, effectively enhancing the detection rate for
specific classes of attacks and thereby improving overall accuracy. However, it is
worth noting that the current research only partially simulates the real network
conditions, and future efforts should focus on identifying and defending against
the complex traffic characteristics encountered in actual vehicle networks, par-
ticularly APT attacks.

References

1. Cui, J., Ma, L., Wang, R., Liu, M.: Research and optimization of GPSR routing
protocol for vehicular ad-hoc network. China Commun. 19(10), 194–206 (2022)

2. Zhang, Y., Cui, J., Liu, M.: Research on adversarial patch attack defense method
for traffic sign detection. In: Lu, W., Zhang, Y., Wen, W., Yan, H., Li, C. (eds.)
Cyber Security: 19th China Annual Conference, CNCERT 2022, Beijing, China,
August 16–17, 2022, Revised Selected Papers, pp. 199–210. Springer, Singapore
(2022). https://doi.org/10.1007/978-981-19-8285-9 15

https://doi.org/10.1007/978-981-19-8285-9_15

Intrusion Detection Method for Networked Vehicles 51

3. Liu, M., et al.: Modeling and analysis of the decentralized interactive cyber defense
approach. China Commun. 19(10), 116–128 (2022)

4. Kang, M.J., Kang, J.W.: Intrusion detection system using deep neural network for
in-vehicle network security. PLoS ONE 11(6), e0155781 (2016)

5. Qu, F., Wu, Z., Wang, F.Y., Cho, W.: A security and privacy review of vanets.
IEEE Trans. Intell. Transp. Syst. 16(6), 2985–2996 (2015)

6. Zhang, Y., Li, X., Gao, L., Wang, L., Wen, L.: Imbalanced data fault diagnosis of
rotating machinery using synthetic oversampling and feature learning. J. Manuf.
Syst. 48, 34–50 (2018)

7. He, H., Yang, B., Garcia, E., Li, S.A.: Adaptive synthetic sampling approach for
imbalanced learning. In: Proceedings of the 2008 IEEE International Joint Confer-
ence on Neural Networks (IEEE World Congress on Computational Intelligence),
Hong Kong (2008)

8. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath,
A.A.: Generative adversarial networks: an overview. IEEE Signal Process. Mag.
35(1), 53–65 (2018)

9. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11),
139–144 (2020)

10. Wang, Z., She, Q., Ward, T.E.: Generative adversarial networks in computer vision:
a survey and taxonomy. ACM Comput. Surv. 54(2), 1–38 (2021)

11. Yu, X., Cui, J., Liu, M.: An embedding carrier-free steganography method based
on Wasserstein GAN. In: Lai, Y., Wang, T., Jiang, M., Xu, G., Liang, W., Cas-
tiglione, A. (eds.) Algorithms and Architectures for Parallel Processing (ICA3PP
2021). LNCS, vol. 13156. Springer, Cham (2022). https://doi.org/10.1007/978-3-
030-95388-1 35

12. She, X., Sekiya, Y.: A convolutional autoencoder based method with smote for
cyber intrusion detection. In: 2021 IEEE International Conference on Big Data
(Big Data), pp. 2565–2573. IEEE (2021)

13. Soltanzadeh, P., Hashemzadeh, M.: Rcsmote: range-controlled synthetic minority
over-sampling technique for handling the class imbalance problem. Inf. Sci. 542,
92–111 (2021)

14. Zhang, Y., Li, P., Wang, X.: Intrusion detection for iot based on improved genetic
algorithm and deep belief network. IEEE Access 7, 31711–31722 (2019)

15. Tanaka, F.H.K.d.S., Aranha, C.: Data augmentation using gans. arXiv preprint
arXiv:1904.09135 (2019)

16. Liu, J., Wu, N., Qiao, Y., Li, Z.: Short-term traffic flow forecasting using ensemble
approach based on deep belief networks. IEEE Trans. Intell. Transp. Syst. 23(1),
404–417 (2020)

17. Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating a new intrusion
detection dataset and intrusion traffic characterization. ICISSp 1, 108–116 (2018)

18. Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: Synthetic
data augmentation using gan for improved liver lesion classification. In: 2018 IEEE
15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 289–293.
IEEE (2018)

19. Sohn, I.: Deep belief network based intrusion detection techniques: a survey. Expert
Syst. Appl. 167, 114170 (2021)

20. Gao, N., Gao, L., Gao, Q., Wang, H.: An intrusion detection model based on deep
belief networks. In: 2014 Second International Conference on Advanced Cloud and
Big Data, pp. 247–252. IEEE (2014)

https://doi.org/10.1007/978-3-030-95388-1_35
https://doi.org/10.1007/978-3-030-95388-1_35
http://arxiv.org/abs/1904.09135

52 Y. Duan et al.

21. Belarbi, O., Khan, A., Carnelli, P., Spyridopoulos, T.: An intrusion detection sys-
tem based on deep belief networks. In: Su, C., Sakurai, K., Liu, F. (eds.) Science of
Cyber Security: 4th International Conference, SciSec 2022, Matsue, 10–12 August
2022, Revised Selected Papers, pp. 377–392. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-17551-0 25

22. Roopak, M., Tian, G.Y., Chambers, J.: Deep learning models for cyber security in
IoT networks. In: 2019 IEEE 9th Annual Computing and Communication Work-
shop and Conference (CCWC), pp. 0452–0457. IEEE (2019)

https://doi.org/10.1007/978-3-031-17551-0_25
https://doi.org/10.1007/978-3-031-17551-0_25

A Multi-source Domain Adaption
Approach to Minority Disk Failure

Prediction

Wang Wang1,2, Xuehai Tang1(B), Biyu Zhou1, Yangchen Dong1,
Yuanhang Feng1, Jizhong Han1, and Songlin Hu1

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{wangwang,tangxuehai,zhoubiyu,dongyangchen,fengyuanhang,

hanjizhong,husonglin}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. Frequent happening of disk failures affects the reliability of
the storage system, which can cause jittering of performance or even
data loss of services and thus seriously threaten the quality of service.
Although a host of machine (deep) learning-based disk failure prediction
approaches have been proposed to prevent system breakdown due to
unexpected disk failure, they are able to achieve high performance based
on the assumption that the disk model has plenty of samples (especially
failure samples). However, new disk models continuously appear in data
centers with the evolution of disk manufacturing technology and the
expansion of storage system capacity. Limited by the deploying time,
these disk models have few failure samples and are called minority disks.
The minority disks are widespread in large-scale data centers and contain
amounts of disks while existing approaches cannot reach satisfying per-
formance on such disks due to the lack of failure samples. What’s worse,
failure prediction models trained on other disk models cannot be directly
applied to these minority disks either due to the commonly existing dis-
tribution shift among disk models. In this work, we propose DiskDA,
a novel multi-source domain adaption-based solution that can fully uti-
lize knowledge from other disk models to predict failures for minority
disks having no failure samples. Our experimental results on real-world
datasets show the superiority of DiskDA against previous approaches on
minority disks with a few failure samples. What’s more, DiskDA also
shows its good adaptivity on minority disks having no failure samples,
whereas previous works are unusable.

Keywords: Fault tolerance · Disk failure prediction · Domain
adaption · Cloud computing

1 Introduction

Disk failures are common in modern large-scale data centers, accounting for
more than 70% of hardware replacement events [5,13,16]. Frequent happening
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 53–72, 2024.
https://doi.org/10.1007/978-981-97-0801-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_4&domain=pdf
https://doi.org/10.1007/978-981-97-0801-7_4

54 W. Wang et al.

of disk failure can lead to service performance jitter or even data loss which
severely affects the availability and reliability of cloud applications [7,17]. To
ensure the availability and reliability of cloud applications from unexpected disk
failures, operators should proactively predict the upcoming disk failure events
before they actually happen, so as to take preventive measures in time, such as
virtual machine migration.

The Self-Monitoring, Analysis, and Reporting Technology (SMART) has
been widely implemented by hard disk drive (HDD) and solid-state drive (SSD)
manufacturers to monitor the status of individual disk drives. The values of
SMART attributes related to disk health status are helpful to disk health ten-
dency assessment.

Recently, with the development of machine learning, a host of supervised
learning-based approaches has been proposed to predict disk failures with the
SMART values [10,20,22,23]. With sufficient samples (both healthy and failure
samples) provided, these methods are able to train binary classifiers and classify
newly coming disk samples collected periodically from data centers to predict
failures for each disk with high accuracy.

Table 1. Statistics of Disk Population

Data
Center

Disk
Type

Type

Number

Type

Percentage

Disk
Number

Backblaze Majority 12 11.65% 114,570

Minority 91 88.35% 34,978

Tencent Majority 8 13.33% 52,235

Minority 52 86.67% 18,996

However, the condition of sufficient failure samples can hardly be satisfied by
all disk models. With the evolution of disk manufacturing technology and the
expansion of storage system capacity, disks from different models are continu-
ously added to data centers. Limited by the deploying scale and time, the newly
coming disk models usually have only a few or even no failure samples for most
cases and are named minority disks [11,24]. According to the studies [9,24] in
large-scale data centers (i.e. Backblaze, Tencent, and AliCloud), minority disks
are generally existing in modern data centers. As shown in Table 1 [24], the
minority disks dominate the disk models (over 85%) and contain a great number
of disks (tens of thousands of disks). Unfortunately, the traditional supervised
ML method cannot be applied to predict failures for minority disks, otherwise,
it will suffer from over-fitting or cold-start issues [3,6,24,25]. What’s worse, the
prediction model trained on other disk models cannot be applied to minority
disks either and we illustrate this in our extensive experiments. Because the
commonly existing distribution shifts across disk models break the assumption
of independent identical distribution holding between training and test set.

A Multi-source Domain Adaption Approach 55

More recently, several transfer learning (TL)-based methods [2,9,15,19,24]
and semi-supervised learning approaches [3,6,25] are proposed. Based on the
fact that the failure modes are common for different disk models (e.g. all disks
will fail due to too many bad sectors) [5], the TL-based methods try to adapt
failure prediction knowledge extracted from other disk models to minority disk
models by directly selecting samples similar to the minority disks as training
set or transforming the SMART attribute distribution of minority disks to that
of other disk models via a heuristic statistical model. However, the existing
TL-based approaches can only transfer partial knowledge from a single source
domain (other disk models) since they have to drop many useful samples due to
their dissimilarity to minority disks or abandon critical features that hard to be
transformed. Although using multiple source domains is more likely to introduce
more failure modes, the large number of samples contained in it also means the
complex distribution of source domains, which will lead to negative migration
problems in the existing TL-based methods. In addition, all existing TL-based
approaches need a certain number of failure samples of minority disks in their
transfer procedure, which suggests they can only handle very limited cases. As
for the semi-supervised learning approaches, they though can train their model
with only healthy samples, large quantities of minority disk failure samples are
needed to set appropriate classification thresholds.

In this work, we are exploring extracting the transferable failure modes from
multiple source domains and aligning their semantics across source and target
domains so that the full knowledge can be leveraged to enhance the failure pre-
diction of minority disks. To this end, we model our problem as an unsupervised
domain adaption problem and propose DiskDA, a multi-source domain adaption-
based failure prediction approach for minority disks. It is able to extract failure
modes from samples of multiple disk models and utilize them in minority disk
(even with no failure samples) failure prediction with high performance. The
goal is achieved because of two key designs. Firstly, although minority disks do
not have complete class distribution, we find that the particularity of the dis-
tribution of disk samples can be leveraged to ensure the execution of domain
adaption. Based on this, we use a representor to extract failure modes from
source domain samples and align their semantics across two domains using only
healthy samples in the target domain. And a Wasserstein distance measurement
is adopted to guarantee the effectiveness of the domain adaption even when the
distribution of two domains is distant. We also prove the rationality of this strat-
egy by analyzing the generalization error bound in this case. Secondly, DiskDA
adopts a confidence-based sample selection to filter out irrelevant samples in the
source domains, so as to eliminate the negative transfer issue. By running the
two processes alternatively, DiskDA can successfully extract transferable failure
modes from multiple source domain disk models and utilize them in minority
disk failure prediction with high accuracy.

The main contributions are summarized as:

1) We explore the problem of failure prediction for minority disk without failure
samples so that it can be adaptive to all minority disk models.

56 W. Wang et al.

2) To the best of our knowledge, we are the first to propose a Wasserstein
distance-based domain adaption solution for the minority disk failure pre-
diction problem and first analyze the generalization error bound theoretically
under this condition.

3) Guided by the generalization error bound, we design a novel unsupervised
domain adaption framework, DiskDA, to minimize the generalization error of
the failure predictor in the target domain.

4) We conduct evaluations to demonstrate the superiority of DiskDA on 9 disk
models from 3 vendors, collected from 2 large-scale data centers. The eval-
uation results reveal that DiskDA can improve the F1-score by an average
of 20.02% compared with the best competitor when less than a dozen fail-
ure samples are provided. More importantly, DiskDA can still obtain
a satisfactory F1-Score of about 0.93 when no failure samples are
provided (most minority disks face), while all existing TL-based
approaches will fail.

2 Related Work

• Supervised Learning-Based Failure Prediction Approaches. Li et al.
[10] propose a Classification And Regression Trees (CART) based model
which can give disks a health assessment. Xu et al. [20] present a Recur-
rent Neural Networks (RNN [12]) method to leverage sequential information
in hard disk failure prediction. Yang et al. [22] design a disk failure prediction
model by using L1-regularized logistic regression. Zhang et al. [23] adopt the
Siamese network [4] to improve the applicability and adaptivity of the disk
failure prediction model. All these supervised learning-based approaches can
achieve high performance based on the assumption that large quantities of
failure samples are provided. However, this is harsh for minority disks.

• Semi-supervised Learning-Based Failure Prediction Approaches.
The main idea of the semi-supervised learning-based approach is to model
the distribution of healthy samples and predict failure samples based on their
reconstruction errors. Once the reconstruction errors surpass a predefined
threshold, the disk samples are classified as failure samples. Jiang et al. [6]
propose a GAN (Generative Adversarial Network)-based anomaly prediction
approach that adopts an encoder-decoder-encoder architecture. They define
the reconstruction error as the difference between two encoders’ outputs and
predict failures by comparing the error with a threshold. Zhou et al. [25] and
Chakraborttii et al. [3] predict failures for SSDs with similar approaches. The
performance of such approaches relies on the manually set thresholds and the
operators are able to find appropriate thresholds only when a certain num-
ber of reconstruction errors of failure samples are provided. Since the failure
samples of minority disks are limited, it is hard for such methods to reach
satisfying performance in minority disk failure prediction.

• Transfer Learning-Based Failure Prediction Approaches. The target
of the TL-based approach is to adapt a failure prediction model trained from

A Multi-source Domain Adaption Approach 57

existing disk models (source domain) to the minority disk (target domain).
MirelaMadalina Botezatu et al. [2] propose an instance-based de-bias app-
roach. They select samples from the source domain disk model based on
their similarity degree given by a domain classifier and a Regularized Greedy
Forests (RGF [8]) trained on the augmented minority disk dataset is adopted
as the failure prediction model. Xie et al. [19] select the source domain based
on the performance similarity of the failure prediction model on the minor-
ity disk and each candidate source domain disk model. Then the minority
disk failure prediction model is trained on the union set of source and target
domains. Zhang et al. [24] propose to utilize the Kullback-Leibler divergence
(KLD) of the specific SMART attribute to select the source domain disk
model and adopt the Tradaboost algorithm trained on both domains as the
minority disk failure prediction model. Sun et al. [15] take another approach
and propose to use a statistic-based feature transformation to align cumu-
lative SMART attribute (e.g. SMART 5 represents reallocated sector count)
distribution. They find the same cumulative SMART attribute of disks from
different vendors/models have similar distributions and align their distribu-
tions based on the ratio of failed to healthy devices so as to adapt the failure
prediction model trained from one disk model to others. Lan et al. [9] also try
to transfer knowledge from the source domain by utilizing a domain classi-
fier to learn the domain invariant representation of source and target domain
samples. It is worth noting that the domain invariant representation learning
guided by the domain classifier will fail (gradient vanishing) if the distribution
of the source and target domain is distant [18]. And this has been shown in
their experiment where 50% of the transfer process (domain adaption) failed
due to the large distribution divergence of source and target domain samples.
In a word, existing TL-based can only utilize limited information from the
source domain due to the drop of samples and critical attributes. In addition,
they can only work when a certain number of failure samples from minority
disks are provided, while this can be harsh for minority disks.

To sum up, DiskDA differs from previous approaches in three aspects:

– Compared to supervised learning-based approaches, DiskDA extracts failure
prediction knowledge from large amounts of samples from other disk models.
And this strategy protects DiskDA from overfitting caused by the limited
failure samples of minority disks.

– DiskDA adopts a binary classifier built on labeled samples to automatically
discriminate the healthy and failed samples rather than manually setting the
classification threshold as semi-supervised learning approaches.

– Compared to existing TL-based approaches, DiskDA does not choose to drop
samples or critical attributes but tries to fuse the distribution of source and
target domain samples, so as to fully utilize the failure prediction knowl-
edge from source domain disk models. DiskDA avoids the gradient vanishing
problem by adopting the Wasserstein distance to guide the domain invariant
representation learning process. Because the Wasserstein distance can always
provide stable gradients no matter how distant the distributions are [18].

58 W. Wang et al.

3 Motivation

3.1 Problem Statement

In the problem of minority disk failure prediction based on domain adaption
(MDFP-DA), we suppose a labeled dataset Xs = {(xs

i , y
s
i)

ns
i=1} including ns

samples from multiple disk models of the data center, which are sufficient
to train a high precision prediction model. Furthermore, we assume a dataset
Xt = {(xt

m, yt
m)m} from the minority disk, where xt

i refers to the sample col-
lected online in future and yt

i is the corresponding label. The samples from Xs

and Xt 1©share the same feature space (this can be ensured by keeping their
common SMART attributes), but 2©follow different marginal distributions, Ps

and Pt. Although Xt is unreachable in reality, we can collect quantities of healthy
samples Xt

H = {(xt
j , 0)nt

j=1} from the minority disk through short-term deploy-
ment, which is always held in disk failure prediction [3,6,25]. And we denote
the marginal distribution of the healthy samples (from both Xt and Xt

H) as
PtH . Here, we regard MDFP-DA as a binary classification problem and label the
healthy samples as ‘0’, and the failure samples as ‘1’. Now we give the definition
of the MDFP-DA problem:

Definition 1. The MDFP-DA problem is to learn a transferable classification
model h(s) to minimize the risk εt(h) = Pr(x,y)∼Xt [h(x) �= y] using Xs and Xt

H .

3.2 Generalization Error Bound Analysis

We analyze the generalization error bound by introducing the unsupervised
domain adaption problem. The unsupervised domain adaption studies the prob-
lem of adapting a classifier trained in the source domain to target domain
1©sharing the same feature space while 2©having different data distribution.

Obviously, in the case of given Xt, the MDFP-DA problem can be converted
to an unsupervised domain adaption problem. Although the failure samples of
the minority disk are lost in the MDFP-DA problem, we have amounts of its
healthy samples Xt

H . Let εt(h) denote the generalization error bound of a clas-
sification function h in target domain t. Let W1(P,Q) denote the Wasserstein
distance between P and Q. In this case, the following Theorem holds.

Theorem 1. For any classification function h to the MDFP-DA problem satis-
fying K-Lipschitz, the following holds:

εt(h) ≤ εs(h) + 2KW1(Ps,PtH) + λ + C (1)

where C is the Wasserstein distance of distribution of target domain Pt and its
healthy samples PtH .

Proof. See Appendix for details.

A Multi-source Domain Adaption Approach 59

Considering the fact that the healthy samples dominate the whole disk sam-
ples (with an average ratio of 9997:10000 [2]), the distribution of samples of a
disk model is actually similar to its healthy samples, which suggests that C is a
small constant. We have verified this by randomly selecting 4 disk models and
calculating C and W1(PtH ,Ps). And the results show that C is small in scale
of 10−3 and W1(PtH ,Ps) are hundreds of times of C, so it can be ignored in
practice.

Remark. Theorem 3.1 implies that the generalization error of a prediction
model in the target domain (i.e., εt(h)) is smaller than the sum of the gener-
alization error of the prediction model in the source domain (i.e., εs(h)), the
Wasserstein distance of source domain samples and minority disk healthy sam-
ples (i.e., W1(Ps,PtH)), and a constant (i.e., λ + C) much smaller than the
former two. In other words, the generalization error of the prediction model in
the minority disk (εt(h)) can be optimized if we are able to reduce εs(h) and
W1(Ps,PtH). Once εt(h) is optimized, the performance of the failure prediction
model in the minority disk can be improved. To sum up, it not only proves
the generalization error bound of the MDFP-DA problem but also indicates the
optimization direction in the absence of failure samples.

4 Method

4.1 Overview of DiskDA

Figure 1 illustrates the framework of DiskDA. As seen, the DiskDA consists
of two processes, 1© the domain invariant representation learning and 2© the
confidence-based sample selection.

1© The first process mainly involves three modules:

• Representor: a deep neural network that projects the samples from source
domain disk models (Xs) and minority disk (Xt

H) into a unified latent space
(representation vector in Fig. 1).

• Distance Estimator: measures the Wasserstein distance of representation
vectors from Xs and Xt

H .
• Failure Predictor: classifies whether a sample from Xs is a failure sample

based on their representation vectors.

The representor is able to reduce the Wasserstein distance of the source
domain and minority disk samples (i.e. reducing W1(Ps,PtH)) under the guid-
ance of distance estimator. In the meantime, it helps the failure predictor to reach
high performance in the source domain (i.e., reducing εs(h)) via extracting dis-
criminant information. In this way, the performance of the failure predictor in
the minority disk can be optimized according to Theorem 3.1.

2© The second process mainly includes the sample selector module. Its main
purpose is to avoid negative transfer which may occur in the first process. The
principle is to eliminate the samples in Xs that hinder the further narrow-
ing of the distance between Xs and Xt

H , which also corresponds to reducing
W1(Ps,PtH).

60 W. Wang et al.

Fig. 1. The architecture of DiskDA.

In the training stage, DiskDA iterates the two processes alternatively. For
example, the process 1© runs every N (e.p., 100) iterations, and then the process
2© runs M (e.p.,1) iterations. In this way, DiskDA can fully utilize the failure
prediction knowledge of the source domain and lose the least information. The
alternating iteration can be stopped until the parameters are converged or the
iteration times reach a threshold.

In the online prediction, the SMART instances of a minority disk are collected
daily to a sample pool. And these instances are combined to form samples as
in the training stage. All these samples will be input into the representor to
generate corresponding representation vectors. Then the failure predictor will
predict whether a sample is a failure sample based on its representation. Once
a sample of a disk (minority disk) is predicted as a failure sample, it suggests
that the disk will fail soon and the alarm system will inform the operator to
repair/exchange the disk in time.

4.2 Domain Invariant Representation Learning

To effectively adapt the failure predictor trained in the source domain disks to
the minority disk, we need the representor to learn domain invariant representa-
tions of samples from both domains. That is, the distributions of representations
from both domains projected by the representor should have a small divergence.
Besides, the representations should retain key information that can be used to
classify failure samples.

Firstly, all samples are projected to a d-dimensional space by the representor.
The representations of Xs and Xt

H are denoted as fr(Xs) and fr(Xt
H), where fr

is the mapping function of the representor. The distance estimator is then used
to measure the distribution divergence of representations from source domain
R

s and minority disk R
t
H . Here, we introduce Wasserstein distance as the mea-

surement metric because it can measure the divergence between two arbitrary
distributions even if they are distant.

A Multi-source Domain Adaption Approach 61

Based on Kantorovich Rubinstein theorem, the dual representation of the
first Wasserstein distance of two Borel probability measures P and Q can be
formalized as

W1(P,Q) = sup
||f ||L≤1

Ex∼P[f(x)] − Ex∼Q[f(x)] (2)

where L-Lipschitz condition is defined as ‖f‖L = sup|f(x)−f(y)|
ρ(x,y) ≤ L. Accordingly,

the Wasserstein distance of source domain and minority disk W1(Rs,Rt
H) in the

latent space can be calculated as:

W1(Rs,Rt
H) = sup

||fd||L≤1

Ex∼Ps
[fd(fr(x))] − Ex∼PtH

[fd(fr(x))] (3)

where fd is the function learned by the distance estimator with its parameters
θd to map representations h to real numbers. Then, we can approximate the
empirical Wasserstein distance of representation distribution of source and target
domain via maximizing domain critic loss Lwd with respect to θd:

Lwd =
1
ns

∑

xs∈Xs

fd(fr(xs)) − 1
nt

∑

xt∈Xt
H

fd(fr(xt)) (4)

Note that the fd should satisfy the 1-Lipschitz condition when calculating
the first Wassertein distance. Therefore, a gradient penalty term Lgrad =
Eh∼[Rs,Rt

H][(||∇hfd(h)||2 − 1)2] is added to Lwd. And the final objective func-
tion of distance estimator (Ldist) can be written as:

max
θd

{Lwd + λLgrad} (5)

where the λ is used to balance the Lwd and Lgrad.
The failure predictor is used to predict failures for the source disk models.

Its inputs are representations from source domain samples and the labels of
representations are consistent with their corresponding source domain samples.
The objective function of failure predictor (LC) can be formalized as:

min
θc

1
N

∑

h∈Rs

−[yi · log(fc(hi)) + (1 − yi) · log(1 − fc(hi))] (6)

The task of the representor is to 1© reduce the representation divergence
of the minority disk and source domain disk models, and 2© extract the dis-
criminative information from samples in representation learning. Therefore, the
objective of representor (LR) can be formalized as:

min
θr

{LC + γLwd} (7)

where γ is the coefficient to balance between discriminative and transferable
feature learning.

62 W. Wang et al.

Fig. 2. Visualization of the representations from the target domain and the source
domain at different confidence thresholds (i.e., conf-level-*)

4.3 Confidence-Based Sample Selection

While introducing more disk models into the source domain helps bring in more
failure modes, it also complicates the distribution of the source domain, leading
to negative transfer in representation learning. Therefore, it is necessary to filter
out irrelevant samples from the source domain to avoid the probable negative
transfer.

Specifically, DiskDA achieves this via a confidence-based sample selection
process. The confidence of source domain samples is measured based on the sim-
ilarities of their representations to those from the minority disk. The confidence
is given by the domain classifier which is a supervised learning-based binary
classifier. The inputs are representations of samples from both domains and the
labels are 0/1. The representations from the source domain are labeled as ‘0’
and those from the target domain are labeled as ‘1’. To train a domain classifier,
we randomly select a small proportion of representations of samples from the
source domain and minority disk. And the objective of the domain classifier can
be formulated as:

min
θD

1
N

∑

i

−[yi · log(fc(hi)) + (1 − yi) · log(1 − fc(hi))] (8)

where x ∈ [Rs,Rt
H], y ∈ {0, 1}.

When the parameters converge, the domain classifier is applied to the
adjusted source domain as a filter. Since the domain classifier is realized by
a deep neural network and the results are given by a sigmoid function in the
last layer, the output of the domain classifier is the probability that a repre-
sentation belongs to the minority disk. So we use this probability to measure
the confidence of a sample. DiskDA discards the samples in the source domain
whose confidence is lower than the pre-defined threshold and uses the remaining
samples in the source domain with higher confidence for further representation
learning. By filtering out the ‘low quality’ samples, the distribution divergence
between the source domain and the minority disk is reduced.

A Multi-source Domain Adaption Approach 63

In Fig. 2, we visualize the distribution of sample representations for the
minority disk and the source domain under different confidence thresholds via
t-SNE, where the colored points denoted as “conf-level-*” represent the represen-
tations of source domain samples with different confidence values and the black
point represent the representations of minority disk samples. t-SNE is short for
t-Distributed Stochastic Neighbor Embedding which allows us to project high-
dimensional embedding spaces into 2D spaces for visualization while keeping
their relative distance. In other words, the points close in the figure have a small
distance in the original space. Since the dimension of representations has been
compressed, the x and y axes of points have no specific meaning. As seen, the
representations of minority disk samples are located closer to that of the source
domain samples when a higher confidence threshold is selected, which indicates
the rationality of our sample selection.

5 Experiment

In this section, we conduct experiments to evaluate the performance of DiskDA.
We first describe the methodology and then show the experimental comparison
results among DiskDA and 7 state-of-the-art solutions. Finally, we show the
results of sensitivity analysis to explore how the critical hyper-parameters affect
the failure prediction performance of DiskDA.

5.1 Methodology

Datasets. The disk models used in our experiments are from two real-
world datasets. We select ST4000DM000 (Disk 1), ST6000DX000 (Disk 2),
ST3000DM001 (Disk 3), Hitachi HDS5 C4040ALE630 (Disk 4), Hitachi
HDS722020ALA330 (Disk 5), Hitachi HDS723030ALA640 (Disk 6), HGST
HMS5C4040BLE640 (Disk 7), HGST HMS5C4040ALE640 (Disk 8), HGST
HUH728080ALE600 (Disk 9) in Backblaze1 with a period from 2015-01-01 to
2019-12-31. We select MC1 (SSD 1), MC2 (SSD 2) and MA1 (SSD 3) from
Alibaba Cloud [21] with a period from 2019-01-01 to 2019-12-31. All disk mod-
els are selected randomly. Each record in both datasets is labeled as healthy or
failed on a daily basis.

Attribute Selection. Not all SMRAT attributes are useful for disk failure pre-
diction, we select SMART 1,4,7,12,190,192,193,194,196,197,199 for HDD failure
prediction and SMART 1,5,9,12,171,172,174,175,183,190,232,233 for SSD fail-
ure prediction via correlation coefficient analysis. Min-max normalization (i.e.
xnorm = x−xmin

xmax−xmin
, where x is the raw value of the SMART attribute, xmax

and xmin are the maximum and minimum values of the SMART attribute in the
training set) is used to normalize the values of different SMART attributes.

1 https://www.backblaze.com/b2/hard-drive-test-data.html.

https://www.backblaze.com/b2/hard-drive-test-data.html

64 W. Wang et al.

Experiment Setup. Regarding records, close to actual failure, will disturb the
failure prediction model, a commonly used approach is to label k continuous
healthy samples before the actual failure as failure records too [23,24]. And k is
determined via change-point detection and set to be 3 in our experiments. The
representation vector length is set to 128 for both representation ability and cost
saving (detailed in Sect. 5.2). The coefficient of gradient penalty term λ is set
to 10, which is consistent with the setting commonly used in ML models based
on Wasserstein distance [1,14]. The parameter γ used to balance the weight
of discriminative and domain invariant representation learning is set to 1e-2,
which is determined through grid search. In each domain invariant representation
learning iteration, the distance estimator runs 10 steps then the parameters of the
representor and the failure predictor update once. The sample selection process
runs one time every 500 representation learning iterations. And the confidence
threshold is set to 0.2, which delivers the optimal transfer learning performance
(detailed in Sect. 5.2).

Evaluation Metrics. The failure prediction rate (FDR, also called recall), false
alarm rate (FAR, also called false positive rate), and F1-Score are adopted as the
metrics to measure the disk failure prediction performance. A good disk failure
prediction method should reach a high FDR with a low FAR. And the F1-Score
is the balance between the FDR and FAR, thus is the most important metric to
measure the performance of the prediction model.

Benchmarks. We test three types of benchmarks.

• Supervised Learning-Based: We first measure the performance of three
supervised learning-based failure prediction methods (i.e. GBRT [10], HDDse
[23] and RGF [2]) with only minority disk samples.

• Semi-supervised Learning-Based: We explore the performance of the
semi-supervised learning model (VAE-LSTM [25]) which models the healthy
samples and classifies the failure samples by comparing the reconstruction
error with a pre-defined threshold.

• TL-Based: We evaluate 3 state-of-the-art TL-based failure prediction mod-
els (i.e. TLDFP [24], SSDB [2] and FLBT [15]). Note that TLDFP and SSDB
are instance-based TL approaches, and FLBT is a feature-based TL app-
roach. Note that we also test ADA-CBAN [9] in our experiments while its
performance is not stable. 3 (i.e., Exp 1, Exp 2, and Exp 4) of the 5 experi-
ments failed due to the large distribution divergence of the source and target
domain. In addition, the results of the ADA-CBAN in the last two experi-
ments are worse than those of DiskDA, so we omit to show its results in our
comparison. Since all the TL-based methods require a base failure prediction
model, a bidirectional gated recurrent unit network (Bi-GRU) is adopted as
the base failure prediction model in this paper. Note that the base model can
also be replaced by any neural network-based failure prediction model. In fact,
we choose Bi-GRU because it shows simplicity, robustness, and accuracy in
experiments.

A Multi-source Domain Adaption Approach 65

Table 2. The Details about Dataset Used in Experiments.

No. Training Set Testing Set

Exp.1 Source: Disk 1, Disk 2 Disk 3 (1058, 100)

Target: Disk 3 (110, 6)

Exp.2 Source: Disk 4, Disk 5 Disk 6 (918, 40)

Target: Disk 6 (100, 4)

Exp.3 Source: Disk 7, Disk 8 Disk 9 (985, 15)

Target: Disk 9 (100, 3)

Exp.4 Source: Disk 8, Disk 9 Disk 4 (2360, 38)

Target: Disk 4 (300, 4)

Exp.5 Source: SSD 1, SSD 2 SSD 3 (39563, 1357)

Target: SSD 3 (399, 13)

Considering that the three comparative TL-based methods are all single
source-based TL models, we traverse all source domain disk models and select
the one with the best performance as the source domain.

The detailed setup of training and testing datasets is shown in Table 2. Note
that Disk a (x, y) denotes that the number of healthy disks is x and the number
of the failed disk is y. Generally, the number of healthy samples in a real dataset
is much larger than that of failure samples. In order to avoid model bias caused
by data imbalance, we only use the randomly selected healthy samples with the
same number of failure samples. Cross-validation is done for each method, and
we average their performance as the final result.

Table 3. Performance Comparison of Various Disk Failure Prediction Models

Method Exp.1 Exp.2 Exp.3 Exp.4 Exp.5

FDR FAR F1 FDR FAR F1 FDR FAR F1 FDR FAR F1 FDR FAR F1

RGF 0.382 0.021 0.536 0.698 0.056 0.725 0.621 0.017 0.726 0.618 0.06 0.557 0.747 0.034 0.793

GBRT 0.605 0.106 0.666 0.674 0.035 0.744 0.5 0.014 0.637 0.532 0.017 0.624 0.684 0.013 0.801

HDDse 0.634 0.057 0.702 0.784 0.009 0.891 0.715 0.013 0.757 0.573 0.023 0.649 0.624 0.003 0.799

VAE-LSTM 0.756 0.103 0.807 0.821 0.095 0.886 0.796 0.031 0.848 0.697 0.046 0.723 0.785 0.067 0.815

Bi-GRU 0.491 0.098 0.582 0.684 0.011 0.792 0.68 0.021 0.761 0.355 0.04 0.405 0.51 0.004 0.672

DiskDA 0.917 0.027 0.976 0.991 0.002 0.998 0.913 0.003 0.974 0.907 0.001 0.969 0.973 0.043 0.993

5.2 Experimental Results

Performance Comparison with Supervised and Semi-supervised
Learning Methods. We first show the performance comparison results of

66 W. Wang et al.

Fig. 3. Visualization of representation from samples of minority disk and source domain
disk models

DiskDA with supervised learning methods (RGF, GBRT, and HDDse) and semi-
supervised learning methods (VAE-LSTM). The training set used is the dataset
indicated as “Target” in Table 2.

It can be seen from Table 3 that

• The supervised learning-based methods perform poorly due to insufficient
training data. Although HDDse adopts a metric learning method that actually
increases the size of the training set by taking pairs of samples as input, its
prediction performance is only slightly better than the other two.

• Compared with the above supervised-learning methods, the FDR value of
VAE-LSTM is significantly improved. However, because the threshold-based
method adopted by VAE-LSTM cannot well classify the failure samples from
the healthy, the FAR is also higher.

• DiskDA has the best failure prediction performance, with an F1-Score 20.86%
higher than VAE-LSTM on average. In addition, we also find that the F1-
Score of DiskDA is 61.75% higher than that of the base model, which also
proves the necessity and effectiveness of domain adaption. DiskDA can reach
the best performance because 1© it can extract failure prediction knowledge
from large amounts of source domain disk samples rather than the limited
samples provided by the minority disk; 2© it adopts a supervised learning-
based approach that can automatically discriminate the healthy and failure
samples without setting classification threshold manually.

Performance Comparison with TL-Based Methods. Next, we show the
performance comparison results of DiskDA with TL-based methods (SSDB,
TLDFP, and FLBT). Since all these TL-based methods can only work if there
are failure samples in the target domain, DiskDA also uses failure samples in the

A Multi-source Domain Adaption Approach 67

target domain as other methods for fair comparison (see Table 2 for details of
the training set). However, the DiskDA can work without failure samples, which
is superior to other solutions. To highlight that, we further implement DiskDA
in a more restrictive case where no failure sample of minority disks is provided
and the results are indicated as “DiskDA*”. To facilitate analysis, we also test
the performance of the base model trained in the source domain on the testing
set as the baseline (indicated as “Src”). From Table 4 we can see that

• The F1-Score of Src is only 0.592 on average. The root cause is the distribution
shift of SMART attributes among disks, so simply reusing the prediction
model trained upon other disks will fail in practice.

• Among the three TL-based methods, the instance-based TL approach TLDFP
has the best performance. By continuously enhancing the weight of misclassi-
fied samples, the ability of the failure predictor can be improved to a certain
extent. Another instance-based TL approach, SSDS, uses a sample selection
strategy based on similarity to adjust the source domain samples. However, its
performance is even worse than the baseline in some cases. The performance
of FLBT is worse than that of TLDFT. All the TL-based approaches can just
reach sub-optimal performance as they drop useful samples and attributes
and can only utilize partial information from the source domain.

Table 4. Performance Evaluation of Transfer Learning Based Failure Prediction Mod-
els

Method Exp.1 Exp.2 Exp.3 Exp.4 Exp.5

FDR FAR F1 FDR FAR F1 FDR FAR F1 FDR FAR F1 FDR FAR F1

Src 0.486 0.09 0.584 0.979 0.605 0.618 0.916 0.762 0.537 0.97 0.919 0.505 0.977 0.472 0.715

SSDB 0.34 0.467 0.302 0.911 0.384 0.801 0.991 0.84 0.707 0.95 0.68 0.685 0.71 0.672 0.597

TLDFP 0.785 0.094 0.836 0.751 0.001 0.858 0.811 0.422 0.773 0.648 0.001 0.786 0.804 0.117 0.843

FLBT 0.685 0.194 0.636 0.747 0.131 0.834 0.611 0.134 0.683 0.588 0.112 0.716 0.722 0.093 0.837

DiskDA* 0.84 0.048 0.889 0.987 0.002 0.994 0.852 0.005 0.92 0.825 0.002 0.904 0.962 0.092 0.947

DiskDA 0.917 0.027 0.976 0.991 0.002 0.998 0.913 0.003 0.974 0.907 0.001 0.969 0.973 0.043 0.993

• DiskDA performs the best, with the F1-Score 20.02% higher than the best
competitor. This is because 1© DiskDA can extract failure prediction knowl-
edge from multiple source domain disk models while existing instance-based
TL approaches can only benefit from a single source domain (just one disk
model in the source domain) to prevent negative transfer. 2© DiskDA tries
to fully utilize the source domain disk samples by fusing the distribution of
source and target domain samples in the latent space, rather than directly
dropping samples or attributes as existing TL-based approaches. We visu-
alize the fusion of representations from the source and target domain via
t-SNE in Fig. 3, where the red points represent the representations from the
source domain and the green ones represent the representations from the tar-
get domain. As seen, the green and red points are fused constantly as the

68 W. Wang et al.

0.8

0.84

0.88

0.92

0.96

1

1 2 3 4 5 6 7

F1
-S

co
re

Number of Source Domain Disk Models

Impact of Source Domain Disk Model
Number

Fig. 4. Performance of introducing more disk models to source domain

increment of iterations, which suggests that the domain invariant representa-
tion learning process can effectively fuse the representations from the source
and target domain and thus the failure prediction knowledge extracted from
the source domain can adapt to the target domain(minority disk).

• In the absence of failure samples from the minority disk, the F1-Score of
DiskDA can still reach a satisfactory 0.93, 66.75% higher than that of the
baseline. The results prove the effectiveness of our theorem that DiskDA can
still adapt the failure prediction knowledge extracted from source domain disk
models to minority disks with no failure sample. And this shows that DiskDA
has much higher adaptivity compared to existing TL-based approaches. We
further explore whether DiskDA can continuously benefit from the increment
of source domain failure modes. And we investigate this problem by measur-
ing the performance of DiskDA as the increase of source domain disk models
because more disk models potentially contain more failure modes. As shown
in Fig. 4, the performance of DiskDA can be continuously improved by adding
more disk models to the source domain. Thanks to the sample selection pro-
cess, DiskDA can timely filter out the source domain samples deteriorating
the domain invariant representation learning process and effectively transfer
failure prediction knowledge from the source domain to the minority disk. The
results motivate us to add more disk models to the source domain to reach
high performance without worrying about the negative transfer problem.

5.3 Sensitivity Study

Impact of Hidden Size. In domain invariant representation learning, the
representor projects samples from both domains to fixed-length vectors as their
representations. And we evaluate how the size of length affects the performance
of DiskDA. As seen in Fig. 5.a, the performance of DiskDA is improved as the
increase of hidden size and then steady until the hidden size reaches 128. The
results indicate that a small size will limit the representation ability and seriously
affect the performance of DiskDA. And we set the hidden size as 128 to reach a
balance between the performance and computation cost.

A Multi-source Domain Adaption Approach 69

Fig. 5. Sensitivity Study

Impact of Confidence-Threshold. The confidence threshold determines
which samples to select in representation learning afterward. And we explore
how different confidence thresholds affect the performance of DiskDA. In the
experiment, we experiment with different confidence threshold values and sum-
marize the results as 3 representative curves corresponding to thresholds of 0.4
(red curve), 0.2 (green curve), 0 (blue curve), shown in Fig. 5.b. As seen, a low
(i.e., ranging from 0 to 0.1) or high threshold (i.e., ranging from 0.4 to 1) can
both deteriorate the performance of DiskDA since the negative transfer caused
by irrelevant samples remaining in the source domain or the loss of relevant
samples filtered out in confidence-based sample selection process. And we set
the threshold as 0.2 to achieve a balance between the performance of domain
adaption and the loss of source domain samples.

6 Conclusion

In this work, we investigate the problem of minority disk failure prediction in
data centers. Based on the fact that the failure modes are common for different
disk models, our basic idea is to utilize full of the failure prediction knowl-
edge learned from other disk models to the minority disk. We model this as an
unsupervised domain adaption problem and analyzed the generalization error
bound of the prediction model in the target domain (minority disk) theoreti-
cally. Guided by the generalization error bound, we design a framework which
can effectively optimize the error bound by elaborately combining the domain
invariant representation and confidence-based sample selection processes. Our
experiments on real-world datasets show the effectiveness of our approach. More-
over, our approach can still reach a satisfying F1-score of 0.93 on average for
minority disks even with no failure samples, which suggests that our approach
can fit for more broad cases compared to existing approaches.

70 W. Wang et al.

7 Appendix

Proof. The discrepancy between the source and target domain is measured using
the Wasserstein distance in DiskDA. Specifically, the p-th Wasserstein distance
between two Borel probability measures P and Q is defined as:

Wp(P,Q) = (inf
μ∈Γ(P,Q)

∫
ρ(x, y)pdμ(x, y))1/p (9)

where the Γ(P,Q) is the set of all joint distributions μ(x, y) whose marginal
distribution are P and Q. The μ(x, y) can be viewed as a policy for transporting
a unit quantity of material from x to y and the ρ(x, y) is the corresponding
cost. And the Wasserstein distance between P and Q represents the minimum
expected transport cost. As Wasserstein distance satisfies the triangle inequality,
the following equation holds

Wp(Ps,Pt) ≤ Wp(Ps,PtH) + Wp(PtH ,Pt) (10)

Shen et al. [14] prove the generalization error bound of a classification function
h in the target domain for unsupervised domain adaption based on Wasserstein
distance as

εt(h) ≤ εs(h) + 2KW1(Ps,Pt) + λ (11)

where the K means that all hypotheses h are K-Lipschitz continous, λ is the
combined error of the optimal hypothesis h∗ which minimizes the combined
error εs(h) + εt(h), Ps and Pt are distributions of source and target domain,
respectively. Let C denote 2KW1(PtH ,Pt). By substituting inequality (11) for
(10), Theorem 3.1 is derived.

References

1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks.
In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)

2. Botezatu, M.M., Giurgiu, I., Bogojeska, J., Wiesmann, D.: Predicting disk replace-
ment towards reliable data centers. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 39–48
(2016)

3. Chakraborttii, C., Litz, H.: Improving the accuracy, adaptability, and interpretabil-
ity of SSD failure prediction models. In: Proceedings of the 11th ACM Symposium
on Cloud Computing, pp. 120–133 (2020)

4. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively,
with application to face verification. In: 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 539–546.
IEEE (2005)

5. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. In: Proceedings
of the Nineteenth ACM Symposium on Operating Systems Principles, pp. 29–43
(2003)

A Multi-source Domain Adaption Approach 71

6. Jiang, T., Zeng, J., Zhou, K., Huang, P., Yang, T.: Lifelong disk failure prediction
via gan-based anomaly detection. In: 2019 IEEE 37th International Conference on
Computer Design (ICCD), pp. 199–207. IEEE (2019)

7. Jiang, W., Hu, C., Zhou, Y., Kanevsky, A.: Are disks the dominant contributor for
storage failures? A comprehensive study of storage subsystem failure characteris-
tics. ACM Trans. Storage (TOS) 4(3), 1–25 (2008)

8. Johnson, R., Zhang, T.: Learning nonlinear functions using regularized greedy
forest. IEEE Trans. Pattern Anal. Mach. Intell. 36(5), 942–954 (2013)

9. Lan, X., et al.: Adversarial domain adaptation with correlation-based association
networks for longitudinal disk fault prediction. In: 2021 International Joint Con-
ference on Neural Networks (IJCNN), pp. 1–8. IEEE (2021)

10. Li, J., et al.: Hard drive failure prediction using classification and regression trees.
In: 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, pp. 383–394. IEEE (2014)

11. Lu, S., Luo, B., Patel, T., Yao, Y., Tiwari, D., Shi, W.: Making disk failure pre-
dictions smarter! In: FAST, pp. 151–167 (2020)

12. Mikolov, T., Kombrink, S., Burget, L., Černockỳ, J., Khudanpur, S.: Extensions of
recurrent neural network language model. In: 2011 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 5528–5531. IEEE (2011)

13. Schroeder, B., Gibson, G.A.: Understanding disk failure rates: what does an MTTF
of 1,000,000 hours mean to you? ACM Trans. Storage (TOS) 3(3), 8-es (2007)

14. Shen, J., Qu, Y., Zhang, W., Yu, Y.: Wasserstein distance guided representation
learning for domain adaptation. In: Proceedings of the AAAI Conference on Arti-
ficial Intelligence, vol. 32 (2018)

15. Sun, X., et al.: System-level hardware failure prediction using deep learning. In:
Proceedings of the 56th Annual Design Automation Conference 2019, pp. 1–6
(2019)

16. Vishwanath, K.V., Nagappan, N.: Characterizing cloud computing hardware reli-
ability. In: Proceedings of the 1st ACM Symposium on Cloud Computing, pp.
193–204 (2010)

17. Wang, Y., Miao, Q., Ma, E.W., Tsui, K.L., Pecht, M.G.: Online anomaly detection
for hard disk drives based on mahalanobis distance. IEEE Trans. Reliab. 62(1),
136–145 (2013)

18. Wilson, G., Cook, D.J.: A survey of unsupervised deep domain adaptation. ACM
Trans. Intell. Syst. Technol. 11(5), 1–46 (2020)

19. Xie, Y., Feng, D., Wang, F., Zhang, X., Han, J., Tang, X.: OME: an optimized
modeling engine for disk failure prediction in heterogeneous datacenter. In: 2018
IEEE 36th International Conference on Computer Design (ICCD), pp. 561–564.
IEEE (2018)

20. Xu, C., Wang, G., Liu, X., Guo, D., Liu, T.Y.: Health status assessment and failure
prediction for hard drives with recurrent neural networks. IEEE Trans. Comput.
65(11), 3502–3508 (2016)

21. Xu, F., Han, S., Lee, P.P., Liu, Y., He, C., Liu, J.: General feature selection for
failure prediction in large-scale SSD deployment. In: 2021 51st Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pp. 263–
270. IEEE (2021)

22. Yang, W., Hu, D., Liu, Y., Wang, S., Jiang, T.: Hard drive failure prediction
using big data. In: 2015 IEEE 34th Symposium on Reliable Distributed Systems
Workshop (SRDSW), pp. 13–18. IEEE (2015)

72 W. Wang et al.

23. Zhang, J., Huang, P., Zhou, K., Xie, M., Schelter, S.: HDDSE: enabling high-
dimensional disk state embedding for generic failure detection system of heteroge-
neous disks in large data centers. In: Proceedings of the 2020 USENIX Conference
on Usenix Annual Technical Conference, pp. 111–126 (2020)

24. Zhang, J., et al.: Minority disk failure prediction based on transfer learning in
large data centers of heterogeneous disk systems. IEEE Trans. Parallel Distrib.
Syst. 31(9), 2155–2169 (2020)

25. Zhou, H., et al.: A proactive failure tolerant mechanism for SSDS storage systems
based on unsupervised learning. In: 2021 IEEE/ACM 29th International Sympo-
sium on Quality of Service (IWQOS), pp. 1–10. IEEE (2021)

Sequenced Quantization RNN Offloading
for Dependency Task in Mobile Edge

Computing

Tan Deng, Shixue Li, Xiaoyong Tang(B), Wenzheng Liu, Ronghui Cao,
Yanping Wang, and Wenbiao Cao

School of Computer and Communications Engineering,
Changsha University of Science and Technology, Changsha 410114, China

tangxy@csust.edu.cn

Abstract. Mobile edge computing (MEC) allows terminals to send
tasks to adjacent edge servers for calculation to reduce the burden on
terminals and task completion time. With the widespread use of wire-
less devices (WDs) and the increasing complexity of applications, how
to partially offload tasks to minimize task completion time has become
a huge challenge. We propose a sequenced quantization based on recur-
rent neural network (SQ-RNN) algorithm that makes reasonable partial
offload decisions for subtasks with dependencies. Specifically, the SQ-
RNN algorithm first inputs the environment information into the RNN,
and uses the RNN to generate a task offloading strategy. Then the algo-
rithm quantifies the offloading strategy generated by the RNN into mul-
tiple binary offloading actions according to a certain method, and selects
the action with the lowest computational delay from the multiple binary
offloading actions as the offloading decision of the task. In addition, the
algorithm also configs RNN with a fixed-size memory space to store
the latest unloading strategy generated by RNN for further training of
RNN. Experiments have proved that the SQ-RNN offloading algorithm
described in our study generates better offloading decisions than those
made by conventional offloading techniques.

Keywords: Dependent task · Task offloading · Neural networks

1 Introduction

There has been a continued increase in the number of smart mobile devices
(SMDs) connected to the Internet, with the rapid development of the internet of
things (IoT), thus resulting in large-scale data. This has caused problems such
as bandwidth load, slow response, poor security, and poor privacy in traditional
cloud computing models [1]. MEC proposes to move computing to the edge of
the network closer to the user. In MEC, tasks can be offloaded from SMDs to
edge servers, such as small base stations (SBSs) with computing and storage
resources, thereby reducing data transmission, network latency and load on the
cloud resources. However, offloading all the computing tasks to an edge server

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 73–91, 2024.
https://doi.org/10.1007/978-981-97-0801-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_5&domain=pdf
https://doi.org/10.1007/978-981-97-0801-7_5

74 T. Deng et al.

leads to long processing delays and high energy consumption for computing
tasks [2]. Thus, a key challenge in MEC research is specifying which tasks should
be offloaded and which ones should be executed locally to maximize resources’
utilization and reduce latency and energy consumption [3].

The sustainable development of IoT technology is inseparable from compu-
tation offloading, which mainly involves two issues: offloading decision-making
and resource allocation. Task offloading includes two categories: coarse-grained
offloading (also known as binary offloading) and fine-grained offloading (also
known as partial offloading). In partial unloading, a task is divided into mul-
tiple subtasks to be unloaded separately. Existing studies on partial offloading
almost ignore the complex dependencies generated when a task is divided into
multiple subtasks. The dependencies of subtasks play a decisive role in the exe-
cution sequence and waiting time of subtasks, which further affect the unloading
decision and completion time of subtasks, which cannot be ignored.

Partial offloading can achieve lower latency and higher energy savings com-
pared with binary offloading [4]. The goal of this paper is to make reasonable
unloading decisions on subtasks to minimize task completion time. In addition,
we take into account the general dependencies between subtasks, i.e., a subtask
within a task may depend on one or more previous subtask results. We examines
the edge computing involving an edge server, multiple WDs and multiple tasks,
and each WD can choose either to offload its subtasks to the edge server or
execute them locally. We proposes a SQ-RNN algorithm to make task offload-
ing decisions given the uncertainty of the time-variant MEC, allowing for flexible
task scheduling between the edge layer and local devices. The main contributions
of this paper include the following:

• We propose a SQ-RNN offloading algorithm based on the edge environment of
multi-user and multi-task, which uses the RNN to generate offload strategy.
The offloading algorithm considers the dependencies between subtasks and
can make task offloading decisions for mobile users arriving randomly for each
task within the coverage of the edge server to minimize the task completion
time.

• We design a sequence quantization method to generate task offloading actions,
which quantizes the offloading policies output by the RNN into K binary
offloading actions. This method can efficiently generate offloading actions.
Compared with traditional methods, it can generate more candidate actions
and increase the chance of finding better offloading decisions.

• We config the RNN with an experience pool with a fixed memory size, which
can store the latest M offloading decisions generated by RNN itself. Every
once in a while, the RNN randomly selects a batch of data from the experi-
ence pool for training, and updates its parameters to make better unloading
decisions.

• We conduct simulation experiments to evaluate the performance of the SQ-
RNN algorithm. Experimental results show that, compared with other basic
offloading algorithms, SQ-RNN can effectively reduce the average completion
time of tasks.

Sequenced Quantization RNN Offloading in Mobile Edge Computing 75

Section 2 of this paper reviews related work; Section 3 introduces the system
model and problem formulation; Section 4 presents the proposed offloading
algorithm; Simulation experiments are conducted, and the results are analyzed
in Sect. 5, before the last Sect. 6 concludes the paper.

2 Related Work

MEC computation offloading is a hot research area for scholars both domestically
and internationally. Most studies have converted the computation offloading and
resource allocation problem into mixed-integer nonlinear programming (MINLP)
problems, which feature mixed variables and nonlinear constraints. Because of
this, using traditional mathematical optimization algorithms to obtain a guar-
anteed optimal solution in a reasonable time is challenging. There are many
methods for computing offloading, among which the use of intelligent swarm
algorithms and machine learning (ML) to address MEC computation offloading
problems has received widespread attention in recent years.

Swarm intelligence algorithms, a branch of biologically inspired algorithms,
have been extensively used in solving MINLP problems. Some popular swarm
intelligence algorithms include genetic algorithms (GA), the ant colony optimiza-
tion (ACO), and particle swarm optimization (PSO). [5] uses a set of chromo-
somes to represent possible offloading decisions for a set of subtasks, and gen-
erates new chromosomes through GA selection, crossover, and mutation, before
identifying the best offloading decision based on fitness values and feasibility
indicators of chromosomes. [6] proposes a two-layer optimization method where
the upper layer uses sorting-enabled ACO to find the optimal offloading deci-
sion, and the lower layer uses monotonic optimization to achieve the optimal
resource allocation for each offloading decision. A PSO based on genetic simu-
lated annealing has been proposed in [7], which integrates the genetic operation
of GA and the Metropolis rule of simulated annealing (SA). In so doing, par-
ticles can update their velocity and position based on their learning experience
and the current situation, thus finding the optimal unloading strategy. Swarm
intelligence algorithms have been frequently employed to solve MEC computing
offloading problems, however, their drawbacks have gradually emerged. Firstly,
swarm intelligence algorithms may get stuck in local optima during the opti-
mization process, decreasing the search precision; secondly, swarm intelligence
algorithms may not be able to effectively handle constraints, as a result of which,
the optimal solution may be infeasible; thirdly, the performance of swarm intelli-
gence algorithms is significantly impacted in high-dimensional scenarios, result-
ing in a decline in their search capability.

ML has a wide range of applications in many fields [8–10]. In recent years,
a new research field called Edge Intelligence [11,12] has emerged, which applies
ML to edge computing offloading. Some commonly used ML methods for MEC
computing offloading include deep learning (DL), reinforcement learning (RL)
and deep reinforcement learning (DRL).

76 T. Deng et al.

With robust learning and reasoning, DL can extract useful information from
massive real-time data generated by SMDs and accordingly make appropriate
offloading decisions with low power consumption and low latency. The primary
advantage of DL lies in high accuracy in decision making and high computational
speed for training models [13]. [14] proposed a DL-based offloading technique
that considers partial task offloading and task heterogeneity, and uses DNN
to compute and make task offloading decisions. [15] developed a distributed
DL-based computation offloading and resource allocation algorithm that uses
multiple parallel DNNs to generate the optimal offloading decisions and resource
scheduling. [16] used the MAPE-K loop to simulate the offloading problem in
various contexts, and DNN to select the optimal location for task offloading, and
subsequently employed the hidden Markov model (HMM) to choose the most
suitable upstream transmission media formats.

Compared with DL, RL does not require labeled data for training. Alter-
natively, RL interacts with the MEC network directly to identify the optimal
strategy. A Q-learning-based task computing and resource allocation method
was proposed in [17]. It defines the Q function values of the actions of the edge
in each state, then selects an action for next state, updates the immediate cost
caused by the transition with the Q function, and finally selects the optimal
strategy based on the Q function values. Nevertheless, conventional RL cannot
scale effectively with the increase in the number of agents, as traditional tabular
methods tend to be infeasible in solving the state space explosion problem [18].

Fusing RL with DNN, DRL learns effective strategies through interacting
with the environment, achieving flexible and adaptive task offloading in cases of
no expert knowledge. This is particularly effective for solving complex decision-
making problems in high-dimensional state and action spaces. A new framework
that integrates Lyapunov optimization and DRL was presented in the study
[19]. The Lyapunov optimization was utilized to decouple multi-stage MINLP
into deterministic per-frame MINP subproblems, before a model-free actor-critic
architecture was adopted to solve per-frame MINLP problems. [20] designed a
counter-factual multi-agent DRL algorithm based on a Markov chain model,
which introduces a centralized critic and counter-factual baselines. To be specific,
a centralized critic takes the joint state of each user as its input and calculates
a baseline that represents the contribution of its action to the global reward
based on the centralized critic for each agent. The paper [21] adopted the deep
deterministic policy gradient (DDPG), which learn the offloading strategies of
each user on the continuous action spaces. Without any prior knowledge, each
mobile user can independently develop a dynamic offloading strategy based on
its local observation of the system. [22] designed a deep meta RL-based offloading
algorithm that combines muliple parallel DNNs with Q-learning to make optimal
unloading decisions.

Combining ML techniques with MEC systems to obtain unloading strategies
is effective for computation offloading optimization in MEC. The aforementioned
research is not without flaws, though. Some papers have overlooked the fact that
the number of SMDs is rapidly increasing. When there are excessive devices

Sequenced Quantization RNN Offloading in Mobile Edge Computing 77

within the coverage area of edge servers, it is not realistic to execute all tasks
locally or entirely offload to the edge. Considering the partial offloading of tasks
is more in line with the current network environment, achieving lower latency and
higher energy saving. In addition, although some studies have suggested partial
offloading of tasks, they tend to ignore the dependencies between tasks. Subtask
dependencies determine their execution sequences and delay time, which have a
substantial impact on the offloading and computing process and must be taken
into consideration. When the number of subtasks increases, the dependencies
between subtasks are more complex, so we propose to use the powerful learning
ability of DL to extract useful information between subtasks and make low-
latency offloading decisions on them.

3 System Model and Problem Formula

3.1 System Model

This study takes into account an edge server with many WDs and multiple tasks,
as depicted in Fig. 1. The edge server can be a 4G/5G macrocellular base station
or a SBS, or a wireless access point (AP), which can provide services to all mobile
devices within its signal range. The main notations of the paper are shown in the
Table 1, and the following content will explain these notations in detail. Assume
that users can move within the range of the MEC server, N = {1, 2, · · · , n}
represents the set of WDs in the edge server range. Within a slot, a user’s
location and system resource status remain constant, while its computing needs
and task requests fluctuate dynamically across slots. Each user has the option of
using local computing or edge offloading for task processing. The former means
that the user chooses to process the task locally on the terminal, whilst the latter
means that the user chooses to offload the task to the edge server.

Task Model. Each WD needs to compute the randomly arriving tasks in
each slot, where each task consists of multiple subtasks with a general depen-
dency relation. Assume that the computation task that arrives at each WD
has Q subtasks, the task arriving at WD n in slot τ can be denoted as
Sn,τ =

{
S1

n,τ , S2
n,τ , · · · , SQ

n,τ ,
}
, and the i-th subtask of the task is denoted as

Si
n,τ =

{
Di

n,τ , Ci
n,τ

}
, where Di

n,τ and Ci
n,τ respectively represent the data size

and computation density of the i-th subtask. Given the general dependencies
between the subtasks, matrix An,τ [Q∗Q] is used to represent the dependency
relationships between the subtasks in task Sn,τ arriving at WD n in slot τ .
An,τ [i] [j] = 1 indicates that subtask j depends on subtask i, where i < j and
i, j ≤ Q.

Communication Model. The WDs use orthogonal frequency-division multiple
access (OFDMA) to communicate with AP, with all users sharing the same
frequency band. When a user offloads the task to the edge, the task is wirelessly

78 T. Deng et al.

Fig. 1. System Model of an MEC network with multiple WDs and multiple dependent
tasks

Table 1. Main notations

Notation Description

N the set of WDs
T index set of the time slots
Si

n,τ i-th subtask from WD n at slot τ

Di
n,τ , Ci

n,τ data size and computation density of subtask Si
n,τ , respectively

An,τ [Q∗Q] dependency relationships between the subtasks in task Sn,τ

T i,start
n,τ , T i,end

n,τ start time and end time of subtask Si
n,τ , respectively

B bandwidth
Pmax maximum value of transmission power
f l

n,τ computing capacity of WD n at slot τ

fe
n,τ computing capacity of the edge server at slot τ

ai
n,τ offloading decision of subtask Si

n,τ

rn,τ , pn,τ transmission rate and transmission efficiency of WD n at slot τ , respectively
hn,τ channel gain of WD n at slot τ

h0 channel gain when the reference distance is 1m
dn,τ straight-line distance between WD n and the edge server at slot τ

vn, s moving speed and walking distance of WD n, respectively
σ, β noise power of the channel and path loss exponent, respectively
z initial distance between WD n and the base station
e, x vertical height and coverage range of the base station, respectively

Sequenced Quantization RNN Offloading in Mobile Edge Computing 79

delivered to the relevant AP and computed by the edge server. The user then
synthesizes the results after receiving the feedback from the AP when the cal-
culation is finished. Since all WDs in the system use orthogonal access, there is
no interference among mobile devices. The transmission rate is determined as
follows:

rn,τ = B · log2
(
1 +

pn,τ · hn,τ

σ

)
(1)

where B represents the bandwidth of WD n at slot τ , σ represents the noise
power of the channel, pn,τ and hn,τ represent the transmission efficiency and
channel gain of WD n at slot τ , respectively.

The channel gain hn,τ can be expressed as:

hn,τ = h0 (dn,τ)
−β (2)

where h0 represents the channel gain when the reference distance is 1m, β is the
path loss exponent, and dn,τ represents the straight-line distance between WD
n and the edge server at slot τ . The distance between WDs and the edge server
changes over time due to user movement. If the moving speed of WD n is vn,
then the straight-line distance between WD n and the edge server changes as
follows:

dn,τ = z +

(

x −
√

e2 +
(s

2
− vnτ

)2
)

(3)

The walking distance of WD n within the coverage range of the base station is
denoted as s = 2

√
x2 − e2. e and x represent the vertical height and coverage

range of the base station, respectively, while z represents the initial distance
between WD n and the base station.

Computational Model. Each WD has the option of executing comput-
ing tasks locally or offloading them to the edge server. The offloading deci-
sion of task Sn,τ arriving at WD n in slot τ can be represented as an,τ ={
a1

n,τ , a2
n,τ , · · · , aQ

n,τ

}
, where ai

n,τ takes the value 0 or 1, with 1 ≤ i ≤ Q. ai
n,τ = 0

indicates that the i-th subtask of the task Sn,τ is executed locally, while ai
n,τ = 1

indicates that it is offloaded to the edge server for execution. T i,start
n,τ and T i,end

n,τ

are used to represent the start and end times of the i-th subtask of the task Sn,τ .
When the subtask Si

n,τ is executed locally on WD n, T i,start
n,τ is defined as

follows:

T i,start
n,τ =

⎧
⎪⎨

⎪⎩

0, i = 1
0, An,τ [j] [i] = 0&&aj

n,τ = 1 for∀j < i

max
(
T j,end

n,τ

)
, An,τ [j] [i] = 1||aj

n,τ = 0 for∃j < i

(4)

And T i,end
n,τ is defined as follows:

T i,end
n,τ = T i,start

n,τ +
Ci

n,τ · Di
n,τ

f l
n,τ

(5)

80 T. Deng et al.

where f l
n,τ represents the computing capacity of WD n in slot τ .

When the subtask Si
n,τ is offloaded to the edge for computation, T i,start

n,τ is
defined as follow:

T i,start
n,τ =

{
0, i = 1||An,τ [j] [i] = 0 for∀j < i

max
(
T i,end

n,τ

)
, An,τ [j] [i] = 1 for∃j < i

(6)

The time it takes to transmit the computed result back to the terminal device
can be ignored because the computed result is quite small in number compared
with the uploaded computation task and wireless transmission rate. T i,end

n,τ is
defined as follows:

T i,end
n,τ = T i,start

n,τ + T i,trans
n,τ +

Ci
n,τ · Di

n,τ

fe
n,τ

(7)

where fe
n,τ represents the computing capacity of the edge server in slot τ . T i,trans

n,τ

represents the transmission time needed to offload subtask Si
n,τ to the edge:

T i,trans
n,τ =

Di
n,τ

rn,τ
(8)

3.2 Problem Formula

Our study seeks to reduce the task completion time by making wise offloading
decisions for computational tasks that randomly arrive at WDs in T sequential
time frames. The time required for WD n to complete the task Sn,τ that arrives
in slot τ is denoted as:

Tn,τ = max
i∈[1,Q]

(
T i,end

n,τ

)
(9)

The optimization goal is:

min

(
T∑

τ=1

Tn,τ

)

(10a)

subject to Tn,τ ≤ τ (10b)

ai
n,τ ∈ {0, 1} (10c)

0 ≤ pn,τ ≤ Pmax (10d)

where Pmax represents the maximum value of transmission power.

4 Sequenced Quantization Based on RNN Offloading
Algorithm

The SQ-RNN algorithm proposed in the paper consists of three main stages,
namely, generating unload actions,sequenced quantization offloading actions, and

Sequenced Quantization RNN Offloading in Mobile Edge Computing 81

experience pool recycling. The details of the algorithm are shown in Algorithm 1.
Our study aims to minimize the computation completion time by making optimal
unload decisions for the tasks that are delivered at consecutive time intervals T
from the WDs that are within the edge server’s coverage area. In order to make
optimal task unload decisions, we need to design a function to generate unload
actions for different users at different time intervals. As shown in Fig. 2, in SQ-
RNN algorithm, the generation of task unload actions relies on RNN, so we use
the parameterized function of RNN to generate task unload actions. In slot τ ,
there are multiple WDs within the coverage of the edge server, and each WD
has multiple computing tasks to arrive. The AP first collects the environmental
information in the current slot as the input of RNN, and the RNN will output
the unload actions of these tasks based on the current offloading strategy. Then,
the order-preserving quantization method is used to quantify the unload actions
of each task into K binary unload actions, and the one with the minimum delay
is chosen as the task unload decision. The latest M unload decisions generated
by RNN are stored in the experience pool. When there exist M

′
new unload

decisions, a batch of data is randomly selected from the experience pool to
train and update the parameter θ of the RNN. The latest parameter function
is adopted to create offload decisions for the task in the subsequent slot. The
following subsection will detail the three stages.

Algorithm 1. SQ-RNN Algorithm
Input: θ,f l

n,τ ,fe
n,τ ,dn,τ ,Dn,τ ,An,τ [Q∗Q]

Output: an,τ

1: set T , M , M
′
, N and K;

2: initialize the RNN with parameter θ;
3: initialize an empty experience pool of size M;
4: set SUM ← 0;
5: for τ ← 1, 2, · · · , T do
6: for n ← 1, 2, · · · , N do
7: AP collect Inn ← {f l

n,τ , dn,τ ,Dn,τ ,An,τ [Q∗Q]};
8: end for
9: AP collect fe

n,τ ;
10: take {fe

n,τ , In1, In2, · · · , InN} as input to the RNN(θ) ;
11: RNN(θ) generates ã1,τ , ã2,τ , · · · , ãN,τ ;
12: for n ← 1, 2, · · · , N do
13: a

′ ← argminT (L(ãn,τ));
14: store {Inn, a

′} to the experience pool;
15: SUM ← SUM + 1;
16: if SUM %M

′
== 0 then

17: randomly select a batch of data from the experience pool;
18: train the RNN and update θ;
19: end if
20: end for
21: end for

82 T. Deng et al.

Fig. 2. The SQ-RNN Algorithm

4.1 Generation of Unload Actions

Each WD must complete the computation of randomly assigned tasks in each
slot. Each task contains multiple subtasks with general dependencies, which sig-
nificantly affects the execution order and wait time for the subtasks. The com-
plexity of subtask dependencies increases as the number of subtasks increases.
More factors need to be considered when making unloading decisions for sub-
tasks with complex dependencies. The decision of a subtask may affect multiple
subtasks, thereby affecting the entire task. Tasks randomly arrive at the WDs in

Sequenced Quantization RNN Offloading in Mobile Edge Computing 83

sequential time frames, each WD’s decision about task offloading for the previ-
ous time slot affects the network environment in the subsequent time slot. This,
in turn, has an impact on the task offloading decision for the subsequent time
slot. Considering the above two points, we employ a RNN to generate the task
offloading action. First of all, RNN is an algorithm belonging to DL, which has
strong learning ability and reasoning ability, and can make reasonable unload-
ing decisions for tasks in complex task dependencies. Second, RNN is a type
of neural networks with short-term memory. In an RNN, neurons can exchange
information with other neurons and combine their own information to build a
network loop. The information flow in a regular neural network is unidirectional,
which makes the network easier to learn but somewhat reduces the effectiveness
of the neural network model. The input of RNN at different time steps is related
to its previous time state, while its output is the sum of the input at that time
and all prior inputs.

According to the well-known approximation theorem, a hidden layer with
sufficient hidden neurons can approximate any continuous mapping if appropri-
ate activation functions, such as sigmoid, ReLu, and tanh functions, are applied
to the neurons [23]. We use the sigmoid activation function in the output layer,
and the task offloading actions for task arrived at WD n in slot τ can be out-
put as ãn,τ =

(
ã1

n,τ , ã2
n,τ , · · · , ãQ

n,τ

)
, where ãi

n,τ ∈ (0, 1), 1 ≤ i ≤ Q. Using the
sigmoid function can avoid the loss of mean square error and the decline in the
learning rate during the gradient descent process.

4.2 Sequenced Quantization Offloading Actions

In MEC, the edge server has an AP for collecting information about servers,
users and tasks. At the beginning of each slot, the AP collects the previously
mentioned information for that slot and sends it to the RNN. The RNN takes
the environmental and task parameters as its input, and then outputs the unload
action to be taken by the task arriving at WDs in that slot after calculation.

Most existing methods convert offloading actions ãn,τ with values between 0
and 1 to binary offloading actions an,τ using the following approach.

ai
n,τ =

{
0, ãi

n,τ < 0.5
1, ãi

n,τ ≥ 0.5 (11)

for i = 1, 2, · · · , Q. The traditional action generation method cannot effec-
tively convert the neural network output into corresponding binary actions. The
SQ-RNN algorithm proposed in the paper uses a order-preserving quantization
method to quantize the output of the RNN to obtain K binary unload actions.
The quantization function L is defined as follows:

L : ãn,τ �→
{

ān,τ,k | ān,τ,k ∈ {0, 1}Q
, k = 1, 2, · · · ,K

}
(12)

where K is a set parameter, K ∈ [
1, 2Q

]
, and the larger the value of K, the

better the solution obtained, and the higher the computational complexity. The

84 T. Deng et al.

basic idea behind the order-preserving quantization method used in the SQ-RNN
algorithm is to maintain order during the quantization process. It means that
the order of the subtasks in the generated quantized actions ān,τ,k is the same as
that of subtasks in the unload action ãn,τ . Compared with traditional methods,
the order-preserving quantization method causes greater distances between the
generated offloading actions, enriches the diversity of the candidate set, and
increases the chance of finding local maxima. For a given parameter K, the
method of generating the quantized action set{ān,τ,k} is shown in Fig. 3, and
the details are as follows.

Fig. 3. Sequenced quantization offloading actions

The method for generating the first binary actions ān,τ,1 from the unload
action ãn,τ is as follows:

āi
n,τ,1 =

{
0, ãi

n,τ < 0.5
1, ãi

n,τ ≥ 0.5 (13)

for i = 1, 2, · · · , Q.
To generate the remaining K − 1 binary actions, the entries of the unload

are first sorted in ascending order according to their distances to 0.5, and
the sorted unload action is represented as ân,τ =

{
â1

n,τ , â2
n,τ , · · · , âQ

n,τ

}
, where∣

∣â1
n,τ − 0.5

∣
∣ ≤ ∣

∣â2
n,τ − 0.5

∣
∣ ≤ · · · ≤ ∣

∣âQ
n,τ − 0.5

∣
∣. The index i(1 < i ≤ Q) in âi

n,τ

no longer represents the order of the subtasks. The method for generating the
k-th(k = {2, 3, · · · ,K}) unload action is as follows:

āi
n,τ,k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, ãi
n,τ < âk−1

n,τ

0, ãi
n,τ = âk−1

n,τ &&âk−1
n,τ > 0.5

1, ãi
n,τ = âk−1

n,τ &&âk−1
n,τ ≤ 0.5

1, ãi
n,τ > âk−1

n,τ

(14)

for i = 1, 2, · · · , Q. After generating K binary actions, the optimal offloading
decision for the task is selected in line with (10a).

Sequenced Quantization RNN Offloading in Mobile Edge Computing 85

4.3 Experience Pool Recycling

The SQ-RNN algorithm has an experience pool that stores the latest M offload-
ing decisions generated by the RNN. After generating unload decisions for the
tasks in the current slot, the algorithm will save the latest unload decisions to
the experience pool with limited capacity. Once the memory is full, newly gen-
erated data will replace the previous data. Each time M

′
new unload decisions

are stored in the experience pool, a batch of data will be randomly selected
for the self-learning of the RNN. To lower the average cross-entropy loss, the
paper updates the RNN’s parameters using the Adam algorithm. The experi-
ence pool provides the following benefits: first, batch data updates are less com-
plex than updates utilizing the entire dataset; second, random sampling helps
quicken convergence by reducing the correlation between training samples; and
third, real-time data can be used to enhance the RNN parameters.

5 Simulation Experiments and Result Analysis

5.1 Experimental Setup

This paper examines quasi-static scenarios of a single server with multiple WDs,
where the positions of the WDs and the state of the system resources remain
unchanged within a slot. Our proposed SQ-RNN algorithm makes offloading
decisions for multiple computation tasks generated by five WDs in 200 con-
tinuous slots, where each computing task contains dependent subtasks. Other
experiment parameters are shown in Table 2. We implement the SQ-RNN algo-
rithm in Python with Pytorch. The batch_task data in the cluster-trace-v2018
dataset is used for simulation experiments. The task_name, plan_mem, and
plan_cpu attributes in the batch_task data are required for our experiment,
where task_name contains the DAG information of the task, and plan_mem
and plan_cpu represent the task size and the number of CPU cycles required.
To better train the neural network parameters, 80% of the dataset is used for
training purposes and the remaining 20% is used to test the model. The activa-
tion functions for the hidden layer and the output layer of the neural network are
set to ’ReLu’ and ’Sigmoid’, respectively. The Loss function used is BCELoss,
and Adam is selected as the optimizer.

5.2 Algorithm Parameter Selection

To generate the most suitable offloading strategy using the SQ-RNN algorithm,
some key parameters have to be properly configured, including the learning
rate of the RNN, M

′
, and K. The SQ-RNN algorithm is used to compute the

offloading decisions for each task that arrives in T consecutive time slots after
the RNN has been trained with various parameter values. The average time
taken to complete all tasks for each 25 slot is then calculated as the SQ-RNN
algorithm performance metric.

86 T. Deng et al.

Table 2. Parameter settings

Parameter Value Parameter Value

M 2048 h0 −30dB

Di
n,τ (0, 2]Mb β 4

Ci
n,τ [50, 100]Cycles/bit vn [0, 1]m/s

f l
n,τ [4, 6] × 107Cycles/s e 35 m

fe
n,τ 5 × 109Cycles/s x 300 m

B [10, 20]MHz σ −104 dBm
pn,τ [30, 40] dBm

Fig. 4. Performance of the SQ-RNN algorithm with different neural network parame-
ters

The RNN cannot converge to an optimum if the learning rate is either too
high or too low. Figure 4(a) depicts the simulation based on various learning
rates. When the learning rates are 0.001 and 0.00001, the average delay of the

Sequenced Quantization RNN Offloading in Mobile Edge Computing 87

unload strategies generated by the SQ-RNN algorithm in each slot is usually
always greater than the average delay of the unload decisions generated by the
algorithm with a learning rate of 0.0001. Therefore, the optimal learning rate
value for the algorithm is 0.0001.

Figure 4(b) shows how the performance of the SQ-RNN algorithm was
affected by various values of M

′
. A memory experience pool was installed in the

MEC network under consideration. Each time when M
′

fresh offloading deci-
sions are stored in the experience pool, a batch of data is then randomly chosen
to update the RNN’s parameters. M

′
was examined at two different values,

namely, 1024 and 2048. It can be seen from Fig. 4(b) that both M
′
= 1024 and

M
′
= 2048 provide offloading decisions with significant fluctuations in average

latency. The average delay of the decisions made by M
′
= 1024 is slightly smaller

than that of M
′
= 2048, nevertheless. Therefore, in subsequent experiments, a

batch of data can be randomly selected from the experience pool to train the
RNN when the experience pool stores every 1024 new offloading decisions.

The paper uses the order-preserving quantization method to quantize the
output of the RNN into K binary offloading actions, increasing the diversity of
candidate actions and the likelihood of finding local maxima. Figure 4(c) shows
the impact of different K values on the performance of the SQ-RNN algorithm.
The larger the value of K, the lower the average latency in offloading decisions
in each slot. Therefore, the optimal value of K is Q.

5.3 Result Analysis

In order to analyze the performance of the SQ-RNN algorithm trained with opti-
mal parameters in more detail, in this part, we take the average computation
time required by all tasks arriving at each slot as a comparison index. Figure 5(a)
shows a performance comparison of the SQ-RNN model trained with optimal
parameters and the greedy algorithm. We list all possible offloading decision
combinations for the greedy algorithm and choose the one with the minimum
latency. It should be noted that the greedy approach is very time-consuming,
especially when when there are many users and tasks. As shown in the Figure,
in each time slot, the average latency in offloading decisions by the SQ-RNN
algorithm differs from that by the greedy algorithm by only 0.296e−6 seconds.
Therefore, the generated offloading decisions for our proposed SQ-RNN algo-
rithm are almost optimal if relevant parameters can be appropriately defined.

To further evaluate the performance of the proposed SQ-RNN algorithm in
the article, we compare it with the following scheme:

• All local computing (ALC): All task arriving at WDs in each time slot is
computed locally.

• Random offloading (RO): Each task arriving at WD in each time slot is
randomly offloaded to the edge server or computed locally.

• GA based offloading (GA): GA represents the potential offloading decision
of each task in each slot as a set of genetic parameters, and generates new
chromosomes through operations such as selection, crossover, and mutation.

88 T. Deng et al.

Fig. 5. Comparison of the performance between the SQ-RNN algorithm and other
algorithms

The optimal unloading decision is then made based on chromosome fitness
and feasibility criteria.

• DNN based offloading (DNN): We train a simple DNN with two hidden layers
to make unloading decisions for tasks considering the edge environment and
task size, but do not consider the dependencies between subtasks.

In terms of GA parameters, the population iteration number and the chro-
mosome population size are both set to 10. Figure 5(b) displays the average
delay of the unload decisions for all tasks arriving at different slots, generated
by the five unload schemes. As seen from the Figure, random offloading has the
worst performance, followed by all local computing. The SQ-RNN algorithm, GA
and DNN deliver better results. The calculation shows that the average delay
of offloading decisions generated by the SQ-RNN algorithm in each time slot is
typically 0.491e−6 seconds and 0.056e−6 seconds lower than that generated by
the DNN and the GA. It can be seen from the Fig. 5(b) that when the Q = 6,
the performance of the GA is basically the same as that of the SQ-RNN. How-
ever, the time required for GA to make an offloading decision increases with
the number of subtasks, while the time required for SQ-RNN to generate an
offloading decision is not affected by the number of subtasks. In summary, the
SQ-RNN algorithm can better adapt to partial offloading scenarios involving
multiple MDs and multiple tasks.

5.4 The Impact of the Number of Subtasks on the SQ-RNN
Algorithm

The aforementioned experiment only takes the scenario of Q = 6 into considera-
tion. If Q increases or decreases, the complexity of the dependencies between
subtasks changes, which accordingly affects the algorithm’s performance. As
shown in Fig. 6, we experimented with different values of Q, keeping all other

Sequenced Quantization RNN Offloading in Mobile Edge Computing 89

conditions and parameters constant, calculated the average completion time of
all tasks arriving within 200 consecutive time slots, and used it as the algorithm
performance index. Figure 6 shows that for Q = 3, the unload decisions gener-
ated by the DNN and GA are better than the unload decision generated by the
SQ-RNN algorithm. When Q = 5, 7, and 9, the SQ-RNN algorithm makes better
unload decisions than the DNN and GA. From the above experimental results, it
can be seen that the SQ-RNN algorithm proposed in this paper performs better
on more complex task dependencies.

Fig. 6. The SQ-RNN algorithm performance under different number of subtasks

6 Conclusion

This paper has examined the problem of subtask offloading with general depen-
dencies in quasi-static scenarios of a single server with multiple WDs and mul-
tiple tasks. The SQ-RNN algorithm has been proposed to solve the subtask
offloading problem to minimize the delay in completing tasks. The SQ-RNN
algorithm first generates unloading decisions with RNN, and then quantifies
them into K binary unloading actions using the order-preserving quantization
method. The SQ-RNN algorithm also uses the latest unloading decisions to train
and update the parameters of the RNN so that it can make a better unloading
decision. The proposed SQ-RNN algorithm has been implemented in Python
and tested extensively using the cluster-trace-v2018 dataset. The experimental
results demonstrate that when the number of subtasks is 6, the superiority of
the SQ-RNN algorithm over DNN, GA, random offloading, and all local calcu-
lations. And the average delay of the unload decision generated by the SQ-RNN

90 T. Deng et al.

algorithm in each slot is 0.296e−6 seconds longer compared with the greedy
algorithm. In addition, the proposed SQ-RNN algorithm performs better as the
subtask dependency complexity increases.

Acknowledgements. This work was supported in part by the National Natural Sci-
ence Foundation of China (Grant Nos. 61972146, 62002032) and Postgraduate Scientific
Research Innovation Project of Hunan Province (CX20220942).

References

1. Cao, K., Liu, Y., Meng, G., Sun, Q.: An overview on edge computing research.
IEEE access 8, 85714–85728 (2020)

2. Raeisi-Varzaneh, M., Dakkak, O., Habbal, A., Kim, B.S.: Resource scheduling in
edge computing: architecture, taxonomy, open issues and future research directions.
IEEE Access 11, 25329–25350 (2023)

3. Yeganeh, S., Sangar, A.B., Azizi, S.: A novel q-learning-based hybrid algorithm for
the optimal offloading and scheduling in mobile edge computing environments. J.
Netw. Comput. Appl. 214, 103617 (2023)

4. Saleem, U., Liu, Y., Jangsher, S., Tao, X., Li, Y.: Latency minimization for d2d-
enabled partial computation offloading in mobile edge computing. IEEE Trans.
Veh. Technol. 69(4), 4472–4486 (2020)

5. Al-Habob, A.A., Dobre, O.A., Armada, A.G., Muhaidat, S.: Task scheduling for
mobile edge computing using genetic algorithm and conflict graphs. IEEE Trans.
Veh. Technol. 69(8), 8805–8819 (2020)

6. Huang, P.Q., Wang, Y., Wang, K., Liu, Z.Z.: A bilevel optimization approach
for joint offloading decision and resource allocation in cooperative mobile edge
computing. IEEE Trans. Cybern. 50(10), 4228–4241 (2019)

7. Yuan, H., Bi, J., Duanmu, S.: Cost optimization for partial computation offloading
and resource allocation in heterogeneous mobile edge computing. In: 2021 IEEE
International Conference on Systems, Man, and Cybernetics (SMC), pp. 3089–
3094. IEEE (2021)

8. Li, Y., Li, K., Chen, C., Zhou, X., Zeng, Z., Li, K.: Modeling temporal patterns
with dilated convolutions for time-series forecasting. ACM Trans. Knowl. Disc.
Data (TKDD) 16(1), 1–22 (2021)

9. Chen, C., Li, K., Zhongyao, C., Piccialli, F., Hoi, S.C., Zeng, Z.: A hybrid deep
learning based framework for component defect detection of moving trains. IEEE
Trans. Intell. Transp. Syst. 23(4), 3268–3280 (2020)

10. Zou, X., Zhou, L., Li, K., Ouyang, A., Chen, C.: Multi-task cascade deep convo-
lutional neural networks for large-scale commodity recognition. Neural Comput.
Appl. 32(10), 5633–5647 (2020)

11. Xu, D., et al.: Edge intelligence: Architectures, challenges, and applications. arXiv
preprint arXiv:2003.12172 (2020)

12. Deng, S., Zhao, H., Fang, W., Yin, J., Dustdar, S., Zomaya, A.Y.: Edge intelligence:
the confluence of edge computing and artificial intelligence. IEEE Internet Things
J. 7(8), 7457–7469 (2020)

13. Ali, Z., Jiao, L., Baker, T., Abbas, G., Abbas, Z.H., Khaf, S.: A deep learning
approach for energy efficient computational offloading in mobile edge computing.
IEEE Access 7, 149623–149633 (2019)

http://arxiv.org/abs/2003.12172

Sequenced Quantization RNN Offloading in Mobile Edge Computing 91

14. Ali, Z., Abbas, Z.H., Abbas, G., Numani, A., Bilal, M.: Smart computational
offloading for mobile edge computing in next-generation internet of things net-
works. Comput. Netw. 198, 108356 (2021)

15. Wang, Z., Lv, T., Chang, Z.: Computation offloading and resource allocation based
on distributed deep learning and software defined mobile edge computing. Comput.
Netw. 205, 108732 (2022)

16. Shakarami, A., Shahidinejad, A., Ghobaei-Arani, M.: An autonomous computa-
tion offloading strategy in mobile edge computing: a deep learning-based hybrid
approach. J. Netw. Comput. Appl. 178, 102974 (2021)

17. Dab, B., Aitsaadi, N., Langar, R.: Q-learning algorithm for joint computation
offloading and resource allocation in edge cloud. In: 2019 IFIP/IEEE Symposium
on Integrated Network and Service Management (IM), pp. 45–52. IEEE (2019)

18. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press
(2018)

19. Bi, S., Huang, L., Wang, H., Zhang, Y.J.A.: Lyapunov-guided deep reinforcement
learning for stable online computation offloading in mobile-edge computing net-
works. IEEE Trans. Wireless Commun. 20(11), 7519–7537 (2021)

20. Liu, C., Tang, F., Hu, Y., Li, K., Tang, Z., Li, K.: Distributed task migration opti-
mization in mec by extending multi-agent deep reinforcement learning approach.
IEEE Trans. Parallel Distrib. Syst. 32(7), 1603–1614 (2020)

21. Chen, Z., Wang, X.: Decentralized computation offloading for multi-user mobile
edge computing: a deep reinforcement learning approach. EURASIP J. Wirel. Com-
mun. Netw. 2020(1), 1–21 (2020)

22. Qu, G., Wu, H., Li, R., Jiao, P.: Dmro: a deep meta reinforcement learning-based
task offloading framework for edge-cloud computing. IEEE Trans. Netw. Serv.
Manage. 18(3), 3448–3459 (2021)

23. Goyal, M., Goyal, R., Venkatappa Reddy, P., Lall, B.: Activation functions. Deep
learning: Algorithms and applications, pp. 1–30 (2020)

KylinArm: An Arm Gesture Recognition
System for Mobile Devices

Shikun Zhao1, Jingxuan Hong1,2, Zixuan Zhang4, Xuqiang Wang4,
Jin Zhang1,2, and Xiaoli Gong1,2,3(B)

1 College of Computer Science, Nankai University, Tianjin, China
gongxiaoli@nankai.edu.cn

2 Tianjin Key Laboratory of Brain Science and Intelligent Rehabilitation,
Tianjin, China

3 State Key Laboratory of High-End Server and Storage Technology, Jinan, China
4 State Grid Tianjin Information and Communication Company, Tianjin, China

Abstract. Gesture-based Human-Computer Interaction (HCI) has
become a primary means of device control due to its naturalness and
humanized characteristics, making it applicable for tasks such as drone
control and gaming. Gesture recognition using an inertial measurement
unit (IMU) has emerged as a major trend in this field. However, due to
the intricate nature of the arm structure and the diversity of gestures,
relying on a single IMU system for gesture recognition results in lim-
ited accuracy. Modern mobile devices, such as smartphones and smart-
watches, are equipped with IMUs that allow for convenient data acqui-
sition methods and offer computing resources for deep learning model
inference. In this paper, we propose a real-time arm gesture recognition
method, called KylinArm, which achieves high-precision gesture recog-
nition by coordinating 2 IMUs. The KylinArm method is optimized for
mobile devices and based on a dual-branch 1D-CNN classifier. It sup-
ports the classification of 12 arm gestures with an optimized strategy
for mobile devices that have limited computation resources and power
supply. Additionally, we adopt an optimization method based on COR-
relation ALignment (CORAL) to address the decreasing accuracy that
occurs when new users are introduced. Finally, we evaluate KylinArm
and test it in real scenes, achieving a recognition accuracy of over 98%.

Keywords: Arm Gesture Recognition · Inertial Measurement Unit ·
Human-Computer Interaction · Mobile Devices · Deep Learning

1 Introduction

As artificial intelligence develops rapidly, Human Activity Recognition (HAR)
[22,29] has become an important technology in many fields, including health

This work is supported in part by Natural Science Foundation of China (62172239),
Key Technologies R&D Program of Guangdong Province, China (2021B0101310002),
and Shandong Provincial Natural Science Foundation, China (ZR2022LZH009).
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 92–111, 2024.
https://doi.org/10.1007/978-981-97-0801-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_6&domain=pdf
https://doi.org/10.1007/978-981-97-0801-7_6

KylinArm: An Arm Gesture Recognition System for Mobile Devices 93

care and human-computer interaction (HCI) [11]. There has been a growing
interest in HCI as a research area that caters to the ever-changing needs of
human progress with the integration of smart devices into daily lives. Within
HCI, gesture recognition, a subfield of HAR, presents a flexible and practical
method of transmitting information in complex and dynamic environments.

There are two primary types of gesture recognition: finger gestures and arm
gestures. Finger gestures are more complex and may be affected by hand occu-
pation or injury. Arm gestures can free up the hands, improve efficiency, and be
used by more individuals to control machines.

Advancements in microelectromechanical system have led to the development
of smaller and lighter sensors, making it easier to produce wearable devices based
on inertial measurement units (IMU). Customized devices such as wristbands
and rings can be used in gesture recognition tasks. However, smartwatches and
mobile phones equipped with IMUs offer a cost-effective and convenient way
to acquire data for gesture recognition, while also providing an inference envi-
ronment. This simplifies the hardware composition and makes the HCI process
much more natural and user-friendly. The success of projects like EatingTrak
[33], MoRSE [14] and the work of Wei et al. [28] demonstrates the feasibility of
arm gesture recognition based on IMU in smart mobile devices. However, due to
the intricate nature of the arm structure and the diversity of gestures, relying
on a single IMU system for gesture recognition results in limited accuracy.

To successfully recognize arm gestures and create a HCI process, obtain-
ing data that comprehensively captures the characteristics of arm gestures is of
utmost importance. In this paper, we propose KylinArm, a solution for recog-
nizing arm gestures based on dual IMU data collection and optimized for mobile
devices to address the aforementioned issues. By leveraging two IMUs located
at the wrist and elbow, more data can be obtained to distinguish between arm
gestures with similar wrist motion trends.

In KylinArm, a dual-branch convolutional neural network (CNN) model is
designed that relies on one-dimensional convolution and accounts for data col-
lected by two IMUs to classify 12 arm gestures for HCI with high precision. Addi-
tionally, KylinArm is optimized for the limited computing resources and energy
supply of mobile devices by integrating a Wakeup-Detection-Classification
module.

To enhance the generalization of arm gesture recognition, a real-time data
alignment strategy based on CORrelation ALignment (CORAL) [25] is imple-
mented. This is necessary as different users and the variance of sensor positions
may change the features of data collected during gesture recognition.

The main contributions of this paper are as follows:

– We propose a new arm gesture recognition framework called KylinArm. This
framework supports 12 arm gestures using 2 IMUs for data collection and a
dual-branch convolutional neural network (CNN) model for classification.

– We optimize KylinArm for ubiquitous mobile devices with a Wakeup-
Detection-Classification mechanism and real-time data alignment strategy,
which ensures efficient utilization of limited computing resources and energy
supply.

94 S. Zhao et al.

– We implement KylinArm on Android-based mobile devices and evaluate its
effectiveness by testing with collected datasets and real-world scenarios. The
results demonstrate the high precision and robustness of KylinArm in recog-
nizing arm gestures.

The rest of the paper is organized as follows. Section 2 presents related works
on IMU-based arm gesture recognition and algorithms for sensor-based gesture
recognition. Section 3 provides details on the design and implementation of Kyli-
nArm. Section 4 evaluates the proposed arm gesture recognition method. Finally,
Sect. 5 concludes the paper.

2 Related Work

2.1 IMU-Based Gesture Recognition

IMU typically includes three sensors: an accelerometer, a gyroscope, and a mag-
netometer, each of which measures data along the XYZ axes. The magnetometer
is an optional component, and the IMU without it is commonly referred to as a
6-axis IMU. The accelerometer measures linear acceleration, while the gyroscope
measures angular velocity.

IMUs are capable of accurately capturing the inertial data generated during
the execution of gestures. Bianco et al. [2] used an IMU wristband to classify 6
letters, 6 numbers, and 12 simple forearm gestures. Cui et al. [6] used three 6-axis
IMUs to recognize three arm activities. Kim et al. [15] identified handwritten
digits with a handheld IMU.

With the advancement of mobile devices, smartphones and smartwatches are
often equipped with built-in IMUs and possess stronger computing capabilities,
which can support deep learning model inference. Kurz et al. [17] utilized a self-
assembled 6-axis IMU and a smartwatch to collect data and successfully recognize
12 different gestures on a smartphone. Kang et al. [12] used a smartwatch to rec-
ognize 7 gestures while walking. Guo et al. [7] used a smartwatch and a camera to
recognize 12 hand gestures. Kasnesis et al. [14] recognized 5 arm gestures repre-
senting different emergency signals using the 6-axis IMU in a smartwatch.

2.2 Algorithms for Sensor-Based Gesture Recognition

The design of the classifier plays a crucial role in achieving high-accuracy gesture
recognition. Classifiers based on time-series data collected from IMUs can be cat-
egorized into two groups: traditional machine learning and deep learning. Com-
mon machine learning methods include KNN [8], Random Forest [10] and SVM
[4,23,27], while deep learning methods can be further divided into three types:
CNN [1,5,14,26], RNN [2,7], and their combinations [21,31]. Ulysse et al. [5] pro-
posed a CNN model based on continuous wavelet transform to classify 7 gestures.
Bianco et al. [2] built an arm gesture recognition system based on GRU and LSTM.
Yuan et al. [31] utilized the CNN+LSTM method to recognize sign language.

KylinArm: An Arm Gesture Recognition System for Mobile Devices 95

Moreover, the generalization of classifiers is also an important issue. Both [2]
and [30] discovered that deep learning models can differentiate the same gesture
done by different people. [4] and [14] noted that the accuracy of arm gesture
recognition is affected when using the model with people whose motion data
are not included in training, but they only described the phenomenon without
proposing improvements. In [7], gesture recognition was performed on smart-
watch. To alleviate the impact of new users on accuracy, data was re-collected
and trained on the server. Although effective, this process can be cumbersome.

3 Design and Implementation of KylinArm

3.1 Framework Design of KylinArm

We develop an arm gesture recognition system, named KylinArm, that is
designed to achieve high-precision recognition and perform real-time inference
on mobile devices. The overall structure of KylinArm is illustrated in Fig. 1.

Fig. 1. Framework of KylinArm

To ensure accurate capture of data that represents the differ characteristics
of arm gestures, we adopt a dual-IMU data acquisition mechanism. Specifically,
the user wears two 6-axis IMUs, one on the wrist and the other on the upper
arm near the elbow. The IMU data is collected at a sampling frequency of 30Hz.
The classifier in KylinArm, which is referred to as the Classification Module in
Fig. 1. From the acquisition of signals to input into the classifier, the continuous
IMU data is filtered using a low-pass Butterworth filter to remove noise caused
by the environment and equipment. In addition, a sliding window with a size of
3 s and a step of 200ms is used to segment the continuous data.

KylinArm is set to sleep mode by default to conserve computing resources
and prevent unintended operations. Wakeup Module is responsible for determin-
ing when the recognition procedure should be activated. The preprocessed data
windows are initially directed to Wakeup Module to determine if they constitute
a wake-up gesture. However, if a wake-up gesture is detected, Wakeup Mod-
ule stops working and the recognition procedure starts. Once the recognition
procedure is woken up, windows are fed directly into Recognition Module. The

96 S. Zhao et al.

windows are then processed by Detection Module to prepare input for Classifi-
cation Module, with only one window being input to Classification Module for
each arm gesture. Finally, the recognized arm gesture type is output as a control
command.

3.2 Gesture-Controlled Command Set

Gestures are fundamental to HCI, and the design of arm gestures should be
tailored to the actual operational requirements of the devices. It is essential to
consider the distinction between control gestures and daily arm gestures as well.
We are inspired by Zhang et al.’s study [32] on the naturalness of upper limb
movements and design twelve arm gestures that involve movement of the entire
arm, which are illustrated in Fig. 2. The correspondence between these gestures
and their respective potential control commands is also shown in the same figure.

Fig. 2. Designed arm gestures and corresponding control commands

3.3 Classification Module: Dual-Branch 1D-CNN Classifier

For the 12-class arm gesture recognition task, we design a classification
model named dual-branch 1D-CNN (Dual-CNN). The model is based on one-
dimensional (1D) convolution and uses two convolutional branches to extract

KylinArm: An Arm Gesture Recognition System for Mobile Devices 97

features from the time-series data obtained from each IMU to enhance classifi-
cation accuracy. The network structure is shown in Fig. 3 and more detail can
be found in Table 1. This model is applied in Classification Module to classify
arm gestures. During training, only windows containing the 12 arm gestures are
used.

Fig. 3. Structure of Dual-CNN

Dual-CNN is designed to run on a mobile device and is composed of two
convolutional branches, each of which includes three 1D convolutional layers. The
input data of each branch has a shape of (6,90). After convolution, a MaxPooling
[20] layer, a Batch Normalization (BN) [9] layer and a Dropout [24] layer are
applied. The MaxPooling and Dropout layers serve to prevent model overfitting,
while the BN layer accelerates the model’s convergence speed. Global Average
Pooling (GAP) [19] is then applied to reduce the number of parameters in Dual-
CNN. The concatenated features are fed into two fully connected (FC) layers,
which map extracted features to classification labels as the final output.

3.4 Arm Gesture Recognition

To adapt limited computing resources of mobile devices, we propose a Wakeup-
Detection-Classification process. This process utilizes Dual-CNN discussed in
Sect. 3.3 for arm gesture classification, as well as two much lighter models trained
separately for the Wakeup Module and Detection Module.

Wakeup Module. utilizes a binary classification model, called CNNwake,
which is lightweight and efficient. CNNwake consists of three 1D convolutional

98 S. Zhao et al.

Table 1. Details of Dual-CNN

Layer Layer Type Input Size Output Size Kernel Size Activation

Layer 1-1 1DConvolution (6,90) (64,90) 8 ReLU
Batch Normalization
Dropout

Layer 1-2 1DMaxpooling (64,90) (64,45) 3
Layer 1-3 1DConvolution (64,45) (128,45) 5 ReLU

Batch Normalization
Dropout

Layer 1-4 1DMaxpooling (128,45) (128,23) 3
Layer 1-5 1DConvolution (128,23) (64,23) 3 ReLU

Batch Normalization
Dropout

Layer 1-6 1DMaxpooling (64,23) (64,12) 3
Global Average Pooling (64,12) (1,64)

Layer 2-1 1DConvolution (6,90) (64,90) 8 ReLU
Batch Normalization
Dropout

Layer 2-2 1DMaxpooling (64,90) (64,45) 3
Layer 2-3 1DConvolution (64,45) (128,45) 5 ReLU

Batch Normalization
Dropout

Layer 2-4 1DMaxpooling (128,45) (128,23) 3
Layer 2-5 1DConvolution (128,23) (64,23) 3 ReLU

Batch Normalization
Dropout

Layer 2-6 1DMaxpooling (64,23) (64,12) 3
Global Average Pooling (64,12) (1,64)

Layer 3 Fully-Connected (1,128) (1,64)
Dropout

Output Layer Fully-Connected (1,64) 12 Softmax

layers and two fully connected layers. Each convolutional layer is followed by a
Maxpooling layer, a BN layer, and a Dropout layer. With only 4994 parame-
ters, CNNwake is better suited for frequent use on mobile devices compared to
Dual-CNN.

The gesture verticalcircle (shown in Fig. 2) is chosen as the wake-up gesture.
This particular gesture is relatively specific and less commonly used in daily
life, which makes it a suitable choice for ensuring the reliability of Wakeup
Module. CNNwake takes IMU data as input by the sliding window with a size
of 3 s and a step of 200ms. To improve the accuracy of capturing the wake-up
gesture, a window will be classified as positive if it contained data of a gesture
for more than 80%, and negative otherwise. During the verticalcircle gesture,
CNNwake outputs consecutive 1 s. If 0 appears, it indicates that the gesture
has not occurred or has been completed. Therefore, we define the occurrence of
verticlecircle as CNNwake outputting 3 or more consecutive 1.

Detection Module. is responsible for capturing windows that contain the com-
plete gesture as much as possible and ensuring that the gesture classifier only
runs when necessary. This helps to reduce the computational cost of the Recog-
nition Module and improve the accuracy of arm gesture recognition. Detection
Module uses a binary classification model on the IMU data processed by sliding
window mechanism, determining whether it contains data of one of the 12 arm

KylinArm: An Arm Gesture Recognition System for Mobile Devices 99

Algorithm 1. Main Window Selection Mechanism
Input: The results of Detection(0 or 1), Classifier Dual-CNN
Output: The inference result of Recognition
1: if (0 appear and len(pool)�=0) or len(pool)≥7 then
2: if len(pool) is odd then
3: center_idx = �len(pool) / 2�
4: else
5: center_idx = len(pool) / 2 - 1
6: end if
7: standard_window = pool[center_idx] � Select the main window
8: result = Dual-CNN(standard_window) � Classify the selected window
9: clear pool

10: else if 1 appear then
11: append current window to pool � Accumulate windows
12: end if

gestures. It is similar to the role of CNNwake. Therefore, Detection Module uti-
lizes the same model structure as CNNwake, which called CNNdetect. When the
user performs one of the 12 gestures, CNNdetect first outputs 0, then outputs a
continuous segment of 1, and finally returns to outputting 0. The Main Window
Selection (MWS) mechanism is employed to provide the window that contains
as much gesture data as possible for Classification Module.

As illustrated in Algorithm 1, when an arm gesture is performed, CNNdetect

outputs consecutive 1 s and the corresponding windows are added to the window
pool with a maximum size of 7. Window accumulating process continues until
either a zero appears or the pool reaches its maximum size. Subsequently, a
method similar to finding the median is applied to select the main window,
which is then passed to Classification Module. The pool is cleared and MWS
mechanism awaits the next sequence of 1 s.

3.5 CORAL-Based Generalization Optimization

Arm gesture recognition is a user-sensitive task. There are distributional dif-
ferences even in the performance of the same gesture by different users. Arm
gesture classifier may not perform optimally on data from new users that have
not been previously trained on. In the case of data with different distributions,
Domain Adaption [16] typically involves mapping data from both the source and
target domains to a common distribution space through feature changes. And
then the migrated data is used to train the model improving its performance on
the target domain data. However, implementing this process solely on mobile
devices is often infeasible. Consequently, we propose a new real-time generaliza-
tion strategy based on CORAL [25], named as CORALREV ERSE , which shifts
the focus from a model-to-data fit to a data-to-model fit approach.

CORALREV ERSE migrates the new data (target domain) to the original
data (source domain) in real time. As outlined in Algorithm 2, the new users’
data is represented by Dt, while Ds represents the original data used to train

100 S. Zhao et al.

the model. The process of data alignment involves two steps: first, the new data
Dt is whitened, and then, the whitened data is re-colored using the statistical
characteristics of original data Ds.

Algorithm 2. CORALREV ERSE

Input: Source Data Ds, New Data Dt

Output: Transferred New Data Dt
∗

1: Cs = cov(Ds) + eye(size(Ds, 2))
2: Ct = cov(Dt) + eye(size(Dt, 2))

3: Dt = Dt ∗ C
− 1

2
t � Whitening New Data Dt

4: D∗
t = Dt ∗ C

1
2
s � Re-coloring New Data Dt

IMU data is continuously input to the inference system. Each new data needs
to choose a source domain to perform whitening and re-coloring, which produce a
lot of repetitive work. Since CORALREV ERSE implements data migration based
on two matrix multiplication operations, the migration matrix coralt, which
represents the data gap between the target and source domains, is calculated in
advance.

coralt = C
− 1

2
t · C 1

2
s (1)

where Ct is the feature matrix of gesture data for new users, and Cs is the
feature matrix of original data. During the real-time inference process, coralt is
dot-producted with the continuously IMU windows to align the new data with
the original data in real-time. It improves the overall recognition accuracy of
Recognition Module.

To effectively employ transfer learning, it is crucial to identify a source
domain that is similar to the target domain. Therefore, for new users with differ-
ent characteristics, we utilize different data transfer strategies for data migration
that incorporated the migration matrix calculation method. The method of using
CORALREV ERSE in KylinArm is shown in Algorithm 3.

The coralt matrix is calculated prior to performing real-time data align-
ment. Therefore, a gesture sample set containing 12 gestures, denoted as D

′
t, is

captured in advance to implement Algorithm 3. D
′
t contains one item for each

gesture. Then, the source domain data is selected based on the distribution of
the pre-collected gestures set D

′
t. The classification accuracy of D

′
t is used as

the criterion for selecting the data transfer strategy. These two data transfer
strategies are referred to as Select_Person and Select_Overall in Algorithm
3. If the accuracy exceeds threshold A, the former strategy is chosen; otherwise,
the latter is chosen.

DO contains all gesture data for all individuals which is the training dataset
of the gesture classifier. In Select_Overall strategy, the global source domain
data Ds is fixed and a K-means [18] method is used to select representative data
from the training dataset for Classification Module. Ds contains the original
data of each class of gestures for each person. In Select_Person strategy, Ds

KylinArm: An Arm Gesture Recognition System for Mobile Devices 101

Algorithm 3. New Data Transfer Process
Require: Overall Original Data DO, Sample Target Data D

′
t, Classifier Recognition

Input: Real-time IMU Windows DIMU

Output: Transferred Real-time IMU Windows D∗
IMU

1: labelpredict = Recognition(D
′
t)

2: accuracy = accuracy_score(lablesample, labelpredict)
3: if accuracy > A then
4: Source Data Ds = Select_Person(DO)
5: else
6: Source Data Ds = Select_Overall(DO)
7: end if
8: for actti in D

′
t do

9: Select action data actsi with the same label as actti from Ds

10: coralti = CORALREV ERSE(actti , actsi)
11: end for
12: CORALt = Average{coralt0 , coralt1 , . . .}, coralt11
13: D∗

IMU = DIMU · CORALt

includes data from the person who is most similar to D
′
t. We adapt a classifi-

cation accuracy-based method to assess the similarity. Specifically, original data
samples from each person are used as training sets in turn to train corresponding
classifiers. D

′
t of new user is then put into every classifier to obtain the accu-

racy. The data from the person whose classifier achieves the highest accuracy is
selected as the source domain Ds.

Fig. 4. Usage of the transformation migration matrix CORALt

After selecting the source domain data, CORALREV ERSE is used to cal-
culate migration matrix CORALt. In the process of calculating CORALt, the
source and target domain data with the same label are calculated according to
Algorithm 1 to obtain coralti . CORALt is computed as the average of multi-
ple coralti matrices. Once the feature linear transformation migration matrix
CORALt is obtained, CORALREV ERSE can be used to perform whitening and
re-coloring operations via dot product between CORALt and DIMU , resulting
in the aligned data D∗

IMU . And then D∗
IMU is inputted into Recognition Module

for gesture recognition, as shown in Fig. 4.

102 S. Zhao et al.

4 Evaluation

To fully validate the effectiveness of KylinArm, we evaluate the performance
of Dual-CNN and each module in KylinArm using our datasets. At last, we
implement it on smartphones and test the system in a real scene.

4.1 DataSet Description

We used two IMUs placed on the wrist and upper arm to collect data from
15 volunteers (9 males and 6 females) with ages ranging from 22 to 27 years,
heights ranging from 160–185 cm, and weights ranging from 50–80 kg. Data was
collected at a frequency of 30Hz, with each gesture performed for 3 s. Both
Dataset for Dual-CNN and Dataset for KylinArm are derived from the raw
IMU data collected, and they are processed separately and labeled in different
ways to accommodate different task needs. The former dataset is only used to
train and test the designed classification model. The latter dataset simulates the
data generated in real-world scenarios and contains windows of continuous time,
which is used to train and test each module in the system inference phase.

Dataset for Dual-CNN only contains the data of 12 gestures. Each of the 15
volunteers repeated each action 10 times according to the rule of performing for
3 s and resting for 3 s. The final dataset contains 1800 items, where each item
has the shape of (12,90).

Dataset for KylinArm includes data collected from 15 volunteers, each of
whom performed each gesture 10 times within a 10-minute time frame. The
dataset contains a total of 1800 gestures and spans a duration of 3 h. To segment
the continuous IMU signals, we employed a sliding window approach with a size
of 3 s and a step of 200ms. A window was labeled as 1 if it overlapped with
gesture data for more than 80% of its duration, and as 0 otherwise. Therefore,
Dataset for KylinArm contains 46230 windows data, of which there are 7605
positive windows and 38625 negative windows.

4.2 Performance of Dual-Branch 1D-CNN Model

5-fold cross-validation is performed on five baseline models and Dual-CNN using
Dataset for Dual-CNN to evaluate classification accuracy. Adam optimizer and
cross-entropy loss function are used, batch size is 8, and 50 epochs are trained.
The single-branch feature extraction variant of Dual-CNN is 1D-CNN, which
takes the data from two IMUs and concatenates them as input. CNN-LSTM
[34] and EMGHandNet [13] perform well in HAR tasks.

To provide a comprehensive assessment of the effectiveness of each model, we
utilized four commonly-used metrics: Accuracy, Precision, Recall, and F1 score.
The results of the evaluation, which include the Dual-CNN model and five base-
line models, are presented in Table 2. The Dual-CNN model outperforms all
other models across all metrics. These results highlight the significant difference
in classification ability between machine learning and deep learning methods.

KylinArm: An Arm Gesture Recognition System for Mobile Devices 103

Table 2. The global 5-fold cross-validation results for the different models

Model Accuracy (%) Precision (%) Recall (%) F1 (%)

SVM 91.61 ± 2.04 92.58 ± 2.44 91.61 ± 2.04 91.61 ± 2.03

Decision Tree 91.94 ± 1.65 92.19 ± 1.61 91.94 ± 1.65 91.94 ± 1.67

1D-CNN 99.56 ± 0.33 99.55 ± 0.35 99.53 ± 0.31 99.53 ± 0.34

CNN-LSTM [34] 99.67 ± 0.22 99.67 ± 0.20 99.65 ± 0.22 99.65 ± 0.21

EMGHandNet [13] 99.50 ± 0.21 99.52 ± 0.20 99.50 ± 0.21 99.50 ± 0.21

Dual-CNN 99.78 ± 0.27 99.78 ± 0.26 99.78 ± 0.27 99.78 ± 0.27

While the accuracy of all tested deep learning models exceeded 99%, our pro-
posed Dual-CNN model stands out as the most efficient solution. It has the least
number of parameters and fewer FLOPs as shown in Table 3. We then evaluate
the inference time cost of Dual-CNN on the Honor 30 smartphone, which runs
on HarmonyOS 2.0, has a memory size is 8.0 GB and is powered by Kirin 985
processor. Dual-CNN takes an average of less than 5ms to perform an infer-
ence on Honor 30. The efficiency of the Dual-CNN model makes it more mobile
device-friendly and enables real-time gesture recognition with greater accuracy.

Table 3. FLOPs and parameters of four deep learning model

Model FLOPs Parameters

1D-CNN 3087616 172428

CNN-LSTM [34] 10816928 504748

EMGHandNet [13] 3572199680 2634572

Dual-CNN 5482752 147788

To evaluate the generalization, we performed 15-fold cross-validation by
selecting one individual’s data as the test set and the data of the other 14 indi-
viduals as the training set. The model settings, training settings are the same as
5-fold cross-validation. The results are shown in Table 4 and Fig. 5. Dual-CNN
exhibits superior generalization performance when facing untrained new data.
Compared to the results of the 5-fold cross-validation, Dual-CNN has the least
decrease in accuracy when classifying unfamiliar data. While the results of 1D-
CNN is comparable to that of Dual-CNN, merging feature extraction appears to
weaken it’s generalization ability across individuals.

104 S. Zhao et al.

Table 4. Results of the 15-fold cross-validation for different models

Model Accuracy (%) Precision (%) Recall (%) F1 (%)

SVM 80.83 84.27 80.83 77.88

Decision Tree 75.00 74.79 75.00 71.65

1D CNN 94.61 95.58 94.61 93.68

CNN-LSTM [34] 93.50 94.01 93.50 92.49

EMGHandNet [13] 93.94 94.65 93.94 93.66

Dual-CNN 96.00 96.91 96.00 95.33

Fig. 5. Accuracy comparison of four deep learning models in 15-fold cross-validation
(triangles represent means and dotted lines represent medians)

4.3 Performance of Inference Modules

Wakeup Module. The CNNwake is trained based on Dataset for KylinArm.
However, due to the fact that the positive examples of Wakeup Module are only
related to windows of verticalcircle, the number of positive examples is greatly
reduced. This results in severe imbalances between positive and negative labels,
which significantly impacts the model’s discrimination ability. To address this
issue, we use SMOTE [3] to increase the number of positive examples. Wakeup
Module achieves an accuracy of 100% for verticalcircle in a 5-fold cross-validation
experiment conducted on Dataset for KylinArm. When using all data from a
person as the test set and using the remaining data as the training set, the
recognition accuracy of the module is 98.46%. The complexity of verticalcircle
makes it relatively easy to distinguish. Additionally, SMOTE can increase the
diversity of data, which has a positive effect on compensating for differences
between individuals’ gestures.

Recognition Module. The CNNdetect is trained using Dataset for KylinArm.
To fully validate the effectiveness and generalization of Recognition Module, we
designed the same 5-fold and 15-fold cross-validation experiments as in Sect. 4.2.

KylinArm: An Arm Gesture Recognition System for Mobile Devices 105

As shown in Table 5, continuous windows containing 360 gestures are inputed
into Recognition Module for test. Detection Module achieves an accuracy of
98.67%, while Classification Module achieves an accuracy of 99.72%. As a result,
Recognition Module exhibited an overall accuracy of 98.39% for recognizing ges-
tures. Table 6 shows the results of 15-fold cross-validation. We can find that the
accuracy of Detection Module is 96.72%, which is 1.95% lower than the 5-fold
cross-validation result. The accuracy of Classification Module remains almost
unchanged at 99.54%. The overall accuracy of Recognition Module decreases by
2.11% to 96.28%. While Detection Module alleviates the performance degrada-
tion caused by the sensitivity of gesture classifier to unfamiliar data, data not
included in the training dataset still caused Detection Module to miss a certain
number of windows, limiting the high-precision classification ability of Recogni-
tion Module.

Table 5. Accuracy (%) of global 5-fold cross-validation

Fold # Detect. Classif. Recogn.

0 100 99.44 99.44
1 99.44 99.16 98.61
2 97.78 100 97.78
3 96.94 100 96.94
4 99.17 100 99.17
avg. 98.67 99.72 98.39

Table 6. Accuracy (%) of 15-fold cross-validation

Person Detect. Classif. Recogn.

P0 96.67 100 96.67
P1 100 100 100
P2 100 100 100
P3 99.17 99.16 98.33
P4 100 100 100
P5 94.17 100 94.17
P6 100 99.17 99.17
P7 100 100 100
P8 100 100 100
P9 94.17 99.12 93.33
P10 79.17 98.95 78.33
P11 98.33 100 98.33
P12 89.17 100 89.17
P13 100 100 100
P14 100 96.67 96.67
avg. 96.72 99.54 96.28

106 S. Zhao et al.

4.4 Performance of CORALREV ERSE

The experiment primarily focuses on verifying the effect of adding
CORALREV ERSE to Recognition Module on the recognition of gestures. As
described in Sect. 3.5, we firstly pre-collect 12 gestures as samples, which are
then verified using the Classification model for initial distribution verification. If
the accuracy is close to 100%, samples are aligned with 12 gestures of one indi-
vidual. Otherwise, they are aligned with the global source gesture library. The
global library contains data for each arm gesture performed by each volunteer,
resulting in a total dataset size of 12× 15.

By adding CORALREV ERSE to Recognition Module, the rate of gestures
captured by Detection Module increased from 96.72% to 97.89%, while the over-
all gesture recognition accuracy increased from 96.28% to 97.56%. The detailed
results of each test group are presented in Fig. 6. The results indicate that
7 groups exhibited varying degrees of improvement, while 6 groups remained
unchanged. Among them, P9 and P10 have an accuracy increase of 6.67% and
7.50%, respectively. However, P6 and P8 experienced a decrease in the number
of recognized gestures by 2. The reduction in accuracy observed in the P6 and P8
groups can be attributed to the transformation of accurately classifiable gesture
data during data alignment based on CORALREV ERSE . This process has the
potential to convert the data into other similar gestures when the arm gesture
is not standard enough.

Fig. 6. Comparison of recognition accuracy before and after generalization optimiza-
tion

4.5 Real-World Evaluation of KylinArm

To assess the real-world performance of KylinArm, we deploy it on two Android
mobile phones. Figure 7 shows the arm gesture recognition system, which con-
sists of two IMUs provided by respective mobile phones. The system utilizes

KylinArm: An Arm Gesture Recognition System for Mobile Devices 107

MQTT for communication with the broker running on a laptop. The mobile
phone located on the upper arm is responsible for collecting IMU data, while
that located on the wrist handles preprocessing of IMU data, as well as the recog-
nition of arm gestures. The recognition result is then transmitted to the target
device. The mobile application running on the mobile phones plays a crucial
role in the system. It is responsible for preprocessing the IMU data and running
KylinArm for arm gesture recognition. The main GUI of mobile application
is presented in Fig. 8(a) whereas Fig. 8(b) shows the GUI where new users can
perform gesture calibration to achieve data alignment before using the system.

First of all, five volunteers are recruited to test the arm gesture recognition
system. After familiarizing themselves with the actions, each volunteer performed
12 actions according to their own ideas, ensuring that each gesture was completed
10 times. Table 7 presents the statistical results, which indicate that the arm
gesture recognition accuracy of KylinArm is 98.5%.

Fig. 7. System test (As an illustration, we implement KylinArm on two smartphones.
However, the use of two smartphones is not necessarily required, one of them can
be replaced by a smartwatch or other IMU-equipped device.): (a) IMUs Position (b)
Interact with the game through arm gestures

Table 7. Accuracy of arm gesture recognition system

User Num of correct Accuracy (%)

1 120 100
2 118 98.33
3 118 98.33
4 116 96.67
5 119 99.17
avg 98.50

108 S. Zhao et al.

Fig. 8. Arm gesture recognition system app running KylinArm on Android smart-
phones: (a) Main GUI (b) Pre-collected for data alignment

We also developed a PC interactive game for further evaluation. All com-
ponents are under the same local area network. The game character’s behavior
corresponds to 11 arm gestures, and the gesture verticalcircle used to wake up
the recognition procedure is also used to control the start and end of the game.
As shown in Fig. 7(b), volunteers are able to control the game character to reach
the end point without any prompts. A video which demonstrating the operation
process of each arm gesture during the game, as well as the game instructions,
can be found in the GitHub repository1. KylinArm running on smartphones con-
tinued to provide normal services throughout this process, fully demonstrating
its stability and usability.

5 Summary

We propose a new framework called KylinArm, which is designed to recognize
arm gestures and is optimized for mobile devices. This framework employs two
IMUs for data collection and a dual-branch CNN model called Dual-CNN for
classification, which enables the high-accuracy classification of 12 arm gestures.
In order to achieve real-time arm gesture recognition and conserve resources,
we have optimized KylinArm for ubiquitous mobile devices by implementing
a Wakeup-Detection-Classification mechanism and a real-time data alignment
strategy. As a result, the KylinArm system can operate effectively on mobile
devices that have constrained computing resources and energy supply. Finally,
1 https://github.com/NKU-EmbeddedSystem/KylinArm.

https://github.com/NKU-EmbeddedSystem/KylinArm

KylinArm: An Arm Gesture Recognition System for Mobile Devices 109

we have implemented KylinArm on Android-based mobile devices and evaluated
its effectiveness by testing it with collected datasets and real-world scenarios. The
results demonstrate the high precision and robustness of KylinArm in recognizing
arm gestures.

References

1. Bhattacharya, D., Sharma, D., Kim, W., Ijaz, M.F., Singh, P.K.: Ensem-HAR: an
ensemble deep learning model for smartphone sensor-based human activity recog-
nition for measurement of elderly health monitoring. Biosensors 12(6), 393 (2022)

2. Bianco, S., Napoletano, P., Raimondi, A., Rima, M.: U-wear: User recognition
on wearable devices through arm gesture. IEEE Transactions on Human-Machine
Systems 52(4), 713–724 (2022)

3. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

4. Colli Alfaro, J.G., Trejos, A.L.: User-independent hand gesture recognition classi-
fication models using sensor fusion. Sensors 22(4), 1321 (2022)

5. Côté-Allard, U., et al.: Deep learning for electromyographic hand gesture sig-
nal classification using transfer learning. IEEE Trans. Neural Syst. Rehabil. Eng.
27(4), 760–771 (2019)

6. Cui, J.W., Li, Z.G., Du, H., Yan, B.Y., Lu, P.D.: Recognition of upper limb action
intention based on IMU. Sensors 22(5), 1954 (2022)

7. Guo, K., Zhou, H., Tian, Y., Zhou, W., Ji, Y., Li, X.Y.: Mudra: a multi-modal
smartwatch interactive system with hand gesture recognition and user identifica-
tion. In: IEEE INFOCOM 2022-IEEE Conference on Computer Communications,
pp. 100–109. IEEE (2022)

8. Hellara, H., et al.: Classification of dynamic hand gestures using multi sensors com-
binations. In: 2022 IEEE 9th International Conference on Computational Intel-
ligence and Virtual Environments for Measurement Systems and Applications
(CIVEMSA), pp. 1–5. IEEE (2022)

9. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning,
pp. 448–456. PMLR (2015)

10. Ji, L., Liu, J., Shimamoto, S.: Recognition of Japanese sign language by sensor-
based data glove employing machine learning. In: 2022 IEEE 4th Global Conference
on Life Sciences and Technologies (LifeTech), pp. 256–258. IEEE (2022)

11. Jindal, S., Sachdeva, M., Kushwaha, A.K.S.: Deep learning for video based human
activity recognition: review and recent developments. In: Bansal, R.C., Zemmari,
A., Sharma, K.G., Gajrani, J. (eds.) Proceedings of International Conference on
Computational Intelligence and Emerging Power System. AIS, pp. 71–83. Springer,
Singapore (2022). https://doi.org/10.1007/978-981-16-4103-9_7

12. Kang, P., Li, J., Fan, B., Jiang, S., Shull, P.B.: Wrist-worn hand gesture recognition
while walking via transfer learning. IEEE J. Biomed. Health Inform. 26(3), 952–
961 (2021)

13. Karnam, N.K., Dubey, S.R., Turlapaty, A.C., Gokaraju, B.: EMGHandNet: a
hybrid CNN and Bi-LSTM architecture for hand activity classification using sur-
face EMG signals. Biocybern. Biomed. Eng. 42(1), 325–340 (2022)

14. Kasnesis, P., Chatzigeorgiou, C., Kogias, D.G., Patrikakis, C.Z., Georgiou, H.V.,
Tzeletopoulou, A.: MoRSE: deep learning-based arm gesture recognition for search
and rescue operations. arXiv preprint arXiv:2210.08307 (2022)

https://doi.org/10.1007/978-981-16-4103-9_7
http://arxiv.org/abs/2210.08307

110 S. Zhao et al.

15. Kim, M., Cho, J., Lee, S., Jung, Y.: IMU sensor-based hand gesture recognition
for human-machine interfaces. Sensors 19(18), 3827 (2019)

16. Kouw, W.M., Loog, M.: An introduction to domain adaptation and transfer learn-
ing. arXiv preprint arXiv:1812.11806 (2018)

17. Kurz, M., Gstoettner, R., Sonnleitner, E.: Smart rings vs. Smartwatches: utilizing
motion sensors for gesture recognition. Appl. Sci. 11(5), 2015 (2021)

18. Likas, A., Vlassis, N., Verbeek, J.J.: The global k-means clustering algorithm.
Pattern Recogn. 36(2), 451–461 (2003)

19. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400
(2013)

20. Nagi, J., et al.: Max-pooling convolutional neural networks for vision-based hand
gesture recognition. In: 2011 IEEE International Conference on Signal and Image
Processing Applications (ICSIPA), pp. 342–347. IEEE (2011)

21. Nan, Y., Lovell, N.H., Redmond, S.J., Wang, K., Delbaere, K., van Schooten,
K.S.: Deep learning for activity recognition in older people using a pocket-worn
smartphone. Sensors 20(24), 7195 (2020)

22. Punithavathi, D., Janakiraman, R., Santhoshkumar, S., Srikanth, R.: Human
activity recognition using deep learning techniques: a review. J. Ambient. Intell.
Humaniz. Comput. 12(6), 5669–5695 (2021)

23. Shahzad, W., Ayaz, Y., Khan, M.J., Naseer, N., Khan, M.: Enhanced performance
for multi-forearm movement decoding using hybrid IMU-SEMG interface. Front.
Neurorobot. 13, 43 (2019)

24. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

25. Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)

26. Tam, S., Boukadoum, M., Campeau-Lecours, A., Gosselin, B.: A fully embedded
adaptive real-time hand gesture classifier leveraging HD-SEMG and deep learning.
IEEE Trans. Biomed. Circuits Syst. 14(2), 232–243 (2019)

27. Wahid, M.F., Tafreshi, R., Al-Sowaidi, M., Langari, R.: Subject-independent hand
gesture recognition using normalization and machine learning algorithms. J. Com-
put. Sci. 27, 69–76 (2018)

28. Wei, W., Kurita, K., Kuang, J., Gao, A.: Real-time 3D arm motion tracking using
the 6-axis IMU sensor of a smartwatch. In: 2021 IEEE 17th International Confer-
ence on Wearable and Implantable Body Sensor Networks (BSN), pp. 1–4. IEEE
(2021)

29. Wu, H., Zhang, C., Zhang, W., Wang, J.: Monocular 3D human pose estimation
by predicting the 2D pose and depth map simultaneously. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 4500–4509
(2019)

30. Yu, Y., Chen, X., Cao, S., Zhang, X., Chen, X.: Exploration of Chinese sign lan-
guage recognition using wearable sensors based on deep belief net. IEEE J. Biomed.
Health Inform. 24(5), 1310–1320 (2019)

31. Yuan, G., Liu, X., Yan, Q., Qiao, S., Wang, Z., Yuan, L.: Hand gesture recognition
using deep feature fusion network based on wearable sensors. IEEE Sens. J. 21(1),
539–547 (2020)

32. Zhang, D., et al.: Fine-grained and real-time gesture recognition by using IMU
sensors. IEEE Trans. Mob. Comput. 22(4), 2177–2189 (2023). https://doi.org/10.
1109/TMC.2021.3120475

http://arxiv.org/abs/1812.11806
http://arxiv.org/abs/1312.4400
https://doi.org/10.1109/TMC.2021.3120475
https://doi.org/10.1109/TMC.2021.3120475

KylinArm: An Arm Gesture Recognition System for Mobile Devices 111

33. Zhang, R., et al.: EatingTrak: detecting fine-grained eating moments in the wild
using a wrist-mounted IMU. Proc. ACM Human-Comput. Interact. 6(MHCI), 1–22
(2022)

34. Zhang, X.: Application of human motion recognition utilizing deep learning and
smart wearable device in sports. Int. J. Syst. Assur. Eng. Manage. 12(4), 835–843
(2021)

FCSO: Source Code Summarization
by Fusing Multiple Code Features

and Ensuring Self-consistency Output

Donghua Zhang1, Gang Lei2, Jianmao Xiao2,4(B), Zhipeng Xu1,
Guodong Fan3, Shizhan Chen3, and Yuanlong Cao2

1 School of Digital Industry, Jiangxi Normal University, Shangrao 334000, China
{Dong hua,zp xu}@jxnu.edu.cn

2 School of Software, Jiangxi Normal University, Nanchang 330022, China
{leigang,jm xiao,ylcao}@jxnu.edu.cn

3 College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
{Guodongfan,shizhan}@tju.edu.cn

4 Jiangxi Provincial Engineering Research Center of Blockchain Data Security
and Governance, Nanchang 330022, China

Abstract. Source code summarization is the process of generating a
concise and generalized natural language summary from a given source
code, which can facilitate software developers to comprehend and use
the code better. Currently, most research on source code summarization
generation focuses on either converting the source code into abstract
syntax tree (AST) sequences or directly converting it into code segments
and then feeding these representations into deep learning models. How-
ever, these single representation approaches ignore the semantic features
of source code and destroy the structure of the abstract syntax tree,
which affects the quality of the generated source code summarization.
In this paper, we propose a novel source code summarization approach
that fuses multiple code features into self-consistency output (FCSO).
Our approach is based on a graph neural network encoder and a Code-
BERT encoder with a self-attention mechanism. It extracts the sentence
feature attention vector and the AST feature attention vector of the
source code for feature fusion. Then, it inputs them into the Transformer
decoder. Furthermore, to generate more accurate source code summaries,
we adopt a new decoding strategy called self-consistency. It samples dif-
ferent inference paths, uses a penalty mechanism to calculate their sim-
ilarity scores, and ultimately selects the most consistent answer. Our
experimental results demonstrate that our proposed approach outper-
forms standard baseline approaches. On the Python dataset, the BLEU
score, METEOR score, and ROUGE L score increase by 11.13%, 9.12%,
and 7.88%, respectively. These results show that our approach provides
a promising direction for future research on source code summarization.

Keywords: Source code summarization · Code feature Fusion ·
Self-consistency · Transformer

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 112–129, 2024.
https://doi.org/10.1007/978-981-97-0801-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_7&domain=pdf
https://doi.org/10.1007/978-981-97-0801-7_7

FCSO: Source Code Summarization 113

1 Introduction

In the current era, the Internet is growing rapidly, expanding the size of software
systems for companies. Unfortunately, every software development and mainte-
nance operation requires developers to re-familiarize themselves with the source
code, ultimately reducing operational efficiency [1]. To address this concern,
high-quality source code summarization is essential as it enables programmers
to swiftly comprehend and use the source code, thereby enhancing their work
efficiency. High-quality code summaries improve software development and main-
tenance efficiency by providing accurate information on the function of the mod-
ule’s code [2], promoting rapid industry growth.

Research work in the area of Source Code Summarization generally falls into
three categories: artificial templates, information retrieval, and deep learning
models. The first approach, based on artificial templates for generating source
code summaries, is the most traditional approach. Sridhara et al. [3] utilized
the Software Word Usage Model (SWUM) to produce descriptive summaries
of Java approaches, while Merono et al. [4] employed heuristics and natural
language processing to generate Java code summarization. The second approach,
based on information retrieval, involves extracting code semantic information by
marking code feature information and applying information retrieval techniques
to generate code summaries. Wong E et al. [5] proposed a probabilistic and
statistical AutoComment model based on a large dataset and fed the mapping
relationship of a vast amount of data into the AutoComment model to generate
a code summary. However, the first two approaches have limitations due to their
poor reusability and low accuracy of the generated code summaries. Researchers
have gradually shifted to new models to carry out their work.

The most promising approach in current research on Source Code Summa-
rization is the third category - deep learning-based models. In earlier studies,
deep learning networks were commonly used for code summarization tasks. Iyer
et al. [6] employed LSTM (long short-term memory network), a widely-used
deep learning model, to build CODE-NN, an automatic code summary genera-
tion model capable of creating code summaries for SQL query statements. Hu
et al. [7] proposed TL-CodeSum, which utilizes API information to enhance the
quality of code summary generation. This approach uses two encoders to process
API information and source code vocabulary information separately to improve
the accuracy of generated summaries. To capture the code’s semantic informa-
tion more comprehensively, researchers have started focusing on generating code
summaries by improving the abstract syntax tree of the code. Hu et al. [8] con-
verted the source code into AST using an attention mechanism and presented the
DeepCom approach, which inputs the AST sequence into the encoder for encod-
ing. Wang et al. [9] fine-tuned the Transformer model and introduced the TranS
approach, which leverages the Actor-Critic network to encode code vocabulary
and indentation structure. The results indicate that this technique generates
better summaries corresponding to source code fragments.

Although the research mentioned above has achieved the goal of code sum-
mary generation, there are still some limitations. First of all, the single use of

114 D. Zhang et al.

code sequence or AST path in the task ignores the structural characteristics of
AST, which will lose part of the code information. The second problem is that
the previous decoder output uses the traditional Beam Search [10] strategy for
path reasoning and finally selects the sequence with the highest score from all
candidate sequences in the termination state as the output. However, the code
summary candidate sequence obtained in this way only considers the candidate
with the highest local score and cannot guarantee the global optimal solution, so
there may be some repetitions or unreasonable situations in the output sequence.

To solve the above problems, we propose a source code summarization app-
roach (FCSO) that fuses code features into self-consistent output to solve it. We
found that CodeBERT [11], as a Transformer-based pre-training model, learned
the semantic representation of code. It provides a robust feature extraction func-
tion, which can better capture the semantic information of the code. We have
also seen that the graph neural network (GCN) can aggregate the information
of AST neighbor nodes to help the model learn code structure information and
context dependencies. Therefore, as an inspiration, we take whether they can
integrate the semantic information and structural information of the code as
a challenge to get the answer to the problem. For the first question, we use
CodeBERT encoder and GCN encoder to extract sequence and AST features
and then perform feature fusion so that the fused code feature self-attention
vector can be input into the Transformer decoder to preserve the source code
to the greatest extent-semantic and syntactic information to improve the accu-
racy of code summary generation. For the second question, since the current
code summary generation task requires higher and higher accuracy and consis-
tency, we abandoned the previous greedy random output strategy. To achieve
this goal, we introduce a new decoding approach, Self-consistency in the Trans-
former decoder. After Beam search calculates the probability distribution of the
final time step, it randomly samples the output inference path. Then, it obtains
the most consistent answer by judging the similarity score.

In the following experiments, we used Java code and Python database as the
corpus to train the model. After comparing the standard baseline method, we
found that the BLEU and METEOR indicators have been improved accordingly,
and the ablation experiment proved the feasibility of the FCSO approach. The
main contributions of this paper are as follows:
• A source code summarization approach that fuses code features into self-

consistency output (FCSO) is proposed. This approach can extract and fuse
code sequence and AST features, improving code summarization generation
quality.

• We break the traditional decoding strategy and add a new decoding strategy,
Self-consistency. By defining a penalty mechanism, calculating the similarity
score of multiple output sequences ensures the consistent output of the code
summary and improves the generation accuracy.

• We compare the standard baseline approach in the experiment, and the BLEU
score, METEOR score, and ROUGE L score on the Python dataset increase
by 11.13%, 9.12%, and 7.88%, respectively. It proves that our approach is
effective and provides a good idea for future research.

FCSO: Source Code Summarization 115

2 Related Work

At present, the field of code summarization is mainly based on deep learn-
ing research, which is generated by improving AST traversal approaches, GCN
embedding approaches, commonly used LSTM networks, encoder-decoder archi-
tectures, and Transformer models. Huo et al. [12] used the LSTM and CNN
networks to learn a control flow graph (CFG) representation so that valuable
information can be focused on a graphical representation. LeClair et al. [13] feed
the AST as a sequence into the encoder to generate Java code annotations. Shi
et al. [14] built a neural network encoder to recursively decompose the subtree
of AST and then encode the processed data to generate a code summary. Hu et
al. [8] proposed a structure-based traversal (SBT) approach by improving AST
into a flattened sequence to solve the problem of the traditional AST sequence
losing the global information of the code. LeClair et al. [15] used the SBT app-
roach to conduct experiments and found that decoupling the code structure and
code tags can better generate code summaries.

The above research mostly starts with improving code structure and AST
structure. In recent years, researchers have gradually begun to use deep learn-
ing networks to solve the problem of code summarization generation. Due to
the inability of traditional RNN models [16] or LSTM networks with atten-
tion mechanisms [17] to capture long-term dependency relationships, researchers
have found that the Transformer model [18] utilizes self-attention mechanisms
to solve this problem. Ahmad et al. [19] used a relatively encoded Transformer
model to ensure the dependency of code information, and experiments found
that using only an unimproved model resulted in much higher performance in
code summarization generation than common deep learning networks such as
RNN, indicating that using an encoder-decoder is a good approach.

In addition, some researchers have begun to start with code feature fusion,
providing a new idea for code summary generation. The online learning of social
performance (DeepWalk) proposed by Bryan et al. [20] is applied to CFG in a
learning manner. Then it connects nodes through a convolutional neural network
to achieve the goal of error positioning. Wang et al. [21] applied Self-consistency to
the language model, allowing a complex reasoning problem to allow many differ-
ent ways of thinking, and finally selected the only correct answer, which improved
the reasoning ability of the thinking chain. Cheng et al. [22] proposed the GN-
Transformer approach, which combines sequence and graph learning representa-
tions to improve the quality of code summarization generation. Wang et al. [23]
constructed two encoders to fuse code-informed attention weights by learning
mixture representations of codes. Similarly, Gao et al. [24] innovatively proposed
a multi-modal and multi-scale approach to fuse the feature information of the
code and input the code feature into the modified Transformer model decoder to
improve the code summary generation performance. The above research mainly
focuses on how to decompose each feature of the code. Their research more or less
ignores the attention weight of the code feature or all randomly generates sum-
mary results in the traditional Beam Search method. The accuracy of the code
generated is insufficient, so further research is needed.

116 D. Zhang et al.

3 The Architecture of Approach

The FCSO approach proposed in our paper consists of four main parts: data
preprocessing, feature extraction, feature fusion, and self-consistency output.
Firstly, the input source code is preprocessed and parsed into an abstract syntax
tree and a token sequence. Next, these two parts of data are embedded into the
GCN encoder and CodeBERT encoder we set up for feature extraction. The
token feature vector and AST feature vector generated by the encoder are then
input into the Transformer decoder for source code summarization. Finally, the
self-consistency penalty mechanism is utilized in the decoder to calculate the
similarity score, and the sequence with the highest similarity is retained by
comparison to derive a consistent summary answer. The overall framework of
the FCSO is illustrated in Fig. 1.

Fig. 1. The overall framework of our approach.

3.1 Data Preprocessing

In order to preserve the information of the source code more completely, we
divide the code of the Java dataset and the Python dataset into two parts for
data preprocessing. Part of it is processed as code sequence information, and
part is converted into AST to save code structure information. In the former,
we use the word segmentation toolkit to convert each piece of input code into
a sequence and save it as an original suffix file as the input for the next stage.
When the latter is converted into an abstract syntax tree since our experimental
training is Java code and Python code, the javalang3 toolkit [23] is used to
parse the Java code into AST, and the asttokens toolkit [24] is used to parse the
Python code into AST.

At the same time, for the consistency of the data sets during training, we
set the same length limit for the two data sets. This includes setting code tags,

FCSO: Source Code Summarization 117

the average length of natural language, maximum node tree, maximum depth,
and other parameters. For tag sequences that are less than or greater than the
maximum length in the dataset, we pad and truncate them, respectively. In
addition, we also divided the data set. Java data set and Python data set are
set into the training set, validation set, and test set, which are divided into 6:2:2
and 8:1:1, respectively, to ensure that it has the same segmentation ratio as the
standard baseline [4].

As shown in Fig. 2, it is an example of implementing the Java code of the
decrement function and converting it to AST. In Fig. 2 (b), the gray color refers
to nodes and branches and does not represent a complete tree structure. As
can be seen from the figure, the AST branches from the MethodDeclaration
node, and the type attribute indicates the return type of the method, which is
void as a leaf node. The name attribute represents the method’s name, which is
also decreasingForLoop. The Param attribute represents the method’s parameter
list, which contains two FormalParameter nodes, representing the startValue and
endValue parameters, respectively.

Fig. 2. Example of converting Java code to AST.

118 D. Zhang et al.

3.2 Feature Extraction

After the data preprocessing in the previous step, to obtain the code’s local and
global information, we need to continue processing the obtained sequence and
AST. Based on the Transformer model, we retained the original self-attention
mechanism, improved the embedding method of the encoder, and constructed
two encoders: GCN Encoder and CodeBERT Encoder.

GCN Encoder: In this encoder, we treat each node in the AST as a node in the
graph data. Each node is a code block, and each edge connects two adjacent code
blocks, and the normalized adjacency matrix is constructed using the connection
relationship between them [25]. Initially, each node has an eigenvector and then
uses the weighted average of the eigenvectors of neighboring nodes to update
the eigenvector of the node. In each layer, GCN uses this method to update
the feature vector of each node until the desired number of layers or feature
convergence is reached [26]. Specifically, graph convolution is applied to each
node, and two-layer graph convolution is used to capture AST structure infor-
mation and dependencies between nodes. The computed neighbor node features
are then combined with the initial features of the nodes to update the features
of each node. Finally, this embedding vector is input into the encoder, and the
AST feature attention vector is obtained through the self-attention mechanism.
The formula for GCN propagation between layers and GCN calculation of node
eigenvectors is as follows:

˜Dii =
∑

j ˜Aij (1)

H(l+1) = σ(˜D− 1
2 ˜A ˜D− 1

2 H(l)W (l)) (2)

h
(l+1)
i = σ

(
∑

j∈N(i)

1
cij

W (l)h
(l)
j + θ(l)h

(l)
i

)

(3)

where the H is the characteristics of these nodes to form an N × D dimensional
matrix, the relationship between each node will also form an N ×N dimensional
matrix A, also known as the adjacency matrix. In (1) and (2) formulas, each H

is the feature of each layer, ˜A is the sum of the A matrix and I identity matrix,
˜D is the degree matrix of ˜A, and σ is the nonlinear activation function. Formula
(3) can calculate the eigenvector of the GCN node. In the neighbor set N(i) of
node i, the eigenvector h

(l)
i of node i in the l layer is multiplied and summed

by the weight matrix W (l) in the l layer, and then the bias item θ(l) is added.
cij is a normalization factor, which is used to alleviate the problem of different
degrees of different nodes.

CodeBERT Encoder: There are two parts: CodeBERT and Encoder. Code-
BERT is used to extract code features, and the encoder continues to process
feature vectors to generate self-attention vectors. We first tokenize the code and
divide each word or symbol into tokens. For the CodeBERT model to distin-
guish different types of text sequences, it is also necessary to add the “[CLS]”
tag at the beginning of the code and the “[SEP]” tag at the end of the sentence.
Appropriate tags also need to be added at the start and end of the abstract. Then

FCSO: Source Code Summarization 119

concatenate the code fragment and its abstract to form an input sequence and
map the word-segmented sequence to BERT’s vocabulary to obtain the digital
ID representation of each token. Finally, input the preprocessed code dataset,
load the trained BERT model, and extract the corresponding features. Among
them, the feature vector of each code fragment can be obtained through the
output of the last layer of BERT. Specifically, the vector corresponding to the
last layer “[CLS]” tag can be used as the feature vector of the code fragment;
similarly, the vector corresponding to the last layer “[SEP]” tag can be used as
the feature vector of the summary [27]. The formula for extracting code features
by the CodeBERT model is as follows:

hcode = [BERT ([p1, p2, p3, ..., pn])] (4)

where [p1, p2, p3, ..., pn] is the token sequence obtained after the code sequence
is mapped through the vocabulary, and the BERT function converts it into the
corresponding feature vector matrix.

Continuing to process the feature vectors generated by CodeBERT in the
encoder can further improve the efficiency of the model. First of all, the massive
text data used in CodeBERT pre-training has carried out unsupervised learning
on the model so that it has a stronger semantic understanding ability; secondly,
when extracting code features, CodeBERT can effectively capture the critical
information in code fragments to improve the representation ability and expres-
sion efficiency of the encoder. Therefore, combining CodeBERT features with
Transformer encoders can lead to better code generation results [28]. At the
model structure level, both CodeBERT and Transformer use the same attention
mechanism and multi-layer perceptron structure, and there are similar network
structures and parameter settings between them, so they are compatible with
each other. Therefore, we use the CodeBERT pre-trained model to take the out-
put of the last layer as the input of the Transformer encoder and proceed to the
next step. The sequence representation output in this encoder is the extracted
sequence feature vector. The formula for the encoder using the self-attention
mechanism is as follows:

Qi = XW q
i ,Ki = XW k

i , Vi = XW v
i (5)

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (6)

where Qi(Query), Ki(Key), and Vi(Value) is obtained by multiplying the weights
W q

i , W k
i , and W v

i , respectively, and finally, the softmax activation function is
calculated.

3.3 Feature Fusion

After obtaining the sequence feature attention vector and AST feature atten-
tion vector of the source code in the previous two steps, we need to fuse these

120 D. Zhang et al.

two vectors before entering the multi-head attention mechanism in the Trans-
former decoder. The specific way of fusion is described below. First, the similarity
between two vectors is calculated by the dot product operation, and a scalar value
can be obtained. Then, we use the Softmax function to normalize the similarity
and convert it into an attention weight to indicate the importance of the two fea-
tures in the fusion process. Finally, the attention weight is weighted and summed
with the corresponding feature vector to obtain the fusion of the subsequent
feature representation. This method determines the importance of features by
calculating the similarity and normalization weights and then weights and sums
the features according to the attention weights. This enables the adaptive fusion
of different features to better capture the correlation and importance between
features. At the same time, in the fusion process, we minimize the cross-entropy
loss function and use the gradient descent algorithm and dropout to optimize the
parameters in the model. The negative log-likelihood loss function is as follows:

L = − 1
N

N
∑

i=1

Z
∑

t=1

log[p(yi
t)] (7)

where Xi is a source code segment given in the formula, Yi = [yi
1, y

i
2, y

i
3, ..., y

i
N]

is the target digest segment prepared, N is the number of data points in the
training decoder, and Z is the maximum length of the target digest given to
training.

3.4 Self-consistency Output

In the inference process on the decoder side, we use parameter weights after
training and fusing multiple code features to load. Then Beam Search calculates
the probability distribution of each time step and stores the updated candidate
path ranking in a heap for subsequent summary output. For the self-consistency
output, we use first samples these candidate inference paths, use the cosine sim-
ilarity method to calculate the similarity score, compare the scores through the
penalty mechanism of the Self-consistency scoring function, and finally retain
the sequence with the highest similarity to obtain more accurate and consistent
answers [21]. The calculation formula for cosine similarity and penalty mecha-
nism is as follows:

cos(x, y) =
x · y

||x|| · ||y|| =
∑n

i=1 xiyi
√

∑n
i=1 x2

i

√
∑n

i=1 y2
i

(8)

f(s) = g(s) − w

K
∑

j=1

Di,j (9)

where D is the penalty score, K is the number of candidate sequences obtained
by the Beam Search algorithm, and Di,j represents the penalty score between
the i and j candidate sequences. Formula (8) uses the cosine similarity method to
measure the similarity between n dimensional vectors x and y. At the same time,

FCSO: Source Code Summarization 121

using this similarity formula, we define a new scoring function f(s) for scoring
each sequence and analyzing the optimal solution. Where g(s) represents the
initial score of the sequence s, and w is a non-negative weight coefficient used to
control the degree of similarity penalty. The penalty mechanism is to subtract
the penalty degree between the sequence s and other candidate sequences based
on the original score g(s) to save the sequences with higher similarity and filter
out the sequences with lower similarity.

Figure 3 below is a Python code example of a function to find the longest
common prefix of a string, showing the principle of self-consistency output. First,
the source code is decoded by the trained Transformer model, and then the
similarity calculation is performed on the candidate sequences in Beam Search.
Because the value set by our beam size is 5, after processing the Self-consistency
scoring function among the five random output sequences, sequence 4, with the
highest similarity score, is reserved for output.

Fig. 3. Self-consistency output example.

4 Experiment

In the experiment, we first set up the database, evaluation indicators, model
parameters, benchmark methods, etc., required for the experiment. Then, we per-
formed model training to compare the evaluation indicators with the benchmark
method. To demonstrate the effectiveness of our approach, we conduct qualitative
ablation experiments. Finally, compare the summary generated by the benchmark
method and the summary generated by our approach as an example.

4.1 Experiment Settings

Experimental Datasets: Our experiments are based on two databases well-
recognized in source code summarization research, the Java database [7] and the
Python database [29]. There are as many as 80,000 training sets, verification

122 D. Zhang et al.

sets, test sets, and millions of Tokens which can fully train the parameters of the
model. At the same time, we only use words with high frequency, and other words
will be replaced by marks. For words beyond the maximum length, we perform
a data truncation. Table 1 shows the number of training sets, AST nodes, and
total number of tokens for Java and Python datasets.

Table 1. Statistical analysis of the Java and Python dataset.

Dataset Java Python

Train 69708 55538

Validation 8714 18505

Test 69708 18502

Unique nodes in ASTs 57478 101283

Unique tokens in code 66650 307596

Unique tokens in summary 46895 56189

Avg.node in AST 131.72 104.11

Avg.tokens in code 120.16 47.98

Avg.tokens in summary 17.73 9.48

Evaluation Metrics: To qualitatively compare the effect of the experimen-
tal generation, this paper adopts three indicators recognized in the field of
machine translation and code summarization, BLEU [30], METEOR [31], and
ROUGE L [32].

The BLEU (Bilingual Evaluation Understudy) indicator is a standard
machine translation indicator that measures the quality of translation by com-
paring the n-gram coincidence between the translation result and the reference
translation.

The METEOR (Metric for Evaluation of Translation with Explicit ORdering)
indicator combines various linguistics and machine learning techniques to obtain
a comprehensive score by comparing the similarity in vocabulary, grammar, and
semantics between the translation output and the reference translation.

The ROUGE L (Recall-Oriented Understudy for Gisting Evaluation) indi-
cator is often used to evaluate tasks such as text summarization and machine
translation. It is more comprehensive, using the longest common subsequence
(LCS) algorithm to measure the matching between the translation output and
the reference translation. This enables a more comprehensive translation of the
resulting code summary score.

Baselines: In order to prove that our research work is effective, the represen-
tative baseline models and methods in recent years are selected below. Metrics
are generated by summarizing code replicating these methods and compared to
our scores.

• CODE-NN [4]. The basic architecture of the model is LSTM with attention,
which is an entirely driven generative model. The code is embedded through

FCSO: Source Code Summarization 123

the encoder and decoder framework, resulting in the final C and SQL code
digest.

• Code2Seq [33]. By inputting the processed AST path into the LSTM model as
a sequence and outputting a fixed-length vector, the code summary is finally
output under the calculation of the attention mechanism.

• Tree2Seq [34]. The model is based on end-to-end syntax, which extends from
tree structure to sequence structure for input. At the same time, the model
decoder also has a code summary corresponding to the output of the attention
mechanism.

• DeepCom [6]. This method proposes a reversible AST traversal sequence
method (SBT) for code comment generation, which provides a suitable
method for future research under the same conditions as a reference.

Hyper-Parameters Setting: To better train the encoder and decoder archi-
tecture, we set appropriate parameters, as shown in Table 2. We set the size de
in the embedding layer to 768 and the number of embeddings lg in the GCN
encoder to 300. Note that the number of headg is 8, and the number of Lg layers
is 4. Similarly, the number of self-attention layers Lb in the CodeBERT encoder
is 12, the dk and dv values are 64, and finally, the output size of the feed-forward
network dff is 2048. At the same time, the length ls in training in the decoder
will be truncated to 100. During training, we set the embedding layer dropout
to 0.2, the learning rate to 0.0001, and the batch size to 32.

Table 2. Hyper-Parameters Setting.

Hyper-Parameters Value

Embedding de 768

GCN-Encoder lg 300

hg 768

headg 8

Lg 4

CodeBERT-Encoder lb 400

Lb 12

headb 12

dmodel 768

dk,dv 64

dff 2048

Decoder ls 100

ld 6

Training dropout 0.2

optimizer Adam

learning rate 0.0001

batch size 32

Testing beam size 5

124 D. Zhang et al.

4.2 Comparison Experiment and Ablation Experiment

After preparing the experimental setup, we conduct our experiments. First, we
look for more excellent methods and models in recent years as the baseline and
obtain the corresponding evaluation index data by reproducing their methods.
Then, on the two data sets, Java code and Python code, we trained our model
for 56 h before and after and compared the calculated evaluation index data
with the baseline. Finally, we performed ablation experiments by removing each
module to demonstrate that our various code feature attention vectors can help
improve code summarization performance.

For comparative experiments, we compare the obtained baseline evaluation
index data with the FCSO data, as shown in Table 3 below. The approach column
in the table is each method, and the BLEU column, METEOR column, and
ROUGE L column are the corresponding method indicator percentages. It can
be seen from the table that the standard baseline method is DeepCom [6], which
has a BLEU score of 39.25%, a METEOR score, and a ROUGE L score of 23.06%
and 52.67% on the Java dataset. And our approach to FCSO is in bold in the
table. It can be observed that with the baseline method DeepCom, the BLEU
score, METEOR score, and ROUGE L score on the Java dataset are increased
by 5.45%, 3.80%, and 1.84%, respectively. On the Python dataset, the BLEU
score, METEOR score, and ROUGE L score increased by 11.13%, 9.12%, and
7.88%, respectively. From these data, it can be seen that our approach has a
corresponding improvement compared with the baseline method on the Java
dataset and the Python dataset, and it also shows that the FCSO approach we
proposed is beneficial to the research work of source code summarization. At the
same time, it can also be found that the evaluation index data on the Python
dataset is lower than that of the corresponding Java dataset. This is because
the Python code itself is lower than the semantic information contained in the
Java code, so when converting the sequence to a semantic map such as AST,
When it contains less information, there is a gap between the final generated
summary and the reference value matching. Future research seems to improve
the accuracy of Python dataset generation by modifying the nodes of the AST
semantic tree to increase the semantic information on the Python dataset.

For the ablation experiments, we split the FCSO approach and removed each
module. Then, increase quantitatively one by one and observe the change of the
corresponding evaluation index data for each module added. The specific data
is shown in Table 3 below. The first is to add a separate CodeBERT encoder
and GCN encoder module and put the generated code feature attention vec-
tor into the Transformer decoder for scoring output. Their respective evaluation
index data in the Java dataset are as expected, with BLEU scores of 32.68% and
38.55%. This data shows that a single code sequence feature and AST feature
are not enough to reflect the semantic information of the code. The second is
our multiple code feature attention fusion, using GCN-Encoder and CodeBERT-
Encoder on the Java dataset, to score BLEU, METEOR score and ROUGE L
score 42.64%, 26.13%, and 53.12% have corresponding improvements. Finally,
the Self-consistency module is added based on the above experiment. Compared

FCSO: Source Code Summarization 125

with the previous experiment, the BLEU score, METEOR score and ROUGE L
score on the Java dataset increased by 1.31%, 1.74%, and 2.20%, respectively.
The ablation experiments show that each module in our approach is indispens-
able, and the fusion of multiple features and Self-consistency output can improve
the evaluation index of code summarization. For the experimental device, the
experiments in this paper are conducted on an Ubuntu GPU server, with two
GPUs of Tesla P40 and a graphics memory of 24 GB.

Table 3. Comparison of our proposed approach with the baseline approaches.

Approach Java Python

BLEU METEOR ROUGE L BLEU METEOR ROUGE L

CODE-NN 27.51% 12.59% 40.30% 17.28% 9.16% 37.68%

Code2Seq 37.12% 20.14% 51.37% 19.88% 10.33% 37.80%

Tree2Seq 37.75% 21.95% 51.49% 20.07% 8.96% 35.64%

DeepCom 39.25% 23.06% 52.67% 20.78% 9.98% 37.35%

FCSO 44.70% 26.86% 54.51% 31.91% 19.10% 45.23%

Ablation Study

CodeBERT-Encoder 32.68% 18.71% 43.59% 19.50% 8.64% 36.57%

GCN-Encoder 38.55% 21.43% 49.74% 20.86% 8.92% 37.31%

(GCN+BERT) Encoder 42.62% 25.13% 52.12% 30.29% 17.98% 43.67%

Self-consistency 43.93% 26.87% 54.32% 31.41% 18.38% 44.58%

4.3 Code Summarization Examples

At the end of the experiment, we compared the summary generated by the pre-
vious benchmark model with the summary generated by our approach, as shown
in Fig. 4 and Fig. 5. In the examples of Java and Python codes, we use a section
of the MYSQL database connection method code to observe the differences in
abstracts generated by various models and methods. The blue color in the figure
indicates the key information of the code, while the red color indicates the infor-
mation that our approach has not lost compared to the benchmark method. In
Java functions, the first few methods, such as CODE-NN and Code2Seq, are
only summaries and do not involve the Class. forName method used to connect
to the database. In Python functions, the same benchmark method is a single
grab header function, and our approach diagram is highlighted in blue, where
we found the connect method and the judgment statement.

Specifically, it can be found from the figure that in the CODE-NN method,
because the LSTM structure is used, it is not easy to process the semantic
information of long sequences, and the key information is lost in the summary.
At the same time, the Code2Seq method adds self-attention weights to the LSTM
framework, and the summary output can briefly explain the connection method
of the database. The SBT method implemented by DeepCom also processes AST
sequences in a single way, and the summary cannot retain important judgment
statements. The approach FCSO we proposed can retain the connect and if
statements, and express the summary more completely, which is beneficial to
the programmer’s code development.

126 D. Zhang et al.

Fig. 4. Comparing Summary Results with Baseline on Java Code Methods. (Color
figure online)

Fig. 5. Comparing Summary Results with Baseline on Python Code Methods. (Color
figure online)

FCSO: Source Code Summarization 127

5 Conclusion

In this paper, we propose a source code summarization approach that fuses code
features into self-consistency output (FCSO). This approach first constructs a
GCN encoder and a CodeBERT encoder. It outputs the AST feature attention
vector and sequence feature attention vector of the source code, respectively.
Then, input these two feature vectors into the Transformer model decoder for
feature fusion to ensure subsequent model training. Finally, we use the self-
consistency decoding strategy to calculate the similarity score of the sequence
output by beam search and output a consistent code summary answer, which
improves the accuracy of the generated summary. In particular, we conducted
comparative benchmark experiments and ablation experiments on two data sets,
Java and Python, and the indicators of the experimental results have been sig-
nificantly improved. It proves that our approach can learn and express the global
and local features of the code more accurately and retain the semantic informa-
tion of the code more completely to help programmers better understand and
use the code and improve the development efficiency of software code.

In the future, our research will pay more attention to modifying the structure
in the decoder and think about how to realize the fusion of the front encoder
information and the back decoder information to improve the performance of
source code summarization. Or it may also study code summary generation in
other fields, such as helping the summary generation of the current popular
blockchain smart contract code, which can promote the rapid development of
this field.

Acknowledgements. This work is supported by Jiangxi Provincial Natural Science
Foundation under Grant No. 20224BAB212015, the Foundation of Jiangxi Educational
Committee Under Grant No. GJJ210338, the National Natural Science Foundation of
China (NSFC) under Grant No. 62363015, 61962026 and the National Natural Science
Key Foundation of China Grant No. 61832014.

References

1. Ko, A.J., Myers, B.A., Aung, H.H.: Six learning barriers in end-user programming
systems. In: 2004 IEEE Symposium on Visual Languages-Human Centric Com-
puting, pp. 199–206. IEEE, September 2004

2. Eddy, B.P., Robinson, J.A., Kraft, N.A., Carver, J.C.: Evaluating source code
summarization techniques: replication and expansion. In: 2013 21st International
Conference on Program Comprehension (ICPC), pp. 13–22. IEEE, May 2013

3. Sridhara, G., Hill, E., Muppaneni, D., Pollock, L., Vijay-Shanker, K.: Towards
automatically generating summary comments for Java methods. In: Proceedings
of the IEEE/ACM International Conference on Automated Software Engineering,
pp. 43–52, September 2010

4. Moreno, L., Aponte, J., Sridhara, G., Marcus, A., Pollock, L., Vijay-Shanker, K.:
Automatic generation of natural language summaries for Java classes. In: 2013 21st
International Conference on Program Comprehension (ICPC), pp. 23–32. IEEE,
May 2013

128 D. Zhang et al.

5. Wong, E., Yang, J., Tan, L.: AutoComment: mining question and answer sites for
automatic comment generation. In: 2013 28th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), pp. 562–567. IEEE, November
2013

6. Iyer, S., Konstas, I., Cheung, A., Zettlemoyer, L.: Summarizing source code using
a neural attention model. In: Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics, vol. 1: Long Papers, pp. 2073–2083, August
2016

7. Hu, X., Li, G., Xia, X., Lo, D., Lu, S., Jin, Z.: Summarizing source code with
transferred API knowledge (2018)

8. Hu, X., Li, G., Xia, X., Lo, D., Jin, Z.: Deep code comment generation. In: Pro-
ceedings of the 26th Conference on Program Comprehension, pp. 200–210, May
2018

9. Wang, W., Zhang, Y., Zeng, Z., Xu, G.: TranS3: a transformer-based framework
for unifying code summarization and code search. arXiv preprint arXiv:2003.03238
(2020)

10. Freitag, M., Al-Onaizan, Y.: Beam search strategies for neural machine translation.
arXiv preprint arXiv:1702.01806 (2017)

11. Feng, Z., et al.: CodeBERT: a pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155 (2020)

12. Huo, X., Li, M., Zhou, Z.H.: Control flow graph embedding based on multi-instance
decomposition for bug localization. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, no. 04, pp. 4223–4230, April 2020

13. LeClair, A., Haque, S., Wu, L., McMillan, C.: Improved code summarization via
a graph neural network. In: Proceedings of the 28th International Conference on
Program Comprehension, pp. 184–195, July 2020

14. Shi, E., et al.: Cast: enhancing code summarization with hierarchical splitting and
reconstruction of abstract syntax trees. arXiv preprint arXiv:2108.12987 (2021)

15. LeClair, A., Jiang, S., McMillan, C.: A neural model for generating natural lan-
guage summaries of program subroutines. In: 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pp. 795–806. IEEE, May 2019

16. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

17. Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based
neural machine translation. arXiv preprint arXiv:1508.04025 (2015)

18. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

19. Ahmad, W.U., Chakraborty, S., Ray, B., Chang, K.W.: A transformer-based app-
roach for source code summarization. arXiv preprint arXiv:2005.00653 (2020)

20. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 701–710, August 2014

21. Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Zhou, D.: Self-consistency
improves chain of thought reasoning in language models. arXiv preprint
arXiv:2203.11171 (2022)

22. Cheng, J., Fostiropoulos, I., Boehm, B.: GN-Transformer: fusing sequence
and graph representation for improved code summarization. arXiv preprint
arXiv:2111.08874 (2021)

23. Wang, Y., Dong, Y., Lu, X., Zhou, A.: GypSum: learning hybrid representations
for code summarization. In: Proceedings of the 30th IEEE/ACM International
Conference on Program Comprehension, pp. 12–23, May 2022

http://arxiv.org/abs/2003.03238
http://arxiv.org/abs/1702.01806
http://arxiv.org/abs/2002.08155
http://arxiv.org/abs/2108.12987
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/2005.00653
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2111.08874

FCSO: Source Code Summarization 129

24. Gao, Y., Lyu, C.: M2TS: multi-scale multi-modal approach based on transformer
for source code summarization. In: Proceedings of the 30th IEEE/ACM Interna-
tional Conference on Program Comprehension, pp. 24–35, May 2022

25. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

26. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

27. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

28. Sun, Z., Zhu, Q., Xiong, Y., Sun, Y., Mou, L., Zhang, L.: TreeGen: a tree-based
transformer architecture for code generation. In: Proceedings of the AAAI Confer-
ence on Artificial Intelligence, vol. 34, no. 05, pp. 8984–8991, April 2020

29. Barone, A.V.M., Sennrich, R.: A parallel corpus of Python functions and docu-
mentation strings for automated code documentation and code generation. arXiv
preprint arXiv:1707.02275 (2017)

30. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic
evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics, pp. 311–318, July 2002

31. Banerjee, S., Lavie, A.: METEOR: an automatic metric for MT evaluation with
improved correlation with human judgments. In: Proceedings of the ACL Workshop
on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or
Summarization, pp. 65–72, June 2005

32. Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. In: Text
Summarization Branches Out, pp. 74–81, July 2004

33. Alon, U., Brody, S., Levy, O., Yahav, E.: code2seq: generating sequences from
structured representations of code. arXiv preprint arXiv:1808.01400 (2018)

34. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from
tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075
(2015)

http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1707.02275
http://arxiv.org/abs/1808.01400
http://arxiv.org/abs/1503.00075

Graph Structure Learning-Based
Compression Method for Convolutional

Neural Networks

Tao Wang, Xiangwei Zheng(B), Lifeng Zhang, and Yuang Zhang

School of Information Science and Engineering, Shandong Normal University, Jinan
250300, Shandong, China

xwzhengcn@163.com, zhangyuang@sdnu.edu.cn

Abstract. Convolutional neural networks (CNNs) have achieved
remarkable performance in diverse applications. Nevertheless, the sub-
stantial scale and computational intricacy limit the practical implemen-
tation of CNNs, particularly on resource- starved devices. This paper
presents a compression technique based on graph structure learning
(GSL) for CNNs. This method aims to capture the correlations among
parameters in each neural network layer and compress the model by
leveraging the strength of these correlations. Firstly, the neural network
parameters are modeled as a graph structure by adopting a graph con-
struction methodology. Subsequently, the graph is fed into a dual-branch
GSL module. This module introduces a constraint that optimize and
refine the original graph topology and maximize the difference in fea-
ture information obtained between the two channels. Through the pro-
cess of graph learning, the existing correlations among the parameters of
the CNNs are demonstrated. Finally, based on the correlations between
the parameters of the CNNs, the parameters with lower relative impor-
tance are selected and the neural network parameters are compressed.
The proposed method significantly reduces the parameter and floating-
point computation complexity of CNNs, thereby diminishing the model’s
intricacy. Furthermore, the operational efficiency of the network model
is improved without compromising its prediction accuracy. The effective-
ness of the proposed method is validated on the VGG-16 and ResNet-101
models. The compressed models’ accuracy, efficiency, and memory con-
sumption are then compared with the original models to demonstrate
the effectiveness of the method.

Keywords: Graph · Graph structure learning · Model compression ·
Convolution neural networks

1 Introduction

Deep learning, a branch of machine learning, relies on artificial neural net-
works to extract complex patterns and make predictions. Convolutional Neural
Networks (CNNs) are Deep Neural Networks (DNNs) with multi-layer network
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 130–146, 2024.
https://doi.org/10.1007/978-981-97-0801-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_8&domain=pdf
https://doi.org/10.1007/978-981-97-0801-7_8

GSL-Based Compression Method for CNNs 131

structures. CNNs have exhibited significant advantages in areas like natural lan-
guage processing and computer vision. However, their parameter count is often
prohibitively high, reaching billions, which hinders practical implementation.
The deployment of large-scale DNNs on devices that are resource-constrained,
with limited memory and computational capabilities, poses a formidable task [1].
As an example, the VGG16 [2] comprises over 130 million parameters, resulting
in significant storage and computational overheads. Consequently, the applica-
tion of deep networks on edge devices becomes severely limited. Many practical
situations require prompt decision making with DNNs, such as object detec-
tion in autonomous vehicles [3]. These tasks require real-time computation of
multiple objects, such as pedestrians, vehicles, and animals, as well as dis-
tances, to achieve effective autonomous driving. Hence, it is imperative to reduce
the parameter redundancy and compact the model to enable its execution on
resource-constrained devices.

In previous studies, LeCun et al. [4] substantiated that not all parameters in
neural networks carry equivalent significance, while Denil et al. [5] argued that
the network is over-parameterized due to the redundancy of numerous param-
eters that contribute minimally to error reduction and overall generalization.
In order to address this issue, some researchers introduced various innovative
algorithms to strike a balance between the accuracy and computational com-
plexity of models. Generally, most compression algorithms endeavored to trans-
form a large and intricate model into a more compact form. In addition, some
researchers investigated the design of simplified network architectures and the
training of smaller models from scratch. Based on the extent of modifications
applied to the network structure during the compression process, model com-
pression can be broadly classified as frontend compression and backend com-
pression. Frontend compression comprises approaches that reduce complexity
while retaining the original network structure, such as knowledge distillation [6],
compact model structure design [7], and filter-level pruning [8]. Frontend com-
pression techniques primarily focus on reducing the number of layers or filters
while preserving the network structure. In contrast, backend compression aims to
minimize the model size, typically involving substantial transformations to the
original network structure, such as low-rank approximation [9], unconstrained
pruning [10], parameter quantization [11], and binary networks [12]. Backend
compression techniques strive for the utmost compression ratio, necessitating
significant modifications to the original network structure, not only in terms of
volume but also in terms of runtime. The core objective of backend compression
is to decrease resource consumption, achieved through parameter quantization
and similar methods. Parameter quantization is a popular approach wherein sim-
ilar weights are grouped together and condensed into a unified value, resulting
in significant storage reduction as well as improvement in overall computational
efficiency of the network model.

Current approaches to compress CNNs predominantly concentrate on exam-
ining the interaction between layers or filters and the unique features of a specific

132 T. Wang et al.

task while also assessing their influence on prediction accuracy for that partic-
ular task. However, within this paper, the existence of intrinsic correlations or
dependencies are supposed among the parameters within CNNs. During train-
ing, the network acquires knowledge of these dependencies, which significantly
influences its performance. Consequently, our research centers on the analysis
and remediation of parameter relationships within CNNs and the formulation of
compression strategies to enhance network performance. Hence, it is imperative
to consider modeling parameter relationships in CNNs.

The contributions of the paper are as follows:

(1) A compression method based on Graph Structure Learning (GSL) for CNNs
is proposed. It utilizes the graph learning to mine the correlation information
between the parameters of filters within the network layer, and then the
CNNs is pruned based on this correlation information. Ultimately, CNNs are
compressed with negligible loss in accuracy while significantly improving its
operational efficiency.

(2) The connections among neurons in neural networks can be viewed as a graph
structure. In this paper, graphs are employed to depict the parameter rela-
tionships in CNNs and assess the relative significance of these parameters
within the network structure from an alternative perspective.

(3) A graph structure learner is proposed, which is essentially a dual-branch
graph neural network that maps certain data with non-Euclidean properties
into the feature space of the graph, and then their potential features through
the aggregation transformation of GNNs are obtained. With GSL, into the
deeper correlations between parameters in CNNs can be delved.

The following sections of this paper are structured as follows: Sect. 2 intro-
duces the key research on deep network model compression, along with the devel-
opment and advantages of graph learning. Section 3 provides a comprehensive
explanation of the deep model compression method we proposed based on GSL.
Section 4 demonstrates the effectiveness of the proposed method through exper-
imental results. Section 4 presents the experimental results obtained on CNNs,
which confirms the effectiveness of the proposed theoretical method. Finally, we
conclude with a discussion on future work.

2 Related Work

2.1 Compression of CNNs

In the realm of CNNs, a significant challenge revolves around reducing the com-
putational burden and storage requirements of training models, thereby enabling
their deployment on devices with limited resources [13]. Li et al. [14] have empha-
sized the benefits of deploying deep learning models in the cloud, such as ample
computational power and storage availability. However, they have also high-
lighted drawbacks associated with poor throughput and extended response times.
Nevertheless, there is a growing demand to shift the inference process from the

GSL-Based Compression Method for CNNs 133

cloud to edge devices in real-time applications, such as object detection and
video segmentation. The current performance limitations of edge devices pose a
constraint on the real-time inference of CNNs. Furthermore, due to the high cost
of network transmission, data transfer over the network consumes more energy
compared to local data processing.

Pruning serves as a widely employed compression technique aimed at reduc-
ing the storage requirements of CNNs, rendering them more storage-efficient.
Through the removal of parameters or filters from convolutional layers, pruning
also reduces the computational workload, leading to faster inference. Srivastava
et al. [15] demonstrated that pruning parameters from dense layers can effectively
reduce the model size, further suggesting that such pruning aids in mitigating
overfitting in neural networks. Han et al. [16] proposed the deletion, or zeroing,
of parameter connections that fall below a predefined threshold or are deemed
redundant during unimportant parameter pruning. In the context of filter prun-
ing, Li et al. [8] ranked filters based on their importance, typically calculated
using L1/L2 norms or alternative methods, and subsequently removed the least
important (lowest-ranked) filters from the network. Srinivas et al. [17] proposed
the deletion of redundant individual neurons, entailing the removal of all input
and output connections associated with the respective neuron. Similarly, Chen
et al. [18] suggested that certain layers can be pruned within a deep network,
contributing to overall model compression. Within the realm of CNNs, parame-
ters are commonly stored as 32-bit floating-point numbers. However, through the
reduction of the bit width used to represent weights and activations, it becomes
feasible to significantly reduce the number of Multiply-Accumulate (MAC) oper-
ations needed and diminish the size of trained DNNs. Fiesler et al. [19] and Balzer
et al. [20] first introduced the concept of quantized neural networks, which aimed
to render neural networks more compatible with hardware implementations.

2.2 Graph Structure Learning

Graphs offer unique advantages over other data representations for depict-
ing objects and capturing their intricate interactions. Graph Neural Networks
(GNNs), serving as powerful instruments for structured data learning, have dis-
covered extensive applications in a variety of analytical tasks spanning differ-
ent domains. The successes of GNNs can be credited to their ability to exploit
the abundant and inherent information embedded within graph structures and
attributes. However, the graphs provided for analysis often suffer from incom-
pleteness and noise, presenting formidable challenges when employing GNNs
in real-world scenarios. GNNs generate node embeddings through a process of
iterative aggregation of information from neighboring nodes, and this iterative
mechanism, as astutely highlighted by Gilmer et al. [21], exhibits a cascading
effect wherein even minute noise can propagate to the surrounding neighborhood,
resulting in a deterioration of the quality of numerous representations.

For example, a social network graph where nodes represent users and edges
signify friendship relationships. In such cases, the recursive aggregation scheme
employed by GNNs can inadvertently create spurious links between fraudulent

134 T. Wang et al.

and genuine accounts. This, in turn, facilitates the dissemination of misinforma-
tion throughout the network, thereby posing challenges in accurately estimating
the credibility of user accounts. Furthermore, studies conducted by Dai et al. [22]
and Zhu et al. [23] demonstrate that even subtle and imperceptible alterations
in the graph structure, known as adversarial attacks, can easily lead to incorrect
predictions by most GNNs. Acknowledging these observations, Luo et al. [24]
argue that GNNs typically necessitate high-quality graph structures to acquire
informative representations. In response, Newman et al. [25] propose methods
to refine the graph structure by fostering intra-cluster connections based on the
network homophily assumption, wherein edges have a tendency to link similar
nodes. This approach results in a more concise structural representation. Addi-
tionally, Li et al. [26] introduce AGCN, a structure learning model rooted in
metric learning. AGCN computes the generalized Mahalanobis distance between
every pair of node features and subsequently optimizes the topology using a
Gaussian kernel of size K, guided by the calculated distances.

Continuing the trajectory established by the previously mentioned studies,
our approach begins by utilizing graph generation methods to initially capture
the desired topology from raw data. Subsequently, we meticulously eliminate the
noise that arises during the generation process and improve the graph structure
using graph learning techniques. This facilitates the revelation of the underlying
topological insights inherent in the original data, culminating in a more con-
densed and concise structural representation. Finally, by leveraging the knowl-
edge obtained from the interconnections among parameters discovered through
GSL, we adeptly adjust the parameters within the network, thereby accomplish-
ing network compression.

3 The Proposed Method

3.1 Overview

The proposed method comprises 5 essential steps, as illustrated in Fig. 1, which
are Training and Parameter Collection, Graph Construction, Graph Structure

Fig. 1. A Compression Method for CNNs Based on GSL.

GSL-Based Compression Method for CNNs 135

Learner, Pruning, and Model Retraining, respectively. Firstly, the filter param-
eters of the original model are trained to establish the baseline of the network.
Then, the Graph Construction module takes these parameters as input and
transforms the parameter connections into the node relationships within the
graph. This generated graph functions as the training dataset for the GSL phase,
which captures intricate dependencies among filter parameters. These dependen-
cies are represented through a collection of matrices that denote their relative
significance.

Leveraging the established relationships among the filters, we execute prun-
ing on the network’s layers, thereby generating a new model. This process entails
selectively removing redundant parameters while preserving the essential ones.
The pruned and unpruned layers are then merged into the new model. The new
model then proceeds to retraining phase to enhance its performance. Compared
to the original model, it boasts significantly fewer parameters and lower com-
putational demands, while maintaining near-identical predictive accuracy. Thus,
the new model consumes less storage space, requires lower memory usage dur-
ing runtime, and executes more efficiently, all contributing to enhanced overall
efficiency.

3.2 Graph Construction

To examine the relationships among CNN parameters using graph learning tech-
niques, it’s crucial to map these parameter relationships onto the connections
between nodes in graphs. Each convolutional layer of CNNs is transformed into a
corresponding graph, which acts as training data for graph learning. This section
introduces two methods for constructing these graphs, where the neural network
parameters are integrated as node features, leading to the creation of graphs with
two distinct feature types. These two types of graphs are employed as training
data and input into a graph structure learner.

This section introduces two methods for constructing graphs, where the neu-
ral network parameters are embedded as node features, resulting in graphs with
two different types of features. These two types of graphs are used as training
samples and are input into a graph structure learner.

A concise depiction of the graph construction process is presented in Fig. 2.
Throughout the neural network training process, all filter parameters collected
within the same training epoch are gathered. These parameters are subsequently
structured into a matrix format, signifying the nodes and their attributes in
the graph model. Through the utilization of the graph construction technique,
nodes and edges are generated to establish a dedicated graph model tailored
to the CNN parameters. Each parameter set Ln from every layer in the CNNs
corresponds to a distinct graph Gn within that specific training epoch.

K-Nearest Neighbor Graphs. The k-nearest neighbor (kNN) algorithm is
one of the simpler machine learning algorithms commonly used for classification
problems. In this work, we utilize the idea of kNN to construct a kNN graph [27].

136 T. Wang et al.

Fig. 2. Simple schematic diagram of graph construction.

During the graph construction process, the parameters of the filters are embed
in each channel within the layers of CNNs as node features X in the graph.
To grasp the inherent structure of nodes within the feature space, a kNN graph
Gt = (At,X) is constructed based on the node feature matrix X, where At is
the adjacency matrix of the kNN graph. Specifically, we first compute the cosine
similarity between n nodes to obtain the similarity matrix S ∈ Rn×n. The cosine
similarity measures the similarity between two vectors based on the cosine of the
angle between them, and it is calculated using the following formula:

Sij =
xi · xj
|xi| |xj | , (1)

where xi and xj are the feature vectors of nodes i and j, respectively. We then
select the k most similar nodes to each node and connect them to obtain the
adjacency matrix At. This method generates a graph with strong structural
characteristics.

Gaussian Kernel Graphs. The Gaussian kernel function, alternatively known
as the radial basis function (RBF), is a scalar function characterized by radial
symmetry. It serves the purpose of mapping finite-dimensional data into a high-
dimensional space and is commonly used for similarity calculations. The formula
for the Gaussian kernel function is expressed as follows:

k(x, y) = e− ‖x−y‖2

2σ2 , (2)

where k(x,y) represents the Gaussian kernel function, and σ is a hyperparameter
that controls the range of the Gaussian kernel function. The graph construc-
tion method based on the Gaussian kernel calculates the potential relationships
between nodes in a DNN by measuring the high-dimensional manifold distance.

GSL-Based Compression Method for CNNs 137

It constructs a graph based on the similarity between filters in the CNNs. Firstly,
the filter parameters of each channel within the layers of the network are flat-
tened into one-dimensional vectors. The similarity between filters in each channel
is calculated. If the dimensions of two filter parameters are different, the lower-
dimensional vector is padded with zeros to match the dimensions, facilitating
the similarity calculation between vectors. This step yields a similarity matrix
for filters within each channel.

Next, a threshold ξ is set, and based on this threshold, the relationship
between two filters in a channel is determined. If the similarity between two
filters exceeds the threshold ξ, it is considered that there exists a certain degree
of similarity between these two filters, and a connection is established between
them. Conversely, if the similarity falls below the threshold, no connection is
established.

Finally, the filter parameters of each channel within the layers of CNNs are
embedded as the feature vectors X of the graph. The relationships established
between filters in the previous step are mapped as connections between nodes in
the graph, resulting in the adjacency matrix Af of the graph. Thus, the graph
Gf = (Af ,X) is obtained. Let RBFmn denote the similarity between filter m
and filter n in a channel, the weight emn of the edge between node m and node
n is given by:

emn =
{
0, if RBFmn > ξ

RBFmn, else (3)

3.3 Graph Structure Learner with Dual-Branch

The task of the GSL module is to explore the dependencies between parameters
in the original neural network through the process of graph learning. Specifically,
we train a dual-branch graph convolutional neural network (GCN) by inputting
graphs with different feature information. During the graph learning process,
the information learned from the two branches is fused to filter out noise in the
original graph data and obtain a new adjacency matrix that better represents
the relationships between nodes in the graph.

The graph structure learning module consists mainly of a dual-branch GCN,
as shown in Fig. 3. It takes two parts of the graph as inputs. The upper branch
is the structural convolutional network, which aims to learn the structural infor-
mation in the training samples. It processes the parameters of CNNs using the
K-nearest neighbor method, during which the parameters are mapped to nodes.
For each node, the method calculates the similarity between it and all other
nodes, resulting in a similarity matrix. From this matrix, the top K most similar
nodes are selected and connected to establish the adjacency matrix. This app-
roach generates a graph with strong structural features. By employing GCN, the
exploration and learning of information within the underlying structural space
of the graph can be delved. The output of structural space is as follows:

Z(l)
t = ReLU

(
D̃− 1

2
t ÃtD̃

− 1
2

t Z(l−1)
t W(l)

t

)
, (4)

138 T. Wang et al.

Fig. 3. The task of the GSL module is to mine the dependencies between parameters
in CNNs through the graph learning process.

where W
(l)
t is the weight matrix of the lth layer in the GCN, ReLU is the

activation function, and the initial Z
(0)
t set as X. Ãt = At + It, and D̃t is

the diagonal degree matrix of Ãt. The embedded representation that captures
specific information outputted by the last layer of this branch is denoted as ZT .
The lower branch is the feature convolutional network, which aims to learn the
node feature information in the training samples, specifically the features of the
original neural network parameters themselves. Therefore, When constructing
the graph, the parameters were embedded as node features, with an effort to
retain the original features to the greatest extent possible. We use the Gaussian
kernel method to obtain the adjacency matrix of the graph. By using the feature
convolutional network, we capture information from the graph feature space and
obtain the output as:

Z(l)
f = ReLU

(
D̃− 1

2
f ÃfD̃

− 1
2

f Z(l−1)
f W(l)

f

)
. (5)

The embedded representation that captures specific information, obtained from
the last layer of the lower branch, is denoted as ZF . In the final step, an attention
mechanism is applied to assign weights to ZT and ZF , resulting in the final
output Z. The process is illustrated as follows:

Z = αt · ZT + αf · ZF , (6)

where αt, αf ∈ Rn×1 represent the attention values of n nodes with embed-
dings ZT and ZF , respectively. These attention values are learned through the
attention mechanism att(ZT ,ZF), as shown below:

(αt,αf) = att (ZT ,ZF) . (7)

In the upper branch, taking node n as an example, its embedding in ZT , is
represented by znT ∈ R1×h. Firstly, a non-linear transformation is applied to

GSL-Based Compression Method for CNNs 139

znT , and then an attention value ωn
T is obtained using a shared attention vector

a ∈ R1×h
′
, as follows:

ωn
T = aT · tanh

(
WT · (znT)T + b

)
, (8)

WT ∈ Rh
′×h is the weight matrix, and b is the bias vector. Similarly, we can

obtain the attention value ωn
F for node n in the embedding matrix ZF . Then, we

normalize the attention values ωn
F and ωn

T using the softmax function as follows:

αn
t = softmax (ωn

T) =
exp (ωn

T)
exp (ωn

T) + exp (ωn
F)

(9)

The final weights for ZT are denoted as αt = [αn
t], and similarly, we can obtain

the final weights for αf =
[
αn
f

]
= [softmax (ωn

F)].
To ensure the independence of the two branches and to capture feature infor-

mation from different spaces, we introduce a diversity constraint Ld, using the
Hilbert-Schmidt Independence Criterion (HSIC) [28]. HSIC is a simple yet effec-
tive measure of independence used to enhance the dissimilarity between these
two embeddings:

Ld = HSIC (ZT ,ZF) = (n − 1)−2 tr (RKTRKF) , (10)

where KT and KF are Gram matrices with elements kT,ij = kT

(
ziT , zjT

)
and

kF,ij = kF

(
ziF , zjF

)
. R = I − 1

neeT , where I is an identity matrix and e is a
column vector. In the loss calculation, the cross-entropy loss function is utilized:

Lc =
1
N

∑
i

Li = − 1
N

∑
i

C∑
c=1

yic log (pic) , (11)

where C is the total number of classes in the data. If the true class of sample i is
equal to c, yic is 1; otherwise, it is 0. pic is the probability of sample i belonging
to class c. Considering the differential constraint, the complete objective function
is formally defined as follows:

L = Lc + Ld. (12)

Due to the lack of explicit labels for the graph or its nodes, as the graph data
is derived from the parameters of a CNN, we utilize self-supervised learning in
the final prediction stage. We perform clustering on the output Z of the graph
neural network, and the resulting clusters are used as labels for prediction and
loss calculation. At the beginning of the training process, the matrix A randomly
is initialized. During the learning process, the information from the two branches
is continuously used to update the matrix A. Finally, the matrix Ai is obtained,
where i represents the network layer. The importance matrix Ai serves as a
measurement criterion for subsequent pruning of the filters of CNNs.

140 T. Wang et al.

3.4 Pruning Filters

The main objective of model pruning is to remove less important filters or param-
eters from a trained model in order to improve computational efficiency while
minimizing the loss in accuracy. After obtaining the filter importance matrix Ai

through the GSL module described in Sect. 3.3, each row of the matrix corre-
sponds to the connection weights between nodes in the newly constructed graph.
More precisely, it signifies the relevance scores between filters in a particular
channel of the lth layer and filters in other channels. We assess the relative sig-
nificance of filters within their respective layers by computing the node degrees
within the graph and subsequently trim filters with comparatively lower impor-
tance.

Let ni represent the number of input channels of the ith convolutional layer,
and hi/wi denote the height/width of the input feature map xi ∈ Rni×hi×wi .
The convolutional layer transforms the input features into output features xi+1 ∈
Rni+1×hi+1×wi+1 , which serve as the input features for the next convolutional
layer. This process is achieved by applying ni+1 3D filters fi,j ∈ Rni+1×k×k

(j=1,2,. . . ,ni+1) on the ni input channels, where each filter generates one feature
map. Each filter consists of ni 2D convolution kernels K ∈ Rk×k. All filters
together form the convolutional kernel matrix fi ∈ Rni×ni+1×k×k. The number
of operations for each convolutional layer is ni+1×ni×k2×hi+1×wi+1. As shown
in Fig. 4, when a filter fi,j is pruned, its corresponding feature map xi+1,j is also
removed, reducing the number of operations by ni ×k2 ×hi+1 ×wi+1. Moreover,
the kernels applied to the pruned feature maps from the next convolutional layer
are also removed, saving additional ni+2×k2×hi+2×wi+2 operations. Therefore,
pruning m filters in layer i will reduce the computation cost of layers i and i+1
by m/ni+1.

Fig. 4. Pruning a filter causes its corresponding feature map and associated convolu-
tional kernel to be deleted in the next layer.

The process of pruning the m filters of the convolution kernel matrix fi of
the ith layer in the network is as follows:

(1) For the jth filter fi,j (j ≤ m < ni+1) of the ith layer in the network, by
calculating the degree of the corresponding node of the filter fi,j in the
relative importance matrix Ai, the relative importance Pj =

∑ni+1
c=1 Ai

j,c in
its layer is obtained;

GSL-Based Compression Method for CNNs 141

(2) Sort the filters according to the value of Pj ;
(3) Prune the m filters with the smallest Pj value, and the kernel in the next

convolutional layer corresponding to the number of pruned channels is also
removed;

(4) Create a new kernel matrix for the ith layer and the i+1th layer, and copy
the remaining convolution kernel parameters to the new model.

4 Experiments

In the experimental section, we selected the VGG-16 and ResNet-101 mod-
els for compression and trained them using the CIFAR-10 dataset. VGG-16
and ResNet-101 are widely used and well-established architectures of CNNs in
the field of computer vision, often serving as building blocks for many other
deep learning models. To obtain the baseline accuracy of each network, the
original networks are trained. The CIFAR-10 dataset is used for this process,
where pre-trained models are loaded, and the hyperparameter settings remained
unchanged. After pruning the filters, a new model with fewer filters is created,
and the modified network layers along with the remaining parameters of unaf-
fected layers are copied to the new model. Additionally, if pruning is applied to
convolutional layers, the weights of subsequent batch normalization layers are
also removed. Subsequently, the original and new models are retrained for 50
epochs on the CIFAR-10 dataset, maintaining a constant learning rate of 0.001.
Table 1 shows the experimental results on both models.

Table 1. Overall results. Reported the validation accuracy during the training process
(presented as error rate). GSL-pruned-retrain is the data obtained by retraining the new
model obtained by tailoring the trained model. GSL-pruned-train is the data obtained
from training the new model from scratch after pruning the original model.

Method Model Error % FLOPs Pruned % Parameters Pruned %

VGG-16 6.16% 4.2E+08 1.2E+08
GSL-pruned- retrain VGG-16 6.18% 1.3E+08 58% 5.1E+06 66%
GSL-pruned-train VGG-16 8.84% 1.5E+08 58% 5.1E+06 66%
L1-norm(Li et al. [8]) VGG-16 6.60% 2.06e+08 34.2% 5.4e+06 64%

ResNet-101 5.22% 5.3E+08 3.6E+07
GSL-pruned-retrain ResNet-101 5.88% 3.5E+08 33% 2.4E+07 32%
GSL-pruned-train ResNet-101 7.68% 3.5E+08 33% 2.4E+07 32%

4.1 Pruned VGG-16

VGG-16 [2] is a well-known architecture based on CNNs, celebrated for its sim-
plicity and efficacy. It comprises 16 weighted layers, consisting of 13 convolu-
tional layers and 3 fully connected layers. VGG-16 is widely recognized for its

142 T. Wang et al.

remarkable depth, boasting a total of 138 million parameters, which empow-
ers it to capture intricate image features with great prowess. This architecture
finds application in diverse image recognition tasks, encompassing image clas-
sification, object detection, and image segmentation. However, the substantial
parameter count and computational complexity of VGG-16 present challenges for
deployment on constrained devices, thus highlighting the need for optimization
and enhancement. Table 2 provides information regarding the original VGG-16
model as well as the proportions of its components that are pruned.

Table 2. Comparison of the VGG-16 model before and after construction, the last
two columns are the parameters of the convolutional layer and the first fully connected
layer in the pruned model and the percentage reduction of FLOPs.

layers Params (before) Params (after) FLOPs (before) FLOPs (after) Params % FLOPs %

Conv_1 1.7E+03 8.1E+02 1.8E+06 8.3E+05 53% 53%
Conv_2 3.7E+04 1.3E+04 3.8E+07 1.4E+07 64% 64%
Conv_3 7.4E+04 4.0E+04 1.9E+07 1.0E+07 46% 46%
Conv_4 1.5E+05 8.3E+04 3.8E+07 2.1E+07 44% 44%
Conv_5 2.9E+05 1.5E+05 1.9E+07 9.6E+06 49% 49%
Conv_6 5.9E+05 2.6E+05 3.8E+07 1.7E+07 56% 56%
Conv_7 5.9E+05 3.3E+05 3.8E+07 2.1E+07 44% 44%
Conv_8 1.2E+06 6.2E+05 1.9E+07 9.9E+06 48% 48%
Conv_9 2.4E+06 7.1E+05 3.8E+07 1.1E+07 70% 70%
Conv_10 2.4E+06 5.9E+05 3.8E+07 9.4E+06 75% 75%
Conv_11 2.4E+06 7.3E+05 9.4E+06 2.9E+06 69% 69%
Conv_12 2.4E+06 7.3E+05 9.4E+06 2.9E+06 69% 69%
Conv_13 2.4E+06 6.4E+05 9.4E+06 2.6E+06 73% 73%
Linear1 2.6E+05 1.3E+05 2.6E+05 1.3E+05 50% 50%
Linear2 4.1E+04 4.1E+04 4.1E+04 4.1E+04 0% 0%
Total 1.5E+07 5.1E+06 3.1E+08 1.3E+08 66% 58%

4.2 Pruned ResNet-101

ResNet-101 is a variation of the ResNet (Residual Network) architecture initially
proposed by He et al. [29]. It stands out for its remarkable depth, comprising
101 weighted layers. ResNet-101 builds upon the concept of residual learning,
which introduces skip connections to enable the network to learn residual map-
pings instead of directly learning the desired output. This approach helps miti-
gate the issue of vanishing gradients and facilitates the training of exceptionally
deep networks. The building blocks of ResNet-101 consist of basic residual units,
which entail two 3 × 3 convolutional layers along with a skip connection. Notably,
ResNet-101 does not employ pooling layers but instead relies on residual con-
nections for downsampling the feature maps. Table 3 provides details regarding
the original ResNet-101 model as well as the pruned components.

GSL-Based Compression Method for CNNs 143

Table 3. The comparison before and after the construction of the ResNet-101 model,
the last two columns are the parameters of the convolutional layer and the first layer of
the fully connected layer in the pruned model and the reduction percentage of FLOPs

layers Params (before) Params (after) FLOPs (before) FLOPs (after) Params % FLOPs %

Conv1 9.4E+03 6.6E+03 9.6E+06 6.8E+06 30% 30%
Conv2_x 1.7E+05 1.1E+05 4.4E+07 2.7E+07 39% 39%
Conv3_x 9.8E+05 6.0E+05 6.3E+07 3.8E+07 39% 39%
Conv4_x 2.3E+07 1.5E+07 3.6E+08 2.5E+08 31% 32%
Conv5_x 1.2E+07 7.9E+06 4.7E+07 3.2E+07 33% 33%
Linear 2.0E+04 1.8E+04 2.0E+04 1.8E+04 14% 14%
Total 3.6E+07 2.41E+07 5.3E+08 3.5E+08 32% 33%

5 Conclusions and Future Works

This paper proposes an innovative approach for compressing CNNs by lever-
aging the relationships among different parameters within network layers. The
proposed method involves constructing a graph structure to represent the neu-
ral network parameters, which is then inputted into a dual-branch GSL module.
During the learning process, two constraints are introduced to update the orig-
inal graph topology while ensuring consistency between node embeddings and
the original network parameters. By employing GSL, the correlations between
parameters of CNNs are uncovered, enabling network compression based on the
strength of these correlations. This method achieves a significant reduction in
the number of parameters and floating-point operations, leading to improved
efficiency and reduced model complexity while maintaining prediction accuracy.
The effectiveness of the proposed method is demonstrated through evaluations on
VGG-16 and ResNet-110, achieving a significant reduction in FLOPs and param-
eters on CIFAR-10 without substantial loss in accuracy. Comparative analysis
with other compression algorithms showcases the accuracy and efficiency of our
method. In future research, we plan to expand the dataset and incorporate label
distributions of experimental samples to further analyze interactions between
nodes within and across layers with larger margins. Additionally, we aim to
extend the application of this method to other deep learning models, continu-
ally enhancing its practicality and versatility to achieve favorable outcomes in
optimizing specialized hardware and adapting to dynamic environments.

Acknowledgements. This work is supported by the Natural Science Foundation
of Shandong Province China (NO. ZR2020LZH008, ZR2021MF118, ZR2022LZH003),
the Key R&D Program of Shandong Province, China (NO. 2021CXGC010506,
NO. 2021SFGC0104) and the National Natural Science Foundation of China (NO.
62101311).

144 T. Wang et al.

References

1. Wang, B., et al.: SparG: a sparse GEMM accelerator for deep learning applications.
In: Meng, W., Lu, R., Min, G., Vaidya, J. (eds.) Algorithms and Architectures for
Parallel Processing: 22nd International Conference, ICA3PP 2022, Copenhagen,
Denmark, 10–12 October 2022, Proceedings, pp. 529–547. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-22677-9_28

2. Aktas, K., Ignjatovic, V., Ilic, D., Marjanovic, M., Anbarjafari, G.: Deep convolu-
tional neural networks for detection of abnormalities in chest X-rays trained on the
very large dataset. Signal Image Video Process. 17(4), 1035–1041 (2023). https://
doi.org/10.1007/s11760-022-02309-w

3. Atakishiyev, S., Salameh, M., Yao, H., Goebel, R.: Explainable artificial intel-
ligence for autonomous driving: a comprehensive overview and field guide for
future research directions. CoRR abs/2112.11561 (2021). https://arxiv.org/abs/
2112.11561

4. LeCun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In: Touretzky, D.S.
(ed.) Advances in Neural Information Processing Systems 2, [NIPS Conference,
Denver, Colorado, USA, 27–30 November 1989], pp. 598–605. Morgan Kaufmann
(1989). http://papers.nips.cc/paper/250-optimal-brain-damage

5. Denil, M., Shakibi, B., Dinh, L., Ranzato, M., de Freitas, N.: Predicting param-
eters in deep learning. In: Burges, C.J.C., Bottou, L., Ghahramani, Z., Wein-
berger, K.Q. (eds.) Advances in Neural Information Processing Systems 26:
27th Annual Conference on Neural Information Processing Systems 2013. Pro-
ceedings of a Meeting Held 5–8 December 2013, Lake Tahoe, Nevada, United
States, pp. 2148–2156 (2013). https://proceedings.neurips.cc/paper/2013/hash/
7fec306d1e665bc9c748b5d2b99a6e97-Abstract.html

6. Lin, Y., Wang, C., Chang, C., Sun, H.: An efficient framework for counting pedes-
trians crossing a line using low-cost devices: the benefits of distilling the knowledge
in a neural network. Multim. Tools Appl. 80(3), 4037–4051 (2021). https://doi.org/
10.1007/s11042-020-09276-9

7. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.:
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1 MB model
size. CoRR abs/1602.07360 (2016). http://arxiv.org/abs/1602.07360

8. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient
convnets. In: 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, 24–26 April 2017, Conference Track Proceedings. OpenRe-
view.net (2017). https://openreview.net/forum?id=rJqFGTslg

9. Zhang, L., Wei, W., Shi, Q., Shen, C., van den Hengel, A., Zhang, Y.: Accu-
rate tensor completion via adaptive low-rank representation. IEEE Trans. Neural
Networks Learn. Syst. 31(10), 4170–4184 (2020). https://doi.org/10.1109/TNNLS.
2019.2952427

10. Kang, H.: Accelerator-aware pruning for convolutional neural networks. IEEE
Trans. Circuits Syst. Video Technol. 30(7), 2093–2103 (2020). https://doi.org/
10.1109/TCSVT.2019.2911674

11. Shen, W., Wang, W., Zhu, J., Zhou, H., Wang, S.: Pruning-and quantization-
based compression algorithm for number of mixed signals identification network.
Electronics 12(7), 1694 (2023)

12. Yuan, C., Agaian, S.S.: A comprehensive review of binary neural network. CoRR
abs/2110.06804 (2021). https://arxiv.org/abs/2110.06804

https://doi.org/10.1007/978-3-031-22677-9_28
https://doi.org/10.1007/s11760-022-02309-w
https://doi.org/10.1007/s11760-022-02309-w
https://arxiv.org/abs/2112.11561
https://arxiv.org/abs/2112.11561
http://papers.nips.cc/paper/250-optimal-brain-damage
https://proceedings.neurips.cc/paper/2013/hash/7fec306d1e665bc9c748b5d2b99a6e97-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/7fec306d1e665bc9c748b5d2b99a6e97-Abstract.html
https://doi.org/10.1007/s11042-020-09276-9
https://doi.org/10.1007/s11042-020-09276-9
http://arxiv.org/abs/1602.07360
https://openreview.net/forum?id=rJqFGTslg
https://doi.org/10.1109/TNNLS.2019.2952427
https://doi.org/10.1109/TNNLS.2019.2952427
https://doi.org/10.1109/TCSVT.2019.2911674
https://doi.org/10.1109/TCSVT.2019.2911674
https://arxiv.org/abs/2110.06804

GSL-Based Compression Method for CNNs 145

13. Zhao, R., et al.: Accelerating binarized convolutional neural networks with
software-programmable FPGAs. In: Greene, J.W., Anderson, J.H. (eds.) Proceed-
ings of the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, FPGA 2017, Monterey, CA, USA, 22–24 February 2017, pp. 15–24.
ACM (2017). http://dl.acm.org/citation.cfm?id=3021741

14. Li, E., Zeng, L., Zhou, Z., Chen, X.: Edge AI: on-demand accelerating deep neural
network inference via edge computing. IEEE Trans. Wirel. Commun. 19(1), 447–
457 (2020). https://doi.org/10.1109/TWC.2019.2946140

15. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014). https://doi.org/10.5555/2627435.2670313

16. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections
for efficient neural network. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama,
M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Processing Systems 2015 December, pp.
7–12, 2015, Montreal, Quebec, Canada, pp. 1135–1143 (2015). https://proceedings.
neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html

17. Srinivas, S., Babu, R.V.: Data-free parameter pruning for deep neural networks.
In: Xie, X., Jones, M.W., Tam, G.K.L. (eds.) Proceedings of the British Machine
Vision Conference 2015, BMVC 2015, Swansea, UK, 7–10 September 2015, pp.
31.1–31.12. BMVA Press (2015). https://doi.org/10.5244/C.29.31

18. Chen, S., Zhao, Q.: Shallowing deep networks: layer-wise pruning based on feature
representations. IEEE Trans. Pattern Anal. Mach. Intell. 41(12), 3048–3056 (2019).
https://doi.org/10.1109/TPAMI.2018.2874634

19. Fiesler, E., Choudry, A., Caulfield, H.J.: Weight discretization paradigm for optical
neural networks. In: Optical Interconnections and Networks, vol. 1281, pp. 164–
173. SPIE (1990)

20. Balzer, W., Takahashi, M., Ohta, J., Kyuma, K.: Weight quantization in Boltz-
mann machines. Neural Netw. 4(3), 405–409 (1991). https://doi.org/10.1016/0893-
6080(91)90077-I

21. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the
34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6–11 August 2017. Proceedings of Machine Learning Research, vol. 70,
pp. 1263–1272. PMLR (2017)

22. Dai, H., et al.: Adversarial attack on graph structured data. In: Dy, J.G., Krause,
A. (eds.) Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018. Proceed-
ings of Machine Learning Research, vol. 80, pp. 1123–1132. PMLR (2018). http://
proceedings.mlr.press/v80/dai18b.html

23. Zhu, D., Zhang, Z., Cui, P., Zhu, W.: Robust graph convolutional networks against
adversarial attacks. In: Teredesai, A., Kumar, V., Li, Y., Rosales, R., Terzi, E.,
Karypis, G. (eds.) Proceedings of the 25th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA,
4–8 August 2019, pp. 1399–1407. ACM (2019). https://doi.org/10.1145/3292500.
3330851

24. Luo, D., et al.: Learning to drop: robust graph neural network via topolog-
ical denoising. In: Lewin-Eytan, L., Carmel, D., Yom-Tov, E., Agichtein, E.,
Gabrilovich, E. (eds.) WSDM 2021, The Fourteenth ACM International Confer-
ence on Web Search and Data Mining, Virtual Event, Israel, 8–12 March 2021, pp.
779–787. ACM (2021). https://doi.org/10.1145/3437963.3441734

http://dl.acm.org/citation.cfm?id=3021741
https://doi.org/10.1109/TWC.2019.2946140
https://doi.org/10.5555/2627435.2670313
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://doi.org/10.5244/C.29.31
https://doi.org/10.1109/TPAMI.2018.2874634
https://doi.org/10.1016/0893-6080(91)90077-I
https://doi.org/10.1016/0893-6080(91)90077-I
http://proceedings.mlr.press/v80/dai18b.html
http://proceedings.mlr.press/v80/dai18b.html
https://doi.org/10.1145/3292500.3330851
https://doi.org/10.1145/3292500.3330851
https://doi.org/10.1145/3437963.3441734

146 T. Wang et al.

25. Newman, M.: Networks. Oxford University Press, Oxford (2018)
26. Li, R., Wang, S., Zhu, F., Huang, J.: Adaptive graph convolutional neural net-

works. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, (AAAI-2018), the 30th innova-
tive Applications of Artificial Intelligence (IAAI-2018), and the 8th AAAI Sympo-
sium on Educational Advances in Artificial Intelligence (EAAI-2018), New Orleans,
Louisiana, USA, 2–7 February 2018, pp. 3546–3553. AAAI Press (2018). https://
www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16642

27. Preparata, F.P., Shamos, M.I.: Computational Geometry - An Introduction. Texts
and Monographs in Computer Science, Springer, Cham (1985). https://doi.org/
10.1007/978-1-4612-1098-6

28. Song, L., Smola, A.J., Gretton, A., Borgwardt, K.M., Bedo, J.: Supervised feature
selection via dependence estimation. In: Ghahramani, Z. (ed.) Machine Learning,
Proceedings of the Twenty-Fourth International Conference (ICML 2007), Cor-
vallis, Oregon, USA, 20–24 June 2007. ACM International Conference Proceed-
ing Series, vol. 227, pp. 823–830. ACM (2007). https://doi.org/10.1145/1273496.
1273600

29. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 770–778. IEEE Computer Society
(2016). https://doi.org/10.1109/CVPR.2016.90

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16642
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16642
https://doi.org/10.1007/978-1-4612-1098-6
https://doi.org/10.1007/978-1-4612-1098-6
https://doi.org/10.1145/1273496.1273600
https://doi.org/10.1145/1273496.1273600
https://doi.org/10.1109/CVPR.2016.90

Reliability-Aware VNF Provisioning
in Homogeneous and Heterogeneous

Multi-access Edge Computing

Haolin Liu1,2 , Zehang Tan1, Zhetao Li3(B), Saiqin Long3, Shujuan Tian1,2,
and Xiaoshan Li1

1 School of Computer Science, Xiangtan University, Xiangtan 411105, Hunan, China
2 Hunan International Scientific and Technological Cooperation Base of Intelligent

Network, Xiangtan University, Xiangtan 411105, Hunan, China
3 College of Information Science and Technology, Jinan University,

Guangzhou 510632, Guangdong, China
liztchina@hotmail.com

Abstract. In the emerging network architecture of multi-access edge
computing (MEC), virtualized network function (VNF) can be deployed
to provide network services to users, thus reducing the cost of the ser-
vice provider. However, the server is not 100% reliable, and its hardware
failure can lead to malfunctions of the VNFs deployed on it, which can
affect the service reliability for users. In this paper, we focus on reliability-
aware VNF service provisioning in MEC to meet the service reliability
requirements of users by deploying redundant replicas of VNF instances
to different servers. For that, a profit maximization problem for reliability
assurance (PMRA) is first formulated and proved to be an NP-hard prob-
lem. Then, an efficient local ratio based algorithm (LRBA) is proposed
to solve the PMRA problem in a homogeneous MEC scenario. Mean-
while, for the other PMRA problem in the heterogeneous scenario, a fast
benefit-cost ratio preference algorithm (BRPA) is proposed. Finally, we
evaluate the proposed algorithms by simulation experiments. The exper-
imental results show that the proposed are promising.

Keywords: Multi-access edge computing · VNF provisioning ·
Reliability aware · Approximation algorithm

1 Introduction

Multi-access edge computing (MEC) is becoming a promising computing plat-
form in the era of Internet of Everything. It extends cloud computing services
to the edge of the mobile network by deploying servers to the user side [1].
Meanwhile, MEC is implemented with the support of Network Functions Virtu-
alization (NFV) technology, which uses instances of Virtual Network Functions
(VNFs) instead of dedicated hardware devices. That not only reduces costs but
also has the advantage of being able to flexibly adapt services to meet rapidly
changing user demands [2].
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 147–167, 2024.
https://doi.org/10.1007/978-981-97-0801-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_9&domain=pdf
http://orcid.org/0000-0003-3192-6378
https://doi.org/10.1007/978-981-97-0801-7_9

148 H. Liu et al.

In practical MEC scenarios, users usually require not only specific VNFs,
such as firewalls, proxies, and intrusion detection systems (IDSs) but also a
reliability requirement for the services [3]. The service reliability is defined as the
ability of the network to provide stable services to ensure service level agreement
(SLA) in the face of the risk of failure of the underlying network components [4].
Satisfying user service reliability requirement is critical for the service provider,
and temporary failure of the service can lead to data loss and endanger the
secure integration of services [5]. Traditional carrier-class systems are carefully
designed to provide nearly 99.999% (five 9 s) reliable services [6] and are highly
fault-tolerant [7]. While edge servers are close to users, it is difficult to compare
with traditional cloud computing servers in terms of hardware structure, security
assurance, and maintenance timeliness, so the reliability of MEC services is an
issue that must be considered to provide stable and high-quality services to
users. Since the services in MEC are implemented by VNFs, which are instances
running on virtual machines of edge servers, the instances used to implement
VNFs may contain errors [7]. Not only that, the server hosting the VNF instance
may also malfunction and fail, all of which means that it is more difficult to
achieve 100% reliability of the service.

Fault tolerance tries to ensure the continuity of services even when failures
occur, and it can more practically improve the service reliability of MEC. Many
fault-tolerance mechanisms have been proposed, and checkpointing is one of
them [8]. However, both periodic saving and fault recovery in checkpointing
mechanism cause significant performance overhead and are not suitable for time-
sensitive MEC tasks. Another common fault-tolerance mechanism is replication,
i.e., redundant deployment of VNF instances [9], which is very suitable for MEC
reliability guarantees because of its simplicity and efficiency. Specifically, the
failure of a single VNF instance can be mitigated by deploying other VNF backup
instances in the same servers as its primary VNF instance [4]. Nevertheless, the
VNF reliability under this single-point deployment scheme is limited by the
reliability of the server where the VNF instance resides. If one server fails, all
VNF instances in that server will fail. Therefore, the multi-point deployment
scheme is often adopted in practice, which uses VNF replicas as backups and
redundantly deploys the same VNF instances on multiple servers to satisfy the
reliability requirement of users.

A redundant deployment scheme can consume a significant amount of com-
putation resources and increase costs. As a result, it is important to consider
how to ensure reliability and profitability for the service provider under limited
computation resource constraints. To address this issue, the service provider
can reduce the initiation and task execution costs of VNF replicas through task
admission and assignment decisions to maximize their profit. For that, we formu-
late a profit maximization problem for reliability assurance (PMRA). Our goal is
to maximize the profit of the service provider by admitting and assigning tasks
and their replicas under resource constraints in both homogeneous and hetero-
geneous network contexts. The main contributions of this paper are summarized
as follows.

Reliability-Aware VNF Provisioning in Homo- and Heter-MEC 149

– We use a multi-point deployment scheme to achieve fault tolerance and con-
struct a PMRA problem that maximizes the profit of the service provider
while guaranteeing task reliability. The problem is proved to be an NP-Hard
problem.

– We consider the PMRA problem in both homogeneous MEC (Homo-MEC)
and heterogeneous MEC (Heter-MEC) network scenarios. All servers in the
homogeneous-PMRA (Homo-PMRA) have the same reliability. In contrast,
heterogeneous-PMRA (Heter-PMRA) is more generalized, where all servers
have different reliability.

– For Homo-PMRA, we propose a local ratio based algorithm (LRBA) that
converts the original optimization problem into several identical subproblems
to be solved. We prove the approximation ratio of the algorithm to illustrate
its effectiveness. benefit-cost ratio preference algorithm (BRPA) prioritizes
the assignment of tasks based on the benefit ratio on the high-reliability
server and is able to find the approximate optimal solution quickly.

– We conduct simulation experiments for two network scenarios, comparing
LRBA and BRPA with the LocalSearch algorithm and random algorithm in
the homogeneous scenario, and comparing BRPA with the greedy algorithm
and random algorithm in the heterogeneous scenario. The results demonstrate
that the proposed LRBA and BRPA outperform the compared algorithms.

2 Related Work

VNF provisioning in MEC has been extensively studied [10–15]. For example,
Tian et al. [10] proposed the improved service function graph and approximation
algorithm for parallelization and deployment of VNFs on edge nodes to reduce
latency. Yang et al. [11] proposed a reinforcement learning approach to handle the
random arrival of SFC requests in MEC, with the goal of maximizing the number
of allowed requests while satisfying the reliability and latency requirements of
allowed requests. Mao et al. [12] developed a online joint SFC placement and
flow routing model that takes into account the flow variation of each SFC. To
address this issue, they propose a two-stage flow-sensitive scheme. Wang et al.
[13] propose a model for a multi-user noncooperative computing offload problem
for MEC scenarios and design a payoff function for the participants to evaluate
their benefits and achieve maximum utility for the users. Li et al. [14] proposed
a metric called coflow age to measure Result freshness. Xu et al. [15] use the
random forest to classify flows, and then assign rates and paths to flows based
on confidence to reliably predict flow information in advance.

In addition to those studies on resource allocation mentioned above, there
are several works that consider service reliability issues in VNF provisioning.
For example, Huang et al. [3] propose a new reliability-aware VNF instance con-
figuration problem for network function services in MEC. Efficient approximate
and exact algorithms are proposed to allocate network resources to accommo-
date primary and secondary VNF instances in different servers to meet users’
reliability requirements. Li et al. [1] studied the VNF service reliability problem

150 H. Liu et al.

to maximize the service provider’s revenue. The authors first considered the pro-
visioning of reliable VNF services by joint considering both the VNF instance
reliability (software) and the cloudlet reliability (hardware). Then they proposed
online algorithms with provable competitive ratios for the problems under two
different VNF placement backup schemes: the on-site and off-site schemes.

Different from the above works, this paper considers the reliability prob-
lem brought by server hardware and divides the network into Homo-MEC and
Heter-MEC scenarios. Then, we propose a multi-point deployment scheme for
distributed redundancy deployment in both scenarios. However, this scheme con-
sumes more computation resources and may not accommodate all task requests.
To address this issue, we formulate a PMRA problem to maximize profit from
edge servers executing tasks by selectively admitting task requests, thus guaran-
teeing the reliability requirement of tasks and the revenue of the service provider.

3 Preliminaries

In this section, the system model is described. We first introduce the network
model, describing the components of the network. The task model and cost model
are then detailed respectively.

3.1 Network Model

There exists a set of servers S = {s1, s2, ..., sm, ..., sM} within the network.
Each server sm ∈ S can provide K types of VNF instances, expressed as
F = {f1, f2, ..., fk, ..., fK}. Each of them has an available computation resource
capacity of capm, which is used to instantiate various VNFs and provide network
services to users. The reliability of server sm is expressed in terms of qm. A task
run on a VNF instance on an edge server, and if the server has hardware failures
and crashes, the VNF instances and tasks on it will also be affected and stop
working, so qm can also be considered as the success rate of tasks on server sm.
Figure 1 shows an illustration of the MEC network.

Fig. 1. An illustration of the MEC network.

Reliability-Aware VNF Provisioning in Homo- and Heter-MEC 151

3.2 Task Model

Suppose there is a set of tasks T = {t1, t2, ..., tn, ...tN} that need to be processed
and cannot be partitioned. For task tn, we assume it contains a set of properties
(dn, vnk, εn, γn, payn), where dn represents the size of data packets of task tn
(e.g., input parameters and processing codes). Assume that each task replica
can only run on a VNF instance of a specific type, denoting the required VNF
type by vnk ∈ {0, 1}(fk ∈ F), where vnk = 1 represents that the VNF type
required for task tn is fk. To ensure that tasks can be executed independently,
εn represents the computation resources required for task tn. The reliability goal
of task tn is represented by γn, 0 < γn < 1. It is worth noting that the service
provider admitting task tn represents its reliability requirement is satisfied, i.e.,
the task reliability goal γn is achieved through redundant deployment, at this
point the service provider gets paid, denoted by payn.

3.3 Cost Model

If a replica of a task is assigned to a server, the server needs to launch the VNF
instances required for the task. This process is called VNF instance initialization
[16], which causes some energy and resource consumption for which costs need to
be paid. We assume that VNF instances of the same type have equal initiation
costs, denote by Ci (k) the initiation cost of VNF fk. In addition, task replicas
consume computation resources on the server during processing, so there is a
cost of computation resource consumption that is related to the type of VNF
required for the task. Specifically, denote by δmk the cost per unit of data size
for an instance fk of the VNF to perform a task on the server sm. In summary,
the total cost of a replica of task tn executing on the server sm can be calculated
as

Ct (n,m) = vnk · dn·δmk + vnk · Ci (k) . (1)

4 Homogeneous MEC Scenario

In this section, we first consider a Homogeneous MEC (Homo-MEC) scenario.
For ease of management and maintenance, the service provider uses servers with
the same hardware architecture to provide services to users. This results in all
servers having almost identical hardware and parameter settings, leading to a
more uniform user experience [17]. In this case, all servers have almost the same
hardware reliability and computation capacity. For that Homo-MEC scenario,
we first formulate a profit maximization problem and then propose a local ratio
based algorithm (LRBA) to solve it.

4.1 Reliability Model

We first consider the reliability model of redundant deployment for the Homo-
MEC scenario. For that, we define the service reliability as the probability that

152 H. Liu et al.

the network can serve the admitted tasks, i.e., the probability that at least one
replica of the task can be executed properly in the network. Since all servers
in the Homo-MEC are of the same type, we can assume that the computation
capacity of each server is cap and the reliability is q, i.e., 1− q is the failure rate
of the server.

To satisfy the reliability goal γn for task tn, assuming that tn needs to be
redundantly assigned to an different servers, then according to the homogeneous
property of the network, we can obtain

1 − (1 − q)an � γn, (2)

where (1 − q)an is the probability that all an replicas of task tn fail so that
1− (1 − q)an represents the probability that at least one of the replicas can work
successfully. Therefore, the minimum number of redundant deployed replicas an

required for task tn can be calculated as

an =
⌈
log1−q (1 − γn)

⌉
. (3)

4.2 Problem Formulation

Because the computation capacity of edge servers is limited compared to cloud
servers, and especially when redundant deployment is considered, cost becomes
a factor that must be considered. Therefore, the service provider must pursue
sufficient profit to ensure that they can provide long-term stable edge computing
services. For that, we consider a profit maximization problem of reliability assur-
ance (PMRA) in Homo-MEC, which selects and admits some tasks under the
premise of satisfying the task reliability requirements to ensure that the resources
of servers do not exceed the limits and can maximize the profit of the server
provider. Specifically, we first define a binary decision variable xnm ∈ {0, 1} to
indicate whether a replica of task tn is assigned to server sm, where xnm = 1 if
task tn is assigned to server sm and xnm = 0 otherwise. Let yn ∈ {0, 1} denote
whether task tn is admitted, where yn = 1 if task tn is admitted by the ser-
vice provider and yn = 0 otherwise. Let X and Y denote the set of xnm and
yn, respectively. Finally, the Homo-PMRA problem can be formulated as the
following integer programming problem,

P1 : max
X ,Y

∑

tn∈T

payn · yn −
∑

tn∈T

∑

sm∈S

Ct (n,m) · xnm

s.t.
∑

sm∈S

xnm ≥ yn · an, ∀tn ∈ T , (4)

∑

tn∈T

εn · xnm ≤ cap, ∀sm ∈ S , (5)

xnm ∈ {0, 1} , yn ∈ {0, 1} ,∀tn ∈ T ,∀sm ∈ S , (6)

where constraint (4) denotes that for any task, if it is admitted, then the min-
imum number of task replicas needs to be satisfied due to the reliability goal.

Reliability-Aware VNF Provisioning in Homo- and Heter-MEC 153

Constraint (5) indicates that the computation resources required by the task
replicas deployed on a server must not exceed the total computation capacity
of the server. Constraint (6) denotes that decision variable xnm, yn is a binary
variable.

To solve P1 more conveniently, constraint (4) is reduced to be strictly equal,
thus transforming P1 into P2:

P2 : max
X,Y

∑

tn∈T

yn ·
∑

sm∈S

(
payn

an
− Ct (n,m)

)
· xnm

s.t. ·
∑

sm∈S

xnm = yn · an, ∀tn ∈ T , (7)

Constraints (5), (6).

Theorem 1: P1 and P2 are equivalent.

Proof: We can prove it by induction. When all yn = 0, the objective function of
P1 is maximizing −∑

tn∈T

∑
sm∈S Ct (n,m) · xnm, and constraint (4) will also

no longer work, so the optimal solution of P1 will be all xnm = 0, the same as
the solution and result of P2. Therefore the induction hypothesis holds when all
yn = 0.

Without loss of generality, we then consider the case where yn = 1
for arbitrary task tn. For task tn, the objective function of P1 can be
formulated as payn − ∑

sm∈S Ct (n,m) · xnm. Constraint (4) then becomes∑
sm∈S xnm � an. For P2, the objective function can be formulated as∑
sm∈S (payn/an − Ct (n,m)) · xnm. Constraint (7) becomes

∑
sm∈S xnm = an.

Therefore, in this case, the objective functions of P1 and P2 are identical. Sup-
pose the results of P1 and P2 are R(P1) and R(P2), respectively. Because the
objective functions are identical, but the constraints are different, it is easy to
know that R(P1) � R(P2) when yn = 1 and the other yn are 0. R(P1) and
R(P2) can be strictly equal when the solutions of P1 and P2 are exactly the
same, i.e., all xnm are the same. By so on, the above conclusion still holds for
other yn taking the value of 1. Hence, the induction hypothesis follows. P1 and
P2 are equivalent. �

Theorem 2: P2 is an NP-hard problem.

Proof: We prove that P2 is an NP-hard problem by a reduction from a well-
known NP-complete knapsack problem. The knapsack problem is defined as,
given a set of items, each of which has its own weight and price, how to choose
the items so that the total price of the items is the highest within a limited
total weight. We consider a special case of P2 where there is only one server
with capacity cap in the MEC network, and each task requires only one replica
that satisfies its reliability requirement, while all tasks arrive at the same time.
Then, if the server admits task tn, it needs to gain profit payn − Ct(n,m) at
the cost of εn computation resources. Therefore, in the special case, the goal of

154 H. Liu et al.

this optimization problem is to maximize the profit by admitting as many high-
profit tasks as possible within the limit of the server capacity cap. It can be seen
that a solution to this profit maximization problem is a solution to the knapsack
problem. Thus, according to the reduction theorem [18], the more complex P2
is also an NP-hard problem. �

4.3 Local Ratio Based Algorithm

To ease the solving of the Homo-PMRA problem, we transform P1 into P2, which
can be regarded as a generalized assignment problem (GAP). Then, we propose
a combinatorial algorithm using local ratio technique [19] to solve the GAP
problem. The local ratio technique provides a way to decompose the complex
problem into several simple subproblems. Specifically, We denote the feasible
set by R, f(·) is the objective function, and (R, f (·)) is the original problem.
Through the local ratio technique, (R, f (·)) is decomposed into several 0 − 1
knapsack problems (R, fm (·)), where fm (·) is the profit function in subproblem
m. In general, the proposed LRBA is summarized in the following steps:

1) Clustering: According to (3), the number an of redundant deployments
required for each task tn is obtained. Gather tasks with the same an into a
group. The task groups are sorted in the order of an from smallest to largest,
and the following steps are sequentially adopted for the assignment of tasks.

2) Decomposition: Generate a profit matrix for the tasks in the current group
with the corresponding servers. Decompose the assignment problem of the
current task group into multiple subproblems, which leads to M knapsack
problems (R, fm(·)).

3) Solving: Solve the knapsack problem for each server from s1 to sM . Denote by
Om the set of tasks assigned to the server sm found by the knapsack problem
algorithm. Then update the profit matrix.

4) Refinement: The tasks in Om are assigned to each server sm in the order
from server sM to s1, and the set of tasks that have been determined to be
assigned to server sm is denoted by Rm, where RM=OM . Tasks that have
been assigned are excluded in the next iteration, i.e., Rm = Om\∪M

k=m+1Rk,
eliminating the effect of sequentially on the results. Set the profit of the tasks
included in Rm in the profit matrix to zero, which also means that these
replicas will not be reassigned. Meanwhile, the rows corresponding to tasks
that meet the number of replicas deployed and the columns corresponding to
servers that can no longer admit any tasks are cleared to zero.

5) Iteration: Determine whether the profit matrix is zero. If not, return to
Step 3). Otherwise, continue to the next group and restore the computa-
tion resources occupied by tasks that do not meet the reliability goals in the
current group. The algorithm will end after all groups have been traversed,
and unadmitted tasks will be dropped.

Reliability-Aware VNF Provisioning in Homo- and Heter-MEC 155

Fig. 2. Illustration of Step 2) and Step 4).

Next, we further explain the steps in the algorithm. When generating the
profit matrix in Step 2), for ease of understanding, denote a N × M matrix p
the profit that can be obtained by the server. The element p[n,m] indicates the
profit available to server sm for deploying a replica of task tn, i.e., p[n,m] =
payn/an −Ct (n,m). First, we assume that the tasks are all preadmitted, so the
objective function is converted to f (X) =

∑
tn∈T

∑
sm∈S p[n,m] · xnm, which

shows that f (X) is a linear function on {xnm}. Let pm denote the profit matrix
before the assignment of tasks for mth server, where p1 = p. Then, We divide
pm into two parts, i.e., pm = p1

m + p2
m, where p1

m denotes the modified profit
matrix after the assignment for mth server and p2

m is the profit matrix used for
the (m + 1)th server, i.e., p2

m = pm+1. The calculation of p1
m can be given by:

p1
m[n, k] =

{
pm[n,m], if tn ∈ Om or k = m

0, otherwise, (8)

where Om is the replicas assignment result for mth server. So we have pm+1 =
pm − p1

m.
By constructing the above profit matrix, we can define a new profit function,

f1 (X) =
∑

tn∈T

∑

sm∈S

p1
1[n,m] · xnm.

Similarly, let: f ′
1 (X) =

∑

tn∈T

∑

sm∈S

p2
1[n,m] · xnm.

Clearly, we have f (X) = f1 (X) + f ′
1 (X). In the same way, f ′

1 (X) can also
become f ′

1 (X) = f2 (X)+f ′
2 (X). Eventually, f (X) can be iteratively expressed

as

f (X) = f1 (X) + f2 (X) + · · · + fM (X) , (9)

where f ′
M (X) = 0 due to p2

M = 0.
From that, we can decompose the optimization problem P2 into M subprob-

lems, each of which can be expressed as (R, fm (X)). Figure 2a illustrates the
process of problem decomposition.

In Step 3), based on the problem decomposition in the previous step, we use
a fast approximation knapsack algorithm [20] to solve each subproblem. This
step will continue until m = M or pm = 0.

In Step 4), the refinement is performed by backward loop on the above
assignment results. In the previous step, each task may be assigned to more
than one server when solving knapsack problems on different servers. Since

156 H. Liu et al.

pm+1 = pm − p1
m, each profit value in the pm+1 decreases as the subproblem is

solved, then tasks in the pm+1 that are less than zero will never be selected in
subsequent subproblems. If task tn selected in subproblem m is selected again
in subproblem m + 1, this indicates that task tn assigned to the server sm+1

will gain greater profit. In view of that, we have refined the assignment of tasks
in backward order. In subproblem m, for each task tn ∈ Om, if the task has
been assigned to server sk with k > m, then it will be excluded from Rm, i.e.,
Rm = Om\ ∪M

k=m+1 Rk. Figure 2b shows the process of refinement.
In Step 5), after completing a round of task assignment, a new round of knap-

sack subproblems will continue to be solved in that group to obtain the results
of task redundancy assignment until the tasks meet the redundancy deployment
requirement or the servers can no longer admit tasks. The above iterations will
then be repeated in the next redundancy number group.

Algorithm 1 shows the pseudocode of the proposed LRBA for the Homo-
PMRA problem. Algorithm 2 is called the recursion algorithm and is used to
implement the procedures in Steps 3) and 4).

4.4 Algorithm Analysis

To theoretically prove the performance of LRBA, we introduce the approxima-
tion ratio.

Algorithm 1: Local Ratio Based Algorithm (LRBA)
Input: Task set T , server set S
Output: Assignment results X , Y

1 Initialization: xnm ← 0, yn ← 1 (∀tn ∈ T , sm ∈ S)
2 Calculate the number of redundant deployments an for each task
3 Sort all an and remove duplicates to generate the set α
4 for each ai in α do
5 Cluster the tasks with redundancy assignment number ai as T i

6 Generate the initial profit matrix p corresponding to server
7 while p �= 0 do
8 p1 ← p
9 Invoke RA(T i,S ,p1) to get the task assignment scheme R = {R1, R2, ..., RM}

10 for each sm in S do
11 for each tn in Rm do
12 xnm ← 1, capm ← capm − εn, p[n, m] ← 0
13 if

∑
sm∈S xnm = yn · ai then

14 p[n, k] ← 0 (k = 1, · · · , M)

15 if sm can no longer admit more replicas because of capacity limitations then
16 p[k, m] ← 0 (k = 1, · · · , |Ti|)

17 for tn ∈ T i do
18 if

∑
sm∈S xnm �= yn · ai then

19 yn ← 0
20 for sm ∈ S do
21 xnm ← 0, capm ← capm + εn

22 return X , Y

Reliability-Aware VNF Provisioning in Homo- and Heter-MEC 157

Definition 1: For a maximization problem, a polynomial time algorithm is λ-
approximation for a problem (R, f(x)) if the approximation solution x deliveried
by the algorithm satisfies λ · f (x) � f (x∗), where x∗ is the optimal solution.

Lemma 1: If {X,Y } is a λ-approximation solution of (R, fm(·)), m = 1, 2, ...,M ,
where (R, fm(·)) is the mth subproblem decomposed from the original problem
(R, f(·)), then {X,Y } is also a λ-approximation solution of (R, f(·)).
Proof: From constraint (7), we know that when the decision variable X is fixed,
Y is also fixed, so we can consider only X first. Based on (9), we can learn that
the decomposition of the objective function f (X) of the original problem can
be achieved by using the local ratio technique, i.e., satisfying f (X) = f1 (X) +
f2 (X) + ... + fM (X). Then we first consider the case when M = 2, suppose
X∗, X∗

1 and X∗
2 are optimal solutions to problems (R, f(X)) , (R, f1(X)) and

(R, f2(X)), respectively. Then we can get

f (X∗) = f1 (X∗) + f2 (X∗) ≤ f1 (X∗
1) + f2 (X∗

2)
≤ λ · f1 (X) + λ · f2 (X) (10)
= λ · (f1 (X) + f2 (X)) = λ · f (X) .

Inequality (10) holds because we assume in advance that {X,Y } is a λ-
approximation solution of (R, fm(·)).

The above inequality also holds for any M . Thus we can conclude that the
feasible solution {X,Y } is a λ-approximation solution of the problem (R, f(·))
[19]. �

Lemma 2: LRBA provides a feasible solution (X,Y) for the optimization prob-
lem P2.

Proof: First, from Step 3), which solves the subproblem as a knapsack problem,
we know that the computation capacity of each server is not violated. Meanwhile,
at the end of each round of subproblem decomposition, the remaining capacity of
the server is also updated according to the allocation result of each round. Then,

Algorithm 2: Recursion Algorithm (RA)
Input: Task set T i, server set S , profit matrix pm
Output: Assignment Scheme R

1 Invoke the fast knapsack algorithm to get the task assignment scheme Om of server sm

2 Dividing pm into two parts: p1
m and p2

m, where

p1
m[n, k] =

{
pm[n, m] , if(tn ∈ Om) or (k = m)
0 , otherwise

, p2
m ← pm − p1

m

3 if m < M then
4 pm+1 ← p2

m

5 Recursive invoke RA(T i,S , pm+1)
6 Rm ← Om\ ∪M

k=m+1 Rk

7 else
8 Rm ← Om

9 return R

158 H. Liu et al.

in Step 5), a decision is made on whether the number of redundant deployments
of the task is satisfied. If the condition is satisfied the task will be admitted,
and vice versa, it will be dropped. Thus, the reliability goals of the admitted
tasks are satisfied. Therefore, the solution (X,Y) is a feasible solution to the
optimization problem P2. �
Lemma 3: If the fast knapsack algorithm is a α-approximation algorithm,
then R = {R1,R2, ...,RM} is a (1 + α)-approximation solution to problem
(R, fm (X)).

Proof: We first assume that the profit obtained from the assignment scheme R
is denoted by P (R) and then We consider two cases. When m = M , RM =
OM is the solution of fM (X), where OM is α-approximation. Since RM ∈ R,
P (R) ≤ P (RM), we can obtain R is a α-approximation of fM (X). According
to the definition of the approximation ratio, we can also know R is a (1 + α)-
approximation solution.

When m < M , we can get

fm(X) =
∑

tn∈T

∑

sm′∈S

p1
m[n,m′]xnm′

=
∑

tn∈T

p1
m[n,m]xnm +

∑

m′>m

∑

tn∈Om

p1
m[n,m′]xnm′ , (11)

(11) can be hold due to (8).
It is easy to know that the first term of (11) is the objective function of a

knapsack problem, so we can obtain
∑

tn∈T

p1
m[n,m]x∗

nm ≤ αP (Om).

The second term of (11) includes only the tasks in Om, so the profit that
can be obtained is at most P (Om). Thus, by combining the above two terms,
we have fm(X∗) ≤ αP (Om) + P (Om) = (1 + α)P (Om).

Due to Rm = Om\ ∪M
k=m+1 Rk, the tasks in Om have two cases: 1)sn ∈ Om

and sn ∈ Rm or 2)sn ∈ Om and sn ∈ Rm′(m′ > m). But in either case, in R,
sn will be assigned, and not only that but also other tasks that are not in Om

will be assigned. So, we finally get fm(X∗) ≤ (1 + α)P (Om) ≤ (1 + α)P (R).
Therefore, R is a (1 + α)-approximation solution of (R, fm (X)). �

Theorem 2: LRBA is a (1 + α)-approximation algorithm for the optimization
problem P1. Its time complexity is O

(
amaxMN3

)
.

Proof: Accoding to Lemma 3, we know R is a (1 + α)-approximation solution
of (R, fm (X)). Again, because of (9) and Lemma 1, we can conclude LRBA is
a (1 + α)-approximation algorithm.

The time complexity of LRBA is analyzed as follows: In LRBA, tasks are
clustered according to the number of redundant deployments, and each task
is repeated until the number of redundancies is met, so the process is per-
formed at most O (amaxN), where amax = max{an}. The time complexity of
the fast knapsack algorithm is O

(
N2

)
[20]. In RA, the knapsack algorithm is

performed recursively up to M times. Therefore, the time complexity of LRBA is
O

(
amaxMN3

)
. �

Reliability-Aware VNF Provisioning in Homo- and Heter-MEC 159

5 Heterogeneous MEC Scenario

In the previous section, we discussed the profit maximization problem in Homo-
MEC. However, in practical scenarios, MEC is usually operated by different
telecommunication companies, which will result in a clear distinction in the
hardware architecture of the servers [17]. These heterogeneous hardware archi-
tectures not only have different computation capacities and costs but also have
an impact on the reliability of the tasks. This means that even different replicas
of the same task, running on servers with different hardware architectures, can
have completely different failure rates. This heterogeneous MEC (Heter-MEC)
scenario is obviously very different from the Homo-MEC, so the profit maxi-
mization problem under Homo-MEC is no longer applicable to Heter-MEC, and
its algorithm is also inappropriate. To this end, we propose a new profit maxi-
mization problem for Heter-MEC and a heuristic algorithm for solving it.

5.1 Reliability Model

We assume that the reliability rate of server sm is qm and that 1 − qm is the
failure rate of sm. Since the servers are heterogeneous, the reliability rates of the
servers are independent of each other. To meet the reliability requirement γn for
task tn, task tn needs to be redundantly assigned to multiple different servers
with the corresponding number of VNF instances deployed on the servers, so we
can get

1 −
∏

sm∈S

(1 − qm) · xnm ≥ γn, (12)

where xnm = 1 represents that task tn is assigned to server sm, otherwise xnm =
0. The second term

∏
sm∈S (1 − qm) · xnm in (12) is the probability that all

VNF instances of task tn are faulted. The left side of the inequality, therefore,
represents the probability that at least one VNF instance of the task, also known
as a replica, will run successfully. Whether the reliability of the task can be
satisfied, i.e. whether (12) holds, will be determined by the decision to assign
replicas of the task.

5.2 Problem Formulation

As in Homo-PMRA, we consider a profit maximization problem for reliability
assurance in Heter-MEC. Similarly, we define two sets of decision variables, X
and Y , and formulate the following integer programming problem,

160 H. Liu et al.

P3 : max
X ,Y

∑

tn∈T

payn · yn −
∑

tn∈T

∑

sm∈S

Ct (n,m) · xnm

s.t.

(

1 −
∏

sm∈S

(1 − qm) · xnm

)

≥ yn · γn,∀tn ∈ T , (13)

∑

sm∈S

xnm ≥ yn, ∀tn ∈ T , (14)

∑

tn∈T

εn · xnm ≤ capm, ∀sm ∈ S , (15)

xnm ∈ {0, 1} , yn ∈ {0, 1} ,∀tn ∈ T ,∀sm ∈ S , (16)

where Constraint (13) indicates that the admitted task is to meet its reliability
requirements by the way of redundant deployment. Constraint (14) represents
that if a task is admitted, then it has at least one replica deployed in the network.
It is worth noting that the benefit maximization objective of P3 would avoid the
possibility of only deploying replicas without admitting tasks. Constraint (15)
denotes that replicas deployment to server sm cannot exceed its computation
resource capacity limit. Constraint (16) denotes the decision variables xnm, yn

are binary variables.

Theorem 4: P3 is an NP-hard problem.

Proof: The proof procedure is the same as the proof of Theorem 2, so it is
omitted. �

5.3 Benefit-Cost Ratio Preference Algorithm

To solve the problem of P3, we propose a heuristic algorithm termed benefit-cost
ratio preference algorithm (BRPA). The core idea is to use the greedy method to
select the server with higher reliability and prefer the task with a higher benefit-
cost ratio when deploying replicas, where the benefit-cost ratio of task tn on the
server sm is payn/Ct (n,m). The specific steps are:

1) We start by ranking the servers in descending order of reliability, prioritizing
the more reliable servers for the deployments of task replicas.

2) Split the task set into two sets, T ′, which already has replicas deployed, and
T ′′, which does not yet have replicas deployed. Each server ranks tasks in
decreasing order of benefit-cost ratios. The sorted tasks are pushed into a
queue Q. The tasks in T ′ are given priority so that tasks with replicas are
deployed to meet their reliability requirements earlier.

3) Determine sequentially whether each replica of the task in the queue satisfies
the computation capacity constraint of the server. If the capacity constraint
is met, then deploy a replica of the task to that server and determine whether
all replicas of the current task have satisfied the reliability requirements. If
satisfied then the task is admitted and it is removed from T ′ to avoid being
involved in subsequent deployments of the servers. If it is the first replica of
the task to be deployed, move the task from T ′′ to T ′.

Reliability-Aware VNF Provisioning in Homo- and Heter-MEC 161

4) Traverse through each task in T . Tasks that are not admitted will have all
their deployed replicas removed.

Algorithm 3 shows the pseudocode of our heuristic algorithm for the PMRA
problem.

Algorithm 3: Benefit-cost Ratio Preference Algorithm (BRPA)
Input: Task set T , server set S , Benefit-cost ratio matrix B
Output: Assignment results X , Y

1 Initialization: xnm ← 0, yn ← 0 (∀tn ∈ T , sm ∈ S), T ′ ← ∅, T ′′ ← T

2 Sort set S in the order of qm from largest to smallest, and name the sorted set as S ′

3 for each sm in S ′ do
4 Q ← ∅
5 Sort set T ′ in the order of payn/Ct (n, m) from largest to smallest, and push the sorted

set into queue Q
6 Sort set T ′′ in the order of payn/Ct (n, m) from largest to smallest, and push the

sorted set into queue Q
7 while Q �= ∅ do
8 tn ← Q .Pop()
9 if εn +

∑
t′
n∈T εn · xn′m ≤ capm then

10 xnm ← 1
11 if (1 − ∏

sm∈S

(1 − qm) · xnm) ≥ γn then

12 yn ← 1, T ′ ← T ′\{tn}
13 if tn ∈ T ′′ then
14 T ′ ← T ′ ∪ {tn}, T ′′ ← T ′′\{tn}

15 for tn ∈ T do
16 if yn �= 1 then
17 for each sm in S do
18 xnm ← 0

19 return X , Y

5.4 Algorithm Analysis

Theorem 5: Given a set of servers S = {s1, s2, ..., sm, ..., sM}, and a set of tasks
T = {t1, t2, ..., tn, ...tN}, there exists an algorithm BRPA that provides a feasible
solution to the profit maximization problem for VNF deployments, and the time
complexity of BRPA is O (M · N).

Proof: BRPA provides a feasible solution because each admitted task tn satisfies
its reliability requirement and the VNF instances deployment on the server have
sufficient computation resources to execute the admitted tasks. Therefore, the
BRPA solution is feasible.

The time complexity of BRPA is analyzed as follows: It takes O (M) time
to traverse all servers and O (M · N) time to compare the profit of each task
assigned to each server. Therefore, the time complexity of BRPA is O (M · N).

�

162 H. Liu et al.

6 Simulation Evaluation

In this section, we focus on the impact of important parameters on the perfor-
mance of the proposed algorithm, including the number of tasks and the number
of servers. The simulations are run on a server with Intel i7-9700, 3GHz CPU,
and 32GB RAM using Matlab.

6.1 Experimental Parameters

We consider a MEC network. There are 10 different types of VNF instances in
the network, i.e., |F | = 10 and the initiation cost Ci (k) for each VNF instance
is set randomly within [1, 3]$ [21]. The number of servers M is increased from
10 to 100, and the total computation resources capm of each server is set ran-
domly from 2GHz to 6GHz [1]. For server sm, the cost consumed to execute a
packet of VNF fk is drawn within [0.03, 0.3]$. The number of tasks N in the
network is set from 100 to 1000, and the number of packets dn for each task is
uniformly distributed within [5, 15] [22]. Each task that is admitted, i.e., satisfies
its reliability requirements, will pay the service provider a payment that takes
values in the range [10, 40]$. Each task also takes up the computation resource
capacity of the server, which is set from 40MHz to 400MHz. We assume that the
reliability of each server is between 0.99 and 0.99999 [23], while the reliability
requirements of the tasks are randomly taken between 0.99999 and 0.999999 [6].
Note that in the Homo-MEC, servers all have equal capacity and reliability. In
Heter-MEC, it’s the opposite. We execute each point in the simulation 500 times
independently and calculate the average as the final result.

Since Homo-MEC can be considered as a special case of Heter-MEC, the
BRPA algorithm can be applied to both Homo-MEC and Heter-MEC scenarios,
while the LRBA algorithm is only applicable to Homo-MEC. In our experi-
ments, we compare the performance of BRPA, LRBA, and other comparison
algorithms in Homo-MEC. For Heter-MEC, we only compare BRPA and the
comparison algorithms. The comparison algorithms mainly include the follow-
ing three, namely:

1) LocalSearch [24]: First, the admitted task set is tuned by adding, deleting,
and replacing steps. Then a greedy strategy is used to find the minimum
cost deployment solution based on the admitted task set. Finally, the set of
tasks will be continuously tuned until the benefits no longer increase. The
algorithm is applicable to Homo-MEC scenarios.

2) Greedy [25]: The tasks with the highest payment are selected first. Tasks
are then sequentially assigned to servers in order of cost from smallest to
largest until the reliability of the task is satisfied. The algorithm ends if all
the computation resources of the server are exhausted or all the tasks are
traversed. The algorithm is applicable to Heter-MEC scenarios.

3) Random [26]: One task is randomly selected for assignment at a time. Server
selection is also random. If the task eventually satisfies the reliability require-
ments it is admitted, otherwise, it is dropped. The algorithm is applicable to
both scenarios.

Reliability-Aware VNF Provisioning in Homo- and Heter-MEC 163

6.2 Impact of Number of Tasks

The performance of the proposed algorithm against LocalSearch, the random,
and the optimal solution Optimal is evaluated by varying the number of tasks in
a small-scale Homo-MEC network. The solution Optimal is obtained by ILOG
CPLEX v12.10 [27].

Fig. 3. Impact of the number of tasks on algorithm performance in the small-scale
Homo-MEC scenario

Figure 3 shows the impact of a small number of tasks on the performance
of the algorithm, with the number of tasks ranging from 10 to 100, fixing the
number of servers to 10. From Fig. 3a, we can see that the total profit of Optimal
obtained by CPLEX is the largest and the LRBA is nearest to the optimal
solution. Figure 3b shows the running time of the algorithms as the number of
tasks varies from 10 to 100, and we can see that obtaining the optimal solution
to the problem P1 with the CPLEX solver takes a significant amount of solution
time. Moreover, with more decision variables, the solution time of the optimal
solution becomes further longer, so that the optimal solution is no longer pursued
in large-scale networks.

Fig. 4. Impact of the number of tasks on algorithm performance in the Homo-MEC
scenario

Next, we vary the number of tasks from 100 to 1000 and fix the number
of servers to 100 to study the performance of the algorithm in the case of a
Homo-MEC scenario with a large number of tasks. In Fig. 4a, we compare the
profits of the four algorithms. From Fig. 4a, we can see that the total profit
of the service provider increases with the number of tasks. As can be seen,

164 H. Liu et al.

our proposed algorithms outperform the other two compared algorithms. When
the number of tasks is 1000, LRBA obtains 12.3%, 22.5%, and 90.5% higher
profit than BRPA, LocalSearch, and the random, respectively. However, it can
be seen from Fig. 4d that the running time of LRBA is also significantly higher
than that of BRPA and other algorithms, mainly because LRBA iterations and
recursions both take longer computation time. To further show the performance
of the proposed algorithms, we also compare the total revenue achieved by each
algorithm for a varying number of tasks and the cost incurred in deploying these
tasks and their replicas. Figure 4b shows the revenue that each algorithm can
obtain. It can be seen that as the number of tasks increases, the revenue obtained
by each algorithm will not continue to increase. This is because the total capacity
of the server is fixed and there is a limit to the number of tasks and their replicas
that can be admitted. However, LRBA and BPRA can obviously admit more
high-revenue tasks. Figure 4c illustrates the cost of admitting these tasks. As
can be seen, LRBA and BRPA costs are kept at a low level. Combining Fig. 4b
and 4c, it is clear that the reason why LRBA and BRPA are more profitable
is the ability to admit more high-revenue tasks while minimizing the cost of
deploying their replicas. It is worth noting that the LocalSearch first obtains the
set of admitted tasks, then goes on to find the lowest cost deployment result
on that set, and finally adjusts the set according to the profit. This comparison
algorithm, therefore, allows for very low costs but limits the revenue of admitted
tasks.

Fig. 5. Impact of the number of tasks on algorithm performance in the Heter-MEC
scenario.

We also investigate the performance of the BRPA algorithm in the Heter-
MEC scenario by varying the number of tasks from 100 to 1000 and fixing
the number of servers to 100. From Fig. 5a, we can see that the total profit of
our proposed BRPA outperforms that of the random and greedy algorithms. In
particular, due to the limited total computation resources of the servers, the
growth trend of each algorithm gradually slows down after the number of tasks
reaches 500, but BRPA can still admit more high-revenue tasks. In Fig. 5b, we
show the average profit of the tasks admitted by the three algorithms for varying
numbers of tasks, which allows us to obtain that BRPA prefers to admit tasks
with high profits.

Reliability-Aware VNF Provisioning in Homo- and Heter-MEC 165

6.3 Impact of Number of Servers

The performance of the proposed algorithms, as well as the LocalSearch algo-
rithm, the greedy algorithm, and the random algorithm is evaluated by varying
the number of servers in two network scenarios, where the number of servers is
varied from 10 to 100 and the number of tasks is fixed to 1000.

Fig. 6. Impact of the number of servers on algorithm performance in the Homo-MEC
scenario.

In the Homo-MEC scenario, it can be seen from Fig. 6a that the proposed
algorithm LRBA always outperforms BRPA and the other two compared algo-
rithms as the number of servers increases. When M = 100, LRBA’s profits are
14.5% higher than BRPA, 25.6% higher than LocalSearch, and 95.7% higher than
the random respectively. From Fig. 6c, we can see that the total cost increases
with the number of servers, and compared to LocalSearch, the total cost of
LRBA and BRPA is higher. However, as can be seen from Fig. 6b, the LRBA
and BRPA yield higher revenues and thus higher profits. This is also because
as the number of servers increases, so do the resources available to admit more
tasks, which in turn bring more revenue. LRBA and BRPA are able to admit
more high-revenue tasks even though they come at a higher cost. As can be seen
from Fig. 6d, LRBA has the longest running time, while BRPA is just above the
random, which can also show the advantage of BRPA.

Fig. 7. Impact of the number of servers on algorithm performance in the Heter-MEC
scenario.

In the Heter-MEC scenario, we can see from Fig. 7a that the performance
of each algorithm grows linearly as the number of servers increases, with BRPA

166 H. Liu et al.

outperforming the other two compared algorithms. We have also compared the
profits that can be brought by a unit of resources. Figure 7b shows that the profit
per unit of the resource decreases as the number of servers increases. However,
the BRPA is higher than the other two algorithms, which also indicates that
BRPA makes more efficient use of resources.

7 Conclusion

In this paper, we studied the optimization problems of VNF provisioning in the
Homo- and Heter-MEC scenarios. The formulated optimization problem is an
integer programming problem that ensures service reliability through redundant
task deployment with the objective of maximizing the benefit of the admitted
tasks. Then, an efficient approximation algorithm and a fast heuristic algorithm
are proposed and the approximation is proved. Finally, the proposed algorithms
are evaluated by simulation experiments, and the simulation results show that
the proposed algorithms have some advantages compared with the greedy, the
random, and the LocalSearch algorithm.

Acknowledgements. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grants 62372396, 62172350, and 61902336, in part by
the Natural Science Foundation of Hunan under Grant 2023JJ30595.

References

1. Li, J., Liang, W., Huang, M., et al.: Reliability-aware network service provisioning
in mobile edge-cloud networks. IEEE Trans. Parallel Distrib. Syst. 31(7), 1545–
1558 (2020)

2. Alonso, R.S., Sittón-Candanedo, I., Casado-Vara, R., et al.: Deep reinforcement
learning for the management of software-defined networks in smart farming. In:
2020 International Conference on Omni-layer Intelligent Systems (COINS), pp.
1–6 (2020)

3. Huang, M., Liang, W., Shen, X., et al.: Reliability-aware virtualized network func-
tion services provisioning in mobile edge computing. IEEE Trans. Mobile Comput.
19(11), 2699–2713 (2020)

4. Sarrigiannis, I., Ramantas, K., Kartsakli, E., et al.: Online VNF lifecycle man-
agement in an MEC-enabled 5G IoT architecture. IEEE Internet Things J. 7(5),
4183–4194 (2020)

5. Gill, P., Jain, N., Nagappan, N.: Understanding network failures in data centers:
measurement, analysis, and implications. In: Proceedings of the ACM SIGCOMM
2011 Conference, pp. 350–361. ACM, Toronto (2011)

6. Han, B., Gopalakrishnan, V., Kathirvel, G., et al.: On the resiliency of virtual
network functions. IEEE Commun. Mag. 55(7), 152–157 (2017)

7. Fan, J., Jiang, M., Qiao, C.: Carrier-grade availability-aware mapping of Service
Function Chains with on-site backups. In: 2017 IEEE/ACM 25th International
Symposium on Quality of Service (IWQoS), pp. 1–10 (2017)

8. Wang, L., Liu, J., He, Q.: Concept drift-based checkpoint-restart for edge services
rejuvenation. IEEE Trans. Serv. Comput. 16, 1713–1725 (2022)

Reliability-Aware VNF Provisioning in Homo- and Heter-MEC 167

9. Kang, R., Zhu, M., He, F., et al.: Implementation of virtual network function
allocation with diversity and redundancy in kubernetes. In: 2021 IFIP Networking
Conference (IFIP Networking), pp. 1–2 (2021)

10. Tian, F., Liang, J., Liu, J.: Joint vnf parallelization and deployment in mobile edge
networks. IEEE Trans. Wireless Commun. 22, 8185–8199 (2023)

11. Yang, L., Jia, J., Lin, H., et al.: Reliable dynamic service chain scheduling in 5g
networks. IEEE Trans. Mobile Comput. 22(8), 4898–4911 (2023)

12. Mao, Y., Shang, X., Yang, Y.: Provably efficient algorithms for traffic-sensitive
SFC placement and flow routing. In: IEEE INFOCOM 2022 - IEEE Conference on
Computer Communications, pp. 950–959 (2022)

13. Wang, Y., Lang, P., Tian, D., et al.: A game-based computation offloading method
in vehicular multiaccess edge computing networks. IEEE Internet Things J. 7(6),
4987–4996 (2020)

14. Li, W., Yuan, X., Qu, W., et al.: Efficient coflow transmission for distributed
stream processing. In: IEEE INFOCOM 2020 - IEEE Conference on Computer
Communications, pp. 1319–1328 (2020)

15. Xu, R., Li, W., Li, K., et al.: Darkte: towards dark traffic engineering in data
center networks with ensemble learning. In: 2021 IEEE/ACM 29th International
Symposium on Quality of Service (IWQOS), pp. 1–10 (2021)

16. Gao, T., Li, X., Wu, Y., et al.: Cost-efficient VNF placement and scheduling in
public cloud networks. IEEE Trans. Commun. 68(8), 4946–4959 (2020)

17. Lu, W., Wu, W., Xu, J., et al.: Auction design for cross-edge task offloading in
heterogeneous mobile edge clouds. Comput. Commun. 181, 90–101 (2022)

18. Zou, P., Zhou, Z.: A multilevel reduction algorithm to TSP. J. Softw. 14(1), 35–42
(2003)

19. Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted
vertex cover problem. In: North-Holland Mathematics Studies, vol. 109, pp. 27–45.
Elsevier (1985)

20. Zhao, C., Li, X.: Approximation algorithms on 0–1 linear knapsack problem with
a single continuous variable. J. Comb. Optim. 28(4), 910–916 (2014)

21. Ma, Y., Liang, W., Wu, J.: Online NFV-enabled multicasting in mobile edge cloud
networks. In: 2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS), pp. 821–830 (2019)

22. Li, Y., Xuan Phan, L.T., Loo, B.T.: Network functions virtualization with soft real-
time guarantees. In: IEEE INFOCOM 2016 - The 35th Annual IEEE International
Conference on Computer Communications, pp. 1–9 (2016)

23. Li, J., Liang, W., Huang, M., et al.: Providing reliability-aware virtualized network
function services for mobile edge computing. In: 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS), pp. 732–741 (2019)

24. Yang, S., Li, F., Trajanovski, S., et al.: Recent advances of resource allocation in
network function virtualization. IEEE Trans. Parallel Distrib. Syst. 32(2), 295–314
(2021)

25. Li, J., Liang, W., Ma, Y.: Robust service provisioning with service function chain
requirements in mobile edge computing. IEEE Trans. Netw. Service Manag. 18(2),
2138–2153 (2021)

26. Chen, M., Hao, Y.: Task offloading for mobile edge computing in software defined
ultra-dense network. IEEE J. Sel. Areas Commun. 36(3), 587–597 (2018)

27. IBM: IBM ILOG CPLEX optimizer (2011). http://www-01.ibm.com/software/
integration/optimization/cplex-optimizer/

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

Approximate Query Processing Based
on Approximate Materialized View

Yuhan Wu1, Haifeng Guo1, Donghua Yang1(B), Mengmeng Li1, Bo Zheng2,
and Hongzhi Wang1

1 Harbin Institute of Technology, Harbin, China
yang.dh@hit.edu.cn

2 ConDB, Beijing, China

Abstract. In the context of big data, the interactive analysis database
system needs to answer aggregate queries within a reasonable response
time. The proposed AQP++ framework can integrate data preprocess-
ing and AQP. It connects existing AQP engine with data preprocessing
method to complete the connection between them in the process of inter-
action analysis.

After the research on the application of materialized views in AQP++
framework, it is found that the materialized views used in the two parts
of the framework both come from the accurate results of precomputa-
tion, so there’s still a time bottleneck under large scale data. Based on
such limitations, we proposed to use approximate materialized views for
subsequent results reuse. We take the method of identifying approximate
interval as an example, compared the improvement of AQP++ by using
approximate materialized view, and trying different sampling methods
to find better time and accurate performance results.

By constructed larger samples, we compared the differences of time,
space and accuracy between approximate and general materialized views
in AQP++, and analyzed the reasons for the poor performance in some
cases of our methods.

Based on the experimental results, it proved that the use of approx-
imate materialized view can improve the AQP++ framework, it effec-
tively save time and storage space in the preprocessing stage, and obtain
the accuracy similar to or better than the general AQP results as well.

Keywords: Approximate materialized view · Materialized views
reuse · AQP++ optimization · Approximate query processing

1 Introduction

With the increasing amount of data, practical applications have higher require-
ment in query. The query results within the precise or error threshold should

This paper was supported by The National Key Research and Development Program
of China (2020YFB1006104) and NSFC grant (62232005).
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 168–185, 2024.
https://doi.org/10.1007/978-981-97-0801-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_10&domain=pdf
https://doi.org/10.1007/978-981-97-0801-7_10

Approximate Query Processing Based on Approximate Materialized View 169

be returned in the acceptable time. Sampling based approximate query process-
ing and aggregate precomputation are the two methods proposed in the past to
try to solve this problem. During interactive queries, the database will produce
a large number of materialized views, and the queries on certain data sets are
usually concentrated in practice, which makes the query results reusable.

AQP++ framework integrates AQP with aggregate precomputation. AQP
usually transforms query conditions in a reasonable way to get approximate
results, data preprocessing focuses on the reasonable organization of data set for
efficient query. However, the reuse results of the two parts of AQP++ all come
from the precise answer of precomputation, so there is still a time bottleneck in
the case of huge data scale.

Considering the reusability and reduction of the materialized views, we pro-
posed a new perspective of approximate materialized view. That is to say,
data preprocessing is based on sampling set, using general methods to gener-
ate approximate materialized views for reuse in the subsequent query process.

Using an approximate materialized view will approximate the results twice,
so we are faced with the challenge of how to choose a way of view generation
and AQP method. We use the precomputing method based on data aggregation
on the results of simple random sampling to generate the interval results as the
approximate materialized view, and identify the approximate intervals on them,
so as to realize the approximate query.

We make the following contributions in this paper:

– Sampling and aggregation precomputing of data sets, and generate approxi-
mate materialized view on the intervals.

– Identifying the approximate interval and get the approximate result.
– Comparison and improvement of sampling methods: select different sampling

methods, or combine multiple sampling methods to find the relatively optimal
method according to their respective time and accuracy performance.

The remaining sections of this paper are organized as follows. In Sect. 2, we
make overview for this paper. In Sect. 3, we introduce the framework and steps of
using approximate materialized view. In Sect. 4, the experimental results indicate
the performance of our method and we carry out comparative experiments and
error analysis. In Sect. 5, we study the influence of parameters. In Sect. 6, we
survey related work for this paper. In Sect. 7, we provide the conclusions and
give a brief overview of our future work.

2 Overview

For the range query of attributes with continuous values on the dataset, the
data cube based method for data preaggregation is a way of AQP. We will
apply this method to sample sets to generate approximate materialized views.
In this section, we will give the definition of the problem and review the interval
partition method.

170 Y. Wu et al.

2.1 Problem Definition

We consider aggregate queries on continuous attributes. Let the value range of
the query attribute be [x, y], aggregate query is defined as the number of samples
whose values belong to the query interval [a, b]. Suppose through data preaggre-
gation, we have obtained the approximate aggregate value of the attribute on k
different intervals: [a, x1], [x1, x2, ..., [xk−1, b], these results will be reused as our
materialized views. Take the age query on census data as an example, the new
range query is:

SELECT age, COUNT(*) FROM census WHERE a ≤ age ≤ b

We aim to use one or more views as approximate solutions of actual query
intervals. For example, use the sum of aggregate values of interval [xt−1, xt] and
[xt, xt+1] to replace [a, b] if ‖a − xt−1‖ ≤ ε and ‖b − xt+1‖ ≤ ε.

2.2 Data Aggregation

This paper uses the preaggregation and approximate interval recognition meth-
ods based on interval partition provided by previous strudies. It finds some par-
tition points and approximate point of query according to interval evaluation.

Partition Evaluation. The current partition points on the ordered dataset is
x1, x2, ..., xn. For any query point x, Ix and Hx are represented the first partition
point less than x and the first partition point greater than x respectively. The
interval [Ix,Hx] is also divided into two parts Lx and Lx as shown in Fig. 1.

Fig. 1. Interval Partition

Approximate method will select Ix or Hx to replace the query point x, so
the error comes from the smaller value between Lx and Lx. Define error as:

errorx = min{λN√
n

√
var(ALx

),
λN√

n

√
var(ALx

)} (1)

If i and j are the two points with the largest error in the whole dataset, then
the upper bound of the interval error will be errori + errorj .

Approximate Query Processing Based on Approximate Materialized View 171

Data Aggregation and Precomputation. Interval Partition use the adaptive
climbing method, starting from the initial state, trying to move the partition
point to a better position according to the evaluation (1). The specific steps of
the algorithm will be given in Sect. 3.

Aggregation Recognition. After interval pre partition, for query in interval
[a, b], there are four most relevant intervals: [Ia, Ib], [Ia,Hb], [Ha, Ib], [Ha,Hb].
Calculate confidence on these candidate intervals:

λN

√
var(cond(A = 0))

n
(2)

where cond(A = 0) means {x|x ∈ data, x /∈ A}. Calculate the confidence of
candidate interval on subsampling, and choose one of them with the minimum
confidence as the approximate result.

3 Reuse of Approximate Materialized View

In this section, we divide the reuse of approximate materialized view into two
parts: view generation and query approximate interval recognition. In the part of
view generation, we find the partition points of the sampling data according to
the method described in Sect. 2 and store the aggregation results of the partition
intervals. Note that these aggregation results are based on the sampling set, so
they are approximate. In the part of interval recognition, based on the method
described in Sect. 2, we find four candidate values corresponding to the query
interval, and choose the best one according to their confidence. That is to achieve
the approximate treatment of approximate materialized view.

3.1 Aggregation and Precomputing

In this part, we need to sample the dataset, and find a resonable partition of
the sampled data, use the aggregation results of each partition as a materialized
view for subsequent reuse.

Firstly we use simple random sampling, assume that the sampled data has
been sorted, and a parameter k is given to represent the number of partition
points. Starting with an initial partition, each iteration calculates the upper
bound of the current partition error, only when the new iteration reduces the
upper bound can the partition points move. When it need to move the parti-
tion point, we move the point with the minimum moving error to the position
with the maximum error in the dataset. The details will be introduced with the
description of the pseudo code in Algorithm 1.

The pseudo code of partition points generation is shown in Algorithm 1. We
first sample and sort the dataset (Line 1). Then we initialize the partition points,
here we find k points evenly on the sample set (Line 2). We define three condi-
tions to stop the algorithm: (a)iterations exceeds the threshold, (b)new iteration
cannot reduce the upper bound of error, (c)no better partition points can be
found. We initialize the above three conditions (Line 3–5).

172 Y. Wu et al.

Algorithm 1: Interval Partition
Input: dataset D, number of partition points k, maximum iteration Imax

Result: partition points set P = {p1,2 , ..., pk}
1 S ← Sample_Sort(D);
2 P ← EqualPartition(S, k);
3 iterator ← 0;
4 upper ← +∞;
5 stop ← False;
6 while not stop and ErrorBound(P) ≤ upper and iterator ≤ Imax do
7 i1 ← argmaxi error(S);
8 i2 ← argmaxi�=i1 error(S);
9 if i1, i2 ∈ P then

10 stop ← True;
11 else
12 t ← argmint∈[1,k]{maxr∈S∧r∈[pt−1,pt+1] error(Sr)};
13 if i1 /∈ P then
14 pt ← i1;
15 else
16 pt ← i2;
17 end
18 end
19 end

In an iteration, we find two points i1, i2 with the largest error in the sampling
set (Line 7–8). We should move the partition points to i1 or i2 to reduce the upper
bound of error. If i1, i2 are already partition points, means algorithm has found
the partition result (Line 9–10). Otherwise, we need to select a partition point to
move to the location of i1 or i2. Suppose three consecutive partition points are
pt−1, pt, pt+1, after moving pt, only the query on [pt−1, pt+1] will be affected by
pt and may choose other approximate points. So we define the movement error
of pt as the maximum error of interval [pt−1, pt+1], find the partition point with
the minimum moving error to move (Line 12). Note that error of i1 is greater
than that of i2, so we move to the location of i1 preferentially (Line 13–17).

At the end of the algorithm, we get the set of partition points on the sampling
set, the aggregation values on the intervals according to these points will be used
as approximate materialized view.

3.2 Approximate Interval Recognition

In Sect. 3.1, we store approximate aggregation values on several intervals. We aim
to identify the available partition intervals and find the approximate results when
a new query comes. We have reviewed the principle of approximate identification
in Sect. 2.2, details and the pseudo code will be explained in Algorithm 2.

The pseudo code of finding approxiamte result is shown in Algorithm 2. We
first find the four closest partition points to the upper and lower bounds a and b

Approximate Query Processing Based on Approximate Materialized View 173

Algorithm 2: Interval Recognition
Input: sample set S, partition points set P , approximate aggregate values

V = {Vi|sum(pi−1 ≤ x ≤ pi) ∧ x ∈ S}, query interval [a, b]
Result: approximate aggregation value Q̂

1 Ia, Ib, Ha, Hb ← LowAndHighPoint(P, a, b);
2 C ← {[Ia, Ib], [Ia, Hb], [Ha, Ib], [Ha, Hb]};
3 c ← +∞;
4 interval ← ∅;
5 S′ ← Subsample(S);
6 for t in C do
7 tmp ← confidence(t, S′);
8 if tmp < c then
9 c ← tmp;

10 interval ← t;
11 end
12 end
13 Q̂ ← AggregationV alue(interval, V);

of the query (Line 1), according to these four points constructed four candidate
intervals (Line 2). Initialize to find the candidate interval (Line 3–4). In order to
improve the computational efficiency of confidence, the set is subsampled once
(Line 5). Calculate the confidence of candidate interval in subsample set S′ and
find the minimum (Line 6–12). Finally, the approximate result can be obtained
by simple calculation according to the stored aggregated values V and the found
interval (Line 13).

Example 3.2. We want to find out the age distribution in the census data, and
there comes a query:

SELECT age, COUNT(*) FROM census WHERE 23 ≤ age ≤ 67.

Assume that the age distribution on the census is between [10, 100], and after
Algorithm 1 we got a set of 6 partition points as P = {22, 35, 47, 61, 85, 100}. So
we know Ia = 22, Ib = 61,Ha = 35,Hb = 85 and get the four candidate intervals
as [22, 61], [22, 85], [35, 61], [35, 85]. After confidence calculation, we get that the
interval [22, 61] is the best approximate result, then we can get the aggregation
result by adding the precomputed values of [10, 22], [22, 35], [35, 47], [47, 61].

3.3 Analysis for Twice Approximations

We use the following theorem to prove that the error of twice approximation
methods using approximate materialized views is controllable.

Result Estimation. Given dataset D and the sample set S on D, for some
aggregate queries q, the answer can be estimated from the sample:

q(D) ≈ q̂(S) (3)

174 Y. Wu et al.

AQP++ uses samples to estimate the difference between query results and pre
calculated aggregate values. Let q denote user’s query, pre denote precomputed
aggregate quary on complete dataset, i.e.

q: SELECT f(A) FROM D WHERE Condition
q: SELECT f(A) FROM D WHERE Condition

AQP++ estimates the differences in query results as follows:

q(D) − pre(D) ≈ q̂(S) − ˆpre(S)q(D) ≈ pre(D) + q̂(S) − ˆpre(S) (4)

In the general case, after data pre aggregate, the pre(D) obtained by AQP++ is a
known constant. Moreover, AQP++ can estimate the results of user’s query q̂(S)
and the precomputed results ˆpre(S) by formula (3). Bring these two estimates
into formula (4) to get the final approximate results. When data pre aggregation
is based on samples, we use Δ to represent the difference between sample set S
and dataset D, i.e. pre(D) = pre(S) + Δ. Substitute it into formula (??), there
will be:

q(D) ≈ pre(S) + Δ + q̂(S) − ˆpre(S) (5)

where pre(S) has been precomputed. Similarly, we can get q̂(S) and ˆpre(S) by
formula (3).

Error Estimation of Twice Approximation. We use the approximate mate-
rialized views for estimation, formula (5) is further approximated by rounding
off Δ:

q(D) ≈ pre(S) + q̂(S) − ˆpre(S) (6)

Compare formula (4) and (6), the difference is only the constant value pre(D)
and pre(S) in the precomputation part on the right side of the formula, so
Lemma 1 still holds.

Lemma 1. For any aggregation function f , if AQP can anwer queries like:
SELECT f(A) FROM D WHERE Condition, then AQP++ can also answer the
query.

Because the constant value from pre(D) to pre(S), when AQP gets unbiased
estimation, the answer returned by twice approximation is likely to be biased.
If AQP get the unbiased answer, i.e. q(D) = E[q̂(S)] and pre(D) = E[ˆpre(S)].
Based on formula (6) we get the result pre(S) + q̂(S) − ˆpre(S), calculate its
expectation:

E[pre(S) + q̂(S) − ˆpre(S)]
= E[pre(S)] + (E[q̂(S)] − E[ˆpre(S)])
= pre(S) + (q(D) − pre(D))
= q(D) + (pre(S) − pre(D))
= q(D) − Δ

(7)

When precomputation is based on the complete datasetm, i.e. pre(S) equals
pre(D), AQP++ get unbiased estimation. But when the precomputation is based

Approximate Query Processing Based on Approximate Materialized View 175

on the sample set, the expectation difference after twice approximation only
comes from the difference Δ. Then we consider the variance of twice approxima-
tion:

D[pre(S) + q̂(S) − ˆpre(S)]

= E{[pre(S) + q̂(S) − ˆpre(S) − (pre(S) + q̂(S) − ˆpre(S))]2}
= E{[pre(S) + q̂(S) − ˆpre(S) − (q(D) + (pre(S) − pre(D)))]2}
= E{[pre(D) − ˆpre(S)]2}
= E{pre2(D) − 2pre(D) ˆpre(S) + ˆpre2(S)}
= pre2(D) − 2pre(D) ˆpre(S) + D(ˆpre(S)) + E2[ˆpre(S)]
= D[ˆpre(S)]

(8)

Formula (8) explain that the variance of the result estimation is completely
from the error of sample estimation in the pre aggregation stage. Therefore, it
can be inferred from the results of formula (7) and (8) that a reasonable sampling
method can make the preprocessing result on the sample dataset approximate
to that on the complete dataset. It means the error of twice approximation is
controllable.

4 Experimental Results

In this seciton, we exprimentally study the proposed algorithms.

4.1 Experimental Setup

We will introduce the hardware, datasets and some important parameters before
we describe and analyze the experimental results.

Hardware All the experiments were conducted on a laptop with an Intel Core
i7 CPU with 2.20GHz clock frequency and 16GB of GAM.

Datasets We use UCI’s public dataset: Adult Data Set. This dataset is
extracted from census data, with 15 attributes and 32561 instances. Attributes
include numerical (age, income, etc.) and discrete (gender, nationality, etc.) The
attribute fnlwgt is the weight control value, because it has no important mean-
ing in the queries, we ignored it in the experiment. Each row of the dataset has
an instance, the attributes are arranged in order and separated by commas.

Parameters We execute experiments on attribute age, which is a integer
attribute and has the value range [17, 75]. The default number of interval parti-
tion points k = 5.

4.2 Accuracy

The sampling methods are simple random sampling and stratified sampling
based on attribute age, about 10% of the data are extracted from both sampling
methods. We analyze the accuracy of approximate materialized views reuse from
two perspectives:

176 Y. Wu et al.

– The difference between the approximate query results on the approximate
materialized view and the exact query results on the complete dataset: com-
pare absolute error, X and Y axis are the upper and lower bounds of recog-
nition interval, the error is taken as Z axis. The mark lines for X and Y axis
represent the results of interval partition in preprocessing.

– The difference between the approximate query results on the approximate
materialized view and the approximate query results on the complete dataset:
the interval partitions are obtained on the sampling sample and the complete
dataset respectively. Then get the approximate results according to the parti-
tion points. We compare the difference between them and show it in the form
of triangular surface graph. The difference is represented by QC − QAMV ,
where QC is the results on complete dataset, QAMV is the result based on
approximate materialized views. The blue and red mark line of X and Y aixs
represent the repective results of interval partitions.

Simple Random Sampling. Using simple random sampling, the results are
shown in Fig. 2. The processing time to generate the partition is about 627 s.

Fig. 2. Accuracy of simple random sampling

Figure 2(a) indicates the errors are concentrated in the region of 0% and 15%,
few points (only one in Figure) is more than 35%. It shows that the error can
be stablized within 15% by using our method.

Analyze the results in Fig. 2(b), it can be roughly divided into three different
areas: high-rise area, smooth area with error difference about 0% and concave
area. The smooth area represents the approximate query result based on the
approximate materialized view is similar to that using the exact materialized
view. The high-rise area indicates that our method performs better, and concave
area means it is not good as using materialized view from the complete dataset.
Since most of the regions in the graph are smooth and high-rise, it can be shown

Approximate Query Processing Based on Approximate Materialized View 177

that the approximate query based on approximate materialized views has better
performance in accuracy on simple random sampling.

Attribute Stratified Sampling. We set every 10 years as a layer for stratified
sampling and the results shown in Fig. 3. The processing time to generate the
partition is about 624 s.

Fig. 3. Accuracy of stratified sampling

Errors in Fig. 3(a) are also concentrated in the region of 0% and 15%. But
compared with Fig. 2(a), there are more points with large error (more than 35%),
indicating that stratified sampling is not as accurate as simple random sampling
in reusing approximate materialized views. Similarly divide Fig. 3(b) into three
areas. Compared with Fig. 2(b), there is a significant difference in the scale of Y
axis, which indicates that stratified sampling for approximate materialized view
reuse can get a closer result than directly reusing materialized view. And most
of the areas in Fig. 3(b) are above 0%, shows that stratified sampling can get
better accuracy results.

Error Analysis. Based on the precomputation of Fig. 2(a) and 3(b), we take
multiple perspectives of the result graph to analyze the error. We use red arrows
and red dotted line box to identify the parts with lower error in the result of
the diagram, and use black dashed line to mark the line lower = upper on the
lower − upper plane. The results of two sampling methods are shown in Fig. 4
and 5.

Notice the red marked parts in Fig. 4 and 5, the lower errors are concentrated
near the blue border on the lower − upper plane. It shows that the error of
approximate query is lower when query interval approaches the partition interval.
This is corresponding to with the theory, i.e. when query interval is replaced by
the partition intervals, there has lower error. When query interval moves to the
inside of the blue line, the error trends to rise, and reach the peak in the most

178 Y. Wu et al.

Fig. 4. Accuracy on simple random sampling. (Color figure online)

central areas, which also indicates that the query accuracy is lower when query
interval distance from partition intervals.

By observing the scattered points projected near the black dotted line, the
query error varies from high to low, showing an obvious fluctuation trend. The
possible reason is: when the upper and lower bounds of query are close, the
approximate query interval is easily changed to [pi, pi] (pi is a partition point), so
the returned result will be 0. Once the actual data is distributed on [pi−ε, pi+ε],
the approximate result is far from the actual result.

Analyze the Fig. 2(b) and 3(b) more specifically. Use red arrows and red
dotted line box the mark the high-rise part, and use the black dotted line to
mark the line lower = upper on the lower − upper plane. The results are shown
in Fig. 6.

The red mark in Fig. 6 indicates that the error of using approximate materi-
alized view is lower than that of using general views. Moreover, these intervals
show a trend of a lower bound and higher upper bound, that is, when the interval
span is larger, using approximate materialized views can improve the effect obvi-
ously. The projection area near the black dotted line is basically at 0%, which
indicates that when intervals have similar lower and upper bounds, the approx-
imate materialized view has almost the same accuracy as the general method.
It can be seen that this type of query interval is prone to high and low query
error, which is the original limitation of using data aggregation method, and it
can not be improved by using approximate materialized view.

Approximate Query Processing Based on Approximate Materialized View 179

Fig. 5. Accuracy on stratified sampling. (Color figure online)

4.3 The Summary of Experimental Results

We summarize the experimental results as follows:

– In most cases, the performance of reusing approximate materialized view is
better than that of reusing general materialized view. It can not only save
preprocessing time and storage space, but also have better accuracy.

– The error of reusing approximate materialized view is mainly limited by the
method of data pre aggregation.

5 Influence of Parameters

In this section, we modified the experimental parameters to study their influence
on the results. These parameters include sample size and the number of partition
points k.

5.1 Sample Size

We stay the other experimental conditions the same, using simple random sam-
pling, selected 10%, 20%, 30% and 50% from the complete dataset to repeat the
above experiments. The results are shown in Fig. 7. Figure 7 indicates that under
different sample size, the error of using approximate materialized view is about

180 Y. Wu et al.

Fig. 6. Accuracy of stratified sampling

15%, and the increase of sample size has little effect on the accuracy. We think
the possible reason is: the query processing use the data aggregation recognition
method, query error of this method mainly comes from the difference between
the pre partition points and the real query interval. The change of sample size
will not lead to a huge difference of interval partition, so it has no obvious impact
on the accuracy.

We compare the interval partitions under different sample size as shown in
Fig. 8. Figure 8(a) indicates there is no significant difference in the time of interval
partition within the increase of sample size, and Fig. 8(b) shows the results of
interval partition are similar. So we can infer that the sample size has little
effect on improving the pretreatment time and accuracy of reusing approximate
materialized view. But considering the space occupation, lower sample size has
better space performance.

5.2 Number of Partition Points

We stay the other experimental conditions the same, using simple random sam-
pling to take about 10% samples, set the number of partition points as 3, 5, 8,
10 to repeat these experiments. The accuracy are shown in Fig. 9.

Figure 9 shows the error concentration area decreases significantly with the
increase of k, so the parameter k can improve the approximate materialized

Approximate Query Processing Based on Approximate Materialized View 181

Fig. 7. Accuracy under different sampling scale

view. Then we compare the time-consuming of interval partition and the reduced
preprocessing time by using sampling under different k, results are shown in
Fig. 10.

From the results of Fig. 10, the preprocessing time is positively correlated
with number of partition points k, and the use of sampling can effectively reduce
the time of interval partition. Moreover, this performance improvement increases
with the increase of k. It shows that our method can improve the performance
greatly when k is large.

Finally we compared the difference between using approximate materialized
view and general view under different parameter k, as shown in Fig. 11.

According to previous description, the area above 0% in Fig. 11 indicates
that our approximate materialized view have better performance. Figure 11(a)
shows when k is too small, there is almost no high-rise area. As the number of
partition points from k = 5 to k = 8, high-rise area increases obviously, and the
depression area of k = 8 is smaller than that of k = 5. It shows that the increase
of k makes the use of approximate materialized view more efficient than general
views. When k becomes large (k = 10), the increase of high-rise area is no longer
obvious, but the peak value decrease, which indicates that the difference between
our method and general method is reduced. However, most of the areas are still
above the horizontal plane, so using approximate materialized view still has the
advantage of accuracy.

5.3 The Summary of Parameter Setting

We summarize the influence of parameters as follows:

182 Y. Wu et al.

Fig. 8. Different Sample Size

– From the perspective of sampling method, single attribute stratified sampling
and simple random sampling have little influence on the results.

– From the perspective of sample size, increasing the sampling scale can effec-
tively improve the accuracy of AQP. However, the too large sample size
is no longer obviously improve the performance, and the space occupation
increases. The 30% sampling ratio in the experiment can get the best results.

– From the selection of parameter k, it directly affect the accuracy of AQP.
When the number of partition is increased, the accuracy will be improved
but the preprocessing time will be increased too. In our experiment, choosing
the number of partition points with k = 8 can get the best comprehensive
result.

6 Related Work

Tranditional database management systems execute query paradigm based on
blocking. In order to deal with the challenge of interactive analysis database sys-
tem answering aggregate query in a reasonable time under large scale of data, the
technology of pre aggregation (materialized view, data cube) can significantly
reduce query latency. But they need a lot of preprocessing, there are dimension
bottlenecks and the cost of storing a complete data cube is usually very expen-
sive. The methods that try to overcome these problems (such as imMens and
NanoCubes) usually limit the number of attributes that can be filtered at the
same time, and limit the possible exploration paths.

In order to achieve low latency query, the system for interactive data explo-
ration must rely on AQP, which provide query result estimation with bounded
error. Most AQP systems conduct research on sampling, including using some
form of biased sampling (such as AQUA, BlinkDB [2], DICE), and study how to
generate better hierarchical samples [2–6], or trying to supplement samples with
auxiliary index [3,7]. However, these methods usually need a lot of preprocessing
time to obtain prior knowledge, which is still insufficient in the face of unknown
queries. In addition to sampling based AQP, some non sampling techniques are

Approximate Query Processing Based on Approximate Materialized View 183

Fig. 9. Accuracy under different k

also proposed in the study [8,9]. They provide certainty by using indexes rather
than samples. But for interactive query types, their effectiveness is not as good
as sampling based AQP.

Based on the combination of preprocessing and approximate query, the pro-
posed AQP++ framework [10,11] is used to connect any existing AQP engine
with aggpre for the connection of AQP and aggregate precomputation of inter-
action analysis.

In many AQP systems, the ueusability of materialized views is brought into
full play [12]. And there are many sample collection methods to help us study
the generation of approximate materialized view [13,14].

Fig. 10. Time Performance under different k

184 Y. Wu et al.

Fig. 11. Compared with General Views

7 Conclusion

In this paper, we proposed to generate approximate materialized views on sample
datasets and combine it with AQP++ framework to improve its performance in
the data preprocessing stage. The experimental results show that sampling can
reduce the preprocessing time based on data aggregation, thus greatly improving
the overall time performance and reduces the occupation of storage space. And
when the sample size is not too small, using approximate materialized views can
get approximate query results with smaller error than using general view in more
cases. Generate a better approximate materialized view is still a problem to be
studied. Our research is limited to the method of data pre aggregation. We plan
to horizontally select more approximate query methods using materialized views
for comparison, and consider more complex sample extraction methods to test
our views.

References

1. Gray, J., et al.: Data cube: a relational aggregation operator generalizing group-
by, cross-tab, and sub totals. In: Data Mining and Knowledge Discovery, pp. 29–53
(1997)

Approximate Query Processing Based on Approximate Materialized View 185

2. Agarwal, S., Mozafari, B., Panda, A., Milner, H., Madden, S., Stoica, I.: BlinkDB:
queries with bounded errors and bounded response times on very large data. In:
EuroSys (2013)

3. Chaudhuri, S., Das, G., Datar, M., Motwani, R., Narasayya, V.R.: Overcoming
limitations of sampling for aggregation queries. In: ICDE (2001)

4. Acharya, S., Gibbons, P.B., Poosala, V.: Congressional samples for approximate
answering of group-by queries. ACM SIGMOD Rec. 29(2), 487–498 (2000)

5. Chaudhuri, S., Das, G., Narasayya, V.R.: A robust, optimization-based approach
for approximate answering of aggregate queries. In: SIGMOD (2001)

6. Ganti, V., Lee, M., Ramakrishnan, R.: ICICLES: self-tuning samples for approxi-
mate query answering. In: VLDB (2000)

7. Moritz, D., Fisher, D., Ding, B., Wang, C.: Trust, but verify: optimistic visualiza-
tions of approximate queries for exploring big data. In: CHI (2017)

8. Cao, Y., Fan, W.: Data driven approximation with bounded resources. PVLDB
10(9), 973–984 (2017)

9. Potti, N., Patel, J.M.: DAQ: a new paradigm for approximate query processing.
PVLDB 8(9), 898–909 (2015)

10. Peng, J., Zhang, D., Wang, J., et al.: AQP++: connecting approximate query
processing with aggregate precomputation for interactive analytics. In: The 2018
International Conference. ACM (2018)

11. Wang, Y., Xia, Y., Fang, Q., et al.: AQP++: a hybrid approximate query processing
framework for generalized aggregation queries. J. Comput. Sci. 26, 419–431 (2017)

12. Galakatos, A., Crotty, A., Zgraggen, E., et al.: Revisiting reuse for approximate
query processing. Proc. VLDB Endow. 10(10), 1142–1153 (2017)

13. Gibbons, P.B., Matias, Y.: New sampling-based summary statistics for improving
approximate query answers. ACM SIGMOD Rec. 27(2), 331–342 (1998)

14. Babcock, B., Chaudhuri, S., Das, G.: Dynamic sample selection for approximate
query processing. In: The 2003 ACM SIGMOD International Conference on Man-
agement of Data. ACM (2003)

Schema Integration on Massive Data
Sources

Tianbao Li1, Haifeng Guo1, Donghua Yang1(B), Mengmeng Li1, Bo Zheng2,
and Hongzhi Wang1

1 Harbin Institute of Technology, Harbin, China
yang.dh@hit.edu.cn

2 ConDB, Beijing, China

Abstract. As the fundamental phrase of collecting and analyzing data,
data integration is used in many applications, such as data cleaning,
bioinformatics and pattern recognition. In big data era, one of the major
problems of data integration is to obtain the global schema of data
sources since the global schema could be hardly derived from massive
data sources directly. In this paper, we attempt to solve such schema
integration problem. For different scenarios, we develop batch and incre-
mental schema integration algorithms. We consider the representation
difference of attribute names in various data sources and propose ED
Join and Semantic Join algorithms to integrate attributes with differ-
ent representations. Extensive experimental results demonstrate that the
proposed algorithms could integrate schemas efficiently and effectively.

Keywords: Information integration · Schema mapping · Schema
integration

1 Introduction

In the era of big data, the integration of massive data sources from the web is
crucial, but existing techniques face challenges due to the absence of a global
schema.

Traditional information integration systems rely on predefined global schemas
and schema mapping techniques to unify heterogeneous data. However, in the
case of massive data sources, defining a global schema is impractical because
users can’t grasp the entirety of all data sources.

Schema integration, creating a global schema and mapping it to local
schemas, becomes essential in this context, posing two main challenges. Firstly,
integrating schemas can be complicated by synonyms, homonyms, and mis-
spellings in attribute names across schemas, impacting the quality of the inte-
grated schema. Secondly, handling large sets of schemas with potentially billions
of attributes efficiently is demanding.

Supported by The National Key Research and Development Program of China
(2020YFB1006104).
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 186–206, 2024.
https://doi.org/10.1007/978-981-97-0801-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_11&domain=pdf
https://doi.org/10.1007/978-981-97-0801-7_11

Schema Integration on Massive Data Sources 187

To address these challenges, this paper explores schema integration for mil-
lions or billions of attributes, considering both efficiency and effectiveness.
For effectiveness, an approximate matching algorithm is introduced, utilizing
a knowledge base to evaluate semantic similarity and identify relationships
between attributes. For efficiency, the paper develops efficient algorithms, adapt-
ing traditional join operations and optimizing disk I/O by clustering related data
in continuous blocks.

The contributions of this paper include:

– Pioneering research on schema integration for massive data sources in infor-
mation integration.

– Proposing an efficient and effective schema integration framework leveraging
a knowledge base.

– Designing batch and incremental integration algorithms for scalability and
effectiveness.

– Conducting extensive experiments validating the proposed methods’ perfor-
mance.

The paper is organized as follows: Preliminaries and backgrounds are intro-
duced in Sect. 2. An overview of the framework is presented in Sect. 3. Join
algorithms for schema integration are explained in Sect. 4. Detailed solutions for
batch integration are provided in Sect. 5. Experimental results and analyses are
discussed in Sect. 6. A comparison with related work is presented in Sect. 7, and
the paper concludes in Sect. 8.

2 Preliminary

In this section, we introduce the backgrounds and definitions of the problem
studied in this paper. At first, we give a brief introduction to knowledge base
and edit distance. Then we define the problem and related symbols.

2.1 Knowledge Base

Incorporating a knowledge base helps assess semantic similarity among
attributes, addressing synonyms and homonyms in attribute names. Knowledge
bases like Freebase, WordNet, Probase, and YAGO follow a graph structure.
Concepts serve as nodes, and relationships as edges, forming a graph (G). Nodes
have a 3-tuple (id, name, type), e.g., “Pies” and “Sweet pies” are (id1, “Pies”,
“wikicategory”) and (id2, “Sweet pies”, “wikicategory”). Some knowledge bases
use an “is a” hierarchy, representing subclass relationships as edges (set S).

Definition 1 (edge). ∃ a,b ∈ G, if a “is a” b, then edge (a,b) ∈ S.

For an attribute like a, if a concept ca in the knowledge base has the closest
literal distance to a within a threshold εt, it’s considered as the representation
of a. This enables the computation of the semantic distance between attributes

188 T. Li et al.

a and b based on their corresponding concepts in the knowledge base. In other
words, dis(a, b) ≤ ε if disr(ca, cb) ≤ γ, dist(a, ca) ≤ εt, and dist(b, cb) ≤ εt.

For example, let’s consider two attributes: a = “Sweet pies” and b = “meat
pie,” along with their corresponding knowledge base concepts, ca = “Sweet pies”
and cb = “meat pie.” Setting εt = 2 and verifying that the literal distances
between the attributes and concepts meet the threshold, we only need to check
if the semantic distance between the concepts satisfies γ. In this case, both “Sweet
pies” and “meat pie” share the common concept “pie,” resulting in disr(ca, cb)
= 2. Since dis(a, b) falls within the threshold, “Sweet pies” and “meat pie” are
considered related attributes.

In situations where no literal matches are found for concepts in the knowledge
graph for either a or b, we rely solely on the literal distance between them to
measure their dissimilarity. For instance, if “Abraham Lincoln” is misspelled
as “Abrehan Lincon” and the calculated dist between them is 3, and εt is set
to be less than 3, then the comparison of two attribute names like “Abrehan
Lincon” and “Abraham Robinson” is based solely on literal difference, resulting
in dis(a, b) = dist(a, b). In the provided example, dis(a, b) would be 6.

It’s important to note that even with the knowledge base and edit dis-
tance, accurately determining attributes for integration can be challenging due to
semantic complexities. Take, for instance, the attributes “import” and “export.”
They share a strong literal similarity, and a path “import” - “commodity” -
“export” in the knowledge base between them has a length of 2, which seems rel-
atively small. However, these attributes are actually antonyms and not seman-
tically similar. Resolving such semantic ambiguities often necessitates human
intervention, as semantic understanding remains a challenging issue in schema
matching. In this paper, while we strive for automated processing, we acknowl-
edge that addressing false positives may require further human verification, as
discussed in Sect. 3.4.

2.2 Distance Function

Based on the knowledge base, we define the semantic distance between two
attributes in the schemas as follows.

Definition 2 (semantic distance). ∃ a,b ∈ G, s.t. (a, b) ∈ S, a semantic
distance means the length of the path between a and b, denoted as disr(a, b).

According to this definition, the smaller disr is, the more similar a and b are,
as described in Sect. 2.1. Then we use a threshold γ to constrain whether two
concepts are similar enough. Two concepts are regarded similar with the distance
under the given threshold γ. For example, if we define γ = 2 when disr (“Sweet
pies”, “pie”)= 1, then we regard “Sweet pies” and “pie” as related concepts.

With misspellings, an attribute name may not be found in the knowledge
base. Thus, we should consider literal difference between attributes and concepts
in the knowledge base. In this paper, we use edit distance [4], a commonly-used
distance function for strings to represent the literal distance between attribute

Schema Integration on Massive Data Sources 189

names and concepts, denoted by dist. Utilization of edit distance will be dis-
cussed in detail in Sect. 2.3.

With these considerations, we define following constraints of the determina-
tion whether attributes could be matched in schema integration.

Distance Constraint

dis(a, b) ≤ ε =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

disr(ca, cb) ≤ γ ∧ dist(a, ca) ≤ εt ∧ dist(b, cb) ≤ εt,

∃ca, cb, dist(a, ca) ≤ εt ∧ dist(b, cb) ≤ εt

dist(a, b) ≤ εt,

∀ca, cb, dist(a, ca) ≥ εt ∨ dist(b, cb) ≥ εt

When dealing with an attribute name like a, if a concept ca within the
knowledge base has the closest literal distance to a below the εt threshold, we
designate ca as the representation of a. This enables us to compute the semantic
distance between attributes a and b based on their respective knowledge base
concepts. To clarify, dis(a, b) ≤ ε holds when disr(ca, cb) ≤ γ, dist(a, ca) ≤ εt,
and dist(b, cb) ≤ εt.

In cases where there are no literal matches for concepts in the knowledge
graph for either a or b, we rely solely on the literal distance between them to
measure their dissimilarity. For instance, if “Abraham Lincoln” is mistakenly
spelled as “Abrehan Lincon,” and the calculated dist between them is 3, and
εt is set to a value less than 3, we treat two attribute names like “Abrehan
Lincon” and “Abraham Robinson” as a and b. In such instances, the distance is
determined solely by literal differences, leading to dis(a, b) = dist(a, b), resulting
in dis(a, b) being 6.

Even with the knowledge base and edit distance, accurately identifying
attributes for integration can be challenging due to the inherent complexity
of semantics. For example, consider the attributes “import” and “export.” They
exhibit strong literal similarity, and addressing such semantic ambiguities often
necessitates human intervention. In this paper, while we strive for automated
processing, addressing false positives may require additional human verification,
as discussed in Sect. 3.4.

2.3 Edit Distance and Q-Gram

Edit distance, a metric for measuring the literal dissimilarity between two
strings1, has been a focus of extensive research by scholars like [5,6], and [9].
In our context, we employ dist(a, b) to denote the edit distance between the
strings a and b, with a predefined threshold of εt.

Edit distance computation primarily relies on manipulating the q-gram struc-
ture of strings. A q-gram refers to a substring of length q within a string. Notably,
strings with a small edit distance should share numerous common q-grams. A
commonly used filtering condition, as proposed in [2], is presented below.
1 http://en.wikipedia.org/wiki/Edit_distance.

http://en.wikipedia.org/wiki/Edit_distance

190 T. Li et al.

Count filtering means that a and b must share at least LBab common
q-grams.

LBab = (max(|a|, |b|) − q + 1) − q ∗ εt

To enforce constraints, we use LBab and apply count filtering to alternative
schemas within the εt threshold.

In schema integration for big data, exhaustive concept scanning in the knowl-
edge base is unfeasible. To address this, we employ an inverted list structure to
organize our index.

For a word w, q-gram splitting yields segments w1, w2, ..., wk (1 ≤ k ≤
|w| − q + 1). Each wi (1 ≤ i ≤ k) is represented as (hi, vi), where hi is the hash
value of wi, and vi is a set of words containing wi. Disk storage uses hi as the
index for wi.

Literal difference assessment relies on count filtering. When matching a string
s to word set W , s is divided into q-grams: s1, s2, ..., sk (1 ≤ k ≤ |s| − q +
1). Hashing si (1 ≤ i ≤ k) and matching them with attribute set A yield
mapped entries: s1, s2, ..., sj (j ≤ k). We then scan v1, v2, ..., vj , counting
word occurrences. If an attribute ai appears no less than |s|−q+1−εt ∗q times,
we consider s and ai as literally similar, merging them into the integrated set.

2.4 Problem Definition

Given a schema set Σ, each schema si is represented as (idi, ni, Ai). Schema
integration aims to create a global schema Sg from Σ, mapping attributes in
each si to Sg while ensuring that for each attribute t ∈ Ai, its corresponding
attribute at in Ag satisfies dis(t, at) ≤ ε. In practical terms, this means identi-
fying and including similar attributes like “Savory pies,” “Tiropita,” “meat pie,”
and “tourtiere” during integration.

3 Overview

In this section, we outline schema integration, a process that combines semantic
and literal distance measures to assess attribute similarity. We discuss initializing
the knowledge base in Sect. 3.1.

To cater to different scenarios, we’ve devised two schema integration algo-
rithms: batch integration and incremental integration. Batch integration is suited
for cases where multiple schemas require simultaneous integration, while incre-
mental integration is tailored for updating existing schemas with small-sized
input. These algorithms will be discussed further in Sect. 3.2 and Sect. 3.3,
respectively.

To streamline processing, we’ve introduced a specialized data structure
known as a cluster set. This data format is used for both operands and out-
put in subsequent functions. Henceforth, in this paper, we will refer to this data
structure simply as the “cluster set.”

Schema Integration on Massive Data Sources 191

Definition 3 (cluster set). With S as the concepts set of the knowledge base,
a cluster set is a set of pairs {U, SU}, where U is a set of attributes and SU =
{(r, d)|d = min∀t∈U{dis(t, r)} ∧ r ∈ S}. The function is the combination of both
literal and semantic distance, as defined in Sect. 2.

3.1 Initialization

As highlighted in Sect. 2.1, our system relies on the “is a” relationship between
concepts, represented as triples (id, name, type). Here, id serves as the concept’s
index, name as the identifier, and type denotes the knowledge base section of
origin. Consequently, relationships between concepts are described using six-
tuples (subId, subName, subType, superId, superName, superType).

3.2 Batch Integration

Batch integration processes multiple schemas in a batch by clustering their
attributes and merging them into an integrated schema. This involves two types
of similarity join operations: ED Join and Semantic Join. ED Join identifies
pairs of attributes with edit distances smaller than a threshold, while Semantic
Join finds pairs with semantic similarities greater than a threshold based on the
knowledge base. Merged pairs from these joins are integrated into the schema.
However, transitivity issues can arise during this process due to the nature of
the similarity function.

To address transitivity problems, a further step called “resolve” is employed.
The algorithm for batch integration is outlined in Algorithm 1. Initially, all
attributes from the input schemas are added to a set U (Lines 1–3). Subsequently,
ED Join is performed on U to merge literally similar attributes (Line 4), followed
by Semantic Join to merge semantically similar attributes (Line 5). This results
in attribute pairs forming clusters. However, transitivity issues may persist in the
clusters, which are resolved through the Resolve(U) function (Line 6). Further
details on the resolve process are discussed in Sect. 5.2.

Algorithm 1: Batch Integration
Input: schema batch W
Output: integration set U

1 foreach w ∈ W do
2 U ← U ∪ Aw;
3 end
4 U ← U− EDJoin(U ,U);
5 U ← U− SemanticJoin(U ,S);
6 U ← Resolve(U);
7 return U ;

192 T. Li et al.

3.3 Incremental Integration

Incremental integration adds schemas to the existing global schema one at a
time, ideal for integrating new data sources. It employs a cluster set U containing
all global schema attributes to streamline the process. When integrating a new
schema K, each attribute a in K is compared to U for both literal and semantic
similarity. If a lacks similar attributes in U , it’s inserted, and U is updated
accordingly, with an additional verification step to reduce false positives.

Algorithm 2: Incremental Integration
Input: inserting schema K, integration set U
Output: integration set U ′ after insert

1 T ← EDJoin(K,U);
2 R ← Verify(T ,U);
3 V ← K − R;
4 V ← EDJoin(V ,S);
5 V ← SemanticJoin(V ,S);
6 U ← U ∪ V ;
7 U ← Resolve(U);
8 return U ;

Both incremental and batch schema integration share common operations:
(1) ED Join, a similarity join based on edit distance, (2) Semantic Join, which
leverages semantic similarity from the knowledge base, and (3) Resolve, which
involves verification and cluster partitioning. It’s worth noting that the Ver-
ify() function in Algorithm 2 corresponds to a part of the Resolve() function in
Algorithm 1.

3.4 Verification

To address potential false positives in attribute integration, we employ a verifi-
cation approach comprising value verification and manual verification.

Value Verification: This method relies on attribute values to validate inte-
gration results. It assumes that if two attributes are similar, their values should
exhibit similarity or identity. Value verification employs structural analysis and
predefined rules for judgment:

– Type: Attributes have specific data types (e.g., integer, string, list). Similar
attributes often share the same data type, especially for complex structures.
For example, if attributes contain string sets of names, they may be consid-
ered similar, like a list of football team names. Conversely, attributes with
dissimilar data types (e.g., mixing strings and integers) are less likely to be
similar. Type serves as the primary judgment criterion.

– Affix: Examining common prefixes and suffixes in attribute values can reveal
specific word structures. For instance, shared prefixes or suffixes like “ . . . ”
might indicate attributes related to cost or financial records. Thus, affixes are
employed as a secondary judgment criterion.

Schema Integration on Massive Data Sources 193

These rules help identify false positives. If attributes initially considered sim-
ilar fail to meet these value-based criteria, they are reevaluated as false positives,
and the proposed relationship is rejected.

Manual Verification: While value verification is effective in some cases, it may
be insufficient for attributes lacking distinct structures or those without values.
For enhanced accuracy, manual verification involving human assessment is uti-
lized. Crowdsourcing is employed in specific high-accuracy domains to further
validate and refine integration results.

4 Join Schema Integration

According to the definition of cluster set, the operators of ED Join and Semantic
Join are defined as follows.

Definition 4 (ed join). Given two families of cluster sets, R and T , and a
threshold d, two elements (U1, S1) and (U2, S2) from R and T , respectively, are
ED joined if they satisfy one of the following constraints.

1. min
r1∈U1,r2∈U2

dist(r1, r2) ≤ εt

2. ∃(r, d) ∈ S2, min
r1∈U1

dist(r1, r) ≤ εt − d

3. ∃(r, d) ∈ S1, min
r2∈U2

dist(r2, r) ≤ εt − d

The ED Join result of (U1, S1) and (U2, S2) is a pair (U , SU), where U = U1∪U2

and SU = {(r, d)|r ∈ S ∧ d = mint∈U{dis(r, t)}}.
Definition 5 (semantic join). Given two families of cluster sets R, T , and a
threshold d, two elements (U1, S1) and (U2, S2) are from R and T , respectively
are semantically joined if they satisfy one of the following constraints.

1. min
r1∈U1,r2∈U2

disr(r1, r2) ≤ γ

2. ∃(r, d) ∈ S2, min
r1∈U1

disr(r1, r) ≤ γ − d

3. ∃(r, d) ∈ S1, min
r2∈U2

disr(r2, r) ≤ γ − d

The result of Semantic join on (U1, S1) and (U2, S2) is a pair (U , SU), where
U = U1 ∪ U2 and SU = {(r, d)|r ∈ S ∧ d = mint∈U{dis(r, t)}}.

ED Join and Semantic Join are employed to integrate sets of attributes based
on edit distance and semantic similarity, respectively. These operations involve
specific conditions for attributes to be considered similar and are described in
Definition 4 and Definition 5.

For ED Join, it primarily relies on direct attribute similarity, defined as
the first constraint in the mentioned definitions. If the distance between r1 ∈
U1 and r2 ∈ U2 is within one of the specified thresholds, these attributes are
considered similar, enabling the integration of the respective cluster sets. For

194 T. Li et al.

instance, attributes “Sander” and “Sunder” have an edit distance of 1, making
them similar, and thus, U1 and U2 can be joined.

Moreover, both ED Join and Semantic Join take into account conditions 2
and 3 as per the definition of the cluster set. If the distance between r1 in U1

and r in S2 is within γ −d, they are regarded as similar, allowing the integration
of the cluster sets containing r1 and r. This judgment process is applicable to
both ED Join and Semantic Join.

Algorithm 3: Pair Join
Input: two cluster pairs (U1, S1) and (U2, S2)
Output: joined pair (U , S)

1 U ← U1 ∪ U2;
2 foreach (r, d) ∈ S1 ∪ S2 do
3 if dist(r, v) ≤ d then
4 S ← S ∪ (r, dist(r, v));
5 end
6 else
7 S ← S ∪ (r, d);
8 end
9 end

10 return (U ,S);

Based on the Pair Join solution, ED Join and Semantic Join are two crucial
steps to finish batch integration and incremental integration. We will discuss ED
Join and Semantic Join respectively in Sect. 4.1 and Sect. 4.2.

4.1 ED Join

ED Join focuses on merging cluster sets with attributes that are literally similar.
This operation resembles the similarity join on sets of strings based on edit
distance, as discussed in [4,5]. To efficiently achieve this, we adapt q-gram-based
methods for ED Join.

Our fundamental data structure is the inverted list, with each q-gram serving
as an entry. Attributes within the cluster sets are indexed using q-grams. Given
inputs R and T , the q-gram-based inverted lists for their attribute sets are
denoted as XR, XT for U , and ZR, ZT for SU , respectively. In ED Join, two
cluster sets can be joined based on the three constraints outlined in Definition
4. Consequently, q-gram-based similarity joins are performed according to index
pairs XR and XT , XR and ZT , as well as XT and ZR.

Within the ED Merge function, the input H represents the index list, while
the output K consists of pairs that have been joined. Each gram g in the list
H is associated with a list v1, v2, . . . containing attributes that contain g. The
function begins by counting the frequency of appearance for each attribute v
in different parts of the list H, such as XR ∩ XT (Line 10), and initializes the
answer set K as an empty set (Line 11). For each v that appears more than
|v| − q + 1 − εt ∗ q times, indicating the presence of similar attributes in H (as
discussed in Sect. 2.3), the cluster set containing v is merged into K using Pair

Schema Integration on Massive Data Sources 195

Join (Lines 12–16). The Locate(v) function is used to determine the cluster set
to which v belongs. Ultimately, the resulting cluster set M contains integrated
attributes for ED Join.

Algorithm 4: ED Join
Input: two cluster sets R and T , threshold εt and d
Output: joined cluster sets M including pairs (U , S)

1 XR ← q-gram(R.Ui);
2 XT ← q-gram(T.Ui);
3 ZR ← q-gram(R.Si);
4 ZT ← q-gram(T.Si);
5 M ← M∪ EDMerge (XR ∩ XT);
6 M ← M∪ EDMerge (XR ∩ ZT);
7 M ← M∪ EDMerge (XT ∩ ZR);
8 return M ;
9 function EDMerge

Input: q-gram H
Output: set of joined pairs K

10 Count(v ∈ g ∈ H);
11 K ← ∅;
12 foreach v ∈ g ∈ H do
13 if count[v] ≥ |v| − q + 1 − εt ∗ q then
14 K ← PairJoin(K, Locate(v));
15 end
16 end
17 return K;
18 end

4.2 Semantic Join

To accelerate join processing, we maintain a hash table for k-hop neighbors of
all concepts, denoted as Hk. Such table is used to find required pre-processed
neighbors relationship within O(1) time complexity. Thus, running time is saved
by turning the paths in the knowledge base into accessing a series of segments
in hash tables. We define neighbor table as first.

Definition 6 (neighbor table). t is an attribute and P is the set of all paths
in the knowledge base. Hk(t) is a table on the disk indexed by hash value of string
t, s.t.

Hk(t) = {ai|(t, ai, d) ∈ P ∧ d = k}
The hash function’s primary objective is to cluster attributes closely together

on the disk. To achieve this, we divide the table into multiple buckets, ensuring
that attributes accessed together are placed in the same bucket. To illustrate,
let’s consider a hash seed of 13, a bucket length of 10,000, and a base offset for
this bucket at 1,000,000. The offsets for each attribute are detailed in Table 1.

196 T. Li et al.

Table 1. Example of Bucket Hash Offset

Attribute Offset in Bucket Total Offset

Name 9277 1009277
Speed 5109 1005109
Amount 2380 1002380
Streetname 2708 1002708

The algorithm is shown in Algorithm 5.

Algorithm 5: Bucket Hash
Input: one set of attributes of A, offset base value R0
Output: set K of (hashkey, attribute)

1 K ← ∅;
2 foreach a ∈ A do
3 k ← 0;
4 foreach s ∈ a do
5 k ← (k ∗ hash_seed + s);
6 s ← next(s);
7 end
8 k ← k%bucket_length;
9 k ← k + R0;

10 K ← (k, a);
11 end
12 return K;

In this algorithm, we take a set of attributes A as input, along with the
base offset R0 indicating the starting point of the bucket on the disk. For each
attribute a, we calculate its hash value k (Lines 2–7). To ensure that these
attributes are grouped together in a single bucket for reduced disk access time,
we compute the offset for each attribute by adding the bucket offset k to the
base offset R0 (Lines 8–9). All pairs of hash keys and attributes are then added
to set K as the output.

Join Algorithm. The logical process of Semantic Join under the semantic
threshold γ can be described as follows:

(R) ∪ (R �� E) ∪ (R ��
2 E) ∪ · · · ∪ (R ��

γ−1 E) ∪ (R ��
γ E)

During this join operation on the knowledge base, we establish connections
between paths of varying lengths. Each connection requires matching between
the end nodes of one path and the starting nodes of another. To optimize com-
putation speed, we introduce the concept of a “path set,” which is a sophisticated
data structure designed to group paths with the same end node into the same
hash bucket. This data structure is defined as follows:

Schema Integration on Massive Data Sources 197

Definition 7 (path set). Pa is a path set, all paths in which share the same
end node a, s.t.

Pa = {(start, k)|∃start ∈ Hk(a)}
The Semantic Join algorithm, as outlined in Algorithm 6, operates based

on the provided data structure. It takes as input the target cluster set R, the
threshold γ, and the knowledge base with hash-based storage, producing the
joined cluster sets M .

Algorithm 6: Semantic Join
Input: one cluster set R, semantic threshold γ and 1-hop neighbor table H1
Output: joined cluster sets M

1 P ← ∅;
2 M ← ∅;
3 foreach w ∈ Ui|(Ui, Si) ∈ R do
4 Ph ← Ph ∪ {(w, 1)|h ∈ H1(w)};
5 P ← P ∪ Ph;
6 end
7 for i=1 to γ − 1 do
8 foreach Pi ∈ P do
9 Pj ← Pj ∪ {(start, len + 1)|j ∈ H1(i)};

10 P ← P ∪ Pj ;
11 if j ∈ Ui|(Ui, Si) ∈ R then
12 foreach start ∈ Pj do
13 M ← M ∪ PairJoin(atCluster(start), (Ui, Si));
14 end
15 end
16 if (j, d) ∈ Si|(Ui, Si) ∈ R ∧ len + 1 + d < γ then
17 foreach start ∈ Pj do
18 M ← M ∪ PairJoin(atCluster(start), (Ui, Si));
19 end
20 end
21 end
22 end
23 return M ;

Our goal is to identify concepts within a subgraph where paths have a length
no greater than the specified threshold.

After adding 1-hop neighbor information into P during step 2, we proceed
to expand from the end concepts of each path set by performing joins with H1.

For the Semantic Join algorithm, the expansion step relies on P obtained from
the initialization step. Based on the 1-path set to obtain a γ-path subgraph, the
number of expansion loop iterations is γ − 1 (Line 7). For each path set Pi in
the set P , the first task is to identify paths that the end concept i can connect
to. Utilizing the 1-hop neighbor table H1, we filter out all the paths (i, j, 1) and
link them to i, thereby expanding the paths to reach j. Subsequently, we insert
(start, len + 1) into Pj (Lines 8–10).

When executing the operation Pj ← Pj ∪ (start, len + 1)|j ∈ H1(i) (Line 9)
to expand paths in the knowledge base, Pj gets updated with the insertion of
new paths. However, Pj often ends up containing duplicated concepts with the
same start and end concepts.

198 T. Li et al.

According to the definition of semantic distance in Definition 2, the differ-
ence between two concepts is represented by the path length in the algorithm.
Therefore, the smaller the length, the more similar the two concepts are. Under
a given threshold γ, a shorter path (length = d) has a higher chance of joining
with other concepts (γ − d times, which is greater). For paths that share the
same start and end concept, the shorter path is preferred for integration.

Finally, the end concept j in Line 9 is used to determine whether cluster
sets (Ui, Si) should be merged. If the end concept j belongs to any Ui, then
the cluster set where the path started from, denoted as (atCluster(start)), is
merged with (Ui, Si) and added to M (Lines 11–15). Additionally, if the end
concept j is within any Si and the distance to the corresponding concept in Ui

is d such that len + 1 + d < γ (indicating that the distance between start and
any concept in Ui is no more than γ), then the cluster set (atCluster(start)) is
also merged with (Ui, Si) and added to M (Lines 16–20).

Implementations. When the threshold becomes larger, scanning H1 multiple
times (specifically |γ| − 1 times) can become costly. According to the definition
of the neighbor table, the concepts found by Hk and Hk1 �� Hk2 �� · · · �� Hkm

(where k1 + k2 + · · · + km = k) are the same. To address this, the main idea is
to use neighbor tables with higher k values to reduce the number of times we
access Hki

. Additionally, generating neighbor tables becomes more expensive as
k increases, so constructing a neighbor table for every possible k is impractical.

Here, we utilize integer powers of 2 (e.g., 1, 2, 4, 8, 16, 32, 64, etc.) to balance
the initialization cost and cover the threshold of the join algorithm by adding
up some of these numbers. This approach enhances the efficiency of Semantic
Join by reducing the number of times we need to access neighbor tables, while
still covering a wide range of threshold values.

According to the analysis above, the time cost of the proposed algorithm is
unrelated to the size of knowledge base. Without accessing the knowledge base
too many times, the algorithm saves much time and can be easily adopted in
problems on the knowledge bases in various sizes. The time cost is related to
the sets of input and output. We can save time by controlling the threshold to
diminish the size of these sets and finally save time.

5 Batch Integration

In this section, we discuss batch integration implementation in detail. We first
introduce the steps to construct the cluster set for batch integration in Sect. 6.1.
How to resolve subset consisting unrelated schemas efficiently is provided in
Sect. 6.2.

5.1 Flow of Batch Integration

The batch integration algorithm, as outlined in Sect. 3.2, consists of four main
steps: initialization, ED Join, Semantic Join, and resolve. In the initialization

Schema Integration on Massive Data Sources 199

step, all attributes are added to set U as the center attributes for the join oper-
ations. Self-ED-Join is then performed on U to group literally similar attributes
together.

Following that, Semantic Join is applied to U to aggregate semantically
related attributes. This step merges cluster sets that share similar semantic
attributes, resulting in cluster sets containing both literally and semantically
similar attributes. To achieve accurate schema integration, a resolve process is
introduced to break down the merged cluster sets into smaller ones, eliminating
extraneous information.

5.2 Resolving

After the merge operation by the join algorithm, similar attributes are grouped
together in cluster sets. However, as discussed in Sect. 5.1, the cluster set doesn’t
always meet the predetermined closure constraint. Here, we propose a simple and
efficient solution that is functionally sufficient to resolve this issue. Let’s illustrate
this solution with an example.

Fig. 1. Example of Resolving

Figure 1 illustrates some relational structures within cluster sets. Suppose
we perform a join operation under a given threshold. The dashed line box con-
tains attributes within the threshold. The distances dis(Xa,Xi), dis(Xi,Xj),
and dis(Xj ,Xb) are all within the threshold, indicating that these are similar
attributes. Consequently, the attributes Xa,Xi,Xj ,Xb in the figure can be inte-
grated into one cluster set.

However, it’s essential to note that Xa and Xb have no meaningful relation-
ship, and their distance dis(Xa,Xb) exceeds the threshold.

There are multiple valid approaches to resolve this situation, such as parti-
tioning into Xa,Xi,Xj ,Xb or Xb,Xi,Xj ,Xa, depending on the specific context.
Additionally, it’s worth considering whether it’s possible to tolerate Xa and Xb

being in the same set to reduce the number of resolution steps, especially when
dis(Xa,Xb) is not significantly large.

6 Experiments

6.1 Experimental Settings

Environment. The experiments were performed on a Windows 10 64-bit com-
puter with an Intel Core i7 2.4GHz processor and 8GB of memory.

200 T. Li et al.

Data Sets. In order to test the accuracy and efficiency of our algorithm, we
use real data from the Internet. For knowledge base, we choose Freebase to
provide knowledge linkage between concepts with special initialization mentioned
following. Other knowledge base can be used as well.

For attributes of database tables to be integrated, we choose open data set
from NYC OpenData2 and SF OpenData3. These open data sets are sourced
from real data. Such data cover various fields and test our algorithm compre-
hensively.

Parameters. Threshold ε is a key parameter of join schema integration, which
decides how many concepts are accessed during join. For two algorithms ED Join
and Semantic Join, we set threshold εt to describe how much misspelling can
be tolerated while γ determine the similarity degree. The values of these two
thresholds are determined by the schema of attributes and the chosen knowl-
edge base. To achieve a better performance and low cost, default value of these
thresholds are εt = 1 and γ = 3.

6.2 Accuracy

We conducted experiments on the datasets mentioned in Sect. 6.1 to assess how
closely the algorithm’s results align with human judgments. Manual integration
results on the input attributes served as the gold standard for this experiment.
While the datasets contain a large number of attributes and concepts, we opted
to focus on a smaller dataset to facilitate analysis and manual judgment.

For batch integration, the experimental results for different target attributes
are presented in Table 2. The metrics of recall and precision indicate that join
schema integration performs relatively well for different target words. The aver-
age recall and precision are 0.9266862 and 0.7431666, respectively.

Table 2. Batch Integration Accuracy

Word |SA| |ST | |ST ∩ SA| Recall Precision

name 76 61 57 0.934426 0.750000
year 93 64 58 0.906250 0.617021
type 73 58 53 0.913793 0.726027
number 79 68 65 0.955882 0.822785
category 12 13 15 0.923077 0.800000

2 https://data.cityofnewyork.us/.
3 https://data.sfgov.org/.

https://data.cityofnewyork.us/
https://data.sfgov.org/

Schema Integration on Massive Data Sources 201

6.3 Efficiency

For large-scale data, efficiency is extremely important. Therefore, we test the
efficiency. From the algorithm, the running time is influenced by data size, target,
threshold and the existence of cluster set. Hence, we show the experimental
results and analyze their impact. In this section, we run the experiments on a
real piece of knowledge from Freebase containing 9,471,476 items.

The Impact of Data Size. To evaluate the impact of the size of data, we assign
the size of input attributes at different values. The size of result attributes also
change with it. The experimental result is shown in Table 3 for batch integration.
It is easy to find running time is increasing with data growth. As for the result,
we focus on the increasing rate of running time.

Table 3. Time Cost VS Data Size (batch)

input set No. input size result size running time

1 1 47 0.015

2 1 267 0.021

3 1 67476 0.672

4 5 12073 0.453

5 5 201529 5.625

6 10 106 0.084

7 10 19207 0.582

8 20 252163 51.13

9 20 84962 2.573

10 30 99243 12.39

11 30 177027 20.979

12 40 188034 30.185

13 40 376257 66.327

14 50 189247 18.009

15 50 204929 30.384

For batch integration, we perform experiment on variation of input attribute
size and result size. As observed from Table 3, the result size has larger influence
on running time than the input data size. For example, although the input set
size is the same, the running time for input set 3 is larger than the input set
2 due to larger result size of the third. Even input set 5 has a larger running
time than set 6 and 7, even though set 5 has a smaller input set. The reason
is that integrating the attributes with many related concepts in the knowledge
base means more time while accessing to the disk. Some input sets with less
related knowledge cost less time. In conclusion, running time has no specific

202 T. Li et al.

relationship with input size, but the result size makes much sense. The larger
the result set is, the more information we can get form integration. By choosing
a suitable threshold, we can limit the size of integrated attributes to save time
while satisfying needed accuracy.

The Impact of Target. Since how much knowledge around a concept is
unknown, we conduct experiments on concepts of different parts in the knowl-
edge base to testify the impact of the target. Here, we select different attributes
to conduct the experiment, both attributes with many neighbors and neighbor-
less attributes. The running time is shown in Table 4 for batch integration and
Fig. 2 for incremental integration. The running time differs quite a lot from these
two types of attributes.

Table 4. Time Cost VS Targets (batch)

input set no. input size result size running time

1 1 75 0.031
2 1 3924 0.069
3 1 67476 0.672
4 5 377 0.108
5 5 12073 0.453
6 5 201529 5.625
7 10 106 0.084
8 10 19207 0.582
9 10 128659 4.463

From the table, we know that although input data and threshold are same,
the running time can differ a lot. From the analysis in the experiment of data
size, we know that result size has much influence. The experiment in this section

Table 5. Time Cost VS Threshold (batch)

input size threshold result size running time

1 2 66 0.024

1 3 213 0.129

1 4 69862 36.641

2 2 89 0.039

2 3 4145 0.304

2 4 108493 101.54

3 2 730 0.103

3 3 7086 3.481

3 4 111161 131.434

Schema Integration on Massive Data Sources 203

Fig. 2. Time Cost VS Targets (incremental)

verifies it as well. By analyzing the knowledge base, we can make sure why the
variance of running time happens. In the knowledge base, the neighbor amount
differs a lot among concepts. Some concepts belong to a small subgraph of neigh-
bors, so there is a little knowledge to be dealt with during integration. On the
other hand, if an attribute shares a lot of relationship with others, the problem
can be very complex to enlarge the cluster set. For example, the input set 3
“living people” has much more neighbors (67476) that the input set 1 “cancer”
(75) under threshold of 2 in Table 4. In conclusion, treating attributes with too
much knowledge means much time to cost. To avoid large running time, when
we foreknow the input attributes with many related attributes, we set a lower
threshold, as discussed in Sect. 6.3.

Fig. 3. Time Cost VS Threshold (batch)

204 T. Li et al.

For incremental integration, we test the running time when the target
attribute is inserted. Based on the structure and cluster set mentioned in Def-
inition 3, if the added attributes are in the generated set S, it is unnecessary
to insert and time can be saved. Here, we only consider the target with none
relationship in S and to be inserted to U . As observed in Fig. 2, running time
varies a lot when the neighbor amount is changed. Here, we select a part of
the knowledge base and count the amount of 1-hop neighbor for each concept.
The neighbor amount indicates that the concept comes from a dense subgraph
or not. Figure 2 shows that when the neighbor amount raises, the running time
usually increases with it. Some outliers are caused by some 2-hop or more distant
neighbor-rich concepts which are not presented by the neighbor size in Table 2.

The Impact of Threshold. To assess the impact of the threshold, we con-
ducted experiments with different threshold values. We set the minimum thresh-
old to 2 to ensure a sufficient number of integrated attributes for meaningful
analysis. We investigated how the running time changes with varying threshold
values in batch integration. The experimental results are presented in Table 5
and Fig. 3.

From the results of batch integration, we can deduce that the choice of thresh-
old value is a crucial factor. A larger threshold leads to the integration of more
attributes, which, in turn, increases the processing time or even becomes unnec-
essary. As the path range expands rapidly and the path set P grows larger, the
time required for each iteration of path expansion also increases. Notably, we
observe that the running time increases more than linearly when the threshold
surpasses a certain value. In other words, there is an acceptable threshold limit
beyond which the increase in running time becomes less practical.

The Necessity of Cluster Set. For incremental integration, for cluster set
defined in Definition 3, the generation of S can save much time when the inserted
attribute is related to existing ones in it. Here, we conduct some experiments to
verify that the set S really works for acceleration. The experimental results are
shown in Fig. 4.

According to the results, we know that if one attribute exists in S, the running
time for integrating such attribute keeps low. However, new attributes for the
cluster set usually spends more time than those in S. Therefore, in this way,
we can observe that the proposed structure, cluster set, can save time when the
attributes appear for more than once.

Schema Integration on Massive Data Sources 205

Fig. 4. Time Cost VS Cluster Set Necessity (incremental)

Conclusion. As is stated above, running time of join schema integration is com-
plicated affected by data size, target, threshold and the existence of cluster set.
To decrease the running time, it is necessary to balance these factors according
to the requirement. For a certain problem, one good solution is to decrease the
threshold as low as possible to limit the answer and save time.

7 Related Work

As a basic but crucial technique in database, schema integration has been dis-
cussed for many years. In old days, schema integration using similarity metric
such as Jaccard similarity could not deal with semantic relation. Later, one mar-
velous work [8] concludes many approaches to finish the work of schema mapping
and integration. In this paper, the authors made classification for existing meth-
ods of schema integration and schema mapping, using techniques such as linguis-
tic ways. For methods applied to schema integration, DIKE [7] and ARTEMIS
[1] lead the ways. These two methods both computes the relationship between
objects or attributes while our proposed algorithm use existing knowledge base.
At most cases, relationship in knowledge base extracted from Web is in closer
proximity to human’s mind.

Recently, Microsoft has done some research [3] on schema integration. In
this paper, precision and recall of integration has a high value. Compared to our
schema-level algorithm, much instance information is used in their SEMA-JOIN.
As the database tables have too many rows storing details, it is not possible to
bring them all during the integration. For the efficiency, here, we choose to
discard the instance information. What’s more, there are quite a lot databases
with less maintenance that have even no value for some attributes, integration
in schema-level can be more widely used.

206 T. Li et al.

8 Conclusions and Future Work

In this paper, we study a novel problem of schema integration on big data. To
process this problem, we propose batch and incremental integration algorithms
for different scenarios. The former is suitable for a set of attributes needed to be
integrated, and the latter is used to insert information of newly adding attributes
to the existing integrated cluster set. For effectiveness issues, we involve both
semantics and syntactic similarity during integration. The semantics similarity is
computed according to the knowledge based, and the syntactic similarity is based
on the edit distance. For efficiency issues, we propose ED Join and Semantic
Join algorithms. Experimental results show that our approaches could integrate
schema efficiently and effectively.

Considering that current knowledge base actually cannot provide all needed
information, our future work is to develop novel transformation rules discov-
ery algorithms and weight determination algorithms for the knowledge base to
achieve high accuracy for integration.

References

1. Castano, S., De Antonellis, V.: Global viewing of heterogeneous data sources. IEEE
Trans. Knowl. Data Eng. 13(2), 277–297 (2001)

2. Gravano, L., et al.: Using q-grams in a DBMS for approximate string processing.
IEEE Data Eng. Bull. 24(4), 28–34 (2001)

3. He, Y., Ganjam, K., Chu, X.: SEMA-JOIN: joining semantically-related tables using
big table corpora. VLDB Endow. 8, 1358–1369 (2015)

4. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and rever-
sals. In: Soviet Physics Doklady, vol. 10, pp. 707–710 (1966)

5. Li, L., Wang, H., Li, J., Gao, H.: ED-SJOIN; an optimal algorithm for similarity
joins with edit distance constraints. J. Comput. Res. Dev. 46, 319–325 (2009)

6. Lin, X.M., Wang, W.: Set and string similarity queries: a survey. Jisuanji Xuebao
(Chin. J. Comput.) 34(10), 1853–1862 (2011)

7. Palopoli, L., Saccá, D., Ursino, D.: An automatic technique for detecting type con-
flicts in database schemes. In: Proceedings of the Seventh International Conference
on Information and Knowledge Management, pp. 306–313. ACM (1998)

8. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4), 334–350 (2001)

9. Xiao, C., Wang, W., Lin, X.: Ed-join: an efficient algorithm for similarity joins with
edit distance constraints. Proc. VLDB Endow. 1(1), 933–944 (2008)

A Hybrid Few-Shot Learning Based
Intrusion Detection Method for Internet

of Vehicles

Yixuan Zhao1, Jianming Cui1, and Ming Liu2(B)

1 School of Information Engineering, Chang’an University, ShaanXi 710064, China
cjianming@chd.edu.cn

2 National Computer Network Emergency Response Technical Team/Coordination
Center of China, Beijing 100029, China

liuming@cert.org.cn

Abstract. With the rapid development of vehicle networks technologies,
cyber security threats in the Internet have gradually penetrated into the
Internet of vehicles. In view of the risks and challenges, this paper pro-
posed a hybrid Meta-Learning based intrusion detection method, which
core task is to distinguish normal and network flow samples as its learning
task. By constructing a feature extraction network based on 3D-CNN,
the characteristic values of network flow classification are learned, and
then the constructed feature comparison network is used for learning
and discrimination. It should be emphasized that the model can obtain
enough prior knowledge to realize lightweight intrusion detection by con-
structing few-shot sample task training. In the experimental section, we
first selected Car-Hacking dataset to evaluate the performance of the pro-
posed method and analyze the accuracy, detection rate, precision, false
positive rate and F-Score, etc., and extended the testing to the ICSX2012
dataset. The experimental results show that, the method proposed can
effectively implement network intrusion detection in few-shot sample sce-
narios, and has the expansibility in cyber security applications.

Keywords: Intrusion detection · Internet of Vehicles · Convolutional
neural network · Few-shot learning

1 Introduction

With the development of in-vehicles communication technology, Connected Vehi-
cles (CV) and Autonomous Vehicle (AV) are becoming more and more popu-
lar [12,17]. As the main communication facility of emerging technologies, IoV
connects other IoV entities (such as smart devices, infrastructure, and pedestri-
ans) through wireless communication technology [4]. IoV is mainly composed of
in-vehicle network and out-of-vehicle network [9]. The in-vehicle network imple-
ments various functions through a variety of Electronic Control Unit (ECU),

This work is financially supported by the National Natural Science Foundation of China
under Grant 62106060.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 207–220, 2024.
https://doi.org/10.1007/978-981-97-0801-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_12&domain=pdf
https://doi.org/10.1007/978-981-97-0801-7_12

208 Y. Zhao et al.

and all ECUs are connected through the Controller Area Network (CAN) bus
to transmit information [14]. The external network connects modern vehicles
with the external environment through vehicle to everything (V2X) technology,
and realizes the function of communicating with other vehicles, roadside infras-
tructure and road users. The improved functionality and connectivity of modern
smart vehicles has also brought about the security of the Internet of Vehicles.

Deep learning has been widely used in IoV intrusion detection, which can
improve some security issues encountered by IoV [2,8,13]. Due to the good fea-
ture learning and generalization ability of convolutional neural network (CNN),
CNN has become a powerful tool for feature learning and data analysis [11].
Whether 1D-CNN [6] or 2-D-CNN [6] networks are used, there are problems
such as inability to capture information beyond two-dimensional space and weak
feature representation. Aiming at the limitations of 1D-CNN and 2D-CNN, Ji et
al.proposed 3D-CNN [7]. Using 3D-CNN can not only extract spatial features,
but also capture the time relationship between IoV traffic packets, making full
use of CNN’s feature learning ability.

Traditional IoV intrusion detection methods need to train a large number of
labeled samples to identify known attacks. However, there will always be new
attacks in the IoV environment, and vehicle safety agencies cannot quickly pro-
duce new data sets. Aiming at the above problems, an IoV intrusion detection
method based on meta-learning is proposed. This method is applied to IoV intru-
sion detection in few-shot scenarios through feature extraction and detection,
and the effectiveness of IoV intrusion detection is verified. After experimenta-
tion, the following work was done:

– 3D-CNN is used to extract features and classify the attack types of IoV traffic,
and the prior knowledge in the meta-learning algorithm is used to detect
samples that are not heavily trained and only based on a limited number of
labels.

– A data conversion method is proposed to convert vehicle network traffic data
into image format data suitable for input to CNN, making it easier to distin-
guish various attack modes.

– It is evaluated on two public IoV safety datasets suitable for in-vehicle and
out-of-vehicle network data, and compared with the results of other state-of-
the-art methods.

2 Design of Intrusion Detection Model for IoV

This section introduces the overall framework and design process of a meta-
learning based intrusion detection method for IoV. The overall architecture of
the method is shown in Fig. 1, including data collection, dataset construction,
feature extraction, feature comparison, and classification. The design process of
each module in the framework is detailed below.

2.1 Data Pre-processing

ISCX2012 is an unsplit PCAP file. First, we need to use the pkt2flow tool [3]
to split the original traffic data into multiple corresponding streams. The PCAP

A Hybrid Few-Shot Learning Based Intrusion Detection Method 209

Fig. 1. The framework diagram of the intrusion detection method for connected vehi-
cles based on meta-learning.

packet is reconstructed according to the five tuples: source IP, source port, des-
tination IP, destination port and protocol. However, the PCAP file is still large
after extraction. In order to speed up the data reading process, the pickle tool in
Python is also used to package the traffic. The difference between each type of
attack comes from the header and payload of the packet. The packet is processed
according to the uniform length of the packet_len byte, that is, if the packet
length is greater than packet_len, the byte is intercepted, otherwise filled with
0. In this experiment, packet_len takes 256 [23]. The length of the data stream
is also not fixed. Take flow_len packets to represent this data stream. In this
experiment, flow_len takes 16. Finally, each packet is folded into a single video
stream, arranged in the corresponding order, and then transmitted to 3D-CNN.

The original Car-Hacking data set is table data, the original network data
should be converted into image format and then input into the 3D-CNN. Since
the Car-Hacking dataset contains nine important features: CAN ID, DATA[0]-
DATA [7], these features are converted into blocks after data standardization.
Therefore, each block of 27 consecutive samples with 9 features is converted into
an image with a shape of 9×9×3. Each transformed image is a square color
image composed of three channels of red, green and blue. Because the input
size of the model is the same, the dimensionality reduction process will lead
to a reduction in the number of features. Therefore, the Car-Hacking dataset
is increased from 9×9×3 to 16×16×16, which is consistent with the ISCX2012
dataset. The hyperparameter values for the network are shown in the Tab. 1,
with reference to literature [10] and empirical rules:

After converting both data sets into a sample format suitable for input into
3D-CNN, it is necessary to divide the training and test set. Meta-learning method

210 Y. Zhao et al.

Table 1. The value of hyperparameter in intrusion detection method

Hyper-parameter Value

Episode 100
Batch size per class 15
Activation functions ReLU
Optimizers Adam
Dropout rate 0.4
K 5,10

needs to generate a meta-training set of multiple tasks. In this research, each
task is to classify two different categories of instances (Normal and Attack) by
providing a classifier with K examples for each class. We call it a 2-way K-shot
task, K usually takes 5 and 10. The task set constructed by meta-learning can
be divided into Train Task and Test Task. The training data in Train Task is
called Sample Set, and the test data is called Query Set. The training data in
Test Task is called Support set, and the test data is called Test Set.

2.2 Feature Extraction

The feature extraction part is based on the data packet as a two-dimensional
tensor, and the data stream is used as a three-bit tensor, which is input into
the 3D-CNN in chronological order, so that the three-dimensional convolution
operation can extract the features between different data packets. Therefore, the
feature extraction part is a two-way processing of three-bit tensor convolutional
neural network [22]. The feature extraction part extracts different features for
different data sets. For the Car-Hacking dataset, we mainly extract nine impor-
tant features of the original vehicle network traffic through the feature extraction
part: CAN ID and DATA[0]-DATA [7]. For the ISCX2012 dataset, we mainly
extract the header and load of the original network traffic data. The input of
the feature comparison part is the feature map output by the feature extraction
part. Due to the difficulty of manual design, the feature comparison part is cre-
ated to learn this comparison function. It obtains a learnable sample comparator
through network training, which uses the fully connected layer to combine the
features found in the feature extraction part into an overall prediction of which
category the input is most likely to belong to.

Through the data preprocessing part, the ISCX2012 data set and the Car-
Hacking data set are converted into 16× 16× 16 normalized three-dimensional
images. Then, using the feature extraction network (Left of Fig. 2), a 128-
dimensional network traffic feature vector is extracted from the image data
through four convolutional layers (The size of the convolution kernel is 2 × 2× 2),
batch normalization and activation function ReLU. Next, two data sets are used
for meta-training set and meta-testing set respectively. In the meta-training set,
the sample feature vectors belonging to each category are averaged to obtain the

A Hybrid Few-Shot Learning Based Intrusion Detection Method 211

prototype vector of each category. In the training phase, the prototype vector
of the meta-training set is spliced with the sample feature vector of the meta-
testing set, and input into the feature comparison network (Right of Fig. 2) for
classification. The feature comparison network contains two convolution layers,
batch standardization, pooling layer and fully connected layer, and outputs the
category prediction of network traffic data.

Fig. 2. Network structure of feature extraction and feature comparison.

3 Meta-learning Training Network Process

Through the training of multi-component training set tasks, the model learns
meta-knowledge unrelated to specific tasks but related to general discrimination
ability. The meta-test set is used to simulate the tasks that the model ultimately
needs to deal with, that is, to identify unknown malicious traffic through K
samples. In the meta-training phase, the samples in the query set and the sample
set are compared one by one, and the average NDV of the Normal and Attack
samples in the query set and the sample set is calculated. The prediction label
of the sample in the final query set is the sample label with the smallest average
NDV difference compared with the Sample Set. The meta-testing phase is the
same, and the classification process is shown in Fig 3.

Algorithm 1 uses F and C to represent feature extraction and feature com-
parison network respectively. Algorithm 1 gives an example of how to train

212 Y. Zhao et al.

Fig. 3. Classification process diagram.

3D-CNN through the task based on meta-learning, using Ss to represent Sam-
ple Set, Ss = {(x1, y1), (x2, y2), ..., (xK , yK)}, xi ∈ Rd,yi ∈ {0, 1}, 2K sam-
ples for training, K = 5,10, simulating the scene where there are only ’ several
’ samples in the actual environment. Use Qs to represent Query Set, Qs =
{(xq

1, y
q
1), (x

q
2, y

q
2), ..., (x

q
B , y

q
B)}, xi ∈ Rd,yi ∈ {0, 1}, B sample tests, and finally

output the value J of the loss function for error back propagation [10]. Algorithm
1 employs the computation of the loss value J for performing backpropagation
and updating model parameters. Initially, NDV0 and NDV1 are initialized to
0, serving to accumulate the current sample’s predicted scores. Subsequently,
K samples are iterated over to calculate the feature maps A0, A1, and B* for
Ss and Qs, respectively. Then, the feature comparison network is utilized to
compute the predicted scores. These K predicted scores are accumulated into
NDV0 and NDV1, and the average predicted score is obtained. By comparing
the magnitudes of NDV0 and NDV1, the final predicted class for the samples
in Qs is selected as the one with a smaller average NDV when compared to Ss.
The mean squared error between the predicted results and the true labels is
computed, and the result is added to the overall loss J. Ultimately, the algo-
rithm outputs the total loss J during the training process, which is used to
update the model parameters. Through repeated iterations of this training loop,
the model progressively learns and optimizes its predictive capabilities, thereby
achieving more accurate classification of unknown samples. As the final output
of the 3D-CNN is NDV, the Mean Squared Error (MSE) function is used as
the loss function in the training process. This function can calculate the degree
of closeness between the predicted value ŷl and the true label yi, as shown in
Formula (1):

MSE =
∑n

i=1(yi − ŷl)2

n
(1)

A Hybrid Few-Shot Learning Based Intrusion Detection Method 213

Algorithm 1. Training 3D-CNN through meta-learning.
1: for i in{1, 2, ..., B} do
2: NDV 0 ← 0
3: NDV 1 ← 0
4: for j in{1, 2, ...,K} do
5: Calculate feature map A0 ← F (Ss(0))
6: Calculate feature map A1 ← F (Ss(1))
7: Calculate feature map B∗ ← (xq

i)
8: NDV 0 ← NDV 0 + C(A0, B∗)
9: NDV 1 ← NDV 1 + C(A1, B∗)

10: end for
11: NDV 0 ← NDV 0/K
12: NDV 1 ← NDV 1/K
13: if NDV 0 < NDV 1 then
14: Predict = 0
15: else
16: Predict = 1
17: end if
18: J ← J +MSE(Predict, yqi)
19: end for

The time complexity of algorithm 1 depends on the time complexity of feature
extraction network and feature comparison network. For the feature extraction
network, the time complexity of each convolution layer is O(KS3∗D∗H ∗W ∗C),
where KS is the size of the convolution kernel, D, H and W are the depth, height
and width of the input graph, and C is the number of channels. For the feature
comparison network, the time complexity of the fully connected layer is O(M2),
where M is the input size of the fully connected layer, so the time complexity of
the feature comparison network is O(KS3∗D∗H∗W ∗C+M2). For Algorithm 1,
KS, D, H, W, etc. are constants, so the time complexity of the feature extraction
network and the feature comparison network can be regarded as O(1). Since the
main loop of algorithm 1 executes B * K times, the time complexity of Algorithm
1 is O(B*K), where B is the batch size and K is the number of samples. The
space complexity of algorithm 1 depends on the space complexity of feature
extraction network and feature comparison network. The Batch Normalization
layer of the feature extraction network needs to save the mean and variance on
each channel, so the space complexity of the Batch Normalization layer is O(C).
Therefore, the overall space complexity of feature extraction network is O(C).
The parameters of the fully connected layer in the feature comparison network
need to be saved, so the space complexity of the fully connected layer is O(M2).
Therefore, the overall space complexity of feature comparison network is O(M2).
The overall algorithm needs to save the parameters of feature extraction network
and feature comparison network, so the overall space complexity of the algorithm
is O(C +M2), which can be simplified to O(1).

214 Y. Zhao et al.

4 Simulation and Results Evaluation

In order to protect privacy, many vehicle companies do not publish in-vehicle
intrusion detection data. Therefore, we use the well-known IoV open source
dataset-Car-Hacking dataset [16] to represent in-vehicle traffic data, which is
generated by transmitting CAN data packets to the CAN bus of a real vehicle.
The Car-Hacking dataset involves four main types of attacks: Denial of Service
(DoS) Attack, Fuzzy Attack, Gear Spoofing Attack and RPM Spoofing Attack.
There are many off-board network traffic datasets for intrusion detection, such
as NSL-KDD, UNSW-NB15, KDD99, etc. Some researchers have noted that the
types of attacks considered in traditional intrusion detection datasets are now
outdated [20]. In contrast, the attack type of ISCX2012 is more modern and
closer to reality. In addition, the percentage of attack traffic is about 2.8%, which
makes ISCX2012 similar to real-world datasets [5]. Therefore, the ISCX2012
data set is used to represent the network traffic outside the car [18]. This dataset
contains seven days of raw network traffic data, including normal traffic and four
types of attack traffic: BruteForce SSH (BF) Attack, DDoS using an IRC Botnet
(DDoS) Attack, HTTP Denial of Service (HttpDoS) Attack and Infiltrating the
network form inside (Infiltrating) Attack.

4.1 Metrics

The classification accuracy (ACC), detection rate (DR), precision (PRE), false
alarm rate (FPR) and F-Score are expressed as:

Accuracy =
TP + TN

TP + TN + FN + FP
(2)

DetectionRate =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

DetectionRate =
FP

FP + TN
(5)

F − Score =
2 × PRE × DR

PRE +DR
(6)

In the field of IoV intrusion detection, attack samples are defined as positive
samples, and normal samples are defined as negative samples. The results of the
classification are shown in Table 2:

Table 2. Classified results

Predicted label Real label
Positive samples Negative samples

Positive samples Ture Positive, TP False Positive, FP

Negative samples False Negative, FN Ture Negative, TN

A Hybrid Few-Shot Learning Based Intrusion Detection Method 215

4.2 Experimental Results and Comparative Analysis

The experiments were conducted on the following software and hardware plat-
forms: the hardware environment included an Intel(R) Xeon(R) Silver 4110 CPU
@2.10GHz and an NVIDIA Quadro P4000 graphics card; the software environ-
ment included Ubuntu 16.04LTS, CUDA10.2, cuDNN7.5, and PyTorch3.7.1.

Type I Experiments. Type I experiments were performed on Car-Hacking
and ISCX2012 datasets. Taking Car-Hacking as an example, three of the four
types of attacks on the dataset are taken as the data source of the meta-training
set, and the remaining one is the data source of the meta-testing set. Since the
training and test categories are rotated in turn, there are four groups of parallel
experiments. Each group of experiments is repeated for 2000 times to take the
average, so as to construct enough few-shot training tasks and test tasks to
ensure the fairness of the experiment.

Table 3. Experimental results on Car-Hacking

k = 5 k = 10
Metrics (%)

Type ACC DR FPR PRE F-Score ACC DR FPR PRE F-Score

RPM 99.755 99.904 0.283 99.613 99.732 99.755 99.904 0.283 99.613 99.732

Gear 98.321 98.781 1.295 98.404 98.177 98.321 98.781 1.295 98.404 98.177

DoS 96.175 98.014 3.435 94.882 95.829 96.175 98.014 3.435 94.882 95.829

Fuzzy 98.963 99.270 0.942 98.768 98.884 98.963 99.270 0.942 98.768 98.884

Overall 98.310 98.992 1.489 97.917 98.155 98.310 98.992 1.489 97.917 98.155

Table 4. Experimental results on ISCX2012

k = 5 k = 10
Metrics (%)

Type ACC DR FPR PRE F-Score ACC DR FPR PRE F-Score

Infiltrating 96.335 96.230 3.407 96.581 96.369 96.397 96.124 3.101 96.901 96.749

HTTPDoS 97.834 99.191 3.354 96.562 97.831 97.702 98.952 3.252 96.655 97.742

DDoS 97.081 99.527 3.045 94.631 96.981 96.887 99.146 4.960 94.728 96.816

Brute Force 97.559 99.759 4.317 96.299 97.492 97.206 99.476 4.691 94.969 97.100

Overall 97.199 98.676 4.307 96.018 97.168 97.048 98.425 4.001 95.813 97.102

The experimental results of Type I experiments on the Car-Hacking dataset
are shown in Table 3, and the experimental results on the ISCX2012 dataset are
shown in Table 4. The following conclusions can be drawn:

(1) Comparing Table 3 and Table 4, the model is not sensitive to the number of
samples K. K is 5 or 10 is a few-shot scenario, and the number of samples is
doubled, but the experimental results of the proposed method are not much
different under different sample sizes.

216 Y. Zhao et al.

(2) Comparing Table 3, it can be seen that regardless of the number of samples,
the model used achieves a higher evaluation index on RPM Spoofing Attack.
When K = 5, the model achieves a detection rate of 99.904% on RPM
Spoofing Attack. By comparing Table 4, it can be seen that the evaluation
indicators of the four types of attacks, Infiltration, HTTPDoS, DDoS and
Brute Force, mostly fluctuate within 1%, with no significant changes.

(3) Comparing Table 3 and Table 4, the evaluation index of the method on Car-
Hacking is better than ISCX2012. This shows that Car-Hacking is a more
suitable data set for meta-learning than ISCX2012.

Type II Experiments. Type II experiments are based on Type I experiments,
using two data sets for cross experiments. For example, three types of attacks in
Car-Hacking are selected as the data source of the meta-training set to detect
four types of attacks in ISCX2012. Since these two datasets come from networks
composed of different hardware and software environments, the types of attacks
are different and the detection is difficult, which can fully test the proposed IoV
intrusion detection ability based on meta-learning.

Table 5. Experimental results of the training task for ISCX2012, test task for Car-
Hacking

k = 5 k = 10
Metrics(%)

Type ACC DR FPR PRE F-Score ACC DR FPR PRE F-Score

RPM 93.083 94.916 8.761 93.809 93.384 93.204 95.785 6.683 91.624 92.708

Gear 89.646 96.177 12.855 83.644 88.301 90.457 97.394 11.784 84.055 88.735

DoS 97.971 98.149 1.041 98.795 98.078 97.924 97.748 0.570 99.520 98.276

Fuzzy 90.977 92.176 7.319 93.698 91.156 95.609 96.106 3.456 95.833 95.529

Overall 92.919 95.355 7.494 92.479 92.730 94.298 96.758 5.598 92.758 93.812

Table 6. Experimental results of the training task for Car-Hacking, test task for
ISCX2012.

k = 5 k = 10
Metrics(%)

Type ACC DR FPR PRE F-Score ACC DR FPR PRE F-Score

Infiltrating 99.746 99.903 0.286 99.602 99.737 99.029 99.604 0.903 98.579 98.918

HTTPDoS 98.470 98.917 1.264 98.467 98.406 97.231 97.684 1.872 98.234 97.536

DDoS 96.071 97.870 3.292 95.134 95.676 94.152 95.837 4.491 94.085 94.210

Brute Force 99.110 99.320 0.812 99.025 99.025 97.848 98.443 1.700 97.590 97.778

Overall 98.349 99.003 1.413 98.057 98.211 97.065 97.892 2.2425 97.122 97.111

A Hybrid Few-Shot Learning Based Intrusion Detection Method 217

Fig. 4. Experimental results of type II experiments(K = 10).

The type II experiments are experiments that cross-use the Car-Hacking and
ISCX2012 datasets. Trained on ISCX2012, the experimental results tested on
Car-Hacking are shown in Table 5 and Fig. 4(a). Trained on Car-Hacking, the
experimental results tested on ISCX2012 are shown in Table 6 and Fig. 4(b). All
the test classes of type II experiments are not involved in the training, so the
ability of IoV intrusion detection based on meta-learning can be well tested.
From type II experiments, the following conclusions can be drawn:

(1) Although ISCX2012 and Car-Hacking datasets are collected through experi-
mental networks composed of different software and hardware environments,
they essentially belong to the same category of IoV, and the network traffic
also contains certain commonalities, which verifies that the proposed meta-
learning-based IoV intrusion detection method is universal and not limited
to a single dataset or attack type.

(2) Comparing Fig. 4, it can be seen that whether K is 5 or 10, training on
Car-Hacking, testing on ISCX2012 is better than training on ISCX2012,
and testing on Car-Hacking. The evaluation indicators are better, further
indicating that Car-Hacking is a data set more suitable for meta-learning
than ISCX2012.

Model Comparison and Analysis. IoV intrusion detection is still a relatively
new research field in the few-shot scenario, and only a few related research
results can be referenced. Therefore, we summarize several recent IoV intrusion
detection research results using Car-Hacking and ISCX2012 datasets. The results
show that these methods use hundreds of thousands or even millions of samples
for training, as shown in Table 7.

Most of the methods and models used in the table can only detect exist-
ing attacks through training data. Only the MTH-IDS [24] model is similar to
the work of this paper. It effectively detects known and unknown attacks by
combining signature-based IDS and anomaly-based IDS. From Table 7, it can
be concluded that the method used in this paper achieves a smaller and higher

218 Y. Zhao et al.

average DR than the MTH-IDS model sample. A large number of research results
on IoV intrusion detection are based on a large number of samples. However, in
the real network environment, it is difficult for vehicle safety agencies to obtain
enough attack samples in a short time, and it is more difficult to make data
sets for publication. Therefore, the IoV intrusion detection method based on
meta-learning is very meaningful.

Table 7. Performance evaluation of VANET intrusion detection methods on Car-
Hacking and ISCX2012)

Model Datasets Detect the type of attack number of samples ACC (%) DR (%) FPR (%) PRE (%) F-Score (%)

DCNN [19] Car-Hacking known 1,162,188 99.93 99.84 0.16 – 99.91
MTH-IDS [24] Car-Hacking known 5,138,977 – 99.999 0.0006 – 99.999
MTH-IDS [24] Car-Hacking unknown 5,138,977 – 93.740 0.128 – 96.307
SVM [1] Car-Hacking known 3,665,771 96.5 95.7 4.8 – 93.3
KNN [1] Car-Hacking known 3,838,860 97.4 96.3 5.3 – 93.4
CNN [21] ISCX2012 known 915,695 99.69 96.91 0.22 – –
CNN+LSTM [15] ISCX2012 known 3,320,315 99.09 99.08 2.27 99.10 99.09
3D-CNN Car-Hacking known 5 98.310 98.992 1.489 97.917 98.155
3D-CNN Car-Hacking known 10 99.038 99.565 0.906 98.710 98.957
3D-CNN Car-Hacking unknown 5 92.919 95.355 7.494 92.479 92.730
3D-CNN Car-Hacking unknown 10 94.298 96.758 5.598 92.758 93.812
3D-CNN ISCX2012 known 5 97.199 98.676 4.307 96.018 97.168
3D-CNN ISCX2012 known 10 97.048 98.425 4.001 95.813 97.102
3D-CNN ISCX2012 unknown 5 98.349 99.003 1.413 98.057 98.211
3D-CNN ISCX2012 unknown 10 97.065 97.892 2.2425 97.122 97.111

5 Conclusion

In order to enhance the network security of IoV, an IoV intrusion detection
method based on meta-learning and 3D-CNN is proposed. This method combines
normal and attack IoV traffic into a pair of data streams, and then learns a pair
of eigenvalues of traffic classification through the feature extraction network
composed of 3D-CNN, and compares the two pairs of traffic samples as the basic
task. Due to the training of several few-shot tasks, sufficient prior knowledge can
be obtained to detect unknown traffic types with fewer samples.

In order to evaluate the proposed detection method, two open source IoV
intrusion detection datasets are used to convert them into sample formats suit-
able for input into 3D-CNN, and two types of experiments are carried out. The
experimental results of training and testing on the same data set show that the
performance of this method is close to the working type in the large sample
scenario, reaching 98.992% average DR; the experimental results of cross-use
data sets for training and testing show that this method can identify unknown
IoV intrusion detection traffic by training known network traffic and achieve an
average DR of 99.003%.

A Hybrid Few-Shot Learning Based Intrusion Detection Method 219

References

1. Alshammari, A., Zohdy, M.A., Debnath, D., Corser, G.: Classification approach
for intrusion detection in vehicle systems. Wirel. Eng. Technol. 9(4), 79–94 (2018)

2. Chatzidakis, M., Hadjiefthymiades, S.: A trust change detection mechanism in
mobile ad-hoc networks. Comput. Commun. 187, 155–163 (2022)

3. Chen, X.: A simple utility to classify packets into flows (2017)
4. Cui, J., Ma, L., Wang, R., Liu, M.: Research and optimization of GPSR routing

protocol for vehicular ad-hoc network. China Commun. 19(10), 194–206 (2022)
5. Ghanem, W.A.H., et al.: Cyber intrusion detection system based on a multiob-

jective binary bat algorithm for feature selection and enhanced bat algorithm for
parameter optimization in neural networks. IEEE Access 10, 76318–76339 (2022)

6. Hossain, M.D., Inoue, H., Ochiai, H., Fall, D., Kadobayashi, Y.: An effective in-
vehicle can bus intrusion detection system using cnn deep learning approach. In:
GLOBECOM 2020–2020 IEEE Global Communications Conference, pp. 1–6. IEEE
(2020)

7. Ji, S., Xu, W., Yang, M., Yu, K.: 3d convolutional neural networks for human
action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221–231 (2012)

8. Kaur, G., Kakkar, D.: Hybrid optimization enabled trust-based secure routing with
deep learning-based attack detection in vanet. Ad Hoc Netw. 136, 102961 (2022)

9. Khan, I.A., Moustafa, N., Pi, D., Haider, W., Li, B., Jolfaei, A.: An enhanced multi-
stage deep learning framework for detecting malicious activities from autonomous
vehicles. IEEE Trans. Intell. Transp. Syst. 23(12), 25469–25478 (2021)

10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

11. Ma, W., Zhang, Y., Guo, J., Yu, Q.: Few-shot abnormal network traffic detection
based on multi-scale deep-capsnet and adversarial reconstruction. Int. J. Comput.
Intell. Syst. 14(1), 195 (2021)

12. Mabrouk, A., Naja, A.: Intrusion detection game for ubiquitous security in vehic-
ular networks: a signaling game based approach. Comput. Netw. 109649 (2023)

13. Mchergui, A., Moulahi, T., Zeadally, S.: Survey on artificial intelligence (AI) tech-
niques for vehicular ad-hoc networks (vanets). Veh. Commun. 34, 100403 (2022)

14. Naqvi, I., Chaudhary, A., Rana, A.: Intrusion detection in vanets. In: 2021 9th
International Conference on Reliability, Infocom Technologies and Optimization
(Trends and Future Directions)(ICRITO), pp. 1–5. IEEE (2021)

15. Pektaş, A., Acarman, T.: A deep learning method to detect network intrusion
through flow-based features. Int. J. Netw. Manag. 29(3), e2050 (2019)

16. Seo, E., Song, H.M., Kim, H.K.: Gids: gan based intrusion detection system for in-
vehicle network. In: 2018 16th Annual Conference on Privacy, Security and Trust
(PST), pp. 1–6. IEEE (2018)

17. Shams, E.A., Rizaner, A., Ulusoy, A.H.: Flow-based intrusion detection system in
vehicular ad hoc network using context-aware feature extraction. Veh. Commun.
100585 (2023)

18. Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward developing a sys-
tematic approach to generate benchmark datasets for intrusion detection. Comput.
Secur. 31(3), 357–374 (2012)

19. Song, H.M., Woo, J., Kim, H.K.: In-vehicle network intrusion detection using deep
convolutional neural network. Veh. Commun. 21, 100198 (2020)

http://arxiv.org/abs/1412.6980

220 Y. Zhao et al.

20. Suthishni, D.N.P., Kumar, K.S.: A review on machine learning based security
approaches in intrusion detection system. In: 2022 9th International Conference
on Computing for Sustainable Global Development (INDIACom), pp. 341–348.
IEEE (2022)

21. Wang, W., et al.: Hast-ids: learning hierarchical spatial-temporal features using
deep neural networks to improve intrusion detection. IEEE Access 6, 1792–1806
(2017)

22. Xu, C., Shen, J., Du, X.: A method of few-shot network intrusion detection based on
meta-learning framework. IEEE Trans. Inf. Forensics Secur. 15, 3540–3552 (2020)

23. Yang, J., Li, H., Shao, S., Zou, F., Wu, Y.: FS-IDS: a framework for intrusion
detection based on few-shot learning. Comput. Secur. 122, 102899 (2022)

24. Yang, L., Moubayed, A., Shami, A.: MTH-IDS: a multitiered hybrid intrusion
detection system for internet of vehicles. IEEE Internet Things J. 9(1), 616–632
(2021)

Noise-Robust Gaussian Distribution Based
Imbalanced Oversampling

Xuetao Shao and Yuanting Yan(B)

Artificial Intelligence Institute, School of Computer Science and Technology,
Anhui University, Hefei 230601, Anhui, People’s Republic of China

ytyan@ahu.edu.cn

Abstract. Imbalanced data classification has become one of the hot top-
ics in the field of data mining and machine learning. Oversampling is one
of the mainstream methods to solve the imbalance problem by synthe-
sizing new samples to balance the data distribution. However, due to the
limited sample local information, the data synthetic process is risky in
deteriorating the class overlap phenomenon, showing a vulnerable robust-
ness with respect to data noise. In this paper, we propose a noise robust
gaussian distribution based imbalanced oversampling (NGOS). NGOS
first determines the neighborhood radius based on the global informa-
tion, and then assigns sampling weights to minority class samples based
on the density and the distance information within each of the neighbor-
hoods. Finally, NGOS generates new samples with a Gaussian distribu-
tion model. We validate the effectiveness of our proposed method on the
38 KEEL datasets, DT classifier and eleven comparison methods. Exper-
imental results show that our method outperforms the other compared
methods in terms of Fmeasure, AUC, Gmean. The codes of NGOS are
released in https://github.com/ytyancp/NGOS.

Keywords: Imbalanced data classification · Oversampling · Noise ·
Gaussian distribution

1 Introduction

Imbalanced data classification has become a hot topic in the fields of data mining
and machine learning. Data imbalance poses a great challenge to the robustness
of traditional classification algorithms. And they are widespread in fields such as
fraud detection [12], network intrusion monitoring [17], software detect predic-
tion [6]. Researchers have proposed a variety of methods for learning imbalanced
data, which can be roughly divided into two categories: data-level methods,
algorithm-level methods [8]. Algorithm-level methods mainly adapt classifiers
specifically designed for imbalanced data or improve traditional classifiers to

This work was supported in part by the National Natural Science Foundation of China
under Grant 62376002.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 221–234, 2024.
https://doi.org/10.1007/978-981-97-0801-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_13&domain=pdf
http://orcid.org/0000-0001-6090-910X
https://github.com/ytyancp/NGOS.
https://doi.org/10.1007/978-981-97-0801-7_13

222 X. Shao and Y. Yan

make them suitable for imbalanced data. Data-level methods mainly resam-
ple the imbalanced dataset by adding minority class samples (oversampling) or
removing majority class samples (undersampling) to balance the dataset.

Data-level methods have become the mainstream method for solving imbal-
anced data classification problems due to their simplicity, efficiency, and indepen-
dence of subsequent classifiers [16]. Data-level methods are mainly divided into
undersampling, oversampling, and hybrid sampling [8]. Undersampling achieves
balance by removing some of the majority class samples. Oversampling synthe-
sizes minority class samples to balance the dataset. Hybrid sampling combines
the above two strategies to achieve better learning results. Recent studies have
shown that oversampling methods are significantly superior to undersampling
methods on traditional classifiers because they provide a higher proportion of
safe samples while reducing the proportion of non-safe samples [7].

SMOTE [4] is the most classic oversampling method, but its mechanism of
randomly selecting the nearest neighbors of minority class samples for linear
interpolation to generate new samples ignores the distribution information of
the samples. To address the shortcomings of SMOTE, researchers have proposed
many oversampling methods in recent years. These include Borderline-SMOTE
[9], which emphasizes synthesizing samples in the boundary region, Safe-Level-
SMOTE [3], which emphasize synthesizing samples in the safe region. Unlike the
above-mentioned method that only utilizes minority class information, GDO [20]
utilizes the density and distance information of both the majority and minority
classes to weight the minority class samples, simultaneously. However, these
methods either overemphasize synthesizing samples in specific areas, leading to
overfitting, or overemphasize preserving the original data distribution and ignore
the adverse effects of noisy samples on the classification model.

To address these problems, this paper proposes a noise-robust gaussian distri-
bution based imbalanced oversampling (NGOS). NGOS uses an adaptive neigh-
borhood determination method to mine sample neighborhood information and
introduces information entropy to measure the uncertainty of different sample
distributions within the neighborhood to reduce the sampling rate of highly
overlapping samples (even noise samples) and reduce the risk of introducing
additional class overlap and noise samples. To avoid oversampling of the minor-
ity class being too concentrated in the boundary region, the method combines
the distance information between the minority and majority classes in the neigh-
borhood to expand the potential space for synthesizing minority class samples.

The main contributions of this paper are summarized as follows:

– A noise-robust oversampling method (NGOS)based on Gaussian distribution
for imbalanced data is proposed.

– NGOS enhances the robustness of the minority oversampling model to noise
by introducing a fixed neighborhood information mining method and informa-
tion entropy, and reduces the risk of introducing additional class overlap and
noise samples by reducing the sampling rate of highly overlapping samples
(even noise samples).

Noise-Robust Gaussian Distribution Based Imbalanced Oversampling 223

– NGOS expands the potential space for synthesizing minority class samples
by combining the distance information between the minority and majority
classes in the neighborhood, and properly synthesizes new samples in the safe
region to avoid overfitting problems in the boundary region.

– We evaluate the performance of NGOS on 38 KEEL datasets by comparing it
with 11 data-level methods. The experimental results show that we achieved
the best performance in terms of Fmeasure, AUC, and Gmean.

The rest of this paper is organized as follows: Sect. 2 introduces related work
and the GDO algorithm. Section 3 proposes the NGOS algorithm. Section 4
presents experimental comparisons and analyses. Section 5 concludes the paper.

2 Related Work

2.1 Resampling Methods

Undersampling methods balance the dataset by removing some major-
ity class samples. SDUS [22] uses a supervised constructive process to learn
majority-class local patterns in terms of sphere neighborhoods (SPN) to main-
tain the distribution pattern of original data in selecting majority-class sample
subsets from different perspectives. RUS [2] randomly removes majority class
samples to balance the dataset. It may discard important information. Tomek
[11] links identify Tomek pairs where a minority class sample and a majority
class sample are mutual nearest neighbors, and remove the majority class sam-
ples. ENN [19] removes majority class samples that have mostly minority class
samples among their k nearest neighbors. However, they do not explicitly specify
the number of samples for removing which may lead to undesired level of data
imbalance. CC [15] first clusters the minority class samples and then selects
either the centroid or the majority class sample closest to the centroid of each
cluster. In addition, RBU [13] performs undersampling by calculating inter-class
potentials, which reflect the amount of information contained in the majority
class. However, it requires iterative steps, making it slower.

Oversampling methods balance the dataset by synthesizing minority class
samples. SMOTE [4] synthesizes minority class samples by randomly selecting
seed samples and applying linear interpolation. It may generate a large number of
new noisy samples. To address this, researchers started to restrict the selection of
seed samples in SMOTE. Borderline-SMOTE [9] confines the seed sample selec-
tion to the boundary region, considering samples at the classification boundary
more difficult to classify. In contrast, Safe-Level-SMOTE [3] argues that minority
class samples located in safe regions are better suited as seed samples, because
synthesizing samples in the boundary region is more likely to introduce noisy and
overlapping samples. ADASYN [10] adaptively assigns weights for seed sample
selection based on the density of sample distributions. MWMOTE [1] combines
location and density factors and integrates data clustering to assign weights for

224 X. Shao and Y. Yan

minority class samples. These methods are all derived from SMOTE [4], and
their synthesis methods use linear interpolation. Therefore, overgeneralization
issues may arise during sample synthesis. GDO [20] samples and proposes a
new sample synthesis method based on Gaussian models. As mentioned above,
it overly emphasizes majority class samples in the weighted selection of seed
samples, which may result in the synthesis of noisy samples.

Hybrid sampling methods balance the dataset by combining oversampling
methods and undersampling methods, which combines the advantages of both.
Most of these methods use SMOTE [4] as the main oversampling process and
then combine it with different undersampling methods to balance the dataset.
SMOTE+TL [2] and SMOTE+ENN [2] combine SMOTE with Tomek links and
ENN, respectively. They first use SMOTE to oversample, and then use Tomek
links and ENN for undersampling. However, using SMOTE for synthesis can
lead to overgeneralization issues. LDAS [21], which is different from the tradi-
tional oversampling-then-undersampling process mentioned above, first cleans
the overlap area using undersampling methods, and then synthesizes minority
class samples using oversampling methods.

2.2 Gaussian Distribution Based Oversampling (GDO)

GDO [20] believes that different minority classes carry different information, so
it considers both density and distance information to assign different weights for
selecting seed samples to different minority classes.

The sample selection weight factor of GDO is shown in Eq. (1). Where C(xi)
represents the proportion of majority class samples in the K nearest neighbors,
and D(xi) represents the proportion of the distance between majority class sam-
ples and the total distance in the K nearest neighbors.

I(xi) = C(xi) + D(xi) (1)

Then, the weights are normalized as shown in Eq. (2):

̂I(xi) =
I(xi)

∑|Nmin|
i=1 I(xi)

(2)

Where
∣

∣Nmin
∣

∣ represents the number of minority class samples.
Let o be the origin of the coordinates, and for any seed sample xi, a ran-

dom vector −→ov is generated. Then, −→xiv is the direction vector, and the newly
synthesized sample point is on this direction.

−→xiv = −→ov − −→oxi (3)

Next, the length of vector
−−→
xix

′ is determined, which follows the Gaussian
distribution: −−−→|xix

′| = di ∼ N(μi, ασi) (4)

Noise-Robust Gaussian Distribution Based Imbalanced Oversampling 225

Where μi = 0 and σi is the Euclidean distance between the seed sample xi and
its nearest same-class sample.

Therefore, the vector form of the newly synthesized sample is:

−→
ox′ = −→oxi +

−−−→|xix
′|

−−→|xiv|
· −→xiv (5)

3 Proposed Method

3.1 Analysis of the GDO Algorithm

The GDO algorithm relies on K-nearest neighbor (KNN) calculation to obtain
local distribution information. However, in imbalanced data, the majority class
is the dominant one in the sample space. Therefore, the decision process based
on K is prone to bias towards the majority class, and the method has poor
robustness to noise. In addition, to achieve better performance for different data
distributions, it is usually necessary to find suitable parameter K, which makes
the algorithm less adaptable.

As shown in Fig. 1, when the parameter K in the K-nearest neighbor calcu-
lation is set to 5, the weight of sample A calculated by Eq. (1) is 2 (each sample
can obtain the maximum weight value). Therefore, sample A has the highest
probability of being selected as the seed sample, but synthesizing minority sam-
ples based on sample A as the seed sample will further increase the difficulty
of classification. In addition, GDO believes that samples in the safe region are
easier to identify and ignores these samples. This causes the sampling process to
concentrate too much on the boundary area, which may cause overfitting.

As shown in Fig. 1, both B and C have a weight of 0 (they will not be
selected as seed samples). However, compared with C, it can be seen that sample
B is clearly closer to the decision boundary. Synthesizing samples based on B
can strengthen the classification boundary to a certain extent and expand the
potential generation space of synthesized samples, which can avoid the potential
overfitting problem caused by synthesizing too many samples in the boundary
area and improve the subsequent learning performance.

To address the above issues, this paper proposes an improved Gaussian
sampling method, NGOS, which uses a fixed-radius neighborhood partition
method and an information entropy-based neighborhood information measure-
ment method to enhance the performance of imbalance learning.

3.2 Local Information of Samples

The KNN method measures the local distribution information of samples by
finding their K-nearest neighbors. As shown in Fig. 1(a), this method cannot
effectively characterize the differences in sample distributions, as it only considers
the relationship between the target sample and its nearest neighbors, ignoring
the local distribution information of its neighbors. To address this issue, this

226 X. Shao and Y. Yan

Majority

Minority
A

B

C

(a) GDO weighted diagram

Majority

Minority
A

B
D

C

(b) NGOS weighted diagram

Fig. 1. Comparison of the weighting schemes between GDO and NGOS

paper utilizes the global information of sample distributions to achieve adaptive
determination of neighborhoods.

R = 2
∑

xi,xj∈Xtrain

dist(xi, xj)/(|Ntrain|(|Ntrain| − 1)) (6)

Where |Ntrain| is the number of samples in the training set, and dist(xi, xj) is
the Euclidean distance between sample xi and xj . It can be seen that this radius
R considers the global distribution information of the samples. With R as the
radius and the target sample xmin as the center, we obtain a subset Xcandi of
all samples whose distance to xmin is less than R.

Xcandi = {xp ∈ Xtrain, dist(xmin, xp) < R} (7)

Based on Xcandi, it is easy to evaluate the data distribution within the sample
neighborhood.

3.3 Estimation of Weight for Minority Class Sample Selection

In classification tasks, samples located in different regions have different impacts
on the classification model [18]. To characterize the impact of different samples
on the classification model, GDO uses the KNN method to characterize the
importance of minority class samples. Although this method assigns high weights
to boundary samples, it also overly emphasizes minority class samples located
in dense majority class areas, which leads to the synthesis of a large number of
potential noise samples. In other words, the GDO is not robust to noise samples.
To address this issue, this paper uses information entropy [5] and distribution
density to measure the samples and enhance the robustness of the model to
noise.

Specifically, we first measure the distribution differences within the local
neighborhood of a sample using the Eq. (8):

pi =
∣

∣

∣N
maj
icandi

∣

∣

∣/(
∣

∣

∣N
maj
icandi

∣

∣

∣ +
∣

∣Nmin
icandi

∣

∣) (8)

Noise-Robust Gaussian Distribution Based Imbalanced Oversampling 227

Where
∣

∣Nmin
icandi

∣

∣ represents the number of minority class samples in the candidate

set of sample xi, and
∣

∣

∣N
maj
icandi

∣

∣

∣ represents the number of majority class samples
in the candidate set of sample xi.

E(xi) = −pi log 2pi − (1 − pi) log 2(1 − pi) (9)

From Eq. (9), it can be seen that when pi = 1/2, Eq. (9) obtains the max-
imum value of 1, and gradually decreases as pi decreases or increases. When
pi = 0 or 1, we set the value to 0. In other words, the closer a sample is to the
decision boundary, the greater its weight, and the further it goes into the major-
ity class area, the smaller its weight. As shown in Fig. 1(b), all the neighboring
samples of sample A are of different classes (sample A is a noise sample), and
synthesizing samples at this position will increase the difficulty of training the
classifier. Therefore, we set its weight to 0 according to Eq. (9). Similarly, sample
D located in the safe area has neighboring samples that are all of the same class
and can be easily identified by the classifier. Therefore, we also set its weight to
0.

However, using Eq. (9) alone will overly focus on samples with high uncer-
tainty in the boundary area, in other words, it will assign higher weights to sam-
ples with higher uncertainty, which may lead to overemphasizing such samples
and causing overfitting problems. Therefore, NGOS introduces distance informa-
tion of the samples within the neighborhood, appropriately expands the selection
range of seed samples, increases the synthesis space of potential synthesized sam-
ples, and enhances the robustness of the model. To achieve this, NGOS proposes
the following distance measurement method:

D
′
(xi) =

∑

xj∈X
maj
icandi

dist(xi,xj)

∣
∣
∣N

maj
icandi

∣
∣
∣

∑

xj∈X
maj
icandi

dist(xi,xj)

∣
∣
∣N

maj
icandi

∣
∣
∣

+

∑
xj∈Xmin

icandi

dist(xi,xj)
∣
∣
∣Nmin

icandi

∣
∣
∣

(10)

When |Nmaj
icandi

| = 0 or |Nmin
icandi

| = 0, it means that the candidate set of the
sample only contains majority class samples (such as sample A in Fig. 2) or
minority class samples (such as sample D in Fig. 2). In these cases, the weight
D

′
(xi) of the sample is set to 0. It can be seen that Eq. (10) uses distance

information between samples to select seed samples for minority class synthesis
that are farther away from the decision boundary for unstable samples (i.e.,
samples with different classes in their neighborhoods), thus avoiding overfitting.

By considering both density and distance factors, the following method is
proposed to calculate the weight of each sample:

I(xi) = D
′
(xi) + E(xi) (11)

From Eq. (11), it can be seen that the weight of minority samples that are
deep in the majority class area is 0, while the weight of samples located at or
close to the decision boundary is relatively high.

228 X. Shao and Y. Yan

3.4 Probabilistic Seed Sample Selection and Time Complexity

After calculating the weight of each minority sample using Eq. (11), we normalize
the weights using Eq. (2) to convert them into probabilities. The selection of seed
samples and generation of new samples follow the iterative process below: at each
iteration, a seed sample is chosen based on its probability ̂I, and new minority
samples are synthesized based on the chosen seed sample. This process continues
until the number of minority samples is equal to the number of majority samples.
The number of samples to be synthesized is determined by the Eq. (12).

G =
∣

∣Nmaj
∣

∣ − ∣

∣Nmin
∣

∣ (12)

The process of NGOS is described in Algorithm 1. To calculate Eq. (9) and
Eq. (10), we first need to compute the candidate set of samples xi, which has
a time complexity O(|Ntrain|). Then, each minority class sample needs to be
calculated, resulting in a time complexity O(|Ntrain| ∣∣Nmin

∣

∣) for the minority
class weighting process (lines 2–8). The data generating process (lines 14–18),
the minority class instances are resampled G times and the time complexity is
O(|G|). Because G is smaller than Ntrain, the time complexity of Algorithm1 is
O(|Ntrain| ∣∣Nmin

∣

∣).

Algorithm 1 . NGOS(α)

Input: the original dataset D , scaling factor α;
Output: balanced dataset S;
1: Divide into minority class Dmin and majority class Dmaj ;
2: for xi in Dmin:
3: Calculate the radius R; Eq. (6)
4: Calculate the candidate set Xcandi of xi; //Eq. (7)
5: Obtain the density factor weight E(xi); Eqs. (8) and (9)
6: Obtain the distance factor weight D

′
(xi); //Eq. (10)

7: Calculate the information weight I(xi); //Eq. (11)
8: end for
9: for xi in Dmin:

10: Calculate the normalized weight ̂I(xi); //Eq. (2)
11: end for
12: Calculate the number of samples needed for balance G; //Eq. (12)
13: Initialize the number of minority class samples to be synthesized n = 0;
14: while n < G:
15: Synthesizing samples with using Eqs. (3)–(5);
16: Add the synthesized sample to D

′
min;

17: n = n + 1;
18: end while
19: S = D ∪ D

′
min;

Noise-Robust Gaussian Distribution Based Imbalanced Oversampling 229

4 Experiments and Analysis

To validate the effectiveness of our proposed NGOS algorithm, we designed a
three-stage experimental study. First, we will briefly introduce the evaluation
metrics and settings used in our experiments. Then, we analyzed the influence
of algorithm parameters on its performance. Finally, we compare our proposed
method with other state-of-the-art resampling methods on the KEEL dataset.

4.1 Experimental Settings

Evaluation Metrics. We use Fmeasure, Gmean, AUC (the area under the
ROC curve) [16] which are the most frequently used metircs in imbalance learn-
ing were applied in this study.

Datasets. Table 1 provides detailed information about the datasets, includ-
ing the dataset name, the abbreviation of the dataset (Abbr), the number of
attributes (Atts), the size of the dataset (Size), the number of samples in the
minority class (Min), and the imbalance ratio (IR).

Classifiers. In our experiments, we use Decision Tree (DT) classifiers provided
by the scikit-learn library in Python with default parameters. To ensure the
correctness of the experimental results, we used 5-fold cross-validation with 10
repetitions for the training and test set split.

Comparison Methods. In our experiments, we compared our proposed
NGOS algorithm with 11 other resampling methods, including SMOTE(SMO),
Borderline-SMOTE (BSM), ADASYN(ADA), MWMOTE (MWO), SMOTE
Tomek links (STL), SMOTE ENN (SENN), GDO, CC, ROS, RUS, RBU.

4.2 Experimental Results and Analysis

Parameter Analysis. In NGOS, when performing oversampling, the length
of the synthetic minority class mode d is derived from N(μi, ασi), where α is a
scaling factor to control the sampling density of the seed sample. To investigate
the influence of the parameter α on NGOS under different data distributions,
we selected 10 datasets. The best value is highlighted in bold.

Table 2 shows the AUC values and their average values for 10 datasets under
different parameter values for the DT classifier. The average values indicate
that NGOS performs best when α is set to 1.5, with D02, D03, D05, and D12
datasets achieving the best performance at α = 1.5. The D14, D24 and D33
datasets achieve the best performance at α = 1.4, 6 out of 10 datasets perform
best around these values. Therefore, we recommend setting the α to 1.5.

230 X. Shao and Y. Yan

Table 1. Description of KEEL Datasets

Dataset Abbr Size Atts Min IR Dataset Abbr Size Atts Min IR

abalone19 D01 4173 9 32 129.41 newthyroid1 D20 214 6 35 5.11
abalone918 D02 730 9 41 16.8 newthyroid2 D21 214 6 35 5.11
car-good D03 1727 7 69 24.03 pb134 D22 471 11 28 15.82
car-vgood D04 1727 7 65 25.57 page-blocks0 D23 5471 11 559 8.79
cleveland04 D05 176 14 13 12.54 pima D24 767 9 267 1.87
dermatology6 D06 357 35 20 16.85 p86 D25 1476 11 17 85.82
e013726 D07 280 8 7 39 p97 D26 243 11 8 29.38
e01 D08 219 8 77 1.84 segment0 D27 2307 20 329 6.01
flare-F D09 1065 12 43 23.77 s25 D28 3315 10 49 66.65
glass1 D10 213 10 76 1.8 scvc D29 1828 10 123 13.86
glass5 D11 213 10 9 22.67 vehicle0 D30 845 19 198 3.27
haberman D12 305 4 81 2.77 vehicle2 D31 845 19 218 2.88
iris0 D13 149 5 49 2.04 vowel0 D32 987 14 89 10.09
kgpvs D14 1641 42 52 30.56 wr35 D33 690 12 10 68
krivb D15 2224 42 22 100.09 wr4 D34 1598 12 53 29.15
krvkzovd D16 2900 7 104 26.88 wisconsin D35 682 10 239 1.85
kvkzvf D17 2192 7 27 80.19 yeast1 D36 1483 9 429 2.46
l024567891 D18 442 8 37 10.95 yeast6 D37 1483 9 35 41.37
lnf D19 147 19 6 23.5 zoo-3 D38 100 17 5 19

Comparison with Other Resampling Methods. This section compares
NGOS with 11 resampling methods in Sect. 4.1, which include 6 oversampling
methods, 3 undersampling methods, and 2 hybrid methods.

Due to space limited, we only provide the AUC for each dataset. From
Table 3, it can be seen that NGOS performs the best overall compared to other
comparison methods, achieving the best average values for AUC. For easily clas-
sified datasets such as D13, its evaluation metrics also reach 1, like other compar-
ison methods. Additionally, NGOS achieves the best performance on 12 datasets
for AUC. SENN achieves the best performance on 13 datasets for AUC. It can
be seen that SENN is the biggest competitor of NGOS, although it achieves the
best performance on one more dataset than NGOS for AUC, its overall average
performance is not as good as NGOS.

Therefore, we use Bayesian analysis [14] to further compare the performance
of NGOS and other comparison methods (especially SENN). Unlike other test-
ing methods, Bayesian analysis does not fall into the pitfalls of black and white
thinking and could estimate the probability that the performance of two classi-
fiers is different(or equal). Figure 2 shows the corresponding results of Bayesian
testing.

As shown in Fig. 2(a) and (c), on the DT classifier, the probability that NGOS
outperforms all other comparison methods except SENN is close to 100%, and

Noise-Robust Gaussian Distribution Based Imbalanced Oversampling 231

Table 2. Influence of parameter α on DT in terms of the AUC metric

Dataset 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

D02 0.6501 0.6533 0.6788 0.6576 0.6567 0.6856 0.6460 0.6465 0.6591 0.6794 0.6623
D03 0.9286 0.9227 0.9216 0.9134 0.9137 0.9390 0.9240 0.9298 0.9347 0.9273 0.9313
D05 0.7453 0.7472 0.7686 0.7226 0.7498 0.7853 0.7313 0.7808 0.7659 0.7738 0.7746
D10 0.7305 0.7496 0.7326 0.7418 0.7448 0.7483 0.7071 0.7361 0.7379 0.7251 0.7172
D12 0.5747 0.5763 0.5971 0.5754 0.5858 0.5974 0.5842 0.5675 0.5725 0.5886 0.5876
D14 0.9882 0.9861 0.9899 0.9919 0.9957 0.9862 0.9919 0.9922 0.9942 0.9884 0.9859
D24 0.6761 0.6712 0.6746 0.6789 0.6832 0.6747 0.6729 0.6765 0.6736 0.6727 0.6709
D33 0.6475 0.6848 0.6689 0.6640 0.7177 0.6909 0.6586 0.6283 0.7072 0.6587 0.7094
D35 0.9427 0.9434 0.9376 0.9430 0.9370 0.9384 0.9370 0.9431 0.9443 0.9383 0.9422
D38 0.6593 0.6432 0.7201 0.6379 0.6622 0.6982 0.6591 0.6835 0.7043 0.6863 0.6633
Avg 0.7285 0.7341 0.7432 0.7276 0.7396 0.7506 0.7227 0.7328 0.7438 0.7375 0.7376

Fig. 2. The value in the i-th row and j-th column represents the probability that the
i-th method performs better than the j-th method.

the probability of outperforming SENN is as high as 95%. Although NGOS has
one less best dataset than SENN on AUC, its performance on all 38 datasets far
exceeds SENN. From Fig. 2(b), it can be seen that the performance of NGOS
on Fmeasure is very outstanding, significantly better than other comparison
methods, with a probability of almost 100% of outperforming other comparison
methods, including SENN, even though, SENN is a hybrid resampling method.

5 Conclusion

This paper proposed the NGOS to addresses several issues of the GDO: 1) GDO
emphasizes the majority class in local regions, resulting in the generation of
too many synthetic samples around minority class samples deep in the majority
class region, introducing more difficult-to-learn samples that hinder the training
of the learning model. 2) GDO regards that samples in safe regions are easier to
recognize, thus ignoring these samples, but this can lead to oversampling being
too concentrated on the boundary region, which increases the risk of overfitting.
3) Both density and distance information in the GDO method rely on the KNN

232 X. Shao and Y. Yan

Table 3. AUC results on KEEL datasets obtained by DT

NGOS GDO ADA BSM CC MWO ROS RUS SMO SENN STL RBU

D01 0.5226 0.5220 0.5460 0.5426 0.7073 0.4944 0.5188 0.6448 0.5402 0.5816 0.5739 0.5237
D02 0.6856 0.6643 0.6879 0.6968 0.6674 0.6940 0.6111 0.6870 0.6495 0.6920 0.6616 0.6624
D03 0.9390 0.9108 0.7764 0.7994 0.8492 0.8419 0.9549 0.9567 0.8192 0.8214 0.7943 0.9660
D04 0.9858 0.9870 0.9920 0.9905 0.8629 0.9890 0.9792 0.9780 0.9935 0.9788 0.9766 0.9774
D05 0.7853 0.7533 0.7779 0.7899 0.7088 0.6471 0.6971 0.7800 0.8051 0.7746 0.7638 0.7460
D06 0.9985 0.9832 0.9835 0.9635 0.9546 0.9885 0.9835 0.9619 0.9885 0.9885 0.9885 0.9544
D07 0.8501 0.8590 0.8294 0.7387 0.8380 0.6087 0.5905 0.7059 0.8879 0.8372 0.8198 0.7205
D08 0.9758 0.9663 0.9708 0.9789 0.9732 0.9724 0.9647 0.9695 0.9668 0.9846 0.9815 0.9702
D09 0.6227 0.5887 0.5916 0.6100 0.6239 0.6556 0.6214 0.7526 0.5818 0.7564 0.6467 0.6167
D10 0.7483 0.7456 0.7186 0.7361 0.7258 0.7510 0.7385 0.7345 0.7364 0.7052 0.7365 0.7330
D11 0.9020 0.8551 0.9376 0.8476 0.9293 0.8451 0.9076 0.8507 0.8476 0.9756 0.8576 0.8388
D12 0.5971 0.5781 0.5420 0.5633 0.5281 0.5791 0.5726 0.5828 0.5297 0.6177 0.5941 0.5437
D13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
D14 0.9976 0.9832 0.9979 0.9980 0.9978 0.9978 0.9979 0.9927 0.9978 0.9977 0.9999 0.9979
D15 1.0000 0.9736 1.0000 1.0000 0.9787 1.0000 1.0000 0.9886 1.0000 1.0000 1.0000 0.9992
D16 0.9635 0.9538 0.9446 0.9525 0.9238 0.9579 0.9463 0.9646 0.9526 0.9883 0.9586 0.9470
D17 1.0000 0.9997 0.9927 1.0000 0.9651 1.0000 1.0000 0.9877 1.0000 0.9960 0.9853 0.9982
D18 0.9043 0.9038 0.8956 0.8758 0.8619 0.8908 0.8436 0.8485 0.8929 0.8788 0.9021 0.8620
D19 0.8860 0.8173 0.7909 0.7900 0.7354 0.5379 0.6539 0.7103 0.8322 0.8250 0.8003 0.5779
D20 0.9530 0.9425 0.9710 0.9607 0.9767 0.9574 0.9355 0.9410 0.9356 0.9464 0.9516 0.9210
D21 0.9582 0.9442 0.9688 0.9682 0.9617 0.9648 0.9139 0.9506 0.9482 0.9556 0.9453 0.9413
D22 0.9977 0.9901 0.9955 0.9837 0.9114 0.9977 0.9784 0.9562 0.9977 0.9644 0.9898 0.9636
D23 0.9252 0.9138 0.9296 0.9194 0.8959 0.9236 0.9065 0.9371 0.9238 0.9378 0.9325 0.8888
D24 0.6832 0.6702 0.6756 0.6724 0.6388 0.6782 0.6739 0.6769 0.6621 0.7057 0.6690 0.6624
D25 0.9380 0.9761 0.7578 0.6379 0.5253 0.5436 0.5071 0.5999 0.7409 0.6634 0.6898 0.6021
D26 0.8188 0.6484 0.5426 0.6932 0.6020 0.4907 0.5370 0.6099 0.6041 0.5956 0.6719 0.7427
D27 0.9908 0.9883 0.9863 0.9896 0.9692 0.9887 0.9905 0.9796 0.9917 0.9885 0.9882 0.9864
D28 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9976 1.0000 1.0000 1.0000 1.0000
D29 1.0000 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 1.0000 1.0000 1.0000 1.0000
D30 0.9316 0.9133 0.9145 0.9079 0.9329 0.9127 0.9076 0.9264 0.9064 0.9164 0.8998 0.9024
D31 0.9527 0.9434 0.9533 0.9552 0.9358 0.9472 0.9499 0.9403 0.9394 0.9428 0.9490 0.9526
D32 0.9725 0.9813 0.9564 0.9522 0.9547 0.9674 0.9223 0.9359 0.9650 0.9668 0.9618 0.9557
D33 0.7177 0.6514 0.5362 0.5216 0.6014 0.5129 0.5453 0.6339 0.4905 0.6614 0.5097 0.5103
D34 0.6500 0.5919 0.5599 0.5752 0.5887 0.5698 0.5376 0.6303 0.5808 0.6255 0.5531 0.5653
D35 0.9443 0.9392 0.9366 0.9330 0.9293 0.9363 0.9362 0.9458 0.9325 0.9480 0.9335 0.9404
D36 0.6616 0.6312 0.6654 0.6433 0.6479 0.6663 0.6493 0.6473 0.6524 0.6835 0.6616 0.6295
D37 0.8012 0.7248 0.7577 0.7502 0.7403 0.7620 0.7110 0.8075 0.7300 0.7816 0.7539 0.6260
D38 0.7201 0.6960 0.6676 0.7800 0.5032 0.7150 0.7147 0.6358 0.6045 0.6905 0.6963 0.6846
Avg 0.8679 0.8471 0.8355 0.8347 0.8196 0.8154 0.8131 0.8381 0.8323 0.8519 0.8368 0.8187

algorithm, which requires setting an appropriate K value for different datasets,
reducing the adaptability of the algorithm. Experimental results on 38 KEEL
datasets demonstrate that our method outperforms GDO in terms of the aver-
age rank of all evaluation metrics. Moreover, compared to other state-of-the-art
resampling methods, our method also achieves the best performance.

Noise-Robust Gaussian Distribution Based Imbalanced Oversampling 233

References

1. Barua, S., Islam, M.M., Yao, X., Murase, K.: MWMOTE-majority weighted minor-
ity oversampling technique for imbalanced data set learning. IEEE Trans. Knowl.
Data Eng. 26(2), 405–425 (2012)

2. Batista, G.E., Prati, R.C., Monard, M.C.: A study of the behavior of several meth-
ods for balancing machine learning training data. ACM SIGKDD Explor. Newsl.
6(1), 20–29 (2004)

3. Bunkhumpornpat, C., Sinapiromsaran, K., Lursinsap, C.: Safe-Level-SMOTE:
safe-level-synthetic minority over-sampling technique for handling the class imbal-
anced problem. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.)
PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 475–482. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-01307-2_43

4. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

5. Chen, Y., Wu, K., Chen, X., Tang, C., Zhu, Q.: An entropy-based uncertainty
measurement approach in neighborhood systems. Inf. Sci. 279, 239–250 (2014)

6. Folino, G., Pisani, F.S., Sabatino, P.: An incremental ensemble evolved by using
genetic programming to efficiently detect drifts in cyber security datasets. In: Pro-
ceedings of the 2016 on Genetic and Evolutionary Computation Conference Com-
panion, pp. 1103–1110 (2016)

7. García, V., Sánchez, J.S., Marqués, A., Florencia, R., Rivera, G.: Understanding
the apparent superiority of over-sampling through an analysis of local information
for class-imbalanced data. Exp. Syst. Appl. 158, 113026 (2020)

8. Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G.: Learning
from class-imbalanced data: review of methods and applications. Exp. Syst. Appl.
73, 220–239 (2017)

9. Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: a new over-sampling
method in imbalanced data sets learning. In: Huang, D.-S., Zhang, X.-P., Huang,
G.-B. (eds.) ICIC 2005, Part I 1. LNCS, vol. 3644, pp. 878–887. Springer, Heidel-
berg (2005). https://doi.org/10.1007/11538059_91

10. He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling app-
roach for imbalanced learning. In: 2008 IEEE International Joint Conference on
Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–
1328. IEEE (2008)

11. Ivan, T.: Two modifications of CNN. IEEE Trans. Syst. Man Commun. (SMC) 6,
769–772 (1976)

12. Jurgovsky, J., et al.: Sequence classification for credit-card fraud detection. Exp.
Syst. Appl. 100, 234–245 (2018)

13. Koziarski, M.: Radial-based undersampling for imbalanced data classification. Pat-
tern Recogn. 102, 107262 (2020)

14. Krawczyk, B., Koziarski, M., Woźniak, M.: Radial-based oversampling for multi-
class imbalanced data classification. IEEE Trans. Neural Netw. Learn. Syst. 31(8),
2818–2831 (2019)

15. Lin, W.C., Tsai, C.F., Hu, Y.H., Jhang, J.S.: Clustering-based undersampling in
class-imbalanced data. Inf. Sci. 409, 17–26 (2017)

16. López, V., Fernández, A., García, S., Palade, V., Herrera, F.: An insight into
classification with imbalanced data: empirical results and current trends on using
data intrinsic characteristics. Inf. Sci. 250, 113–141 (2013)

https://doi.org/10.1007/978-3-642-01307-2_43
https://doi.org/10.1007/11538059_91

234 X. Shao and Y. Yan

17. Rodriguez, D., Herraiz, I., Harrison, R., Dolado, J., Riquelme, J.C.: Preliminary
comparison of techniques for dealing with imbalance in software defect prediction.
In: Proceedings of the 18th International Conference on Evaluation and Assessment
in Software Engineering, pp. 1–10 (2014)

18. Vuttipittayamongkol, P., Elyan, E., Petrovski, A.: On the class overlap problem in
imbalanced data classification. Knowl. Based Syst. 212, 106631 (2021)

19. Wilson, D.L.: Asymptotic properties of nearest neighbor rules using edited data.
IEEE Trans. Syst. Man Cybern. 3, 408–421 (1972)

20. Xie, Y., Qiu, M., Zhang, H., Peng, L., Chen, Z.: Gaussian distribution based over-
sampling for imbalanced data classification. IEEE Trans. Knowl. Data Eng. 34(2),
667–679 (2022)

21. Yan, Y., Jiang, Y., Zheng, Z., Yu, C., Zhang, Y., Zhang, Y.: LDAS: local density-
based adaptive sampling for imbalanced data classification. Exp. Syst. Appl. 191,
116213 (2022)

22. Yan, Y., Zhu, Y., Liu, R., Zhang, Y., Zhang, Y., Zhang, L.: Spatial distribution-
based imbalanced undersampling. IEEE Trans. Knowl. Data Eng. 35, 6376–6391
(2023)

LAST: An Efficient In-place Static Binary
Translator for RISC Architectures

Yanzhi Lan1,2, Qi Hu1,2, Gen Niu1,2, Xinyu Li1,2, Liangpu Wang1,2,
and Fuxin Zhang1,2(B)

1 State Key Lab of Processors, Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, China

{lanyanzhi22b,huqi20s,niugen18z,lixinyu20s,wangliangpu21s,
fxzhang}@ict.ac.cn

2 University of Chinese Academy of Sciences, Beijing, China

Abstract. The lack of software has been a persistent issue for emerging
instruction set architecture (ISA). To overcome this challenge, binary
translation has emerged as a widely adopted solution, enabling pro-
grams written for older ISA to run on new ones. In the past, dynamic
binary translation (DBT) was commonly utilized for software migration,
but this technique required dynamic translation and often suffered from
suboptimal efficiency. In contrast, Static binary translation (SBT) is an
offline technique for translating binary code without runtime translation
overhead. Existing SBT systems always employ address mapping tables
to handle the address relocation problem, but this approach introduces
performance overhead and leads to issues with indirect jump correctness.
To address these limitations, we propose a novel static in-place instruc-
tion translation method for reduced-instruction set computing (RISC)
architectures. This method ensures that the address of the guest program
remains unchanged after translation, leveraging the regular length of var-
ious RISC instructions. We have implemented this method in a portable
SBT tool called LAST, specifically designed to run MIPS or RISCV
programs on the LoongArch platform. Based on the SPEC CPU2000
benchmark results, LAST achieves over 80% performance compared
to the native LoongArch program, demonstrating its effectiveness and
efficiency.

Keywords: Static Binary Translation · In-place instruction
translation · instrumentation

1 Introduction

Binary translation enable software of one architecture to execute on a hardware
platform of another architecture. This technology has a wide range of application
scenarios, such as fast software simulation [4,9,13,22], program runtime analysis
[6,10,20], debugging [11,14,21], and dynamic optimization [5].

Supported by The National Key Research and Development Program of China under
grant number 2022YFB3105103.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 235–254, 2024.
https://doi.org/10.1007/978-981-97-0801-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_14&domain=pdf
https://doi.org/10.1007/978-981-97-0801-7_14

236 Y. Lan et al.

Dynamic binary translation has played a prominent role in software migra-
tion endeavors in the past decades. As diverse instruction sets continue to evolve,
a multitude of exceptional dynamic binary translation systems have emerged,
showcasing the advancements in this field. Notable examples include IA-32 EL,
which enables the execution of IA-32 applications on IA-64 processor family sys-
tems [2]. And Rosetta2, which facilitates the migration of x86 executables to the
ARM platform [1]. Additionally, QEMU is a fast and portable dynamic transla-
tor, which support multiple guest and host ISAs [4]. However, it is important to
note that dynamic binary translation often incurs additional performance and
memory overhead.

Static binary translation not only does not need to translate at execution time
but also can use larger-scale optimization methods, thus it can often achieve
higher execution efficiency. SBT can often achieve higher execution efficiency
because no real-time translation is required, which can be used to complete
software migrations efficiently.

The Address relocation problem is caused by instruction expansion during
translation, breaking the original indirect jump relationship, critically affecting
the efficiency of static binary translators. The correctness of the jump relation-
ship in the guest program is guaranteed by the compiler of the guest platform,
but some address information will be lost during the compilation process, which
makes it particularly difficult for the binary translator to reconstruct the jump
relationship of the translated program. For direct jumps, the translator can eas-
ily calculate the new jump target through the offset value in the instruction.
But for indirect jumps, their targets are unknown during translation. So address
mapping tables is used to look up the targets by guest address at the runtime.
However, this lookup table can introduce extra overhead, we will discuss the
overhead in Sect. 2.2.

Instruction instrumentation technology is widely employed in various binary
analysis tools, enabling the modification of the execution flow of the original
program. These tools incorporate instrumentations into the program to facilitate
statistical analysis and program debugging [23]. However, it should be noted
that these tools are typically limited to programs within the same ISA. One
factor contributing to this limitation is the variability in instruction lengths
across different ISAs. For instance, the X86 instruction set utilizes variable-
length instructions, whereas the MIPS instruction set adheres to a fixed-length
format.

Over the past few decades, RISC architecture has witnessed remarkable
advancements, giving rise to prominent instruction sets such as ARM, MIPS,
RISCV, and LoongArch. These instruction sets have regular instruction encod-
ing, which facilitates efficient addressing and decoding of instructions. Intro-
duced by Loongson Technology in 2020, LoongArch is a new RISC instruc-
tion set that incorporates state-of-the-art advancements in instruction system
design [26]. It offers a favorable environment for the development of low-power,
high-performance CPUs [17–19,27]. With a fixed instruction length of 32 bits and
a regular encoding format, LoongArch ensures simplicity and ease of instruction

LAST: An Efficient In-place Static Binary Translator for RISC Architectures 237

handling. The design of LoongArch also prioritized software compatibility, its
basic software, such as the Linux kernel, GCC compiler, and QEMU simulator,
has already been successfully integrated into the community.

In this paper, we propose a novel approach called in-place instruction trans-
lation, which enables the preservation of address relationships in the translated
guest program, eliminating the need for address relocation. This innovative tech-
nique is implemented in a new SBT tool named LAST, which currently supports
the translation from MIPS or RISCV to LoongArch, called LASTM and LASTR.
Through extensive evaluation using the SPEC CPU2000 benchmark, LASTM
demonstrates remarkable performance. It achieves over 80% of the program effi-
ciency of the native LoongArch platform. These results showcase the effectiveness
and efficiency of our proposed in-place instruction translation approach in the
context of static binary translation.

The main contributions of this paper are as follows:

– We propose an in-place instruction translation method in binary translation
systems that can efficiently solve the address relocation problem encountered
in the mutual translation of RISC architectures. This method can effectively
reduce runtime translation overhead and improve system performance.

– We implement and evaluate LAST, demonstrating the effectiveness of the
in-place instruction translation method. Our experiments show that in-place
instruction translation can solve the address relocation problem in binary
translation with minimal overhead.

– This paper discuss the potential of this instruction translation method to
be efficiently applied to the mutual translation of other RISC architectures,
further expanding its applications beyond LoongArch.

The organization of the rest of this paper is as follows. Section 2 introduces
static binary translation, address relocation problems, and overhead in SBT.
Section 3 describes the design of LAST, and Sect. 4 shows the implementation
details of LAST. Section 5 analyses some experimental results. Section 6 con-
cludes this paper.

2 Background

This section provides a concise overview of static binary translation and high-
lights its key challenges, focusing on the main performance overheads associated
with this technique.

2.1 Static Binary Translation

Binary translation systems fall into two general categories: static binary trans-
lator and dynamic binary translator. Figure 1 shows the difference between
dynamic binary translation and static binary translation. The dynamic binary
translator dynamically translates instructions during the execution of the native
program. While the static binary translator converts the original program to the

238 Y. Lan et al.

target program offline, and the translated program executes without the assis-
tance of the binary translator. Compared to DBT, SBT is more convenient and
efficient.

Fig. 1. The Difference between DBT and SBT

UQBT [8] is a versatile SBT tool that utilizes an intermediate language
called HRTL to translate source binaries. HRTL can be further transformed
into target binary assemblers, enabling compatibility with multiple platforms.
However, UQBT still relies on a runtime interpreter to handle indirect register
calls that cannot be determined during static translation.

LLBT [24,25] is a portable SBT tool specifically designed for translating
ARM binaries to various target platforms. It employs LLVM IR (Intermediate
Representation) as an intermediate representation and leverages the LLVM com-
piler infrastructure to retarget the LLVM IR to different ISAs. This approach
significantly enhances the quality of the generated code. Nonetheless, LLBT still
requires an address mapping table to effectively handle indirect jumps.

SBT can cause the address of the guest program to change due to instruction
expansion during translation, breaking the original indirect jump relationship.
This leads to the address relocation problem, which is described in detail in
Sect. 2.2.

2.2 Address Relocation Problem in SBT

The best situation is that SBT can complete the instruction translation without
any code expansion, thus avoiding updating the branch target address [28]. Nev-
ertheless, it is obvious that one-to-many translations always exist, which requires
extra space to store the extra instructions. So the branch instructions, especially
indirect branch instructions, need to change their target address to avoid the
incorrect execution flow.

Figure 2 show the Address Relocation Problem. Because the range of imme-
diate numbers that can be used in the LoongArch is smaller than that in the
MIPS, two additional instructions are required in Fragment L1. But the address
of LABEL L3 is not changed, which may misleads some branch instructions into
jumping to the wrong address, like instruction jr ra.

LAST: An Efficient In-place Static Binary Translator for RISC Architectures 239

Fig. 2. The Address Relocation Problem

These problems can be easily solved for direct branches, but updating the
target address for indirect branches sometimes is difficult [16]. To tackle this
problem, Killian’s Pixie uses a translation table in which all indirect branches
need to find their target addresses [7].

Currently, the predominant approach for addressing this issue in static binary
translation systems is to employ an address hash table [25]. However, challenges
related to code discovery and performance persist. Please see Sect. 2.3 for further
details on these challenges.

2.3 Performance Overhead in SBT

The performance of binary translation is significantly influenced by the dispari-
ties between the Guest ISA and the Host ISA. To achieve optimal performance
in SBT tools, two critical issues must be addressed, as they have a substantial
impact on the translation process.

– Instruction expansion. The semantics of instructions on different architectures
directly leads to the inevitable instruction expansion during binary transla-
tion, which increases the number of dynamic instructions and affects effi-
ciency.

– Indirect branch handling overhead. Caused by binary code expansion, one-
to-many translations can affect the address of the original instruction. There-
fore, the translator needs to correctly handle the modified jump relationships,
especially indirect branches.

Instruction expansion is a common outcome of disparities between instruc-
tion sets, but the overhead associated with indirect jumps can be minimized.
Numerous remarkable studies have been conducted to mitigate the impact of
indirect jumps. For instance, Amanieu extensively examined various types of
indirect jumps and implemented optimizations tailored to specific contextual
scenarios in dynamic binary translation [12].

However, static binary translators do not actively participate in program exe-
cution and, as a result, lack the capability to dynamically handle indirect jumps

240 Y. Lan et al.

during runtime. To address this limitation, a common approach is to employ a
address mapping table within static binary translation systems [3]. However, this
method necessitates hash table queries, thereby introducing additional overhead.

Algorithm 1: Lookup Indirect JMP Target
input : GPC

hash = HASH(GPC);
HPC = Address_Mapping_Table[hash];
if HPC ! = NULL then

jmp to HPC // hit the target;
else

return error // Lookup error;
end

The address mapping table serves as a repository where the guest program
counter address (GPC) is stored as the key, and the corresponding host program
counter address (HPC) is stored as the value. The lookup process is outlined
in Algorithm2. During runtime, the GPC is hashed to generate an index that
corresponds to the HPC stored in the address mapping table. This HPC was pre-
viously stored during the static binary translation (SBT) process. Consequently,
the HPC associated with the given GPC can be swiftly retrieved based on the
hash. Additionally, it is crucial to compare the guest addresses within the lookup
table to ensure that the hash algorithm does not generate any conflicts.

There is no doubt that Algorithm2 is reliable and efficient. However, the
production of instructions required to calculate the address hash, fetch data
from the lookup table and determine if a hit has taken place still imposes a
considerable performance cost. In SPEC2000, as shown in Fig. 3, indirect jumps
account for approximately 1.27% of the total number of instructions, resulting
in approximately 15% performance loss due to its 1:12 instruction inflation.

Fig. 3. Number of indirect jumps per 10K instructions

Furthermore, indirect jumps pose another huge challenge for static binary
translation systems, as those jump entries can be difficult to fully identify. If the

LAST: An Efficient In-place Static Binary Translator for RISC Architectures 241

address entries, such as the switch-case jump table, cannot be recognized fully,
some parts of the program are not being executed correctly because the address
mapping table will lose some entry mappings.

3 Design

3.1 Overview

The design of the LAST architecture is shown in Fig. 4, which mainly includes
the following modules:

Initialize BTtext
Segment

Guest Program
Analysis

Initialize Syscall
Table

Disassembly IR1
translator

One-to-One
translator

Generate IR2
in text segment

One-to-Many
translator

Many-to-Many
translator

Generate IR2
in text segment

Host Platform
Assembly

Object File
Generation

translation core

Host ISA
Executable File

(LoongArch)

Guest ISA
Executable File
(MIPS/RISCV)

Read

Write

Sourse
ISA

Code

IR1 Generate IR2
in BTtext segment

Insert
instrum-
entation

Direct

Direct

LAST System Structure
Environment initialization

Fig. 4. The overall design of the LAST

Guest Program Analysis Module. This module accepts the origin binary
executable file, parses the ELF format and maps each program segment. Then
the segments will be recorded and reordered, making it easier for translator to
analyze, manage, and provide essential information to other modules.

Environment Initialization Module. This module configures the basic struc-
ture related to translation, including initialization translated code segment and
system call table. The translated code segment is the location for the one-to-
many translated code, which will be written to the translated executable file.
The system call table is used to convert different system call numbers between
original and translated programs.

Disassembly Module. This module disassembles the original code segments
and converts each instruction into internal IR-GUEST data.

242 Y. Lan et al.

Translation Module. This module will use the IR-GUEST data to classify
different types of instructions, and then the corresponding translation function
will translate them to the IR-HOST data.

In the translator core, the instructions are divided into three categories: one-
to-one, one-to-many and many-to-many translation. Each translator puts the
translated instruction in the original position, and in addition, one-to-many
translator will place the extra instructions in the translated code segment.

Host Platform Assembly Module. This module integrates and assembles
the IR-HOST data to generate the binary code and store it in the memory.

Object File Generation. This module will reorganize the segments (segment
of the original file and the new segments generated by the translator), fill in the
necessary ELF file header and write to the target file.

3.2 In-place Instruction Translation Design

In this study, we propose an innovative in-place instruction translation method
that preserves the original addresses of each instruction in the program while
minimizing the overhead associated with branches. This method draws inspira-
tion from the principles employed in instruction instrumentation binary transfor-
mation tools but is tailored specifically for Cross-ISA static binary translation.

Fig. 5. Modifications of LAST to ELF Sections

LAST will generate an additional code segment to store translated binary
codes and system call table. Figure 5 shows the difference between original and
translated ELF file.

For the translation of each instruction, we need to consider two cases, the
one-to-one and one-to-many translation. We also consider some optimization by
using many-to-many translation.

LAST: An Efficient In-place Static Binary Translator for RISC Architectures 243

– One-to-one translation. If the guest platform instruction can be converted
into host platform instructions one-to-one, it is simple to place the translated
instruction at the original address.

– One-to-many translation. Some instructions are complex and need to use
multiple instructions to translate them. We put these translated binary codes
at the additional code segment and then replace the original instruction with
a direct jump instruction which can jump to the translated fragment.

– Many-to-many translation. Some instructions are used as a pattern on the
guest platform to achieve a certain function. Usually, the host platform also
has an instruction pattern with equal length to achieve the same function.
In this case, the host instruction pattern can equivalently replace the guest
instruction pattern.

The proposed tool, LAST, effectively addresses the challenges posed by indi-
rect jumps through its in-place instruction translation mechanism. Section 4.2 of
the paper will provide comprehensive implementation details, offering a deeper
understanding of how LAST successfully mitigates the issues related to indirect
jumps.

3.3 System Call Design

To solve the issue of system call incompatibility, LAST employs a system call
table for system call conversion.

Unlike binary translators that “wrap” system calls by modifying call numbers
and handling different structures [15], LAST uses the system call table to handle
these issues, which is particularly useful in static in-place binary translation
where dynamic interception and processing of system calls is challenging.

Algorithm 2: Handle Syscall By Syscall Table
input : Guest Syscall Number

hash = HASH(Guest Syscall Number);
Host Syscall entry = Address_Mapping_Table[hash];
if Host Syscall entry ! = NULL then

jmp to Host Syscall entry // hit the target;
covert Guest Arguments to Host Arguments;
do Host Syscall;
covert Host return Arguments to Guest return Arguments;
return

else
return error // Unsupport Syscall;

end

During the translation process, the initial step of LAST involves the insertion
of the system call table into the translation code segment, as depicted in Fig. 5.
The role and functionality of the system call table are further elucidated in

244 Y. Lan et al.

Algorithm2. It facilitates several key functions: locating the appropriate table
item based on the Host Syscall number, performing the necessary conversion
from Guest ABI to Host ABI to enable system call invocation and kernel entry,
and addressing any variations in return values that may arise between different
architectures, ensuring a seamless transition back to the normal execution flow.
For a more comprehensive understanding of the implementation specifics, please
refer to Sect. 4.3.

3.4 ISA-Level Support

LAST utilizes some of the binary translation optimizations provided by the
LoongArch instruction set, which are optional. These optimizations are provided
as optional enhancements, and their detailed descriptions are presented below.

To address two efficiency issues in translation, LoongArch has designed
binary translation support into its ISA. The first issue is register shortage, which
may occur due to register mapping during binary translation. To solve this,
LoongArch adds four new scratch registers (SCRs) alongside the 32 general-
purpose registers (GPRs). These SCRs can interact with GPRs through data
move instructions and are used as temporary registers. The second issue is the
jump range limit. In-place instruction translation, as used in LAST, requires
jumping to the translated code block. To address the problem of the limited
jump range of the direct jump instruction, a jump-and-link instruction using
SCRs is also added. By setting the value in one of the SCRs as the address of
the translated code block, it is possible to jump to the translated code block
effectively and return to the original instruction conveniently.

In LAST, the SCR is primarily used in the following situations: first, when
the number of registers is insufficient during instruction translation, the SCR
register is used as a temporary register instead of using a virtual register in
memory. Second, when LAST needs to interrupt the current execution flow, but
cannot jump for a long distance, the SCR is used as the address register for a
long-distance indirect jump, thus reducing the storage and recovery of the source
register.

If the host system does not support SCRs, LAST employs a strategy to
identify the least frequently used registers in the guest program. These registers
are then transformed into memory accesses, allowing the freed registers to be
utilized for the same functionalities as the SCR registers mentioned earlier. As
a result, even in the absence of SCR support on the host, the aforementioned
challenges can still be addressed using additional instructions. However, it is
important to note that this approach may lead to a potential loss of efficiency.

4 Implementation

4.1 Register Mapping

Register mapping, which binds the guest platform’s registers to the host plat-
form’s registers, is an important part of binary translation, directly affecting the
execution efficiency of binary translators.

LAST: An Efficient In-place Static Binary Translator for RISC Architectures 245

Most binary translators, such as QEMU, use translation blocks (TBs) as base
units and perform dynamic register allocation in each TB. This dynamic regis-
ter allocation is convenient for design but tends to cause data transfer overhead.
Regarding the implementation of LAST, it adopts a global static register map-
ping approach. Specifically, we illustrate this with LASTM as an example, and
the corresponding mapping rules are presented in Table 1.

Table 1. Register mapping in LASTM

MIPS LoongArch LASTM
num name num name

0 zero 0 zero zero
1 at 19 t7 tr_at
2, 3 v0, v1 17, 18 t5, t6 tr_v0, tr_v1
4–11 a0–a7 4–11 a0–a7 tr_a0–tr_a7
12–15 t0–t3 12–15 t0–t3 tr_t0–tr_t3
16–23 s0–s7 23–30 s0–s8 tr_s0–tr_s7
24, 25 t8, t9 16, 20 t4, t8 tr_t8, tr_t9
26, 27 k0, k1 21, 22 tp, fp tmp
28 gp 2 gp tr_gp
29 sp 3 sp tr_sp
30 s8/fp 31 s8 tr_s8
31 ra 1 ra tr_ra
hi, lo hi, lo - scr2, scr3 tr_hi, tr_lo
- - - scr0, scr1 tmp

The main reason for using these mapping rules is the difference in the defini-
tion of the ABI and the differences in hardware. For example, register 31 is used
as the Return Address (RA) in MIPS, while the RA in LoongArch is register 1.
In addition, when the branch predictor supports RAS, it is important to map
the RA register of target planform to the host RA register, reducing the over-
head of function returns. Also, four scratch registers (SCRs) are designed in the
LoongArch which provide additional temporary registers for binary translation.
LAST maps SCR2 and SCR3 to the HI and LO registers in MIPS, and SCR0
and SCR1 are used as temporary registers.

In addition, LAST takes into consideration the scenario where the number
of guest registers exceeds that of the host registers. In this case, the translator
can still implement the translation process by using memory as virtual regis-
ters. The translator keeps track of the frequency of register usage, and saves
and restores the less frequently used registers, treating them as temporary reg-
isters. These marked temporary registers can be used when necessary by load-
ing them from memory, where they were saved earlier. It is worth noting that
this load/restore overhead is unavoidable. This case NumRegs(Host) >= Num-
Regs(Guest) requires additional loading and restoring in any translator.

246 Y. Lan et al.

4.2 In-place Instruction Translation

Instruction translation is the critical part of LAST, which is related to the effi-
cient execution of the translated program.

LAST’s translator disassembles each input instruction and stores the detailed
information in the IR. Then the translator will identify the classification of the
instruction from the IR and translate them using different translation functions.
LAST classifies instruction translations into three types.

One-to-One Translation. Both the host ISA and the guest ISA are RISC
architectures, the behavior of the instructions is relatively similar. So some guest
instructions can be translated into host instructions one-to-one. For such instruc-
tions, LAST can replace them at the original addresses.

Fig. 6. One-to-many translation in LAST

One-to-Many Translation. Because of the differences between the host ISA
and the guest ISA, some instructions require one-to-many translation, such as
system call instruction and some instructions with 16-bit immediate. In this case,
the translator will translate this instruction and put these translated codes in
an additional code segment. At the same time, the original instruction will be
replaced by a direct jump whose target address is this additional code segment.
For example, Fig. 2 will be translated into the case of Fig. 6. The instruction ld
$v0,0x8058($v0) is replaced by b L4, and the segment .trans is used to store
these “one-to-many translated code”. At the end of the translated code, a branch
instruction b L6 will be added to return to the original control flow.

In addition, if multiple consecutive instructions require one-to-many trans-
lation, they need to jump to the translated code segment only once. Thus, b L4
need not to return next instruction.

Many-to-Many Translation. Compilers often combine several instructions as
patterns. If we translate these instructions one by one, it may result in multi-
ple one-to-many translations. However, if we use many-to-many translation to
translate this instruction pattern, we often get good results. LAST can recognize
these instruction patterns and translate them into instruction sequences with the
same function.

LAST: An Efficient In-place Static Binary Translator for RISC Architectures 247

For instance, in the case of MIPS, the instruction sequence Lui +Ori is
utilized to load 32-bits immediate values. Conversely, in LoongArch, the corre-
sponding instruction has a different immediate width. Nonetheless, both archi-
tectures provide instructions capable of loading 32-bits immediate values. In such
scenarios, LAST treats the combination of Lui+Ori as a unit and replaces them
with suitable instructions from the host instruction set.

4.3 System Call Handling

The translated programs cannot execute on the platform directly due to the
differences between the host and guest operating systems. So, System calls must
be handled in binary translation.

LAST stores a system call table in the translation code segment, which is
used to handle system call differences between the guest Kernel and the host
Kernel. Figure 7 shows the execution flow of the system call. Whenever the guest
program needs to run a system call, the program first jumps to the header of
the system call table, where a piece of code is stored for preprocessing. Then,
LAST will use the guest system call number as an index to find the handler’s
entry in the system call table and jump over to execute the handler function. In
these handlers, LAST will convert the system call parameters, including system
call numbers and some structures in memory.

Fig. 7. Syscall Execution Flow in LAST

Another thing we need to consider is that there may be some special system
calls that exist only in the guest platform and cannot be implemented by the host
system calls. It is difficult to implement a non-existent system call in user mode.
To handle those system calls, LAST uses system call simulation by employing
other host system calls to mimic the function of the guest system call. For
instance, the CLONE system call in MIPS can be emulated by the FORK system
call in LoongArch.

4.4 Delay Slot

Due to historical reasons, the MIPS has designed the delay slot. However, delay
slots are not available in the LoongArch, which leads to additional processing in
LASTM.

248 Y. Lan et al.

In general, the instruction in the delay slot and the branch instruction have
no data dependencies and can be easily translated by swapping the positions of
two instructions.

When data dependencies exist, the relationship between the instructions
needs to be handled with care, as depicted in Fig. 8. The daddiu instruction
is an example of a data-dependent operation instruction, and simply changing
the order of its execution can cause the beq instruction to execute incorrectly,
resulting in program errors. To solve this error, LASTM need to translate accord-
ing to the following steps. First, the value in the dependent register needs to be
copied to a temporary register. Then, the delay slot instruction is executed.
Finally, the branch instruction where the dependent register is replaced by the
temporary register will be executed.

Fig. 8. Data Dependencies Delay Shot Handling

5 Evaluation

5.1 Evaluation Setup

Table 2. Evaluation Platform

Loongson 3A4000 Loongson 3A5000

Architecture GS464V GS464V
ISA MIPS64 Release 5 LoongArch
Compiler gcc 8.3 gcc 8.3 (LoongArch)
Options -Ofast -static -Ofast -static
Frequency 1.8GHz 2.3GHz
L1 cache I/D 64KiB 64 KiB
L2 cache 256KiB 256KiB
LLC 8MiB 16MiB

LAST offers the capability to convert MIPS or RISCV programs into LoongArch
programs, which are referred to as LASTM and LASTR, respectively, for clarity.
To evaluate its performance, we conducted tests in two distinct environments.

LAST: An Efficient In-place Static Binary Translator for RISC Architectures 249

The term MIPS denotes the execution of native MIPS programs on the Loongson
3A4000 platform, while LA represents the execution of LoongArch programs on
the Loongson 3A5000 platform. Although LAST supports RISCV-to-LoongArch
translation, our evaluation was limited to the simulation environment for RISCV.
Therefore, we were unable to perform actual chip tests for RISCV. The detail
information about the experimental environment is shown in Table 2.

For evaluation purposes, we utilized the Coremark and SPEC CPU2000
benchmark testing programs. Coremark is specifically designed to assess the
fixed-point performance of CPUs, and although it has a relatively small test
scale, it serves as a suitable tool for evaluating the performance of binary trans-
lation. In addition to Coremark, we employed SPEC CPU2000 to obtain more
detailed insights into the performance of binary translation. SPEC CPU2000
encompasses both fixed-point and floating-point testing, enabling a more com-
prehensive evaluation of performance details. All benchmarks were compiled by
GCC version 8.3 with -Ofast as the optimization level.

The 3A5000 is an evolution of the 3A4000 and they share the same microar-
chitecture. There are three main differences, ISA, frequency, and LLC capacity.
Other microarchitectural features are unchanged, so the programs behave very
similarly on the 3A4000 and 3A5000. Therefore, for LAST, it is significant to
compare the original MIPS programs on 3A4000 with the LAST-translated pro-
grams on 3A5000.

5.2 Performance

Fig. 9. Coremark Relative Ratio of the Scores-per-GHz The baseline is the scores-per-
GHz of the native LA.

Figure 9 presents a performance comparison of various translators and native
programs, using the score of the native LA as the baseline. It is obvious
that LAST has significant performance advantages over other dynamic binary
translator.

250 Y. Lan et al.

QEMU [4] is a commonly used binary translator in the industry that sup-
ports mutual translation of multiple architectures, but its efficiency is low due to
the use of TCG as the intermediate code for translation. LATR and LATM are
dynamic translators developed in the research group that use one-to-one instruc-
tion translation and special optimization for indirect jump, resulting in higher
efficiency than QEMU. LASTR and LASTM represent LAST’s translation of
RISC and MIPS programs, respectively, and show much higher efficiency than
dynamic translators, because In-place static translators do not generate indirect
jump overhead and do not require translation time.

Fig. 10. SPEC2000 Relative Ratio of the Scores-per-GHz. The baseline is the scores-
per-GHz of the native LA.

Figure 10 illustrates the SPEC2000 performance of LAST, with the native
LA program serving as the baseline. On average, LASTM achieves over 80%
performance compared to the native LA program, while LASTR achieves over
75% performance. Comparing these results with those of dynamic translators,
it is evident that LAST demonstrates superior performance across most sub-
items. The key factor contributing to LAST’s higher performance is its ability to
address the overhead of indirect jumps through the translation of interpolated
instructions, without incurring the performance loss associated with dynamic
translation techniques.

We further analyze the relevance between the instruction expansion ratio and
the actual performance in LASTM. Figure 11 shows the relationship between the
instruction expansion ratio and the execution time. Due to our translation rules,
the number of LASTM ’s dynamic executed instructions is always bigger than
the number of native MIPS ’s. So the value in the x-axis is always greater than 1.

LAST: An Efficient In-place Static Binary Translator for RISC Architectures 251

Fig. 11. Instruction Expansion Ratio vs Relative Performance. The x-axis is the ratio
of the dynamic instruction count, which stands for the instruction expansion ratio.
The y-axis is the ratio of the number of execution cycles, which stands for the relative
performance.

The y-axis is the ratio of the number of execution cycles. We divide the number
of native MIPS ’s execution cycles by the number of LASTM ’s.

Note that there are two points at the bottom-right corner. They are 177.mesa
and 178.galgel, whose performance is less than 80%. The reason why their
performance is such low is that their instruction expansion ratio is too high.
They contain many instructions that can not be translated by the one-to-one
translator.

5.3 Translation vs. Compilation

Fig. 12. SPEC2000 Relative Ratio of the Scores-per-GHz. The baseline is the scores-
per-GHz of the native MIPS.

Figure 12 shows the SPEC2000 performance of LASTM. The result of native
MIPS is the baseline. On average, the performance for SPEC benchmarks is 96%.
Note that there are only two benchmarks whose performance is lower than 80%.
And they both belong to the floating-point benchmark. In all, we can conclude
from the result that LASTM almost does not lose performance compared to the
native MIPS program. As shown in Fig. 10, the SPEC2000 performance based
on the LA program is only 84%.

252 Y. Lan et al.

Fig. 13. Relative Ratio of Instruction Count. The baseline is the instruction count of
native LA

However, this result is heavily influenced by compilers on different plat-
forms. Figure 13 shows the relative ratio of the instruction count compared to
the instruction count of the native LA. On average, for integer benchmarks,
the instruction count of native MIPS is 17% more than that of native LA and
LASTM is 27%. Since LASTM is translating MIPS instructions into LoongArch
instructions, a sizeable proportion of the instruction expansion comes from the
difference in the compiler.

In fact, the microarchitecture of 3A4000 and 3A5000 is nearly the same
except for the size of the LLC. Comparing the performance of LASTM in 3A5000
with the performance of MIPS in 3A4000 while considering the difference in the
hardware platform is a better way to describe the actual efficiency of our binary
translator.

6 Conclusion

In conclusion, this paper introduces a novel approach, in-place static binary
translation, which effectively addresses the challenge of address relocation and
significantly improves the efficiency of SBT. The implementation of LAST on
the LoongArch platform successfully converts MIPS or RISCV programs into
the LA program. Experimental results demonstrate that while the translated
program may experience a slight increase in direct jumps, it has minimal impact
on efficiency. In fact, the translated program achieves over 80% performance
compared to the native LA program, confirming the high efficiency of this app-
roach. These findings highlight the effectiveness and potential of in-place static
binary translation for efficient program translation and execution.

References

1. Apple: Rosetta. https://support.apple.com/en-us/HT211861
2. Baraz, L., et al.: IA-32 execution layer: a two-phase dynamic translator designed

to support IA-32 applications on Itanium/spl reg/-based systems. In: 2003 Pro-
ceedings of the 36th Annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO-36, pp. 191–201 (2003). https://doi.org/10.1109/MICRO.2003.
1253195

https://support.apple.com/en-us/HT211861
https://doi.org/10.1109/MICRO.2003.1253195
https://doi.org/10.1109/MICRO.2003.1253195

LAST: An Efficient In-place Static Binary Translator for RISC Architectures 253

3. Bauman, E., Lin, Z., Hamlen, K.W.: Superset disassembly: statically rewrit-
ing x86 binaries without heuristics. In: 25th Annual Network and Distributed
System Security Symposium, NDSS 2018. Internet Society, Reston (2018).
wOS:000722005800038. https://doi.org/10.14722/ndss.2018.23300

4. Bellard, F.: QEMU, a fast and portable dynamic translator. In: Proceedings of the
FREENIX Track: 2005 USENIX Annual Technical Conference, 10–15 April 2005,
pp. 41–46. USENIX, Anaheim (2005). https://www.usenix.org/events/usenix05/
tech/freenix/bellard.html

5. Bruening, D., Garnett, T., Amarasinghe, S.: An infrastructure for adaptive
dynamic optimization. In: 2003 International Symposium on Code Generation and
Optimization, CGO 2003, pp. 265–275 (2003). https://doi.org/10.1109/CGO.2003.
1191551

6. Bruening, D., Garnett, T., Amarasinghe, S.: An infrastructure for adaptive
dynamic optimization. In: Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-Directed and Runtime Optimization,
CGO 2003, pp. 265–275. IEEE Computer Society, USA (2003)

7. Chow, F.C., Himelstein, M.I., Killian, E., Weber, L.: Engineering a RISC compiler
system. In: COMPCON, pp. 132–137 (1986)

8. Cifuentes, C., Van Emmerik, M.: UQBT: adaptable binary translation at low cost.
Computer 33(3), 60–66 (2000). https://doi.org/10.1109/2.825697

9. Cota, E.G., Bonzini, P., Bennée, A., Carloni, L.P.: Cross-ISA machine emulation
for multicores. In: Proceedings of the 2017 International Symposium on Code Gen-
eration and Optimization, CGO 2017, pp. 210–220. IEEE Press (2017)

10. Cota, E.G., Carloni, L.P.: Cross-ISA machine instrumentation using fast and
scalable dynamic binary translation. In: Proceedings of the 15th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments,
VEE 2019, pp. 74–87. Association for Computing Machinery, New York (2019).
https://doi.org/10.1145/3313808.3313811

11. Cunha, M., Fournel, N., Pétrot, F.: Collecting traces in dynamic binary transla-
tion based virtual prototyping platforms. In: Proceedings of the 2015 Workshop
on Rapid Simulation and Performance Evaluation: Methods and Tools, RAPIDO
2015, Association for Computing Machinery, New York (2015). https://doi.org/10.
1145/2693433.2693437

12. d’Antras, A., Gorgovan, C., Garside, J., Luján, M.: Optimizing indirect branches
in dynamic binary translators. ACM Trans. Archit. Code Optim. 13(1) (2016).
https://doi.org/10.1145/2866573

13. Dehnert, J.C., et al.: The Transmeta Code MorphingTM software: using specula-
tion, recovery, and adaptive retranslation to address real-life challenges. In: Pro-
ceedings of the International Symposium on Code Generation and Optimization:
Feedback-Directed and Runtime Optimization, CGO 2003, pp. 15–24. IEEE Com-
puter Society, USA (2003)

14. Eyolfson, J., Lam, P.: Detecting unread memory using dynamic binary translation.
In: Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 49–63. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-35632-2_8

15. Federico, A.D., Agosta, G.: A jump-target identification method for multi-
architecture static binary translation. In: 2016 International Conference on Compli-
ers, Architectures, and Synthesis of Embedded Systems (CASES), pp. 1–10 (2016)

16. Horspool, R., Marovac, N.: An approach to the problem of detranslation of
computer-programs. Comput. J. 23(3), 223–229 (1980). WOS:A1980KD91500005.
https://doi.org/10.1093/comjnl/23.3.223

https://doi.org/10.14722/ndss.2018.23300
https://www.usenix.org/events/usenix05/tech/freenix/bellard.html
https://www.usenix.org/events/usenix05/tech/freenix/bellard.html
https://doi.org/10.1109/CGO.2003.1191551
https://doi.org/10.1109/CGO.2003.1191551
https://doi.org/10.1109/2.825697
https://doi.org/10.1145/3313808.3313811
https://doi.org/10.1145/2693433.2693437
https://doi.org/10.1145/2693433.2693437
https://doi.org/10.1145/2866573
https://doi.org/10.1007/978-3-642-35632-2_8
https://doi.org/10.1093/comjnl/23.3.223

254 Y. Lan et al.

17. Hu, W., et al.: Godson-3B: a 1GHz 40W 8-core 128GFLOPS processor in 65nm
CMOS. In: 2011 IEEE International Solid-State Circuits Conference, pp. 76–78
(2011). https://doi.org/10.1109/ISSCC.2011.5746226

18. Hu, W., Yang, L., Fan, B., Wang, H., Chen, Y.: An 8-core MIPS-compatible pro-
cessor in 32/28 nm bulk CMOS. IEEE J. Solid-State Circ. 49(1), 41–49 (2014).
https://doi.org/10.1109/JSSC.2013.2284649

19. Hu, W., et al.: Godson-3B1500: a 32nm 1.35GHz 40W 172.8GFLOPS 8-core pro-
cessor. In: 2013 IEEE International Solid-State Circuits Conference Digest of Tech-
nical Papers, pp. 54–55 (2013). https://doi.org/10.1109/ISSCC.2013.6487634

20. Luk, C.K., et al.: Pin: building customized program analysis tools with dynamic
instrumentation. In: Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2005, pp. 190–200.
Association for Computing Machinery, New York (2005). https://doi.org/10.1145/
1065010.1065034

21. Molnar, I.: Performance counters for Linux (2009). https://lwn.net/Articles/
337493/. Accessed 23 Feb 2022

22. Niu, G., Zhang, F., Li, X.: Eliminate the overhead of interrupt checking in full-
system dynamic binary translator. In: Proceedings of the 15th ACM International
Conference on Systems and Storage (2022)

23. Prasad, M.: A binary rewriting defense against stack-based buffer overflow attacks.
In: 2003 USENIX Annual Technical Conference, USENIX ATC 03, San Antonio,
TX, June 2003. USENIX Association (2003). https://www.usenix.org/conference/
2003-usenix-annual-technical-conference/binary-rewriting-defense-against-stack-
based

24. Shen, B.Y., Chen, J.Y., Hsu, W.C., Yang, W.: LLBT: an LLVM-based static binary
translator. In: International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems (2012)

25. Shen, B.Y., Hsu, W.C., Yang, W.: A retargetable static binary translator for the
arm architecture. ACM Trans. Archit. Code Optim. 11(2) (2014). https://doi.org/
10.1145/2629335

26. Loongson Technology: Loongarch documentation (2022). https://loongson.github.
io/LoongArch-Documentation/

27. Weiwu, H., et al.: Loongson instruction set architecture technology. J. Comput.
Res. Dev., 1–22 (2022)

28. Wenzl, M., Merzdovnik, G., Ullrich, J., Weippl, E.: From hack to elaborate tech-
nique - a survey on binary rewriting. ACM Comput. Surv. 52(3), 1–37 (2020)

https://doi.org/10.1109/ISSCC.2011.5746226
https://doi.org/10.1109/JSSC.2013.2284649
https://doi.org/10.1109/ISSCC.2013.6487634
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1065010.1065034
https://lwn.net/Articles/337493/
https://lwn.net/Articles/337493/
https://www.usenix.org/conference/2003-usenix-annual-technical-conference/binary-rewriting-defense-against-stack-based
https://www.usenix.org/conference/2003-usenix-annual-technical-conference/binary-rewriting-defense-against-stack-based
https://www.usenix.org/conference/2003-usenix-annual-technical-conference/binary-rewriting-defense-against-stack-based
https://doi.org/10.1145/2629335
https://doi.org/10.1145/2629335
https://loongson.github.io/LoongArch-Documentation/
https://loongson.github.io/LoongArch-Documentation/

Personalized Privacy Risk Assessment
Based on Deep Neural Network for Image

Sharing on Social Networks

Hongyun Cai1,2 , Ao Zhao1,2(B) , Shiyun Wang1,2 , Meiling Zhang1,2 ,
and Yu Zhang1,2

1 School of Cyber Security and Computer, Hebei University, Baoding 071000, Hebei,
China

chosen_ao@163.com
2 Key Laboratory on High Trusted Information System in Hebei Province,

Hebei University, Baoding 071000, Hebei, China

Abstract. With the extensive usage of social networks, many users get
used to share images with their friends frequently without thinking care-
fully about the private information in the images, which may cause the
leakage of user private information. To help users to improve their privacy
awareness, in this paper, we propose a two-stage personalized privacy risk
assessment framework based on images sharing history between users. In
the first stage, the privacy information of the shared images are identi-
fied by using the faster R-CNN, based on which, the user-image privacy
vector is generated. In the second stage, we predict the user behavior
for image sharing using deep neural network and calculate the risk leak-
age probability of user privacy for the sharing image. The experimental
results show the effectiveness of the proposed method, which can reach
a prediction accuracy of 98% and the average time of 0.47 s.

Keywords: social networks · image sharing · image privacy ·
presonalized requirement vector · deep neural network

1 Introduction

At present, there are 4.2 billion social media users in the world, and image
sharing has become the common interactive behavior between users on social
networks. For example, on Facebook, Wechat, et al., users frequently exchange
various kinds of image information about learning, life, and work. Sharing images
is a great convenience to social network users, but also brought the privacy risk.
Through the analysis of sharing images, it is possible to obtain very detailed
personal information including location, social relationship, and property, etc.,
which will undoubtedly cause many risks and bring huge losses to users [9]. For
avoiding privacy disclosure, many social network platforms allow users to set
their fine-grained privacy preference. However, research in [10] has shown that

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 255–274, 2024.
https://doi.org/10.1007/978-981-97-0801-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_15&domain=pdf
http://orcid.org/0009-0000-1750-3040
http://orcid.org/0009-0009-3835-1870
http://orcid.org/0009-0008-2403-4439
http://orcid.org/0009-0000-6880-015X
http://orcid.org/0009-0006-3116-5651
https://doi.org/10.1007/978-981-97-0801-7_15

256 H. Cai et al.

only 37% of users have personalized privacy settings on Facebook, which means
that many users are unaware of privacy and their potential risks. Moreover, in the
process of sharing images, users may misjudge the privacy information in images
even they use the personalized privacy settings provided by social networking
sites [12]. Therefore, it is very important to analyze the privacy information in
the sharing image accurately and predict their privacy leakage risk for different
users effectively, which will help enhance awareness of privacy for social network
users.

To predict privacy risk for users on social networks, some methods have
been proposed to analyze the image privacy or calculate the privacy score. The
existing image privacy prediction methods can classify the sharing image into
private class or public class according to the image itself, while those methods
of calculating privacy score usually focused on the user attributes. However, the
concept and definition of privacy are very subjective and different people may
have different views on privacy [17]. For example, introverted users and extro-
verted users usually have different privacy requirements for the same personal
privacy information. Therefore, the privacy leakage risk of the sharing image
should be related to the behavior preference of image owner [25]. In addition,
privacy policy may change with the subject, context and time, and leakage path
of private images is complex.

To address the above limitations, we propose a personalized privacy risk
assessment model for image sharing on social networks, which is called PPRAS.
The proposed approach consists of two stages, i.e. generating user-image privacy
vector and analyzing image shared behavior between users. In the first stage,
we use faster R-CNN to identify the privacy information in the shared image
and generate the privacy attribute vectors, the privacy vector is generated by
combining the generated privacy attribute vectors with the personalized user
privacy requirement vector. In the second stage, we adopt deep neural network
to predict the image shared behavior between users based on their historical
sharing behavior, and calculate the risk leakage probability of user privacy for
the sharing image. The main contributions of this paper are as follows:

– The proposed PPRAS takes into account both the personalized privacy
requirement of each user and privacy information in the shared image, which
will be more aligned with the characteristic of privacy.

– PPRAS adopts a deep neural network to model the shared behavior between
users, and the privacy leakage risk for shared images is calculated based on
the prediction probability, which can minimize the subjective impact of the
evaluation results.

– PPRAS does not need provide privacy setting by themselves, which can
greatly reduce the difficulty of extracting information and enhance the uni-
versal application of privacy risk assessment on different social networks. The
experiments results demonstrate the effectiveness of the proposed model.

The rest of this paper is organized as follows: Sect. 2 reviews some related
work. Section 3 details the proposed model including problem description, defini-

Personalized Privacy Risk Assessment Based on Deep Neural Network 257

tion and the framework of PPRAS. Section 4 introduces the experimental results
and evaluation. Section 5 concludes the paper.

2 Related Work

For image sharing on social networks, the identification of private information
in images is an important research direction. Hong et al. [6] proposed a privacy
attributes-aware message passing neural network framework, which can effec-
tively deal with multiple privacy attributes, and use the message passing algo-
rithm to model the relationship between the privacy attributes in the image.
Zhang et al. [3] calculated the attention value of each pixel in the image through
the visual attention mechanism, which improved the accuracy of image privacy
attribute recognition. Yang et al. [22] proposed dynamic region-aware graph
convolutional network based on feature extraction and dynamic region selection
mechanism, which can model the correlation between different elements to detect
privacy-leaking images. Tonge et al. [16] identified and predicted the sensitive
content of images by dynamic deep multi-modal fusion. These studies focused on
measuring whether an image contains private information or the type of private
information.

For evaluating the leakage risk of user privacy on social networks, Li et al.
[7–9] used structural similarity, attribute correlation and behavioral intimacy to
calculate the risk of privacy leakage. In order to reduce the influence of subjec-
tive factors, they improved the calculation method using SGC neural network.
However, their methods omit some factors that cause the leakage of private infor-
mation. Dan et al. [10] developed a probabilistic model and coordination strategy
based on the social user’s image sharing history. This method does not take into
account the hidden relationships such as intimacy between users. Oukemeni et
al. [13] analyzed the internal and external environment of the system from the
perspective of the social network platform and calculated the privacy level by
combining the influence of privacy and security requirements, accessibility, and
information extraction difficulty. This method statically evaluates the system as
a whole, but it does not consider the individual requirement of different users.
The work in [2,5,11] explored the risk factors affecting user privacy based on
the privacy behavior and potential privacy threats of social network users.

In addition, there also have some related researches on evaluating the leak-
age risk of privacy information in other background. In the mobile phone system
and application, Wang et al. [20] calculated the risk value of privacy informa-
tion leakage by quantifying the influence of authority through association rule
learning. Wang et al. [18] introduced the TF-IDF model to calculate the privacy
leakage risk of the app and used domain name similarity, ip address similarity,
and tcp channel similarity optimization models. However, this method ignores
the disclosure of private information caused by app service providers. Chen et
al. [1] proposed a semantic-aware privacy risk assessment framework. They took
whether the information leaves the local device as an important basis for pri-
vacy information leakage, and combined data transmission paths, permissions,

258 H. Cai et al.

and user intentions to qualitatively (risk level) and quantitatively (risk score)
privacy leakage risks of apps. However, it is difficult to distribute these data
extraction and analysis tasks on terminal devices. Zhang et al. [24] constructed
a hierarchy model to evaluate the user’s privacy leakage risk in mobile com-
merce applications, which is based on information entropy and the Markov chain.
However, the classification of risk categories and levels is subjective. The above
methods focused on the risk of privacy leakage from the analysis and modeling
of the information propagation path in the App. In text data, Wu et al. [19]
utilized information entropy to represent the amount of information containing
original information in differential privacy publishing data, thus quantifying the
risk of privacy leakage. Xiong et al. [21] used the word2vec algorithm and bag-
of-words model to capture the embedding distance between words as the impact
and contribution, i.e., correlation, thus calculating the sensitivity of words and
obtaining the privacy risk value of text. These methods modeled and analyzed
the risk of privacy leakage from the perspective of text content.

3 The Framework of PPRAS

3.1 Problem Description and Definition

Users often share image on social networks, which may involve a large amount
of private information about users, thereby causing leakage of users’ private
information. For example, u0 and u1 are friends, and u1 also has other friends,
e.g., u2, u3, et al. For the images shared by u0 to u1, u1 usually shares those
interesting images to u2, some images about life to u3, and images about work
to u4. This different sharing feature can also imply the relationship or intimacy
between u1 and other friends. Facing the same privacy category, users have
different privacy requirements for different friends. In addition, due to different
personalities and views on private information, the sharing behavior of u1 may
inadvertently leak the private information of u0. Therefore, our goal is to evaluate
the privacy leakage risk brought by the sharing images between social network
users. Our work is developed on the basis that social network service providers
are fully aware of their network structure and all the images sharing records
between users.

Definition 1. Image Privacy Attribute Vector (IPAV). For each image, the
image privacy attribute vector is defined as IPAV = (a1, a2, ..., an), where ai

represents the ith privacy category extracted from the image, n represents the
number of privacy categories in the system. If there exists the ith privacy cate-
gory in the image, the attribute ai = 1; otherwise, ai = 0.

Definition 2. Personalized Privacy Requirement Vector (PPRV). For each user
u, let puv,i be an indicator function that represents the privacy attitude of user
u towards friends v in the ith privacy category. If user u believes that the ith
category contains private information, puv,i = 1; otherwise, puv,i = 0. Therefore,
the personalized privacy requirement vector of user u towards friend v is defined
as PPRV u

v = (puv,1, puv,2, ..., puv,n).

Personalized Privacy Risk Assessment Based on Deep Neural Network 259

Definition 3. User-Image Privacy Information Vector (UIPIV). For each user
and shared image, let vi be an indicator function that represents the relation-
ship between the user and the shared image. If the private image shared by the
user contains the ith information and the user believes the ith category contains
private information, vi = 1; otherwise, vi = 0. And the user-image privacy
information vector is defined as UIPIV = (v1, v2, ..., vn).

Definition 4. Image Privacy Policy. The image privacy policy is defined as
a quadruple Pol = (sen, rec, img, PR), where sen is the sender of the private
image, rec is the receiver of the private image, and PR represents the set of
other potential receivers for the private image img shared by user rec.

The work in this paper aims to predict the risk probability (as shown in
Definition 5) that a shared private image may be inadvertently propagated to
other recipients by the recipient user of the private image. The reasons for this
risk include differences in the degree of intimacy of the relationship between users
and their different perceptions and concepts of privacy. Therefore, personalized
privacy risk assessment needs to collect users’ privacy views on different types
of privacy information (as shown in Definition 2).

Definition 5. Privacy Disclosure Risk of Shared Image. For each non-zero user-
image privacy information vector UIPIVu,i, a specific image privacy policy
Pol0 = {sen0, rec0, imgl0, PR0}, imgl0 represents the private image containing l
kinds of sensitive private information, let usert∈ PR0, then the privacy leakage
risk of the private image imgl0 is recorded as the leakage probability P sen0

rec0→usert
after sharing and dissemination by the sender sen0 to other potential recipients
usert.

3.2 The Framework of PPRAS

The basic framework of PPRAS is shown in Fig. 1. For all users, they can cus-
tomize specific privacy requirements on different privacy features and generate
personalized privacy requirement vectors. For each user, if his/her personalized
privacy requirement vector is not a zero vector, we use faster R-CNN to identify
privacy information on each shared images. Combining the personalized privacy
requirement vector and the image privacy feature vector, the user-image pri-
vacy information vector can be constructed. According to the user-image privacy
information vector, it is understood whether the image to be shared contains the
privacy information that the user cares about. If the image does not contain the
sensitive privacy information related to that user, indicating that this user can
freely share the corresponding image with his/her friends; otherwise, the deep
neural network is used to predict the risk probability based on the history of
privacy image sharing behaviors between the receiver and its friends.

Construction of User-Image Privacy Information Vector. Everyone has
different views on various privacy categories, and their privacy attitudes towards

260 H. Cai et al.

Fig. 1. Framework of PPRAS.

different individuals within the same category also different. So the privacy
requirements of users towards others are also various. PPRAS uses the pri-
vacy requirement vector PPRV u

o to represent the privacy requirement of user u
towards others. For his/her each shared image, PPRAS needs to identify all pri-
vacy regions in the image by using Faster R-CNN [14], which has more excellent
results on various object detection than R-CNN and Fast R-CNN. The usage
of cumbersome privacy settings brings many inconveniences to users. Further-
more, the dynamics of users’ relationships with their friends, such as changes in
intimacy levels, mean that privacy configurations with the same friend are not
set in stone. These dynamic changes undoubtedly present great challenges for
personalized privacy settings. Consequently, we explore a personalized privacy
configuration algorithm that dynamically modifies PPRV, which is illustrated in
Algorithm1.

As shown in Algorithm 1, lines 1–5 calculate the frequency of images shared
by a user containing different types of private information, which is used to repre-
sent the user’s sharing tendencies towards different types of private information.
Lines 6–8 calculate the frequency at which a user shares images containing the
same type of private information with different friends, representing the user’s
sharing attitude towards different friends under a particular type of private infor-
mation. Based on these factors, Algorithm1 obtains PPRV, which represents a
user’s attitudes towards sharing different types of private information with dif-
ferent friends.

Inspired by the previous work in prediction image privacy category, we define
the 20 feature categories identified by Faster R-CNN on the VOC2007 dataset
[14] as sensitive private information research. The main process of generating
the user privacy information vector is depicted in Fig. 2, which consists of four
steps:

Step1: we adopt the ResNet50 convolutional neural network to extract the
features of the image and generate the feature map;

Step2: The feature map is sent to the Regional Proposal Network (RPN),
and a 3 × 3 sliding window is used to slide on the feature map to generate

Personalized Privacy Risk Assessment Based on Deep Neural Network 261

Algorithm 1. Personalized Privacy Configuration Algorithm
Input: the friends list Vu and image sharing records Du of user u.
Output: PPRV u

v

1: N ← the number of shared privacy images in Du

2: for the ith privacy category do
3: Si ← the set of shared images containing the ith private category in Du

4: Ni ← |Si|
5: θi ← Ni

N

6: for each v in Vu do
7: Ni,v ← the number of private images that user u shared with v in Si

8: Pi,v ← Ni,v

Ni

9: if Pi,v > θi then
10: PPRV u

v (i) ← 0
11: else
12: PPRV u

v (i) ← 1
13: end if
14: end for
15: end for
16: return PPRV u

v

the corresponding candidate frame, the target candidate frame containing the
privacy feature area is screened out, and the corresponding feature matrix is
obtained according to the projection relationship between the generated target
candidate frame containing the privacy feature and the feature map;

Step3: Each feature matrix is converted into a feature map with a fixed
spatial range (e.g., 7× 7) through the ROI pooling layer, and then the classifier
and regressor through two fully connected layers (FC1, FC2) are used to calculate
the privacy feature vector and determine the location of the privacy feature.

Step4: The user-image privacy information vector is constructed by com-
bining the generated image privacy attribute vector and the user personalized
privacy requirement vector, i.e., UIPIV u

o = PPRV u
o ⊗ IPAV = (v1, v2, ..., vn),

where

vj =

{
1, if the ith elements in PPRV u

o and IPAV are the same non-zero
0, otherwise ,

o represents the recipient of the image shared by user u.

Prediction of Privacy Risk Disclosure Probability. A shared image may
contain a variety of sensitive private information. In our daily life, we should
consider carefully whether it is safe when we share an image containing private
information with others. It is obvious that the privacy risk is more if the receiver
tends to share this kind of privacy images with others more frequently. There-
fore, for user u, image i and the corresponding receiver, PPRAS predicts the
privacy leakage risk based on the shared history between the receiver and its
other friends. In social networks, users usually take images of their life, work,
and other privacy-related content and share them with some friends. To learn

262 H. Cai et al.

Fig. 2. Construction of user-image privacy information vector.

the user’s historical sharing behavior, we introduce deep neural network. It is
worth noting that although this model can predict the potential recipient users,
only the sharing probability results will be known to the sender users because
the recipient user’s friendship and sharing behaviors are part of the recipient
user’s privacy.

The detailed process of predicting privacy risk in this section is shown in
Fig. 3, which consists of four parts.

Historical behavior records. For each user, let Seq = {Pol1,Pol2, . . . ,PolN}
be the set of image privacy policies, where N is the number of images shared
by the user, and the user’s ith sharing behavior Poli = {seni, reci, imgli, PRi}
indicates the dissemination policy of the privacy image imgli shared by user reci
from user seni.
Embedding Layer. Embedding is a commonly used technology to convert high-
dimensional sparse feature vectors into low-dimensional dense feature vectors.
After Embedding, the ith user can be represented as ui ∈ RNM×dim, where
NM represents the number of sparse features of user ids, and dim repre-
sents the dimension of embedding. The privacy image imgli can be repre-
sented by img′ ∈ RNl×dim, where Nl represents the number of sparse fea-
tures of private information. Then the user behavior sequence is represented
as q′ = p1, p2, . . . , pn ∈ RN×sz×dim, sz is the size of the input, and pi represents
the embedding of the ith behavior.

User behavior feature extraction. The behavioral characteristics of users shar-
ing images will change with time and the intimacy of the user’s friend relation-
ship. For example, in certain periods, users will frequently share information
with other users who usually interact less in the past, and this phenomenon is
particularly obvious in holidays. As a variant of the LSTM [23], GRU [4] can
not only capture and learn long-term time series changes well, but also GRU
has fewer parameters than LSTM. Therefore, in this paper, on the basis of the
embedded user historical behavior sequence Seq, we use GRU to extract user’s

Personalized Privacy Risk Assessment Based on Deep Neural Network 263

Fig. 3. The detailed process of predicting privacy risk.

behavior characteristics. The reset gate and update gate can be calculated as
follows:

Rt = σ (ptWpr + Ht−1Whr + br) (1)

Zt = σ (ptWpz + Ht−1Whz + bz) (2)

where σ(·) is the sigmoid function, Rt is the reset gate, Zt is the update gate, pt
is the user’s historical behavior record, Ht−1 is the hidden state of the previous
time step, and the shapes of the weight matrices Wpr, Whr, Wpz, and Whz are
represented by subscripts, br and bz are offset vectors. The candidate hidden
states and hidden states at time step t can be calculated by:

∼
Ht = tanh (ptWph + (Rt � Ht−1)Whh + bh) (3)

Ht = Zt � Ht−1 + (1 − Zt) �
∼
Ht (4)

Where ˜Ht is the status of the candidate hidden layer, Ht is the final hidden
state, � represents element-wise multiplication, Wph and Whh refer to the weight
matrices, and bh represents the offset vector.

Output layer. The perceptron receives the flattened user behavioral features
as input for further processing. Finally, the softmax function is used to calculate
the probability that the recipient may share the private image with his friends.
An image may contain multiple category that are considered to be sensitive
information, and the disclosure of any one category is likely to result in the
compromise of other sensitive information within the same image. As a result,
the risk of an image being leaked is defined as the maximum probability of leakage
among all sensitive information contained within the image. Furthermore, when
an image is shared with multiple recipients, the sender’s risk is defined as the
maximum probability of leakage among these recipients.

264 H. Cai et al.

Pimgl = max

{

exp (WiH + bi)
∑M

i exp (WiH + bi)

}

(5)

P sen
rec→user = max

{

Pimgl
j

}

(6)

where Pimgl represents the risk value of the private image imgl containing sen-
sitive private information l being leaked, P sen

rec→user represents the risk value of
private image leakage, M represents the number of friends of the recipient user,
H is the hidden layer state, Wi represents the weight matrix with the corre-
sponding shape, and bi represents the offset vector.

We calculate the cross-entropy loss of each privacy category in the privacy
image and shared friends to optimize the risk prediction model:

L = −
M
∑

i

yi · logŷi (7)

where yi is the true label of the ith shared friend, and ŷi represents the corre-
sponding predicted probability.

4 Experimental Results and Evaluation

4.1 Dataset

In this paper, privacy information refers to sensitive information set by users,
such as faces, mobile phones, cars, and other objects in images. In the dis-
semination of social images, users usually pay more attention to this sensitive
information. For the extraction of sensitive private information, we use the Pas-
cal VOC2012 dataset to train the model of privacy information recognition. The
Pascal VOC2012 dataset is one of the commonly used datasets in object detec-
tion and image segmentation tasks. To facilitate research, we define its twenty
categories as sensitive private information. In the model of privacy risk pre-
diction in social networks, the related research is lagging behind and there is
no suitable public datasets because the dataset of privacy assessment involves
user privacy. On one hand, the existing datasets in privacy assessment research
mainly come from data mining, recommender systems, and other fields. How-
ever, these datasets are collected for their specific fields and do not contain the
content related to the user image-sharing history required in this paper. On
the other hand, the existing publicly published social network datasets usually
only contain information such as user node characteristics and social network
graph structures, or other published texts. For example, Facebook and Twitter
datasets contain the nodes and edges of the network graphs; Reddit dataset con-
sists of Reddit forum posts; Epinions dataset is collected from online product
review sites that contains reviewers’ ratings of products and reviewers’ trustwor-
thiness of other reviewers. Therefore, we simulate user image-sharing scenarios

Personalized Privacy Risk Assessment Based on Deep Neural Network 265

and generate a simulated dataset to conduct our experiments, while the rela-
tionship between users is based on the existing real social network dataset (e.g.,
Facebook dataset). The details of Facebook dataset [15] is listed in Table 1.

Table 1. Details of Facebook Dataset.

Dataset Social circles: Facebook

Node 4039
Edge 88234

Average degree 43
Max degree 1045
Min degree 1

According to the degree of user nodes, we generate different number of close
friends and private image-sharing records for them. The user with the largest
degree has 1045 friends, while the user with the smallest degree only has one
friend. The average number of friends is 43 for all users. Since different user
nodes have different degree, users with very few friends have single behavioral
characteristics and are mostly zombie users, so we do not consider users with
only one friend. For other users, we randomly select a subset of his/her friends as
intimate users, and randomly select a group of privacy features for each user in
the subset to generate a random number of images containing the same privacy
features, simulating the private image records received by the user. Then, for the
private images received by the user, we randomly select a subset of his/her friends
to share these images, and the maximum size for the subset comprising intimate
users is set to 20, whereas the maximum size for the subset encompassing friends
involved in information propagation is set to 60. In this way, the user’s behavior
of forwarding private images is simulated. For each user’s private image-sharing
records, we choose the top 80% of the records as the training set and the rest as
the validation set. Since the sharing behavior characteristics of each user usually
remain stable, and it is difficult for randomly generating records to simulate the
characteristics of users in the time series, our validation set also includes the
test set. It is worth noting that although these private image-sharing history
records are simulated and synthesized, the social network topology is real, and
the simulation process covers a wide range of possible sharing behaviors, so it can
be used to conduct the experiments and verify the effectiveness of our proposed
model.

4.2 Evaluation Metrics and Baseline Methods

Evaluation Metrics. Users may forward a variety of private images from differ-
ent users to other users, and the number of forwarding will be quite different. To

266 H. Cai et al.

evaluate the performance of the proposed model, we use the metrics of macro-F1,
weighted-F1, and the accuracy, which are calculated as follows.

macroF1 =
1
n

n
∑

i=1

2 × TPi

2 × TPi + FPi + FNi
(8)

weightedF1 =
1
n

n
∑

i=1

wi × 2 × TPi

2 × TPi + FPi + FNi
(9)

accuracy =
∑

i TP i

N
(10)

Where n represents the number of friends of the user, wi represents the ratio of
the number of private image records shared by the user with the ith friend to
the number of shared records owned by the user, TP i represents the number of
historical behaviors correctly predicted that the user shared the private image
with user i, FP i represents the number of historical behaviors misclassified as the
sharing behavior from the user to the ith friend, FN i represents the number of
incorrectly predicted historical behaviors in the set of all sharing behavior from
the user to the ith friend, N represents the total number of behavior records of
users sharing private images.

For the metrics, the higher the value, the better the model performance.
Among them, macro-F1 is based on the weighted average of the user’s friends.
Each friend has the same weight, which can take into account the influence of
friends who share a small number of private image records, while weighted-F1
gives each friend a different weight according to the proportion of users sharing
private image records with each friend. The more records are shared, the greater
the weight, which can take into account the influence of the close relationship
between users and friends. The metric of accuracy is used to represent the ability
of the model to correctly predict the recipients of private image-sharing. It is
based on the weighted average of the number of private image sharing history
records. Each record has the same weight, reflecting the overall performance
of the model. Furthermore, although the model does not return the predicted
recipient user directly, this does not affect the evaluation of model performance.

Variant Models. Due to the lack of related researches on the risk of pri-
vacy image leakage, we designed two additional variants PPRAS-LSTM and
PPRAS-BILSTM as baselines, which adopt LSTM and BiLSTM instead of GRU
in PPRAS, respectively.

4.3 Train the Neural Network

For the identification of private features in images, PPRAS uses the faster R-
CNN model, which can achieve more accurate extraction of high-precision, multi-
scale and small object image information. The training epoch is set to 15, the
learning rate is dynamically adjusted and its initial value is set to 0.01. After

Personalized Privacy Risk Assessment Based on Deep Neural Network 267

every 3 epochs, the learning rate is adjusted to 1/3 of the original. In the common
metrics of the PASCAL VOC dataset, the Intersection over Union (IoU) of the
predicted bounding box and the real bounding box is set to 0.5. When the mean
average precision (mAP) reaches 0.8, our training goal is reached, which can
meet the needs of PPRAS. The variation curve of training loss and learning rate
with epoch is shown in Fig. 4(a), and the variation curve of mAP is shown in
Fig. 4(b). As seen from Fig. 4(a), the loss value gradually begins to flatten and
the model gradually stabilizes with the adjustment of the learning rate after
the 6th epoch. Also, we can see from Fig. 4(b) that the mAP value reaches 0.8
and it tends to be stable after the 6th epoch. In addition, in order to better
evaluate the performance of the prediction model, we set all components in the
user privacy requirement vector to 1 in the experiment, indicating that the user
has the strongest privacy demand.

Fig. 4. Curve of loss, learning rate, and mAP versus epoch.

In the module of privacy risk prediction, the dimension of embedding vector
is set to 8, the size of hidden layer in the recurrent neural networks is 128, the
training epoch is set to 30, the batch size is set to 128, and the learning rate is set
to 0.001. All parameters setting are all optimal on basis of many experiments.
The above models are all trained on a Linux system equipped with NVIDIA
GeForce RTX 3080.

4.4 Comparison of PPRAS and Two Variants in Three Performance
Metrics

We have trained a personalized privacy risk prediction model for each user. Since
the privacy image-sharing records of each user is different and the performance
is also different, we analyze and verify the effectiveness of the model proposed
in this paper from the minimum, maximum and average values. 75 users in the
dataset only have one friend, it can be considered that they do not uninten-
tionally forward their friend’s images to cause the disclosure of their friend’s
private information. In addition, there is only one user’s private image history,
which makes it difficult for the model to learn its private image sharing behavior

268 H. Cai et al.

characteristics. Therefore, we trained the remaining 3963 users in the dataset.
Table 2 lists the comparison of PPRAS and two variants in metrics of accuracy,
macro-F1, and weighted-F1.

As shown in Table 2, the PPRAS and PPRAS-BiLSTM have a higher average
score than PPRAS-LSTM. The worst model has an accuracy of 0, and the best
model has an accuracy of 1. This is due to the fact that some users in the
Facebook dataset have fewer friends. In today’s social network environment, we
can think that these users do not use the Facebook social platform frequently, so
the number of historical records generated by the simulation is small, resulting
in a large range of changes in accuracy. Accordingly, the range of changes in
macro-F1 score and weighted-F1 score is also large. For example, in a model
with an accuracy of 0, the user with id 129 has 7 friends, but the user has only 5
shared records of sensitive private information, and the shared recipients are two
different friends. Due to the difference in recipients used during model training
and testing, coupled with limited historical records, so it is difficult to effectively
extract the shared behavior characteristics of this user.

Table 2. Comparison of PPRAS and two variants in three performance metrics.

accuracy macro-F1 Score weighted-F1 Score
min max mean min max mean min max mean

PPRAS-LSTM 0.0 1.0 0.981 0.0 1.0 0.973 0.0 1.0 0.979
PPRAS-BiLSTM 0.0 1.0 0.982 0.0 1.0 0.976 0.0 1.0 0.980

PPRAS 0.0 1.0 0.982 0.0 1.0 0.977 0.0 1.0 0.980

However, this does not mean that the number of friends is small and the pre-
diction accuracy is low. For example, there are 2563 instances with an accuracy
rate of 1, and 761 of them correspond to users with less than 10 friends, and
the maximum number of friends is 547. There are at least 2 shared records of
sensitive private information and 3483 at most. The number of shared records
has an impact on the performance of risk prediction models, because the number
of records can reflect the complexity of users’ sharing behavior to some extent.
In instances with accuracy of 0 or 1, the average number of shared records of the
corresponding users is about 887. But in other instances, the average number of
shared records of corresponding users is about 2060.

On the metrics of macro-F1 score and weighted-F1 score, PPRAS still have
the same results or exceed the results of two variants. PPRAS-BiLSTM can
learn more fine-grained features through the combination of forward LSTM and
backward LSTM, while PPRAS improves performance by optimizing the gate
structure and hidden state, both of which are better than PPRAS-LSTM. The
macro-F1 score gives each friend of the user the same weight, so when the differ-
ence is large in the number of shared history records between different friends,
the value can fully consider the influence of users with fewer private image shar-
ing records. On the contrary, weighted-F1 score takes into account the number

Personalized Privacy Risk Assessment Based on Deep Neural Network 269

of sensitive private information shared by the user with each friend. The more
records of shared sensitive private information, the greater the weight of the
friend. This is also similar to the real social network. Different friends have dif-
ferent degrees of intimacy, and the frequency and amount of sensitive privacy
information they interact with are also different. This is why the weighted-F1
score of the three models is significantly higher than the macro-F1 score. Based
on these experimental results, we can conclude that PPRAS outperforms the
other two variant models in three metrics on the Facebook dataset.

4.5 Comparison of PPRAS and Two Variants in Time Utility

The training time of the model is affected by various factors such as the processor,
batch size, and other model parameters. For the privacy risk prediction models
of all users, the results of training time and prediction time are listed in Table 3,
where every result is the average of ten experiments based on the time required
for 3963 users.

Table 3. Comparison of PPRAS and two variants in time utility.

Training time (s) Prediction time (s)
min max mean min max mean

PPRAS-LSTM 1.99 4.39 2.88 0.55 0.61 0.57
PPRAS-BiLSTM 3.04 6.36 4.49 1.05 1.14 1.09

PPRAS 1.87 9.65 2.85 0.44 0.51 0.47

As shown in Table 3, the time efficiency of the PPRAS is significantly less
than that of the PPRAS-LSTM and PPRAS-BiLSTM models in training and
in the prediction process. This is because PPRAS-BiLSTM improves the learn-
ing ability of the model by combining forward and backward LSTM, but also
greatly increases the time cost of training and prediction. By optimizing the
internal structure of PPRAS-LSTM, PPRAS not only improves accuracy, but
also reduces the amount of computation.

In addition, due to the lack of a real private image-sharing record dataset, the
number of users’ private image-sharing records is difficult to accurately estimate.
The time efficiency of training and prediction using the simulation dataset is the
same effect as the real dataset. The experimental results show that among 1138
users with more than 2000 sensitive privacy information sharing records, the
training time of the PPRAS model has the shortest 2.54 s and the longest 9.65 s,
and the average training time of each user is 3.36 s. Among the 1059 users with
no more than 200 private image-sharing records, the shortest training time is
1.92 s, the longest is 2.99 s, and the average training time is 2.34 s. Therefore, we
can conclude that PPRAS is the best among three methods in time utility.

270 H. Cai et al.

4.6 Utility Analysis

In order to minimize the impact of system operation on the sharing experience
of social network users, the running time should be reduced as much as possi-
ble. The time for PPRAS mainly includes two parts, namely privacy information
detection and risk assessment calculation. In this paper, Faster R-CNN is used to
detect image privacy information. In our experimental setup (refer to Sect. 4.3),
it takes an average of 0.41 s to detect 10 images continuously. Therefore, when
the image shared by the user does not contain private information, the delay for
the user to share the image will take about 0.41 s longer than when this func-
tion is not enabled. When the images shared by users contain sensitive privacy
information, the risk prediction model takes about 0.47 s to compute (refer to
Table 3). PPRAS will cause the delay of sharing images to increase by about
0.88 s.

4.7 Parametric Analysis

To verify the sensitivity of hyperparameters, we conducted some experiments to
analyze the impact of different parameter selections on model performance. For
intuitive display, we only compare the average values of various indicators of the
model.

The Number of Hidden Neurons in the GRU. The number of hidden neu-
rons is selected from {32, 64, 128, 256, 512, 1024}, and its influence is shown in
Table 4. As the number of hidden neurons increases, the effect of PPRAS grad-
ually improves, and the experimental effect reaches the optimum when number
of units is 512. When the number of units continues to increase, the perfor-
mance of the model does not improve, but the training time and prediction time
increase rapidly, indicating that the size of the hidden layer is sufficient to learn
the user’s sharing characteristics. Therefore, the number of units is set to 512 in
experiment.

Table 4. The effect of the number of hidden neurons.

Units Accuracy (mean) Macro-F1 (mean) Weighted-F1 (mean) Training time (mean) Predict time (mean)

32 0.97 0.95 0.97 2.78 0.39
64 0.98 0.96 0.97 2.74 0.39
128 0.98 0.97 0.98 2.76 0.39
256 0.98 0.97 0.98 2.75 0.40
512 0.98 0.98 0.98 2.85 0.47
1024 0.98 0.98 0.98 3.26 0.91

Personalized Privacy Risk Assessment Based on Deep Neural Network 271

Number of GRU Network Layers. The number of network layers of GRU
is selected from {1, 2, 3}, and the performance of different layers is shown in
Table 5. It can be seen from Table 5 that the increase in the number of layers
does not bring about a performance improvement. This is because the expressive
ability of a 1-layer GRU network can express the user’s sharing behavior, and
too much superposition will lead to a decrease in time performance. Therefore,
the number of network layers of GRU in this paper is 1.

Table 5. The impact of the number of GRU network layers.

Number of layers Accuracy (mean) Macro-F1 (mean) Weighted-F1 (mean) Training time (mean) Predict time (mean)

1 0.98 0.98 0.98 2.85 0.47
2 0.98 0.98 0.98 4.34 0.87
3 0.98 0.98 0.98 5.87 1.27

Dimensions of User Feature Representation. Dimensions are selected from
{8, 16, 32, 64, 128, 256}, and the performance of different values is shown in
Table 6. It can be seen from the Table 6 that when the dimension reaches 128,
the experimental effect reaches the best, which can express the sharing behavior
characteristics of users. When the dimension increases to 256, the model perfor-
mance does not change, and the time performance decreases. Therefore, we set
the dimension of user feature representation to 128.

Table 6. The influence of the dimensionality of the user’s feature representation.

Dim Accuracy (mean) Macro-F1 (mean) Weighted-F1 (mean) Training time (mean) Predict time (mean)

8 0.97 0.94 0.96 2.81 0.47
16 0.97 0.96 0.97 2.83 0.48
32 0.98 0.97 0.98 2.84 0.49
64 0.98 0.97 0.98 2.81 0.50
128 0.98 0.98 0.98 2.85 0.47
256 0.98 0.98 0.98 2.84 0.48

5 Conclusions

For improvement of user privacy awareness in social networks, this paper pro-
poses a personalized privacy risk leakage prediction model of sharing image on
social networks, which consists of two main parts including generating user-image
privacy information vector and predicting image privacy leakage risk score. In
the stage of generating user-image privacy information vector, starting from the
user’s personalized privacy requirements, PPRAS identifies the privacy regions

272 H. Cai et al.

of the shared image by using faster R-CNN, and then constructs user-image pri-
vacy information vectors. In the stage of predicting image privacy leakage risk
score, PPRAS adopts GRU to predict image shared behaviors between users
and calculates the leakage probability. The proposed model does not require the
quantitative statistical information such as user attribute information, personal
configuration, and other factors, and can provide more accurate personalized
privacy services.

Due to insufficient data in related research, it is difficult to measure the
characteristics of proposed model in the time dimension, and the training of the
model is a huge and arduous task. Therefore, in future research, we will consider
simulating real social networks and collecting corresponding data. At the same
time, we will focus on solving the problems of diversity and temporal validity of
private information in private images, improving the model to reduce training
and prediction time to achieve better performance. It is worth noting that after
the further development of related research on the identification and extraction
of private information, the model proposed in this paper can be used for dealing
with other types of information such as text, audio, and video for privacy risk
assessment.

Acknowledgement. This research is funded by Science and Technology Project
of Hebei Education Department (ZD2022105), Hebei Natural Science Foundation
(F2020201023), and the high-level personnel starting project of Hebei University
(521100221089).

References

1. Chen, J., et al.: Semantics-aware privacy risk assessment using self-learning weight
assignment for mobile apps. IEEE Trans. Dependable Secur. Comput. 18(1), 15–29
(2021). https://doi.org/10.1109/TDSC.2018.2871682

2. Chen, R., Kim, D.J., Rao, H.R.: A study of social networking site use from a three-
pronged security and privacy threat assessment perspective. Inf. Manag. 58(5),
103486 (2021). https://doi.org/10.1016/j.im.2021.103486

3. Chen, Z., Kandappu, T., Subbaraju, V.: PrivAttNet: predicting privacy risks in
images using visual attention. In: 25th International Conference on Pattern Recog-
nition, ICPR 2020, Virtual Event, Milan, Italy, pp. 10327–10334. IEEE (2020).
https://doi.org/10.1109/ICPR48806.2021.9412925

4. Dey, R., Salem, F.M.: Gate-variants of gated recurrent unit (GRU) neural net-
works. In: IEEE 60th International Midwest Symposium on Circuits and Systems,
MWSCAS 2017, Boston, MA, USA, pp. 1597–1600. IEEE (2017). https://doi.org/
10.1109/MWSCAS.2017.8053243

5. Heravi, A., Mubarak, S., Choo, K.R.: Information privacy in online social networks:
uses and gratification perspective. Comput. Hum. Behav. 84, 441–459 (2018).
https://doi.org/10.1016/j.chb.2018.03.016

6. Hong, H., Bao, W., Hong, Y., Kong, Y.: Privacy attributes-aware message passing
neural network for visual privacy attributes classification. In: 25th International
Conference on Pattern Recognition, ICPR 2020, Virtual Event, Milan, Italy, pp.
4245–4251. IEEE (2020). https://doi.org/10.1109/ICPR48806.2021.9412853

https://doi.org/10.1109/TDSC.2018.2871682
https://doi.org/10.1016/j.im.2021.103486
https://doi.org/10.1109/ICPR48806.2021.9412925
https://doi.org/10.1109/MWSCAS.2017.8053243
https://doi.org/10.1109/MWSCAS.2017.8053243
https://doi.org/10.1016/j.chb.2018.03.016
https://doi.org/10.1109/ICPR48806.2021.9412853

Personalized Privacy Risk Assessment Based on Deep Neural Network 273

7. Li, X., Xin, Y., Zhao, C., Yang, Y., Chen, Y.: Graph convolutional networks for
privacy metrics in online social networks. Appl. Sci. 10(4), 1327 (2020)

8. Li, X., Xin, Y., Zhao, C., Yang, Y., Luo, S., Chen, Y.: Using user behavior to
measure privacy on online social networks. IEEE Access 8, 108387–108401 (2020).
https://doi.org/10.1109/ACCESS.2020.3000780

9. Li, X., Zhao, C., Tian, K.: Privacy measurement method using a graph structure
on online social networks. ETRI J. 43(5), 812–824 (2021)

10. Lin, D., Steiert, D., Morris, J., Squicciarini, A.C., Fan, J.: REMIND: risk estimation
mechanism for images in network distribution. IEEE Trans. Inf. Forensics Secur.
15, 539–552 (2020). https://doi.org/10.1109/TIFS.2019.2924853

11. Liu, C., Zhu, T., Zhang, J., Zhou, W.: Privacy intelligence: A survey on image
privacy in online social networks. ACM Comput. Surv. 55(8), 161:1–161:35 (2023).
https://doi.org/10.1145/3547299

12. Orekondy, T., Schiele, B., Fritz, M.: Towards a visual privacy advisor: understand-
ing and predicting privacy risks in images. In: IEEE International Conference on
Computer Vision, ICCV 2017, Venice, Italy, pp. 3706–3715. IEEE Computer Soci-
ety (2017). https://doi.org/10.1109/ICCV.2017.398

13. Oukemeni, S., Rifà-Pous, H., Puig, J.M.M.: IPAM: information privacy assessment
metric in microblogging online social networks. IEEE Access 7, 114817–114836
(2019). https://doi.org/10.1109/ACCESS.2019.2932899

14. Sharma, V., Mir, R.N.: Saliency guided faster-RCNN (SGFr-RCNN) model for
object detection and recognition. J. King Saud Univ. Comput. Inf. Sci. 34(5),
1687–1699 (2022). https://doi.org/10.1016/j.jksuci.2019.09.012

15. Su, X., et al.: A comprehensive survey on community detection with deep learning.
CoRR abs/2105.12584 (2021)

16. Tonge, A., Caragea, C.: Dynamic deep multi-modal fusion for image privacy pre-
diction. In: Liu, L., et al. (eds.) The World Wide Web Conference, WWW 2019,
San Francisco, CA, USA, pp. 1829–1840. ACM (2019). https://doi.org/10.1145/
3308558.3313691

17. Wang, Y., Nepali, R.K.: Privacy impact assessment for online social networks. In:
2015 International Conference on Collaboration Technologies and Systems, CTS
2015, Atlanta, GA, USA, pp. 370–375. IEEE (2015). https://doi.org/10.1109/CTS.
2015.7210451

18. Wang, Z., He, K., Wang, X., Niu, B., Li, F.: Traffic characteristic based privacy
leakage assessment scheme for android device. J. Commun. 41, 155–164 (2020)

19. Wu, N., Peng, C., Mou, Q.: Information entropy metric methods of association
attributes for differential privacy. Acta Electonica Sinica 47(11), 2337 (2019)

20. Xinyu, W., Ben, N., Fenghua, L.I., Kun, H.E.: Risk assessing and privacy-
preserving scheme for privacy leakage in app. J. Commun. 40, 13–23 (2019)

21. Xiong, P., Liang, L., Zhu, Y., Zhu, T.: PriTxt: a privacy risk assessment method for
text data based on semantic correlation learning. Concurr. Comput. Pract. Exp.
34(5), e6680 (2022). https://doi.org/10.1002/cpe.6680

22. Yang, G., Cao, J., Sheng, Q., Qi, P., Li, X., Li, J.: DRAG: dynamic region-aware
GCN for privacy-leaking image detection. In: Thirty-Sixth AAAI Conference on
Artificial Intelligence, EAAI 2022 Virtual Event, pp. 12217–12225. AAAI Press
(2022). https://doi.org/10.1609/aaai.v36i11.21482

23. Yu, Y., Si, X., Hu, C., Zhang, J.: A review of recurrent neural networks: LSTM
cells and network architectures. Neural Comput. 31(7), 1235–1270 (2019). https://
doi.org/10.1162/neco_a_01199

https://doi.org/10.1109/ACCESS.2020.3000780
https://doi.org/10.1109/TIFS.2019.2924853
https://doi.org/10.1145/3547299
https://doi.org/10.1109/ICCV.2017.398
https://doi.org/10.1109/ACCESS.2019.2932899
https://doi.org/10.1016/j.jksuci.2019.09.012
https://doi.org/10.1145/3308558.3313691
https://doi.org/10.1145/3308558.3313691
https://doi.org/10.1109/CTS.2015.7210451
https://doi.org/10.1109/CTS.2015.7210451
https://doi.org/10.1002/cpe.6680
https://doi.org/10.1609/aaai.v36i11.21482
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1162/neco_a_01199

274 H. Cai et al.

24. Zhang, T., Zhao, K., Yang, M., Gao, T., Xie, W.: Research on privacy security risk
assessment method of mobile commerce based on information entropy and Markov.
Wirel. Commun. Mob. Comput. 2020, 8888296:1–8888296:11 (2020). https://doi.
org/10.1155/2020/8888296

25. Zhong, H., Squicciarini, A.C., Miller, D.J., Caragea, C.: A group-based personalized
model for image privacy classification and labeling. In: Sierra, C. (ed.) Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI
2017, Melbourne, Australia, pp. 3952–3958. ijcai.org (2017). https://doi.org/10.
24963/ijcai.2017/552

https://doi.org/10.1155/2020/8888296
https://doi.org/10.1155/2020/8888296
https://doi.org/10.24963/ijcai.2017/552
https://doi.org/10.24963/ijcai.2017/552

A Pipelined AES and SM4 Hardware
Implementation for Multi-tasking

Virtualized Environments

Yukang Xie , Hang Tu, Qin Liu(B) , and Changrong Chen

Key Laboratory of Aerospace Information Security and Trusted Computing,
Ministry of Education, School of Cyber Science and Engineering, Wuhan University,

Wuhan 430072, China
{bathtub,tuhang,qinliu,chenchangrong}@whu.edu.cn

Abstract. Virtualization techniques are becoming increasingly preva-
lent and are driving trends in hardware development to offer paralleliza-
tion support for multi-tasking. Existing works on hardware designs of the
Advanced Encryption Standard (AES) and SM4 encryption algorithms
have primarily focused on optimizing metrics such as throughput and
area, but have not fully addressed the demands in virtualized environ-
ments. In this article, we propose innovative optimization schemes that
partition the resources in AES and SM4 cipher modules into smaller,
independent units that can execute tasks from different guests in paral-
lel. Such designs can improve hardware utilization efficiency and enhance
the user experience in virtualized environments. Our FPGA-validated
designs achieve comparable circuit performance in terms of through-
put/area efficiency to existing work. Experiments show that in virtual-
ized environments lacking block-wise parallelism (e.g., cipher block chain-
ing (CBC) mode), our approach reduces context switches over 50% and
decreases average task pending time around 75% with similar hardware
needs.

Keywords: Hardware acceleration · Parallelism · Virtualization ·
AES · SM4

1 Introduction

Modern computer architecture practices commonly employ dedicated hardware
to offload compute-intensive tasks, such as graphics processing and tensor pro-
cessing, from CPUs [8,17]. Cryptographic operations lend themselves well to
hardware implementation due to their routine patterns of execution, along with
their demands for considerable resources. To address various use cases rang-
ing from server-level acceleration to co-processing on embedded devices, indus-
try professionals and researchers have made significant efforts to optimize the
hardware implementation of widely-used encryption algorithms. These optimiza-
tions have targeted several metrics, including throughput, circuit area, and coun-
termeasures against side-channel attacks. The rise of virtualization techniques
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 275–291, 2024.
https://doi.org/10.1007/978-981-97-0801-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_16&domain=pdf
http://orcid.org/0009-0001-4707-7203
http://orcid.org/0000-0002-8979-5094
https://doi.org/10.1007/978-981-97-0801-7_16

276 Y. Xie et al.

[1,14], in which multiple tasks from different guests are executed on a shared
physical infrastructure, has introduced new optimization requirements for hard-
ware designers. In this paper, we propose an innovative optimization scheme for
implementing two widely-used symmetric-key encryption algorithms, Advanced
Encryption Standard (AES) and SM4, to enhance the designs’ suitability for
virtualized environments.

Our motivation stems from an observation of existing hardware implementa-
tions of AES and SM4, particularly those with pipelined structures. While these
implementations leverage additional register resources to maximize circuit fre-
quency and achieve higher throughput, this can result in resource wastage when
the pipeline is not fully utilized during operation. Such issue becomes especially
pronounced when the guest employs a block operation mode that necessitates
sequential processing of data blocks, meaning that the hardware can only handle
one data block at a time throughout the entire process. In our designs, resources
within an AES or SM4 cipher module can be subdivided into smaller units
based on the number of pipeline stages. From the perspective of guests, each
resource unit operates independently and can be combined with a specific user
key, allowing the module to execute tasks from different guests in parallel. As a
result, hardware utilization rate is enhanced in these serial-styled block opera-
tion modes. Moreover, since there are more independent resource units available,
hypervisors or operating systems can switch contexts less frequently between
different guest tasks in the cipher hardware, thereby improving overall system
performance.

In this paper, we adopt this optimization strategy for both AES and SM4
implementations, developing four-staged pipeline structures capable of process-
ing tasks from four different guests in parallel. Our designs are open-sourced
and have been validated and evaluated on a Zynq UltraScale+ and a Kintex-
7 FPGA device. Synthesis and implementation results demonstrate that our
designs achieve comparable results in circuit efficiency relative to existing stud-
ies. We also notice that previous studies have devoted less attention to the prac-
tical methods for incorporating cryptographic hardware into larger systems. To
fill this gap, we have developed a prototype cryptosystem based on our cryp-
tographic modules and discussed its key design principles. Experiments con-
ducted on the prototype system reveal that, in virtualized environments, our
designs reduce context switches by over 50% and decrease average task pending
time by approximately 75% in operation modes lacking block-wise parallelism.
Our designs achieve these improvements while maintaining similar hardware con-
sumption compared to classic architectures.

The remainder of this paper is organized as follows: Sect. 2 discusses the
background of both AES and SM4 algorithms, as well as related work in their
hardware implementations. Section 3 and 4 presents the details of the proposed
designs, while Sect. 5 includes evaluation and experimental data. Section 6 pro-
vides a discussion on our designs, and the final section concludes the paper.

AES and SM4 Hardware for Virtualization 277

2 Background

This section presents a concise overview of the AES and SM4 algorithms, as well
as a survey of prior research on their hardware implementations.

2.1 Overview of AES and SM4

AES is a widely adopted symmetric-key encryption algorithm that operates on
blocks of 128 bits [6]. As shown in Fig. 1, this algorithm relies on iterative rounds
of transformations-including substitution, permutation, and mixing operations-
to encrypt and decrypt input data. The number of transformation rounds varies
between 10, 12, or 14, depending on the key length, which is either 128, 192,
or 256 bits. In each round, the intermediate state is XORed with a 128-bit
round key, which is generated by the AES key schedule algorithm using the
main cipher key. The encryption and decryption processes of the AES algorithm
are inverses of each other, and their datapaths can be partially combined in
specific implementations.

Fig. 1. AES (a) encryption and (b) decryption process.

SM4, released by the Office of State Commercial Cryptography Administra-
tor of China, is a standard algorithm in ISO/IEC 18033-3:2010/Amd 1:2021 [11].
It operates on 128-bit blocks and uses a fixed key length of 128 bits. Like AES,
this algorithm comprises an encryption/decryption process and a key scheduling
process. Figure 2 illustrates that SM4 employs 32 rounds of permutations, with
each round making use of a 32-bit round key. The round permutation in SM4 is
less complex than the round transformation in AES, and only updates a 32-bit

278 Y. Xie et al.

word in each iteration. The datapaths for encryption and decryption in the SM4
algorithm are identical, with the only difference being the order in which the
round keys are used.

Fig. 2. (a) Overall process and (b) round permutation of SM4.

To process input data of arbitrary size, block cipher algorithms like AES
and SM4 must be employed in specific modes of operation. Various modes of
operation have been developed, including Electronic Codebook (ECB), Cipher
Block Chaining (CBC), Output Feedback (OFB), and Counter (CTR). From an
efficiency standpoint, current mainstream operation modes can be categorized
into two types: block-wise parallel support mode, exemplified by Galois/Counter
Mode (GCM), and modes that do not support block-wise parallelism, as repre-
sented by Counter with CBC-MAC (CCM). In operation modes that support
block-wise parallelism, there are no dependencies between data blocks, allowing
them to be processed in parallel. In contrast, operation modes that lack block-
wise parallelism require data blocks to be processed serially as each block’s pro-
cessing result depends on the previous one. Since both types of operation modes
are widely adopted, hardware designers must consider their characteristics and
the impact they bring.

2.2 Related Works and Discussion

Optimized hardware implementations for both AES and SM4 have been exten-
sively studied. Various designs have been proposed in prior works, targeting
different optimization metrics based on application requirements. Numerous
research efforts have investigated the trade-off between circuit area and hard-
ware throughput. For example, the authors in [4] presented an ultra-compact
design for AES on FPGA, utilizing only 184 logic slices and no Block RAM

AES and SM4 Hardware for Virtualization 279

(BRAM). Another work in [20] introduced a low-area SM4 design costing only
164 slices on a Virtex-6 FPGA device.

Conversely, to achieve higher throughput, unrolled and pipelined designs have
been proposed, such as those in [3,12,13,19]. Although these designs can achieve
throughputs of several tens of gigabits per second, they also consume consid-
erable resources. Moreover, the theoretical throughput of these unrolled and
pipelined designs can only be achieved when operating in a mode that supports
block-wise parallelism, such as ECB and GCM. This limitation is discussed in
[21], which abandons pipelined design and presents a round-based architecture
with a highly compressed datapath structure.

However, our analysis indicates that hardware resource wastage in pipelined
structures is not necessarily inevitable in operation modes that do not support
block-wise parallelism, such as CBC and CCM. In these block-chaining operation
modes, idle resources in the pipeline can still serve tasks from other guests, which
is particularly beneficial for scenarios involving virtualization. Building upon this
observation, we propose rolled, four-staged pipeline structures for both AES and
SM4 algorithms in this paper. This design supports task-wise parallelism for up
to four guests, effectively raising the hardware utilization rate and addressing
the limitations of existing approaches.

3 Proposed AES and SM4 Architecture

In this section, we introduce the core of our work, including the implementation
of the four-staged encryption and decryption modules for both AES and SM4
algorithms.

Our design is implemented in Chisel [2], a modern hardware description lan-
guage with rich parameterization and modularity features [18]. The architectures
of both the AES and SM4 modules adopt a round-based, four-staged pipeline
structure. The key idea for enabling guest-level parallelism is to maintain a set of
control information for each running task in the pipeline. This allows the circuit
to index the corresponding round key when conducting key-related operations
(e.g., AddRoundKey in AES). With this measure, each pipeline stage can be
regarded as an independent resource from the user’s perspective.

We made several crucial design decisions in our implementation:

(a) Although using lookup tables to implement the S-box is common in high-
throughput designs, pipelined combinational logic circuits usually show better
throughput/area efficiency. We employed the S-box presented by Maximov
and Ekdahl in [15] because it is a state-of-the-art design that can be evenly
partitioned without introducing excessively large registers.

(b) We chose a round-based architecture because it is less area-consuming and can
adapt to more usage scenarios. When higher throughput is required, users can
instantiate multiple modules to achieve that. We have determined the number
of pipeline stages to be four, based on the objective of balancing register usage
and maximizing circuit frequency.

280 Y. Xie et al.

(c) Since the key scheduling module is used much less frequently than the encryp-
tion/decryption modules in most cases, we decided to separate their imple-
mentation. The prototype cryptosystem proposed in Sect. 4 combines a key
scheduling module with multiple encryption/decryption modules.

3.1 AES Encryption and Decryption Architecture

In our envisioned usage scenarios, multiple cryptographic modules will be instan-
tiated to handle the workload from a large number of guests. Consequently, we
focus on simplifying the functionality of each individual module, opting not to
merge the encryption and decryption modules. Users can configure and generate
the necessary number of encryption and decryption modules in cryptosystems
based on their application needs, leveraging the flexibility provided by Chisel.

Fig. 3. Proposed AES encryption architecture.

The proposed four-staged architectures for AES encryption and decryp-
tion are illustrated in Fig. 3 and Fig. 4. For both processes, two pipeline reg-
isters are inserted before and after the non-linear transformation part of the
S-box to reduce the critical path in the SubBytes/InvSubBytes module. Addi-
tionally, two other pipeline registers are inserted before and after the Mix-
Columns/InvMixColumns module, separating its datapath from the linear trans-
formation part of the S-box.

Here we use the AES encryption architecture as an example to explain the
involved pipeline stages. The input data is first processed in the AR-SB1 stage,
which contains the AddRoundKey module and the top linear part of the S-box.
The second and third stages, SB2 and SB3, contain the non-linear part and bot-
tom linear part of the S-box, respectively. The last stage of the round transfor-
mation is SR-MC, which includes the ShiftRows and MixColumns modules. There
is an extra register bypassing the MixColumns module since the final round of

AES and SM4 Hardware for Virtualization 281

Fig. 4. Proposed AES decryption architecture.

AES encryption does not contain it. Figure 5 depicts a timing diagram for AES-
128 encryption, illustrating how distinct input blocks are processed through the
pipeline. Note that a round transformation of AES in our design takes four cycles,
therefore an AES-128 encryption operation requires 40 cycles. Given that the
four-staged pipeline can process four tasks in parallel, the proposed architecture
can accomplish four AES-128 encryptions in 43 cycles.

Fig. 5. Example pipeline timing diagram for AES-128 encryption.

In our design, the data register incorporated in the pipeline contains not
only a 128-bit AES state but also a set of control information. Each control
information set is associated with a specific task, indicating the status of the
AES state for that task. The subfields of the control information include:

282 Y. Xie et al.

– taskID: a 2-bit specifier for the task.
– isIdle: a 1-bit flag indicating whether the task is valid.
– keyLength: a 2-bit field indicating whether the task is running in AES-128,

AES-192, or AES-256.
– rounds: a 4-bit field indicating the number of rounds for the task.

The only key-related operation in AES is AddRoundKey. This module reads
the corresponding round key from an external source based on the control infor-
mation of its input task. Unlike unrolled architectures, our design natively sup-
ports all three AES variants of key length. From the user’s perspective, each
instance of our design includes four physical resources that can independently
perform AES tasks, offering good flexibility in virtualized environments.

3.2 SM4 Encryption/Decryption Architecture

Figure 6 displays the proposed SM4 encryption/decryption architecture. The
SM4 algorithm employs an unbalanced Feistel network structure, updating a 32-
bit word in each round. SM4 encryption and decryption share the same datapath
and only differ in the order of applying round keys. Similar to the AES archi-
tectures, two pipeline registers are allocated in the S-box, before and after the
non-linear transformation part. Two additional two pipeline registers are placed
before and after the linear transformation logic outside the S-box. Furthermore,
the unchanged part in each round is preserved by shift registers.

Fig. 6. Proposed SM4 encryption/decryption architecture.

Our proposed architecture for SM4 utilizes the same control information set
as that used by the AES architecture, except for the absence of the keyLength

AES and SM4 Hardware for Virtualization 283

subfield since SM4 only supports a fixed key length of 128 bits. Although it
is possible to add an isEnc subfield to the control information set to enable
both encryption and decryption tasks to run within the same module, we chose
not to implement this feature to avoid increasing the complexity of the external
controller.

4 A Prototype Cryptosystem for Virtualization

As a reference for applying our design in virtualized environments, we further
construct a prototype cryptosystem comprising four instances of the crypto-
graphic modules discussed in Sect. 3. In this section we present the design of our
prototype system, as well as its programming sequence for users.

4.1 Prototype Cryptosystem Architecture

Figure 7 depicts the structure of the prototype cryptosystem. As each crypto-
graphic module is capable of processing four guest tasks in parallel, this proto-
type system can support a maximum of sixteen guest tasks concurrently. Each
guest task can operates either in ECB mode or CBC mode. The prototype system
employs the AXI interface for easy integration into FPGA designs.

Fig. 7. The multi-instance prototype cryptosystem.

In our design, each cryptographic module is combined with a key bank to
form a “unit”. The input and output dataflows of a single cryptographic module
are managed by the logic within the unit. Our implementation adopts the idea
of another Chisel design proposed in [9], enabling users to easily generate the

284 Y. Xie et al.

desired combination of AES/SM4 encryption/decryption units through simple
configuration. Since the key scheduling module is less utilized than the crypto-
graphic module in typical cases, we have a single key scheduling module serving
four units. The round keys generated by this scheduling process are stored in
key banks for future use. This combination is referred to as a “crypto group” in
our prototype. The control logic within the crypto group manages the plaintext,
ciphertext, and key dataflows. The crypto group is then wrapped into a schedul-
ing controller, which receives task configuration sent by a host device through
the AXI-Lite bus.

Maximizing the utilization of cryptographic acceleration hardware is contin-
gent on ensuring efficient data transfer between the accelerator and external
devices. Therefore, we employed a DMA IP in our prototype system to move
plaintext/ciphertext between external memory and our design. To ensure even
parallelization of tasks from different guests within the module, the scheduling
controller must issue DMA commands from various tasks alternately. This is
achieved through an address ring structure within the scheduling controller.

4.2 Programming Sequence of the Prototype Cryptosystem

As previously mentioned, from the user’s perspective, our prototype system offers
sixteen independent cryptographic resources capable of performing encryption
or decryption operations. Typically, the hypervisor or OS allocates a single cryp-
tographic resource to each guest. Figure 8 illustrates the programming sequence
for utilizing cryptographic resources, which consists of the following steps:

– keySet: The hypervisor/OS sets a guest’s main key, initiating the key schedul-
ing process.

– taskAssign: An encryption or decryption task from the guest begins. The
task configuration specifies the source and target addresses of input and out-
put data, the data length, and the mode of operation.

– keyDestroy: The round keys in the key storage bank are destroyed, freeing
up the cryptographic resource for future use.

Fig. 8. Programming sequence of the prototype cryptosystem.

AES and SM4 Hardware for Virtualization 285

As the manager of hardware resources, the hypervisor or OS is responsible
for maintaining the mapping between guests and cryptographic resources. Once
a cryptographic resource is assigned to a guest, it cannot serve other guests
until the hypervisor or OS sends a keyDestroy signal to release the resource.
In situations where all cryptographic resources are occupied by various guests,
and new guest requests arrive, context switches are triggered. The hypervisor
or OS must free up some cryptographic resources and reallocate them to the
incoming guests. The overhead associated with context switches arises from both
software and hardware aspects. On the software side, the hypervisor or OS must
update the mapping between guests and resources. Meanwhile, on the hardware
side, before conducting encryption or decryption operations, the module must
perform the key scheduling process again.

5 Experimental Results

This section presents a comparison of circuit performance across proposed
designs and existing works, along with experiments evaluating the efficiency
gains in multi-guest virtualized environments afforded by our designs.

5.1 Circuit Performance Comparison

The designs proposed in Sect. 3 are thoroughly verified on a Zynq UltraScale+
(xczu7eg-ffvc1156) and a Kintex-7 (xc7k325t-ffg900) FPGA device using Xilinx
Vivado 2022.1 for synthesis and implementation.

Table 1. Comparison of AES Implementation

Designs Platforms Slices Max. freq. (MHz) Throughput (Gbps) Efficiency (Mbps/slice)

[4] XC3S50-5 184 45.64 0.037 0.2

[13] XC7VX690T 3436 516.8 66.1 19.2

[16] XC6VLX240T 4830 617.63 79 16.36

[19] XC5VLX 5974 622.4 79.7 13.3

[10] XC7V585TFF 1355+80BRAMs 374 47.8 -

This work XC7K325T 371 414.3 5.3 14.29

XCZU7EG 430 535.3 6.85 15.93

The synthesis results of both the AES and SM4 encryption/decryption archi-
tectures are compared with previous works in Tables 1 and 2. These tables report
hardware utilization, maximum frequency, throughput, and efficiency. Since our
round-based designs strike a balance between throughput and hardware utiliza-
tion, we have selected works focusing on throughput maximization and area min-
imization for comparison. The proposed AES implementation achieves a maxi-
mum frequency of 414.3 MHz and a throughput of 5.3 Gbps, occupying 371 slices.
The corresponding figures for the proposed SM4 implementation are 415.3 MHz,

286 Y. Xie et al.

Table 2. Comparison of SM4 Implementation

Designs Platforms LUTs FFs Slices Max. freq. (MHz) Throughput (Gbps) Efficiency (Mbps/slice) Efficiency (Mbps/LUT+FF)

[20] XC6VLX240T - - 164 253 0.25 1.54 -

[7] EP4SE230F29 687 448 - 210.26 0.82 - 0.72

7667 5438 - 212.13 27.1 - 2.07

[3] XCZU7EV 8655 10071 - 923.36 118.19 - 6.31

This work XC7K325T 575 816 236 415.3 1.66 7.03 1.19

XCZU7EG 574 816 266 547.3 2.19 8.23 1.58

1.66 Gbps, and 236 slices, respectively. The results show that our designs surpass
existing compact designs of AES and SM4 in both throughput and efficiency
and achieve fair results in efficiency compared to existing high-speed designs.
On the one hand, our designs are lightweight enough to be deployed on resource-
constrained platforms where virtualization techniques are applied. On the other
hand, due to the good throughput/area efficiency of our design, users can always
choose to instantiate multiple modules to achieve higher throughput, which is
essentially equivalent to the unrolled structure.

It is important to note that, despite the lack of full authority in the compara-
tive data due to differences in FPGA platforms and the randomness of synthesis,
placing, and routing optimization algorithms in Vivado, our design successfully
maintains competitive hardware performance while introducing support for par-
allelism of multiple guest tasks. This is reasonable because our designs introduce
relatively little additional control information.

5.2 Multi-guest Efficiency Improvement

To validate the performance improvement of the proposed design in multi-tasking
virtualization scenarios, we conducted experiments based on the prototype sys-
tem described in Sect. 4, integrated with the Zynq UltraScale+ MPSoC. The
results demonstrate that our design is well-suited for virtualized environments.

Two critical performance metrics in virtualized environments are the average
pending time for each task and context switching rate. We compared these two
metrics between the classic design and the proposed architecture in the exper-
iment. In the classic design, guest-level parallelism is not exploited, and each
guest utilizes the full resources of a cryptographic hardware instance. However,
in our design, each guest only occupies a single pipeline stage of the instance and
is processed in parallel. To avoid potential unfairness introduced by differences
in hardware utilization and given that most existing works are not open-sourced,
we decided to simulate the classic architecture using our own design with slight
modifications. This is possible because the working method of the classic archi-
tecture can be considered a subset of that of our proposed design. There are four
AES encryption modules initialized in the prototype system.

In the application for the experiment, a randomly generated task sequence,
containing tasks belonging to random guests, was read in by the scheduling
function, which allocates cryptographic resources to guest tasks and records
their pending time. A context switch occurs when idle resources exist but no

AES and SM4 Hardware for Virtualization 287

resources have been occupied by the incoming guest. We fix the total length
of tasks in the task sequence to 4 GB, and the length of each task is randomly
determined between 4 MB and 64 MB. The number of guests is set to 8, 16,
32, and 64. Additionally, two operation modes, CBC and ECB, are tested in
the experiment, representing block-wise parallelism unsupported and block-wise
parallelism supported modes, respectively. We conducted twenty runs for each
setup, and each task sequence is reused for setups with the same guest number
configuration.

Fig. 9. Multi-guest performance evaluation in CBC mode in terms of (a) task average
pending time and (b) average context switches.

Figure 9 and 10 summarize the average task pending time and the count of
context switches for both the classic design and our architecture. The experi-
mental results show that the proposed design can significantly reduce context
switches when the guest number is within a certain range. When the number of
guests is 32 or less, our architecture can reduce context switches by over 50%.
This is because our design contains sixteen independent resources, which is four
times that of the classic one. However, when the number of guests greatly exceeds

288 Y. Xie et al.

Fig. 10. Multi-guest performance evaluation in ECB mode in terms of (a) task average
pending time and (b) average context switches.

the number of resources, our design no longer has a significant advantage, indi-
cating that the user must instantiate more instances to further reduce context
switches. In the operation mode that does not support block-wise parallelism,
our design shows a clear performance advantage over the classic architecture in
terms of pending time, reducing it by 75%. Classic pipelined designs typically
perform poorly in this situation as they cannot fully utilize all the resources in
the pipeline. In contrast, when operating in a mode that supports block-wise
parallelism, both architectures exhibit similar performance in terms of average
pending time. It is worth noting that in practical applications, the advantages of
our design may be more pronounced because, in actual hypervisors or operating
systems, context switches have greater software overhead.

6 Discussion

In multi-tasking virtualized environments, a critical job of the hypervisor/OS is
to schedule tasks coming from different guests with limited hardware resources,

AES and SM4 Hardware for Virtualization 289

where context switching is inevitable. Frequent context switching could cause
a loss in performance and, for cryptographic hardware, could potentially intro-
duce security implications since sensitive information, including user keys, is
conveyed more regularly via the bus. Designers of large-scale systems thus gen-
erally instantiate a substantial number of dedicated hardware to meet demand.
Our work provides an alternative optimization perspective, demonstrating that
this issue can be addressed by dividing resources into finer granularity at the
hardware level.

The key to our design is increasing the available hardware resources from
the user’s perspective by making the pipeline stages independent. The indepen-
dent pipeline stage brings advantages in two ways. First, it offers great flexibility
to the hypervisor/OS level. The hypervisor/OS can apply different scheduling
strategies, such as allowing each guest to occupy at most one resource in situa-
tions with a large number of guests to reduce context switching, or temporarily
allowing a superior user to occupy all the resources of an instance in priority
scheduling, which makes our design equivalent to the classic architecture. Sec-
ond, it enhances the hardware utilization rate when the hardware operates in a
mode that does not support block-wise parallelism.

Although the proposed structure is round-based, our design can be easily
applied to an unrolled or partially unrolled structure to obtain a higher through-
put, since the additional control information register in each pipeline stage is
not a significant overhead compared to the 128-bit AES/SM4 state itself. Fur-
thermore, our design strategy is not limited to specific cryptographic algorithms
and can potentially be applied to more cryptography implementations, as long
as it does not take excessive overhead to maintain the control information for
key-related operations. An interesting example would be Ascon [5], the new
lightweight cryptography standard selected by NIST, which adopts a sponge
structure and only involves key-related operations at its initialization and final-
ization stage. This feature makes it natural for Ascon implementation to have
independent pipeline structure.

7 Conclusion

This paper presented optimized hardware implementations for AES and SM4
algorithms, targeting multi-tasking virtualization scenarios. Evaluation on
FPGAs shows that our designs can significantly reduce the average pending
time and context switch demands in virtualized environments compared to clas-
sic architectures, while achieving competitive throughput/area efficiency. A pro-
totype cryptosystem was further developed to showcase the practicality of our
designs, indicating their scalability and potential applications in various sce-
narios. By enhancing hardware utilization rate and decreasing pending time in
virtualized environments, our work demonstrates optimization strategies useful
for a wider range of metrics and applications.

The source codes of the AES and SM4 modules are available on GitHub at
https://github.com/bathtub-01/cluster-AES.

https://github.com/bathtub-01/cluster-AES

290 Y. Xie et al.

Acknowledgements. The work was supported by the National Natural Science Foun-
dation of China (No. 62272348).

References

1. Alam, I., et al.: A survey of network virtualization techniques for internet of things
using SDN and NFV. ACM Comput. Surv. (CSUR) 53(2), 1–40 (2020). https://
doi.org/10.1145/3379444

2. Bachrach, J., et al.: Chisel: constructing hardware in a Scala embedded language.
In: Proceedings of the 49th Annual Design Automation Conference, DAC 2012, pp.
1216–1225. Association for Computing Machinery, New York (2012). https://doi.
org/10.1145/2228360.2228584

3. Chen, Y., et al.: Exploring the high-throughput and low-delay hardware design of
SM4 on FPGA. In: 2022 19th International SoC Design Conference (ISOCC), pp.
211–212 (2022). https://doi.org/10.1109/ISOCC56007.2022.10031393

4. Chu, J., Benaissa, M.: Low area memory-free FPGA implementation of the
AES algorithm. In: 22nd International Conference on Field Programmable Logic
and Applications (FPL), pp. 623–626 (2012). https://doi.org/10.1109/FPL.2012.
6339250

5. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2: lightweight
authenticated encryption and hashing. J. Cryptol. 34(3), 1–42 (2021). https://doi.
org/10.1007/s00145-021-09398-9

6. Dworkin, M.J., et al.: Advanced encryption standard (AES) (2001). https://doi.
org/10.6028/NIST.FIPS.197

7. Guan, Z., Li, Y., Shang, T., Liu, J., Sun, M., Li, Y.: Implementation of SM4 on
FPGA: trade-off analysis between area and speed. In: 2018 IEEE International Con-
ference on Intelligence and Safety for Robotics (ISR), pp. 192–197 (2018). https://
doi.org/10.1109/IISR.2018.8535613

8. Gui, C.Y., et al.: A survey on graph processing accelerators: challenges and oppor-
tunities. J. Comput. Sci. Technol. 34, 339–371 (2019)

9. Guo, X., El-Hadedy, M., Mosanu, S., Wei, X., Skadron, K., Stan, M.R.: Agile-
AES: Implementation of configurable AES primitive with agile design approach.
Integration 85, 87–96 (2022)

10. Harb, S., Ahmad, M.O., Swamy, M.N.S.: A high-speed FPGA implementation of
AES for large scale embedded systems and its applications. In: 2022 13th Interna-
tional Conference on Information and Communication Systems (ICICS), pp. 59–64
(2022). https://doi.org/10.1109/ICICS55353.2022.9811140

11. Information technology - Security techniques - Encryption algorithms - Part 3:
Block ciphers - Amendment 1: SM4. Standard, ISO/IEC 18033–3:2010/Amd 1:2021
(2021)

12. Kumar, T.M., Reddy, K.S., Rinaldi, S., Parameshachari, B.D., Arunachalam,
K.: A low area high speed FPGA implementation of AES architecture for
cryptography application. Electronics 10(16) (2021). https://doi.org/10.3390/
electronics10162023. https://www.mdpi.com/2079-9292/10/16/2023

13. Liu, Q., Xu, Z., Yuan, Y.: A 66.1 GBPS single-pipeline AES on FPGA. In: 2013
International Conference on Field-Programmable Technology (FPT), pp. 378–381
(2013). https://doi.org/10.1109/FPT.2013.6718392

https://doi.org/10.1145/3379444
https://doi.org/10.1145/3379444
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1109/ISOCC56007.2022.10031393
https://doi.org/10.1109/FPL.2012.6339250
https://doi.org/10.1109/FPL.2012.6339250
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.1109/IISR.2018.8535613
https://doi.org/10.1109/IISR.2018.8535613
https://doi.org/10.1109/ICICS55353.2022.9811140
https://doi.org/10.3390/electronics10162023
https://doi.org/10.3390/electronics10162023
https://www.mdpi.com/2079-9292/10/16/2023
https://doi.org/10.1109/FPT.2013.6718392

AES and SM4 Hardware for Virtualization 291

14. Mansouri, Y., Babar, M.A.: A review of edge computing: features and resource
virtualization. J. Parallel Distrib. Comput. 150, 155–183 (2021). https://doi.org/
10.1016/j.jpdc.2020.12.015. https://www.sciencedirect.com/science/article/pii/
S0743731520304317

15. Maximov, A., Ekdahl, P.: New circuit minimization techniques for smaller and
faster AES SBoxes. IACR Trans. Crypt. Hardw. Embed. Syst. 2019(4), 91–
125 (2019). https://doi.org/10.13154/tches.v2019.i4.91-125. https://tches.iacr.org/
index.php/TCHES/article/view/8346

16. Oukili, S., Bri, S.: High speed efficient advanced encryption standard implementa-
tion. In: 2017 International Symposium on Networks, Computers and Communica-
tions (ISNCC), pp. 1–4 (2017). https://doi.org/10.1109/ISNCC.2017.8071975

17. Peccerillo, B., Mannino, M., Mondelli, A., Bartolini, S.: A survey on hardware
accelerators: taxonomy, trends, challenges, and perspectives. J. Syst. Architect.
129, 102561 (2022). https://doi.org/10.1016/j.sysarc.2022.102561

18. Rautakoura, A., Hämäläinen, T.: Does SOC hardware development become agile
by saying so: a literature review and mapping study. ACM Trans. Embed. Comput.
Syst. 22(3) (2023). https://doi.org/10.1145/3578554

19. Shahbazi, K., Ko, S.B.: High throughput and area-efficient FPGA implementation
of AES for high-traffic applications. IET Comput. Digit. Tech. 14(6), 344–352
(2020)

20. Shang, M., Zhang, Q., Liu, Z., Xiang, J., Jing, J.: An ultra-compact hardware
implementation of SMS4. In: 2014 IIAI 3rd International Conference on Advanced
Applied Informatics, pp. 86–90 (2014). https://doi.org/10.1109/IIAI-AAI.2014.28

21. Ueno, R., et al.: High throughput/gate AES hardware architectures based on dat-
apath compression. IEEE Trans. Comput. 69(4), 534–548 (2020). https://doi.org/
10.1109/TC.2019.2957355

https://doi.org/10.1016/j.jpdc.2020.12.015
https://doi.org/10.1016/j.jpdc.2020.12.015
https://www.sciencedirect.com/science/article/pii/S0743731520304317
https://www.sciencedirect.com/science/article/pii/S0743731520304317
https://doi.org/10.13154/tches.v2019.i4.91-125
https://tches.iacr.org/index.php/TCHES/article/view/8346
https://tches.iacr.org/index.php/TCHES/article/view/8346
https://doi.org/10.1109/ISNCC.2017.8071975
https://doi.org/10.1016/j.sysarc.2022.102561
https://doi.org/10.1145/3578554
https://doi.org/10.1109/IIAI-AAI.2014.28
https://doi.org/10.1109/TC.2019.2957355
https://doi.org/10.1109/TC.2019.2957355

Blockchain-Assisted Privacy-Preserving
Public Auditing Scheme for Cloud Storage

Systems

Wenyu Xiang1, Jie Zhao1, Hejiao Huang1(B), Xiaojun Zhang2, Zoe Lin Jiang1,
and Daojing He1

1 School of Computer Science and Technology, Harbin Institute of Technology,
Shenzhen, Guangdong 518055, China

xwyhit@163.com, zhaojswpu2017@163.com,
{huanghejiao,zoeljiang,hedaojing}@hit.edu.cn, zhangxjdzkd2012@163.com

2 School of Computer Science, Research Center for Cyber Security,
Southwest Petroleum University, Chengdu 610500, China

Abstract. Public auditing mechanism can delegate a third-party audi-
tor (TPA) to check the remote data integrity on behalf of data owners.
However, the TPA, as an idealized and benefit-oriented entity, may not
provide correct auditing results on time. To date, a large number of pub-
lic auditing schemes utilize the booming blockchain technique to resist
dishonest TPA, but most of them are vulnerable to malicious miners
who attempt to manipulate the randomness of auditing challenge gen-
eration. In this paper, we propose a novel Blockchain-assisted Privacy-
preserving Public Auditing scheme, named BPPA. The BPPA scheme
utilizes a smart contract deployed on the Ethereum blockchain to replace
the TPA. To eliminate the impact of malicious miners, the smart con-
tract employs unpredictable hash values of the nearest Ethereum blocks
to generate the index locators. These locators segmentally produce index
subsets of challenged data blocks, ensuring the unpredictability of audit-
ing challenge messages. Meanwhile, BPPA achieves conditional identity
anonymity for data owners through the employment of identity-based
public key cryptography and key exchange technique. We prove the secu-
rity of our scheme based on the computational Diffie-Hellman assumption
and the discrete logarithm assumption. Furthermore, we analyze the per-
formance from theoretical and experimental aspects, and the evaluation
results demonstrate that our auditing scheme is effective and efficient.

Keywords: Cloud storage system · Remote data integrity · Ethereum
blockchain · Malicious miner · Conditional identity anonymity

1 Introduction

Cloud storage service [18,24,25], as one of the most promising technologies, has
been a practical tool for cloud users to alleviate the heavy burden caused by the
explosive growth of data. While the cloud user takes advantage of these services,
the ensuing security threats have aroused great concern [6]. Particularly, the
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 292–310, 2024.
https://doi.org/10.1007/978-981-97-0801-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_17&domain=pdf
https://doi.org/10.1007/978-981-97-0801-7_17

BPPA 293

integrity of outsourced storage data is one of the most important security issues.
As ownership of the data is transferred from the cloud user to cloud service
providers (CSPs), users lose physical control of these data. Then they always
worry about whether outsourced data is lost/damaged due to hardware failures,
software bugs, or human errors. In fact, the cloud server is a semi-trusted entity.
The cloud server may delete some data blocks that are rarely accessed to save
storage space, and hide these events to maintain a great reputation. Even worse,
to obtain additional benefits, the CSPs may tamper with the user’s sensitive data
information, e.g., patient’s medical data or network reporting data, which puts
lives at risk. Therefore, it is very necessary to periodically check the integrity of
outsourced storage data.

To realize the integrity verification of outsourced storage data, numerous
remote data auditing mechanisms have been proposed [8,15,19]. They mainly
entrust third-party auditors (TPA) to periodically verify the integrity of out-
sourced storage data on behalf of users. However, TPA is a benefit-oriented
entity, which may betray the established auditing protocol. (1) TPA may be
extremely curious about the sensitive storage data and endeavor to derive the
original content from these data. (2) TPA may output a valid auditing result
without performing the validation process indeed thus avoiding the auditing ver-
ification costs. (3) TPA may collude with the cloud server for economic profit and
convince users the remote data is maintained intact. Accordingly, a full-trusted
TPA may suffer from a single point of failure and is difficult to be found in a
real-world scenario. In addition, traditional auditing schemes fail to consider the
identity privacy protection of cloud users.

Blockchain technology [9] with data non-tamperability and transaction trans-
parency can provide a good solution for the above TPA issue. Hence, many
blockchain-based auditing schemes [7,20–22] were proposed. In these schemes,
TPA extracts the time-independent random value from the latest block to sample
challenges and records the verification information locally allowing cloud users
to supervise the TPA’s behavior. However, they are vulnerable to attacks from
dishonest miners who can be bribed by adversaries. These miners are inclined
to mine a satisfying block whose random value would not generate the challenge
message locating to the corrupted storage data in the cloud server. Consequently,
the adversary could bias the probability distribution of the target block, thereby
manipulating the final auditing results. Besides, storing the verification informa-
tion of numerous auditing tasks leads to excessive storage costs. The majority
of existing schemes lack an analysis of these problems. Furthermore, the iden-
tity privacy of the cloud user is as important as the confidentiality of outsourced
data. Most of them utilize the user’s real identity for identification in the system,
potentially exposing the user’s real identity to other curious entities [21]. While
unconditional anonymity will incur obscure problems during dispute resolution,
it should be able to achieve the traceability of real identity from the pseudonym.
Once a malicious user contaminates the cloud server for extra profit, a trustwor-
thy authority can efficiently reveal his real identity and impose legal penalties.
Therefore, it is crucial to realize conditional identity anonymity [23].

294 W. Xiang et al.

To address the aforementioned issues, we propose an efficient Blockchain-
assisted Privacy-preserving Public Auditing scheme for cloud storage, named
BPPA. The major contributions of this paper are summarized as follows.

• We propose a novel privacy-preserving cloud storage auditing scheme, which
deploys a smart contract in Ethereum [17] as a substitute for the TPA. We
employ unpredictable hash values of the nearest Ethereum blocks to generate
the index locators which segmentally determine index subsets of challenged
data blocks, so as to keep the randomness of the auditing challenge message.

• To protect users’ identity privacy and reveal the malicious user at the same
time, we design an identity anonymity mechanism by integrating key exchange
technique into symmetric encryption algorithm. Even if an adversary breaks
the ciphertext indistinguishability [3], it cannot deduce who is the original
owner of these data. Instead, if a misbehaved user abuses the cloud storage
system, its real identity will be revealed by a full-trusted KGC.

• We provide a detailed security analysis to prove that the proposed BPPA is
provably secure, including the storage correctness guarantee, and malicious-
miner resistance. We also present a comprehensive performance evaluation
to demonstrate that BPPA has a higher performance than existing related
auditing schemes.

The rest of this paper is organized as follows. We introduce the related work
in Sect. 2. In Sect. 3, we present the background knowledge and define our sys-
tem model, adversary model, as well as design goals. Next, we elaborate on the
construction of the proposed BPPA in Sect. 4. Then we present a correctness and
security analysis for BPPA in Sect. 5. In Sect. 6, a comprehensive performance
evaluation is provided. Finally, we draw a conclusion for this work in Sect. 7.

2 Related Work

Cloud storage technology enables individuals and enterprises to enjoy convenient
data outsourcing at a low cost. To check the integrity of outsourced data, Ate-
niese et al. [1] proposed a provable data possession (PDP) mechanism based on
the asymmetric cryptosystem, which allows the legitimate user that has storage
data at an untrusted cloud server to verify that the server possesses the original
data without retrieving the whole data set. In the same year, Juels et al. [5] pre-
sented a proofs of retrievability (POR) mechanism, which adds an erasure code
technique to ensure that the damaged data blocks are recovered. It should be
noted that the basic idea of the above two data integrity auditing mechanisms
is based on the probabilistic inspection method of random sampling. On the
basis of literature [1,5], Shacham et al. [13] proposed the first provable secure
PoR scheme, which is called compact proof of retrievability (CPoR). This not
only indicates that a practical data auditing scheme needs to implement seman-
tic security, but also that any credible verifier could conduct a secure audit-
ing challenge verification process on remote data. Wang et al. [15] innovatively
introduced a third-party auditor (TPA) to replace the user for the integrity

BPPA 295

verification of remote data, thus proposing an outsourced storage data privacy-
preserving public auditing scheme with a random masking technique to resist
the curious TPA. Later, with distinct features, massive data privacy-preserving
public auditing schemes are proposed [10,19]. Particularly, Xu et al. [19] put for-
ward novel proxy-oriented outsourcing with public auditing for cloud-based med-
ical cyber-physical systems by employing the identity-based signature algorithm,
which supports secure proxy-oriented data outsourcing between the original data
owner and proxy. Scheme [10] combines lattice-assisted linear homomorphic sig-
nature with an identity-based data outsourcing public auditing scheme in clouds
to achieve post-quantum security.

However, most of the existing data privacy-preserving auditing schemes
[8,15,19] regard TPA as a full-trusted entity. In fact, a lazy TPA may not check
the remote data integrity on time but conduct the centralized execution of the
data auditing tasks, or even directly call the previous auditing result to pre-
varicate users. Furthermore, a malicious TPA may collude with cloud servers
and directionally verify the integrity of those uncorrupted storage data. Zhang
et al. [22] proposed a novel public integrity verification scheme for cloud stor-
age, which integrates the booming blockchain technique into the PDP mecha-
nism, so as to resist the procrastinating public auditor. After that, Zhang and
Zhao [21] proposed a conditional anonymity privacy-preserving public auditing
scheme for wireless body area networks, which could record each auditing result
into the Ethereum blockchain as a transaction, thereby resisting TPA’s mali-
cious auditing behaviors. Wang et al. [16] proposed an innovative concept of
practical private PDP based on RSA and blockchain, thus addressing the ineffi-
cient PDP implementation issue. To overcome the drawback of a non-manager
group, Huang et al. [4] proposed an incentive public auditing scheme, with the
ring signature and a novel blinding technology. Shu et al. [14] analyzed the
adverse impact of malicious miners and explored the concept of the decentral-
ized autonomous organization (DAO) while delegating a smart contract to com-
plete auditing tasks. Nevertheless, this scheme is cumbersome and costly in the
data auditing challenge-verification process, which is not conducive to deploy-
ment in the actual environment. Therefore, how to design a secure and effective
privacy-preserving integrity verification is imperatively demanded.

3 Technical Preliminaries

3.1 Bilinear Pairing and Hardness Problem

Given two multiplicative cyclic groups G and GT with the same prime order q,
where G is generated by some generator g. A bilinear pairing ẽ : G × G → GT

is a map which satisfies the following properties:

• Bilinearity: For all A,B ∈ G, and a, b ∈ Z
∗
q , it has ẽ(Aa, Bb) = ẽ(A,B)ab.

• Computability: For ẽ(A,B), it can be efficiently calculated, where A,B ∈ G.
• Non-Degeneracy: For the generator g in group G, it satisfies ẽ(g, g) �= 1GT

.

296 W. Xiang et al.

Discrete Logarithm (DL) Problem: Given a multiplicative cyclic group
G =< g > with the order q, where g is a generator of G. For any element
A ∈ G, the goal of the DL problem is to find the random value a ∈ Z

∗
q to satisfy

A = ga within a probabilistic polynomial-time (PPT) algorithm.

Computational Diffie-Hellman (CDH) Problem: For a multiplicative
cyclic group G =< g > with the order q, where g is a generator of G. Given the
tuple (ga, gb) ∈ G

2, the goal of the CDH problem is to compute gab within a
PPT algorithm, where a, b ∈ Z

∗
q are selected randomly.

3.2 Homomorphic Hash Function

A homomorphic hash function [2] not only inherits all the advantages of general
hash functions, but also owns the following two outstanding features:

• Homomorphism: Given any two messages m1,m2 and scalars �1, �2, it has

H(�1m1 + �2m2) = H(m1)�1 × H(m2)�2 .

Note that if �1 = �2 = 1, then H(m1 + m2) = H(m1) × H(m2).
• Collision Resistance: For an unknown tuple (m1,m2, �1, �2), there is no prob-

abilistic polynomial-time adversary that can find the message m3 to satisfy

H(m3) = H(m1)�1 × H(m2)�2 ,

if and only if m3 �= m1�1 + m2�2.

3.3 System Model

As depicted in Fig. 1, BPPA is made up of four entities: key generation center
(KGC), data owner (DO), cloud server (CS), and blockchain.

• DO: The DO is an original data owner. Before uploading the outsourced
storage data to the CS, it needs to execute a series of cryptographic operations
for the original data. Besides, each DO needs to deploy a smart contract in
the blockchain to check the integrity of remote data.

• CS: The CS is managed by the cloud server provider, which provides massive
data storage space and powerful information processing capabilities for cloud
users. After receiving a challenge message sent by the smart contract, CS
generates the response auditing proof information.

• KGC: The KGC is a full-trusted authority, whose responsibility is to deter-
mine the system public parameters and the master private key. Also, it gen-
erates an anonymous identity and corresponding private key for each legal
user in the system.

• Blockchain: The blockchain stores the metadata uploaded by DO as a trans-
action. The smart contract, which executes in the blockchain unbias, under-
takes the duty of TPA. In the challenge-verification process, the smart con-
tract extracts hash values from the latest block headers to generate the chal-
lenge message segmentally and sends it to CS. Later it verifies the response
proof sent by CS utilizing the metadata, further outputs a fair auditing result.

BPPA 297

Fig. 1. A brief system model of BPPA

3.4 Adversary Model and Design Goals

The security threats of the system generally come from four aspects, includ-
ing semi-trusted CS, misbehaved DO, malicious miners, and curious external
attackers.

• Semi-Trusted CS: The semi-trusted CS may cover the data loss to maintain
its reputation. Worse still, it may directly delete the key data blocks of some
file and forge the corresponding signature tags, trying to pass the auditing
challenge-verification process of the smart contracts.

• Misbehaved DO: The misbehaved DO may deliberately accuse CS of the
correct behaviors. More specifically, a malicious DO sends correct metadata
to the blockchain, and then uploads the wrong/incomplete storage data to
the CS intentionally, thereby claiming CS for compensation.

• Malicious Miners: The malicious miners attempt to control the decisive
block of the blockchain, thereby breaking the randomness and unpredictabil-
ity of the auditing challenge message.

• Curious External Attackers: The external attacker may be curious about
the content of the outsourced storage data and the real identity of the DO.

To address the aforementioned security threats, and further present a secure
and efficient public cloud auditing scheme, the underlying design goals should
be achieved.

• Storage Correctness Guarantee. The smart contract in the blockchain
could correctly check the integrity of outsourced storage data on behalf of
the DO.

298 W. Xiang et al.

• Malicious-Miner Resistance. Even if the malicious miner colludes with
malicious CS, it cannot break the randomness of the generation of auditing
challenge message, thus affecting the final auditing result.

• Data Privacy Preservation. Any adversary (including the cloud server)
cannot recover the original data content from the ciphertext of DO.

• Conditional Identity Privacy. DO’s identity should be anonymized. Mean-
while, once a DO in the system has malicious behavior, it should track and
reveal its real identity information.

• High Efficiency. The proposed public auditing scheme should be as lightwei-
ght as possible, including the communication overhead between any two log-
ical entities, the signature computation cost, and the auditing computation
costs of the smart contract.

4 Our Protocol

Now, we construct a novel blockchain-assisted privacy-preserving public auditing
scheme, which consists of the following six algorithms.

System Initialization: Input a security parameter 1λ, the KGC generates the
system’s public parameters and the secret master keys below.

1. Let ẽ be a bilinear pairing: ẽ : G × G → GT , and choose g as the generator of
G, where G and GT denote two multiplicative cyclic groups with same prime
order q.

2. Select a random value x ← Z
∗
q as the system’s master private key, and com-

pute X = gx as its corresponding master public key.
3. Define five anti-collision hash functions: H : Z

∗
q → G, h1 : G × {0, 1}∗ → Z

∗
q ,

h2 : G → Z
∗
q , h3 : Z

∗
q × G × G → Z

∗
q , h4 : Z

∗
q × {0, 1}∗ × {0, 1}∗ × Z

∗
q → Z

∗
q ,

respectively. Also, pick a symmetric encryption/decryption security algorithm
pair (ENC,DEC).

4. Set a pseudo-random generator Prg : SKprg ×I → Z
∗
n, and a pseudo-random

function Prf : SKprf × Z
∗
q × I → Zq, where SKprg and SKprf indicate the

keysets for Prg and Prf respectively, and I denotes the set of sort location
of each data block.

5. Issue all of the public parameters Para = {(ẽ, G, GT , g, q),X, (ENC,DEC),
P rg, Prf, H, h1 ∼ h4}, and save {x, SKprg, SKprf} secretly.

6. CS and each DO are required to initial an external account on the Ethereum
blockchain and deposit sufficient assets in it. Subsequently, the DO creates a
smart contract that is responsible for the integrity verification of outsourced
storage data.

Anonymous-ID Generation and Key Extraction: With unique and real
identity information RID ∈ Z

∗
q , each DO needs to interact with KGC to generate

its private key. The detailed algorithm steps are as follows.

1. Select a random value ω ← Z
∗
q , and compute W = gω. The DO sends the

user registration information (RID,W) to KGC by a secure channel.

BPPA 299

2. When receiving (RID, W) from DO, KGC selects a random value r ← Z
∗
q

and computes R = gr. Then it computes the symmetric secret key κ =
h1(W x, T ime), and generates the DO’s pseudonym PSID = ENCκ(RID ⊕
h2(W)), as well as its corresponding private key

sk = r + x · h3(PSID,X,R) mod (q − 1), (1)

where ‖ indicates the concatenation of each portion, and Time denotes the
valid time period of PSID. Finally, KGC adds R into the public parameters
Para, and sends the tuple (sk, T ime) to the DO by a safe channel.

3. Upon receiving the tuple (sk, T ime) from the KGC, the DO recomputes κ =
h1(Xω, T ime), and PSID = ENCκ(RID ⊕ h2(W)). After that, it verifies
whether the verification equation is correct:

gsk ?= R · Xh3(PSID,X,R) mod q. (2)

If the above verification equation does not hold, the DO asks the KGC to
regenerate the signature private key by repeating the above algorithm steps.
Otherwise, the DO accepts (sk, T ime).

Data Processing and Outsourcing: The DO achieves the secure processing
and outsourcing of data file as follows.

1. Given a data file M = {m1,m2, · · · ,mn} ∈ Z
n
q with an identifiable file name

Name ∈ {0, 1}∗, the DO picks a one-time value � ← Z
∗
q , and computes the

file tag Tag = h4(PSID,Name, n,�).
2. Select a secure secret key skprf ∈ SKprf for pseudo-random function Prf .

The DO encrypts each data block mi as follows.

m∗
i = ηi ⊕ mi ∈ Zq, (3)

where ηi ← Prfskprf
(Tag, i) ∈ Zq, and i ∈ [1, n], thus M =

{m1,m2, · · · ,mn} ∈ Z
n
q is encrypted as M∗ = {m∗

1,m
∗
2, · · · ,m∗

n} ∈ Z
n
q .

Moreover, the DO computes HF = H(Tag||M∗).
3. For i ∈ [1, n], choose a random value βi ← Z

∗
q and compute H(βi). Then the

DO computes the authenticator for each ciphertext block m∗
i below.

δi = (H(Tag) × H(m∗
i + βi))sk ∈ G. (4)

4. Generate a transaction TΛ
x for metadata Λ = {PSID,HF, (H(β1),H(β2),

· · · ,H(βn))}, and send it to Ethereum blockchain. Once the TΛ
x is writ-

ten into the blockchain, the Ethereum immediately returns the hash value
�(TΛ

x) of the TΛ
x to the DO, where �(·) shows the secure hash function of

Ethereum such as Keccak-256. Finally, the DO uploads the storage data
Ω = {PSID,Name,�, (M∗, δ), �(TΛ

x)} to CS, where δ = {δ1, δ2, · · · , δn}.
5. Upon receiving the storage data Ω, the CS firstly retrieves HF by sending the

transaction digest �(TΛ
x) to Ethereum. Then it checks whether the following

verification equation is established:

H(h4(PSID,Name, n,�)||M∗) ?= HF. (5)

300 W. Xiang et al.

If it holds, the CS accepts Ω by emitting Sucess; Otherwise, it refuses Ω by
emitting Error.

Challenge Message Generation: The DO sends auditing task request Req =
{PSID,Name, �(TΛ

x)} to the smart contract. Once the Req from DO is success-
fully received, the smart contract in Ethereum generates the following auditing
challenge message on behalf of the DO.

1. Retrieve the BlockNumber of the current newest block by using the chain
search interface (e.g., block.number), and obtain the corresponding Block-
Height Bl. Then it seriatim extracts the hash value of ϑ blocks backward
according to the logical order, thus outputting {�(∇)Bl−ϑ+1, �(∇)Bl−ϑ+2,
· · · , �(∇)Bl−1, Bl}. Here, the �(∇)Bl−1 denotes the header hash value of the
previous block of the current newest block, and ϑ ≥ 20.

2. Compute k1 = �1(�(∇)Bl−ϑ+1||�(∇)Bl−ϑ+2|| · · · || �(∇)Bl−�ϑ/2�) ∈ SKprg,
and k2 = �2(�(∇)Bl−�ϑ/2�+1 ||�(∇)Bl−�ϑ/2�+2|| · · · ||�(∇)Bl−1||Bl) ∈ SKprg,
where �1(·) and �2(·) are two secure hash functions defined on smart contract.

3. Send the auditing challenge message Chal = {c, k1, k2} to CS through the
inline event trigger, where c denotes the number of challenged data block.

Proof Information Generation: Once receiving Chal from the smart con-
tract, the CS generates the response auditing information proof below.

1. Compute iθ1 = Prgk1(θ1), iθ2 = Prgk2(θ2), and set iθ = iθ1 ∪ iθ2 , where
θ1 = 1, 2, · · · , �c/2, θ2 = �c/2 + 1, · · · , c, and iθ1 ∩ iθ2 = ∅. For each θ =
1, 2, · · · , c, the CS computes νθ = Prfk2(h4(PSID,Name, n,�), θ).

2. With the data block locator (iθ, νθ), CS computes the combined data blocks
ξ =

∑θ=c
θ=1 νθm

∗
iθ

mod q, and aggregates the corresponding authenticators
ψ =

∏θ=c
θ=1 H(h4(PSID,Name, n,�))νθ , and δ =

∏θ=c
θ=1 δiθ

νθ .
3. Generate a new transaction on the response auditing proof information

Proof = {ξ, δ, ψ}, and transmit it to the smart contract.

Proof Verification: Upon receiving the Proof from CS, the smart contract
checks the integrity of the outsourced storage data by executing the following
algorithm steps.

1. Recompute the data block locator (iθ, νθ) by the same way of CS, where
θ = 1, 2, · · · , c.

2. According to the data auditing request Req = {PSID,Name, �(TΛ
x)} and

(iθ, νθ), the smart contract acquires these precisely parsed hash values
{H(βi1), H(βi2), · · · ,H(βic

)} by performing transaction data query function
(e.g., Oraclizequery), and further verifies the integrity of the storage data by
checking the following auditing verification equation:

ẽ(δ, g) ?= ẽ(ψ · H(ξ) ·
θ=c∏

θ=1

H(βiθ
)νθ , R · Xh3(PSID,X,R)). (6)

BPPA 301

3. If the above auditing verification equation holds, the smart contract outputs
the auditing result as True and sends {True, ST} to the DO; Otherwise, it
outputs the auditing result as False and sends {False, ST} to the DO, where
ST denotes the timestamp of the auditing result output.

5 Evaluation of the Proposed Mechanism

5.1 Correctness

The correctness of verification Eq. (2) is proved below.

gsk = g(r+x·h3(PSID,X,R)) mod (q−1) mod q

= gr · (gx)h3(PSID,X,R) mod q

= R · Xh3(PSID,X,R) mod q.

The correctness of auditing verification Eq. (6) on the smart contract side is
elaborated below.

ẽ(δ, g) = ẽ(
θ=c∏

θ=1

δiθ

νθ , g)

= ẽ(
θ=c∏

θ=1

(H(Tag) × H(m∗
iθ
+ βiθ

))νθ , gsk)

= ẽ(
θ=c∏

θ=1

(H(h4(PSID,Name, n,�)))νθ ×
θ=c∏

θ=1

H(νθ(m∗
iθ
+ βiθ

)), gsk)

= ẽ(ψ · H(
θ=c∑

θ=1

νθm
∗
iθ
) · H(

θ=c∑

θ=1

νθβiθ
), gsk)

= ẽ(ψ · H(ξ) ·
θ=c∏

θ=1

H(βiθ
)νθ , R · Xh3(PSID,X,R)).

5.2 Security Analysis

In this section, we prove that the proposed BPPA scheme is secure in terms of
storage correctness guarantee, and malicious-miner resistance.

Theorem 1. In BPPA, it is computationally infeasible for an adversary A
(including the malicious CS) to falsify a valid response auditing proof infor-
mation to pass the verification process of smart contract, as long as the hardness
assumptions of DL and CDH problems hold.

Proof. Now, we demonstrate that if there exists an adversary A (including the
malicious CS) breaking the storage correctness guarantee of our auditing scheme
with non-negligible probability ε in terms of Game 1 and Game 2 , we can

302 W. Xiang et al.

construct a challenger C with corresponding probability ε′ to win Game 1 and
Game 2 by running A as a subroutine.

Game 1 : In this game, a well-trained A tries to replace or falsify some dam-
aged/lost data block, and further generate the response auditing proof to pass
the integrity verification process. The details are described below.

Upon receiving the auditing challenge message Chal = {c, k1, k2} from the
smart contract, instead of generating the correct response auditing proof infor-
mation honestly, A falsifies a response auditing proof as Proof ′ = {ξ′, δ, ψ} for
the damaged/lost data block m∗′

iθ
, where ξ′ =

∑θ=c
θ=1 νθm

∗′
iθ

, δ =
∏θ=c

θ=1 δνθ
iθ

, and
ψ =

∏θ=c
θ=1 H(h4(PSID,Name, n,�))νθ . Hence, the forged response auditing

proof Proof ′ = {ξ′, δ, ψ} can pass the following integrity verification equation:

ẽ(δ, g) = ẽ(ψ · H(ξ′) ·
θ=c∏

θ=1

H(βiθ
)νθ , R · Xh3(PSID,X,R)). (7)

As a matter of fact, the CS can honestly generate a valid response auditing
proof information Proof = {ξ, δ, ψ} as required. Thus, the correct response
auditing proof Proof can pass the following integrity verification equation:

ẽ(δ, g) = ẽ(ψ · H(ξ) ·
θ=c∏

θ=1

H(βiθ
)νθ , R · Xh3(PSID,X,R)). (8)

According to the above Eq. (7) and Eq. (8), we can obtain that

ψ · H(1 · ξ′) ·
θ=c∏

θ=1

H(βiθ
)νθ = ψ · H(1 · ξ) ·

θ=c∏

θ=1

H(βiθ
)νθ .

Since Δξ = ξ′ − ξ �= 0, and assuming that the output of OH in response to
query “1” is ga, we can further get ga·Δξ = 1G. Thus, we can get ga = g−Δξ

as the solution of the DL problem, where −Δξ is the inversion of Δξ such as
−Δξ + Δξ ≡ 0 mod q. Note that the probability of game failure is the same
as the probability of Δξ = 0 mod q. The probability of Δξ = 0 mod q is 1/q.
Therefore, we can address the DL problem with a probability of ε′ = 1 − 1/q,
which contradicts the hardness assumption of the DL problem.

Game 2 : This game is same as Game 1 , with the exception of one different.
When some data block m∗

iθ
outsourced to the cloud is lost or damaged, A not only

generates the combined message ξ′ but also forges the corresponding aggregate
signature information δ′, thus trying to pass the integrity verification process.
The details are described below.

Upon receiving an auditing challenge message Chal = {c, k1, k2} from the
smart contract, the well-trained A tries to forge the response auditing proof as
Proof ′ = {ξ′, δ′, ψ} with a non-negligible probability ε, where ξ′ =

∑θ=c
θ=1 νθm

∗′
iθ

,
δ′ =

∏θ=c
θ=1 δ′νθ

iθ
, and ψ =

∏θ=c
θ=1 H(h4(PSID,Name, n,�))νθ . Thus, the forged

response auditing proof Proof ′ = {ξ′, δ′, ψ} can pass the following integrity
verification equation:

BPPA 303

ẽ(δ′, g) = ẽ(ψ · H(ξ′) ·
θ=c∏

θ=1

H(βiθ
)νθ , R · Xh3(PSID,X,R)). (9)

Actually, when receiving an auditing challenge message Chal = {c, k1, k2}
from the smart contract, the honest cloud server can generate the corresponding
response auditing proof Proof = {ξ, δ, ψ} as required. The proof satisfies the
following integrity verification equation:

ẽ(δ, g) = ẽ(ψ · H(ξ) ·
θ=c∏

θ=1

H(βiθ
)νθ , R · Xh3(PSID,X,R)). (10)

According to the Eq. (9) and Eq. (10), we can get that

δ′/δ = H(1 · ξ′)/H(1 · ξ).

Similarly, since Δξ = ξ′ − ξ �= 0, and assuming that the output of OH in
response to query “1” is ga, we can obtain δ′ · δ−1 = ga·Δξ. Without loss of
generality, we can set gab = δ′ · δ−1 ∈ G as the solution of the CDH problem.
As a result, if there exists an A successfully winning the Game 2 by forging
a valid response auditing proof with a non-negligible probability ε, then the
challenger C will also have a non-negligible probability ε′ = ε to address the
hardness assumption of CDH problem by running A as a subroutine.

Therefore, based on the above-detailed security analysis of Game 1 and
Game 2 , we conclude that the proposed BPPA scheme achieves storage cor-
rectness guarantees. It is computationally infeasible for an A to falsify a valid
response auditing proof information to pass the verification process of the smart
contract, as long as the hardness assumptions of DL and CDH problems hold.

Theorem 2. The proposed BPPA scheme can resist malicious miners in the
blockchain, thus ensuring the randomness of the auditing challenge message.

Proof. For challenge message generation, the smart contract computes {k1, k2}
which are locators to the subset of data file M∗, by concatenating the hash
values of the latest ϑ blocks. Each hash value �(∇)i, i ∈ {Bl − ϑ + 1, Bl − �ϑ/2}
determines to the final concatenation, and further influences the generation of
k1 (similarly in k2). We denote the block with BlockHeight Bl − �ϑ/2 as Bl1,
and the block with BlockHeight Bl as Bl2. Since the hash value of a block is
unknown until the block is generated, the most effective way for an adversary
A (including the malicious cloud server) is to ensure the subsets located by the
hash values of Bl1 and Bl2 would not contain the damage storage data blocks.

We define a mapping function χ : ε �→ {0, 1}, where ε is the set containing
all the blocks in the blockchain. For a decisive block Bl, if the hash value of it
generates the corrupted data block index, then χ(Bl) = 1. Otherwise, χ(Bl) = 0.
We assume there are games among honest miners and malicious miners tempted
by an adversary A [11]. For one decisive block, a game starts when a fixed
initial block indexed by 0 is broadcasted. Further, we denote the n-th block as

304 W. Xiang et al.

the decisive block. Once the decisive block Bl is broadcasted by honest miners
and χ(Bl) = 0, malicious miners can still find a satisfying block Bl′ such that
χ(Bl′) = 1. By constructing a longer chain, they publish Bl′ and Δ additional
blocks such that they could replace Bl with Bl′. Thus, the game ends when
n+Δ blocks are appended after the initial block. Under this case, for a decisive
block Bl, the winning probability of A can be PA = F (μ, λ, n,Δ) [11], where μ
is the probability of χ(Bl) = 1, λ is dishonest hashrate and Δ is the number of
additional blocks. In the proposed model, A requires to bias the decisive blocks
Bl1 and Bl2. That is, only by winning the following Game 1 and Game 2 ,
can A control the final auditing results.

Game 1: In this game, the goal of A is to ensure Bl1 indexed by n is satisfying.
Since the distance between Bl1 and Bl2 is �ϑ/2 blocks, if honest miners publish
a dissatisfying block Bl1, A still has �ϑ/2 − 1 additional blocks to build a
longer chain for replacing Bl1 with a satisfying block. Hence, the probability of
A winning this game is at most F (μ, λ, n, �ϑ/2 − 1).

Game 2: Only A wins Game 1 , could this game get started and then the end
block of Game 1 becomes the initial block of this game. In this game, the goal
of A is to ensure Bl2 is satisfying. If χ(Bl1) = 1, A requires no additional block
to build a longer chain to replace Bl1 such that Bl1 is indexed by 0. Hence the
index of Bl2 would be at most �ϑ/2. With Δ additional blocks, the probability
of A winning this game is at most F (μ, λ, �ϑ/2,Δ).

Thus, we can obtain an upper bound of winning probability of A which is
denoted as PÂ:

PÂ = F (μ, λ, n, �ϑ/2 − 1) · F (μ, λ, �ϑ/2,Δ) > PA.

To better evaluate the impact caused by malicious miners, we assume that
1% fraction of data is corrupted in CS, thus μ = 1 − (1 − 1%)c. We assume
ϑ = 20, n = 18 and implement it in experiment. The experimental result is
presented in Fig. 2. It demonstrates that when λ < 51%, the adversary A wins
with a negligible probability. Therefore, our auditing scheme can resist malicious
miners and ensure the randomness of auditing challenge messages.

Fig. 2. The upper bound on winning probability of the adversary A

BPPA 305

6 Comprehensive Performance Evaluation

In this section, we compare our scheme with existing related auditing schemes
IPANM [4], CIPPPA [21], and CPVPA [22] in terms of the computation costs
(including the signature computation costs of a single data block, and the audit-
ing computation costs on auditor side) and auditing communication overhead
between auditor and CS. Meanwhile, we measure the gas cost of the proposed
scheme’s on-chain operation. Then we implement our scheme in experiments,
which is based on a Windows 10 system with Intel(R) Core(TM) i5-10500 CPU
3.10GHz and 16 GB of RAM. All the algorithms are programmed in Java lan-
guage with JDK 1.7 version and JBPC library 2.0. A type-A bilinear pairing is
employed, and the element size in Z

∗
q is |q| = 160-bits accordingly. The smart

contract runs on the Ethereum blockchain and is designed in the Solidity lan-
guage. In addition, all the experiments are performed in 20 trials on average.

6.1 Comparison of the Computation Costs

To better evaluate the performance of our scheme and other related auditing
schemes IPANM [4], CIPPPA [21], CPVPA [22] in aspects of the computation
costs, we unify the cryptographic operations. The notations of execution time
for cryptographic operations are listed in Table 1.

Table 1. Notations of Cryptographic Operations

Notation Descriptions

Tha The running time of a general hash operation
THa The running time of a hash-to-point operation
TAd The running time of a point addition operation
TPa The running time of a bilinear pairing operation
TMu The running time of a scalar multiplication operation
Tmu The running time of a general multiplication operation
TEx The running time of a modular exponentiation operation

Firstly, we evaluate the performance of the signature computation costs of a
single data block between our scheme and existing related schemes IPANM [4],
CIPPPA [21], CPVPA [22]. Here, the number of users in the ring signature of
IPANM [4] is u = 12. The comparison of the implementation results is shown in
Table 2, and the corresponding diagram is presented in Fig. 3. It demonstrates
that our scheme is much less than the others in the signature computation cost.
This is because the signature tag of a data block in BPPA is constructed by
the homomorphic hash function, which can convert the modular exponentiation
operation into a general multiplication without sacrificing the security of the
signature.

306 W. Xiang et al.

Table 2. Computation Costs of Signature

Scheme Signature computation costs Executing time (µs)

IPANM [4] uTMu + uTmu + THa + 2TEx ≈ 33826.2

CIPPPA [21] 2TMu + THa + TAd ≈ 9836.6

CPVPA [22] 4Tmu + 3THa + 2Tha + 6TEx ≈ 23518.2

Our scheme 2Tmu + THa ≈ 5494.8

Fig. 3. Comparison of signature computation costs

Then, we further evaluate our scheme and existing related schemes IPANM
[4], CIPPPA [21], CPVPA [22] in terms of the computation costs on the auditor
side. The auditing verification computation costs are listed in Table 3, which are
shown in Fig. 4. As we can see, with the increase in the number of challenged
data blocks, the computation costs on the auditor side of our scheme are much
lower than others. At the same time, only BPPA can achieve identity anonymity
conditionally, and public cloud auditing, simultaneously.

Table 3. Computation Costs on Auditor Side

Scheme Computation costs on auditor side Executing time (µs)

IPANM [4] 2TPa + (c+ 1)Tmu + cTHa + (c+ 3)TEx ≈ 6663.9c+ 14364.9

CIPPPA [21] 3TPa + (c+ 1)TMu + Tmu + cTHa + Tha + (c − 1)TAd ≈ 7671.4c+ 18447.7

CPVPA [22] 4TPa + (2c+ 1)Tmu + (c+ 4)THa + (2c+ 3)Tha + (3c+ 2)TEx ≈ 9023.1c+ 46044.3

Our scheme 2TPa + (c+ 2)Tmu + THa + Tha + (c+ 1)TEx ≈ 1170.9c+ 17526.6

BPPA 307

Fig. 4. Comparison of computation costs on auditor side

6.2 Comparison of the Communication Overhead

Now, we demonstrate our scheme has more advantages in communication over-
head between auditor and CS compared with existing related schemes IPANM
[4] CIPPPA [21], and CPVPA [22]. To provide performance comparison at the
same security level, we set the size of the two multiplicative cyclic groups G

and GT to be 1024-bits and 2048-bits, respectively. We also set the total num-
ber of data blocks n = 214, the size of user identity is |ID| = 64-bits, the size
of a timestamp in Ethereum is |T | = 32-bits and the size of a hash value in
Ethereum is |Hash| = 256-bits. According to the analysis of chain security in
literature [12], we set the number of blocks extracted hash value each time in
Ethereum as ϑ = 20. In the proposed BPPA, the smart contract (acting as an
auditor) conveys the challenge message Chal = {c, k1, k2} to the cloud server,
with overhead log2 n+2|q|. Then the cloud server is demanded to respond with
the proof information Proof = {ξ, δ, ψ}, with overhead |q| + 2|G|. Hence the
total communication overhead between smart contract and CS in our scheme
is 3|q| + 2|G| + log2 n ≈ 2542-bits. The total communication overhead between
auditor and CS in the IPANM [4] is 3c|q|+(u+3)|G|+u|ID| ≈ 480c+16128-bits,
CIPPPA [21] is (c+1)|q|+3|G|+c log2 n+ |ID| ≈ 174c+3296-bits, and CPVPA
[22] is 2|q| + 2|G| + |T | + ϑ|Hash| ≈ 7520-bits.

The comparison of communication overhead between auditor and CS between
our scheme and others is depicted in Fig. 5, which demonstrates that our scheme
is much less than IPANM [4], and CIPPPA [21] in the auditing communication
overhead. Moreover, the communication overhead between the auditor and CS
of CPVPA [22] and our scheme remains constant with the growth in the number
of challenged data blocks, but our scheme requires less than CPVPA [22].

In conclusion, compared with existing related auditing schemes IPANM [4],
CIPPPA [21], CPVPA [22] in terms of the computation costs and auditing com-
munication overhead, the proposed BPPA scheme is efficient, which is more
practical for cloud storage platform with capacity-limited devices.

308 W. Xiang et al.

Fig. 5. Comparison of auditing communication overhead

6.3 On-Chain Consumption Evaluation

We evaluate the gas cost of the smart contract on the Ethereum virtual mecha-
nism (EVM), including deploying the smart contract, generating challenges, and
verifying proof. When we studied this research, the exchange rate of 1 ETH was
about 1200 USD. The gasPrice is set to be 1 GWei, where 1 GWei is 10−9 ETH.
The gas consumption of each operation is shown in Fig. 6. When c = 460, deploy-
ing the smart contract costs about 0.9 USD, generating challenge costs about
0.09 USD, and verifying proof costs about 1.81 USD. Thus, it only consumes
about 1.9 USD to perform a public auditing task by using the smart contract,
which is acceptable for DO.

Fig. 6. Evaluation of gas costs

BPPA 309

7 Conclusions and Future Work

In this paper, we have proposed a blockchain-assisted privacy-preserving public
auditing scheme (BPPA). To get rid of an untrusted TPA, we employ the smart
contract in Ethereum to verify the integrity of the user’s remote data. We choose
hash values from the nearest blocks on the blockchain as the factor to generate a
challenge message that further locates to the subset of data blocks segmentally,
thus eliminating the threat posed by malicious miners. Meanwhile, BPPA realizes
conditional identity anonymity so that it can protect the identity privacy of cloud
users. We provide in-depth security analysis and comprehensive performance
evaluation to demonstrate our proposed BPPA is secure and deployable in the
cloud storage platform. For the subsequent work, we will further focus on how to
integrate other types of blockchain technology into public auditing mechanisms
while ensuring its security, efficiency, and functionality.

Acknowledgements. This work is supported by the Shenzhen Science and Tech-
nology Program (Grant No. GXWD20220817124827001, JCYJ20210324132406016).
This work is also supported by the National Key R&D Program of China (Grant
No. 2021YFB2700900), the Shenzhen Key Technical Project (Grant No. 2022N009),
the Fok Ying Tung Education Foundation of China (Grant No. 171058), Guangdong
Provincial Key Laboratory of Novel Security Intelligence Technologies (Grant No.
2022B1212010005).

References

1. Ateniese, G., et al.: Provable data possession at untrusted stores. In: Proceedings of
the 14th ACM conference on Computer and Communications Security, pp. 598–609
(2007)

2. Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure network coding over the
integers. In: Nguyen, P.Q., Pointcheval, D. (eds.) Public Key Cryptography –
PKC 2010: 13th International Conference on Practice and Theory in Public Key
Cryptography, Paris, France, May 26-28, 2010. Proceedings, pp. 142–160. Springer
Berlin Heidelberg, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
13013-7_9

3. Guo, J., Han, L., Yang, G., Liu, X., Tian, C.: An improved secure designated server
public key searchable encryption scheme with multi-ciphertext indistinguishability.
J. Cloud Comput. 11(1), 1–12 (2022)

4. Huang, L., et al.: Ipanm: incentive public auditing scheme for non-manager groups
in clouds. IEEE Trans. Dependable Secure Comput. 19(2), 936–952 (2022)

5. Juels, A., Kaliski Jr, B.S.: Pors: proofs of retrievability for large files. In: Proceed-
ings of the 14th ACM Conference on Computer and Communications Security, pp.
584–597 (2007)

6. Li, A., Chen, Y., Yan, Z., Zhou, X., Shimizu, S.: A survey on integrity auditing for
data storage in the cloud: from single copy to multiple replicas. IEEE Trans. Big
Data 8(5), 1428–1442 (2020)

7. Li, J., Wu, J., Jiang, G., Srikanthan, T.: Blockchain-based public auditing for big
data in cloud storage. Inform. Process. Manage. 57(6), 102382 (2020)

https://doi.org/10.1007/978-3-642-13013-7_9
https://doi.org/10.1007/978-3-642-13013-7_9

310 W. Xiang et al.

8. Li, J., Yan, H., Zhang, Y.: Identity-based privacy preserving remote data integrity
checking for cloud storage. IEEE Syst. J. 15(1), 577–585 (2020)

9. Li, R., Qin, Y., Wang, C., Li, M., Chu, X.: A blockchain-enabled framework for
enhancing scalability and security in iiot. IEEE Trans. Industr. Inf. 19(6), 7389–
7400 (2023)

10. Liu, X., Luo, Y., Yang, X., Wang, L., Zhang, X.: Lattice-based proxy-oriented
public auditing scheme for electronic health record in cloud-assisted wbans. IEEE
Syst. J. 16(2), 2968–2978 (2022)

11. Pierrot, C., Wesolowski, B.: Malleability of the blockchain’s entropy. Cryptogr.
Commun. 10(1), 211–233 (2018)

12. Rosenfeld, M.: Analysis of hashrate-based double spending. ArXiv abs/1402.2009
(2014)

13. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89255-7_7

14. Shu, J., Zou, X., Jia, X., Zhang, W., Xie, R.: Blockchain-based decentralized public
auditing for cloud storage. IEEE Trans. Cloud Comput. 10(4), 2366–2380 (2022)

15. Wang, C., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public auditing for data
storage security in cloud computing. In: 2010 proceedings IEEE infocom, pp. 1–9.
IEEE (2010)

16. Wang, H., Wang, Q., He, D.: Blockchain-based private provable data possession.
IEEE Trans. Dependable Secure Comput. 18(5), 2379–2389 (2019)

17. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151(2014), 1–32 (2014)

18. Xu, Y., Jin, C., Qin, W., Shan, J., Jin, Y.: Secure fuzzy identity-based public
verification for cloud storage. J. Syst. Architect. 128, 102558 (2022)

19. Xu, Z., He, D., Wang, H., Vijayakumar, P., Choo, K.K.R.: A novel proxy-oriented
public auditing scheme for cloud-based medical cyber physical systems. J. Inform.
Secur. Appl. 51, 102453 (2020)

20. Zhang, C., Xu, Y., Hu, Y., Wu, J., Ren, J., Zhang, Y.: A blockchain-based multi-
cloud storage data auditing scheme to locate faults. IEEE Trans. Cloud Comput.
10(4), 2252–2263 (2021)

21. Zhang, X., Zhao, J., Xu, C., Li, H., Wang, H., Zhang, Y.: Cipppa: conditional
identity privacy-preserving public auditing for cloud-based wbans against malicious
auditors. IEEE Trans. Cloud Comput. 9(4), 1362–1375 (2019)

22. Zhang, Y., Xu, C., Lin, X., Shen, X.: Blockchain-based public integrity verification
for cloud storage against procrastinating auditors. IEEE Trans. Cloud Comput.
9(3), 923–937 (2019)

23. Zhao, J., Huang, H., Gu, C., Hua, Z., Zhang, X.: Blockchain-assisted conditional
anonymity privacy-preserving public auditing scheme with reward mechanism.
IEEE Syst. J. 16(3), 4477–4488 (2021)

24. Zhao, J., Zheng, Y., Huang, H., Wang, J., Zhang, X., He, D.: Lightweight certifi-
cateless privacy-preserving integrity verification with conditional anonymity for
cloud-assisted medical cyber-physical systems. J. Syst. Architect. 138, 102860
(2023)

25. Zhao, Y., Chang, J.: Certificateless public auditing scheme with designated verifier
and privacy-preserving property in cloud storage. Comput. Netw. 216, 109270
(2022)

https://doi.org/10.1007/978-3-540-89255-7_7

MANet: An Architecture Adaptive
Method for Sparse Matrix Format

Selection

Zhenglun Sun , Peng Qiao(B), and Yong Dou

National University of Defense Technology, Changsha, China
{zhenglun sun,pengqiao,yongdou}@nudt.edu.cn

Abstract. The proliferation of modern computer architectures brings a
great challenge to sparse matrix-vector multiplication (SpMV), which is
widely used in scientific computing and artificial intelligence. Providing a
suitable sparse matrix format for SpMV is crucial to achieve high perfor-
mance by enhance data locality and cache performance. However, for dif-
ferent architectures, the best sparse matrix format varies. In this paper,
we propose a novel architecture adaptive sparse matrix format selection
method, MANet, to select proper format to optimize performance of
SpMV. This method transforms a sparse matrix into a high-dimensional
image, with the matrix sparseness feature and architecture feature com-
bined as inputs. To evaluate the effectiveness of this method, we gener-
ated a dataset that includes various scientific problems and architectures
with augmentation. Results show that MANet improves sparse matrix
selection accuracy by 6% compared to previous works and can achieve a
speedup of up to 230% compared to methods with a fixed format. When
adapting to an architecture that is not presented in the training, it can
still provide 88% selection accuracy and 14% higher than the previous
approaches, without further training.

Keywords: Sparse Matrix-Vector Multiplication · Sparse Matrix
Format Selection · High-Performance Computing · Architecture
adaptive · Deep Learning

1 Introduction

In high-performance computing, the Sparse Matrix-Vector Multiplication
(SpMV) kernel plays an important role in scientific computing [15] and related
numerical computing fields such as weather forecasting [8], computational fluid
dynamics [10]. High computation efficiency of SpMV is hard to achieve due to
the irregular memory access patterns introduced by sparse matrices.

Many researchers have sought to accelerate SpMV from both architectural
and algorithmic perspectives. In terms of architecture, attempts have been made
to increase CPU and memory frequencies for direct speedup, as well as to employ
larger caches to reduce repetitive data I/O.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 311–326, 2024.
https://doi.org/10.1007/978-981-97-0801-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_18&domain=pdf
http://orcid.org/0000-0002-8152-779X
https://doi.org/10.1007/978-981-97-0801-7_18

312 Z. Sun et al.

From algorithmic perspective, numerous sparse matrix formats and algo-
rithms have been proposed to improve data locality. Here we focus particularly
on the sparse matrix format level. A number of storage formats have been devel-
oped to address the heterogeneity of nonzeros distribution, with impacts on data
locality, cache performance, and thus overall performance. Examples of such for-
mats include COO, CSR, and BSR, which are designed to meet the demands of
modern architectures and scientific applications. With an appropriate selection
of sparse matrix format, the performance of SpMV can be significantly enhanced
[6]. In this work, we aim to select an appropriate format with different architec-
ture settings.

Existing methods for sparse matrix selection rely on machine learning algo-
rithms [3,12,19], which will extract nonzeros features and predict matrix format
with the support of Convolutional Neural Networks (CNN) or the decision tree.
However, the prediction results of previous studies may not be well-adapted to
different architectures. The rapid progress in computer architecture has made it
challenging to maintain a single optimal format that can be used across differ-
ent CPUs or accelerators [2,9,13]. Therefore, it is necessary to develop a format
selection method that is able to adapt to varying architectures.

To improve the generalizability of the model across various architectures, we
introduce a sparse matrix selection approach with architecture generalization
entitled MANet. Our proposed method utilizes matrix pooling-like normalization
as preprocessing technique and employs a multiple-input CNN to select the most
suitable storage format for the matrix based on the features of the architecture
and the matrix.

Our contribution consists of three parts, and we will provide the correspond-
ing code after finishing the organization process:

– We proposed a format selection network for sparse matrices called MANet,
which is adaptive to architecture. In terms of adaptability, MANet improves
prediction accuracy by 20% when adapting to other platforms with different
architecture settings. When adapting to platforms with architectures that
have not been previously encountered, MANet yields a 14% improvement
compared to related works.

– After adaptation to the approximate platform, the SpMV speedup is 230%
after format selection using MANet compared to the COO storage format.
Moreover, 89.3% of the matrices can reach the minimum time after using
MANet for format selection.

– Our research further probes into the effect of architecture settings on the
format distribution in a CPU platform. We indicate that the computation
speed of SpMV is determined by the hardware architecture setting, including
processor frequency, memory bandwidth, cache size, etc.

MANet: An Architecture Adaptive Method 313

2 Background

2.1 Sparse Matrix Storage Format

The main objective of sparse matrix storage formats is to compress matrices,
thereby improving locality and reducing storage overhead. Various storage for-
mats, custom-tailored to different distributions of nonzeros, have been developed.
The selection of an appropriate format entails consideration of characteristics
associated with the nonzeros distribution and architecture.

Our work focuses on three commonly used formats, COO, CSR, and BSR
[5].

– The Coordinate Format (COO) storage structure organizes a matrix into
three arrays: col, row, and val. The elements in each array specify the column
indices of nonzeros entries, the row indices of nonzeros entries, and their values
respectively.

– The Compressed Sparse Row (CSR) format stores the column coordinates
of the nonzeros into an array ind, as well as containing the nonzeros values
themselves in another array val. Additionally, CSR contains a pointer array
ptr which helps to quickly identify the intervals of each row, as if listing it
out as a list. The CSR format provides a practical approach to representing
sparse matrices in three relatively small arrays.

– The Block Sparse Row (BSR) format divides a matrix into multiple dense
blocks and stores them using the same CSR-style indexing used by the CSR
format. The index array ptr gives an interval for each row of each block, the
value array val contains the nonzeros entries, and the column coordinates of
the nonzeros are given by ind.

2.2 Influence of Nonzeros Distribution

The standard SpMV computation paradigm is y = Ax, where y and x are vectors,
and A is a sparse matrix. When performing SpMV computations, each non-zero
element Aij is accessed only once. Our work explores strategies to reuse both y
and x, enabling the exploitation of data locality opportunities present in SpMV
sessions.

In dense storage format, SpMV multiplication is known to be inefficient
due to the traversal of zero values during updating the vector. Moreover, non-
optimized memory and cache access can lead to significant drops in overall perfor-
mance. A suitable storage format can alleviate these issues while simultaneously
providing opportunities for parallel computing [13].

By taking the matrix stored in CSR format as an example and employ-
ing CSR as a storage structure, the memory access pattern is changed. The
pseudocode of SpMV when dealing with a matrix stored in CSR is presented
in Algorithm 1. This approach only requires m + 3nnz memory accesses when
without cache for a given matrix of size m × n and nonzeros nnz, resulting in
significant speed improvements compared to the traditional dense format, which

314 Z. Sun et al.

Algorithm 1. SpMV using CSR format
Input: A: input matrix with m × n size

val: nonzeros in A
ptr: row offsets in CSR
ind: column index in CSR
x: input vector

Output: y: output vector
1: for i = 0, 1, 2, ...,m − 1 do
2: y[i] ← 0
3: for j = ptr[i], ..., ptr[i + 1] − 1 do
4: y[i] ← y[i] + val[j] ∗ x[ind[j]]
5: end for
6: end for
7: return y

would require m ∗ n memory accesses. And for best case, it will only require
m + n + 2 × nnz.

From the above, it can be found that the access optimization due to the
sparse matrix storage format is directly related to the distribution of nonzeros.
Different storage formats will correspond to different SpMV algorithms, which
will have an impact on the access pattern of x. To select proper format, CNN,
decision tree and graph neural network (GNN) are used.

3 Methodology

3.1 Overview

In this section, we present a multi-input sparse matrix format selector that is
able to adapt to various architectures while overcoming several challenges. Our
proposed approach combines matrix pre-processing with architecture features
that are associated with the distribution of non-zero data. This leads to improved
performance when adapting to platforms with varying architecture settings. We
provide a detailed overview of the construction process, from data pre-processing
to classification.

The left part of Fig. 1 contains 4 steps to preprocess data and construct a
muti-input CNN network. Assuming there is already a sparse matrix dataset D
and target architectures Pi, where i = 1, 2...n.

(1) This work requires a matrix training label for the first step. To achieve
the best performance in sparse matrix format, the training labels are acquired
by running SpMV on Pi 100 times and measuring the SpMV computing time.
By measuring the SpMV computing time, this step selects a format that makes
SpMV execute at the fastest speed as a label and attaches the label to with
matrix ID. (2) The second step will normalize the matrix into a fixed size by
pooling the matrix. With a fixed size, the sample formed by the sparse matrix
can be used for CNN training and classification. (3) The third step of the process

MANet: An Architecture Adaptive Method 315

Labels

Fixed size
matrices

Architectur
e features

CNN
structure

Label collec�on

Matrix chunking

Feature extrac�on

CNN design

Sample

Matrix

Normalized
matrix

Sample

CNN
training

Result
format

Architecture features a�ached

Data Preprocessing and Network
Construc�on

Training and
Predic�on

Fig. 1. Overview of the data preprocessing, network construction and training.

is focused on extracting architecture features from Pi that affect SpMV execu-
tion time. Data preprocessing allows us to obtain high-dimensional image data
associated with both matrix nonzeros features and architecture features. (4) The
final step of the left part in Fig. 1 forms a multi-input CNN network to extract
features from the sample. (5) The right part of Fig. 1 performs the CNN training
and prediction procedure.

The main challenges we face are in Steps 3 and 4. Since architectures have
many features, it is necessary to conduct experiments to determine which of
these features should be encoded into the sample. The high dimension of the
samples makes it difficult for CNN to extract features for training. Designing an
appropriate network structure to remain amenable to an architecture adaptive
format selector remains a problem for our work.

3.2 Matrix Labeling

For the classification task, CNN requires labels to provide ground truth. In order
to achieve this, 100 iterations of SpMV were executed on platform Pi, and the
format with the shortest average time was selected as the label.

As previously discussed, data locality and other factors influencing the speed
of SpMV can be highly variable, depending on the architecture configuration. In
practical computing scenarios, the CPU retrieves data, including requested and
surrounding data, thus creating a data locality. Variations in CPU frequency,
cache size, etc. can have an effect on data locality and other factors that impact
the speed of SpMV.

316 Z. Sun et al.

24.9

20.4

4

5.5

53.1

71.2

88.4

89.1

21.8

8.2

7.4

5.3

0 20 40 60 80 100

i9 9900K

Xeon 6248

Xeon 5220

 Xeon 6242

Sample Propor�on (Percent)

Ar
ch

ite
ct

ur
e

Se
�

ng

BSR
CSR
COO

Fig. 2. The generated format label distribution on different architecture.

This experiment investigated the performance of SpMV across multiple plat-
forms with different architectures, and also involved labeling matrices from the
entire dataset. The results indicated that the proportions of samples varied
depending on the architecture utilized, as demonstrated in Fig. 2. However, when
selectors lack adaptability to these architecture changes, altering sample pro-
portions could lead to poor performance results as shown in Fig 5. Notably, as
depicted in Fig. 2, for certain parts of the dataset, COO format still outperforms
other formats. Specifically, in the E5 platform, COO performed better than all
other formats for the HB group in SuitSparse Matrix Collection [4].

3.3 Matrix Normalization and Matrix Feature Extraction

The size of matrices may vary, complicating their use in CNN training and
inference. To address this issue, we propose a normalization method that extracts
the matrix features and pools them into a fixed size suitable for CNN utilization.
This method is based on the observation of the matrix non-zeros distribution
features, as described in [2], and the BSR design proposed in [18]. In this part, we
first describe the pooling method before detailing the feature extraction method.

Matrix Pooling. Algorithm 2 outlines a pooling-like Algorithm for normalizing
a given matrix with a size-adjustable sliding window. Given a matrix, the sliding
window slides through matrix A and maps its features to the corresponding
pixel in the sample. After normalization, a three-channel sample is obtained,
containing the matrix features. This sample is further processed to add the
necessary architecture settings.

MANet: An Architecture Adaptive Method 317

Algorithm 2. Matrix pooling with sliding window
Input: A: input matrix with m × n size

val: nonzeros in A
ms: input sample row size
ns: input sample column size
w: sliding window with mw × nw and nonzeros density density

Output: Sample: CNN input sample
1: set mw = m

ms

2: set nw = n
ns

3: for i = 0, 1, 2, ..., m
mw

do
4: for j = 0, 1, 2, ..., n

nw
do

5: moves the top left corner index of the w to the element A(i∗mw,j∗nw)

6: density = nnz
nw×mw

7: if density ≥ threshold then
8: assigns matrix features to the position (i, j) of the sample
9: else

10: assigns zero to the position (i, j) of the sample
11: end if
12: end for
13: end for
14: return Sample

Taking a sparse matrix of size 100×100 as an example, and assuming that the
input size of the CNN is 10×10, the sliding window size according to Algorithm
2 is also 10 × 10. With the stride shown in Eq. (1), the matrix is divided into
100 parts with pooling, each of which is mapped to a set of sample pixels.
If the density of non-zero elements in a given part exceeds the threshold, the
corresponding pixel is assigned with the matrix features; otherwise, it remains
blank.

stride =
m

ms
(1)

Matrix Feature Extraction. We extract key features from the sparse matrix
and store them in the relative dimensions of the sample, as demonstrated in
previous work [2]. The extracted features include:

– matrix size: m ∗ n (require normalization)
– matrix density: nonzeros

matrix size
– nonzeros number of a row which contains most nonzeros: maxrow (require

normalization)

As these features can vary greatly, we normalize them to a range of [0, 255]
using Eq. (2). Limiting the feature values to the range of [0, 255] enables a more
accurate description of the density distribution of non-zero values covered by
the sliding window across all color channels, thereby providing a more refined

318 Z. Sun et al.

description of the non-zero value distribution for the entire sample. If normaliza-
tion is not used, the significant differences in feature values may have an impact
on the training process.

normalized feature =
feature − min

max − min
× 255 (2)

The density threshold is an important factor to consider when describing
the nonzeros distribution of a sparse matrix. If the threshold is set too low, the
detail of nonzeros distribution will not be described accurately, while setting the
threshold too high will result in too many empty blocks without features. It is
therefore necessary to carefully consider the optimal density threshold to ensure
an accurate description of the sample.

3.4 Architecture Feature Extraction

Architecture has been shown to influence SpMV performance and format selec-
tion (Fig. 2). To ensure our model can adapt to other architectures without
additional training, we incorporate architecture features into extra dimensions
of the sample. The resulting sample has six dimensions: the first three dimen-
sions correspond to matrix features, while the remaining three dimensions refer
to architecture features.

By concatenating the architecture feature matrix with the matrix feature
matrix, we can generate a sample with 6 dimensions. Initially, employing lscpu
and mbw [1], we can retrieve the CPU architecture settings and memory band-
width. Subsequently, according to Eq. (3), the architecture feature is normalized.
Then, three architecture feature matrices are constructed based on correspond-
ing architecture features. Finally, these matrices are stacked onto the sparse
matrix feature matrix, resulting in a high-dimensional sample.

Architecture feature dimensions do not pay attention to the sparse matrix-
related features. Setting the corresponding dimension to a solid value allows the
CNN to focus on the value, eliminating the interference of sparse matrix features,
and thereby improving accuracy.

In Sect. 4.4, our experiments revealed three significant architecture features
that have an impact on the SpMV speed. Features of architecture we extract are
shown below, those features require normalization following Eq. (3):

– The size of L3 cache size: L3.
– The basement frequency of CPU: Frequency.
– The bandwidth of memory: Bandwidth.

normalized feature =
feature

max
× 255 (3)

Normalization methods for matrix features cannot be used for architecture
features. As can be observed by examining the hardware architecture settings in
Table 1, applying the normalization method given in Eq. (2), a transformation in

MANet: An Architecture Adaptive Method 319

the distribution of the sample space can be observed. For instance, the Euclidean
distance of the feature vector with Xeon 6248 and i9 9900K decreased from 2.2176
to 1.833 with the inclusion of the Xeon 6242 processor, indicating an overall 17%
shrinkage and a corresponding shift in the position of the sample in the sample
space. To this end, a scalable normalization approach is presented in Eq. (3),
wherein max represents the maximum value of the matrix feature while feature
stands for the feature value of the matrix.

Table 1. Architecture features of each platform

Architecture Property i9 9900K Xeon 5220 Xeon 6248 Xeon 6242 E5 2640

Basement Frequency 3.6 GHz 2.2 GHz 2. 5 GHz 3.1 GHz 2.6 GHz

Cores 8 18 20 16 6

L3Cache 16 MB 24.75 MB 27.5 MB 22 MB 15MB

Memory 126 GB 119.2 GB 377.6 GB 119.2 GB 119.2 GB

Memory Bandwidth of Node 9137 MiB/s 4353 MiB/s 5024 MiB/s 5583 MiB/s 6069 MiB/s

Launch Date Q4’18 Q2’19 Q2’19 Q2’19 Q1’12

3.5 Network Design

For traditional image classification tasks, images are typically input into a single-
input network, with the variation in the structure of the network mainly in
terms of the number of layers, the internal parameters, and the organization
form. However, in the case of sparse matrix data, the feature distribution has
some distinct differences from traditional image feature distributions, as the
information present in each dimension may be different from other dimensions.

In order to facilitate the network’s ability to extract information from each
channel, we present MANet illustrated in Fig. 3 as an abridged general view. This
network decouples the elements of the samples into six inputs at the beginning.
Further, the tensor with six dimensions is fed into the CNN layer after which it
is concatenated and fed into a fully-connected layer. By separating the samples
at the start and merging the features at the end, this architecture enables the
efficient extraction of relevant features while also reducing the complexity of
training.

The MANet architecture consists of four CNN layers, with each layer contain-
ing six channels. Following each CNN layer, a max pooling layer is connected.
The final CNN layer is followed by three fully connected layers that output the
prediction results. The output channels for the CNN layers are 96, 256, 256, and
256, respectively. Additionally, the kernel size for each CNN layer is 11 × 11,
5 × 5, 3 × 3, and 1 × 1 with padding and stride, respectively. The input and
output sizes for the fully connected layers are 13824 × 4096, 4096 × 4096, and
4096 × 3.

320 Z. Sun et al.

Sparse
Matrix

CNN LayerInput Channel

Fully Connected
Layer

Output

Concatenate

Fig. 3. Network structure of the matrix format selection method with architecture
awareness.

4 Evaluation

4.1 Experiment Setting

Hardware Platform. We evaluated MANet on five platforms of varying archi-
tectures: i9 9900K (Coffee Lake), Xeon 5220 and 6248 (Cascade Lake), Xeon
6242R (Cascade Lake), and E5 2640 (Broadwell). Nvidia V100 GPU is used
for training acceleration. The architecture features of the CPUs are shown in
Table 1. These CPU platforms encompass a wide range of usage scenarios, from
personal devices (like i9 9900k) to servers (like E5 6242), and span a considerable
time period from Q1’12 to Q2’19.

Software Platform. PyTorch 1.7 [11] was utilized for constructing neural net-
works. To analyze the cache, the PAPI 6.0.0.1 [16] interface was employed to
access the hardware counters during measuring the SpMV computation time.
The memory bandwidth was then measured by the MBW [1] benchmark. To
ensure stable labeling, all SpMV operations were performed with a single core
using the SciPy library [17], which was also used to convert the matrix to the
corresponding format.

Parameter Setting. The shape of the sample is 256×256 after preprocessing.
The density used for normalization is 0.01. For training, the learning rate is

MANet: An Architecture Adaptive Method 321

1e− 4, we use Adam as the optimizer and use cross entropy as the loss function.
The model was trained over 100 epochs with a batch size of 64. The weighting
of each label’s sample was set to 5.74, 1.41, and 8.56, respectively.

Dataset. This paper utilizes the sparse matrices from the Suit Sparse Matrix
Collection [4] as training, testing, and validation data. The same 2150 matrices
are preprocessed and used across five CPU platforms for training, testing, and
validation. Matrix with size less than 256×256 is excluded resulting in 1702 orig-
inal matrix for further argumentation. Furthermore, the data set is augmented
by chunking into four equal parts as four new matrices, transposing, etc., result-
ing in 14168 sparse matrices. Matrix with size less than 256 × 256 is excluded.
As indicated in Sect. 3, the feature to be extracted is as follows.

We employ an 80%–20% split for training and testing, respectively, with
validation data directly sampled from the Suit Sparse Matrix Collection and
excluded from the training and test sets.

Our work mainly focuses on three commonly used formats, COO, CSR, and
BSR, as the storage format for sparse matrices. The three storage formats are
implemented using the methods in Python Scipy Sparse V1.5.4 [17]. BSR is
stored in blocks, and the block size of BSR in this experiment is selected by the
heuristic Algorithm in Scipy Sparse library.

We have attempted to use other formats such as DIA, DOK, and LIL as
labels, but we discovered that these formats only cover a mere 4% of the dataset.
As a result, for SpMV in CPU, the COO, CSR, and BSR formats are capable of
meeting most needs. Therefore, we have chosen to use COO, CSR, and BSR as
labels for our dataset.

Due to the wide range of sparse matrices, the dataset used in this paper
is more universal and challenging than earlier approaches. As matrices are uti-
lized in various scientific computing applications, their feature distributions vary
greatly and exhibit a strong long-tail effect when normalized.

4.2 Speedup

In this section, we use sparse matrix samples from several domains to produce
their format prediction results and compare the time performance of SpMV using
the corresponding formats of our method and two comparison methods.

In light of the potential for architecture adaptation and release time consid-
erations, we compare the two methods proposed by Pichel et al. [12] and Zhao
et al. [19]. The MANet is trained using the data set output from the i9 9900K
and Xeon 6248 platforms, while both the Pichel et al. [12] and Zhao et al. [19]
methods are trained using the data set output from the i9 9900K. Comparing
datasets from two different architectures using traditional methods is not feasible
since the labels for the samples may not match. However, MANet is designed
to extract architecture-specific features, which eliminates this issue. We com-
pare the results of these two methods on five different platforms and measure
the number of best formats each method selects. The final results are shown

322 Z. Sun et al.

1067
1474 1488 1474 1520

635
228 214 228 182

0
200
400
600
800

1000
1200
1400
1600
1800

i9 9900K Xeon 6248 Xeon 5220 Xeon 6242 E5 2640

M
at

rix
 N

um
be

r

Architecture Se�ng

Best selection number using MANet Not best

(a) Best selection number of MANet.

77.47

119.12

79 76.45 71.61

147.1

262.85

141.66 134.94
165.18

0

50

100

150

200

250

300

i9 9900K XEON 5220 XEON 6248 XEON 6242 E5 2640

)dnoceS(e
mi T noit uce xE V

MpS

Architecture Se�ng

SpMV time after

MANet selection

SpMV time with

COO

(b) SpMV time using MANet com-
pared with COO format.

Fig. 4. SpMV speedup evaluation with MANet selector.

in Fig. 4. Figure 4a demonstrates that MANet is capable of selecting the best
format in common scenarios with an accuracy of 89.3%.

When compared to the commonly used COO format, our proposed MANet
shows a significant increase in SpMV computation speed of up to 230%, as
demonstrated in Fig. 4b. As demonstrated in Sect. 3.2, the COO format remains
an appropriate choice for enhancing the speed of SpMV.

4.3 Adaptation and Accuracy

In this section, we conduct an experiment to investigate the adaptation per-
formance of our proposed method, MANet, in both approximate and non-
approximate architecture adaptation scenarios. The comparison methods are
the same as in the previous section.

84.84

82.61

64.34

72.39

0 20 40 60 80 100

Xeon 6242

Xeon 5220

Predic�on Accuracy (Percent)

gnitteS erutcetihc rA

Pichel et al.
MANet

(a) Adapt to approximate architecture.

88.07

74.92

0 20 40 60 80 100

E5 2640

Predic�on Accuracy (Percent)

gnitteS erutcetihcrA

Pichel et al.

MANet

(b) Adapt to non-approximate architecture.

Fig. 5. Prediction accuracy when adapting to other architecture.

By utilizing a novel CNN structure and preprocessing technique, we demon-
strate that MANet is capable of selecting the sparse matrix format in an envi-
ronment that has not been previously encountered.

MANet: An Architecture Adaptive Method 323

Approximate Adaptation. In approximate architecture adaptation, the test-
set generated in Xeon 5220 and Xeon 6242 is used for testing. The architecture of
the Xeon 5220 and Xeon 6242 is more similar to that of the Xeon 6248. Thus we
choose Xeon 5220 and Xeon 6248 for the approximate architecture adaptation
experiment.

The results obtained from the Intel Xeon 6242 and Xeon 5220 platforms
indicate that the MANet architecture significantly outperforms the comparison
works, with an improvement in prediction accuracy of up to 20% as shown in
Fig 5a.

Non-approximate Adaptation. In non-approximate architecture adaptation,
the data generated on an Intel Xeon E5 2640 Broadwell architecture platform
was used to evaluate the performance of the MANet system. As shown in Fig. 5b,
the system achieved a prediction accuracy of over 14%.

4.4 The Influence of Architecture

Architecture setting influence on the sample proportion is investigated in this
section. CPU frequency, memory bandwidth, and cache size as architecture
parameters are discussed in detail. Results indicate that those parameters have
a significant impact on the sample distribution.

24.3

59.7

15.9

19.8

63.01

17.18

18.79

62.23

18.97

21.36

55.84

22.78

0 20 40 60 80

COO

CSR

BSR

Sample Propor�on (Percent)

ta
mroF

xirta
M

NOXMP+Overclocking

XMP+Overclocking

NOXMP+No Overclocking

XMP+No Overclocking

(a) The influence of CPU and memory over-
clocking .

0

20

40

60

80

100

120

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Ca
ch

e
M

iss
 T

im
e

(1
0³

)

Sp
M

V
Ti

m
e

(M
ill

ise
co

nd
)

1 3 5 7 9 111315171921232527293133353739
Matrix Index

CSR time CSR cache miss

(b) Relationship between cache miss and
SpMV performance.

Fig. 6. The architecture setting influence towards SpMV and matrix labeling.

The effect of memory frequency and CPU frequency on the dataset from Intel
i9 9900K was analyzed. Memory overclocking (XMP) and CPU overclocking were
used to study the sample proportion change. The results of the sample proportion
after using memory overclocking (XMP) and CPU overclocking, respectively, are
presented in Fig. 6a. With lower memory frequency leading to a lower share of
COO format and a greater bias towards CSR and BSR formats. Furthermore,

324 Z. Sun et al.

higher CPU main frequencies have been found to have a greater bias towards
BSR formats.

Experimental results demonstrate a direct correlation between the total num-
ber of L2 cache misses and the elapsed time for SpMV, as illustrated in Fig. 6b.
This relationship is more evident, due to the relatively small size of the L2 cache,
which helps to reduce the impact of noise.

It has been demonstrated that there is a direct correlation between the num-
ber of cache misses and the SpMV computation time, as illustrated in the above
Figure. Utilizing the larger size of the L3 cache, this paper takes advantage
of its more stable performance label during labeling, making it an important
architecture parameter.

5 Related Work

Recent research has focused on utilizing machine learning methods, such as deci-
sion tree and deep neural networks (DNNs), to select the appropriate sparse
matrix format for optimal performance of the sparse matrix-vector (SpMV) prod-
uct. More recently, convolutional neural networks (CNNs) have been employed
to address this problem.

Zhao et al. [19] introduced DNN into the task of format selection for sparse
matrices. However, the feature extraction method only considers the spatial dis-
tribution of non-zeros without architecture features. Pichel et al. [12] propose
an approach that directly turns the matrix into a fixed-size image and encodes
relative features into different dimensions. The single input CNN used are unable
to handle the information of each dimension.

Qiu et al. [14] utilize the features of sparse matrices in GNNs, and use
XGBoost [3] to build a flexible model for format selection during runtime.
Nonetheless, the decision tree-based approach requires the pre-definition of which
feature to use before training.

Due to the rapid development of architecture, the adaptation faces some
challenges including feature extraction and network design. To the best of our
knowledge, this work is the first that aims to solve the CNN format selector
adaptation problem.

6 Conclusion

Previous models for selecting sparse matrices did not consider the influence of
architecture on their performance and typically required retraining or fine-tuning
when adapting to different platforms. To address this limitation, we propose
MANet, a sparse matrix selection model with architectural adaptability. Our
approach incorporates architecture-specific data preprocessing and a multi-input
neural network, enabling MANet to achieve superior accuracy without the need
for retraining or fine-tuning during migration to diverse platforms. Consequently,
it enhances the interoperability of sparse matrix selection models across archi-
tectures. In our future work, we will focus on adaptation across heterogeneous

MANet: An Architecture Adaptive Method 325

computation devices and addressing challenges in unbalanced sparse matrix clas-
sification that have not been adequately resolved.

Acknowledgements. We express our thanks to the anonymous reviewers for their
insightful comments that improved the quality of the manuscript and Suit Sparse
Matrix Collection for the dataset.

References

1. Mbw: Memory bandwidth benchmark (2010). http://manpages.ubuntu.com/
manpages/lucid/man1/mbw.1.html

2. Chen, D., Fang, J., Chen, S., Xu, C., Wang, Z.: Optimizing sparse matrix-vector
multiplications on an armv8-based many-core architecture. Int. J. Parallel Prog.
47(3), 418–432 (2019). https://doi.org/10.1007/s10766-018-00625-8

3. Chen, T., et al.: Xgboost: extreme gradient boosting. R package version 0.4-2 1(4),
1–4 (2015)

4. Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM Trans.
Math. Softw. 38(1), 1–25 (2011)

5. Grossman, M., Thiele, C., Araya-Polo, M., Frank, F., Alpak, F.O., Sarkar, V.: A
survey of sparse matrix-vector multiplication performance on large matrices. arXiv
preprint arXiv:1608.00636 (2016)

6. Langr, D., Tvrdik, P.: Evaluation criteria for sparse matrix storage formats. IEEE
Trans. Parall. Distrib. Syst.27(2), 428–440 (2016). https://doi.org/10.1109/tpds.
2015.2401575, https://ieeexplore.ieee.org/document/7036061/

7. Li, M.L., Chen, S., Chen, J.: Adaptive learning: a new decentralized reinforcement
learning approach for cooperative multiagent systems. IEEE Access 8, 99404–99421
(2020). https://doi.org/10.1109/ACCESS.2020.2997899

8. Muhammed, T., Mehmood, R., Albeshri, A., Katib, I.: Suraa: A novel method and
tool for loadbalanced and coalesced spmv computations on gpus. Appl. Sci. 9(5),
947 (2019)

9. Nisa, I., Siegel, C., Rajam, A.S., Vishnu, A., Sadayappan, P.: Effective machine
learning based format selection and performance modeling for spmv on gpus. In:
2018 IEEE International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW). IEEE. https://doi.org/10.1109/ipdpsw.2018.00164, https://
ieeexplore.ieee.org/document/8425531/

10. Oyarzun, G., Peyrolon, D., Alvarez, C., Martorell, X.: An fpga cached sparse matrix
vector product (spmv) for unstructured computational fluid dynamics simulations.
arXiv preprint arXiv:2107.12371 (2021)

11. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning
library. In: Advances in NeurIPS 32, pp. 8024–8035 (2019). http://papers.neurips.
cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-
library.pdf

12. Pichel, J.C., Pateiro-Lopez, B.: A new approach for sparse matrix classification
based on deep learning techniques. In: 2018 IEEE International Conference on Clus-
ter Computing (CLUSTER). IEEE. https://doi.org/10.1109/cluster.2018.00017,
https://ieeexplore.ieee.org/document/8514858/

13. Pichel, J.C., Pateiro-Lopez, B.: Sparse matrix classification on imbalanced
datasets using convolutional neural networks. IEEE Access 7, 82377–82389
(2019). https://doi.org/10.1109/access.2019.2924060, https://ieeexplore.ieee.org/
document/8742660/

http://manpages.ubuntu.com/manpages/lucid/man1/mbw.1.html
http://manpages.ubuntu.com/manpages/lucid/man1/mbw.1.html
https://doi.org/10.1007/s10766-018-00625-8
http://arxiv.org/abs/1608.00636
https://doi.org/10.1109/tpds.2015.2401575
https://doi.org/10.1109/tpds.2015.2401575
https://ieeexplore.ieee.org/document/7036061/
https://doi.org/10.1109/ACCESS.2020.2997899
https://doi.org/10.1109/ipdpsw.2018.00164
https://ieeexplore.ieee.org/document/8425531/
https://ieeexplore.ieee.org/document/8425531/
http://arxiv.org/abs/2107.12371
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109/cluster.2018.00017
https://ieeexplore.ieee.org/document/8514858/
https://doi.org/10.1109/access.2019.2924060
https://ieeexplore.ieee.org/document/8742660/
https://ieeexplore.ieee.org/document/8742660/

326 Z. Sun et al.

14. Qiu, S., You, L., Wang, Z.: Optimizing sparse matrix multiplications for graph
neural networks. In: Li, X., Chandrasekaran, S. (eds.) Languages and Compilers for
Parallel Computing: 34th International Workshop, LCPC 2021, Newark, DE, USA,
October 13–14, 2021, Revised Selected Papers, pp. 101–117. Springer International
Publishing, Cham (2022). https://doi.org/10.1007/978-3-030-99372-6 7

15. Sun, X., Zhang, Y., Wang, T., Zhang, X., Yuan, L., Rao, L.: Optimizing spmv
for diagonal sparse matrices on gpu. In: 2011 International Conference on Parallel
Processing, pp. 492–501 (2011). https://doi.org/10.1109/ICPP.2011.53

16. Terpstra, D., Jagode, H., You, H., Dongarra, J.: Collecting performance data with
PAPI-C. In: Müller, M.S., Resch, M.M., Schulz, A., Nagel, W.E. (eds.) Tools for
High Performance Computing 2009: Proceedings of the 3rd International Workshop
on Parallel Tools for High Performance Computing, September 2009, ZIH, Dresden,
pp. 157–173. Springer Berlin Heidelberg, Berlin, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-11261-4 11

17. Virtanen, P., et al.: SciPy 1.0 Contributors: SciPy 1.0: fundamental algorithms for
scientific computing in Python. Nature Methods 17, 261–272 (2020). https://doi.
org/10.1038/s41592-019-0686-2

18. Vuduc, R., Demmel, J.W., Yelick, K.A.: Oski: A library of automatically tuned
sparse matrix kernels. In: Journal of Physics: Conference Series. vol. 16, p. 071
(2005)

19. Zhao, Y., Li, J., Liao, C., Shen, X.: Bridging the gap between deep learn-
ing and sparse matrix format selection. In: Proceedings of the 23rd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming.
ACM. https://doi.org/10.1145/3178487.3178495, https://dl.acm.org/doi/pdf/10.
1145/3178487.3178495

https://doi.org/10.1007/978-3-030-99372-6_7
https://doi.org/10.1109/ICPP.2011.53
https://doi.org/10.1007/978-3-642-11261-4_11
https://doi.org/10.1007/978-3-642-11261-4_11
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1145/3178487.3178495
https://dl.acm.org/doi/pdf/10.1145/3178487.3178495
https://dl.acm.org/doi/pdf/10.1145/3178487.3178495

Service-Aware Cooperative Task
Offloading and Scheduling in Multi-access

Edge Computing Empowered IoT

Zhiyan Chen1(B), Ming Tao1, Xueqiang Li1, and Ligang He2

1 School of Computer Science and Technology, Dongguan University of Technology,
Dongguan, China

z.chen.8@warwick.ac.uk, {taom,lixq}@dgut.edu.cn
2 Department of Computer Science, University of Warwick, Coventry, UK

ligang.he@warwick.ac.uk

Abstract. Multi-access edge computing(MEC) enables computation
task offloading and data processing at close proximity to provide rich end-
users services with ultra-low latency in Internet of things(IoT). However,
the high heterogeneity of the edge node configuration and the diversity
of services pose challenges in fully utilizing the computing capacity in
MEC. In this paper, we consider the problem of service-aware coopera-
tive task offloading and scheduling in a three-tier MEC empowered IoT
where the service requests from IoT devices can be distributed among
edge nodes or further offloaded to remote cloud. As this problem is proven
to be NP-hard, we proposed a two-layer Cooperative workload Initial-
ization and Distribution Algorithm (CIDA) to solve the problem with
low time complexity by decomposing it into two subproblems: 1) the
optimization problem of offloading profile under dynamic resource allo-
cation determined by the workload type, and 2) optimization problem of
computation resources allocation under given offloading profile. Exten-
sive experiments demonstrate that CIDA achieves superior performance
compared to other approaches and scales well as the system size increases.

Keywords: Multi-access edge computing · Services-aware offloading ·
Task scheduling · Resource allocation

1 Introduction

The Internet of Things (IoT) has been introduced to connect and coordinate
the rapidly growing number of smart devices over the past decade [1,2]. And
cloud computing enables IoT devices to enhance their computational capabilities
and extend battery life by offloading the computation requests to cloud servers
for execution. However, the extensive connectivity and data exchange in the
IoT have led to substantial communication latency, which poses challenges in
guaranteeing the quality of IoT services [3]. As a result, edge computing has
emerged as a promising paradigm to address these challenges. By deploying
computing resources at the edge where data is generated, computation requests
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 327–346, 2024.
https://doi.org/10.1007/978-981-97-0801-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_19&domain=pdf
https://doi.org/10.1007/978-981-97-0801-7_19

328 Z. Chen et al.

can be processed at the closer edge node instead of offloading to the remote
cloud, which significantly reduce the latency and save energy [4].

Compared to cloud servers with abundant computational resources, edge
server is generally resource-limited. Severe resource competition and data pro-
cessing congestion could be caused by the offloading of computation intensive
requests without cooperation. Furthermore, the absence of mutual collaboration
among edge servers can result in certain servers being underutilized while pop-
ular edge servers are experiencing an overwhelming computational workload [5].
Additionally, given the diverse range of services in the IoT, the requirements on
response time and computation resources can vary significantly. Both processing
computation-intensive requests on relatively low-capacity edge servers and the
improper allocation of resources on edge servers can lead to a degradation in sys-
tem performance. Therefore, the establishment of collaborative offloading and
scheduling mechanisms between edge servers and remote cloud servers is crucial
to fully utilize the computational resources and achieve efficient operation of the
system.

Core Network

Remote Cloud
Server

Edge node

IoT device

Wired
transmission

Wireless
transmission

Edge node

IoT device

Wired
transmission

Wireless
transmission

Fig. 1. Three-tier multi-access edge computing architecture

In this paper, we consider a multi-access edge computing empowered IoT sys-
tem with N IoT devices, M base stations and a remote cloud server, which forms
a three-tier architecture as shown in Fig. 1. Each base station is seamlessly inte-
grated with an edge server, which is referred to as an edge node. IoT devices are
connected to the edge nodes via wireless channels, while neighbouring edge nodes

Service-Aware Cooperative Task Offloading and Scheduling 329

establish connectivity through local area networks or wired peer-to-peer links [6].
Furthermore, edge nodes possess the capability to further offload computation
tasks to remote cloud server via the core network. In such system, individual
IoT device may requests multiple types of services. And each specific service
request made by an IoT device can be handled in one of the following ways:
offloaded to its associated edge node for processing, transferred to another edge
node within the network for processing, or further offloaded via the core network
to remote cloud server with much higher computing capacity. Different types of
services on an IoT device may offloaded to different destination for processing to
improve the system performance, which can be achieved by a centralized offload
controller such as SDN controller [7,8]. However, ensuring efficient system oper-
ation and resource utilization in such system presents a significant challenge as
it requires an appropriate offloading and computing capacity allocation profiles
to be obtained at low time cost. The close interplay of these profiles and the
large searching space further complicate the problem.

To solve this problem, we discuss the design and implementation of CIDA,
which is a two-layer heuristic Cooperative workload Initialization and Distribu-
tion Algorithm. The first layer of CIDA initialize the system offloading profile
with the transmission delays for system requests are minimized regardless of the
capacity constraint of edge nodes, then CIDA iteratively update the offloading
profile by reallocating the requests to the execution platform with their response
time are minimized. The second layer of CIDA obtains the optimal computing
capacity allocation at each edge nodes by solving the KKT conditions based on
the offloading profile in the first layer.

To summarize, we have made the following contributions in this paper:

(1) The problem of cooperative service-aware task offloading and scheduling in
a three-tier multi-access edge computing system is investigated, which is
formulated as an joint optimization problem of offloading profile and com-
puting capacity allocation profile.

(2) The NP-hardness of the joint optimization problem is proven by demonstrat-
ing a reduction from the well-known NP-hard makespan scheduling problem
to a specific case of the joint optimization problem.

(3) We design a two-layer heuristic algorithm CIDA to solve the joint optimiza-
tion problem at a low time complexity by decompose it into two subprob-
lems. In the first layer, an offloading profile is derived base on allocating
the service requests to the execution platform with minimum response time
iteratively. In the second layer, as the convexity of computing capacity allo-
cation problem in each edge node is proved, the optimal computing capacity
allocation profile could be obtained.

The rest of the paper is organized as follows. We review the related works
in Sect. 2. Section 3 presents the overall system and the joint optimization prob-
lem formulation. In Sect. 5, the design and implementation of algorithm CIDA
is presented. The results of the numerical simulations are provided in Sect. 6.
Finally, this paper is concluded in Sect. 7.

330 Z. Chen et al.

2 Related Work

To fully utilize the potential of multi-access edge computing, the problem of tasks
offloading under various scenarios attracted much attention of the research com-
munity lately. One major objective is to reduce the task completion latency and
energy consumption [9,10]. In [9], an optimization algorithm based on genetic
algorithm and particle swarm optimization is proposed to minimize the energy
consumption of the system in a densely deployed distributed small cell network.
In [10], a distributed association scheme is proposed to minimize the latency of
data flows in a fog computing IoT system by iteratively associating IoT devices
to suitable base station until convergence. Zhu et al. [11] addressed the triple-
objective optimization problem of energy cost, task completion delay and net-
work deployment cost. A metaheuristic algorithm based on whale optimization
is adopted to produce a set of Pareto-optimal solutions for the problem. Besides
the offloading profile optimization, the computation resource allocation optimiza-
tion has been investigated in some research [12]. A cooperative offloading model
based on software defined network is proposed in [12] for optimizing task schedul-
ing in LTE-advanced networks. And [13] proposed an UAV-aided framework in
federated-WSN-enabled IoT for trust-worthy data collection. However, these lit-
erature mainly emphasize the offloading between devices and the edge servers,
without considering the further offloading from edge servers to the remote cloud.

There are also a few work done on the cooperation workload scheduling in
the heterogeneity three-tier MEC network [14–17]. [16] studies the online work-
load scheduling among edge-clouds architecture and introduced an online job
dispatching and scheduling algorithm to minimized the job response time. [18]
proposed a joint optimization approach to allocate the computation resource to
IoT devices in a three-tier fog IoT framework. In [17], the offloading decisions,
communication resources and computation resources are taken into account to
minimize the overhead in a three-tier MEC system. [19] focus on minimizing
the energy cost and allocating the computation resource with the latency dead-
lines of mobile devices are satisfied. Three algorithms are presented to solve
the problem under different time complexity performance. Nevertheless, all the
above work have overlooked that an IoT device might request multiple type
of services. Given the heterogeneous nature of service applications deployed on
IoT devices, incorporating the consideration of various types of service requests
within the same device becomes imperative when optimizing task scheduling in
the IoT. Such an approach facilitates the provision of enhanced and finer-grained
offloading strategies for MEC system.

3 System Model and Problem Formulation

For the sake of readability, we summarize the symbols used in Table 1. Denote
N = {1, 2, 3, ..., N} as the set of IoT devices and M = {1, 2, 3, ...,M} as the
set of edge nodes. Denote J = {1, 2, 3, ..., J} as the set of services provided in
the system, and Ji as the set of services on IoT device i. The service request
of type j is described as (Lj , Cj), where Lj represents the average input data

Service-Aware Cooperative Task Offloading and Scheduling 331

length associated with the request, and Cj represents the average computation
requirements of the corresponding task (in CPU cycles) for type j services. As
in other paper [20], we assume the arrival of each type of service requests on IoT
devices follows a Poisson process with λij denotes the expect arrival rate of type
j service requests on IoT device i.

Table 1. Summary of symbols

Symbol Definition

N The set of IoT devices
M The set of edge nodes
J The set of services provided in the system
Ji The set of services on IoT device i

Lj Average input data length associate with type j service request
Cj Average computation requirements for type j service request
λij Expected arrival rate on type j service request on IoT device i

ae
ijk Indicator to denote if j request on device i is executed on edge node k

ac
ij Indicator to denote if j request on device i is executed on remote cloud

bi Associated edge node of IoT device i

T e
ijk Average response time for j request on device i executed on edge node k

T trans
i,bi

Transmission delay from IoT device i to its associated edge node bi

T trans
bi,k

Transmission delay from edge node bi to edge node k

T exe
ijk Execution delay for j request on device i to be executed on edge node k

Ri,bi Data rate achieved for device i to associated edge node bi

Bi,bi Wireless channel bandwidth between device i to associated edge node bi

Pi Transmission power of IoT device i

Gi,bi Channel gain between device i to associated edge node bi

σ2
i Noise power of device i

L̄i Average input data length of the requests on device i

fk Computing capacity of edge node k

fjk Computing capacity allocated to type j request on edge node k

T c
ij Average response time for j request on device i executed on remote cloud

T trans
bi,c

Transmission delay from edge node bi to remote cloud
A(ij) Indicator of execution platform for type j service requests on IoT device i

A Offloading profile for all the requests on IoT devices in the system
F k Computing capacity allocation profile on edge node k

F Computing capacity allocation profile for all edge nodes in the system
Tij(A, F) Average response time for type j request on device i under profile A and F

ΔTij Improvement on average response time for type j request on device i by
moving it to its optimal edge node

R The set of remaining requests to be reallocated in the system
rij The index of the type j request on device i in the set R

332 Z. Chen et al.

Let ae
ijk and ac

ij be the binary indicator (ae
ijk, ac

ij ∈ {0, 1}) which denote if
type j service requests of IoT device i to be executed on edge node k or the
remote cloud server, respectively. A service request is either be processed on an
edge node or the remote cloud server, thus we have

∑

k∈M
ae

ijk + ac
ij = 1, i ∈ N , j ∈ Ji (1)

3.1 Edge Computing Model

For each IoT device in the system, it is associated to its closest edge node to
offloading the service requests. Note that the associated edge node might not be
the eventual execution platform for the requests on IoT devices. Denote bi as the
associated edge node of IoT device i. When type j requests on IoT device i are to
be executed on edge node k, the total response time consist of the following four
parts: the time it takes for the requests to be transferred from IoT device i to its
associated edge node bi (denoted by T trans

i,bi
), the time it takes for the requests

to be transferred from associated edge node bi to the execution edge node k
(denoted by T trans

bi,k
), the time it takes for the requests to be executed on edge

node k (denoted by T exe
ijk), and the time it takes for sending the computation

outcome back to IoT device i.
Similar to many studies such as [21–23], we omit the time overhead associated

with the transmission of computation outcomes back to IoT device, which is
based on the observation that the length of computation outcomes tends to be
significantly smaller compared to the length of input data for numerous services
such as image recognition and speech recognition. Hence, the total response time
of type j requests on IoT device i to be executed on edge node k is given by

T e
ijk = T trans

i,bi + T trans
bi,k + T exe

ijk (2)

During the wireless transmission between IoT device i and its associated edge
node bi, the data rate Ri,bi can be generally expressed as a logarithmic func-
tion according to the Shannon theorem. Denote Bi,bi as the channel bandwidth
between IoT device i and edge node bi, Gi,bi as the channel gain between them,
Pi as the transmission power and σ2

i as the noise power of IoT device i. The
data rate of IoT device i can be expressed as

Ri,bi = Bi,bi log(1 +
PiGi,bi

σ2
i

). (3)

As mentioned earlier that the arrival of each type of service request on IoT
devices is a Poisson process, the arrival of all the requests on IoT device i, which
is a sum of multiple independent Poisson processes, follows a Poisson process
with expected rate

∑
j∈Ji

λij . Thus, the offloading from IoT device i to its
associated edge node bi can be modelled as an M/M/1 queue, and the average
response time is given by

T trans
i,bi =

1
Ri,bi/L̄i − ∑

j∈Ji
λij

(4)

Service-Aware Cooperative Task Offloading and Scheduling 333

where L̄i denotes the average input data length for the service requests on IoT
device i and L̄i =

∑
j∈Ji

Ljλij/
∑

j∈Ji
λij . To keep the queue stable we have

Ri,bi/L̄i >
∑

j∈Ji
λij .

After the requests being offloaded to associated edge node bi, they will be
transferred to the execution edge node k. The transmission delay from bi to k is
denoted by T trans

bi,k
, which can be measured and recorded by the SDN controller

[24]. Note that T trans
bi,k

= 0 when bi = k. According to [25], the transmission delay
between edge nodes is modelled as a linear function of the distance between them,
which is given by

T trans
bi,k = α · dbi,k + β (5)

where dbi,k denotes the distance between edge node bi and edge node k. And
typically, α = 5 and β = 22.3.

When type j requests on IoT device i are transferred to edge node k for
execution, it shares the computing capacity allocated to type j requests on edge
node k with same type of requests which are offloaded from other IoT devices.
Given that the offloading of individual IoT device follows a Poisson process, it
can be inferred that the arrival of each type of service request on the edge node
also exhibits a Poisson process. The processing for each type of requests on the
edge nodes can be modelled as an M/M/1 queue. Denote fk as the computing
capacity of edge node k and fjk as the computing capacity allocated to type j
request on edge node k. The computation delay for type j requests of IoT device
i on edge node k is calculated as

T exe
ijk =

1
fjk/Cj − ∑

i∈N
ae

ijkλij
. (6)

To ensure the queue is stable, we have
∑

j∈J fjk ≤ fk and
fjk/Cj >

∑
i∈N ae

ijkλij .

3.2 Cloud Computing Model

For the service requests on IoT device i which are offloaded to remote cloud server
for execution, the total response time consist of following four parts: the time it
takes for the requests to be transferred from IoT device i to its associated edge
node bi, the time it takes for the requests to be transferred from edge node bi to
the remote cloud server via the core network, the time it takes for processing the
requests on the remote cloud, and the time it takes for sending the computation
results back to device i.

Similar to the edge computing model in Sect. 3.1, we disregarded the trans-
mission delay of computation results from remote cloud to the IoT devices. Addi-
tionally, as the computing capacity of cloud servers exceeds that of edge nodes
significantly, and the primary source of delay in cloud computing is attributed to
data offloading from IoT devices to the remote cloud server, we have omitted the
service execution delay on the cloud. Thus, denote T trans

bi,c
as the transmission

delay between edge node bi and the remote cloud, the total response time of

334 Z. Chen et al.

type j requests on IoT device i to be executed on remote cloud server is given
by

T c
ij = T trans

i,bi + T trans
bi,c . (7)

4 Problem Formulation

In this section, we present the problem formulation for service-aware task offload-
ing and scheduling, focusing on the minimization of the average response time for
all service requests. Denote A(ij) as the indicator of execution platform for type
j service requests on IoT device i, which is defined as A(ij) = {ae

ijk, ac
ij |k ∈ M}.

And A denotes the offloading profile for all the service requests on IoT devices
in the system, which is defined as A = {A(ij)|i ∈ N , j ∈ Ji}. Furthermore,
Denote F k as the computing capacity allocated to each type of service on edge
node k and F k = {fjk|j ∈ J }. And F denotes the computing capacity alloca-
tion for all the edge nodes, which is given by F = {F k|k ∈ M}. Therefore, the
service-aware task offloading and scheduling problem can be formulated as the
problem of minimizing the average response time for all service requests with
respect to A and F , which defined as:

P1 : min
A ,F

∑

i∈N ,j∈Ji

λij∑
i∈N ,j∈Ji

λij
(
∑

k∈M
ae

ijkT e
ijk + ac

ijT
c
ij) (8)

s.t
∑

k∈M
ae

ijk + ac
ij = 1, i ∈ N , j ∈ Ji (9)

ae
ijk, ac

ij ∈ {0, 1}, i ∈ N , j ∈ Ji, k ∈ M (10)

Ri,bi/L̄i >
∑

j∈Ji

λij , i ∈ N (11)

fjk/Cj >
∑

i∈N
ae

ijkλij , j ∈ J , k ∈ M (12)

∑

j∈J
fjk ≤ fk, k ∈ M (13)

fjk ∈ [0, fk], j ∈ J , k ∈ M (14)

The constraints (9) and (10) delineate the processing of each type of service
requests on IoT devices are either on an edge node or on the remote cloud server.
The constraint (11) ensures that the total traffic data on each IoT device remains
within the wireless channel capacity between the device and its associated edge
node. The constraint (12) guarantees the workload assigned to each type of
requests on each edge node does not exceed the specific computing capacity
allocated to that request type. The constraint (13) ensures that the collective
computing capacity assigned to each type of request within an edge node should
not exceed the overall computing capacity of the edge node. Lastly, constraint
(14) enforces that the computing capacity allocated to each request type remains
within the total computing capacity available of the edge node.

Service-Aware Cooperative Task Offloading and Scheduling 335

However, solving problem P1 optimally with low searching cost could be
quite challenging. The typical size of edge computing models tends to be sub-
stantial, which results in a large searching space that optimization algorithm
need to explore. Additionally, the high heterogeneity on the configuration of
edge nodes and the diversity of services on IoT devices further complicate the
problem. Moreover, the interplay between the IoT devices offloading profile A
and the edge node capacity allocation profile F must be considered during the
optimization process, making problem P1 hard to tackle. We will provide a proof
of its NP-hardness to demonstrate the computational complexity of problem P1
next.

Theorem 1. Problem P1 is at least NP-hard.

Proof. Here, we present an analysis of a simplified case of problem P1 to demon-
strate its NP-hardness. In this particular scenario, only a single type of service
is considered in the system. And we make the following assumptions: the trans-
mission delay from IoT devices to their associated edge node are assumed to be
0, i.e., T trans

i,bi
= 0; the transmission delay between edge nodes are assumed to be

0, i.e., T trans
bi,k

= 0; the transmission delay from edge nodes to the remote cloud
server are assumed to be infinite, i.e., T trans

bi,c
= ∞, which indicates an infinite

response time for requests executed on the remote cloud according to Equation
(7). As a result, all the requests should be processed on edge nodes if capable.

By making these assumptions, problem P1 is reduced to the classic makespan
scheduling problem. In this transformation, the service requests on each IoT
device are projected as jobs to be scheduled, while the edge nodes are projected
as the processing machines in the makespan scheduling problem. As the classic
makespan scheduling problem, which requires exploring all possible combinations
of job allocation to find the optimal solution, has non-polynomial computation
complexity for even there are only two identical processing machines, the NP-
hardness of problem P1 is established.

5 Algorithm Design

As stated above, even the simplified case of problem P1 remain challenging to
be solved in polynomial time complexity. As we can observed that problem P1
involve a jointly optimization of the offloading profile of IoT devices A and the
computing capacity allocation profile of edge nodes F . To solve problem P1, we
carefully decompose the joint optimization involved into two sub problem:

(1) The optimization problem of offloading profile A under a certain computing
capacity allocation policy.

(2) The optimization problem of computing capacity allocation profile F under
a specific offloading profile A.

Accordingly, we present a two-layer Cooperative workload Initialization and
Distribution Algorithm (CIDA) with the first layer minimizing the transmission
delay and distributing the workload among edge nodes and the cloud server to

336 Z. Chen et al.

obtain a suboptimal offloading profile, and the second layer allocate computing
capacity to each type of services optimally on the edge nodes based on the
offloading profile obtained in the first layer.

5.1 Offloading Profile Optimization Problem

To tackle the optimization problem of offloading profile, CIDA follows a two-step
approach. Firstly, the service requests on IoT devices are assigned to their respec-
tive associated edge nodes with the transmission delay is minimized, establishing
the initial offloading profile. Subsequently, an iterative process is performed to
search for and reallocate requests which has the highest response time improve-
ment by moving them from the current execution platform to the optimal execu-
tion platform. This process continues until no further improvement in response
time can be achieved for any remaining requests in the system.

Offloading Profile Initialization. To initialize the offloading profile, we first
focus on minimizing the average transmission delay from IoT devices to corre-
sponding execution edge node for all the requests, which is given by

T trans
ij =

∑

k∈M
ae

ijk(T
trans
i,bi + T trans

bi,k) + ac
ij(T

trans
i,bi + T trans

bi,c) (15)

Thus, the transmission delay minimization problem is formulated as

P2 : min
A

∑

i∈N ,j∈Ji

λij∑
i∈N ,j∈Ji

λij
T trans

ij (16)

s.t
∑

k∈M
ae

ijk + ac
ij = 1, i ∈ N , j ∈ Ji (17)

ae
ijk, ac

ij ∈ {0, 1}, i ∈ N , j ∈ Ji, k ∈ M (18)

Ri,bi/L̄i >
∑

j∈Ji

λij , i ∈ N (19)

It is easy to observe that to minimize T trans
ij , all the requests on IoT devices

will be allocated to its associated edge node for execution, i.e., A(ij) = bi, i ∈
N , j ∈ Ji, as the transmission delay of type j requests on IoT device i from
associated edge node to the execution edge node T trans

bi,k
= 0 when bi = k, and

T trans
bi,bi

< T trans
bi,k

holds when bi �= k according to Equation (5)(15). Denote Aini

as the corresponding offloading profile, i.e., Aini = {A(ij) = bi|i ∈ N , j ∈ Ji}.
However, offloading profile Aini might not be a feasible solution for problem

P1 since the following constraints might be violated:
∑

i∈N ,j∈Ji

ae
ijkλijCj < fk, k ∈ M. (20)

Constraint (20) can be derivated from constraint (12) and (13). Specifically,
allocating the requests on the IoT devices to its associated edge nodes could

Service-Aware Cooperative Task Offloading and Scheduling 337

minimize the transmission delay in the system. Nevertheless, due to the variation
in geographical distribution of IoT devices, the edge nodes with more IoT devices
are associated to will be assigned a greater computational workload which might
exceed the computing capacity of the edge nodes, while the workload on other
edge nodes remain at a relatively low level. To address this issue, the workload
need to be reallocated among edge nodes and remote cloud server to ensure
efficient utilization of computing resources and minimize total response time for
all requests.

Workload Reallocation. This subsection presents the main idea of algorithm
design to reallocate the requests workload in the system. We first define the
computing capacity allocation profile on the edge nodes during the reallocation
process. Let the computing capacity allocated to each type of request to be
determined based on the percentage of corresponding type of workload in the
total workload on the edge node, which is given by

fjk =

∑
i∈N

ae
ijkλijfk

∑
i∈N ,j∈Ji

ae
ijkλij

, j ∈ J , k ∈ M (21)

In addition, denote Tij(A,F) as the total response time of type j service
of IoT device i under the current offloading profile A and computing capacity
allocation profile F . Note that Tij(A,F) = ∞ for the requests on the edge node
with constraint (20) is violated. Denote A−ij as the offloading profile of the
system other than type j service requests on IoT device i. If A−ij is given, it
can be determined that the optimal execution platform for type j service on
device i to minimize its total response time. Denote A(ij)∗ as the indicator of
optimal execution platform and Tij(A(ij)∗,A−ij ,F) as the total response time
of type j request on device i on execution platform A(ij)∗. Denote ΔTij as the
response time improvement for reallocating type j requests on device i from
current execution platform A(ij) to optimal execution platform A(ij)∗. Thus we
have

Tij(A,F) =

⎧
⎨

⎩

∞ ae
ijk = 1,

∑
i∈N ,j∈Ji

ae
ijkλijCj < fk

∑
k∈M

ae
ijkT e

ijk + ac
ijT

c
ij otherwise

(22)

A(ij)∗ = arg min
A(ij)

{Tij(A(ij),A−ij ,F)|i ∈ N , j ∈ Ji} (23)

ΔTij = Tij(A,F) − Tij(A(ij)∗,A−ij ,f) (24)

Through a calculation of response time improvement for the requests which
has not been reallocated in the system, the requests with highest response time
improvement will be put into a set and wait for update. One of them will be
selected randomly and reallocated to its optimal execution platform at each
iteration. If there are multiple execution platforms that can achieve the optimal

338 Z. Chen et al.

response time for a selected request, one of them is randomly chosen for real-
location. This process repeats until all the requests in the system is reallocated
or no further improvement on response time can be achieve for the remaining
requests in the system.

Denote rij as the index of type j request on IoT device i. Denote R as the set
of remaining service requests to be reallocated in the system, i.e., R = {rij |i ∈
N , j ∈ Ji}. Denote Rupdate as the set for the requests having maximum response
time improvement and waiting to be updated. The first layer of CIDA is shown
in Algorithm(1).

Algorithm 1. The first layer: offloading profile optimization
Input: {Lj , Cj |j ∈ J }, {λij |i ∈ N , j ∈ Ji}, {Bi,bi , Pi, Gi,bi , σ

2
i , T trans

bi,c
|i ∈

N}, α, β, {fk|k ∈ M}
Output: A solution of offloading profile A = {A(ij)|i ∈ N , j ∈ Ji}, where A(ij) =

{ae
ijk, ac

ij |k ∈ M}.
1: A(ij) ← bi, i ∈ N , j ∈ Ji

2: for Iteration j = 1, 2, 3, ... do
3: Rupdate ← ∅

4: ΔTmax = 0
5: for Each request rij ∈ R do
6: Calculate A(ij)∗ and ΔTij by Equation (1)∼(7) and (21)∼(24)
7: if ΔTij > ΔTmax then
8: Rupdate ← ∅ ∪ {rij}
9: ΔTmax ← ΔTij

10: else if ΔTij = ΔTmax&&ΔTmax �= 0 then
11: Rupdate = Rupdate ∪ {rij}
12: end if
13: end for
14: if Rupdate �= ∅ then
15: Select rij in Rupdate randomly for update
16: A(ij) ← A(ij)∗

17: R = R − {rij}
18: else
19: return the offloading profile A
20: end if
21: end for

We will now prove the finite termination property of Algorithm 1. Ini-
tially, the size of the set of remaining service requests to be reallocated is
|R| =

∑
i∈N |Ji|. At each iteration, |R| is decreased by one, as the request

with the maximum response time improvement is successfully reallocated to its
optimal execution platform and removed from the set R. Consequently, it takes
|R| iterations to reallocate all the requests in the system, resulting in Algorithm
1 terminating when R = ∅. Alternatively, Algorithm 1 may terminate earlier
if there are no requests in the system that can further improve their response
times through reallocation (ΔTmax = 0).

Service-Aware Cooperative Task Offloading and Scheduling 339

The time complexity of Algorithm 1 is analyzed as follows: Step 1 has a
time complexity of O(|R|), as it performs a certain operation for each request
in R. In the worst case scenario, Step 2 is iterated |R| times. As step 5 and step
6 involve calculating the response time of requests on all execution platforms,
which have the size of |R| and |M + 1|, the time complexity of these steps is
O(|R||M+ 1|). And step 7 to step 20 have a constant time complexity of O(1).
Taking all these steps into account, the overall time complexity of Algorithm 1
can be approximated as O(|R|2(M + 1)).

5.2 Computing Capacity Allocation Profile Optimization Problem

With the offloading profile A is determined, the transmission delay for all the
requests can be calculated. And P1 is transformed to a computing capacity
allocation problem, with the objective of minimizing the execution delay for the
requests in the system. Since the execution delay for requests on one edge node is
independent of requests on other edge nodes, the computing capacity allocation
problem for the system can be decomposed into multiple computing capacity
allocation problems for each individual edge node. Thus the allocation problem
on edge node k is given by:

P3 : min
F k

∑

i∈N ,j∈Ji

ae
ijkλij∑

i∈N ,j∈Ji

λij
T exe

ijk (25)

fjk/Cj >
∑

i∈N
ae

ijkλij , j ∈ J (26)

∑

j∈J
fjk ≤ fk (27)

fjk ∈ [0, fk], j ∈ J (28)

Theorem 2. Problem P3 is a convex optimization problem over the computing
capacity allocation profile F .

Proof. An optimization problem is a convex optimization problem with following
conditions are satisfied: the objective function is a convex function; the constraint
functions are convex functions; the feasible region is a convex set. It is easy to
observed that the constraints (26), (27), (28) are convex and the feasible region is
a convex set. And we can prove the objective function of problem P3 by showing
the positive definiteness of its Hessian matrix.

Denote Zk as the objective function of problem P3, thus we have Zk =∑
i∈N ,j∈Ji

ae
ijkλij∑

i∈N ,j∈Ji

λij
(1

fjk/Cj− ∑

i∈N
ae
ijkλij

). The Hessian matrix of Z is denoted by

H =
[
hjj′

]

j×j′ . When j = j
′
, hjj′ =

∑
i∈N

ae
ijkλij∑

i∈N ,j∈Ji

λij
· 2

C2
j (fjk/Cj− ∑

i∈N
ae
ijkλij)3

,

otherwise hjj′ = 0, meaning that H is a positive definite matrix and Z is a
convex function. Therefore, Problem P3 is a convex optimization problem over
the computing capacity allocation profile F k.

340 Z. Chen et al.

As problem P3 is a convex optimization problem, it can be solved opti-
mally via solving Karush-Kuhn-Tucker(KKT) conditions. We first construct the
Lagrange function of Problem P3 as

Lk(F k,χk , γk,φk ,ωk) = Zk −
∑

j∈J
χjk(fjk −

∑

i∈N
ae

ijkλijCj)

+γk(
∑

j∈J
fjk − fk) +

∑

j∈J
φjk(fjk − fk) −

∑

j∈J
ωjkfjk

(29)

with χk , γk, φk and ωk are the set of Lagrange multipliers, i.e., χk = {χjk|j ∈
J }, φk = {φjk|j ∈ J } and ωk = {ωjk|j ∈ J }.

The KKT conditions of problem P3 is given by constraints (26) ∼ (28) and
equations (30) ∼ (35).

∂Lk(F k,χk , γk,φk ,ωk)
∂fjk

= 0, ∀j ∈ J (30)

χjk(fjk −
∑

i∈N
ae

ijkλijCj) = 0, ∀j ∈ J (31)

γk(
∑

j∈J
fjk − fk) = 0 (32)

φjk(fjk − fk) = 0, ∀j ∈ J (33)
ωjkfjk = 0, ∀j ∈ J (34)
χjk, γk, φjk, ωjk ≥ 0, ∀j ∈ J (35)

As the KKT conditions of problem P3 is solved, an optimal computing capacity
allocation profile of edge node k can be derived. By aggregating the allocation
profiles obtained for each individual edge node F k, the optimal allocation profile
for the entire system F can be acquired.

6 Simulation Results

In this section, extensive simulations are conducted to evaluate the system per-
formance of CIDA. The simulations are implemented with a MATLAB program
on the executing host: 64-bit Windows 11 operating system, Intel Core i5-9600K
CPU@3.70GHz, and 32GB of RAM. In the simulations, 1000 IoT devices and
50 edge nodes are randomly distributed in a 200 km × 200 km area. The system
offers 10 types of services in total, and each IoT device receives five random ser-
vice requests out of the available 10. Unless otherwise stated, the default value
of parameters are specified in Table 2.

We will start by evaluating the convergence of CIDA. Figure 2 illustrates
the average response time of all service requests in the system over iterations.
It can be observed that the system average response time prior to the 877th
iteration remains infinite. This can be attributed to the initial allocation of
requests to the associated edge nodes without considering the capacity of these

Service-Aware Cooperative Task Offloading and Scheduling 341

Table 2. Configuration of Simulation Parameters

Parameter Value/Range Parameter Value/Range

λij [2, 3] Gi,bi 128.1 + 37.5 log di,bi

Lj [80, 120]KB Bi,bi 1MHz
Cj [10, 15] MegaCycles Pi 23dBm
σ2
i −100dBm T trans

bi,c
0.5 s

fk [5.4, 6.6]GHz

nodes. Consequently, requests on overwhelmed edge nodes experience an infinite
execution delay, leading to an overall average response time of infinity for the
system. However, after the 877th iteration, there is a significant decrease in the
system average response time, and it eventually converges at the 2480th iteration
as there are no requests left that can further improve the system’s response time.
Therefore, this observation verifies the convergence of CIDA.

2480 |R|
Iteration index

0

0.5

1

1.5

Sy
st

em
 A

ve
ra

ge
 R

es
po

ns
e

Ti
m

e
(s

ec
on

ds
)

(2480,0.17316)

877

Fig. 2. The system average response time over iterations

We implemented the following algorithms as benchmark for comparison pur-
pose:

(1) Density Based Clustering Strategy (DBCS): All the requests will be
offloaded to the edge node with minimum average response time until the
workload on the edge node exceed the average workload among all the edge
nodes, as in [26].

342 Z. Chen et al.

(2) Distributed Offloading Decision Making (DODM): Service requests
are the entities to make the offloading decision to minimized their own aver-
age response time, as in [27].

(3) Application-aware Workload Allocation (AWA): As in [7], all the
requests are assigned to the edge node with minimum transmission delay
first. Then requests are reallocated to the edge node with minimum response
time iteratively. However, there is no cooperation between edge nodes and
the remote cloud server as service requests are not allowed to be further
offloaded to remote cloud.

6 6.5 7 7.5 8 8.5 9 9.5 10
Average computing capacity of edge nodes (GHz)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Sy
st

em
 A

ve
ra

ge
 R

es
po

ns
e

Ti
m

e
(s

ec
on

d)

CIDA
AWA
DBCS
DODM

Fig. 3. Average response time over average computing capacity of edge nodes achieved
by different algorithms

Figure 3 illustrates the system request average response time of the four algo-
rithms mentioned above under different average computing capabilities of edge
nodes (ranging from 6GHz to 10GHz). It can be observed that the system average
response time of all algorithms exhibits a decreasing trend as the average com-
puting capacity of edge nodes increases. When the average computing capability
of edge nodes is 6GHz, CIDA reduces the system response time by 18.3%, 53.7%,
and 55.8% compared to the AWA, DBCS, and DODM algorithms, respectively.
As the capabilities of edge nodes increase, the performance gap between the
other algorithms and CIDA gradually decreases. This is because the execution
latency of system requests is no longer a performance bottleneck in the DBCS
and DODM algorithms due to the enhanced computing capabilities of the edge

Service-Aware Cooperative Task Offloading and Scheduling 343

nodes. Relatively speaking, there is no significant reduction on the system aver-
age response time of CIDA and AWA algorithms, indicating that the execution
latency of system requests has been effectively optimized.

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

ij

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sy
st

em
 A

ve
ra

ge
 R

es
po

ns
e

Ti
m

e
(s

ec
on

d)

CIDA
AWA
DBCS
DODM

Fig. 4. Average response time over average request arrival rate λij achieved by different
algorithms

To investigate the performance of the above algorithms under different sys-
tem workload level, we increased the average arrival rate of each type of request
from 2 to 3.6. The experimental results are shown in Fig. 4. When λij = 2, CIDA
algorithm exhibits a significantly lower system average response time compared
to the DBCS and DODM algorithms, while the system average response time
of the AWA algorithm is relatively close to the CIDA algorithm. This result
can be explained by the fact that in the DBCS algorithm, the assignment of
system requests depends on the average workload level among edge nodes with-
out considering the heterogeneity of them. In the DODM algorithm, individual
offloading decisions are made by each system request based on its own aver-
age response time, resulting in the poor cooperation among edge nodes. These
factors contribute to the inferior performance of the DBCS and DODM algo-
rithms compared to the CIDA and AWA algorithms. However, as λij increases,
the performance gap between the other algorithms and the CIDA algorithm
gradually widens. When λ equals to 3.6, CIDA algorithm reduces the system
average response time by 49.7%, 71.4%, and 74.4% compared to AWA, DBCS
and DODM algorithms, respectively. For AWA algorithm, since there is no coop-
eration between the cloud server and the edge nodes, the edge nodes are getting

344 Z. Chen et al.

heavy-loaded as the average request arrival rate increases, which leads to much
higher execution delay for the requests. In contrast, CIDA can further offload
a portion of the requests with high computation requirement to the remote
cloud server, ensuring efficient system operation even under high average requests
arrival rate.

1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500
Number of IoT devices

0

0.2

0.4

0.6

0.8

1

1.2

Sy
st

em
 A

ve
ra

ge
 R

es
po

ns
e

Ti
m

e
(s

ec
on

d)

CIDA
AWA
DBCS
DODM

Fig. 5. Average response time over numbers of IoT devices achieved by different algo-
rithms

To further validate the scalability of our algorithm, we increased the number
of IoT devices from 1000 to 1500 while maintaining the average request arrival
rate λij at 3.6. The results are shown in Fig. 5. It can be observed that as
the number of devices increases, the system average response time of AWA,
DBCS, and DODM algorithms dramatically increases, and reach the system
capacity limit as the number of devices approaches 1300. Relatively speaking,
by leveraging the collaboration between edge nodes and the remote cloud server,
CIDA exhibits only a slight increase in the system average response time, which
clearly indicates the effectiveness and high scalability of CIDA.

7 Conclusions

In this paper, we systematically investigate the problem of service-aware coop-
erative task offloading and scheduling in a three-tier multi-access edge comput-
ing IoT environment. This problem involves the joint optimization of the sys-
tem offloading profile and computing capacity allocation profile, which has been

Service-Aware Cooperative Task Offloading and Scheduling 345

proven to be at least NP-hard. To address this problem, we propose a two-layer
heuristic algorithm CIDA, where the first layer obtain a suboptimal offloading
profile with minimized response time for the service requests at a low time com-
plexity, and the second layer allocate the computing capacity on the edge nodes
to each type of services optimally. Simulation results demonstrate that CIDA
outperforms other approaches in terms of minimizing the average response time
for service requests. Additionally, CIDA exhibits high scalability as the system
size increases, making it suitable for large-scale deployment.

Acknowledgements. This work was supported in part by the Guangdong Key Con-
struction Discipline Research Ability Enhancement Project (Grant No. 2021ZDJS086);
in part by the Guangdong University Key Project (Grant No. 2019KZDXM012);
in part by the Natural Science Foundation of Guangdong Province (Grant No.
2021A1515010656); in part by Guangdong Basic and Applied Basic Research Founda-
tion (2022B1515120059); in part by the research team project of Dongguan University
of Technology (Grant No. TDY-B2019009).

References

1. Laghari, A.A., Wu, K., Laghari, R.A., Ali, M., Khan, A.A.: A review and state of
art of internet of things (iot). Archives of Computational Methods in Engineering,
pp. 1–19 (2021)

2. Tao, M., Li, X., Wei, W., Yuan, H.: Jointly optimization for activity recognition in
secure iot-enabled elderly care applications. Appl. Soft Comput. 99, 106788 (2021)

3. Zhu, R., Liu, L., Song, H., Ma, M.: Multi-access edge computing enabled internet
of things: advances and novel applications (2020)

4. Mach, P., Becvar, Z.: Mobile edge computing: a survey on architecture and com-
putation offloading. IEEE Commun. Surv. Tutorials 19(3), 1628–1656 (2017)

5. Xu, J., Chen, L., Zhou, P.: Joint service caching and task offloading for mobile
edge computing in dense networks. In: IEEE INFOCOM 2018-IEEE Conference
on Computer Communications, pp. 207–215. IEEE (2018)

6. Ma, X., Zhou, A., Zhang, S., Wang, S.: Cooperative service caching and workload
scheduling in mobile edge computing. In: IEEE INFOCOM 2020-IEEE Conference
on Computer Communications, pp. 2076–2085. IEEE (2020)

7. Fan, Q., Ansari, N.: Application aware workload allocation for edge computing-
based iot. IEEE Internet Things J. 5(3), 2146–2153 (2018)

8. Tao, M., Xueqiang, L., Kaoru, O., Mianxiong, D.: Single-cell multi-user compu-
tation offloading in dynamic pricing-aided mobile edge computing. IEEE Trans.
Comput. Social Syst. (2023). https://doi.org/10.1109/TCSS.2023.3308563

9. Guo, F., Zhang, H., Ji, H., Li, X., Leung, V.C.: An efficient computation offloading
management scheme in the densely deployed small cell networks with mobile edge
computing. IEEE/ACM Trans. Network. 26(6), 2651–2664 (2018)

10. Fan, Q., Ansari, N.: Towards workload balancing in fog computing empowered iot.
IEEE Trans. Netw. Sci. Eng. 7(1), 253–262 (2018)

11. Zhu, X., Zhou, M.: Multiobjective optimized cloudlet deployment and task offload-
ing for mobile-edge computing. IEEE Internet Things J. 8(20), 15582–15595 (2021)

12. Cui, Y., Song, J., Ren, K., Li, M., Li, Z., Ren, Q., Zhang, Y.: Software defined
cooperative offloading for mobile cloudlets. IEEE/ACM Trans. Netw. 25(3), 1746–
1760 (2017)

https://doi.org/10.1109/TCSS.2023.3308563

346 Z. Chen et al.

13. Tao, M., Li, X., Yuan, H., Wei, W.: Uav-aided trustworthy data collection in
federated-wsn-enabled iot applications. Inf. Sci. 532, 155–169 (2020)

14. Tong, L., Li, Y., Gao, W.: A hierarchical edge cloud architecture for mobile comput-
ing. In: IEEE INFOCOM 2016-The 35th Annual IEEE International Conference
on Computer Communications, pp. 1–9. IEEE (2016)

15. Tao, M., Ota, K., Dong, M.: Dsarp: dependable scheduling with active replica place-
ment for workflow applications in cloud computing. IEEE Trans. Cloud Comput.
8(4), 1069–1078 (2020)

16. Tan, H., Han, Z., Li, X.Y., Lau, F.C.: Online job dispatching and scheduling in
edge-clouds. In: IEEE INFOCOM 2017-IEEE Conference on Computer Communi-
cations, pp. 1–9. IEEE (2017)

17. Chen, M.H., Dong, M., Liang, B.: Resource sharing of a computing access point
for multi-user mobile cloud offloading with delay constraints. IEEE Trans. Mob.
Comput. 17(12), 2868–2881 (2018)

18. Zhang, H., Xiao, Y., Bu, S., Niyato, D., Yu, F.R., Han, Z.: Computing resource
allocation in three-tier iot fog networks: a joint optimization approach combining
stackelberg game and matching. IEEE Internet Things J. 4(5), 1204–1215 (2017)

19. El Haber, E., Nguyen, T.M., Assi, C.: Joint optimization of computational cost and
devices energy for task offloading in multi-tier edge-clouds. IEEE Trans. Commun.
67(5), 3407–3421 (2019)

20. Chen, Z., He, L.: Modelling task offloading mobile edge computing. In: 2022 The 8th
International Conference on Computing and Data Engineering, pp. 15–21 (2022)

21. Lyu, X., Tian, H., Sengul, C., Zhang, P.: Multiuser joint task offloading and
resource optimization in proximate clouds. IEEE Trans. Veh. Technol. 66(4), 3435–
3447 (2016)

22. Chen, M., Hao, Y.: Task offloading for mobile edge computing in software defined
ultra-dense network. IEEE J. Sel. Areas Commun. 36(3), 587–597 (2018)

23. Tao, M., Ota, K., Dong, M., Yuan, H.: Stackelberg game-based pricing and offload-
ing in mobile edge computing. IEEE Wireless Commun. Lett. 11(5), 883–887
(2022)

24. Van Adrichem, N.L., Doerr, C., Kuipers, F.A.: Opennetmon: network monitoring
in openflow software-defined networks. In: 2014 IEEE Network Operations and
Management Symposium (NOMS), pp. 1–8. IEEE (2014)

25. Sun, X., Ansari, N.: Latency aware workload offloading in the cloudlet network.
IEEE Commun. Lett. 21(7), 1481–1484 (2017)

26. Jia, M., Cao, J., Liang, W.: Optimal cloudlet placement and user to cloudlet allo-
cation in wireless metropolitan area networks. IEEE Trans. Cloud Comput. 5(4),
725–737 (2015)

27. Gao, B., He, L., Jarvis, S.A.: Offload decision models and the price of anarchy in
mobile cloud application ecosystems. IEEE Access 3, 3125–3137 (2015)

Dynamic Multi-bit Parallel Computing
Method Based on Reconfigurable

Structure

Lin Jiang1, Shuai Liu1, Jiayang Zhu1(B), Rui Shan2, and Yuancheng Li1

1 Xi’an University of Science and Technology, Xi’an 710600, Shaanxi, China
zhujiayoung@163.com

2 Xi’an University of Posts and Telecommunications, Xi’an 710100, Shaanxi, China

Abstract. Reconfigurable architecture has great potential in computa-
tion-intensive and memory-intensive applications due to its flexible infor-
mation configuration. Aiming at the problem of low computing effi-
ciency caused by the inconsistency between different granularity data
and the underlying hardware structure in applications such as commu-
nication baseband signal processing, a parallel computing method sup-
porting multi-bit data is proposed, and a dynamic granularity configu-
ration structure used this method is designed based on reconfigurable
array processors. The structure divides the calculation granularity into 8
bits, 16 bits, and 32 bits, and realizes four functions: data-combination,
data-splitting, parallel-addition, and parallel-multiplication. These fea-
tures increase the parallelism and flexibility of array structures. The
experimental results show that the speedup ratio can reach 1.5 within a
certain error range, the running time is reduced by about 20%, and the
code complexity is also significantly reduced. In addition, the maximum
operating frequency of the dynamic configuration circuit is 133.5 MHz
by FPGA comprehensive implementation, which can realize the dynamic
configuration of different granularity data in the calculation and achieve
parallel computing of multi-bit data.

Keywords: Reconfigurable Architecture · Parallel Computing ·
Computing Granularity · Array Processor

1 Introduction

As an architecture that combines the flexibility of software and the efficiency
of hardware, reconfigurable computing is more balanced between key indicators
such as performance, power consumption, and flexibility, filling the gap between
general computing architecture and dedicated computing architecture, and now
it has gained more and more extensive research and application [1]. Due to the
difference in the granularity of different communication baseband algorithms,
the dynamic configuration of granularity can greatly improve the performance
of reconfigurable array processors. At present, the most used technology is the

Supported by National Key R&D Program of China
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 347–359, 2024.
https://doi.org/10.1007/978-981-97-0801-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_20&domain=pdf
https://doi.org/10.1007/978-981-97-0801-7_20

348 L. Jiang et al.

subword parallelism [2], which is a data unit with lower precision than a word. By
compressing multiple subwords into a word, the whole word is processed in par-
allel, and finally, the word decompression completes the restoration of bit width.
Subword parallelism is equivalent to a Single Instruction Multiple Data (SIMD)
operation, which can fully exploit data-level parallelism and improve memory
efficiency. The existing hardware platform solves the problems of flexibility, par-
allelism, and efficiency that are common in most applications to a certain extent,
but it does not consider the characteristics of data to be processed, and the lack
of coordination between data and the underlying hardware architecture reduces
the overall performance of the processor. Some dynamic configuration methods
of computing granularity are proposed to improve computing performance.

In ref. [3], a granularity configuration method for bit fusion is proposed, which
is a bit-level dynamic combination architecture for Deep Neural Network (DNN).
This design provides dynamic bit-level fusion and decomposition functions and
can realize the combination and flexible mapping of bit-level micro-architectures.
Although no dedicated hardware unit is designed to support the computing gran-
ularity configuration, it is realized by combining PE method, which complicates
the design of array processor control unit and data path. Ref. [4] proposes a
customization matrix multiplication architecture based on the Intel HARPv2
platform, which completes dynamic precision switching with highly customiza-
tion hardware templates and supports universal matrix multiplication calcula-
tion of single-precision floating point numbers and 16-bit, 8-bit, 4-bit, and 2-bit
fixed-point numbers. However, the architecture is only designed for matrix mul-
tiplication, which cannot meet the computing requirements of various algorithms
with insufficient expansivity. A Reconfigurable Constant Coefficient Multipliers
(RCCMs) for speeding up the application of deep learning in ref. [5] is proposed.
RCCM only uses adder, subtracter, shifter, and multiplexer to obtain the result
of multiplication by selecting a finite number of coefficients multiplied by the
input value. RCCM reduces the use of resources compared with general multi-
pliers and has the optimal structure under specific coefficients, but it can only
design the multiplication circuit by the predefined coefficient set, and its cal-
culation accuracy is low. DNN can also be accelerated by PMU (Parallel Mul-
tiplication Unit) [6] and FILM-QNN (FPGA for Intra-Layer, Mixed-Precision
Quantized DNNs) [7] architectures, which parallelized low-precision operations
to speed up the inference performance of neural networks.

In the neural network, different layers have different requirements for data bit
width. The fixed data bit width will cause bit width redundancy [8], which is not
conducive to model compression, ref. [3–5] have made in-depth research on this
topic. Same as the neural network algorithm, the communication baseband algo-
rithm also focuses on multiplication and addition [9]. Different algorithms have
different computing granularity and lack coordination between data character-
istics and the underlying hardware architecture, which reduces the processor’s
overall performance. This paper analyzes the computing granularity require-
ments of different algorithms in baseband signal processing, designs instructions
to control the operation of data under different granularity and proposes a com-

Dynamic Multi-bit Parallel Computing Method 349

puting granularity dynamic configuration structure based on reconfigurable array
processor, thereby achieving parallel computing of multi-bit data, which has high
flexibility and versatility.

2 Dynamic Configurable Scheme Design

2.1 Requirements Analysis of Computational Granularity

At present, the operation bit width of baseband processing platform is uneven
and there is no unified standard. For example, in matrix multiplication opera-
tion, the operation bit width includes 8 bits and 32 bits [10]. In the triangular
approximation semi-definite relaxation algorithm, the fixed-point word length of
the operator is 14 bits [11]. In the large-scale MIMO algorithm, the bit width of
16 bits is enough to meet the accuracy requirements of multiplication and addi-
tion operation, while the bit width of linear signal detection algorithm is basically
concentrated in 32 bits [12]. In this section, the digital signal processing-oriented
test set in ref. [13] is selected as the target program for computing granularity
analysis. Table 1 shows the application scope and data bit width of the target
program.

Table 1. Introduction to object program

Object Program Applied Range Data Width

FIR-8 Voice signal processing, channel balancing 8–16 bit
IIR-8 Audio processing 8–16 bit
Vector Dot Product Convolution, matrix multiplication 8–32 bit
Vector Add Matrix calculation 16 bit
Vector Maximum Error control coding 16 bit
FFT-64 Radar, spectrum analysis 16–32 bit

To sum up, although communication baseband signal processing algorithms
have different requirements for calculation accuracy, most of the calculation gran-
ularity is concentrated in 8-bit, 16-bit, and 32-bit. To make full use of the com-
puting power of hardware resources, it is necessary to design a dynamic configu-
ration structure of computing granularity that supports different bit widths and
operation formats.

2.2 Multi-bit Data Parallel Processing Method Design

Based on the four-stage pipeline structure of reconfigurable array processor, the
dynamic configuration of computing granularity is implemented by top-down
method. Firstly, the granularity of computation is divided into 8, 16 and 32
bits. Secondly, corresponding parallel processing methods are proposed for differ-
ent computing granularity. Then, granularity dynamic configuration instructions

350 L. Jiang et al.

Fig. 1. Method of data parallel processing

are designed, including data-combination, data-splitting, parallel-addition, and
parallel-multiplication. Finally, according to the instruction function, we achieve
the corresponding hardware circuit design and complete the function verifica-
tion and performance analysis. Figure 1 takes the parallel processing method
of 8-bit data as an example to show the execution flow of the computation
granularity dynamic configuration structure. As can be seen from the data par-
allel processing method in Fig. 1, the acquisition of operands in “RS” and “RT”
registers requires data to be read from DM and splices according to the opera-
tion granularity, data-combination instructions are required. Parallel computing
instructions are required to perform operations on the data. Before the operands
are written to memory, the data needs to be split and then stored by location, so
the data-splitting instruction is required. For parallel data processing, the data-
combination and data-splitting are named “COMB” and “SPL”, parallel-addition
and parallel-multiplication are named “PADD” and “PMUL”. The instructions
are shown in Table 2.

2.3 Hardware Structure of Reconfigurable Array

The reconfigurable array processor based on H-type transmission network, which
is shown in Fig. 2 [14], was jointly developed by Xi’an University of Science and
Technology and Xi’an University of Posts and Telecommunications. It consists
of host interface, global controller, reconfigurable processing unit, input memory
and output memory.

The reconfigurable processing unit is the core of the array processor, which
is composed of 1024 PEs, with each group of 4 × 4. Every group forms a Pro-
cess Element Group (PEG), Fig. 2 shows only four PEGs, and the rest can be
extended on this architecture. Each PE contains a data storage unit and an
instruction storage unit. The former has 512 rows, and the bit width of each row
is 32 bits; The latter also has 512 lines with the 30 bits instruction. Adjacent
interconnection can be used to transfer data between adjacent PEs, and routing
can be used to transfer data between adjacent PEGs [15].

Dynamic Multi-bit Parallel Computing Method 351

Table 2. Granularity dynamic configuration instructions

Type Mnemonic Configuration method

Data-Combination COMB4 RD = {memory[RS+3], memory [RS+2],

memory [RS+1], memory [RS]}

COMB2 RD= memory [RS+1], memory [RS]

COMB1 RD= memory [RS]

Data-Splitting SPL4 memory [RD]= {24’d0, RS [7:0]}

memory [RD+1] = {24’d0, RS [15:8]}

memory [RD+2] = {24’d0, RS [23:16]}

memory [RD+3] = {24’d0, RS [31:24]}

SPL2 memory [RD]= {16’d0, RS [15:0]}

memory [RD+1] = {16’d0, RS [31:16]}

SPL1 memory [RD] = RS

Parallel-Addition PADD4 RD= {RS [31:24] +RT [31:24],

RS [23:16] +RT [23:16],

RS [15:8] +RT [15:8],

RS [7:0] +RT [7:0]}

PADD2 RD={RS [31:16] +RT [31:16],

RS[15:0] +RT[15:0]}

PADD1 RD = RS + RT

Parallel-Multiplication PMUL4 RD= {RS [31:24] *RT [31:24],

RS [23:16] *RT [23:16],

RS [15:8] *RT [15:8],

RS [7:0] *RT [7:0]}

PMUL2 RD= {RS [31:16] *RT [31:16],

RS [15:0] *RT [15:0]}

PMUL1 RD = RS * RT

3 Design of Dynamic Configuration Circuit

The design of corresponding hardware circuits should be based on the four-
stage pipeline (fetching, decoding, execution and write-back) for the computation
granularity dynamic configuration structure. The overall circuit shown in Fig. 3
is obtained with the requirements of different computing granularity. Firstly, the
fetching module will get the instruction signal “cmu_instr” from the instruc-
tion memory and send the output signal “im_instr” to the decoding module.
Next, the decoding module will decode the high 6 bits of the instruction code
and send decoding result to the execution module through the control signal.
Data-combination instructions “COMB2/COMB4” need 2/4 data respectively,
so the signals “is_comb2/is_comb4” need to be sent back to the fetching mod-
ule. Lastly, the signals of data-combination and data-splitting are sent to the
write-back module, data is written into registers or data storage.

352 L. Jiang et al.

Fig. 2. Architecture of reconfigurable array processor

Fig. 3. The overall circuit of dynamic configuration structure

3.1 Design and Implementation of Fetching Module

Fetching module has the function of reading instructions from instruction stor-
age and transferring them to the decoding module. The instructions continu-
ously output from instruction memory with the update of Program Counter
(PC). The update of PC value depends on the Finite State Machine (FSM),
which is mainly used to calculate the storage address of the next instruction.
When the circuit ends in the “RESET” state, the state machine is in the “INIT”
state and then jumps unconditionally to the “NORM” state. In “NORM” state,
FSM jumps to the next state according to different control signals. In the
reconfigurable array processor, the reading delay is one clock cycle. Since the
number of “COMB2/COMB4” reading from the data store is 2/4 respectively.
“is_COMB2/is_COMB4” are designed because of reading delay, the former has
higher priority than the latter. According to the jump order of the state machine,

Dynamic Multi-bit Parallel Computing Method 353

the circuit structure of the fetching module is shown in Fig. 4, which completes
three functions: loading configuration instructions from the instruction memory,
updating PC values through FSM, and sending configuration instructions to the
decoding module.

Fig. 4. Circuit diagram of instruction fetching module

3.2 Design and Implementation of Decoding Module

The decoding module decodes the 30-bit instructions and outputs the parsed
information to the fetching or executing module. When “COMB2/COMB4”
instruction needs to be suspended, the decoding module will transmit the control
signal to the fetching module, and the fetching module updates the PC value
according to the FSM and transmits the configuration instruction after the NOP
instruction is inserted to the decoding level. The circuit structure of the decod-
ing module is shown in Fig. 5, which is divided into decoding unit and register
unit and has two decoding methods, one is directly reading the high 6 bits of
the input signal “im_instr” and determines the instruction type according to
the defined instruction code; the other is combining the operations of the same
kind and analyzes them in groups. All signals through the decoding unit will
use registers to delay one cycle, which will be used as the control signal of the
execution module to complete the preparation work of the instruction execution.

3.3 Design and Implementation of Execution Module

The execution module is responsible for the execution of instructions, completes
operations by the operation types and operands, and sends the calculation results

354 L. Jiang et al.

Fig. 5. Circuit diagram of decoding module

back. The execution level is the most important part of the four-level pipeline.
Figure 6 is the circuit structure diagram of the execution module. For the oper-
ation signal obtained by the first decoding method, the corresponding operation
will be completed directly at the execution level according to the command
function. For the second decoding method, the executor determines the spe-
cific instruction type according to the last two digits of opcode input, and then
performs the corresponding operation. After the calculation is completed, the
execution module will output the “ex_result” to the next module.

Fig. 6. Circuit diagram of execution module

The functions of data-combination and data-splitting need read and write
from the data storage, and the reading and writing are closely related to the
storage control unit, so data-combination and data-splitting complete the signal
assignment related to the storage control unit only at the execution level.

Dynamic Multi-bit Parallel Computing Method 355

3.4 Design and Implementation of Write-Back Module

The write-back module is responsible for sending the calculation results to the
destination register or PE’s data storage DM. This module includes the stor-
age control unit CMU and the register read/write unit REG_RW. The circuit
structure of the write-back module is shown in Fig. 7. The storage control unit
interacts with the data storage to complete data reading and writing. The reg-
ister read/write unit receives information from the decoding and the execution
level, writes the execution result of the instruction to the register, or reads data
from the register for calculation.

Fig. 7. Circuit diagram of write-back module

The data-splitting function uses control signals “wbc_spl1, wbc_spl2 and
wbc_spl4” in the storage control unit as the mark of data writing to the memory.
Through different control signals, the number of writing signals is assigned first,
and data is divided by the operand granularity, the number of writing addresses
is calculated, and data is stored in the write number address in turn.

4 FPGA Experimental Results and Analysis

Verilog is used to design and implement the dynamic configuration structure of
computing granularity. After the circuit of each module passes the simulation
verification, the ZC706 development board with Zynq-7000 XC7Z045-2ffg900c is
used in Xilinx Vivado 2018.3 development tool. The synthesis and implementa-
tion results of fetching module, decoding module, execution module, write-back
module and the overall circuit are shown in Table 3.

As can be seen from Table 3, the working frequency of the whole circuit is
133.5 MHz, occupying 2299 LUT resources and 1021 FF resources, with a mini-
mum delay of 7.490 ns. The execution module has the lowest operating frequency
among the four modules and occupies the highest sum of LUT and Flip Flop
(FF) resources. Because the execution module undertakes the computational
tasks of parallel addition and multiplication, the corresponding calculation delay

356 L. Jiang et al.

Table 3. Comprehensive realization result

Frequency/MHz LUT FF Minimum Delay/ns

fetching module 283.4 160 200 3.259
decoding module 650.6 284 100 1.537
execution module 172.2 477 58 5.806
write-back module 468.6 164 174 2.134
whole circuit 133.5 2299 1021 7.490

is greater, which leads to a decrease in frequency and consumes more on-chip
resources. At the same time, factors such as interconnect lines, driver delays,
often result in an overall system delay greater than the sum of the delays of
each module, but the design is not the case in this article. On the one hand,
the pipeline architecture designed in this article can divide tasks into multiple
modules, and different modules execute their respective tasks sequentially under
the drive of the clock. Each module can optimize the interconnection of various
modules in the pipeline by selecting the shortest path, thereby allocating task
delays. In addition, different modules can perform operations in parallel, and
the design of overlapping operations can increase throughput and reduce overall
latency. On the other hand, the Vivado2018.3 development tool will perform
various optimizations on the circuit, such as logic optimization, timing opti-
mization, and layout optimization. These optimizations will reduce the delay of
certain modules, making the overall delay less than the sum of the delays of each
module.

The design in this paper is compared with the dynamic configuration struc-
ture of calculation granularity based on FPGA at home and abroad, as shown
in Table 4. The design of ref. [16] uses 1024 parallel 1-bit processors to realize
from 1 to 16 bits multiplication and addition calculation. Although this design
reduces the delay caused by combination logic through pipeline strategy, the
working frequency can only be maintained at 100 MHz due to too many inter-
connected multiplication and addition units. Ref. [17] proposed a reconfigurable
micro-processing unit, which realized parallelmultiplication and parallel-addition
operations in the 2-8 bit interval. Although the working frequency of the recon-
figurable micro-processing unit was slightly higher than that designed in this
paper, the maximum bit width of the design in this paper was 32 bits, which

Table 4. Comparison of dynamic configuration structures

Device Type Frequency/MHz Bit Width/bit LUT/K FF/K BRAM DSP Reconfigurable

Ref. [16] XCZU9EG 100 1–16 57 900 0 N
Ref. [17] Ultra96-V2 150 2–8 44.8 60.2 204 336 Y
Ref. [18] Artix-7 133.3 8/10/12/13 3.48 3.55 16 30 N
Our Work XC7Z045 133.5 8/16/32 69.1 27.4 136 256 Y

Dynamic Multi-bit Parallel Computing Method 357

Fig. 8. Circuit diagram of COMB

has higher computational accuracy than the design of ref. [17]. The working fre-
quency of the hardware circuit in ref. [18] is close to the design of this paper,
but the design of ref. [18] only carries out the dynamic configuration of the cal-
culation granularity for FFT algorithm, resulting in its lack of generality. The
design in this paper is more granular and flexible, so it can meet the computing
needs of different algorithms.

This multi-bit parallel computing method implements flexible configurations
of three different data bit widths based on array processors to demonstrate good
reconfigurability. Bit width configuration provides a flexible way to adapt to
different computing needs and performance requirements by adjusting the bit
width of data and signals. Reconfigurability provides the ability to dynamically
configure and reconfigure, making bit width configuration an important means
of configuration. This article combines bit width configuration and reconfigura-
bility to meet specific design requirements and performance goals under different
application requirements and algorithm characteristics, with high flexibility and
resource utilization.

5 Summarize

Aiming at the problem that different communication baseband algorithms have
different requirements for computing granularity, this paper researches on par-
allel computing methods for multi-bit data and designs a dynamic configuration

358 L. Jiang et al.

structure of computing granularity, which is based on four pipelines of fetching,
decoding, execution, and write-back module to complete the circuit design. The
operation of different granularity is controlled mainly by instructions, which are
divided into four categories: data-combination, data-splitting, parallel-addition,
and parallel-multiplication and uses a single instruction to operate multiple data.
The reconfigurable computation with different bit widths is realized by changing
the parallelism degree in the execution process of the algorithm by assembling
instructions, which improves the computing efficiency of the reconfigurable array
processor. The experimental results show that the running time is reduced by
about 20%, which fully proves the effectiveness and reliability of the dynamic
configuration of computing granularity.

Acknowledgements. This work was supported by National Key R&D Program of
China (2022ZD0119001); Key projects of National Natural Science Foundation of China
(61834005).

References

1. Lu, Y., Liu, L., Zhu, J., et al.: Architecture, challenges and applications of dynamic
reconfigurable computing. J. Semicond. 41(2), 4–13 (2020)

2. Chiu, J.-C., Yan, Z.-Y., Liu, Y.-C.: Design and implementation of the CNN acce-
lator based on multi-streaming SIMD mechanisms. In: Hsieh, S.-Y., Hung, L.-J.,
Klasing, R., Lee, C.-W., Peng, S.-L. (eds.) New Trends in Computer Technologies
and Applications: 25th International Computer Symposium, ICS 2022, Taoyuan,
Taiwan, December 15–17, 2022, Proceedings, pp. 460–473. Springer Nature Singa-
pore, Singapore (2022). https://doi.org/10.1007/978-981-19-9582-8_40

3. Sharma, H., Park, J., Suda, N.: Bit Fusion: Bit-Level Dynamically Composable
Architecture for Accelerating Deep Neural Networks. In: ACM/IEEE 45th annual
international symposium on computer architecture (ISCA). IEEE 2018, 764–775
(2018)

4. Moss, D.J., Krishnan, S., Nurvitadhi, E., et al.: A customizable matrix multipli-
cation framework for the intel harpv2 xeon+fpga platform: a deep learning case
study. In: 2018 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. ACM, pp. 107–116 (2018)

5. Faraone, J. Kumm, M., Hardieck, M., et al.: AddNet: deep neural networks using
fpga-optimized multipliers. IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
28(1), 115–128 (2020)

6. Tang, S.N.: Area-efficient parallel multiplication units for CNN accelerators with
output channel parallelization. IEEE Trans. Very Large Scale Integr. (VLSI) Sys-
tems. 31(3), 406–410 (2023)

7. Sun, M., Li, Z., Lu, A., et al.: FILM-QNN: efficient FPGA acceleration of deep
neural networks with intra-layer, mixed-precision quantization. In: Proceedings
of the 28th ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA), pp. 134–145 (2022)

8. Wang, N., Nia, J., Li, J., et al.: A compression strategy to accelerate LSTM meta-
learning on FPGA. ICT Express 8(3), 322–327 (2022)

https://doi.org/10.1007/978-981-19-9582-8_40

Dynamic Multi-bit Parallel Computing Method 359

9. Nataraj Urs, H.D., Venkata Siva Reddy, R., Gudodagi, R., et al.: A novel algorithm
for reconfigurable architecture for software-defined radio receiver on baseband pro-
cessor for demodulation. Sustainable Computing. Springer, Cham, pp. 187–206
(2023). https://doi.org/10.1007/978-3-031-13577-4_11

10. Umuroglu, Y., Conficconi, D., Rasnayake, L., et al.: Optimizing bit-serial matrix
multiplication for reconfigurable computing. ACM Trans. Reconfigurable Technol.
Syst. (TRETS) 12(3), 1–24 (2019)

11. Liu, K., Tian, Z., Li, Z., et al.: RfLoc: a reflector-assisted indoor localization system
using a single-antenna AP. IEEE Trans. Instrum. Meas. 70(3), 1–16 (2021)

12. Wang, A., Xu, W., Sun, H., et al.: Arrhythmia classifier using binarized convolu-
tional neural network for resource-constrained devices. In: 2022 4th International
Conference on Communications, Information System and Computer Engineering
(CISCE), Shenzhen, China, 2022, pp. 213–220 (2022)

13. Stepchenkov, Y.A., Khilko, D.V., Shikunov, Y.I.: Filter kernels preliminary bench-
marking, DSP, for recurrent data-flow architecture. In: IEEE Conference of Russian
Young Researchers in Electrical and Electronic Engineering (ElConRus). IEEE
2021, pp. 2040–2044 (2021)

14. Deng, J., Jiang, L., Zhu, Y., et al.: HRM: H-tree based reconfiguration mechanism
in reconfigurable homogeneous PE array. J. Semiconductors. 41(2), 1–9 (2020)

15. Shan, R., Jiang, L., Wu, H., He, F., Liu, X.: Dynamical self-reconfigurable mecha-
nism for data-driven cell array. J. Shanghai Jiaotong Univ. (Science) 26(4), 511–521
(2021). https://doi.org/10.1007/s12204-021-2319-z

16. Maki, A., Miyashita, D., Nakata, K., et al.: FPGA-based CNN processor with filter-
wise-optimized bit precision. In: 2018 IEEE Asian Solid-State Circuits Conference
(A-SSCC). IEEE, pp. 47–50 (2018)

17. Chen, Y., Du, H., Chang, L.: A reconfigurable micro-processing element for mixed
precision CNNs. In: 2022 14th International Conference on Measuring Technology
and Mechatronics Automation (ICMTMA). IEEE, pp. 1–5 (2022)

18. Liu, W., Liao, Q., Qiao, F., et al.: Approximate designs for fast Fourier transform
(FFT) with application to speech recognition. IEEE Trans. Circuits Syst. I Regul.
Pap. 66(12), 4727–4739 (2019)

https://doi.org/10.1007/978-3-031-13577-4_11
https://doi.org/10.1007/s12204-021-2319-z

A Heuristic Method for Data Allocation
and Task Scheduling on Heterogeneous
Multiprocessor Systems Under Memory

Constraints

Junwen Ding1 , Liangcai Song1 , Siyuan Li1 , Chen Wu2 ,
Ronghua He2 , Zhouxing Su1 , and Zhipeng Lü1(B)

1 Huazhong University of Science and Technology, Wuhan, China
{junwending,zhipeng.lv}@hust.edu.cn

2 2012 Lab, Huawei Technologies Co., Ltd., Shenzhen, China

Abstract. Computing workflows in heterogeneous multiprocessor sys-
tems are often depicted as directed acyclic graphs (DAGs) comprising
tasks and data blocks. These elements represent computational modules
and their interdependencies, where the output data generated by one
task serves as input for other tasks. However, in certain workflows, such
as task schedules in digital signal processors, it is essential to account
for the memory capacity limitations of data blocks when scheduling the
tasks. The main objective of this paper is to address the challenge of
data allocation and task scheduling under memory constraints, partic-
ularly on shared memory platforms. We propose an integer linear pro-
gramming model to formulate the problem, which can be viewed as an
extension of the flexible job shop scheduling problem. The goal is to
minimize the length of the critical path. We propose a tabu search algo-
rithm (TS) to tackle the data allocation and task scheduling problem
under memory constraints. The TS algorithm incorporates several distin-
guishing features, such as a greedy initial solution construction method
and a mixed neighborhood evaluation strategy that combines exact and
approximate evaluation methods. Experimental results on randomly gen-
erated instances demonstrate that the TS algorithm can obtain high-
quality solutions within a reasonable computational time. On average,
the TS algorithm improves the makespan by 5–25% compared to the
widely used classical load balancing algorithms in the literature. Fur-
thermore, we analyze some key features of the TS algorithm to identify
the contributing factors to its success.

Keywords: Task scheduling · Data allocation · Heterogeneous
multiprocessor · Tabu search

Supported by by the Special Project for Knowledge Innovation of Hubei Province under
Grant No. 2022013301015175 and the National Natural Science Foundation of China
under Grants No. 62202192 and 72101094.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 360–380, 2024.
https://doi.org/10.1007/978-981-97-0801-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_21&domain=pdf
http://orcid.org/0000-0002-0618-4969
http://orcid.org/0009-0003-7381-5462
http://orcid.org/0009-0008-6190-7630
http://orcid.org/0000-0002-1827-6297
http://orcid.org/0000-0002-4975-8280
http://orcid.org/0000-0002-4794-9833
http://orcid.org/0000-0001-9185-3233
https://doi.org/10.1007/978-981-97-0801-7_21

A Tabu Search Algorithm for Data Allocation and Task Scheduling 361

1 Introduction

A digital signal processor (DSP) is a specialized microprocessor chip designed
specifically for the computational needs of digital signal processing tasks [7].
DSPs are fabricated on metal oxide semiconductor (MOS) integrated circuit
chips. They find extensive application in various fields, including audio signal
processing, digital image processing, speech recognition systems, high perfor-
mance computing centers, and everyday consumer electronic devices like mobile
phones, notebook computers, smart watches, and intelligent wearable device [4].

The DSP chip consists of different types of cores and memories, with the
cores being responsible for performing computations and memory serving as the
storage unit. Based on the description provided in [8], the DSP chip incorporates
various core types, including general-purpose cores and synergistic processor
cores. In terms of memory, there are high-speed memory modules as well as low-
speed memory modules such as DDR (Double Data Rate) memory. The cores
are organized into clusters and groups, with each group associated with a local
high-speed memory. On the other hand, other high-speed memory and low-speed
memory modules are shared globally, accessible to all the cores on the DSP chip.

In the domain of parallel computing on multiprocessor systems, tasks are
commonly represented using Directed Acyclic Task Graphs (DAGs), where nodes
represent individual tasks and edges represent their dependencies [11]. When
dealing with a series of tasks that need to be executed on DSP processors, along
with the associated data blocks generated by these tasks (i.e., the task depen-
dencies), the task scheduling problem arises. This problem involves assigning
each task to specific cores, determining the storage location for the data blocks,
and establishing the execution order of the tasks on each core. The primary
objective is to minimize the overall completion time of all tasks while improving
the utilization of the cores and memories. By optimizing the task assignment
and execution order, it is possible to achieve better performance and efficiency
in the execution of tasks on the DSP processor.

The job shop scheduling problem is a fundamental problem in the domains of
intelligent manufacturing and high-performance computing. Its primary objec-
tive is to schedule priority resources in order to sequentially execute multiple
tasks, with the aim of minimizing the maximum completion time of all tasks.
For instance, let’s consider a chip foundry where the production of chips involves
a series of sequential processes, such as photolithography and etching, which are
carried out on different machines [36]. We also encounter similar scenarios in
parallel computing environments, where there exist dependencies between com-
puting tasks, and the output of a predecessor task serves as the input for a
successor task [17].

Scheduling problems encountered in real execution processes tend to be more
complex due to the presence of multiple constraints from various dimensions. For
example, in a cloud computing data center where multiple tasks are executed on
shared multi-core processors, the allocation of cores to tasks and their concurrent
scheduling becomes critical, taking into account energy and performance con-
straints [18]. In parallel computing scenarios, it is essential to consider not only

362 J. Ding et al.

the utilization of computing resources but also the memory resources occupied
by concurrent tasks, ensuring that they do not exceed the maximum capacity
limit. Moreover, heterogeneous chips integrate diverse computing units that are
capable of handling compatible tasks, which further increases the complexity of
task scheduling due to the intricate constraints among different memory types
[19].

With the increasing prevalence of heterogeneous processors, it is common for
operations of the same type to be processed by different cores, each with its own
processing time and data capacity. Additionally, various components of a dis-
tributed shared-memory system exhibit significant heterogeneity in data access
time [22,34]. As a result, several critical issues arise, including task-to-processor
assignment, datum-to-memory allocation, and operation sequencing for both
processing tasks and data retrieval, aiming to satisfy specific constraints and
minimize the overall task completion time. This problem is formally referred to
as the Heterogeneous Data Allocation and Task Scheduling problem (HDATS).

2 Literature Review

Processors and memories have always been valuable in large-scale computations,
as highlighted in [30]. The problem of scheduling large-scale scientific workflows
using distributed resources has been identified by [26]. Their work was further
expanded upon in [24], which proposed two genetic algorithms to handle comput-
ing tasks. Chen et al. [8] introduced an online heterogeneous dual-core scheduling
algorithm for dynamic workloads with real-time constraints, and carried out a
series of extensive experiments to compare different workloads and scheduling
algorithms. This problem also arises in the domain of sparse direct solvers, as
investigated by [1], who analyzed the impact of processor mapping on memory
consumption in multi-frontal methods. Building on the research conducted on
sparse direct solvers in [20], Aupy et al. [3] proposed a heuristic approach that
utilizes problem-specific knowledge to minimize peak memory usage.

Sb̂ırlea et al. [28] introduced a bounded memory scheduling algorithm for
parallel workloads represented by dynamic task graphs. The algorithm sets an
upper limit on the peak memory usage within the computing environment. Ser-
gent et al. [29] explored the integration of a task-based distributed application
with a run-time system that manages memory subscription levels during the
processing period. Ergu et al. [12] presented a model for task-oriented resource
allocation in a cloud computing environment. The model ranks resource alloca-
tion task using techniques such as pairwise comparison matrix and the analytic
hierarchy process, taking into account both available resources and user prefer-
ences. Praveenchandar and Tamilarasi [25] proposed an enhanced approach for
task scheduling and power minimization to achieve efficient dynamic resource
allocation. Their approach combines a prediction mechanism with a dynamic
resource table updating algorithm.

In the domain of digital signal processing (DSP), there have been studies on
modeling the task scheduling problem with specific constraints as the flexible

A Tabu Search Algorithm for Data Allocation and Task Scheduling 363

job shop scheduling problem. The FJSP, introduced in [6] as an extension of
the job shop scheduling problem, is a well-studied combinatorial optimization
problem. For the FJSP with the objective of minimizing the makespan, exact
approaches were proposed by [23,27], who developed mixed-integer linear pro-
gramming (MILP) models. Another MILP was presented in [5] for the FJSP,
considering an extension that incorporates precedence relations between oper-
ations of a job, specified by an arbitrary directed acyclic graph. Hansmann et
al. [15] suggested a combination of MILP and branch and bound algorithm to
address the FJSP with restricted machine accessibility. In the context of task
scheduling in virtual controllers and multiple clusters of remote radio heads, Xia
et al. [35] transformed the problem into a matroid constrained submodular max-
imization problem. They proposed heuristic algorithms to obtain approximate
optimal solutions. Fu et al. [13] introduced a unified graph to model both map
task scheduling and reduce task scheduling. They transformed the problem into
a well-known graph problem called minimum weighted bipartite matching.

In the context of cloud computing based on containers for smart manufactur-
ing, Yin et al. [36] developed a task scheduling model that takes into account the
role of containers. They designed a task scheduling algorithm and a reallocation
mechanism specifically considering container characteristics, with the objective
of minimizing task delays. Yuan et al. [37] presented a spatial task scheduling
and resource optimization method for distributed green cloud data centers. Their
approach aims to minimize the total cost for providers by effectively schedul-
ing heterogeneous application tasks while meeting delay-bound constraints and
optimizing resource utilization. Hu et al. [16] investigated the task scheduling
problem in heterogeneous distributed systems. Their objective was to minimize
the schedule length for parallel applications while considering energy constraints.
Zhuge et al. [38] proposed a polynomial-time algorithm based on dynamic pro-
gramming. Additionally, they introduced a global data allocation algorithm and
a heuristic maximal similarity scheduling approach. The main focus of their
methods is to reduce memory traffic and minimize memory access costs.

For data allocation and task scheduling on heterogeneous multiprocessor sys-
tems, the primary objective is to obtain a schedule ensuring that memory usage
never exceeds its maximum capacity during execution. To address this challenge,
we propose a tabu search (TS) algorithm that combines distinguishing features,
including a hybrid initial solution construction method using both greedy and
random approaches, and a mixed neighborhood evaluation strategy combining
exact and approximate evaluations. Experimental results on randomly generated
instances demonstrate that the proposed algorithm can achieve high quality solu-
tions within feasible computational time. Additionally, we analyze key features
of the TS algorithm to the success of its performance.

The rest of the paper is organized as follows: Sect. 3 provides a description
of the problem and its mathematical formulation. Section 4 details the proposed
tabu search algorithm and its components. Section 5 presents the computational
results and analyzes the key features, and Sect. 6 concludes the paper and pro-
vides suggestions for future research directions.

364 J. Ding et al.

Fig. 1. A typical DSP architecture and an illustrative example

3 Problem Definition and Formulation

3.1 Problem Description

The architecture of the DSP is a heterogeneous distributed shared-memory
multiprocessor system as illustrated in Fig. 1a. The architectural scheme
encompasses a set P of n connected heterogeneous processors, i.e., P =
{P1, P2, . . . , Pn}. Each processor Pi is associated with its own local memory
Mi, while the collective set of local memories forms a distributed physical mem-
ory that is shared globally. For instance, M1 represents the local virtual memory
of processor P1, whereas M2 and M3 represent remote physical memories. For
processor P2, M2 serves as its local memory, whereas M1 and M3 are remote
memories. As all the distributed memories are merged into a global shared space,
every processor can access the global shared memory. It is noteworthy that the
access time by different processors on the same memory may be different due to
the non-uniform structure of the memory paradigm.

Given a direct acyclic task graph DAG G = (V,E), V is the node set and E is
the edge set, nodes s, e ∈ V represent the starting and ending nodes, respectively.
By formulating a memory access operation as a node, the traditional DAG can
be extended to a memory-access data flow graph (MDFG). Figure 1b gives an
illustrative example of the HDATS problem, where cycle blocks represent tasks
and square blocks represent data blocks depending on them or being depended.

A MDFG is a node-weighted directed graph extended from a DAG which is
represented as G

′
= (V1, V2, . . . , E,D, var, P,M,AT,ET), where the notations

are explained as follows:

– V1 = {v1, v2, . . . , vN1} represents a set of N1 task nodes.
– V2 = {u1, u2, . . . , uN2} represents a set of N2 memory access operation nodes.
– E is a set of edges, where E ⊂ V ×V , V = V1∪V2. An edge (i, j) ∈ E denotes

the dependency between node i and node j, expressing that task or operation
i has to be executed before task or operation j.

– D is a set of initial input data.

A Tabu Search Algorithm for Data Allocation and Task Scheduling 365

– var : V1 × V2 × D → {0, 1} is a binary mapping relationship, in which
var(v, u, w) represents whether memory access operation u ∈ V2 is delivering
data w ∈ D for task v ∈ V1.

– P = {P1, P2, . . . , Pn} represents a set of n heterogeneous processors.
– M = {M1,M2, . . . ,Mm} represents a set of m local memories.
– AT is the memory access time functions.
– PT (vi, Pj) = etj(i) is the processing time of task vi when it is processed on

processor Pj .

Therefore, the heterogeneous data allocation and task scheduling problem is
formally defined as MDFG, aiming to find a solution represented by a triple
(Mem,AS, SC). Here, Mem is a data allocation Mem : D → M , where
Mem(h) ∈ M indicates the memory assigned to h ∈ D; AS is the task assign-
ment function AS : V1 → P , where A(v) denotes the processor assigned to task
v ∈ V1; SC represents the schedule, SC : V1 ∪ V2 → R, specifying the starting
time for each task in V1 and each memory access operation in V2. The objec-
tive is to minimize the overall completion time T (G

′
), ensuring that the total

amount of data blocks assigned to memory Mi, denoted as Ti, does not exceed
its capacity S(Mi), i.e., Ti <= S(Mi). The HDATS problem has been proven to
be NP-hard [31].

3.2 The Integer Linear Programming Formulation of HDATS

This section presents the integer linear programming (ILP) formulation for the
HDATS problem, which consists of task assignment with processor constraints,
data allocation with memory size and concurrency constraints, precedence con-
straints, and a time constraint. Given an MDFG, the ILP model for the HDATS
problem consists of two main parts: processor assignment and memory allocation.
The processor assignment aims to assign tasks in the given MDFG to appropri-
ate processors, while the memory allocation aims to allocate the required data
for task processing. The objective is to minimize the maximum completion time
of all tasks, i.e.,

min max{RT (i, j) + PT (vi, Pj)},∀i ∈ [1, N1], j ∈ [1, n] (1)

Task assignment and processor constraints:

n∑

j=1

|Pj |∑

k=1

xijk = 1, ∀i ∈ [1, N1] (2)

N1∑

i=1

x
′
ijm ≤ 1, ∀m ∈ [1, S] (3)

N1∑

i=1

n∑

j=1

x
′
ijm ≤ n, ∀m ∈ [1, S] (4)

366 J. Ding et al.

In the processor part, two binary variables, xijk and x
′
ijm, are introduced

to indicate whether task vi in G
′

starts processing at step k and is processed
in stage m on processor Pj , respectively. Constraint (2) ensures that each task
node can perform execution on only one stage and one processor. Constraint (3)
guarantees that at most one task is scheduled in any stage on any processor.
Constraint (4) ensures that the number of tasks processed in each stage does
not exceed the number of processors. Task vi is assigned to processor P (i).

Data Allocation and Memory
Constraints:

n∑

j=1

dhj = 1, ∀h ∈ [1, Nd] (5)

Nd∑

h=1

d(h) × dhj ≤ Sj , ∀j ∈ [1, n] (6)

Mem(h) =

m∑

j=1

j × dhj , ∀h ∈ [1, Nd] (7)

n∑

j=1

S∑

k=1

yljk = 1, ∀l ∈ [1, N2] (8)

N2∑

l=1

y
′
ljm ≤ MA,

∀j ∈ [1, n], ∀m ∈ [1, S]

(9)

In the memory part, binary variable dij represents whether data i is allocated
to memory Mj . Binary variables yljk and y

′
ljk indicate whether memory access

operation node ul starts processing and is scheduled in stage k on memory Mj ,
respectively. The capacity of memory Mj is denoted by Sj. The dependency
between data allocation and memory access operations is represented by M(l).

Constraint (5) ensures that each data block is allocated to exactly one local
memory. Constraint (6) guarantees that the total size of all data allocated in Mj

does not exceed Sj . Constraint (7) denotes the local memory Mem(h) to store
data h. Constraint (8) ensures that each memory access operation node can start
processing in only one stage and one local memory. Constraint (9) guarantees
that the number of memory access operation nodes in each stage does not exceed
the maximum access number of a local memory.

Precedence Constraints:

n∑

j=1

S∑

k=1

(k + RT (u, j)) × xujk ≤
n∑

j=1

S∑

k=1

k × xvjk,

∀e(u, v) ∈ E,∀u ∈ [1, N1],∀v ∈ [1, N1]

(10)

n∑

j=1

S∑

k=1

(k + RT (u, j)) × xujk ≤
n∑

j=1

S∑

k=1

k × yvjk,

∀e(u, v) ∈ E,∀u ∈ [1, N1],∀v ∈ [1, N2]

(11)

A Tabu Search Algorithm for Data Allocation and Task Scheduling 367

n∑

j=1

S∑

k=1

(k + RA t(u, j)) × yujk ≤
n∑

j=1

S∑

k=1

k × yvjk,

∀e(u, v) ∈ E,∀u ∈ [1, N2],∀v ∈ [1, N2]

(12)

n∑

j=1

S∑

k=1

(k + RA t(u, j)) × yujk ≤
n∑

j=1

S∑

k=1

k × xvjk,

∀e(u, v) ∈ E,∀u ∈ [1, N2],∀v ∈ [1, N1]

(13)

In a given MDFG, edge e(u, v) ∈ E represents the precedence relation from
node u to node v. Equations (10)-(13) ensure that each task and memory access
operation accurately respects the precedence constraints. Equations (10) and
Equations (12) respectively formulates the precedence relation among tasks and
memory access operations. Equations (11) and (13) define the precedence con-
straints between tasks and memory access operations. Generally, these equations
state that u must be completed before v starts.

Execution and Memory Access Time Constraints:

RT (i, j) =
S∑

k=1

xijk × PT (vi, Pj), ∀i ∈ [1, N1],∀j ∈ [1, n] (14)

k+RT (i,j)−1∑

m=k

x
′
ijm = RT (i, j), ∀i ∈ [1, N1],∀j ∈ [1, n] (15)

RT t(l, j) =
N1∑

i=1

Nd∑

h=1

S∑

k=1

yljkvar(vi, ul, h)AT (P (i),M)d(h),

∀l ∈ [1, N2],∀j ∈ [1, n]

(16)

k+RT (i,j)−1∑

m=k

y
′
ljm = RA t(l, j), ∀l ∈ [1, N2],∀j ∈ [1, n]. (17)

In addition, the real processing time of task vi on processor Pj is denoted as
RT (i, j), as defined in Eq. (14). If xijk = 1, variable x

′
ijm must satisfy constraint

(15), indicating that the processing of a task should not be interrupted.
The real memory access time of a memory access operation ul on memory

Mj is denoted as RA t, as expressed in constraint (16), If yijk = 1, variable y
′
ijm

must satisfy Eq. (17).

4 Algorithm Description

The proposed tabu search algorithm comprises a greedy initial solution construc-
tion procedure, a tabu search procedure, and a memory update procedure, which
are described in detail in the subsequent sections.

368 J. Ding et al.

Algorithm 1 Greedy construction procedure for initial solution
1: Input: Problem instance
2: Output: A feasible initial solution Sinit

3: Sinit ← InitS(), taskSet, R, Q, Slack ← Init(), t ← −1
4: while taskSet is not empty do
5: t ← selectTaskAccodingToRQSlack()
6: availCores ← getAvailableCores(t);
7: endT ime ← InitET (availCores)
8: for each core c of in availCores do
9: N ← getPredecessorsSet(t)

10: startT ime ← max{getF inishT ime(p)|p ∈ N}
11: for each data d of task t do
12: if memory of highType2 is enough at startTime then
13: tryAssignMemory(d, highType2)
14: else if memory highType1 is enough at startTime then
15: tryAssignMemory(d, highType1)
16: else
17: tryAssignMemory(d, lowType)
18: end if
19: end for
20: endT ime[c] ← calcuEndT ime(t, c)
21: end for
22: C ← arg min{getEndT ime(c)|c ∈ availCores}
23: assignToCore(t, C), updateSolution(Sinit)
24: freshRQSlack(t, C), freshMemory()
25: taskSet ← tastSet \ {t}
26: end while
27: return Sinit

4.1 Greedy Construction Procedure for Initial Solution

The construction of an initial solution involves assigning each task to a specific
core and each data block to a particular memory block. However, not all assign-
ments are valid due to the difficulty of satisfying the precedence relationship
between tasks and the capacity constraints of each memory.

Prior to the construction procedure, a preprocessing step is necessary to
generate a profitable job sequence. First, we use topological sorting to obtain
a valid sequence considering only job-job constraints and job-data constraints.
Subsequently, we apply a dynamic programming procedure to the topological
sequence and compute the R, Q, makespan, and Slack values. Here, taskSet
represents the list of candidate tasks that have not yet been assigned.

Algorithm 1 presents the pseudo code for the greedy construction procedure
used to generate the initial solution. The main idea can be summarized as iter-
atively selecting the most significant task from the set of currently unallocated
tasks, and then assigning it to the optimal core and selecting the suitable memory
for the produced data.

A Tabu Search Algorithm for Data Allocation and Task Scheduling 369

Then, on line 5, the task at the front of the candidate list is selected. If
multiple eligible tasks are present, we prioritize them based on the following
lexicographical order: 1) R value; 2) Slack value; 3) the minimum Slack value
of the successor jobs.

After selecting a task, the start time of task t on each available core in avail-
Cores must be calculated based on the constraints imposed by its predecessors,
and the data generated by the task must be allocated to memory. Specifically,
the data blocks produced by the task are sorted based on the minimum slack
value of the task dependent on each data block. For each data block generated by
the task, we prioritize global high-speed memory first and then local high-speed
memory within the same core group to minimize move-out time. Notably, the
data can be released from memory once all dependent tasks have been executed.

The greedy construction procedure typically selects the core and memory
assignments that enable the earliest completion of the task as the task’s assign-
ment result (line 22). Subsequently, the solution Sinit and the R, Q, Slack values
of the node are updated (lines 23–24). Once the update is finished, the currently
selected task is removed from the candidate set (line 25), and the next round
of assignment starts to select the next task and allocate memory in a similar
manner. When taskSet becomes empty, a complete solution is generated.

4.2 The Proposed Tabu Search Procedure

After an initial solution is obtained by the greedy construction procedure, the
solution undergoes further optimization through the tabu search procedure.

Considering both task scheduling and data allocation simultaneously is highly
complex. Hence, this paper introduces a two-layered local search procedure. The
outer layer focuses on scheduling the task sequence on the machine, while the
inner layer addresses memory allocation. If the memory constraints are ignored,
the problem can be formulated as the flexible job shop scheduling problem
(FJSP).

Neighborhood Structures. The optimization of the outer layer can utilize
the classic neighborhood structures proposed in [10]. The machine re-assignment
is performed on the k-insertion neighborhood (called Nα here [14]) for all the
critical tasks, and the sequence change is performed on the neighborhood (called
Nπ here [21]) for all the critical blocks. Specifically, the execution time of tasks
within the same critical block may not be continuous due to the presence of
transfer time.

Tabu Structure. To prevent revisiting previously searched areas within a short
period, we employ a tabu table in the local search process. This ensures that a
job will not be moved to the same machine within a specified tabu period.

370 J. Ding et al.

Algorithm 2 The proposed tabu search procedure for HDATS
1: Input: Greedy Solution Sinit, λ, T̄ , K̄
2: Output: The best found solution S∗

3: Sc ← Sinit, S∗ ← Sinit, N ← ∅, Iter ← 0, Duration ← 0
4: while Iter < λ and Duration < T do
5: for each critical task t in Sinit do
6: Nπ ← constructN7(Sinit, t)
7: Nα ← constructChangeCore(Sinit, t)
8: N ← N ∪ Nπ ∪ Nα

9: N ← checkTabuList(N)
10: if N is empty then
11: S

′ ← randomPerturbation(Sc)
12: else
13: topkSet ← selectApproximateTopK(N)

14: S
′ ← arg min{getMakespan(S)|S ∈ topkSet}

15: end if
16: add Move(Sc, S

′
) to tabu list

17: Sc ← S
′
, S

′ ← memoryReassign(S
′
)

18: if getMakespan(S
′
) < getMakespan(S∗) then

19: S∗ ← S
′
, Iter ← 0

20: end if
21: end for
22: N ← ∅; Iter ← Iter + 1
23: Duration ← getDuration()
24: end while
25: return S∗

Neighborhood Evaluation Method. We adopt the same approximate eval-
uation method used in [10], the approximate makespan fappr of a neighboring
solutions is experssed as follows:

fappr = max
i∈W

(R (JP [i]) , R (MP [i]))+T [i]+max
i∈W

(Q (JS [i]) , Q (MS [i])) , (18)

where W is the set of affected operations when applying the k-insertion move.
Similar evaluation method can be adopted for the sequence change move.

Algorithm 2 describes the input requirements, including the initial solution
Sinit constructed by the greedy strategy, the maximum number of unimproved
iterations λ, the maximum number K of accurately evaluated solutions at each
iteration, and the search duration T . The output of the tabu search is the best
solution S∗ found so far.

First, we construct the neighborhood Nπ and Nα (lines 6–7), respectively.
Let N denote the union of the two neighborhoods, and remove the solutions in
the tabu state (line 9). If N is empty, indicating that all neighborhood moves
are in tabu state, a random perturbation operation is performed on the current
solution Sc (line 11).

A Tabu Search Algorithm for Data Allocation and Task Scheduling 371

If N is not empty, we approximately evaluate each neighborhood solution.
Then, we select the first K solutions and store them in topkSet. Since the approx-
imate makespan are often inaccurate, it is necessary to accurately evaluate each
solution in topkSet, calculate its actual makespan, and select the solution S

′

with the smallest makespan to replace the current solution. Subsequently, this
neighborhood move is added to the tabu table (line 16) and the current solution
is replaced with the neighborhood solution S

′
(line 17).

Since both Nπ and Nα neighborhood moves alter the job sequences on the
machines, it is also necessary to re-allocate memory and update the memory
allocation status for each data block (line 17). To fulfill this purpose, we propose
a memory update algorithm described in detail in Sect. 4.3.

4.3 Memory Update Procedure

The overall time of each task consists of the transfer time and the execution
time. The transfer rates of high-speed memory and low-speed memory are not
the same. Additionally, high-speed memory has a limited capacity, thus the mem-
ory allocation strategy of data blocks will affect the final outcome. Throughout
the algorithm, the memory update procedure is repeatedly invoked during each
iteration. The memory update strategy is mainly based on two basic greedy
criteria:

1. Assign as many data blocks as possible to the fast memory without violating
capacity constraints.

2. Prioritize “important” data blocks for placement in high-speed memory.
Since shortening the length of the critical path is crucial for optimizing the
makespan, we measure the importance of each data block by the number of
transfers occurring on the critical path.

Once the memory is updated, the local search determines the task sequence,
and when all memory is assigned to low-speed, a complete solution is generated.
Consequently, we can determine the start time and duration of each stage, the
entry and exit time of each data block in the memory, and also identify the
critical path and critical tasks. The number of times that a data block appears on
the critical path corresponds to the number of critical tasks having dependence
relationships with it. The data blocks are sorted in a descending order based on
their occurrences.

When attempting to place important data blocks in high-speed memory, it is
possible for the peak memory usage to exceed the memory capacity. Therefore,
a judgment strategy is required to ensure compliance with memory capacity
constraints. This strategy is designed as follows: first, calculate the lifespan of all
data blocks, then determine the memory usage per second using the differential
array, and finally judge whether it exceeds the capacity limit. However, acquiring
per-second information is time-consuming due to the huge size of makespan
compared to the number of data block nodes. Since the peak memory usage
occurs when data blocks are placed in memory, we can discretize all the time

372 J. Ding et al.

Algorithm 3 The memory updating procedure

1: Input: The temp solution S
′

in tabu search, problem instance p
2: Output: The true solution St

3: S
′ ← InitMemory(S

′
), R, Q, Slack ← Init()

4: dataSet ← getAllData(), taskSeq ← getAllTask()
5: while dataSetisnotempty do
6: topoSeq ← TopoSort(taskSeq, p)

7: calcuRQSlack(topoSeq, p, S
′
)

8: D ← −1, maxUseT ← 0
9: for each data d in dataSet do

10: criticalUse ← countCriIn(d) + countCriOut(d)
11: if criticalUse > maxUseT then
12: maxUseT ← criticalUse
13: D ← d
14: end if
15: end for
16: if memory of highType2 is enough then
17: AssignToMemory(d, highType2)
18: else if memory highType1 is enough then
19: AssignToMemory(d, highType1)
20: else
21: AssignToMemory(d, lowType)
22: end if
23: updataSolution(St)
24: dataSet ← dataSet \ {d}
25: end while
26: return St

nodes that induce memory usage changes and differentiate them into an array.
This enables us to determine if the peak memory usage surpasses the capacity
limit.

Algorithm 3 presents the pseudocode for the memory updating procedure.
Initially, it allocates all data blocks to low-speed memory and initializes dataSet.
At each iteration, it performs topological sorting on all tasks and calculates R, Q,
and Slack values. It then sequentially attempts to allocate the most important
data block that has not yet been assigned to memory. If the memory usage does
not exceed the capacity limit, the data block is allocated to memory.

Subsequently, the critical path may be changed because the allocation of
a data block is determined. Therefore, in the next iteration, it is necessary to
recalculate the R, Q, and Slack values and reevaluate the importance of the
remaining data based on this information. The memory updating procedure is
completed when dataSet is empty because the data block is deleted from dataSet
each time once it is allocated to memory.

A Tabu Search Algorithm for Data Allocation and Task Scheduling 373

5 Experiment Design and Analysis

5.1 Parameter Settings and Experimental Protocol

In this section, we conduct extensive experiments to evaluate the performance
of the proposed TS algorithm. Synthetic task graphs were generated using the
TGFF tool [9]. Each benchmark was compiled and extracted as a directed acyclic
graph (DAG) with different numbers of tasks and different in/out degree limits.
The data-DAG is constructed by adding a node for each edge in the correspond-
ing task-DAG. The TS algorithm was implemented in C++ and executed on an
AMD Ryzen 7 5800H CPU with Radeon Graphics 3.20 GHz. Table 1 provides
the descriptions and settings of the parameters used in TS. The last column indi-
cates the settings for the entire set of instances. These parameter values were
determined through extensive preliminary experiments.

Table 1. Parameter settings in TS

Para Description Value

Kmax maximum accurate evaluation 100

p memory update round 100

θ1 tabu tenure for Nk m + rand()%(2 ∗ m)

θ2 tabu tenure for Nπ n + rand()%n

λ depth of tabu search 100000

Tmax maximum run time of TS 600 s

Table 2. The basic information of the benchmarks

Item Description Value

DAG Num. of tasks 20/100/500

Num. of cores 2 high-speed + 2/4/6/8 general

time Tin : Tproc : Tout 1:1:1/1:10:1

Shigh : Slow 1.2:1

data data size [90,110]/[900,1100]

To comprehensively compare the performance of the algorithms, five groups
of random instances were generated for different conditions, including varying
numbers of tasks, ratios of move time to processing time, and numbers of cores.
Table 2 presents the basic information of the instances. Columns Tin, Tproc, and
Tout represent the move-in time from memory before task execution, the process-
ing time, and the move-out time from memory after task execution, respectively.
Shigh and Slow represent the data transfer rate of high-speed and low-speed mem-
ories, respectively. It should be noted that all instances have the same memory
sizes, and the size of low-speed memory is infinite.

374 J. Ding et al.

5.2 Implementation of Reference Algorithms and Comparison

We compare TS with three well-known scheduling algorithms: HEFT [32], PEFT
[2], and HSIP [33]. However, these algorithms do not consider memory con-
straints. In order to make a relatively fair comparison, we implemented these
algorithms and used the same memory allocation strategy as our proposed TS
algorithm. This allowed us to compare the performance of their algorithms with
our proposed approach under the same computing environment.

Table 3 presents the results of the proposed tabu search algorithm and other
scheduling algorithms on randomly generated instances with 20, 100, and 500
tasks. The second row represents different ratios between average processing
time and average memory access time, while the third row represents different
numbers of cores. The superiority of the proposed TS algorithm is evident in
various instance sizes and parameter settings.

M
ak

es
p
an

/c
y
cl

e

Instance

(a) The boxplot of makespan obtained by
TS on 10 instances

Im
p
ro

v
em

en
t

Core_Num

(b) The change of makespan with respect
to the number of high speed cores

Fig. 2. The results of TS on different instances

In this section, we analyze the stability of the tabu search algorithm by exe-
cuting TS on 10 instances. To achieve this goal, TS is applied to each instance
for 20 independent runs, each with a distinct initial solution. The objective is
to determine variations in the quality of the best-found solutions. The compu-
tational results are depicted in Fig. 2a. It indicates that the range of makespan
and the disparity between the minimum and maximum makespan are relatively
small for all instances, thus confirming the stability of the proposed tabu search
algorithm.

In this section, we analyze the impact of the number of cores on the perfor-
mance of the tabu search procedure. To accomplish this point, we apply TS and
the greedy initial solution construction procedure to three randomly generated
instances and display the results in Fig. 2b. The x-axis represents the number
of cores, and the y-axis represents the makespan improvement rate achieved by
TS compared to the greedy initial solution construction procedure. It is worth
noting that, for architectural heterogeneity to be ensured, a minimum of two
synergistic high-speed cores is required.

The results in Fig. 2b demonstrate an increase in the improvement rate from
10% to 30% as the number of DSP cores increases from 2 to 12. However, this
rate declines to 0 as the number of DSP cores continues to increase beyond
12, reaching around 28 or more. This trend indicates that with a small number

A Tabu Search Algorithm for Data Allocation and Task Scheduling 375

T
a
b
le

3
.
T

h
e

co
m

p
u
ta

ti
o
n
a
l
re

su
lt

s
o
f
fo

u
r

a
lg

o
ri

th
m

s
u
n
d
er

d
iff

er
en

t
co

n
d
it

io
n
s

S
ee

d
A

lg
.

N
1

=
2
0

N
1

=
1
0
0

N
1

=
5
0
0

1
:1

1
0
:1

1
:1

1
0
:1

1
:1

1
0
:1

2
4

6
8

2
4

6
8

2
4

6
8

2
4

6
8

2
4

6
8

2
4

6
8

1
H

E
F
T

4
4
3
2
7

4
0
5
0
6

4
0
5
0
6

4
0
5
0
6

2
5
4
1
3

2
1
9
5
6

2
0
8
3
4

1
8
5
6
6

1
4
2
8
3
8

1
2
5
2
0
9

1
2
1
2
5
5

1
1
7
5
4
5

8
6
2
0
0

6
7
0
9
4

5
8
9
7
4

5
5
9
8
1

5
3
1
5
1
4

4
0
8
6
3
3

3
5
5
6
3
3

3
2
6
9
9
2

3
7
4
7
0
5

2
6
7
0
3
6

2
2
1
6
8
5

1
9
9
1
6
9

P
E

F
T

4
2
1
5
8

3
9
0
1
2

3
9
0
1
2

3
7
0
9
3

2
2
4
1
0

2
1
8
4
7

1
9
8
7
2

1
7
8
5
0

1
3
8
8
4
3

1
1
7
3
4
9

1
1
6
2
4
2

1
0
7
1
1
7

8
7
1
8
5

6
4
2
8
6

5
8
1
0
7

5
1
3
5
8

5
3
7
1
1
9

3
9
0
2
2
0

3
1
7
8
9
4

2
7
1
9
6
4

3
7
8
1
7
1

2
5
9
2
7
8

2
3
0
1
7
4

1
9
3
8
2
7

H
S
IP

3
8
2
1
4

3
7
0
9
3

3
7
0
9
3

3
7
0
9
3

2
1
4
9
1

1
9
5
5
7

1
9
5
5
4

1
7
5
6
0

1
4
0
7
1
7

1
1
2
3
9
4

1
0
6
2
7
2

1
0
4
6
3
9

8
0
0
8
9

6
1
5
4
2

5
3
5
5
2

5
0
3
8
5

5
0
4
7
2
2

3
8
3
0
6
9

3
0
8
4
7
6

2
7
2
5
7
8

3
8
0
3
8
0

2
6
0
4
1
8

2
0
9
6
7
9

1
7
7
9
1
2

T
S

3
8
2
1
4

3
7
0
9
3

3
7
0
9
3

3
7
0
9
3

2
1
4
6
1

1
7
7
9
4

1
7
5
9
5

1
7
1
2
5

1
0
9
1
1
6

9
3
9
2
4

9
2
2
4
2

9
1
6
9
1

7
4
9
9
0

5
7
8
9
8

4
7
7
3
2

4
1
3
6
6

4
5
1
6
5
0

3
3
5
9
0
6

2
6
6
2
7
0

2
3
0
4
3
0

3
5
7
9
8
1

2
5
4
2
4
8

2
0
5
1
0
1

1
7
1
9
7
0

2
H

E
F
T

3
5
4
7
2

3
1
2
5
4

3
1
2
5
4

3
1
2
5
4

2
1
8
9
4

1
7
1
4
4

1
4
1
7
9

1
3
5
5
5

1
7
5
8
3
8

1
4
2
8
7
7

1
3
2
1
9
9

1
2
5
2
2
8

8
6
7
9
5

6
5
0
9
0

5
6
9
7
3

5
1
9
5
2

6
8
3
6
0
6

5
1
4
1
3
3

4
4
1
6
6
1

4
0
7
7
4
2

3
7
1
1
2
5

2
6
3
4
9
6

2
1
7
3
6
8

1
8
8
0
5
3

P
E

F
T

3
5
3
2
8

3
1
2
5
4

3
1
2
5
4

3
1
2
5
4

2
1
8
9
4

1
7
2
8
8

1
4
0
2
8

1
3
5
6
6

1
5
3
8
2
0

1
4
3
7
7
2

1
2
8
8
6
5

1
2
4
7
7
1

8
6
2
7
3

6
4
0
8
8

5
4
0
3
1

5
2
1
7
6

7
0
8
8
3
5

5
0
1
7
9
5

4
4
2
1
8
7

3
9
1
9
7
7

3
7
0
2
9
1

2
6
5
5
4
9

2
1
1
7
6
8

1
8
0
7
9
9

H
S
IP

3
5
1
3
9

3
1
2
5
4

3
1
2
5
4

3
1
2
5
4

2
2
0
3
8

1
7
6
5
4

1
3
8
3
0

1
3
7
7
0

1
5
7
5
2
6

1
3
8
2
7
7

1
2
5
2
7
0

1
2
3
9
7
6

8
4
7
4
0

6
3
8
7
3

5
2
6
8
8

4
9
0
3
6

7
0
5
3
8
1

5
2
3
7
6
9

4
4
1
5
5
0

3
8
8
3
2
2

3
6
8
0
6
6

2
6
1
2
2
2

2
1
2
8
9
2

1
8
1
0
8
6

T
S

3
4
8
3
1

3
1
2
5
4

3
1
2
5
4

3
1
2
5
4

2
1
7
7
5

1
4
4
4
7

1
3
8
3
0

1
3
2
3
6

1
3
8
1
2
1

1
2
4
4
2
6

1
2
2
1
5
9

1
2
0
3
2
3

7
8
8
0
1

5
8
7
9
5

4
9
7
3
3

4
4
2
6
5

6
3
2
4
8
2

4
7
0
4
2
1

3
8
4
4
9
9

3
3
0
1
7
6

3
6
3
7
3
9

2
5
3
7
5
8

2
0
5
1
8
1

1
7
3
1
1
6

3
H

E
F
T

4
0
5
3
6

4
0
5
3
6

4
0
5
3
6

4
0
5
3
6

2
2
8
3
4

1
9
0
6
0

1
6
3
1
0

1
6
3
1
0

2
1
8
7
6
3

2
0
2
0
9
2

2
0
2
0
9
2

2
0
2
0
9
2

8
0
5
7
9

6
4
2
7
6

6
0
6
8
5

5
8
5
1
8

7
8
9
2
7
2

6
3
1
3
2
8

5
8
2
6
7
8

5
8
2
3
8
1

3
6
6
9
8
7

2
6
7
9
9
6

2
2
6
6
5
3

2
0
9
4
7
5

P
E

F
T

4
0
5
3
6

4
0
5
3
6

4
0
5
3
6

4
0
5
3
6

1
9
9
8
0

1
6
8
0
2

1
5
7
1
4

1
5
7
1
4

2
1
3
5
5
7

2
0
8
3
2
9

2
0
3
2
7
4

1
9
4
1
6
7

8
1
6
2
4

6
7
1
2
1

5
6
3
7
2

5
6
1
0
3

8
1
2
6
6
3

6
7
1
5
5
7

5
9
3
4
6
5

5
7
9
6
3
4

3
6
4
5
8
3

2
6
8
4
6
4

2
2
7
4
8
3

2
0
3
9
7
6

H
S
IP

4
0
5
6
9

4
0
5
6
9

4
0
5
6
9

4
0
5
6
9

1
9
9
6
4

1
6
3
9
1

1
5
6
1
5

1
5
6
1
5

2
1
8
7
2
5

2
1
8
0
0
5

1
9
7
2
3
3

1
9
7
2
3
3

7
6
2
7
9

5
8
5
5
1

5
5
1
0
7

5
5
2
3
1

8
8
1
1
0
0

6
9
2
4
7
2

5
7
8
3
4
7

5
7
7
1
1
4

3
6
5
8
5
4

2
6
2
5
3
4

2
1
9
1
6
2

1
8
8
9
9
8

T
S

3
9
5
2
6

3
9
5
2
6

3
9
5
2
6

3
9
5
2
6

1
9
0
6
0

1
6
3
0
6

1
4
6
7
7

1
4
1
2
3

1
8
1
7
1
3

1
7
4
7
0
5

1
7
2
2
4
3

1
7
0
5
2
0

7
1
5
1
1

5
5
3
8
0

5
0
1
7
3

5
0
1
3
4

6
8
9
6
9
4

5
1
5
8
4
7

4
4
2
1
7
9

4
3
1
7
1
2

3
5
1
1
2
6

2
5
5
1
3
5

2
0
5
9
8
7

1
7
7
3
4
7

4
H

E
F
T

5
8
7
9
0

5
5
1
1
9

5
5
1
1
9

5
5
1
1
9

3
0
7
0
2

2
8
8
9
4

2
7
0
3
1

2
7
0
3
1

2
1
5
7
9
3

1
9
0
2
1
4

1
8
5
0
8
1

1
8
5
0
8
1

1
0
4
2
1
2

7
4
5
5
1

6
5
4
7
4

6
0
5
1
8

8
1
6
1
3
1

6
2
5
8
4
9

5
8
8
2
2
9

5
6
6
3
4
6

3
8
4
8
6
2

2
7
6
7
3
1

2
3
1
4
9
6

2
0
5
8
3
6

P
E

F
T

5
4
2
7
1

5
3
4
8
6

5
3
4
8
6

5
3
4
8
6

2
9
5
7
4

2
8
5
1
2

2
7
0
3
1

2
7
0
3
1

2
0
4
9
3
8

1
8
9
5
5
7

1
8
4
3
7
7

1
8
4
2
6
1

1
0
4
5
8
1

7
0
6
2
5

6
5
1
3
8

5
9
3
0
2

8
1
4
3
7
7

6
1
9
8
6
9

5
8
5
8
4
9

5
7
3
8
8
1

3
8
0
6
7
5

2
7
8
4
9
4

2
2
8
0
7
2

2
0
3
9
2
0

H
S
IP

5
3
4
8
6

5
3
4
8
6

5
3
4
8
6

5
3
4
8
6

2
8
4
0
9

2
6
9
0
2

2
5
4
0
1

2
5
4
0
1

2
0
5
8
1
7

1
8
1
5
6
1

1
8
7
5
3
1

1
8
7
3
7
8

1
0
2
3
4
1

7
1
2
9
8

6
1
6
5
9

5
8
2
8
4

8
4
2
4
4
5

6
6
2
3
7
8

5
7
9
8
8
0

5
7
4
3
7
5

3
8
8
9
3
6

2
7
6
9
5
1

2
2
5
7
0
0

1
9
3
5
7
4

T
S

5
3
4
8
6

5
3
4
8
6

5
3
4
8
6

5
3
4
8
6

2
8
0
3
2

2
5
4
0
1

2
5
4
0
1

2
5
4
0
1

1
8
0
3
1
3

1
7
1
0
9
3

1
7
0
0
7
8

1
6
4
5
8
2

9
8
6
0
5

6
4
9
4
6

5
6
7
7
4

5
1
4
3
3

7
5
6
3
0
0

5
5
6
8
6
1

4
6
4
3
8
5

4
6
1
2
7
3

3
6
6
5
7
9

2
6
8
3
1
7

2
1
9
2
5
7

1
8
6
8
0
1

5
H

E
F
T

6
0
6
1
4

5
9
4
1
5

5
9
4
1
5

5
9
4
1
5

2
7
5
4
5

2
5
6
8
3

2
5
6
8
3

2
5
6
8
3

2
0
1
1
9
1

1
6
5
0
5
7

1
6
0
7
9
1

1
6
0
7
9
1

1
0
0
2
1
3

7
4
4
7
1

6
7
1
7
6

6
4
9
9
0

7
6
7
7
5
0

5
9
1
5
2
7

5
5
2
6
4
3

5
5
4
0
5
6

3
5
9
2
6
3

2
7
9
3
5
1

2
3
1
4
0
8

2
0
9
6
7
4

P
E

F
T

6
2
6
3
8

6
0
1
4
9

5
9
6
2
7

5
9
6
2
7

2
7
7
1
6

2
5
4
3
9

2
5
4
3
9

2
5
4
3
9

1
9
8
7
4
4

1
6
3
8
2
8

1
4
7
1
7
1

1
4
5
3
2
9

9
8
9
7
1

6
5
1
6
6

6
0
5
3
1

5
8
7
0
5

8
2
5
4
9
9

6
4
1
8
4
7

5
7
2
0
6
7

5
3
4
8
8
6

3
7
0
6
4
4

2
7
8
1
5
7

2
2
8
1
6
9

2
1
0
0
8
2

H
S
IP

6
4
0
1
9

5
8
5
1
1

5
8
5
1
1

5
8
5
1
1

2
7
3
0
2

2
4
0
0
3

2
4
0
0
3

2
4
0
0
3

1
9
2
2
5
9

1
4
7
6
2
3

1
4
0
7
8
8

1
4
0
7
8
8

9
3
6
4
2

6
7
0
4
4

6
0
3
7
3

5
8
4
7
9

8
3
8
3
6
9

6
3
7
5
1
8

6
0
8
1
8
8

5
2
3
0
2
1

3
6
9
2
2
4

2
7
7
7
6
3

2
2
4
2
3
1

2
0
6
7
8
0

T
S

5
8
3
0
8

5
8
3
0
8

5
8
3
0
8

5
8
3
0
8

2
6
4
4
7

2
3
7
4
7

2
3
7
4
7

2
3
7
4
7

1
5
3
4
8
1

1
4
4
1
8
2

1
3
5
4
0
8

1
3
0
0
5
5

8
5
1
1
0

6
5
2
5
8

5
6
8
1
7

5
3
7
9
8

7
2
1
3
0
4

5
2
8
3
4
4

4
6
7
1
0
6

4
6
1
0
6
8

3
4
8
1
4
0

2
6
6
7
6
3

2
1
9
1
5
4

1
9
5
6
0
2

376 J. Ding et al.

of DSP cores, multiple unrelated tasks are assigned to the same cores, caus-
ing dependencies among them. Conversely, when a large number of cores are
available, the predecessors of a task can be assigned to different cores, enabling
parallel processing.

5.3 Effect of Mixed Evaluation Strategy

It is well-known that neighborhood evaluation is one of the most important
ingredients in the local search procedure. In order to alleviate the computational
burden in tabu search, we propose a mixed evaluation strategy in this paper.
Specifically, at each iteration of TS, we first apply an approximate evaluation
method to evaluate all neighboring solutions. Although this method may not
provide highly accurate makespan calculations, it significantly improves com-
putational efficiency. Next, we sort these neighboring solutions in an ascending
order of makespan. Subsequently, we apply an exact evaluation method to the
top k solutions and select the one with the minimum makespan to replace the
current solution before proceeding to the next round of local search.

7,100

7,200

7,300

7,400

7,500

7,600

7,700

7,800

7,900

1

4
0

8
0

1
2

0

1
6

0

2
0

0

2
4

0

2
8

0

3
2

0

3
6

0

4
0

0

4
4

0

4
8

0

5
2

0

5
6

0

6
0
0

6
4

0

6
8
0

7
2

0

7
6

0

8
0

0

8
4

0

8
8

0

9
2

0

9
6

0

1
0

0
0

(a) The change with evalua-
tion times

34,000

34,200

34,400

34,600

34,800

35,000

35,200

35,400

35,600

35,800

36,000

1

4
0

8
0

1
2

0

1
6
0

2
0

0

2
4
0

2
8
0

3
2

0

3
6
0

4
0

0

4
4
0

4
8

0

5
2
0

5
6

0

6
0
0

6
4

0

6
8
0

7
2

0

7
6
0

8
0

0

8
4
0

8
8

0

9
2
0

9
6

0

1
0
0
0

M
ak

es
p
an

/c
y
cl

e

Evaluation_Frequence

(b) The change with evalua-
tion times

12,000

13,000

14,000

15,000

16,000

17,000

18,000

0
.0

0

0
.0

1

0
.0

2

0
.0

3

0
.0

4

0
.0

5

0
.0

6

0
.0

7

0
.0

8

0
.0

9

0
.1

0

0
.1

1

0
.1

2

0
.1

3

0
.1

4

0
.1

5

0
.1

6

0
.1

7

0
.1

8

0
.1

9

Tabu Search LoadingBalance

M
ak

es
p

an
/c

y
cl

e

Memory_Ratio

(c) The change with the ra-
tio of high-speed memory

Fig. 3. The change of makespan with different evaluation frequency and memory ratios

Figure 3a and Fig. 3b illustrate the results of TS for different ratios of exact
evaluation on a random instance and a larger instance, which is five times the
size of the former. It can be observed that when k = 1 (the leftmost point on
the x-axis), the best solution is evaluated only using the approximate method.
Both curves show a decreasing trend for k ∈ [1, 30] and k ∈ [1, 120], followed by
a slight increase with further increasing k. This is primarily due to the fact that,
with the same cutoff time, an excessive number of runs using the exact evalu-
ation strategy leads to fewer iterations of the tabu search, thereby diminishing
its effectiveness. These findings indicate that the mixed evaluation strategy is a
compromise between exact and approximate methods, enabling the quick selec-
tion of relatively high-quality solutions.

5.4 Effect of High Speed Memory Ratio on Makespan

In this section, we intend to investigate the impact of the high-speed memory
ratio on makespan. We perform TS and the greedy initial solution construction

A Tabu Search Algorithm for Data Allocation and Task Scheduling 377

procedure separately for 20 independent runs, and present the results in Fig. 3c.
It can be observed that TS consistently outperforms the greedy initial solution
construction procedure across the entire range of memory ratios from 0 to 0.19,
with a minimum makespan difference of 2000. This may be attributed to the fact
that, due to the greedy strategy employed by the memory allocation approach,
both algorithms exhibit an unusual scenario in which a slight increase in the
proportion of high-speed memory leads to an increase in makespan.

Besides, when the high-speed memory is insufficient, the makespan obtained
by tabu search exhibits a slight increase, suggesting that tabu search is more
effective in mitigating the impact of insufficient high-speed memory. Moreover,
the makespan obtained by tabu search at low speed remains lower than that
of load balancing at high speed. Consequently, by restricting the utilization of
high-speed memory, a superior scheduling scheme can be obtained that optimizes
both makespan and high-speed memory.

6 Conclusions

This paper addresses the problem of data allocation and task scheduling under
memory constraints in heterogeneous multiprocessor systems, where an integer
linear programming model is introduced and a tabu search algorithm with dis-
tinct features is proposed to minimize the critical path of the graph. Experimen-
tal results show that the TS algorithm produces high-quality solutions within a
reasonable computational time, outperforming the classical load balancing algo-
rithm by 5-25%.

In particular, several conclusions are drawn as follows: First, the proposed TS
algorithm outperforms other scheduling algorithms on different scale instances,
and its stability is demonstrated through experiments on representative cases.
Second, the tabu search procedure can efficiently optimize the initial solution
constructed with the greedy strategy, and the improvement ratio varies with the
number of cores, which means that the number of cores with the maximum pro-
motion rate under different conditions is not necessarily the same. Third, hybrid
neighborhood evaluation technique balances evaluation accuracy and evaluation
time, and ultimately enables the local search to obtain high quality solutions.

In the future, it is an interesting research direction to combine population-
based metaheuristic methods and problem-specific knowledge to enhance the
performance of the current algorithm. Besides, solution-based tabu strategy is
also worthy to attempt in order to improve the search intensification. Further-
more, another extension to this study could involve energy-aware information
allocation and task scheduling aimed at minimizing both the total workload
execution and overall energy consumption.

378 J. Ding et al.

References

1. Agullo, E., Amestoy, P.R., Buttari, A., Guermouche, A., Excellent, J.Y., Rouet,
F.H.: Robust memory-aware mappings for parallel multifrontal factorizations.
SIAM J. Sci. Comput. 38(3), 256–279 (2016)

2. Arabnejad, H., Barbosa, J.G.: List scheduling algorithm for heterogeneous systems
by an optimistic cost table. IEEE Trans. Parallel Distrib. Syst. 25(3), 682–694
(2014)

3. Aupy, G., Brasseur, C., Marchal, L.: Dynamic memory-aware task-tree schedul-
ing. In: 2017 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pp. 758–767 (2017)

4. Baruah, S., Fisher, N.: The partitioned multiprocessor scheduling of deadline-
constrained sporadic task systems. IEEE Trans. Comput. 55(7), 918–923 (2006)

5. Birgin, E.G., Feofiloff, P., Fernandes, C.G., De Melo, E.L., Oshiro, M.T., Ronconi,
D.P.: A MILP model for an extended version of the flexible job shop problem.
Optimization Lett. 8(4), 1417–1431 (2014)

6. Brucker, P., Schlie, R.: Job-shop scheduling with multi-purpose machines. Com-
puting 45(4), 369–375 (1990)

7. Chantem, T., Hu, X.S., Dick, R.P.: Temperature-aware scheduling and assignment
for hard real-time applications on mpsocs. IEEE Trans. Very Large Scale Integra-
tion Syst. 19(10), 1884–1897 (2010)

8. Chen, Y.S., Liao, H.C., Tsai, T.H.: Online real-time task scheduling in hetero-
geneous multicore system-on-a-chip. IEEE Trans. Parallel Distrib. Syst. 24(1),
118–130 (2012)

9. Dick, R.P., Rhodes, D.L., Wolf, W.: Tgff: task graphs for free. In: Proceedings of
the Sixth International Workshop on Hardware/Software Codesign, pp. 97–101.
IEEE (1998)

10. Ding, J., Lü, Z., Li, C.M., Shen, L., Xu, L., Glover, F.: A two-individual based
evolutionary algorithm for the flexible job shop scheduling problem. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 2262–2271 (2019)

11. Du, J., Wang, Y., Zhuge, Q., Hu, J., Sha, E.H.M.: Efficient loop scheduling for chip
multiprocessors with non-volatile main memory. J. Signal Process. Syst. 71(3),
261–273 (2013)

12. Ergu, D., Kou, G., Peng, Y., Shi, Y., Shi, Y.: The analytic hierarchy process: task
scheduling and resource allocation in cloud computing environment. J. Supercom-
put. 64(3), 835–848 (2013)

13. Fu, Z., Tang, Z., Yang, L., Liu, C.: An optimal locality-aware task scheduling
algorithm based on bipartite graph modelling for spark applications. IEEE Trans.
Parallel Distrib. Syst. 31(10), 2406–2420 (2020)

14. González, M.A., Vela, C.R., Varela, R.: Scatter search with path relinking for the
flexible job shop scheduling problem. Eur. J. Oper. Res. 245(1), 35–45 (2015)

15. Hansmann, R.S., Rieger, T., Zimmermann, U.T.: Flexible job shop scheduling with
blockages. Math. Methods Oper. Res. 79(2), 135–161 (2014)

16. Hu, Y., Li, J., He, L.: A reformed task scheduling algorithm for heterogeneous
distributed systems with energy consumption constraints. Neural Comput. Appl.
32(10), 5681–5693 (2020)

17. Ilavarasan, E., Thambidurai, P.: Low complexity performance effective task
scheduling algorithm for heterogeneous computing environments. J. Comput. Sci.
3(2), 94–103 (2007)

A Tabu Search Algorithm for Data Allocation and Task Scheduling 379

18. Kang, Q., He, H., Song, H.: Task assignment in heterogeneous computing systems
using an effective iterated greedy algorithm. J. Syst. Softw. 84(6), 985–992 (2011)

19. Kang, S., Dean, A.G.: Darts: techniques and tools for predictably fast memory
using integrated data allocation and real-time task scheduling. In: The 16th IEEE
Real-Time and Embedded Technology and Applications Symposium, pp. 333–342.
IEEE (2010)

20. Liu, J.: An application of generalized tree pebbling to sparse matrix factorization.
SIAM J. Algebraic Discrete Methods (1987)

21. Mastrolilli, M., Gambardella, L.M.: Effective neighbourhood functions for the flex-
ible job shop problem. J. Sched. 3(1), 3–20 (2000)

22. Ouni, B., Ayadi, R., Mtibaa, A.: Partitioning and scheduling technique for run
time reconfigured systems. Intern. J. Comput. Aided Eng. Technol. 3(1), 77–91
(2011)

23. Özgüven, C., Özbakır, L., Yavuz, Y.: Mathematical models for job-shop scheduling
problems with routing and process plan flexibility. Appl. Math. Model. 34(6), 1539–
1548 (2010)

24. Peris, A.D., Hernández, J., Huedo, E.: Distributed late-binding scheduling and
cooperative data caching. J. Grid Comput. 15, 235–256 (2017)

25. Praveenchandar, J., Tamilarasi, A.: Dynamic resource allocation with optimized
task scheduling and improved power management in cloud computing. J. Ambient.
Intell. Humaniz. Comput. 12(3), 4147–4159 (2021)

26. Ramakrishnan, A., et al.: Scheduling data-intensiveworkflows onto storage-
constrained distributed resources. In: Seventh IEEE International Symposium on
Cluster Computing and the Grid, vol. 1, pp. 401–409 (2007)

27. Roshanaei, V., Azab, A., ElMaraghy, H.: Mathematical modelling and a meta-
heuristic for flexible job shop scheduling. Int. J. Prod. Res. 51(20), 6247–6274
(2013)

28. Sb̂ırlea, D., Budimlić, Z., Sarkar, V.: Bounded memory scheduling of dynamic task
graphs. In: Proceedings of the 23rd International Conference on Parallel Architec-
tures and Compilation, pp. 343–356 (2014)

29. Sergent, M., Goudin, D., Thibault, S., Aumage, O.: Controlling the memory sub-
scription of distributed applications with a task-based runtime system. In: 2016
IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pp. 318–327 (2016)

30. Sethi, R., Ullman, J.D.: The generation of optimal code for arithmetic expressions.
J. ACM 17(4), 715–728 (1970)

31. Shao, Z., Zhuge, Q., Xue, C., Sha, E.M.: Efficient assignment and scheduling for
heterogeneous dsp systems. IEEE Trans. Parallel Distrib. Syst. 16(6), 516–525
(2005)

32. Topcuoglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst.
13(3), 260–274 (2002)

33. Wang, G., Wang, Y., Liu, H., Guo, H.: Hsip: a novel task scheduling algorithm for
heterogeneous computing. Sci. Program. 2016(2), 1–11 (2016)

34. Wang, Y., Li, K., Chen, H., He, L., Li, K.: Energy-aware data allocation and task
scheduling on heterogeneous multiprocessor systems with time constraints. IEEE
Trans. Emerg. Top. Comput. 2(2), 134–148 (2014)

35. Xia, W., Quek, T.Q., Zhang, J., Jin, S., Zhu, H.: Programmable hierarchical c-ran:
from task scheduling to resource allocation. IEEE Trans. Wireless Commun. 18(3),
2003–2016 (2019)

380 J. Ding et al.

36. Yin, L., Luo, J., Luo, H.: Tasks scheduling and resource allocation in fog computing
based on containers for smart manufacturing. IEEE Trans. Industr. Inf. 14(10),
4712–4721 (2018)

37. Yuan, H., Bi, J., Zhou, M.: Spatial task scheduling for cost minimization in dis-
tributed green cloud data centers. IEEE Trans. Autom. Sci. Eng. 16(2), 729–740
(2018)

38. Zhuge, Q., Guo, Y., Hu, J., Tseng, W.C., Xue, C.J., Sha, E.H.M.: Minimizing
access cost for multiple types of memory units in embedded systems through data
allocation and scheduling. IEEE Trans. Signal Process. 60(6), 3253–3263 (2012)

ACDP-Floc: An Adaptive Clipping
Differential Privacy Federation Learning
Method for Wireless Indoor Localization

Xuejun Zhang(B) , Xiaowen Sun, Bin Zhang, Fenghe Zhang, Xiao Zhang,
and Haiyan Huang

School of Electronic and Information Engineering, Lanzhou Jiaotong University,
Lanzhou 730070, China

xuejunzhang@mail.lzjtu.cn

Abstract. With the increasing demand for location services, the finger-
print recognition technology based on the received signal strength (RSS)
has been paid more and more attention and applied due to its advantages
of mature infrastructure and easy implementation, Federated Learning
(FL) has been applied to indoor localization to solve data silos and pri-
vacy security problems in recent research work. To prevent eavesdrop-
pers from inferring private information and model features of the client
by analyzing parameter information. Some researchers introduce differ-
ential privacy (DP) technology into FL for privacy protection, but the
addition of noise seriously affects the availability of data and models.
We investigate the privacy loss measurement and tracking methods of
DP and propose ACDP-Floc, an adaptive clipping differential private
federated learning method for indoor location, the usability of data and
model is improved by adaptive clipping of model gradient. Experimental
results show that: when the privacy budget ε = 1.0, which indicates that
the algorithm adds a large noise, ACDP-Floc achieves 92.53%, 93.61%
and 96.54% classification accuracy for the Mall Area, Mall-Wi-Fi and
UIJIIndoorLoc three real datasets, respectively.

Keywords: Privacy protection · Federal learning · Indoor
localization · Differential privacy · Adaptive clipping

1 Introduction

Indoor location technology makes up for the defect that GPS/BDS is prone to
failure in indoor environment, its importance and commercial value have become
increasingly apparent, which has been widely concerned by the society [1]. Recent
progress in indoor location has led a number of technologies, including those
based on infrared positioning technology, ultrasonic positioning technology, Blue-
tooth positioning technology, Wi-Fi location technology, ultra-bandwidth loca-
tion technology, radio frequency identification location technology, and geomag-
netic location technology [2], as well as hybrid positioning systems that combine
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 381–393, 2024.
https://doi.org/10.1007/978-981-97-0801-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_22&domain=pdf
http://orcid.org/0000-0002-0350-359X
https://doi.org/10.1007/978-981-97-0801-7_22

382 X. Zhang et al.

these technologies. Fingerprint positioning technology based on received signal
strength (RSS) has become the mainstream trend of indoor positioning due to
its advantages such as simple implementation, low cost, low power consumption
and mature infrastructure [3]. The distributed learning framework represented
by FL solves the problems of the centralized learning framework, such as exces-
sive network transmission load, insufficient computing resources, response delay
and network congestion [4], it enhances the performance of location services.
Recent research has proposed deploying DL-based indoor fingerprint position-
ing systems into FL to provide low-latency, real-time responsiveness, and high-
precision indoor positioning services to the external users. Bo Gao et al. [5] pro-
pose an FL framework (FedLoc3D) for both building-floor classification (BFC)
and latitude-longitude regression (LLR), which based on a convolutional neu-
ral network with depthwise separable convolutions. However, some studies has
shown that attackers can use differential attacks and model inversion attacks to
extract user information through model parameters, which poses a serious threat
to user privacy [6]. Existing methods mostly employ techniques such as encryp-
tion, k anonymous mechanism or DP to ensure privacy protection in the FL
scenario [7]. The use of encryption-based techniques require significant computa-
tional resources and time for encryption and decryption operations, it also leads
to increased communication overhead during data transmission, its effectiveness
remains to be further validated. As a result, there is not suitable for FL scenarios
with resource-constrained end device and high-frequency data updates. There-
fore, researchers tend to prefer combining federated learning with DP techniques.
Shen X et al. [8] develop a performance-enhanced DP-based FL (PEDPFL) algo-
rithm, where a classifier-perturbation regularization method improve the robust-
ness of the trained model against DP-injected noise. Nevertheless, the added
noise significantly impairs data availability and the learning process, resulting
in a substantial degradation in model performance [9], thereby preventing users
from obtaining satisfactory indoor localization services. In response to the issue
of decreased model accuracy due to differential privacy [10], Xu Z et al. [11]
develop an adaptive and fast convergent learning algorithm with a provable pri-
vacy guarantee, which mitigates the negative effect of differential privacy upon
the model accuracy by introducing adaptive noise. [12]improve the image classi-
fication ability of CNN models under differential privacy protection that improve
the classification utility. These methods have made some advancements in terms
of model performance and data availability, but there are still significant limita-
tions, particularly when applied to real-world location datasets.

In order to solve the above problems and challenges, and provides high pre-
cision, security, and real-time indoor location services for users, we study the
ways and methods of disclosing user privacy and model parameter privacy dur-
ing indoor location model training through DP and FL. This paper design a
dynamic privacy protection method for indoor localization that safeguards the
privacy of user data and model parameters by implementing a finer-grained gra-
dient clipping mechanism. Finally, we set up a comprehensive experiment on
three real data sets to evaluate the performance of our method in the real envi-

ACDP-Floc 383

ronment, and found that our method is superior to other methods mentioned in
this paper at the comprehensive evaluation of positioning accuracy and response
time.

– To the best of our knowledge, the ACDP-Floc is the first work to address
the substantial decline of FL model accuracy caused by privacy protection
while using DP. Our ACDP-Floc succeeds in utilizing the privacy tracking
and adaptive gradient clipping technique to mitigate the impact of DP mech-
anisms on the precision of FL models.

– We design an adaptive privacy protection method for wireless indoor local-
ization to protect the privacy of users’ data and model parameters by imple-
menting a finer-grained gradient clipping mechanism.

– we set up a comprehensive experiment on three practical datasets to evaluate
the performance of our method in the practical environment, and find that
our method is superior to other methods mentioned in this paper at the
comprehensive evaluation of localization accuracy and response time.

The rest of the paper is organized as follows. Section 2 is the details of
ACDP-Floc. In Sect. 3, we present the experiments and performance evaluation.
Section 4 shows the conclusion.

2 Our Proposed Method

In this section, we present FL localization framework, propose adaptive DP deep
learning localization technique.

2.1 System Framework

Our group conducted in-depth research on the privacy protection of localization
systems with FL, and advanced both a differential private indoor localization
federated learning model and a framework for edge computing in our previous
work [13]. We propose a novel method to optimize the approach of adding noise
to the model parameters. The framework of ACDP-Floc is shown in Fig. 1.

The framework of ACDP-Floc consists of three entities: end devices, edge
servers, and cloud server. The end devices collect and stores local indoor RSS
data and sends it to nearby edge servers, while independently preprocessing and
adding noise to the collected RSS datasets; The edge servers first receive the
disturbed RSS fingerprint data uploaded by nearby end devices, and aggregate
these fingerprint data into RSS fingerprint data containing multiple user infor-
mation. At the same time, it utilize these aggregated data for trusted training of
local localization sub models, and upload the trained local sub model parameters
to the cloud server. The cloud server use the FedAvg algorithm to update the
global model parameters, and distribute the updated model parameters to each
edge servers for the next round of iterative training until the optimal training
model is obtained.

384 X. Zhang et al.

Fig. 1. The framework of ACDP-Floc

The privacy threats to the FL framework are listed as follows.

Threat 1: Potential privacy leakage. Although the FL training process only
exchanges model parameters without sharing original data, the latest research
shows attackers can still use model inversion attacks and gradient backward
inference attacks to obtain user’s privacy through model parameters.

Threat 2: Data privacy leakage. The servers, as the data collector, are not
trustworthy for the users yet, so privacy threaten are primary concerns for users
before submitting data.

To counter the Threat 1 and Threat 2, our group have introduced DP
techniques to protect user’s privacy by adding appropriate Laplace noise to the
model parameters of the original data and each participant under the FL pro-
tocol. The specific methods for addressing Threat 1 and Threat 2 faced by
the framework are detailed in Sect. 2.3 of the article We addressed the require-
ments of privacy protection partially, but the method performed poorly in model
localization accuracy and data availability.

In this paper, we propose ACDP-Floc to optimize the approach of adding
noise to the model parameters, so as to improve the data availability and model
accuracy.

2.2 Adaptive Privacy Protection

To address the security threats to FL, all edge servers are required to protect
the privacy of the model parameters obtained from the training of local datasets

ACDP-Floc 385

when they are uploaded. Zheng et al. and Yang et al. [14,15] proposed to uti-
lize the schemes based on Paillier encryption and Secret sharing algorithm to
protect privacy respectively, yet both suffer from excessive computational over-
head. In contrast, DP techniques are less computationally intensive and more
suitable for resource-constrained edge computing devices. To better characterize
the differences in model parameters of the neural network on any two datasets,
we utilize DP-SGD to control the effect of data on the model. Zhang et al. [13]
used DP techniques to add noise matching the Laplace distribution on model
parameters directly to protect parameters privacy, but it causes a large loss of
model accuracy. Abadi. et al. [16] employed moment account to track the pri-
vacy loss during training, clipped the gradient with a global threshold C and
added Gaussian noise to protect the parameters privacy. But in this method the
threshold C is a fixed value. DP-SGD clips the L2 norms of the gradient vec-
tor by a threshold C, which limiting the gradient of each example during each
iteration ∇θL(θ, x). So the selection of C value is crucial for DP deep learning,
which will add too much noise if it is too large and will overclip the gradient if
it is too small.

0.0189

0.0527

0.0063

0.0094

0.0013

0.00132

0.0030

0.0038

0.0011

0.0009

0.0025

0.0035

0.0020

0.0027

0.0154

0.0086

0.0000

0.0000

mean:0.00741

C
N

N
 g

ra
d
ie

n
t

co
m

p
o
n
en

t

 Component L2 norm

L2Norm

Fig. 2. L2 norms of the gradient component of the model

Xu et al. [11] presented gradient norms decreases as the model converges
in CNN, but the L2 norms of each gradient component is different, as shown
in Fig. 2. Therefore, gradient clipping with a fixed value of C is not reasonable.
Here come the reasons. First, the fixed value cannot adapt itself to the decreasing
gradient as the model converges. Second, it cannot adapt to different gradient
magnitudes.

In this paper, we propose an adaptive DP mechanism for model gradient,
which can adaptively adjust the clipping threshold according to the training pro-
cess to reduce the negative impact of noise on model accuracy. For the continuity
and progressivity of the model optimization process, the historical gradient can
estimate the value of the current gradient. We use the average historical gradient
as a priori knowledge to predict the gradient in the current round.

386 X. Zhang et al.

Algorithm 1 presents ACDP-Floc. In each iteration, a batch of examples are
drawn from the training datasets and the algorithm calculates the loss, training
accuracy and gradient of the step. The gradient clipping bounds per-example
gradients by L2 norms clipping with a threshold C. Gaussian mechanism adds
random noise ξ˜gausssian(0, σ, Ct) to the clipped gradient g′, which is shown in
Fig. 3. Ultimately, the next round of gradient clipping threshold is calculated
from the current gradient and the calculation process of historical gradient is
implemented as follows.

Algorithm 1 The algorithm of ACDP-Floc
Input: Training examples {x1, x2, x3, . . . , xN}; Learning rate lr; Gradient norms

bound C; Noise scale σ; Batch size L; Client numbers N ; Communication numbers
T ; Total privacy budget εtotal ; Model training times Epoch.

Output: Model parameters wi+1.
1: for i in T do
2: Initialise w0, E[g̃2]0
3: for per client in system do
4: we

i ← wi; // Receive parameters
5: for t in Epoch do
6: rdp ← rdp_account(L/N, orders, σ, Epoch ∗ T); // Calculate rdp value
7: εcurr ← AdpBudgetAlloc(εtotal, i, T, schedual); // Calculating Privacy

Budget Losses
8: if εcurr > εtotal then
9: break;

10: end if
11: for s in step do
12: Take a batch of data samples Bs from the training dataset;
13: ge,i

t ← ∇wtL(we
t , x); // Compute gradient

14: (ge,i
t)′ ← ge,i

t /max(1,
||ge,it ||2

C
); // Clip gradient

15: (ĝe,i
t)′ ← 1

B

{
(ge,i

t)′ + ggausssian(0, σ, Ct)
}
; // Add noise

16: E[(g̃e,i
t)′2]t+1 = γE[(ĝe,i

t)′2]t + (1− γ)E[(ĝe,i
t)′2]t−1; // Estimate the

next gradient
17: if E[(g̃e,i

t)′2]t+1 > G then

18: Ct+1 = β
√

E[(g̃e,i
t)′2]t+1;

19: end if
20: we

t ← we
t − lr ∗ ĝe,i

t ;
21: end for
22: end for
23: end for

24: wi+1 = 1
N

N∑

e=1

we
i ; //Parameters aggregation;

25: Parameters Broadcast: Broadcast the aggregated parameters to the client;
26: end for

We forecast the next round of gradients E[g̃2]t+1 using historical gradients
E[ĝ2]t−1 and current gradients E[ĝ2]t, which is used to calculate the clipping

ACDP-Floc 387

Fig. 3. Local sub-models add noise

threshold Ct+1 for the next round, defined as Ct+1 = β
√

E[g̃2]
t+1

, where β is
local clipping factor. The priori knowledge E[ĝ2]t−1

and E[ĝ2]t are given by:

E[ĝ2]0 =
→
0 (1)

E[g̃2]t+1 = γE[ĝ2]t + (1 − γ)E[ĝ2]t−1, (t > 0) (2)

Here, prior knowledge E[ĝ2]0 = 0→ at the first training round, which will lead
to Ct+1 = β

√
E[g̃2]

t+1
= 0, cannot be used for gradient cropping. So we set a

threshold value G, let the gradient clipping threshold take a fixed value C when
the priori knowledge of the gradient is not enough at the early stage of training.
To conclude, the process of noise added for edge server e in round t is as shown
follows:

(ĝe,i
t)′ ← 1

B

{
(ge,i

t)′ + ggausssian(0, σ, Ct)
}

(3)

where

Ct+1 =
{

C ,E[g̃2]t+1 < G

β
√

E[g̃2]
t+1

, E[g̃2]t+1 > G
(4)

From the aforementioned, as the model converging, the local clipping
threshold Ct+1 decreases with E[g̃2]t+1, which makes the added noise
ξ˜gausssian(0, σ, Ct) also smaller and smaller, and contributes to the convergence
of the model.

2.3 Framework Detail

The algorithmic framework involves three main steps.

a) In order to avoid users directly leaking their privacy to untrustworthy edge
servers, to address the second type of privacy security threat, end devices first
use PCC to eliminate the weakly correlated RSS fingerprint data, convert it
to grayscale images, and use (ε, δ)-DP techniques to differentially scramble
the converted grayscale images for protecting their own data privacy.

b) To address the first type of privacy security threat, during the model training
process, the edge servers use the perturbed data for model training. They
calculate the privacy budget loss, adjusts the degree of perturbation of the

388 X. Zhang et al.

parameters gradient with the achieved fine-grained control of the noisy data,
adaptively. Then the edge servers submit the sub-model parameters to the
cloud server.

c) The cloud server receives the sub-model parameters from each edge servers,
aggregates them, then sends the aggregated parameters to each edge servers
for the next iteration of training.

In summary, the ACDP-Floc as a whole satisfies (ε, δ)-DP , and it is dif-
ficult for any attacker to obtain privacy of user’s data and model parameters
using malicious means such as differential analysis, model inversion attacks, and
inference attacks.

3 Experimental Evaluation

In this section, we conduct comprehensive experiments on three pratical datasets
to qualify the performance of ACDP-Floc, and set a FL method NO-DP based on
SGD without privacy protection, DPSGD [16], DP-FLocEC [13], ICGC-DP [12]
as the baselines. In the following, we initially describe the experimental settings
which includes the experimental setup, FL framework, datasets and parameters
settings. Additionally, we introduce the evaluation metrics. Finally, we compare
the accuracy and time overhead of ACDP-Floc with the others.

3.1 Experimental Settings

Experimental Setup. The configuration used for the experimental procedure
is as follows: the operating system is Windows 10, the RAM size is 32G, the
GPU is GeForce RTX 3060, and the code is mainly based on the TensorFlow 2.0
framework.

FL Framework. In order to simulate the FL protocol of indoor positioning in
edge computing environment, we construct an indoor positioning model using
TensorFlow 2.0, and simulate two edge servers with the same data volume. Socket
protocol is used to realize the communication between edge servers and cloud
server. And the optimizer uses SGD.

Datasets. We verifiy the validity of the method on 3 publicly practical location
datasets: Mall Area [17], Mall_Wi-Fi [17] and UIJIIndoorLoc [13].

Parameters Settings. The fixed cropping threshold C, the privacy budget
ε = 1.0, and β = 1.2 in the adaptive optimization algorithm, the number of
training rounds on dataset Mall Area, Mall_Wi-Fi and UIJIIndoorLoc are 1000,
500 and 500, the learning rate on methods NO-DP, ICGC-DP and ACDP-Floc
are 0.015 while on DPSGD is 0.001.

ACDP-Floc 389

3.2 Evaluation Metrics

Cosine Similarity (CS), CS measures how similar the two time series data are
in terms of direction, and takes values in the range [−1, 1], with values closer to
1 indicating that two time series data are more similar. The formulas of CS as
follows:

CS(A,B) =
A • B

||A|| ∗ ||B|| (5)

Here, A and B are two time series data. • represents the dot product (inner
product) of the vectors. ||A|| ∗ ||B|| represent the L2 norms of vectors A and B,
respectively.

10 20 30 40 50 60 70 80 90 100
−0.006

0.000

0.006

G
ra

di
en

t_
C

om
po

ne
nt

s_
X

Gradient_With_training

 Adaptive clipping
 Baseline SGD
 Fixed clipping

Fig. 4. Variation of random one gradient of the model with training

3.3 Gradient Descent

In purpose of measuring the utility of the proposed adaptive gradient clipping
algorithm in model training, we compare the method adaptive clipping with the
method fixed clipping. On the UIJIIndoorLoc dataset, we observe the historical
gradient that is under the adaptive gradient clipping and the gradient clipping
with a fixed threshold compared to the baseline SGD. Then we find ACDP-Floc
to be better at retaining some information as shown in the Fig. 4.

Figure 4 illustrates the historical value that is the average value of a random
gradient component in the CNN model with the above models of clipping. It
is clear to gain that our method satisfies DP while retaining more gradient
knowledge during model training.

Here, we use CS to measure the evolution in the gradient of the model by
different clipping methods in Table 1.

As shown in Table 1, the CS between adaptive clipping, fixed clipping and
N0-DP are 0.2882 and 0.0235. We know that compared with the fixed threshold
method, the clipped gradient values and gradient changes of adaptive clipping
method are more consistent with the original gradient, which makes the gradient
retain more of the original information. The performance and effectiveness of the
model are maintained while data privacy is protected.

390 X. Zhang et al.

Table 1. Cosine Similarity between NO-DP and other methods

Metrics Between NO-DP and different method
DPSGD DP-FLocEC

CS 0.2882 0.0235

3.4 Accuracy

To validate the performance of our method on practical datasets, we conduct
experiments on three practical location datasets, and the accuracy of different
methods on practical datasets is shown in Table 2.

Table 2. Accuracy comparisons on practical localization datasets

Dataset Accuracy comparisons on practical localization datasets
NO-DP DPSGD ICGC-DP ACDP-Floc

Mall Area 0.9371 0.6355 0.5697 0.9253
Mall_Wi-Fi 0.9442 0.7219 0.5694 0.9361
UIJIIndoorLoc 0.9689 0.7567 0.7037 0.9654

As shown in Table 2, on the Mall Area datasets, the accuracy of NO-DP and
ACDP-Floc reach 0.9371 and 0.9253, respectively. But the DPSGD and ICGC-
DP can only reach 0.6355 and 0.5697. On the Mall_Wi-Fi datasets, the accu-
racy of NO-DP and ACDP-Floc reach 0.9442 and 0.9461, respectively, but the
DPSGD and ICGC-DP can only reach 0.7219 and 0.5694. On the UIJIIndoor-
Loc datasets, the accuracy of NO-DP and ACDP-Floc reach 0.9689 and 0.9654,
respectively. But the classical DPSGD and ICGC-DP can only reach 0.7037. It
should be noted that the accuracy significantly decreases and the model is unus-
able when we directly add Laplace noise to the weights of our model using the
DP-FLocEC for privacy protection.

Table 2 illustrates that compared with NO-DP, which cannot ensure pri-
vacy security, our ACDP-Floc accuracy only loses 0.0118, 0.0041, and 0.0018 on
the Mall Area, Mall_Wi-Fi, and UIJIIndoorLoc datasets, respectively. In addi-
tion, our method achieves significant improvements of 0.2893, 0.2142, 0.2087 and
0.3556, 0.3667, 0.2617 on the three practical datasets, respectively, when com-
pared to the DPSGD and ICGC-DP, which also ensure privacy preservation.
This is because our ACDP-Floc performs a finer-grained clip of the gradient and
adds less noise in the same steps.

In addition, we evaluate the average time consumption of the ACDP-Floc,
DPSGD, ICGC and NO-DP methods on the Mall Area, Mall_Wi-Fi and UIJI-
IndoorLoc datasets, respectively. As shown in Fig. 5, we observe the average time
consumption of these methods over 500 training rounds on different datasets.

ACDP-Floc 391

100 200 300 400 500
0

1

2

3

4

5

6

7

8

9

10
T

ra
in

g
 t

im
e

p
er

 1
0
0
 r

o
u
n
d
s

Mall Area

100 200 300 400 500
0

1

2

3

4

5

6

7

8

9

10

Mall-Wi-Fi

100 200 300 400 500
0

5

10

15

20

25

30

UIJIIndoorLoc

 NO-DP ICGC DPSGD ATDP-Floc

Fig. 5. Training time of different methods on three practical datasets

The time consumption of model training is inconsistent across different
datasets. For example, in a 500-round training of the UIJIIndoorLoc dataset,
the total time and time per round for training the NO-DP model are 114.10min
and 13.69 s. Due to gradient clip and noise addition, the total time and each
round time for training the DPSGD and ICGC are 166.92, 253.4min and 20.03,
30.41 s, respectively. Meanwhile, the total time and time per round for training
the ACDP-Floc model are 171.95min and 20.63 s. We conclude from Fig. 5 and
Tab. 2 that the extra cost of time is negligible compared to the progress we have
made in terms of accuracy.

4 Conclusion

In this paper, we propose an adaptive clipping differential private FL method
which improves our previous work for wireless indoor location. First, we present
an adaptive privacy protection framework for indoor localization. Specifically,
we differentiate the gradient tensor of the model in training and obtain clipping
factors for each gradient component, and then add adaptive noise based on these
clipping factors. Finally, our ACDP-Floc pays more attention on the gradient
clipping, resulting in more time spent in experiments. But we achieve an accu-
racy improvement of 37.2% compared to the ICGC-DP while spending 32.5% less
time. Even compared with DPSGD, we achieve a 27.6% accuracy improvement
while incurring only an additional 3.01% time cost. Therefore, we demonstrate
that, ACDP-Floc has better performance in practical wireless indoor localiza-
tion scenarios compared with other baselines in this paper. In the future, we will
study the asynchronous FL to solve the communication problems caused by syn-
chronous FL, and strive to improve the real-time performance and effectiveness
of wireless indoor localization services.

Acknowledgements. This work was supported by the National Natural Science
Foundation of China under grant number 61762058, Education Industry Support Plan
of Gansu Provincial Department under grant number 2022CYZC-38 and the Natural
Science Foundation of Gansu Province under grant number 21JR7RA282.

392 X. Zhang et al.

References

1. Zhu, X., Qu, W., Qiu, T., Zhao, L., Atiquzzaman, M., Wu, D.: Indoor intelligent
fingerprint-based localization: principles. Approaches Challenges 22(4), 2634–2657
(2020)

2. Yan, D., Song, W., Wang, X., Hu, Z.: Domestic indoor positioning technology
development status review. J. Navigation Positioning 7(04), 5–12 (2019). https://
doi.org/10.16547/j.cnki.10-1096.20190402

3. Nagia, N., Rahman, M.T., Valaee, S.: Federated learning for wifi fingerprinting.
In: ICC 2022 - IEEE International Conference on Communications, pp. 4968–4973
(2022). https://doi.org/10.1109/ICC45855.2022.9838945

4. Cheng, X., Liu, T., Shu, F., Ma, C., Li, J., Wang, J.: Providing location information
at edge networks: a federated learning-based approach. IEEE Netw. 36(5), 114–120
(2022). https://doi.org/10.1109/MNET.001.2200212

5. Gao, B., Yang, F., Cui, N., Xiong, K., Lu, Y., Wang, Y.: A federated learning
framework for fingerprinting-based indoor localization in multibuilding and mul-
tifloor environments. IEEE Internet Things J. 10(3), 2615–2629 (2023). https://
doi.org/10.1109/JIOT.2022.3214211

6. Liu, Y., et al.: ML-Doctor: holistic risk assessment of inference attacks against
machine learning models. In: 31st USENIX Security Symposium (USENIX Security
2022), pp. 4525–4542. USENIX Association, Boston, MA (2022)

7. Nieminen, R., Järvinen, K.: Practical privacy-preserving indoor localization based
on secure two-party computation. IEEE Trans. Mob. Comput. 20(9), 2877–2890
(2021). https://doi.org/10.1109/TMC.2020.2990871

8. Shen, X., Liu, Y., Zhang, Z.: Performance-enhanced federated learning with differ-
ential privacy for internet of things. IEEE Internet Things J. 9(23), 24079–24094
(2022). https://doi.org/10.1109/JIOT.2022.3189361

9. Jiang, B., Li, J., Wang, H., Song, H.: Privacy-preserving federated learning for
industrial edge computing via hybrid differential privacy and adaptive compression.
IEEE Trans. Industr. Inf. 19(2), 1136–1144 (2023). https://doi.org/10.1109/TII.
2021.3131175

10. Koskela, A., Honkela, A.: Learning rate adaptation for differentially private learn-
ing. In: Proceedings of the Twenty Third International Conference on Artificial
Intelligence and Statistics, vol. 108, pp. 2465–2475. PMLR (2020)

11. Xu, Z., Shi, S., Liu, A.X., Zhao, J., Chen, L.: An adaptive and fast conver-
gent approach to differentially private deep learning. In: 2020 IEEE Conference
on Computer Communications, pp. 1867–1876 (2020). https://doi.org/10.1109/
INFOCOM41043.2020.9155359

12. Ma, C., Kong, X., Huang, B.: Image classification based on layered gradient clipping
under differential privacy. IEEE Access 11, 20150–20158 (2023). https://doi.org/
10.1109/ACCESS.2023.3249575

13. Xuejun, Z., Fucun, H., Jiyang, G., Junda, B., Haiyan, H., Xiaogang, D.: A differ-
entially private federated learning model for fingerprinting indoor localization in
edge computing. J. Comput. Res. Dev. 59(12), 2667–2688 (2022)

14. Yang, Z., Järvinen, K.: The death and rebirth of privacy-preserving wifi fingerprint
localization with paillier encryption. In: IEEE INFOCOM 2018 - IEEE Conference
on Computer Communications, pp. 1223–1231 (2018)

15. Yang, X., Luo, Y., Xu, M., fu, S., Chen, Y.: Privacy-preserving wifi fingerprint
localization based on spatial linear correlation. In: Wireless Algorithms, Systems,

https://doi.org/10.16547/j.cnki.10-1096.20190402
https://doi.org/10.16547/j.cnki.10-1096.20190402
https://doi.org/10.1109/ICC45855.2022.9838945
https://doi.org/10.1109/MNET.001.2200212
https://doi.org/10.1109/JIOT.2022.3214211
https://doi.org/10.1109/JIOT.2022.3214211
https://doi.org/10.1109/TMC.2020.2990871
https://doi.org/10.1109/JIOT.2022.3189361
https://doi.org/10.1109/TII.2021.3131175
https://doi.org/10.1109/TII.2021.3131175
https://doi.org/10.1109/INFOCOM41043.2020.9155359
https://doi.org/10.1109/INFOCOM41043.2020.9155359
https://doi.org/10.1109/ACCESS.2023.3249575
https://doi.org/10.1109/ACCESS.2023.3249575

ACDP-Floc 393

and Applications: 17th International Conference, WASA 2022, Dalian, China, 24–
26 November 2022, Proceedings, Part I, pp. 401–412 (2022). https://doi.org/10.
1007/978-3-031-19208-1_33

16. Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K.:
Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2016, pp. 308–318.
Association for Computing Machinery, New York (2016). https://doi.org/10.1145/
2976749.2978318

17. Zhang, X., et al.: A differentially private indoor localization scheme with fusion of
wifi and bluetooth fingerprints in edge computing. Neural Comput. Appl. 34(6),
4111–4132 (2022). https://doi.org/10.1007/s00521-021-06815-9

https://doi.org/10.1007/978-3-031-19208-1_33
https://doi.org/10.1007/978-3-031-19208-1_33
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1007/s00521-021-06815-9

Label-Only Membership Inference Attack
Against Federated Distillation

Xi Wang1, Yanchao Zhao1(B), Jiale Zhang2, and Bing Chen1

1 College of Computer Science and Technology, Nanjing University of Aeronautics
and Astronautics, Nanjing 211106, China

yczhao@nuaa.edu.cn
2 School of Information Engineering, Yangzhou University, Yangzhou 225009, China

Abstract. Federated learning is a prevailing distributed machine learn-
ing paradigm that aims to protect data privacy by training models
locally. However, it is still vulnerable to various attacks, such as feder-
ated membership inference attacks, which can reveal the data or model
information of the participants. To prevent these attacks, some protec-
tion measures have been proposed, such as data encryption/distortion
or federated distillation (FD). It is a more sophisticated framework that
communicates logits instead of model parameters, which can enhance the
resistance to attacks. Nevertheless, in this paper, we investigate mem-
bership inference attacks in FD and demonstrate that malicious users
can still infer the membership status and even reconstruct the data of
the clients in FD. Moreover, we design two black-box membership infer-
ence attacks against FD and improve the attack accuracy by using data
reconstruction as a pre-attack. Our experimental results show that even
without access to model gradients in FD, our method can achieve over
80% attack accuracy on the server side for the EMNIST and CIFAR-100
datasets. We also show that our method can boost attack effectiveness
by incorporating data reconstruction as a pre-attack.

Keywords: Federated distillation · membership inference attack ·
data reconstruction

1 Introduction

Nowadays, data privacy protection is becoming increasingly critical. In tradi-
tional machine learning, large volumes of data are required for model train-
ing. However, direct transmission of such sensitive data leads to serious privacy
breaches. In contrast, federated learning (FL) [23], a distributed model training
framework, offers a more secure solution where each data participant trains their
model locally and uploads their gradient parameters to the central server in each
communication round while holding native data locally. This distributed learn-
ing approach can almost achieve the accuracy of centralized machine learning,
while effectively avoiding direct data transfer.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 394–410, 2024.
https://doi.org/10.1007/978-981-97-0801-7_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_23&domain=pdf
https://doi.org/10.1007/978-981-97-0801-7_23

Label-Only Membership Inference Attack Against Federated Distillation 395

Nonetheless, the transmission of gradient parameters during federated learn-
ing training may still put privacy at risk. For example, adversaries can obtain
the target gradient and carry out data reconstruction attacks based on the gra-
dient, such as using generative adversarial networks (GANs) [15] for data recon-
struction based on the gradient passed by the model [2,29]. More seriously, the
adversary can launch a membership inference attack as a training participant,
which seriously leaks the user’s private data [16].

Fig. 1. Passive and curious servers in federated distillation.

Correspondingly, federated distillation (FD) [10,11], combined with knowl-
edge distillation technology [8], avoids direct transmission of gradients containing
sensitive information, thus playing a critical role in defense against attacks. As
shown in Fig. 1, in FD, the malicious server can only obtain the uploaded logits
and output labels of the target model. Thus, so other forms of federated learn-
ing architectures struggle to defend against membership inference attacks if such
attacks were to occur during federated distillation. However, to the best of our
knowledge, few works have investigated privacy and security issues in federated
distillation.

To this end, we present two server-side initiated membership inference
attacks, each capable of achieving user-level inference granularity, which initiates
membership inference from the server side.

The two attack methods are briefly described below.

(A1.) Shadow Model Attack: Assuming that the adversary server possesses a
shadow dataset and has trained a shadow model locally, with a data distribution
that is identical to that of the target client, the server can leverage the shadow
model to perform a membership inference attack on the target client.

(A2.) Adversarial Attack: Compared to shadow model attacks, the challenge
of malicious server-launching attacks is more severe. Specifically, attackers no
longer rely on shadow models to launch membership inference attacks. Instead,

396 X. Wang et al.

the attacker directly exploits the gap between member and non-member samples
that fit in the same model. By adding noise to the samples using an adversarial
approach [3], the malicious server can capture the gap between member samples
and non-member samples.

Our contributions can be summarized as follows.

– Data reconstruction against the federated distillation: We find that
although logit parameters cannot be directly used for data reconstruction,
the shadow model established by logit parameters has a close fit to the data
of the target model. Based on this, we implement data reconstruction for
federated distillation using GANs.

– Excellent black-box membership inference attacks: We propose that
two membership inference attacks can achieve excellent attack accuracy by
building highly accurate shadow models, or more directly capturing the gap
between membership samples and non-membership samples.

– Extensive experimental evaluations: Our attack achieves over 80% and
85% on CIFAR-100 and EMNIST datasets, respectively. Further, after adding
the pre-attack of data reconstruction, the attack accuracy can almost reach
90%.

2 Related Work

In this section, we expound on membership inference attacks, separately in cen-
tralized and distributed scenarios, in addition to data reconstruction attacks
predicated on gradient implementations. Meanwhile, we also briefly consider
certain defense mechanisms.

2.1 Membership Inference Attacks

When a target model is trained on a sensitive dataset, membership inference
attacks (MIA) can be employed by adversaries to determine whether a target
sample belongs to the said private dataset. In centralized machine learning,
Shokri et al. [18] were the pioneers of black-box membership inference attacks.
They employed multiple shadow models to train an attack model and utilized
it to identify member samples of the target model. Li et al. [13] proposed two
variants of membership inference attacks, which take advantage of the model’s
overfitting on member samples to achieve favorable MIA outcomes in the black-
box scenario. In federated learning, Shokri et al. [16] extended the prior research
and proposed the white-box MIA in both federated and centralized scenarios.
They introduced a novel MIA method based on gradient parameters, where
each training data is associated with a unique trace on the gradient of the loss
function, and the attacker can actively exploit this information by manipulating
the gradient of a dataset to infer participant data. Yang et al. [24] proposed
a membership inference attack on federated distillation, whereby the attacker
conducts membership inference on other participants as a local participant.

Label-Only Membership Inference Attack Against Federated Distillation 397

At present, the extant membership inference attacks primarily focus on con-
ventional federated learning models [2,9,14,16], as well as centralized machine
learning models [2,12,13,19,25].

2.2 Data Reconstruction Attack

In the federated learning architecture, Zhu et al. [29] discovered that an adversar-
ial server could reconstruct data through the gradient of the initial target model,
resulting in entirely random reconstructed data. To address this issue, improved
DLG (iDLG) was developed by Zhao et al. [27] based on the properties of the
activation function used in DLG. Wang et al. [21] improved GANs to recon-
struct data while also discerning the properties of target clients and their own
properties. Boenisch et al. [1] proposed a method where the adversarial server
restores the client’s data by manipulating the gradient received from the client.
The client uses the tampered gradient to train with only a small number or even
a single sample in each batch in the most extreme cases. The next time gradient
upload only contains the training information of these actual samples, making it
susceptible to data reconstruction attacks by an adversary server. Geiping et al.
[4] developed a method to improve the loss function used for data reconstruction
by gradients through cosine similarity. Lastly, Yin et al. [26] introduced an algo-
rithm for gradient inversion using the last fully connected layer and a regular
term to ensure image quality based on multi-seed optimization.

2.3 Defense Method Against Privacy Leakage

Federated learning is faced with so many attack methods, defense is particu-
larly important. For example, Xu et al. [22] utilized homomorphic encryption to
avoid potential privacy breaches due to data reconstruction attacks from adver-
saries. However, in order to achieve an optimal level of privacy protection, a
larger amount of encrypted data would be necessary, increasing the computa-
tional burden significantly. On the other hand, Geyer et al. [5] have introduced
differential privacy to inject noise into parameters, while the degree of privacy
security could diminish the performance of the model. Finding the proper bal-
ance between these two factors is challenging. In light of this, Sun et al. [20]
proposed a novel approach to federated learning that adds a defensive layer to
the network structure in order to address the issue of data entanglement which
could drastically reduce data quality. Shejwalkar et al. [17] utilizes reference data
either generated or selected to train the model, and ultimately utilizes knowl-
edge distillation to obtain a protected model. The key idea of [17] is to shorten
the gap between member samples and non-member samples.

Based on the above research work, there is almost no work discussing mem-
bership inference against federated distillation, and there is also no attempt to
perform data reconstruction against federated distillation. In normal federated
learning, these two kinds of attacks are often achieved with the help of model
gradients. However, in federated distillation, the attacker does not have access

398 X. Wang et al.

to additional information beyond the model output labels and logits parameters.
Moreover, there is also a research gap for the defense work in FD.

3 Preliminaries

In this section, we present the background, including the federated distillation
pipeline, generative adversarial networks, and the threat model in attack meth-
ods.

3.1 Federated Distillation

Knowledge distillation [7] serves as an efficient approach to compress large-scale
models by facilitating knowledge transfer from a complex model to a simpler one.
This process entails the introduction of novel parameters into the widely-used
softmax layer in neural networks, as follows:

qi =
exp (zi/T)

∑
j exp (zj/T)

(1)

Here, the probability of the i-th class is represented by qi, zi denotes the i-th log-
its parameter (i.e., input to the softmax layer) and T represents the temperature
parameter. A higher value of T results in a smoother probability distribution of
the softmax layer output.

Further, federated distillation (FD) [10], which combines federated learning
with knowledge distillation, can transfer information between federated models.
Essentially, it is a form of federated learning that employs knowledge distillation
to transfer parameters. Following pre-training on a public dataset, participants
train their models locally using local data and cross-entropy, as depicted:

LCE =
1
n

n∑

i=1

Li = − 1
n

n∑

i=1

C∑

c=1

yic log (pic) (2)

where n is the number of samples, C is the number of categories, yic is the
classification result of sample i on category c, for category c then go to 1, and
vice versa 0, pic is the probability that sample i is belongs to category c. After
local training is completed, participants upload logit values normalized by the
softmax function for each training round to the server. Next, the server receives
all parameters, aggregates, and averages before sending them to each client. The
aggregation formula can be expressed as:

Zt =
1
K

K∑

k=1

Zk
t−1 (3)

where Zt is the global logits trained at the t-th iteration, Zk
t−1 is the local logits

uploaded by user k at the iteration of t − 1, and K is the number of participant
models. Each client can be considered as a student model independently, while

Label-Only Membership Inference Attack Against Federated Distillation 399

the other participants are teacher models, and the average of other teacher mod-
els is obtained for learning in each iteration of training. The model uses cross
entropy as a loss regularizer for students to measure the difference between the
teacher and student models. FD does not train the global model on the server
side, and each participant ends up with its local model as the final model.

3.2 Generative Adversarial Networks

Generative adversarial networks (GANs) [6] are generative models trained in
an adversarial manner and contain two competing neural network models: a
discriminator D and a generator G. The G generates random samples (with
random noise, e.g., gaussian or uniform distribution) as input from z. In contrast,
D discriminates between actual samples and samples generated by G. The loss
of D on different samples will feed back to G. The objective function of GANs
can describe as follows:

min
G

max
D

V (D,G) = Ex∼Pdata(x)[log (D(x))]

+Ez∼Pz(x)[log (1 − D(G(z)))]
(4)

where Pdata and Pz are the data distributions, x represents real data, while z
represents random data with the same structure as x, D is the discriminator that
utilizes the parameters of the shadow model, and D(x) represents the discrim-
inant result of the discriminator on x, when D and G reach Nash equilibrium,
GNAs can generate samples that approximate the actual samples.

3.3 Threat Model

Here, we elaborate on the conditions of the adversary.

Adversary’s Objectives. FD diverges from the traditional practice of training
the global model on the central server. In this method, the server is merely
responsible for parameter aggregation and distribution. By taking advantage of
a curious and passive server, the attacker succeeds in securing the parameters
from the target client. The final objective is to ascertain whether the sample
under review falls within the private training data of the target client. We assess
the effectiveness of our attack model using two essential metrics: 1) the efficacy
of the local model and 2) the accuracy of inference performed on the server side.

Adversary’s Observations. The adversary has access to the logits parame-
ter uploaded by the local model and can make black-box queries to each local
model in every training iteration. Specifically, the attacker can navigate the tar-
get model and retrieve the output results of the model. In federated learning’s
training setup, the client model is usually delivered by the server, and therefore,
it is natural for the server to exercise black-box access to the client model in
such an environment.

Adversary’s Capabilities. The adversarial server has the capability to con-
struct a shadow model on its own side and maintain a corresponding shadow

400 X. Wang et al.

dataset, given that the shadow data is characterized by the same data distri-
bution as the local data of the target model, but not sharing any overlapping
instances. The adversary’s server-generated shadow model bears a resemblance
in structure to that of the client-local model.

4 Proposed Membership Inference Attack in FD

In this section, we describe the detail of the membership inference attacks in
federated distillation. Specifically, we focus on the attacker as a curious and
passive server-side launching the attack.

4.1 Pre-attack Based on Data Reconstruction

In the reconstruction method, adversary server A uses shadow model Ms to
build a GANs model to achieve the accurate reconstruction of the local data
of the target model. GANs consist of a discriminative network f(x; θD) and a
generation network g(z; θG). The generator G is initialized with random noise,
and the discriminant D is initialized with the parameters of the shadow model.
After model initialization, G sends the generated samples and training samples
(taken from the shadow dataset) to D, and D feeds back the discrimination
results to G. Let xi be the original image in the training set, xgen are generated
images. The optimization algorithm can be described as:

min
θG

max
θD

n+∑

i=1

log(f(xi; θD)) +
n−∑

i=1

log(1 − f(g(xgen; θG); θD)) (5)

LG(θg) = Ez∼p(z)[log(D(G(z)))] (6)

where xi is the training sample and xgen is the generated sample. After iter-
ating N rounds to complete data reconstruction, we will add the reconstructed
data to the dataset to be tested and mark the reconstructed samples as mem-
ber samples. Compared with starting the membership inference attack directly
after the training is completed, performing data reconstruction as a pre-attack
is necessary to improve inference accuracy.

Shadow Model. The majority of our methods are heavily dependent on the
shadow model implemented by the server. This entails that the server tends
to adopt a structure akin to the intended target model. Conversely, Shokri et
al. [18] employed several shadow models to emulate the intended target model,
leveraging the data obtained from these models to train the final attack model
once the shadow model training process concluded. Our strategy, on the other
hand, only necessitates one shadow model for the attack to be successful.

In this regard, we utilize the shadow model in both the data reconstruction
and membership inference operations. By conducting numerous experiments, we
observed that:

Label-Only Membership Inference Attack Against Federated Distillation 401

– The larger the shadow dataset is, the better the shadow model imitates, but
it requires more frequent access to the target model.

– We use the logits of the target model to participate in the training of the
shadow model, and we found that this step is necessary to achieve the current
experimental results.

Fig. 2. Overview of shadow model training process in FD. In each iteration of the
training round: ① all local clients upload model logits (server saves logits of attack
targets); ② server sends down global logits; ③ server queries target model using samples
from shadow dataset to obtain model output and marks shadow dataset; ④ server trains
shadow model using saved logits and shadow dataset.

4.2 Attack Overview

Shadow Model Attack. As depicted in Fig. 2, we illustrate the training pro-
cess of the shadow model in a federated distillation environment. In this setting,
there are K participants, one of which is the victim V, while the adversary A
is a curious but passive server. A maintains a shadow dataset S that shares the
same data distribution as V’s local data and a corresponding shadow model.
During training’s k-th iteration, V uploads the logits parameter x of the local
model to A. Then, A utilizes the data in the shadow dataset to query the target
model in this iteration, then leverages the obtained query results to label S. The
k-th iteration concludes after utilizing the labeled S and x to train the shadow
model. Eventually, the iterative training results in the simultaneous training of
the shadow model locally trained by A.

After the successful training of the shadow model, A applies the model to
reconstruct the training examples of the target model. Notably, this process
is non-parametric and shall be further elaborated on later. The reconstructed

402 X. Wang et al.

samples are subsequently included in the test dataset and processed by the
shadow model alongside other samples. Here in, samples with a cross-entropy
loss exceeding the predetermined threshold t are categorized as member samples,
while those below t are deemed non-member samples.

Adversarial Attack. This attack is more strenuous compared to the prior one
as the adversary is unable to retain both the shadow dataset and shadow model,
yet it is more efficacious. The central concept is to emphasize the discrepancy in
the fitness of member and non-member samples on the objective model, which
is the discrepancy in the distance from the decision boundary. Adversary A
continues to operate as the server, while victim V contributes to the training
process as the local model. The test sample set, D, is then utilized. Following
the iterative training procedure, A leverages the data disruption technique, Hop-
SkipJump F [3] (F necessitates unfettered access to the black-box target model
in the iterative process), to introduce noise into the sample Di iteratively for N
times, and compute the distances d between the samples before and after the
data disruption:

d = ‖W ′ − W‖2 (7)

where the W and W ′ disorder before and after the samples respectively. Further-
more, the threshold y is determined empirically, we compare d to the threshold
and label the samples with d greater than y as member samples, and vice versa
as non-member samples.

4.3 Attack Algorithm

The level of data correspondence achieved by the shadow model is already in close
proximity to that of the target model. Subsequently, the adversarial server shall
submit the specimens, which require testing, to the shadow model. In the event
of earlier data reconstruction, the reconstructed specimens will be appended to
the testing specimen group. After acquiring the output of the model, we shall
categorize the specimens that display cross-entropy loss exceeding the threshold
value as “OUT” i.e., non-member specimens; alternatively, specimens with less
loss shall be categorized as “IN” i.e., member specimens. Algorithm 1 outlines
the attack detail.

After the training phase is complete, the adversarial server initiates the
attack. Leveraging the disparity between the member and non-member speci-
mens, we can employ [3] to disturb the samples in a manner that brings them
close to the decision boundary. This, in turn, enables us to determine the dis-
tance prior to and post perturbation. To enhance the efficiency of the attack
technique, we determine a suitable iteration count through rigorous experimen-
tation. The addition of noise is not contingent upon it resulting in a change
in the data outcome of the target model. In fact, following N iterations, the
majority of sample labels fail to alter. Following the assessment of the variation
in distance before and after perturbation, we classify samples with less than

Label-Only Membership Inference Attack Against Federated Distillation 403

Algorithm 1 Shadow Model Attack.
Require: Test dataset D (size = m), shadow model Ms, threshold y.
Ensure: The inference result ‘IN ’ or ‘OUT ’.
1: for (i = 1; i <= m; i + +) do
2: Input test sample Di into Ms

3: Ms output cross-entropy loss Li

4: if Li < y then
5: Mark Di as ′IN′

6: else
7: Mark Di as ′OUT′

8: end if
9: end for

10: Output: Mark every record as ‘IN ’ or ‘OUT ’, where ‘IN ’represents the Victim’s
training sample.

the stipulated threshold distance loss as “OUT” i.e., non-member samples, and
those exceeding the threshold as “IN” i.e., member samples. In the experimental
phase of the adversarial attack, we set the query count at 40 without testing
for the alteration of the sample label, thus launching a membership inference
attack. The adversarial attack we generalize to Algorithm 2.

Algorithm 2 Adversarial Attack.
Require: Test dataset D (size = m), HopSkipJump F , iterations N , threshold y.
Ensure: The inference result ‘IN ’ or ‘OUT ’.
1: for (i = 1; i <= m; i + +) do
2: Record sample Di parameters as W
3: for (j = 1; j <= N ; j + +) do
4: Use F to disrupt Di (add noise)
5: end for
6: Record sample Di parameters as W ′

7: d = ‖W ′ − W‖2

8: if d > y then
9: Mark Di as ′IN′

10: else
11: Mark Di as ′OUT′

12: end if
13: end for
14: Output: Mark every record as ‘IN ’ or ‘OUT ’, where ‘IN ’ represents the Victim’s

training sample.

5 Performance Evaluation

In this section, we evaluate our proposed methods, including data reconstruction
and membership inference attacks.

404 X. Wang et al.

5.1 Datasets and Evaluation Goals

We conducted federated distillation on four distinct datasets. Our experimenta-
tion involved utilizing CIFAR-10 and MNIST as public datasets, and CIFAR-100
and EMNIST as the corresponding private datasets. Additionally, we carried out
experiments in both the I.I.D and NonI.I.D [28] contexts for each dataset.

Public Datasets

– MNIST: The aforementioned dataset is a collection of digital images con-
sisting of ten distinct character categories (i.e., ten different numbers). The
training set comprises 60,000 images with corresponding labels, while the test
set consists of 10,000 images with labels. Both sets possess a resolution of 28
× 28 pixels.

– CIFAR-10: The dataset referred to consists of a training data set and a test
data set comprising 60,000 and 10,000 images, respectively. Each image is 32
× 32 pixels and comprises three channels, with ten classes in total. The images
primarily feature animals such as cats, dogs, and horses, among others.

Private Datasets

– EMNIST: The aforementioned dataset comprises a total of 62 character
categories, including ten digits, 26 lowercase letters, and 26 uppercase letters.
All images in the dataset possess a resolution of 28 × 28 pixels, resulting in
a total of 814,255 samples.

– CIFAR-100: The dataset consists of 100 categories of colored images, such
as animals, flowers, planes, and people, each of which is 32 × 32 in size. Each
category contains 600 images.

To comprehensively assess our attack methodology, we establish the follow-
ing benchmarks: 1) local model accuracy: the accuracy of the indigenous model
in FD; 2) membership inference accuracy: the precision of the membership infer-
ence attack under the federated distillation circumstance; 3) the improvement
of inference accuracy by reconstructing the samples.

5.2 Experimental Settings

We introduce a certain degree of model heterogeneity, and the shadow model
also chooses a model structure similar to the target model for the reasons we
have mentioned before. To further validate the inference, we conducted exper-
iments with 3 to 10 participants for different scenarios and 10 participants for
different data distributions. The structure of the local model contains three con-
volutional layers, each followed by a pooling layer, and finally a fully connected
and aggregated layer, where we chose to give a 3×3 convolutional kernel with
ReLU as the activation function. To ensure the accuracy of the local model, we
use only 8 and 4 samples per local class as private datasets in the case of using
the EMNIST dataset and the CIFAR-100 dataset, respectively. Since the sample
is not large, only 20 iterations of training are needed.

Label-Only Membership Inference Attack Against Federated Distillation 405

Fig. 3. Reconstruction based on GANs.

Table 1. The enhancement effect of data reconstruction on membership inference

Data Reconstruction Shadow Model Attack Adversarial Attack

EMNIST & MNIST Before 82.0% 85.1%

After 85.9% 89.7%

CIFAR100 & CIFAR10 Before 74.9% 79.7%

After 80.1% 84.6%

5.3 Performance of Data Reconstruction

In order to showcase the viability of our data reconstruction methodology, we
reconstructed the data in the case of five participants. We constructed a GANs
model on the server side, utilizing the parameters of the shadow model to con-
struct the discriminator D, and random parameters for constructing the genera-
tor G in the GANs. As depicted in Fig. 3, we present the reconstructed samples
generated from continuous iterations, on the left after 100 iterations, and on the
right after 400 iterations. It is observable that the reconstructed images on the
right can be roughly distinguished.

After integrating the reconstructed samples into the sample set for testing
purposes, we evaluated the performance of both attack methods, as presented in
Table 1. Our experimental results indicate that the accuracy of the membership
inference attack can be further enhanced by reconstructed samples. Based on
these findings, we infer that the inference accuracy can be further augmented by
implementing GANs on the server side.

406 X. Wang et al.

5.4 Performance of Membership Inference

To ascertain the efficacy of membership inference, our main emphasis is on two
aspects: the task accuracy of the local model and the accuracy of membership
inference. Table 2 presents the accuracy of the local model on CIFAR-100 &
CIFAR-10, EMNIST & MNIST datasets with varying data distributions. Specif-
ically, when compared to conventional federated learning, our results indicate
that federated distillation incurs a higher accuracy loss. We utilize a limited
number of experimental samples to gather data for our experiments, aiming to
maximize model accuracy.

Table 2. Model classification test accuracy under different data distributions

Data Distribution Top Accuracy Mean Accuracy

EMNIST & MNIST I.I.D 85.3% 83.7%

EMNIST & MNIST Non I.I.D 80.1% 78.5%

CIFAR-100 & CIFAR-10 I.I.D 75.2% 74.2%

CIFAR-100 & CIFAR-10 Non I.I.D 72.1% 71.6%

We evaluate the adversary server’s inference accuracy against target partic-
ipants with varying participant numbers, ranging from 3 to 10, and conduct
our experiments using two datasets with disparate data distributions. For this
subsection’s experiments, we select a test dataset that does not contain recon-
structed samples, i.e., the current inference accuracy of the adversary server is
obtained without recourse to data reconstruction. As depicted in Fig. 4, the accu-
racy of the adversarial attack is higher than that of the shadow model attack in
most cases since the latter tends to lose some information during the training
process of the shadow model. We also observe that a smaller participant number
leads to higher inference accuracy. This outcome is likely due to the broader
global influence of the target model, resulting in higher information exposure
risk with fewer participants. Regarding datasets, we note that attacks perform
better on EMNIST & MNIST datasets in most cases. Nevertheless, the more
simple MNIST dataset does not predispose the model towards overfitting in the
NonI.I.D case of adversarial attack, resulting in lower inference accuracy.

To establish the superiority of our attack, we employ a comparative analysis
with the work of FD-Leaks [24], whereby we subject the adversarial attack to
identical conditions. As illustrated in Fig. 5, the results evince that the shadow
model attack surpasses FD-Leaks when exposed to the independent and identi-
cally distributed condition. Conversely, our adversarial attack outmatches FD-
Leaks across diverse data distribution and dataset settings. FD-Leaks initiate
attacks from the client side, while our work conducts attacks from the server
side. The amalgamation of both strategies yields conspicuous evidence of the
federated distillation’s seemingly impregnable defense architecture being vulner-
able to significant privacy risks.

Label-Only Membership Inference Attack Against Federated Distillation 407

(a) Shadow Model Attack I.I.D (b) Shadow Model Attack NonI.I.D

(c) Adversarial Attack I.I.D (d) Adversarial Attack NonI.I.D

Fig. 4. Inference accuracy of the two attacks, where the dataset setting and data
distribution are different.

Fig. 5. Comparison of inference accuracy between adversarial attack and FD-Leaks
[24].

6 Discussion

Federated distillation leverages parameter transfer of logit parameters to facili-
tate model training, and this parameter transfer is deemed as an inherent safe-
guard measure against privacy leaks. However, our work brings to light the inad-

408 X. Wang et al.

equacy of logit parameter transfer in preventing privacy breaches. We demon-
strate that logit parameters remain susceptible to data reconstruction attacks
and membership inference attacks. The adversarial server side can bolster the
target model’s imitation by utilizing logit parameters derived from the uploaded
parameters of the local model and continual queries. The foundation of these
tactics lies in exploiting the divergence in sample fitting across identical models,
whereby the incomplete data distribution and overfitting of local data exacer-
bate the fitting disparity in federated learning. Therefore, the adversary server
side can execute membership inference attacks under both passive and adversary
conditions. Worse still, the server can isolate the target model comprehensively
under the active and adversary settings, culminating in catastrophic privacy
breaches.

To forestall privacy breaches in our experiments, local clients can constrain
the number of queries to a bare minimum, thereby mitigating the establishment
of the shadow model to a considerable extent. However, this technique also poses
practical implementation challenges. The fundamental principle behind using
shadow models and adversarial attacks to devise membership inference attacks
lies in exploiting the fitting discrepancy between member and non-member sam-
ples. In the future, we can incorporate noise into the logit parameters, albeit at
the cost of wider model accuracy. Given that the accuracy of federated distilla-
tion models is already low, such an approach may prove untenable. Nevertheless,
one plausible solution to reducing the fitting gap between member samples and
non-member samples is to train using generated data to complement the data
distribution. For instance, DMP [17] partially supplements the data distribution
of the training data by selecting or creating eligible reference data and leveraging
knowledge distillation to obtain the ultimate defense model. This approach not
only delivers robust defenses against privacy breaches but can also enhance the
model’s accuracy to a certain extent.

7 Conclusion

This paper proposes two kinds of membership inference attacks against federated
distillation, and a corresponding data reconstruction method leveraging GANs.
The attackers are assumed to be curious and passive servers, operating within
a black-box access framework. To further refine our approach, we introduce
the concept of employing data reconstruction within federated distillation using
GANs, with the reconstructed data serving as a pre-attack mechanism to improve
the overall accuracy of the membership inference attacks. Experimental evalu-
ation of our approach utilized CIFAR-10/MNIST and CIFAR-100/EMNIST as
public and private datasets respectively. By examining the impact of varying data
distributions and participant numbers, we offer insight into factors influencing
experimental outcomes. Empirical results indicate that sample reconstruction
improves inference accuracy.

Label-Only Membership Inference Attack Against Federated Distillation 409

Acknowledgement. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant(No. 62172215) and in part by the Natural
Science Foundation of Jiangsu Province(No. BK20200067), in part by the A3 Foresight
Program of NSFC (Grant No. 62061146002).

References

1. Boenisch, F., Dziedzic, A., Schuster, R., Shamsabadi, A.S., Shumailov, I., Paper-
not, N.: When the curious abandon honesty: federated learning is not private. arXiv
preprint arXiv:2112.02918 (2021)

2. Chen, J., Zhang, J., Zhao, Y., Han, H., Zhu, K., Chen, B.: Beyond model-level
membership privacy leakage: an adversarial approach in federated learning. In:
Proceedings of ICCCN, pp. 1–9 (2020)

3. Chen, J., Jordan, M.I., Wainwright, M.J.: Hopskipjumpattack: a query-efficient
decision-based attack. In: Proceedings of SP, pp. 1277–1294 (2020)

4. Geiping, J., Bauermeister, H., Dröge, H., Moeller, M.: Inverting gradients-how
easy is it to break privacy in federated learning? In: Proceedings of NeurIPS, pp.
16937–16947 (2020)

5. Geyer, R.C., Klein, T., Nabi, M.: Differentially private federated learning: a client
level perspective. arXiv preprint arXiv:1712.07557 (2017)

6. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11),
139–144 (2020)

7. Gou, J., Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: a survey. Int. J.
Comput. Vision 129, 1789–1819 (2021)

8. Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural net-
work. arXiv preprint arXiv:1503.02531 (2015)

9. Hitaj, B., Ateniese, G., Perez-Cruz, F.: Deep models under the gan: information
leakage from collaborative deep learning. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 603–618 (2017)

10. Jeong, E., Oh, S., Kim, H., Park, J., Bennis, M., Kim, S.L.: Communication-
efficient on-device machine learning: Federated distillation and augmentation under
non-iid private data. arXiv preprint arXiv:1811.11479 (2018)

11. Li, D., Wang, J.: Fedmd: Heterogenous federated learning via model distillation.
arXiv preprint arXiv:1910.03581 (2019)

12. Li, J., Li, N., Ribeiro, B.: Membership inference attacks and defenses in supervised
learning via generalization gap. arXiv preprint arXiv:2002.12062 (2020)

13. Li, Z., Zhang, Y.: Membership leakage in label-only exposures. In: Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications Security,
pp. 880–895 (2021)

14. Melis, L., Song, C., De Cristofaro, E., Shmatikov, V.: Inference attacks against
collaborative learning. arXiv preprint arXiv:1805.04049 (2018)

15. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784 (2014)

16. Nasr, M., Shokri, R., Houmansadr, A.: Comprehensive privacy analysis of deep
learning: Passive and active white-box inference attacks against centralized and
federated learning. In: Proceedings of SP, pp. 739–753 (2019)

17. Shejwalkar, V., Houmansadr, A.: Membership privacy for machine learning models
through knowledge transfer. In: Proceedings of AAAI, pp. 9549–9557 (2021)

18. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks
against machine learning models. In: Proceedings of SP, pp. 3–18 (2017)

http://arxiv.org/abs/2112.02918
http://arxiv.org/abs/1712.07557
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1811.11479
http://arxiv.org/abs/1910.03581
http://arxiv.org/abs/2002.12062
http://arxiv.org/abs/1805.04049
http://arxiv.org/abs/1411.1784

410 X. Wang et al.

19. Song, L., Shokri, R., Mittal, P.: Privacy risks of securing machine learning models
against adversarial examples. In: Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security, pp. 241–257 (2019)

20. Sun, J., Li, A., Wang, B., Yang, H., Li, H., Chen, Y.: Provable defense against pri-
vacy leakage in federated learning from representation perspective. arXiv preprint
arXiv:2012.06043 (2020)

21. Wang, Z., Song, M., Zhang, Z., Song, Y., Wang, Q., Qi, H.: Beyond inferring class
representatives: user-level privacy leakage from federated learning. In: Proceedings
of INFOCOM, pp. 2512–2520 (2019)

22. Xu, W., Fan, H., Li, K., Yang, K.: Efficient batch homomorphic encryption for
vertically federated xgboost. arXiv preprint arXiv:2112.04261 (2021)

23. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and
applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)

24. Yang, Z., Zhao, Y., Zhang, J.: Fd-leaks: Membership inference attacks against
federated distillation learning. In: Proceedings of Web and Big Dat, pp. 364–378
(2023)

25. Yeom, S., Giacomelli, I., Fredrikson, M., Jha, S.: Privacy risk in machine learning:
Analyzing the connection to overfitting. In: Proceedings of CSF, pp. 268–282 (2018)

26. Yin, H., Mallya, A., Vahdat, A., Alvarez, J.M., Kautz, J., Molchanov, P.: See
through gradients: Image batch recovery via gradinversion. In: Proceedings of
CVPR, pp. 16337–16346 (2021)

27. Zhao, B., Mopuri, K.R., Bilen, H.: idlg: improved deep leakage from gradients.
arXiv preprint arXiv:2001.02610 (2020)

28. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning
with non-iid data. arXiv preprint arXiv:1806.00582 (2018)

29. Zhu, L., Liu, Z., Han, S.: Deep leakage from gradients. In: Proceedings of NeurIPS,
pp. 14774–14784 (2019)

http://arxiv.org/abs/2012.06043
http://arxiv.org/abs/2112.04261
http://arxiv.org/abs/2001.02610
http://arxiv.org/abs/1806.00582

Efficient Proactive Resource Allocation
for Multi-stage Cloud-Native

Microservices

Pengfei Liao1, Guanyan Pan2, Bei Wang3, Xingzhen He1, Wenbing Peng2,
Minhui Fang2, Fanding Huang4, Yifei Chen4, and Yuxia Cheng1(B)

1 Hangzhou Dianzi University, Hangzhou, China
yxcheng@hdu.edu.cn

2 Taizhou Urban and Rural Planning and Design Institute, Taizhou, China
3 School of Computer Science, Zhejiang University, Hangzhou, China
4 HDU-ITMO Joint Institute, Hangzhou Dianzi University, Hangzhou, China

Abstract. Microservices deployment in the cloud often faces a preva-
lent challenge: how to maximize resource utilization while maintaining
high quality-of-service (QoS). Existing automatic scaling tools frequently
exhibit limited adaptability, particularly when handling frequent request
load fluctuations, which exacerbates the challenge. To address this issue,
we introduce a proactive runtime deployment optimization method for
multi-stage microservices, aiming to ensure both resource efficiency and
QoS.

Our proposed method encompasses four interrelated modules–
forecasting, constraint planning, judgment selection, and execution–
which collaboratively work towards optimizing runtime resource alloca-
tion, generating viable deployment plans, and identifying cost-efficient
solutions without compromising QoS. Through a set of experiments,
we demonstrate that the proposed proactive deployment optimization
method can potentially reduce computational resource usage by 35%
while maintaining the desired quality of service.

Keywords: Microservice · QoS · resource utilization · runtime
deployment optimization

1 Introduction

Software-as-a-Service (SaaS) has emerged as a prominent business model in
which software applications are offered as on-demand cloud services, allowing
users to access them anytime and anywhere via the Internet [7,27]. In this model,
SaaS providers can swiftly launch services with minimal deployment and main-
tenance costs. To enhance economic efficiency, these providers must deliver effi-
cient software application services while minimizing production cost investments
[15,21].

Dynamic request frequency and fluctuating resource demands make it chal-
lenging to estimate resource requirements for SaaS services. Providers often

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 411–432, 2024.
https://doi.org/10.1007/978-981-97-0801-7_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_24&domain=pdf
https://doi.org/10.1007/978-981-97-0801-7_24

412 P. Liao et al.

reserve excess computing resources to ensure high availability [23,29]. How-
ever, this approach can lead to resource wastage, service performance degra-
dation, and even service instance failures, ultimately causing economic losses.
Existing research has explored dynamic resource management for optimization
targets such as service performance, server cost, and service migration cost
[4,8,9,16,28,36].

Many contemporary cloud computing applications have transitioned from
monolithic application architectures to microservice architectures, as exempli-
fied by companies like Google and Amazon [31]. Microservice architecture allows
applications to be composed of loosely coupled program modules, enhancing scal-
ability, elasticity, and responsiveness to business changes. However, the complex
topology of dependencies among microservices increases deployment and man-
agement difficulties [11,37]. Existing management tools, such as Kubernetes,
offer automatic scaling features based on machine or custom metrics. Nonethe-
less, reactive heuristic adjustments often fail to address service level degradation
in a timely manner [10]. This approach usually results in partial adjustments
and may lead to resource wastage. Consequently, data-driven approaches have
been proposed to capture the impact of dependencies between microservices on
performance [9,28,36].

In this paper, we propose a queuing network model to identify key microser-
vices contributing to performance degradation in SaaS services. By predicting
service request frequency and incorporating constraint planning, we provide an
overall optimization scheme for SaaS services. Our approach evaluates the opti-
mization scheme’s ability to guarantee SaaS service quality while considering
the cost of computing resource usage and potential revenue loss to maximize
economic benefits.

The key contributions of this paper are as follows:

1. We construct a queuing network model to pinpoint the critical microservices
causing performance degradation in SaaS services.

2. We incorporate service request frequency prediction and constraint planning
to offer an overall optimization scheme for SaaS services.

3. .Our approach evaluates the optimization scheme by considering both com-
puting resource usage costs and potential revenue loss, aiming to maximize
economic benefits while ensuring service quality.

These contributions demonstrate a novel approach to optimizing SaaS ser-
vice resource allocation and management, addressing the challenges posed by
microservice architectures and dynamic request frequencies.

2 Related Works

Current research on the deployment optimization problem of SaaS services pri-
marily falls into two categories: initial deployment optimization and runtime
deployment optimization of services.

Proactive Resource Allocation for Microservices 413

In the context of initial deployment optimization, the work by Bhardwaj S [4]
formulates the SaaS service deployment problem as a combinatorial optimiza-
tion problem, aiming to minimize service deployment cost. A particle swarm
approach is employed to solve the problem, and the algorithm’s solution quality
is shown to be superior compared to a greed-based heuristic algorithm. The work
by Fu K [8] maps microservice instances with frequent interactions to the same
worker node, reducing time overhead due to data transfer between microservices
and subsequently minimizing completion time. Nautilus demonstrates a reduc-
tion in data interaction between microservices, ranging from 39.2% to 82.4%, in
comparison to Kubernetes’ automatic deployment.

While initial deployment optimization can accommodate various request
loads, it lacks adaptability to load changes. Persisting with the initial deploy-
ment scheme during changes in request frequency could lead to resource wastage,
increased costs, and service performance degradation. In such cases, runtime
deployment optimization becomes crucial.

Runtime deployment optimization is explored in [16], which defines the prob-
lem for SaaS services with complex dependencies and multiple instances as a
fractional polynomial problem (FPP). The objective is to minimize the average
response time. The problem is transformed into a quadratic sum-fractional prob-
lem (QSRFP) to reduce the high computational complexity of solving the FPP
problem. The work by Zhang Y [36] introduces Sinan, a data-driven cluster man-
ager for interactive cloud microservices. It utilizes convolutional neural networks
(CNN) to predict the response time of a microservice under varying computing
resource allocation conditions and employs a boosted tree (BT) model to eval-
uate the performance impact of delay queuing effects on overall SaaS service.
The work by Qiu H [28] dynamically adjusts the computing resources occupied
by the microservice. Additionally, they present FIRM, an intelligent fine-grained
resource management framework that reduces shared resource contention across
microservices, improves computing resource reuse rate, and employs a two-level
machine learning (ML) framework to identify and mitigate performance bottle-
necks in key microservices.

Data-driven machine learning approaches have demonstrated the ability to
analyze, diagnose, and predict performance issues in microservice architecture
applications accurately. However, these methods necessitate extensive historical
data for training and real-time monitoring of system metrics during operation.
This can impact performance, increase production costs, and may require retrain-
ing when the microservice architecture changes. Considering the scalability of
SaaS environments and the complexity of microservice architectures, traditional
performance analysis methods are not fully applicable. Accurately assessing the
performance of SaaS services and maintaining their efficient operation at a lower
cost remains a challenging task.

414 P. Liao et al.

3 Adaptive Deployment Optimization for Microservice-
Based SaaS Environments

This work focuses on the runtime deployment optimization of microservice archi-
tecture applications in a SaaS environment. The primary challenges associ-
ated with runtime deployment optimization of microservice architecture appli-
cations in a SaaS environment include: adjusting the allocation of computa-
tional resources to ensure service quality and reasonable resource utilization in
response to dynamic fluctuations in request loads [5]; evaluating the impact of
varying resource allocation schemes on the performance of microservice modules
[38]; and identifying key microservice modules that cause performance bottle-
necks in SaaS services in order to allocate limited reserved computing resources
effectively to mitigate performance degradation [35].

To address these challenges, we construct a queuing network model [20,32]
based on the topological order of microservices within the SaaS service. This
model evaluates the impact of different deployment schemes on the overall per-
formance of the SaaS service under predicted request loads and selects the scheme
that guarantees quality of service and maximizes overall economic efficiency for
deployment.

Fig. 1. Adaptive deployment optimization process.

Our proposed adaptive deployment optimization method comprises four
modules: a forecast module, a constrained programming module, a judgment
selection module, and an execution module (see Fig. 1). The forecast module
predicts the number of service requests in the next period based on historical ser-
vice request data, thereby determining the average arrival rate of service requests
(λ). The constraint planning module generates feasible deployment solutions by
planning the number of instances of microservices in the SaaS service, consid-
ering computing resources (CPU and memory) and the average arrival rate of
service requests (λ) as constraints. The judgment selection module employs the
queuing network model constructed from SaaS services to calculate the average
queuing time of feasible solutions, discarding those that exceed the set delay.

Proactive Resource Allocation for Microservices 415

Subsequently, an economic efficiency calculation function is utilized to select the
deployment solution with the highest comprehensive benefit. Finally, the execu-
tion module updates the service registry according to the deployment solution
generated by the judgment selection module.

Fig. 2. Service flow of microservice applications.

3.1 Multi-stage Applications Composed of Cascading Microservices

Typically, a SaaS service request necessitates the collaboration of two or more
microservices with distinct business capabilities. These microservices operate
concurrently or sequentially, ultimately providing feedback on the results. Con-
sequently, the service flow can be represented as a directed acyclic graph (DAG)
[19] (see Fig. 2). Our proposed adaptive deployment optimization approach is
applicable to SaaS applications of forms a and c, as these two forms can be
transformed into multi-stage applications composed of cascading microservices.
In this configuration, application services are executed sequentially by one or
more microservice combinations across one or more stages. Each microservice
combination within a stage consists of one or more microservices with no execu-
tion dependencies among them.

Fig. 3. Multi-stage application composed of cascading microservices.

Figure 3 presents an example of a multi-stage application composed of cascad-
ing microservices. The example application comprises four stages. The request
first enters the initial stage, where three microservices execute tasks in parallel.
Upon completion, the results are passed to the second and third stages, each

416 P. Liao et al.

consisting of two microservices. Finally, the fourth stage microservice executes
to produce the ultimate outcome.

The total response time of a multi-stage application is the sum of the response
times for each stage. As each stage contains at least one microservice, the
response time of each stage is determined by the microservice with the longest
response time within the stage, also known as the critical microservice. This is
in accordance with the short board effect. The response time of a microservice
is the sum of its computing time and the queuing delay of the request in the
microservice’s request queue. Generally, the computing time of the microservice
itself is variable and influenced by factors such as programming, hardware con-
figuration, and request type. Given a fixed hardware configuration, the average
computing time of a microservice can be predicted by testing various request
types. In multi-stage applications composed of cascading microservices, there
are no execution dependencies between microservices. According to queuing the-
ory [3], the average queuing delay of a microservice’s request queue is determined
by the number of instances of the microservice and the arrival frequency of the
service requests it receives. As a result, SaaS service providers must implement
an appropriate deployment scheme to guarantee the quality of service (QoS) for
SaaS services.

Our proposed adaptive deployment optimization approach aids SaaS service
providers in identifying microservices that cause performance bottlenecks during
periods of high request frequency and increasing their parallelism accordingly
to ensure SaaS service quality. When request frequency decreases, the approach
assists SaaS service providers in reducing the appropriate number of microservice
instances, thereby lowering production expenses while maintaining efficient SaaS
services.

3.2 Request Scheduler

To implement this adaptive deployment optimization approach, we designed a
request scheduler for multi-stage applications. The scheduler is responsible for
providing unified access to requests, maintaining a request queue for microser-
vices, distributing tasks to microservice instances through load balancing, and
recording the operational status of SaaS services.

Figure 4 presents an example of the request scheduler’s workflow. Upon
receiving requests, the scheduler updates the total number of requests for the cur-
rent time period and the request arrival time. It then adds the request IDi to the
request queues of MicroService1, MicroService2, and MicroService3 in stage
1. The scheduler periodically examines the request queues of MicroServicei
and queries the service registry for an idle instance of MicroServicei. If an idle
instance is available, the scheduler assigns Taski to the idle instance and updates
the service registry. When the instance of MicroServicei completes Taski and
provides feedback to the scheduler, the scheduler updates the instance’s sta-
tus and checks whether all Microservices in the current stage have completed
Taski. If all tasks are completed, the scheduler adds Taski to the request queue
of MicroService4 and MicroService5 in stage 2. This process continues until

Proactive Resource Allocation for Microservices 417

Fig. 4. Workflow of the request scheduler.

MicroService8 of stage 4 completes Taski. The scheduler records the request
completion time, marking the request as completed.

Fig. 5. Hourly service request statistics
from 8:00 am to 8:00 pm on April 1,
April 2 and April 3.

Fig. 6. Change in request queue length
for the microservice between 2pm and
3pm (recorded every 5 min).

Fig. 7. Cumulative distribution of response time statistics.

By analyzing the data recorded by the scheduler, it is possible to examine the
changes in request frequency, the operational status of each microservice within
the application, and the average response time of requests. Figure 5 provides

418 P. Liao et al.

an example of the dynamic change in the number of requests over time, with
the horizontal axis representing time and the vertical axis indicating the total
number of requests. Figure 6 demonstrates an example of the request queue
length over time, where the horizontal axis represents time and the vertical
axis shows the request queue length. Figure 7 displays an example of average
response time statistics, with the horizontal axis denoting the response time and
the vertical axis representing the cumulative probability.

3.3 Forecasting

To estimate future request numbers, we opt to utilize the sequence of total
request numbers from historical periods. The scheduler will calculate the total
number of requests in each historical period, which is uniformly recorded at the
end of each time period. Regarding the prediction of this time series, we have
experimented with the following methods.

Exponential smoothing methods [12,17] are frequently used in production to
analyze time series trends. The simple exponential smoothing method is suit-
able for time series without significant trend changes, while the Holt method is
appropriate for capturing linear trends in time series. The Holt-Winters method
is more effective for predicting time series with linear trends and seasonality [6].
Since SaaS services deliver services to users over the Internet, the number of
requests at various times of the day varies dynamically with user habits. It is
possible to identify a linear trend in the number of requests between adjacent
time periods and a cyclical change in the number of requests within a 24-hour
cycle. Therefore, we employ the triple exponential smoothing method to predict
the number of requests in future time periods.

Fig. 8. Forecasting the number of third-day requests for intelligent typeset service
using different exponential smoothing methods.

Figure 8 presents an example of forecasting by different methods, where the
horizontal axis represents time and the vertical axis denotes the total number of
requests. The blue line illustrates the true historical total number of requests,
while the green line displays the total number of requests fitted and predicted
by Holt-Winters. The graph includes the true total number of requests for three
days, demonstrating that the historical total number of requests exhibits both

Proactive Resource Allocation for Microservices 419

linear and seasonal trends. Using the true request totals for two days as the
training set. The Holt method and Holt-Winters method are used to forecast the
number of requests for the third day. The maximum error rate for the number
of requests forecasted using the Holt-Winters method is 11.1% compared to the
true value. The error using Holt method is larger. Forecasting using Holt-Winters
method is more reliable.

3.4 Constrained Programming

The constrained programming module utilizes the request frequency λ generated
by the forecast module and the amount of computing resources (CPU, memory)
set by the SaaS service provider to plan and solve for the number of instances of
microservices in the SaaS service, deriving a feasible set of deployment solutions.

Fig. 9. Records of CPU and memory
used by the four microservices in the
intelligent typeset service to complete
a service request.

Fig. 10. Comparison of the response
time of requesting intelligent typeset
service using six sets of test cases with
different number of headings and dif-
ferent number of images.

Currently, container technology [24] is widely adopted for deploying microser-
vice architecture applications, allowing for independent allocation of computa-
tional resources for each container and monitoring the running state of the con-
tainers using commands. Thus, the basic computational resource requirements
for the runtime of different microservices can be analyzed. Figure 9 presents an
example of the dynamics of computing resource usage for microservices over time,
with the horizontal axis representing time and the vertical axis denoting usage.
To determine the specific allocation of microservice container resources (CPUi,
MEMi), we tested whether the microservice can run normally and whether the
service completion time is within the normal range under different resource allo-
cation scenarios by inputting numerous test cases. Subsequently, we selected the

420 P. Liao et al.

computational resource allocation scheme that ensures the normal and efficient
operation of the microservice.

We transformed the problem of deploying microservice containers in a server
into a constraint planning problem [2,25]. A server with a total CPU capacity of
CPUtotal and a total memory capacity of MEMtotal can deploy any combination
of microservice instances [k1, k2, ..., ki] whose sum of CPU is less than or equal
to CPUtotal and whose sum of memory is less than or equal to MEMtotal. (k
refers to the number of microservice instances.)

Considering the range of feasible solutions, the number of computational
resources (CPUtotal, MEMtotal) of the server can only provide the upper limit
of feasible solutions (Eqs. 1 and 2). According to the requirements of the queuing
network model established in the judgment selection module, the service inten-
sity μi of each microservice must be less than 1; otherwise, the average queue
length calculated by the model will be infinite. Therefore, we used the request
frequency λ and the average service completion time μ of each microservice
to limit the minimum value of the number of microservice instances deployed
(Eq. 3).

n∑

i=1

kiCPUi ≤ CPUtotal (1)

n∑

i=1

kiMEMi ≤ MEMtotal (2)

kiμi > λ (3)

The constrained programming module calculates the computational resource
occupation of microservice instances based on the allocation of independently
used computational resources. This approach may lead to a decrease in the
overall utilization of server computational resources (Sharing computational
resources among microservice instances can improve the overall utilization of
computational resources, but additional management of shared resources is
required to solve the resource contention problem [13,14]). However, it ensures
the stable and efficient operation of microservices, preventing competition for
CPU and memory usage, which could result in operational errors or significant
degradation of service performance. Figure 10 provides an example of microser-
vice execution task time, illustrating the comparison of computing time between
two microservice instances sharing computing resources (without implement-
ing resource contention management) and using resources independently. The
computing time increases by 50% to 60% when sharing computing resources,
compared to when using resources independently. A higher degree of sharing
may lead to worse microservice performance.

Proactive Resource Allocation for Microservices 421

3.5 Judgment Selection

The judgment selection module uses the queuing network model to evaluate
whether the average queuing delay of the deployment solution generated by
the constraint planning module exceeds the set delay. If it does, the solution is
removed from the set of feasible solutions. The deployment solution with the
highest overall benefit among the deployment solutions that pass the evaluation
is then selected using the economic efficiency function.

Fig. 11. Analytical model of a multi-stage application cascaded by microservice com-
positions.

To evaluate the performance of multi-stage applications cascaded by
microservice compositions, we constructed a queuing network model [1,18,30,
33]. Figure 11 presents the analytical model of a multi-stage application cas-
caded by microservice compositions. Suppose a multi-stage application con-
sists of n microservices, (MicroService1, MicroService2, MicroService3, ...,
MicroServicen), which belong to m stages (0<m<=n). The n microservices
have n request queues. The queuing network model consists of these n queuing
models: queue1, queue2, queue3, ..., queuen.

We assumed that request arrivals follow a Poisson process with rate λ, and
the average request arrival interval is 1/λ. We also assumed that the computing
times for each type of microservice are exponentially distributed. A queuing
model in which request arrivals follow a Poisson process and service times are
exponentially distributed can provide approximately pessimistic predictions for
the time distribution (normal or random distribution) of other kinds of request
arrivals [26,34].

Among the m phases, the microservice with the longest response time
within the first phase has an impact on the arrival and performance of
requests in later phases. When the request arrives in a Poisson process with
rate λ, all microservices MicroService1, MicroService2, MicroService3, ...,
MicroServices1 within the first stage receive the task simultaneously. The task
arrival of all microservices in the first stage follows a Poisson process with rate
λ. According to the assumption that the operation times of all microservices
in the SaaS application follow an exponential distribution μ1, μ2, μ3, ..., μn,
the request queues of all microservices within the first stage can be modeled as

422 P. Liao et al.

the M/M/k queuing model (k >= 1). When the microservice with the longest
response time in the first stage completes its task, the requests immediately
move to the second stage. According to Burke’s theorem [22], the output process
of the M/M/k queue is a Poisson process that has the same rate λ as its input
process. Therefore, the arrivals of all microservices in the second stage also fol-
low a Poisson process with rate λ. The request queues of all microservices within
the second stage can also be modeled as an M/M/k queuing model (k >= 1).
This reasoning can be extended to all m stages, where the request queues of
all microservices can be modeled as an M/M/k queuing model (k >= 1). The
performance metrics of all microservices can then be calculated, and the perfor-
mance metrics of the microservice with the longest response time in each phase
will be combined to evaluate the overall performance of the SaaS application.

Performance indicators of the M/M/1 queuing system:

1. The service intensity of the system, which indicates the workload of a
microservice with only one instance. The closer the request frequency λ is
to μ, the higher the probability that an instance of that microservice is in a
busy state.

ρ =
λ

μ
(4)

2. The average number of requests in the waiting state in the system indicates
the average queue length of the request queue for a microservice with only
one instance per unit time. The higher the request frequency λ, the higher
the probability of request queuing.

Lq =
λ2

μ (μ − λ)
(5)

3. The average number of requests in the system indicates the average capacity
of the request queue for a microservice with only one instance per unit time.
The higher the request frequency λ, the longer the average length of the
request queue.

Ls =
λ

μ − λ
(6)

4. The average wait time of a request in the system indicates the average queuing
time of a request in the request queue of a microservice with only one instance.
The higher the request frequency λ, the longer the average queuing time of
the request.

Wq =
λ

μ (μ − λ)
(7)

5. The average sojourn time of requests in the system indicates the average
response time per unit time for microservices with only one instance. The
higher the request frequency λ, the longer the average response time.

WS =
1

μ − λ
(8)

Proactive Resource Allocation for Microservices 423

Performance indicators of the M/M/k (k >= 2) queuing system:

1. The service intensity of the system, which indicates how busy a microservice
with k instances is. The closer the request frequency λ is to kμ, the higher
the probability that an instance of that microservice is in a busy state.

ρ =
λ

kμ
(9)

2. The probability of having c requests in the system represents the steady-state
probability of having c requests in the request queue of a microservice with
k instances.

P0 =

[
k−1∑

c=0

1
c!

(
λ

μ

)c

+
1
k!

1
1 − ρ

(
λ

μ

)k
]−1

(10)

Pc =
1
c!

(
λ

μ

)c

(0 < c < k) (11)

Pc =
1

k!kc−k

(
λ

μ

)c

P0 (c ≥ k) (12)

3. The average number of requests in the waiting state in the system indi-
cates the average queue length of the request queue for a microservice with
k instances per unit time. The higher the request frequency λ, the higher the
probability of request queuing.

Lq =
(kρ)k ρ

k! (1 − ρ)2
P0 (13)

4. The average number of requests in the system indicates the average capacity
of the request queue for a microservice with k instances per unit time. The
higher the request frequency λ, the longer the average length of the request
queue.

Ls = Lq + kρ (14)

5. The average waiting time of a request in the system indicates the average
queuing time of a request in the request queue of a microservice with k
instances per unit time. The higher the request frequency λ, the longer the
average queuing time of the requests.

Wq =
Lq

λ
(15)

6. The average sojourn time of requests in the system indicates the average
response time of microservices with k instances per unit time. The higher the
request frequency λ, the longer the average response time.

Ws = Wq +
1
μ

(16)

424 P. Liao et al.

Integrated average queuing delay:

Tq =
m∑

i=1

LqiWqi (17)

Lqi and Wqi are determined by the microservice with the longest response
time (longest average sojourn time) in phase i. If the integrated average queu-
ing delay exceeds the threshold set by the SaaS service provider, then the
current deployment option is discarded.

Economic efficiency function:

V =
n∑

i=1

kiCPUiWCPU +
n∑

i=1

kiMEMiWMEM + TqWTλ (18)

CPUi and MEMi are the compute resource allocations of the corresponding
microservices, which are determined by the SaaS service provider after testing
the microservices it develops. WCPU and WMEM are the cost weights of the cor-
responding compute resources, which can be determined based on the purchase
or rental price of the server. WT is the time cost weight, which is determined
by the general pricing of the SaaS service. This function calculates the expected
compute resource usage cost invested by the SaaS service provider in the next
time period if the current solution is deployed, as well as the potential loss of
request revenue due to queuing delays. The judgment selection module selects
the solution with the smallest calculation result among all deployment solutions
as the optimal deployment solution, which maximizes the expected combined
revenue of the SaaS service provider.

3.6 Execution Module Implementation

The execution module, which is a custom Kubernetes controller, assumes the
responsibility of implementing the optimal deployment plan generated by the
judgment selection module (Kubernetes service). Its primary function is to main-
tain regular communication with the judgment selection module’s service, adjust-
ing the number of instances for each microservice as necessary to ensure the
deployment plan’s successful execution.

Periodically, the execution module will retrieve the current count of regis-
tered microservice instances (with a user-configurable time interval), comparing
it against the optimal deployment plan provided by the judgment selection mod-
ule’s service. If there is a disparity between the two, the module will initiate the
creation or termination of instances as required, giving precedence to creating
new instances over terminating existing ones to minimize service disruption.

In summary, the execution module plays a pivotal role in achieving opti-
mal deployment solutions, dynamically adjusting the instance count for each
microservice, and guaranteeing the efficient operation of SaaS applications in
accordance with expected performance standards.

Proactive Resource Allocation for Microservices 425

4 Evaluation

To validate the effectiveness of our adaptive deployment optimization approach,
we conducted real deployment tests using an intelligent typeset service and
compared it to a commonly used automatic scaling approach (with the request
queue’s capacity as the threshold and a 5-minute expansion and contraction trig-
ger interval) in four environments with limited computational resources. Addi-
tionally, we designed a SaaS service (Table 2) comprising nine microservices for
simulation experiments (Simulation experiments differ from real experiments in
that they utilize generated service times instead of actual service times, while
all other aspects remain consistent).

The intelligent typeset service is a composite of four stages of microser-
vices, each containing one microservice: MicroService1, MicroService2,
MicroService3, MicroService4. We obtained the base computing resources
(CPU, memory, and disk space) required by the four microservices and their
average computing time after extensive testing using 21 different types of cur-
rently supported test cases (Table 1).

Table 1. Base computing resources and average computing time of the intelligent
typeset service.

CPU(cores) Memory (GB) Average computing time (s) Hard Disk Drive (GB)

MicroService1 3 1.2 163 3.61

MicroService2 0.5 0.39 18 1.15

MicroService3 0.5 0.39 19 1.15

MicroService4 1 0.78 90 9.19

Table 2. Base computing resources and average computing time of the designed SaaS
service.

CPU(cores) Memory (GB) Average computing time (s)

MicroService1 0.4 0.1 41

MicroService2 0.4 0.6 26

MicroService3 2.0 1.2 14

MicroService4 1.2 0.4 15

MicroService5 1.4 1.2 17

MicroService6 2.2 1.0 17

MicroService7 0.8 0.3 30

MicroService8 1.4 0.7 24

MicroService9 0.4 0.8 23

4.1 Experiment Setup

We utilized six cloud servers (OS Ubuntu 20.04.5, 4*Intel(R) Xeon(R) Platinum
8163CPU@2.50 GHz CPU, 8 GB RAM, 128G HDD, Docker version: 20.10.17)

426 P. Liao et al.

for the experiments. The scheduler was deployed on a separate server, while
instances of the four microservices were deployed on the other five cloud servers.
We employed Docker to allocate and limit the CPU and memory usage of the
containers individually. The containers communicated via an intranet and shared
data using a network file system.

By employing the constraint planning module and the queuing network
model, the intelligent typeset service deployed on five cloud servers could accept
request input streams with an average arrival rate of up to 89 requests per hour
(with a total average queuing delay of no more than 290 s, i.e., no more than the
average completion time of a request). No changes to the initial deployment were
required when the average arrival rate of request input streams did not exceed 8
per hour (with one container for each microservice). Consequently, we conducted
experiments using Poisson flow requests with a frequency ranging from 9 to 89
requests per hour.

The experimental setup ensured a robust comparison between the adaptive
deployment optimization approach and the commonly used automatic scaling
approach. The results from the experiments can provide insights into the perfor-
mance improvements and resource utilization efficiency offered by the adaptive
deployment optimization approach. By analyzing these results, we can determine
the effectiveness and feasibility of our proposed approach in real-world scenarios,
particularly in environments with limited computational resources.

Fig. 12. Response time statistics for
the intelligent typeset service tested
with 8 CPU cores and 16 GB of RAM.

Fig. 13. Response time statistics for
the intelligent typeset service tested
with 12 CPU cores and 24 GB of RAM.

Figure 12 presents the response time statistics for the intelligent typeset ser-
vice using different deployment optimization methods in an environment with 8
cores and 16 GB of CPU and memory. The Poisson flow request frequency ranges
from 9 to 25 requests per hour. The adaptive method has an average response

Proactive Resource Allocation for Microservices 427

time of 413 s, while the auto-scaling method’s average response time is 472 s.
Both methods achieve approximately a 50% performance improvement com-
pared to the initial deployment scheme. The adaptive method reduces the aver-
age response time by 13% compared to the auto-scaling method. Although both
methods result in similar deployment optimization, the auto-scaling method’s
overall performance is slightly worse due to multiple expansions and contrac-
tions during runtime, which increases the average response time.

Figure 13 displays the response time statistics for the intelligent typeset ser-
vice with different deployment optimization methods in an environment with
12 cores and 24 GB of CPU and memory, with the Poisson flow request fre-
quency ranging from 9 to 49 requests per hour. The adaptive method’s average
response time is 373 s, whereas the auto-scaling method’s average response time
is 421 s. The adaptive method improves service performance by 11% compared
to the auto-scaling method. The adaptive method allocates reserved resources
to MicroService1 and MicroService4, while the auto-scaling method prioritizes
allocation to MicroService1, MicroService2, and MicroService3. This differ-
ence leads to increased average queue length and overall average response time
for the auto-scaling method.

Fig. 14. Response time statistics for
the intelligent typeset service tested
with 16 CPU cores and 32 GB of RAM.

Fig. 15. Response time statistics for
the intelligent typeset service tested
with 20 CPU cores and 40 GB of RAM.

Figure 14 shows the response time statistics for the intelligent typeset ser-
vice using different deployment optimization methods in an environment with
16 cores and 32 GB of CPU and memory, with the Poisson flow request fre-
quency ranging from 20 to 69 requests per hour. The adaptive approach’s average
response time is 331 s, while the auto-scaling approach’s average response time
is 442 s. This results in a 25% improvement in response latency for the adaptive
approach compared to the auto-scaling approach. The adaptive method consis-
tently allocates reserved resources to MicroService1 and MicroService4, while

428 P. Liao et al.

the auto-scaling method’s progressive tuning affects the overall service perfor-
mance.

Figure 15 provides the response time statistics for the intelligent typeset ser-
vice with different deployment optimization methods in an environment with
20 cores and 40 GB of CPU and memory, with the Poisson flow request fre-
quency ranging from 33 to 88 requests per hour. The average response time
for the adaptive approach is 322 s, and the average response time for the auto-
scaling approach is 385 s. The adaptive approach improves the service perfor-
mance by 16% compared to the auto-scaling approach. In this environment, the
adaptive method continues to allocate reserved resources to MicroService1 and
MicroService4, prioritizing MicroService1. The auto-scaling method also pri-
oritizes resource allocation for MicroService1, but the allocation of remaining
resources among MicroService2, MicroService3, and MicroService4 varies,
affecting the overall average response time.

Fig. 16. Comparison of QoS violation rates of the designed SaaS services by simulation
testing at different request frequencies.

Table 3. Resource usage statistics of the designed SaaS service by simulation testing
at different request frequencies.

Initial resources After adding resources
Request frequency (per hour) CPU(cores) Memory (GB) CPU(cores) Memory (GB)

400 36 24 56 40

500 40 28 64 40

600 48 32 72 44

700 56 36 84 56

Figure 16 and Table 3 present the quality of service (QoS) violation statistics
and comparison of computational resource usage for different deployment opti-
mization methods. The tests are conducted on the designed SaaS service with
Poisson flow request frequencies of 400, 500, 600, and 700 requests per hour. The
adaptive approach’s average QoS violation rate is 1.9%, while the auto-scaling
approach’s average QoS violation rate is 73%. The adaptive approach avoids

Proactive Resource Allocation for Microservices 429

71.1% of QoS violations compared to the auto-scaling approach. Although the
auto-scaling approach reduces the QoS violation rate after increasing compu-
tational resource usage, it increases CPU resource usage by 53% and memory
resource usage by 50% on average compared to the adaptive approach.

In conclusion, the proposed adaptive deployment optimization method effec-
tively regulates the number of instances of microservice modules within SaaS
applications under limited computing resources. It successfully addresses the
service performance degradation problem and reduces computational resource
usage by 35% compared to the traditional auto-scaling approach.

5 Conclusion

We proposed a queue analysis-based adaptive deployment optimization method
for multi-stage applications cascaded by microservice compositions. By adjust-
ing the number of instances of microservice modules within SaaS applications,
our method effectively addresses the service performance degradation problem
under limited computing resources while maintaining cost efficiency. The effec-
tiveness of this method was validated through real-world tests on intelligent
typeset services and simulation tests.

However, the current method primarily focuses on tandem microservice com-
positions and does not consider other topologies of microservice invocation
chains. Future work will explore the extension of the method to various microser-
vice chain topologies and investigate more efficient optimization techniques to
address scalability issues in larger-scale microservice deployments, ensuring effec-
tiveness across a wide range of application scenarios.

Acknowledgements. This research was funded by the Basic Public Welfare Research
Project of Zhejiang Province grant number LY20F020014 and the National Science
Foundation for Young Scientists of China grant number 61802096.

References

1. Alenizi, A., Ammar, R., Elfouly, R., Alsulami, M.: Queue analysis for probabilistic
cloud workflows. In: 2020 IEEE International Symposium on Signal Processing
and Information Technology (ISSPIT), pp. 1–6 (2020). https://doi.org/10.1109/
ISSPIT51521.2020.9408967

2. Alsarhan, A., Itradat, A., Al-Dubai, A.Y., Zomaya, A.Y., Min, G.: Adaptive
resource allocation and provisioning in multi-service cloud environments. IEEE
Trans. Parallel Distrib. Syst. 29(1), 31–42 (2018)

3. Baccelli, F., Bremaud, P.: Elements of Queueing Theory. Elements of Queueing
Theory (1961)

4. Bhardwaj, S., Sahoo, B.: A particle swarm optimization approach for cost effective
saas placement on cloud. In: International Conference on Computing, Communica-
tion and Automation, ICCCA 2015, pp. 686–690 (2015). https://doi.org/10.1109/
CCAA.2015.7148462

https://doi.org/10.1109/ISSPIT51521.2020.9408967
https://doi.org/10.1109/ISSPIT51521.2020.9408967
https://doi.org/10.1109/CCAA.2015.7148462
https://doi.org/10.1109/CCAA.2015.7148462

430 P. Liao et al.

5. Chainbi, W., Sassi, E.: A multiswarm for composite saas placement optimization
based on pso. Softw.- Pract. Exp. 48(10), 1847–1864 (2018). https://doi.org/10.
1002/spe.2600

6. Chatfield, C.: The holt-winters forecasting procedure. J. Roy. Stat. Soc. 27(3),
264–279 (1978). https://doi.org/10.2307/2347162

7. Dikaiakos, M.D., Katsaros, D., Mehra, P., Pallis, G., Vakali, A.: Cloud comput-
ing: distributed internet computing for it and scientific research. IEEE Internet
Comput. 13(5), 10–11 (2009). https://doi.org/10.1109/MIC.2009.103

8. Fu, K., Zhang, W., Chen, Q., Zeng, D., Guo, M.: Adaptive resource efficient
microservice deployment in cloud-edge continuum. IEEE Trans. Parallel Distrib.
Syst. 33(8), 1825–1840 (2022). https://doi.org/10.1109/TPDS.2021.3128037

9. Gan, Y., Liang, M., Dev, S., Lo, D., Delimitrou, C.: Sage: practical and scalable
ml-driven performance debugging in microservices. In: International Conference
on Architectural Support for Programming Languages and Operating Systems -
ASPLOS, pp. 135–151 (2021). https://doi.org/10.1145/3445814.3446700

10. Gan, Y., et al.: An open-source benchmark suite for cloud and iot microservices.
arXiv: 1905.11055 (2019)

11. Gan, Y., et al.: Seer: leveraging big data to navigate the complexity of performance
debugging in cloud microservices. In: International Conference on Architectural
Support for Programming Languages and Operating Systems - ASPLOS, pp. 19–
33 (2019). https://doi.org/10.1145/3297858.3304004

12. Gardner, E.S.: Exponential smoothing: The State of the Art-part ii. Int. J. Forecast.
22(4), 637–666 (2006)

13. Gevros, P., Crowcroft, J.: Distributed resource management with heterogeneous
linear controls. Comput. Netw. 45(6), 835–858 (2004)

14. Gias, A.U., Casale, G., Woodside, M.: Atom: model-driven autoscaling for
microservices. In: Proceedings International Conference on Distributed Computing
Systems 2019, pp. 1994–2004 (2019). https://doi.org/10.1109/ICDCS.2019.00197

15. Hajji, M.A., Mezni, H.: A composite particle swarm optimization approach for the
composite saas placement in cloud environment. Soft. Comput. 22(12), 4025–4045
(2018). https://doi.org/10.1007/s00500-017-2613-8

16. He, X., Tu, Z., Wagner, M., Xu, X., Wang, Z.: Online deployment algorithms for
microservice systems with complex dependencies. IEEE Trans. Cloud Comput.
(2022). https://doi.org/10.1109/TCC.2022.3161684

17. Hyndman, R.J., Koehler, A.B., Snyder, R.D., Grose, S.: A state space framework
for automatic forecasting using exponential smoothing methods. Int. J. Forecast.
18(3), 439–454 (2002)

18. Jia, R., Yang, Y., Grundy, J., Keung, J., Li, H.: A deadline constrained preemptive
scheduler using queuing systems for multi-tenancy clouds. In: IEEE International
Conference on Cloud Computing, CLOUD 2019, pp. 63–67 (2019)

19. Kannan, R.S., Subramanian, L., Raju, A., Ahn, J., Mars, J., Tang, L.: Grandslam:
guaranteeing slas for jobs in microservices execution frameworks. In: Proceedings of
the 14th EuroSys Conference 2019 pp. ACM Special Interest Group on Operating
Systems (SIGOPS) (2019). https://doi.org/10.1145/3302424.3303958

20. Khazaei, H., Mii, J., Mii, V.B.: Modelling of cloud computing centers using m/g/m
queues. In: Proceedings - International Conference on Distributed Computing Sys-
tems, pp. 87–92 (2011). https://doi.org/10.1109/ICDCSW.2011.13

21. Khazaei, H., Misic, J., Misic, V.B.: Performance analysis of cloud computing cen-
ters using m/g/m/m+r queuing systems. IEEE Trans. Parallel Distrib. Syst. 23(5),
936–943 (2012)

https://doi.org/10.1002/spe.2600
https://doi.org/10.1002/spe.2600
https://doi.org/10.2307/2347162
https://doi.org/10.1109/MIC.2009.103
https://doi.org/10.1109/TPDS.2021.3128037
https://doi.org/10.1145/3445814.3446700
http://arxiv.org/abs/1905.11055
https://doi.org/10.1145/3297858.3304004
https://doi.org/10.1109/ICDCS.2019.00197
https://doi.org/10.1007/s00500-017-2613-8
https://doi.org/10.1109/TCC.2022.3161684
https://doi.org/10.1145/3302424.3303958
https://doi.org/10.1109/ICDCSW.2011.13

Proactive Resource Allocation for Microservices 431

22. Klevans, R.L., Stewart, W.J.: From queueing networks to markov chains: the
xmarca interface. Perform. Eval. 24(1–2), 23–45 (1995)

23. Liao, W.H., Chen, P.W., Kuai, S.C.: A resource provision strategy for software-as-
a-service in cloud computing. Proc. Comput. Sci. 110, 94–101 (2017). https://doi.
org/10.1016/j.procs.2017.06.123

24. Merkel, D.: Docker: lightweight linux containers for consistent development and
deployment. Linux J. 2014(239) (2014). https://doi.org/10.5555/2600239.2600241

25. Moens, H., Truyen, E., Walraven, S., Joosen, W., Dhoedt, B., De Turck, F.: Cost-
effective feature placement of customizable multi-tenant applications in the cloud.
J. Netw. Syst. Manage. 22(4), 517–558 (2014)

26. Mohammadi, M., Jolai, F., Rostami, H.: An m/m/c queue model for hub covering
location problem. Math. Comput. Model. 54(11–12), 2623–2638 (2011). https://
doi.org/10.1016/j.mcm.2011.06.038

27. Pallis, G.: Cloud computing: the new frontier of internet computing. IEEE Internet
Comput. 14(5), 70–73 (2010). https://doi.org/10.1109/MIC.2010.113

28. Qiu, H., Banerjee, S.S., Jha, S., Kalbarczyk, Z.T., Iyer, R.K.: Firm: an intelli-
gent fine-grained resource management framework for slo-oriented microservices.
Proceedings of the 14th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2020, pp. 805–825 (2020). https://doi.org/10.48550/arXiv.
2008.08509

29. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Heterogeneity
and dynamicity of clouds at scale: Google trace analysis. In: Proceedings of the 3rd
ACM Symposium on Cloud Computing, SoCC 2012. ACM Special Interest Group
on Management of Data (SIGMOD) (2012)

30. Tournaire, T., Castel-Taleb, H., Hyon, E., Hoche, T.: Generating optimal thresh-
olds in a hysteresis queue: application to a cloud model. In: Proceedings - IEEE
Computer Society’s Annual International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunications Systems, MASCOTS 2019, 283–
294 (2019). https://doi.org/10.1109/MASCOTS.2019.00040

31. Villamizar, M., et al.: Infrastructure cost comparison of running web applications
in the cloud using aws lambda and monolithic and microservice architectures. In:
Proceedings - 2016 16th IEEE/ACM International Symposium on Cluster, Cloud,
and Grid Computing, CCGrid 2016, pp. 179–182 (2016). https://doi.org/10.1109/
CCGrid.2016.37

32. Wada, H., Suzuki, J., Oba, K.: Queuing theoretic and evolutionary deployment
optimization with probabilistic slas for service oriented clouds. In: SERVICES
2009–5th 2009 World Congress on Services (PART 1), pp. 661–669 (2009). https://
doi.org/10.1109/SERVICES-I.2009.59

33. Wang, S., Li, X., Ruiz, R.: Performance analysis for heterogeneous cloud servers
using queueing theory. IEEE Trans. Comput. 69(4), 563–576 (2020). https://doi.
org/10.1109/TC.2019.2956505

34. Wu, H., Sun, Y., Wolter, K.: Analysis of the energy-response time tradeoff for
delayed mobile cloud offloading. Perform. Eval. Rev. 43(2), 33–35 (2015). https://
doi.org/10.1145/2825236.2825251

35. Yang, H., Chen, Q., Riaz, M., Luan, Z., Tang, L., Mars, J.: Powerchief: Intelli-
gent power allocation for multi-stage applications to improve responsiveness on
power constrained cmp. In: Proceedings - International Symposium on Computer
Architecture Part F128643, pp. 133–146 (2017). https://doi.org/10.1145/3079856.
3080224

https://doi.org/10.1016/j.procs.2017.06.123
https://doi.org/10.1016/j.procs.2017.06.123
https://doi.org/10.5555/2600239.2600241
https://doi.org/10.1016/j.mcm.2011.06.038
https://doi.org/10.1016/j.mcm.2011.06.038
https://doi.org/10.1109/MIC.2010.113
https://doi.org/10.48550/arXiv.2008.08509
https://doi.org/10.48550/arXiv.2008.08509
https://doi.org/10.1109/MASCOTS.2019.00040
https://doi.org/10.1109/CCGrid.2016.37
https://doi.org/10.1109/CCGrid.2016.37
https://doi.org/10.1109/SERVICES-I.2009.59
https://doi.org/10.1109/SERVICES-I.2009.59
https://doi.org/10.1109/TC.2019.2956505
https://doi.org/10.1109/TC.2019.2956505
https://doi.org/10.1145/2825236.2825251
https://doi.org/10.1145/2825236.2825251
https://doi.org/10.1145/3079856.3080224
https://doi.org/10.1145/3079856.3080224

432 P. Liao et al.

36. Zhang, Y., Hua, W., Zhou, Z., Suh, G.E., Delimitrou, C.: Sinan: Ml-based and qos-
aware resource management for cloud microservices. In: International Conference
on Architectural Support for Programming Languages and Operating Systems -
ASPLOS, pp. 167–181 (2021). https://doi.org/10.1145/3445814.3446693

37. Zhou, H., et al.: Overload control for scaling wechat microservices. In: SoCC 2018
- Proceedings of the 2018 ACM Symposium on Cloud Computing, pp. 149–161
(2018). https://doi.org/10.1145/3267809.3267823

38. Zhou, X., et al.: Fault analysis and debugging of microservice systems: Industrial
survey, benchmark system, and empirical study. IEEE Trans. Software Eng. 47(2),
243–260 (2021). https://doi.org/10.1109/TSE.2018.2887384

https://doi.org/10.1145/3445814.3446693
https://doi.org/10.1145/3267809.3267823
https://doi.org/10.1109/TSE.2018.2887384

Reliable Function Computation
Offloading in Cloud-Edge Collaborative

Network

Shaonan Li, Yongqiang Xie(B), Zhongbo Li, Jin Qi, and Yumeng Tian

Institute of System Engineering, Academy of Military Science, Beijing 100141, China

61ssec xyq@sina.com

Abstract. In this paper, we focus on the cloud-edge collaborative net-
work, where a task is decomposed into a set of functions and could be
offloaded to different computing nodes, which is referred to as Func-
tion Computation Offloading (FCO). One of the most important prob-
lems in FCO is to schedule the functions in computing nodes to achieve
low latency and high reliability. We formulate FCO scheduling in the
Cloud-edge Collaborative Network as mixed-integer nonlinear program-
ming. The objective is to minimise the end-to-end delay of a task while
satisfying the latency and reliability constraints. To solve the problem,
we propose an efficient mechanism to decide the redundancy of func-
tions according to the reliability requirements. Then, we deploy the
non-redundant functions on the computing nodes. Finally, we present
a Reinforcement Learning (RL) to learn the scheduling policy of the
redundant functions to further reduce the end-to-end delay of the task.
Simulation results show that our proposed algorithm can significantly
reduce tasks’ completion time by about 13–26% with fewer iterations
compared with other alternatives.

Keywords: Computation Offloading · Reliability · Task
Decomposition · Reinforcement learning · Cloud-edge Collaboration

1 Introduction

The emergence of the Internet of Things (IoT) has led to a rapid increase in
computing-sensitive terminal devices [17]. These devices can reduce latency and
energy consumption by offloading computing to edge computing servers (EC)
and cloud computing servers (CC) [27]. However, terminal devices such as mobile
phones and IoT devices lack the resources to efficiently run intelligent applica-
tions [5]. To address this issue, deploying computing resources near the network
edge is considered a promising solution. EC can provide low-latency services
for UEs and guarantee their data security [16]. However, they may not have
the same ability as the cloud to handle computation-intensive tasks [10]. While
CC has the sufficient resources to handle computation-intensive tasks [14], it is
unable to address the problem of long delays caused by data transmission [23].
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 433–451, 2024.
https://doi.org/10.1007/978-981-97-0801-7_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_25&domain=pdf
https://doi.org/10.1007/978-981-97-0801-7_25

434 S. Li et al.

EC, on the other hand, is capable of reducing data transmission delays due to
its shorter transmission distance and higher transmission rate between UEs and
ECs. This makes it well-suited for handling tasks that require low latency. By
working together, EC and CC can provide a better solution for meeting the
diverse needs of users [5].

Computation offloading has been widely studied in many directions, such as
Internet of Vehicles (IoV) [25], Industrial Internet of Things(IIoT) [1], smart
city [9], Mobile Edge Computing(MEC) [8]. Recent works has shown that the
dynamic characteristics of the environment [34], resource allocation [25], caching
[4] and energy consumption [33] have been well addressed by complete and par-
tial task offloading. However, task-based computational offloading cannot take
advantage of resources in a cloud-edge collaborative environment. A computa-
tional task being offloaded to an EC node or CC node can only utilize limited
resources. Meanwhile, the reliability of computation offloading is a gap in current
research.

To address the problem, we propose splitting the computational task into
functions and offloading them to different computing nodes using Function as
a Service (FaaS) platform [13]. This approach provides a more code-fragmented
software architecture paradigm and allows for a more granular program unit than
services. FaaS infrastructure enables FCO. However, to enhance the reliability
of a task, functions execution needs to have additional redundant instances,
which occupy more computing resource and result in a higher waiting time for
other network services. Therefore, an intelligent scheduler is essential to balance
between latency and reliability [11].

To construct the function computation offloading system and make it work
normally, there are mainly three challenges.

1) Previous studies have focused on task-level computation offloading and do
not address function-level computation offloading.

2) FCO is a strategy that not only takes into account the optimal deployment
node for a function, but also considers the data transfer between functions.
This approach differs from traditional computation offloading strategies.

3) FCO is currently reliant on the FaaS platform, however, there is a need to
improve the reliability of function triggers and wake-ups as any failure in
function execution can lead to service failure. The redundancy of functions
and the level of redundancy employed play a key role in determining the
overall reliability of the task. The problem of function computation offloading
is a composite problem that involves minimizing both data transmission and
computation delays.

We proposed an algorithm based on RL and divide-and-conquer is formulated
to deal with the mixed integer non-linear programing problem under the cloud-
edge collaborative scenario. The contributions of this work are summarized as
follows:

• We have developed a reliable FCO model and formulated the reliability-aware
FCO problem as a Mixed Integer Non-Linear Programing (MINLP) problem,

Reliable Function Computation Offloading 435

which is NP-hard and shows the complexity of the FCO scheduling problem
and the difficulty to find a globally optimal solution.

• Based on the divide-and-conquer idea, we decompose the MINLP problem
into three sub-problems (Redundancy Determining, Node Selection, Redun-
dancy Node Selection). The complexity of the algorithm can be greatly
reduced.

• We propose a reinforcement learning algorithm to provide a offloading strat-
egy with lower latency. The effectiveness of our proposed approach is revealed
through the simulations. The results show that the proposed approach out-
performs other algorithms in term of end-to-end delay.

The rest of this paper is organized as follows. Section 2 introduces the related
work. Section 3 presents the network model in this paper and mathematically
formulates the reliability-aware FCO scheduling problem definition. In Sect. 4,
we propose a redundancy determining algorithm and develop a reinforcement
learning algorithm to schedule the FCO scheduling problem. Section 5 demon-
strates the simulation results and analysis. Finally, we conclude our work in
Sect. 6.

2 Related Work

The computation offloading strategy optimization problem has consistently been
a hot research topic in industry and academia, and has been investigated
extensively. Based on optimization objective, existing computation offloading
approaches can be roughly divided into five categories: 1) latency; 2) energy
consumption; 3) tradeoff between latency and energy consumption; 4) resource
allocation; 5) computing architectures.

Latency. Guo et al. [8] proposed two online learning-based offloading algorithms
to offload tasks from a device to the access points with full or partial current
network information. Zhu et al. [34] proposed an MADRL based computation
offloading algorithm to make offloading decisions for multiple mobile vehicles. In
this algorithm, each agent selects its nearby edge server for offloading the task
generated by a vehicle to minimize completion latency. Cao et al. [2] studied the
problem of IIoT computation offloading using a software-defined architecture.
They developed an optimization algorithm based on multiagent reinforcement
learning to improve the success rate of multiuser channel access and reduce the
user computing delay. To minimize the total latency, Zhang et al. [30] proposed
a multistage stochastic programming-based scheme to jointly make decision on
offloading, resource allocation, and migration.

Energy Consumption. Zhao et al. [31] decompose the computing offload-
ing problem into three subproblems named as offloading ratio selection, trans-
mission power optimization, and subcarrier and computing resource allocation.

436 S. Li et al.

Then, they proposed an iterative algorithm to deal with them in a sequence.
Simulation results demonstrate that the proposed algorithm can save 20%–40%
energy compared with the reference schemes, and can converge to local optimal
solutions.

Tradeoff Between Latency and Energy Consumption. Sun et al. [22]
proposed a heuristic algorithm and a Cauchy-Schwards inequality-based closed-
form method to jointly optimize the server selection and resource allocation to
minimize the weighted sum of latency and energy consumption. Peng et al. [15]
designed an online resource coordinating and allocating scheme to simultane-
ously minimize latency and energy consumption in a D2D-assisted edge comput-
ing system. Zhang et al. [29] presented two DRL-based computation offloading
methods for multiuser multiserver edge computing systems with energy har-
vesting. Yang et al. [26] developed a game theory-based offloading algorithm
to minimize the weighted sum of latency and energy consumption in the D2D-
enable edge computing system. Zhan et al. [28] modeled the offloading problem
with information sharing as a decentralized computation offloading game and
then formulated the problem without information sharing as a partially observ-
able Markov decision process (MDP). Liang et al. [12] introduced a submodular
theory-based computation offloading algorithm to minimize a weighted sum of
the latency and energy consumption in an edge-cloud computing system.

Resource Allocation. Wang et al. [24] formulate the computation offload-
ing decision, physical resource block (PRB) allocation, and MEC computation
resource allocation as optimization problems and proposed a graph coloring
method to proform the PRB allocation. Liang et al. [32] proposed a contract-
based framework to deal with the joint task offloading, resource sharing and
computation incentive (TORSCI) issue under the asymmetric information sce-
nario. Simulation results demonstrate the efficiency of our proposed contract-
based incentive approach.

Computing Architectures. Ding et al. [5] classify EECC into two comput-
ing architectures types according to the visibility and accessibility of the cloud
to UEs, i.e., hierarchical end-edge-cloud computing (Hi-EECC) and horizon-
tal end-edge-cloud computing (Ho-EECC) and construct a potential game for
the EECC environment, in which each UE selfishly minimizes its payoff, study
the computation offloading strategy optimization problems, and develop two
potential game-based algorithms in Hi-EECC and Ho-EECC. Ren et al. [19]
investigated the computation offloading optimization problem in the hierarchi-
cal edge-cloud computing architecture and developed a convex-based algorithm
to decide the task slipping strategy. Shah-Mansouri et al. [21] developed a poten-
tial game-based algorithm to optimize the strategy in the horizontal edge-cloud
computing architecture. Du et al. [6] considered the communication cost between
co-resident and non-co-resident tasks, and designed an algorithm to obtain a sub-
optimal strategy. Fantacci et al. [7] formulated the problem as a queueing system

Reliable Function Computation Offloading 437

model and determined the strategy by maximizing the rate of UEs whose QoS
can be satisfied. Chen et al. [3] proposed a two-level alternation method frame-
work based on reinforcement learning (RL) and sequential quadratic program-
ming (SQP) to solve the mixed-integer nonlinear optimization problem which
constrained by computing resource and cache capacity of each access point.

3 System Model and Problem Formulation

3.1 Network Model

As illustrated in Fig. 1, we consider a cloud-edge network integrated a CC and
n ECs. Each node is deployed with the Faas platform and contains all the func-
tions required by the terminal user. The terminal initiates a task which consists
of several different functions. These functions will be executed by different com-
puting nodes. The terminal will send the data to the first function and then the
calculated results will be passed sequentially in the order of the execution order
to finally obtain the results. In this case, the end-to-end delay can be defined as
the sum of processing time and data transmission time. The processing time of a
function is calculated as tcalc = dfwf/�j , where df is the amount of data input
to the function f , wf is the frequency required by the function f to process a
unit of data (i.e., CPU frequency, which is quantified by the number of cycles
per second) and �j is the computation speed of computing node j. The data
transmission time of a function is calculated as ttxm = df�f/γj , where df is the
amount of data input to the function f , �f is a coefficient characterizing the
relationship between the output data of the function and the input data and γj
is the transmission speed of computing node j.

Fig. 1. FCO in Cloud-edge Collaborative Network.

According to the literature [18], the execution of any function may be inter-
rupted since the trigger of the function failures and the hardware of software

438 S. Li et al.

failures (e.g., unexpected restart/shutdown of a physical machine, network dis-
connection, software bugs, etc.). Therefore, the reliability of the FCO is the most
important consideration besides performance. Effective ways to improve relia-
bility include adding redundancy, fast recovery, offsite migration, etc. In this
paper, we deploys multiple instances of the same function running at the same
time to increase reliability. Because the redundancy function has the potential
to further reduce the end-to-end delay of task. We define θ as the reliability of
a computing node, which specifies the probability of successful completion of a
function on a computing node. Then, the reliability of a function is defined as:

rf = 1 −
Rf∏

k

(1 − θ) (1)

where rf is the reliability of function f and Rf is the redundancy of f . k is the
kth instance of the function. With respect to a task, the end-to-end reliability is
calculated as the product of the reliability of the functions comprising the task.
Thus, the reliability of a task is:

Rs =
∏

f∈s

rf =
∏

f∈s

⎡

⎣1 −
Rf∏

k

(1 − θ)

⎤

⎦ (2)

where Rs is the reliability of the task. f specifies one of the functions s. k is
the kth instance of the function f . Therefore, the more redundant instances are
instantiated, the higher reliability task is.

3.2 Problem Formulation

Decision Variables. We define the following variables to indicate the comput-
ing node that to process function:

xk
ij =

{
1, node j is processing the kth instance of si

0, otherwise.
(3)

x̂k
ij =

⎧
⎪⎨

⎪⎩

1, output of the kth instance of si are transmitted
to node j

0, otherwise.
(4)

Reliability Constraints. The following constraint shows that the number of
function redundant instances should ensure the task request reliability require-
ment.

Rs =
∏

i∈s

ri =
∏

i∈s

⎡

⎣1 −
N∏

j

Ri∏

k

(1 − θj)xk
ij

⎤

⎦ ≥ Φs,

∀i ∈ s, j ∈ N, k ∈ Ri

(5)

Reliable Function Computation Offloading 439

where i, j,N, k denote ith function, jth computing node, the number of comput-
ing nodes, and the kth redundancy of the function. Ri denotes the number of
redundancies of the ith function, respectively. Φs is the minimum reliability that
the task needs to meet. Based on the above formula, it is possible to determine
how many redundant functions are needed. However it is not possible to deter-
mine which function needs to be redundant. Therefore, we redundant functions
by order. Moreover, the difference between two number in a redundancy list is
less than 1, which can be proved to be the maximum reliability when a fixed
amount of redundancies is given [11].
Lemma 1: Given two redundancy a, b, where a, b ≥ 2 and a + b ≡ Rf , if
0 ≤ a − b ≤ 1 than Rel(a, b) is maximized. Rel(a, b) is the reliability of the task
composed of a and b.
Proof: To prove it by contradiction try and assume that the statement is false.
Let p = 1 − θ ,where 0 < θ < 1, then

[1 − (1 − θ)a] × [1 − (1 − θ)a] = (1 − pa) × (1 − pb) (6)

Therefore,
(1 − pa) × (1 − pb) < (1 − p(a+1)) × (1 − p(b−1))

pa(1 − p) < p(b−1)(1 − p)

pa < p(b−1)

a < b − 1

(7)

Here, it arrives to a contradiction with a − b ≥ 0.
Calculation Delay and Constraint. The calculation delay of function can be
formulated as:

tcalc =
|s|∑

i

N∑

j

Ri∑

k

dki wi

�j
xk
ij ,

∀i ∈ s, j ∈ N, k ∈ Ri

(8)

s.t.
dki = �i−1d

k
i−1, ∀i ∈ s, k ∈ Ri (9)

Ri∑

k

dki = �i−1d
k
i−1, ∀i ∈ s (10)

where tcalc is calculation delay of all functions. i, j,N, k denote ith function, jth
computing node, the number of computing nodes, and the kth redundancy of the
function. Ri denotes the number of redundancies of the ith function, respectively.
dki is the amount of data input to the kth redundant instance of function i, wi is
the frequency required by the function i to process a unit of data. Constraint 9
indicates that the amount of input data of function i is the amount of output
data of function i − 1; Constraint 10 indicates that redundant functions are not
involved in the execution.

440 S. Li et al.

Transmission Delay and Constraint. The transmission delay of data
between functions can be formulated as:

ttxm =
|s|∑

i

N∑

j

Ri∑

k

dki �i
γj

x̂k
ij ,

∀i ∈ s, j ∈ N, k ∈ Ri

(11)

s.t.
x̂k
ij = xk

i+1j , ∀i ∈ s, j ∈ N, k ∈ Ri (12)

where ttxm is the transmission delay of task. i, j,N, k denote ith function, jth
computing node, the number of computing nodes, and the kth redundancy of the
function. Ri denotes the number of redundancies of the ith function, respectively.
dki is the amount of data input to the kth redundant instance of function i, �i
is a coefficient characterizing the relationship between the output data of the
function and the input data and γj is the uplink transmission speed of computing
node j. Constraint 12 indicates that data can only be transferred along the order
of the functions.
End-to-End Delay. The following equation guarantees the transmission delay
of the task.

Ts = tcalc + ttxm (13)

In this paper, we aim to minimize the end-to-end delay of a task request with
given network resources. The objective is defined as follows:

arg min
|s|∑

i

N∑

j

Rv∑

k

Ts (14)

The reliable function computation offloading problem is modeled as a Mixed
Integer Non-Linear Problem (MINLP) with a series of constraints, which is very
complex to solve. We decompose the reliable FCO problem into three subprob-
lems and solve them one by one. In the next section, we present the specific
solutions to those problem.

4 Solutions to Reliability-Aware FCO Scheduling

According to [20], the basic function scheduling problem can be regarded as an
extended Flexible Job Shop Problem (FJSP) which is proved to be NP-hard and
too difficult to find an optimal solution in polynomial time. Therefore, the prob-
lem defined in Sect. 3.2 is an NP-hard problem. In order to simplify the solution
of the problem, we decompose the reliable FCO into three subproblems to reduce
the complexity. The first subproblem is determining the optimal number of func-
tion redundancies to guarantee the reliability requirement. For this problem, we
propose an algorithm to determine the optimal number of redundancies. The
second subproblem is to determine where to deploy the functions based on the
order of the functions. Redundant functions are not deployed for the time being.

Reliable Function Computation Offloading 441

We propose a heuristic algorithm to optimize the end-to-end delay of task. The
third subproblem is the redundant function deployment problem. We develop
an intelligent RL-based algorithm to handle this problem. Increase reliability by
deploying redundancy functions while being able to find data forwarding paths
with smaller end-to-end latency.

4.1 Overview of Reliable Function Computation Offloading

We will refer to the strategy proposed in this paper as the reliable function
computation offloading (RLFCO). It includes three critical steps. When there
comes an terminal task which has been decomposed into functions. Redun-
dancy Determining is used to calculate the optimal redundancy of functions
according to the required task reliability. This process determines which func-
tions need redundancy and how many redundant functions should be deployed.
Heuristic node selection for non-redundant functions provides a strategy
that selects an appropriate computing node for the functions and calculate the
end-to-end delay of task. The redundancy function is not in the decision. This
procedure identifies a suboptimal functions deployment strategy and does not
meet the reliability requirements. Reinforcement Learning for Node Selec-
tion of Redundant Functions is designed to provide a deployment strategy
for redundant functions. If the redundant function is deployed to reduce the
end-to-end delay of task, then the redundant function will replace the original
function and the data forwarding path will be changed. The original function
becomes a redundant function.

4.2 Redundancy Determining

Adding redundancy functions on cloud and edge computing nodes is the most
effective paradigm to improve reliability. The approach improves reliability by
boosting the overhead of hardware resources. Therefore a tradeoff between
resource consumption and reliability is required. In order to obtain an opti-
mal reliability-aware scheduling without excessive resource consumption, it is
required to determine the minimum number of redundancies and decide which
functions should be replicated. Our strategy is to start from the first function
and add a redundancy of first function. Then evaluate whether the reliability
requirements are satisfied. If adding a redundancy of last function still fails to
meet the reliability requirement, then it will go back to the first function and
repeat the above process.

Suppose a task s is composed of 5 functions. The initial number of all func-
tions at the beginning is 1. Assume that the reliability probability of any function
deployed on any node is θ = 0.96. Task has a minimum reliability requirement
of Φs ≥ 0.95. Hence the initialized task reliability is Rel(s) = θ5 = 0.815 ≤ 0.95.
Then we add a redundancy to the first function and the reliability of task is
Rel(s) = θ3(1 − (1 − θ)2) = 0.848. The reliability of task reaches 0.95 until
the fourth function adds a redundancy. Figure 2 shows the impact of redundant
functions on reliability.

442 S. Li et al.

We propose a redundancy determining Algorithm1 to obtain the number of
redundant functions. We assume that the reliability of any function deployed
on any node is the same, θj∈N = θ. Given the service function chain s = fi,
the reliability of a computing node θ, and the reliability requirement of the task
Φs, the algorithm outputs a redundancy list Redundancy(f) that indicates the
number of redundancies for every function and the length of Redundancy(f) H.

R
el

ia
b

il
it

y

Number of Redundancies

Fig. 2. The impact of redundant functions on reliability.

Algorithm 1: Redundancy Determining
Input: s = {fi}, θ, Φs

Output: Redundancy(f) and the redundancy number of fi

1 L ← The length of s;
2 Initialize the function as 1;
3 Calculating task reliability Φs;
4 if Rel(s) ≥ Φs then
5 return Task satisfy the given reliability;

6 else
7 Set i ← 1;
8 while i ≤ L do
9 Add a redundancy to the function fi;

10 Calculating task reliability Φs according to Eq. 5;
11 if Rels ≥ Φs then
12 Redundancy(f) ← fi;
13 H ←The length of Redundancy(f);
14 return Redundancy(f) and H;

15 else
16 Redundancy(f) ← fi;
17 i+ = 1;

18 end

Reliable Function Computation Offloading 443

4.3 Heuristic Node Selection for Non-redundant Functions

This section presents a heuristic node selection algorithm, i.e., Algorithm 2, for
non-redundant functions. Given the service function chain s = fi, the properties
of the function fi, and the scenario information, i.e., the number of computing
nodes, the properties of computing nodes, the algorithm outputs the comput-
ing node where the function fi should be developed. The algorithm starts by
selecting the node of the first function with the shortest end-to-end delay as
the deployment node. Subsequent functions take the same procedure when it is
deployed (line4-16). Note that different functions can not be deployed on the
same nodes, but the resources are not shared.

Algorithm 2: Heuristic node selection for non-redundant functions
Input: s = {fi � (di, ωi, �i)},

CN ={Cj � (�j , γj)}
Output: Functions offloading strategy Γfi

1 L ← The length of s;
2 N ← The number of computing node (CN);
3 Initialize the function as 1;
4 while i ≤ L do
5 Set an empty list τi,j ;
6 if i == 1 or i == L then
7 while j ≤ N do
8 τi,j ← sum(τi) + diωi/�j ;
9 j+ = 1;

10 Γfi ← arg min τi;

11 else
12 while j ≤ N do
13 τi,j ← sum(τi) + di/γΓfi−1

+ diωi/�j ;

14 j+ = 1;

15 Γfi ← arg min τi;

16 i+ = 1;

17 return Functions offloading strategy Γfi

Heuristic algorithms may not always produce the best results, but they can
still provide decent results in a short amount of time. In situations where relia-
bility is crucial, redundancy is necessary for certain functions. By implementing
redundant functions, the end-to-end delay of tasks can be further reduced and
a result that is closer to the optimal strategy can be achieved. As a result, the
deployment strategy of redundant functions plays a significant role.

444 S. Li et al.

4.4 Reinforcement Learning for Node Selection of Redundant
Functions

We develop a Reinforcement Learning (RL) Algorithm 3 that used to select the
optimal node for the redundancy function. The RL agent takes as input the
current state of the computing node and a redundancy function and outputs a
offloading action. The agent obtains a reward after performing an action accord-
ing to the reward function, and updates the agent parameters.
State. State is the input of the RL agent. The state consists of the redundancy
function type, computing resources required for redundant functions, deployed
functions and their locations, the residual computing resources of the computing
node, the communication resources of computing nodes.

Algorithm 3: Reinforcement Learning for Node Selection of Redundant
Functions
Input: Redundancy(f) = {fi � (di, ωi, �i)},

CN ={Cj � (�j , γj), Γfi}
Initialization: Greedy police EPSILON = 0.9

Learning rate ALPHA = 0.1
Discount factor GAMMA = 0.9
MAX EPISODES = 500

1 L, N ← the number of Redundancy(f) and Computing node;
2 MEMORY ← build memory(L, N);
3 while episode ≤ MAX EPISODES do
4 CN ← Initialize env;
5 for i ≤ L do
6 A = choose an action based on minimum MEMORY;
7 R ← Calculation of task end-to-end delay based on decision A;
8 predict ← Prediction from MEMORY of the task end-to-end time delay

after taking an A action;
9 if i �= L then

10 target = R + GAMMA * MEMORY.iloc[i+1, :].min();

11 else
12 target = R;
13 MEMORY.loc[i, A] += target;
14 MEMORY.loc[i, A] += ALPHA * (target - predict);

15 CN ← update env(A, fi);

16 episode+ = 1;

17 for i ≤ L do
18 Γ ′

fi
← arg min MEMORY.iloc[1,:];

19 return Redundant functions offloading strategy Γ ′
fi

Action. Action is the output of the RL agent, which means which node the
redundancy function should be deployed. Hence the action is a set of cloud and
edge computing nodes.

Reliable Function Computation Offloading 445

Reward. Reward is the feedback from the environment after an action is per-
formed. To guide the agent, we design a reward R based on the task end-to-end
delay (Eq. 13). The rewards are stored in memory and progressively updated over
many iterations. The update function is shown in line 14 of the Algorithm3.

4.5 Complexity Analysis

Time Complexity. To analyse the time complexity of RLFCO, we need to
analyse time complexity of the three algorithms separately. Algorithm 1 has
16 lines of code operations, 3 lines of constant complexity, an If conditional
judgement and a While loop. The number of While loops is L. The time com-
plexity is therefore O(L). Algorithm 2 contains a two-level nested while loop.
The number of loops in the first while is L and the number of loops in the sec-
ond while is K. Thus the time complexity is O(L ∗ K). Algorithm 3 has three
loops, one of which is a For loop nested within a While loop. The number of
executions of both For-loops is L. The number of While loops is L. Therefore
the time complexity of Algorithm 3 is O(MAX EPISON ∗ L). In summary,
the total time complexity of the RLFCO algorithm proposed in this paper is
O(MAX EPISON ∗ L + L ∗ K + L).

5 Evaluation

In this section, we first present the setup in our simulation. Then we conduct
simulations to evaluate the performance of our proposed RLFCO for solving the
function scheduling problem.

5.1 Simulation Setup

Simulation Environment Parameters.We implement a Python-based FCO
simulator to build and train the agent. All the simulations are executed on a
machine with Intel Core i7 2.9 GHz and 48 GB RAM.
Baseline Algorithms. To prove the effectiveness of our algorithm, we imple-
ment a Q-Learning model and a Heuristic model as comparison method. We
evaluate the following algorithms.

• Heuristic is a greedy algorithm that selects the one with the lowest end-to-end
delay as the deployment node.

• The Q-Learning implementation of RL agent, which only use the value func-
tion to make actions. The Q-learning approach to directly decide which com-
puting node to deploy functions and redundant functions.

5.2 Impact of the Number of Functions

We evaluate the performance with different number of functions of a task as
shown in Fig. 3. Since the number of different functions has an impact on the

446 S. Li et al.

reliability and redundant nodes of task, we let the number of nodes of redun-
dant functions remain the same and set to 2 for a fair comparison. The result
shows that the end-to-end delay of all increases with the increase of functions.
The Q-learning (700) and Q-learning (7000) denote the results of the Q-learning
method after 700 iterations and 7000 iterations, respectively. Note that, with the
same computing capacity of computing nodes, the end-to-end delay is affected
by the inter-node communication capabilities. The inter-node communication
capabilities can be influenced by both computing nodes and scheduling policies.
Our strategy can achieve better end-to-end delay with a shorter number of iter-
ations. Q-learning performance is significantly worse than ours under the same
conditions. After 7000 iterations the delay of the Q-learning approach decreases
significantly and is still much higher than ours. After sufficient learning, Q-
learning may achieve better performance than us, but the time complexity will
be considerably higher than ours.

D
el

ay
 (

s)

Number of functions

Fig. 3. Impact of the number of functions.

5.3 Impact of the Number of Computing Nodes

We evaluate the performance with different number of computing nodes in the
system as shown in Fig. 4. The result shows that the end-to-end delay of all
methods maintain stability with the increase of computing nodes. Although the
number of nodes increases, the number of computing nodes to deploy the function
is equal to the number of functions, and the impact of the number of computing
nodes on the delay should be smaller while the capacity of the nodes remains sta-
ble. Our proposed method obtains the lowest end-to-end delay, which is slightly
lower than that of the heuristic. Q-learning has the highest delay. Obviously,
this solution meets our expectation, since our algorithm finds a better solution
on the heuristic solution with the help of redundant functions. For the same
number of iterations, the result of Q-learning is not ideal and is higher than the
heuristic solution.

Reliable Function Computation Offloading 447

5.4 Impact of the Reliability

We evaluate the performance with different number of redundant functions as
shown in Fig. 5. The redundancy functions have an overall similar impact on the
end-to-end delay of task for different number of functions. However, it also shows
that the reliability requirements have an impact on the algorithm proposed in
this paper. Note that, when the redundant nodes are less than 4, the delay
variation is small and proving that reliability requirements have little impact on
the algorithm. When the redundant nodes are greater than 4, the delay of task
all produces a significant increase. Since our algorithm is based on a heuristic
solution for quadratic optimization. As the number of redundant nodes increases,
the complexity of the algorithm increases, and the speed of convergence slows
down as the number of functions increases for the same iteration count. When
it is not feasible to converge quickly to the optimal value a sudden increase on
the graph is observed.

D
el

ay
 (

s)

Number of nodes

Fig. 4. Impact of the number of computing nodes.

D
el

ay
 (

s)

Number of redundancies

Fig. 5. FCO in Cloud-edge Collaborative Network.

448 S. Li et al.

D
el

ay
 (

s)

Episode

Fig. 6. Convergence of proposed method.

5.5 Convergence of Proposed Method

Figure 6 shows the learning curves of the proposed model, testing the mod-
els every 20 iterations. The experimental results show that our algorithm con-
verges very quickly. When after 20 iterations, the end-to-end delay given by the
algorithm approximate optimal value. This proves that our algorithm is indeed
converging and also proves validity. The reliability requirements of task provide
the opportunity to further optimize the latency. Since the number of redundant
nodes is in most cases smaller than the number of functions, the complexity of
our proposed algorithm is much smaller than that of other methods that take
all functions as input.

6 Conclusion

In this paper, we study the reliability-aware FCO scheduling problem in a cloud-
edge collaborative network. Our approach consists of three steps, namely redun-
dancy determining, heuristic node selection for non-redundant functions and
reinforcement learning for node selection of redundant functions. For the first
two steps, we develop two mechanisms to determine the minimum number of
redundancies to guarantee the reliability and generate a complete non-redundant
function path. In the last step, we propose a scheduling algorithm based on rein-
forcement learning. Finally, the simulation results show the effectiveness of pro-
posed approach in accelerating the deployment of functions between cloud-edge
nodes. As further future work, we would like to consider a multi-resource net-
work environment (i.e., bandwidth, CPU and memory), and to solve the FCO
scheduling problem within real-world model.

Reliable Function Computation Offloading 449

References

1. Cai, J., Fu, H., Liu, Y.: Multitask multiobjective deep reinforcement learning-based
computation offloading method for industrial internet of things. IEEE Internet
Things J. 10(2), 1848–1859 (2023). https://doi.org/10.1109/JIOT.2022.3209987

2. Cao, Z., Zhou, P., Li, R., Huang, S., Wu, D.O.: Multiagent deep reinforcement
learning for joint multichannel access and task offloading of mobile-edge computing
in industry 4.0. IEEE Internet Things J. 7(7), 6201–6213 (2020). https://doi.org/
10.1109/JIOT.2020.2968951

3. Chen, Q., Kuang, Z., Zhao, L.: Multiuser computation offloading and resource
allocation for cloud-edge heterogeneous network. IEEE Internet Things J. 9(5),
3799–3811 (2022). https://doi.org/10.1109/JIOT.2021.3100117

4. Chen, Z., Yi, W., Alam, A.S., Nallanathan, A.: Dynamic task software
caching-assisted computation offloading for multi-access edge computing. IEEE
Trans. Commun. 70(10), 6950–6965 (2022). https://doi.org/10.1109/TCOMM.
2022.3200109

5. Ding, Y., Li, K., Liu, C., Li, K.: A potential game theoretic approach to compu-
tation offloading strategy optimization in end-edge-cloud computing. IEEE Trans.
Parallel Distrib. Syst. 33(6), 1503–1519 (2022). https://doi.org/10.1109/TPDS.
2021.3112604

6. Du, M., Wang, Y., Ye, K., Xu, C.: Algorithmics of cost-driven computation
offloading in the edge-cloud environment. IEEE Trans. Comput. 69(10), 1519–
1532 (2020). https://doi.org/10.1109/TC.2020.2976996

7. Fantacci, R., Picano, B.: Performance analysis of a delay constrained data offload-
ing scheme in an integrated cloud-fog-edge computing system. IEEE Trans. Veh.
Technol. 69(10), 12004–12014 (2020). https://doi.org/10.1109/TVT.2020.3008926

8. Guo, K., Gao, R., Xia, W., Quek, T.Q.S.: Online learning based computa-
tion offloading in MEC systems with communication and computation dynam-
ics. IEEE Trans. Commun. 69(2), 1147–1162 (2021). https://doi.org/10.1109/
TCOMM.2020.3038875

9. Haber, E.E., Alameddine, H.A., Assi, C., Sharafeddine, S.: UAV-aided ultra-
reliable low-latency computation offloading in future IoT networks. IEEE
Trans. Commun. 69(10), 6838–6851 (2021). https://doi.org/10.1109/TCOMM.
2021.3096559

10. Hu, J., Li, K., Liu, C., Chen, J., Li, K.: Coalition formation for deadline-constrained
resource procurement in cloud computing. J. Parallel Distrib. Comput. 149, 1–12
(2021). https://doi.org/10.1016/j.jpdc.2020.10.004

11. Jia, J., Yang, L., Cao, J.: Reliability-aware dynamic service chain scheduling in 5G
networks based on reinforcement learning. In: 40th IEEE Conference on Computer
Communications, INFOCOM 2021, Vancouver, BC, Canada, 10–13 May 2021, pp.
1–10. IEEE (2021). https://doi.org/10.1109/INFOCOM42981.2021.9488707

12. Liang, B., Ji, W.: Multiuser computation offloading for edge-cloud collabora-
tion using submodular optimization. Tongxin Xuebao/J. Commun. 41(10), 25–
36 (2020). communication resources;Computation offloading;Computing-task;Edge
clouds;Greedy algorithms;Mode selection;Stable systems;Submodular optimiza-
tions. https://doi.org/10.11959/j.issn.1000-436x.2020205

13. Lin, C., Mahmoudi, N., Fan, C., Khazaei, H.: Fine-grained performance and cost
modeling and optimization for Faas applications. IEEE Trans. Parallel Distrib.
Syst. 34(1), 180–194 (2023). https://doi.org/10.1109/TPDS.2022.3214783

https://doi.org/10.1109/JIOT.2022.3209987
https://doi.org/10.1109/JIOT.2020.2968951
https://doi.org/10.1109/JIOT.2020.2968951
https://doi.org/10.1109/JIOT.2021.3100117
https://doi.org/10.1109/TCOMM.2022.3200109
https://doi.org/10.1109/TCOMM.2022.3200109
https://doi.org/10.1109/TPDS.2021.3112604
https://doi.org/10.1109/TPDS.2021.3112604
https://doi.org/10.1109/TC.2020.2976996
https://doi.org/10.1109/TVT.2020.3008926
https://doi.org/10.1109/TCOMM.2020.3038875
https://doi.org/10.1109/TCOMM.2020.3038875
https://doi.org/10.1109/TCOMM.2021.3096559
https://doi.org/10.1109/TCOMM.2021.3096559
https://doi.org/10.1016/j.jpdc.2020.10.004
https://doi.org/10.1109/INFOCOM42981.2021.9488707
https://doi.org/10.11959/j.issn.1000-436x.2020205
https://doi.org/10.1109/TPDS.2022.3214783

450 S. Li et al.

14. Liu, G., Xiao, Z., Tan, G., Li, K., Chronopoulos, A.T.: Game theory-based opti-
mization of distributed idle computing resources in cloud environments. Theor.
Comput. Sci. 806, 468–488 (2020). https://doi.org/10.1016/j.tcs.2019.08.019

15. Peng, J., Qiu, H., Cai, J., Xu, W., Wang, J.: D2d-assisted multi-user cooperative
partial offloading, transmission scheduling and computation allocating for MEC.
IEEE Trans. Wirel. Commun. 20(8), 4858–4873 (2021). https://doi.org/10.1109/
TWC.2021.3062616

16. Qiu, C., Wang, X., Yao, H., Du, J., Yu, F.R., Guo, S.: Networking integrated
cloud-edge-end in IoT: a blockchain-assisted collective Q-learning approach. IEEE
Internet Things J. 8(16), 12694–12704 (2021). https://doi.org/10.1109/JIOT.2020.
3007650

17. Qiu, T., Chi, J., Zhou, X., Ning, Z., Atiquzzaman, M., Wu, D.O.: Edge computing
in industrial internet of things: architecture, advances and challenges. IEEE Com-
mun. Surv. Tut. 22(4), 2462–2488 (2020). https://doi.org/10.1109/COMST.2020.
3009103

18. Qu, L., Assi, C., Shaban, K.B., Khabbaz, M.J.: A reliability-aware network service
chain provisioning with delay guarantees in NFV-enabled enterprise datacenter
networks. IEEE Trans. Netw. Serv. Manag. 14(3), 554–568 (2017). https://doi.
org/10.1109/TNSM.2017.2723090

19. Ren, J., Yu, G., He, Y., Li, G.Y.: Collaborative cloud and edge computing for
latency minimization. IEEE Trans. Veh. Technol. 68(5), 5031–5044 (2019). https://
doi.org/10.1109/TVT.2019.2904244

20. Riera, J.F., Escalona, E., Batalle, J., Grasa, E., Garcia-Espin, J.A.: Virtual network
function scheduling: concept and challenges, Vilanova i la Geltru, Spain (2014).
complex scheduling;Network functions;Network services;Proof of concept;Routing
function;Scheduling problem;State of the art;Virtual networks. https://doi.org/10.
1109/SaCoNeT.2014.6867768

21. Shah-Mansouri, H., Wong, V.W.S.: Hierarchical fog-cloud computing for IoT sys-
tems: a computation offloading game. IEEE Internet Things J. 5(4), 3246–3257
(2018). https://doi.org/10.1109/JIOT.2018.2838022

22. Sun, C., et al.: Task offloading for end-edge-cloud orchestrated computing in mobile
networks. In: 2020 IEEE Wireless Communications and Networking Conference,
WCNC 2020, Seoul, South Korea, 25–28 May 2020, pp. 1–6. IEEE (2020). https://
doi.org/10.1109/WCNC45663.2020.9120496

23. Wang, C., Zhang, S., Chen, Y., Qian, Z., Wu, J., Xiao, M.: Joint configuration
adaptation and bandwidth allocation for edge-based real-time video analytics. In:
39th IEEE Conference on Computer Communications, INFOCOM 2020, Toronto,
ON, Canada, 6–9 July 2020, pp. 257–266. IEEE (2020). https://doi.org/10.1109/
INFOCOM41043.2020.9155524

24. Wang, C., Yu, F.R., Liang, C., Chen, Q., Tang, L.: Joint computation offloading
and interference management in wireless cellular networks with mobile edge com-
puting. IEEE Trans. Veh. Technol. 66(8), 7432–7445 (2017). https://doi.org/10.
1109/TVT.2017.2672701

25. Yang, H., Xie, X., Kadoch, M.: Intelligent resource management based on rein-
forcement learning for ultra-reliable and low-latency IoV communication networks.
IEEE Trans. Veh. Technol. 68(5), 4157–4169 (2019). https://doi.org/10.1109/
TVT.2018.2890686

26. Yang, Y., Long, C., Wu, J., Peng, S., Li, B.: D2D-enabled mobile-edge computation
offloading for multiuser IoT network. IEEE Internet Things J. 8(16), 12490–12504
(2021). https://doi.org/10.1109/JIOT.2021.3068722

https://doi.org/10.1016/j.tcs.2019.08.019
https://doi.org/10.1109/TWC.2021.3062616
https://doi.org/10.1109/TWC.2021.3062616
https://doi.org/10.1109/JIOT.2020.3007650
https://doi.org/10.1109/JIOT.2020.3007650
https://doi.org/10.1109/COMST.2020.3009103
https://doi.org/10.1109/COMST.2020.3009103
https://doi.org/10.1109/TNSM.2017.2723090
https://doi.org/10.1109/TNSM.2017.2723090
https://doi.org/10.1109/TVT.2019.2904244
https://doi.org/10.1109/TVT.2019.2904244
https://doi.org/10.1109/SaCoNeT.2014.6867768
https://doi.org/10.1109/SaCoNeT.2014.6867768
https://doi.org/10.1109/JIOT.2018.2838022
https://doi.org/10.1109/WCNC45663.2020.9120496
https://doi.org/10.1109/WCNC45663.2020.9120496
https://doi.org/10.1109/INFOCOM41043.2020.9155524
https://doi.org/10.1109/INFOCOM41043.2020.9155524
https://doi.org/10.1109/TVT.2017.2672701
https://doi.org/10.1109/TVT.2017.2672701
https://doi.org/10.1109/TVT.2018.2890686
https://doi.org/10.1109/TVT.2018.2890686
https://doi.org/10.1109/JIOT.2021.3068722

Reliable Function Computation Offloading 451

27. You, C., Huang, K., Chae, H., Kim, B.: Energy-efficient resource allocation for
mobile-edge computation offloading. IEEE Trans. Wirel. Commun. 16(3), 1397–
1411 (2017). https://doi.org/10.1109/TWC.2016.2633522

28. Zhan, Y., Guo, S., Li, P., Zhang, J.: A deep reinforcement learning based offloading
game in edge computing. IEEE Trans. Comput. 69(6), 883–893 (2020). https://
doi.org/10.1109/TC.2020.2969148

29. Zhang, J., Du, J., Shen, Y., Wang, J.: Dynamic computation offloading with energy
harvesting devices: a hybrid-decision-based deep reinforcement learning approach.
IEEE Internet Things J. 7(10), 9303–9317 (2020). https://doi.org/10.1109/JIOT.
2020.3000527

30. Zhang, L., Cao, B., Li, Y., Peng, M., Feng, G.: A multi-stage stochas-
tic programming-based offloading policy for fog enabled IoT-ehealth. IEEE J.
Sel. Areas Commun. 39(2), 411–425 (2021). https://doi.org/10.1109/JSAC.2020.
3020659

31. Zhao, M., et al.: Energy-aware task offloading and resource allocation for time-
sensitive services in mobile edge computing systems. IEEE Trans. Veh. Technol.
70(10), 10925–10940 (2021). https://doi.org/10.1109/TVT.2021.3108508

32. Zhao, N., Du, W., Ren, F., Pei, Y., Liang, Y., Niyato, D.: Joint task offload-
ing, resource sharing and computation incentive for edge computing networks.
IEEE Commun. Lett. 27(1), 258–262 (2023). https://doi.org/10.1109/LCOMM.
2022.3220233

33. Zhou, H., Jiang, K., Liu, X., Li, X., Leung, V.C.M.: Deep reinforcement learning for
energy-efficient computation offloading in mobile-edge computing. IEEE Internet
Things J. 9(2), 1517–1530 (2022). https://doi.org/10.1109/JIOT.2021.3091142

34. Zhu, X., Luo, Y., Liu, A., Bhuiyan, M.Z.A., Zhang, S.: Multiagent deep reinforce-
ment learning for vehicular computation offloading in IoT. IEEE Internet Things
J. 8(12), 9763–9773 (2021). https://doi.org/10.1109/JIOT.2020.3040768

https://doi.org/10.1109/TWC.2016.2633522
https://doi.org/10.1109/TC.2020.2969148
https://doi.org/10.1109/TC.2020.2969148
https://doi.org/10.1109/JIOT.2020.3000527
https://doi.org/10.1109/JIOT.2020.3000527
https://doi.org/10.1109/JSAC.2020.3020659
https://doi.org/10.1109/JSAC.2020.3020659
https://doi.org/10.1109/TVT.2021.3108508
https://doi.org/10.1109/LCOMM.2022.3220233
https://doi.org/10.1109/LCOMM.2022.3220233
https://doi.org/10.1109/JIOT.2021.3091142
https://doi.org/10.1109/JIOT.2020.3040768

A Fast, Reliable, Adaptive Multi-hop
Broadcast Scheme for Vehicular Ad Hoc

Networks

Ping Liu1, Xingfu Wang1(B), Ammar Hawbani1(B), Bei Hua1, and Liang Zhao2

1 School of Computer Science and Technology, University of Science
and Technology of China, Hefei 230000, China

iacmy@mail.ustc.edu.cn, {wangxingfu,anmande,bhua}@ustc.edu.cn
2 Department of Computer Science, Shenyang Aerospace University,

Shenyang 110136, China
lzhao@sau.edu.cn

Abstract. Multi-hop broadcasting serves as an effective countermea-
sure against the negative impacts of rapid vehicular movement and
internal interference on data transmission in Vehicular Ad Hoc Net-
works (VANETs), thereby enhancing support for safety-critical appli-
cations. The selection of candidate forwarding vehicles within this multi-
hop broadcasting paradigm significantly impacts network performance.
This paper proposes a Fast, Reliable, and Adaptive (FRA) multi-hop
broadcast scheme, specifically designed to lower collision probability and
reduce communication overhead. Initially, we examine the correlation
between transmission distance and packet reception ratio under different
channel conditions, leading to the development of an adaptive forward-
ing priority function. This function prioritizes data forwarding by pref-
erentially selecting vehicles that exhibit higher packet reception ratios,
depending on the channel’s collision rates. Following this, we propose a
contention-based scheme to assign waiting times to candidate vehicles
based on the adaptive priority function. The proposed scheme can adap-
tively adjust the contention window size according to the forwarding
priority and vehicular density, effectively differentiating waiting times
among candidate vehicles and reducing the collision probability. Signif-
icantly, it guarantees that high-priority vehicles obtain shorter waiting
times than their low-priority counterparts, aiming to minimize commu-
nication overhead. Simulation results indicate that FRA excels in terms
of packet delivery ratio, average delivery time, and network overhead.

Keywords: Vehicular Networks · Multi-hop communication ·
Opportunistic Routing

1 Introduction

Underscoring the progression towards a more interconnected and intelligent
transportation system, Vehicular Ad Hoc Networks (VANETs) have surfaced
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 452–467, 2024.
https://doi.org/10.1007/978-981-97-0801-7_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_26&domain=pdf
https://doi.org/10.1007/978-981-97-0801-7_26

A Fast, Reliable, Adaptive Multi-hop Broadcast Scheme for VANETs 453

as a pivotal technology [14]. VANETs are capable of enhancing traffic flow effi-
ciency and improving the passenger experience by enabling real-time collabora-
tion among vehicles [10]. More importantly, VANETs play a crucial role in bol-
stering traffic safety [4,15]. Within VANETs, vehicles can communicate directly
with each other using On-Board Units (OBUs), providing more efficient and
direct support for safety-critical applications compared to other communication
technologies like mobile cellular networks.

The fast and reliable transmission of emergency messages is one of the basic
requirements for safety-critical applications [5]. However, the rapid changes in
network topology caused by the high mobility of vehicles, coupled with the inter-
nal interference in wireless medium, can lead to instability in the communication
links between vehicles. Opportunistic routing presents an effective solution for
addressing the problem of link instability in VANETs [7]. Many opportunistic
multi-hop broadcast schemes have been proposed to improve VANETs network
performance [1]. In these schemes, the sender initially broadcasts emergency mes-
sages to neighboring vehicles. However, not all vehicles that receive the message
are allowed to forward it. Allowing all vehicles to do so would result in excessive
redundant transmissions, potentially causing severe collisions. Instead, only one
vehicle is selected to re-forward the message. This process repeats until the mes-
sage reaches the target Area of Interest (AoI). The selection of which vehicle will
re-forward the message can be effectively managed by assigning different timers
to the vehicles [9]. If a vehicle that has received the message does not detect
that another vehicle has already re-forwarded the message after the specified
waiting time, it will immediately re-forward the message itself. A well-designed
policy for assigning waiting times can effectively reduce both the probability
of collisions and the delivery delay required for message propagation. Oppor-
tunistic multi-hop broadcast schemes can be classified into two types based on
how the waiting times are determined: sender-based and receiver-based [20]. In
the sender-based scheme, the sender calculates the waiting times for the poten-
tial forwarding vehicles and communicates this information to them through
wireless transmission. While effective, this scheme introduces additional control
overhead. Furthermore, it is more prone to the hidden terminal problem, partic-
ularly when the sender is at a significant distance from the candidate vehicles.
In the receiver-based scheme, vehicles that receive the message independently
calculate their own waiting times in a distributed manner, without requiring
communication from the sender. Moreover, as these potential forwarding vehi-
cles are closer to the target AoI than the sender, they have a more accurate
perception of channel conditions. This enables them to make more informed
decisions about forwarding the message. In this paper, our primary focus is on
the receiver-based multi-hop broadcast scheme.

Nevertheless, the receiver-based scheme presents some challenges that need
to be addressed. While its distributed nature eliminates the need for additional
communication overhead, it also results in a lack of coordination among vehicles.
This inevitably leads to an increased likelihood of transmission collisions. Bal-
ancing the minimization of collision probability with reducing forwarding wait-

454 P. Liu et al.

ing times for vehicles presents a significant challenge. Additionally, most existing
receiver-based schemes have not fully leveraged the channel conditions perceived
by the candidate forwarding vehicles. This oversight makes it difficult for them to
adapt to fluctuating network loads and vehicular densities. This paper begins by
examining the relationship between transmission distance and packet reception
ratio under varying channel conditions. Leveraging this relationship, we design
an adaptive priority function tailored to specific channel conditions for candi-
date vehicles, thereby reducing communication overhead. Moreover, we propose
an adaptive contention-based scheme to calculate the waiting time for poten-
tial forwarding vehicles, based on their forwarding priorities and the vehicular
density. This scheme effectively differentiates waiting times between candidate
vehicles. More importantly, it ensures that high-priority vehicles are assigned
shorter waiting times than low-priority ones, thereby minimizing the collision
probability and communication overhead for relaying messages.

2 Related Work

In the opportunistic multi-hop broadcasting schemes, simultaneous message for-
warding by multiple candidate vehicles can cause transmission collisions. These
collisions can severely degrade network performance. Various protocols have been
proposed to decrease collision probability while minimizing communication over-
head [8]. These protocols fall into three categories: waiting-based, probability-
based, and contention-based.

Waiting-based schemes aim to assign deterministic waiting times to candi-
date forwarding vehicles based on their priorities. Both Briesemeister et al. [2]
and Viriyasitavat et al. [16] employ a continuous function that maps the dis-
tance between the forwarding vehicle and the sender to a waiting time. Accord-
ing to these functions, a candidate vehicle farther from the sender will have a
shorter forwarding wait time. In addition to distance, other factors have been
introduced to more effectively distinguish the forwarding wait times of differ-
ent candidate vehicles. Yang et al. [18] take both the position and velocity of
the vehicles into account when calculating their waiting times, while Zemouri
et al. [19] consider link quality. Naderi et al. [11] design an analytic hierarchy
process to assign waiting times to candidate vehicles based on multiple factors,
including congestion, link loss, limited bandwidth, and interference. However,
the deterministic nature of waiting times may limit the adaptability of these
protocols to the complex and variable vehicle distribution in real-world scenar-
ios. Contrary to waiting-based schemes, probability-based schemes assign spe-
cific forwarding probabilities to each candidate vehicle. Wisitpongphan et al.
[17] propose a weighted p-Persistence broadcasting scheme that assigns higher
probabilities to candidate vehicles further away from the sender, aiming to max-
imize the hop progress. However, this scheme does not consider the impact of
vehicular density. As vehicular density increases, the probability of collisions
also inevitably rises. Pei et al. [13] address this limitation by taking the chan-
nel busy ratio into account, thereby making the vehicles’ forwarding probability

A Fast, Reliable, Adaptive Multi-hop Broadcast Scheme for VANETs 455

adaptive to vehicular density. Contention-based schemes are a hybrid of waiting-
based and probability-based schemes. They assign different sizes of contention
windows to candidate vehicles based on their priorities. Vehicles then uniformly
sample a random number within the specified contention window to determine
their waiting times. Palazzi et al. [12] adjust the size of vehicles’ contention
windows based on transmission distance. Vehicles further from the sender are
assigned a smaller contention window to reduce the number of relay hops for
messages. Francesco et al. [6] build upon [12] by adaptively adjusting the size of
the contention window in response to vehicular density, thereby reducing colli-
sion probability in high-density scenarios. Bujari et al. [3] provide an analytical
model for contention-based schemes, theoretically examining the number of relay
hops and propagation delay. A significant drawback of these contention-based
schemes is that the candidate forwarding vehicles with the highest priority do not
always achieve the shortest waiting times. This inconsistency could potentially
impede the propagation process of the messages.

3 Adaptive Contention-Based Multi-hop Broadcast
Scheme

In this paper, we propose an adaptive contention-based opportunistic multi-hop
broadcast scheme. This scheme aims to resolve the inconsistency found in tradi-
tional contention-based schemes and reduce the communication overhead. Our
proposed scheme consists of two main components. First, we devise a novel for-
warding priority function that adapts to channel conditions. Second, we propose
an adaptive contention-based scheme to calculate the waiting time for forwarding
vehicles, based on the designed forwarding priority function.

3.1 Adaptive Forwarding Priority Functions

In VANETs, vehicles equipped with on-board units communicate with each other
over a wireless channel. Given that all participants in a wireless channel share
the same transmission medium, these transmissions are highly susceptible to
collisions. Technologies such as CSMA/CA of IEEE 802.11p have been widely
adopted to mitigate the occurrence of collisions, but completely avoiding colli-
sions remains challenging, especially under heavy network loads. Additionally,
the hidden terminal problem further increases the probability of collisions. When
a collision occurs, the packet delivery ratio inevitably decreases. Hence, con-
ducting experiments to explore the impact of channel collision rate on vehicular
transmission becomes essential.

In this section, we employ the network simulator NS-3 to calculate the packet
reception ratios for all neighboring vehicles linked to a common sender on a
specific road segment, under a variety of channel collision rates. The parameters
used for the simulation are detailed in Sect. 4. We measure the channel collision
rate P by analyzing the beacons transmitted and received by vehicles within
the road segment each second, as formulated in Eq. (1). Here, Nt represents the

456 P. Liu et al.

number of beacons that vehicles are expected to receive each second, while Nr

denotes the number of actual beacon packets received by the vehicles. A larger
value of P indicates a higher degree of collision within the channel. During the
simulation, we categorize the sender’s neighboring vehicles into five groups based
on their respective distances from the sender. These distances fall within the
ranges of [0m, 50m), [50m, 100m), [100m, 150m), [150m, 200m), and [200m,
250m] respectively.

P = 1 − Nr

Nt
(1)

Fig. 1. The packet reception ratios for the five vehicle groups under different channel
collision rates.

Figure 1 illustrates the packet reception ratios for the five vehicle groups
across different channel collision rates. As depicted in Fig. 1, the influence of the
channel collision rate on the packet reception ratio varies for receivers located
at different distances from the sender. Generally, the packet reception ratio for
vehicles starts to decline gradually as the channel collision rate escalates. How-
ever, the collision rate’s impact on the packet reception ratio varies depending on
the vehicle’s distance from the sender. When the collision rate is low, vehicles at
all distances can receive broadcast packets from the sender with relatively high
probability. Conversely, when the collision rate in the channel is high, vehicles
located farther from the sender scarcely receive packets, while those closer to the
sender can still receive packets with a high likelihood. We hypothesize that this
observation is because vehicles situated further away from the sender are more
susceptible to internal interference and issues related to hidden terminal.

The design of the forwarding priority function in prior opportunistic multi-
hop schemes generally follows the form shown in Eq. (2). In this equation, γi
represents the forwarding priority of vehicle vi, and di represents the distance

A Fast, Reliable, Adaptive Multi-hop Broadcast Scheme for VANETs 457

between the forwarding vehicle vi and the sender vehicle vs. Rt denotes the com-
munication range of the vehicles. According to Eq. (2), vehicles located farther
from the sender are assigned higher priority, which helps to reduce the delivery
delay required for message transmission.

γi =
di
Rt

(2)

However, our simulation results presented in Fig. 1 reveal that, under high
channel collision rates, vehicles located farther away encounter difficulties in
receiving messages from the sender. In such scenarios, candidate vehicles posi-
tioned at a greater distance from the high-priority vehicles are likely to miss their
forwarded messages. This situation leads to an increase in redundant transmis-
sions, subsequently raising the channel collision rate. Therefore, we propose a
modification to the forwarding priority function to assign lower priorities to vehi-
cles situated farther from the sender under high channel collision rates. Specif-
ically, forwarding vehicles assess the current channel collision rate P based on
their own receipt of neighboring beacons. If P exceeds a predefined threshold
σ, we use the modified priority function as formulated in Eq. (3) to calculate
forwarding priorities. The ρ in Eq. (3) is a parameter used to define the valid
range for candidate forwarding vehicles. In this paper, we select σ = 0.5 and
ρ = 0.6 as these values correspond to the point at which the packet reception
ratio for vehicles located more than 150m away approaches zero, refer to Fig. 1.

γi =

{
di

Rt
if di ≤ ρ · Rt,

0 otherwise.
(3)

3.2 Adaptive Contention-Based Scheme

In this section, we introduce an adaptive contention-based scheme that calculates
waiting times for forwarding vehicles based on their modified priority function.
In previous work FMA [6], a vehicle, denoted as vi, would randomly sample a
waiting time from the contention window, defined as [1, CWSi]. Here, CWSi is
determined by the forwarding priority of vi, with higher priority values resulting
in smaller CWSi, and therefore potentially shorter forwarding waiting times.
However, these traditional schemes set the lower bound of the contention window
to 1, which implies a high likelihood that vehicles with differing forwarding
priorities may end up with similar waiting times. Moreover, this design doesn’t
ensure that high-priority forwarding vehicles consistently obtain shorter waiting
times compared to low-priority vehicles. In response to these limitations, we
propose a novel contention window-based scheme. This new scheme aims to
produce more differentiated forwarding waiting times for vehicles with different
priorities and guarantees that high-priority vehicles consistently obtain shorter
forwarding waiting times than those with lower priorities.

We denote the set of the candidate forwarding vehicles of the sender as V .
In VANETs, all vehicles are required to periodically broadcast beacons that

458 P. Liu et al.

disseminate information such as speed, location, and other essential data to foster
cooperative awareness and enable safety applications. Given this, vehicles can not
only calculate their own forwarding priorities but also estimate the forwarding
priorities of neighboring vehicles based on the beacon information they receive.
From these calculated priorities, potential forwarding vehicles can be classified
into different priority groups. Vehicles belonging to the same priority group will
be assigned the same contention window. Assuming that the value range of the
forwarding priority is [0, P], this can be divided into m distinct groups. Each
group will then have a length denoted by l = P/m. The quantity of forwarding
vehicles within each priority group is symbolized as η, where η = (η1, η2, ..., ηm).
η can be computed using equation Eq. (4), where k ranges from 0 to m − 1.

ηk =
∑
i∈|V |

[γi ∈ (l · k, l · k + l)] (4)

The symbol [...] appearing in Eq. (4) represents the Iverson bracket, the func-
tionality of which is described in Eq. (5).

[P] =

{
1 if P is true,
0 otherwise.

(5)

Subsequently, for a vehicle vi belonging to the kth priority group, we assign
its contention window (CWSk, CWSk) according to Eq. (6), where ηm = 0.⎧⎪⎨

⎪⎩
CWSk =

∑m
j=k+1 ηj · αm−1−j

CWSk =
∑m

j=k ηj · αm−1−j

(6)

As demonstrated in Eq. (6), contention windows with distinct start and end
times are assigned to various priority groups. These contention windows do not
overlap, which ensures that vehicles in higher-priority groups consistently expe-
rience shorter forwarding wait times than those in lower-priority groups. Fur-
thermore, as deduced from Eq. (6), the length of the contention window corre-
sponding to the kth priority group, denoted as nk ·αm−1−k, hinges on two factors.
The first is the number of candidate forwarding vehicles within the kth priority
group, and the second is the priority level of the group itself. As the number
of vehicles in a group increases, the contention window lengthens, reducing the
probability of transmission collisions within the group. Conversely, as the num-
ber of vehicles decreases, the contention window shortens, which in turn reduces
wait times. This dynamic design allows the contention window’s size to adapt to
vehicular density. Moreover, to differentiate waiting times effectively among vehi-
cles from various priority groups, the size of the contention window is designed
to increase exponentially as the priority level decreases. As a result, vehicles
in lower-priority groups have significantly longer waiting times than those in
higher-priority groups. The constant α in Eq. (6) can take on values such as 2,
3, or 4. Ultimately, vehicle vi randomly selects a number uniformly within the
corresponding contention window to be its waiting time.

A Fast, Reliable, Adaptive Multi-hop Broadcast Scheme for VANETs 459

Algorithm1 outlines the procedure for calculating the waiting time for can-
didate forwarding vehicles.

Algorithm 1. The procedures for candidate forwarding vehicle vi to compute
its waiting time.
Require:

The forwarding priority value: γi;
The candidate forwarding vehicles set: V ;
The length of the priority group: l;

Ensure:
vi’s forwarding waiting time: T ;

1: k = m − 1;
2: for k ≥ 0 do
3: if γi ∈ (l · k, l · k + l) then
4: CWSk =

∑m
j=k+1 ηj · αm−1−j ;

5: CWSk =
∑m

j=k ηj · αm−1−j ;
6: Sampling a random number t uniformly within (CWSk, CWSk);
7: T = t · 100μs;
8: end if
9: k = k − 1;

10: end for
11: return T ;

4 Performance Evaluation

In VANETs, vehicular density and speed are two critical factors that significantly
influence overall network performance. Vehicular density impacts the number of
candidate forwarding vehicles, affecting both the collision probability and deliv-
ery delay of message transmission. Vehicular speed can influence the stability
of network topology, thus affecting the robustness of the opportunistic multi-
hop broadcast schemes. Therefore, this section evaluates the performance of
the proposed protocol across various scenarios, altering vehicular densities and
speeds. We first present detailed simulation settings in Sect. 4.1. Subsequently,
in Sects. 4.2 and 4.3, we compare the performance of different protocols under
various vehicular densities and speeds, respectively.

4.1 Simulation Settings

To validate the effectiveness of the proposed protocol FRA, we compare FRA
with two counterparts, namely FMA and FLOOD. FMA [6] represents an
efficient and representative contention-based opportunistic broadcast protocol.
Within FMA, vehicles have the capacity to dynamically adjust their contention

460 P. Liu et al.

window size in line with vehicular density, thereby striving to minimize both col-
lision probability and delivery delay. FLOOD is a naive opportunistic broadcast
protocol, which can intuitively reflect network conditions and the effectiveness
of other broadcast protocols. Therefore, it is adopted as the baseline protocol
in this paper. Our simulations are conducted on a linear road segment that is
1 km in length and consists of four lanes. Vehicles enter the segment from both
ends, with maximum speeds capped at 60 kilometers per hour. We employ the
Simulation of Urban Mobility (SUMO, Version 0.32.0) to generate the requisite
simulation scenarios and vehicular traffic.

Table 1. SIMULATION SETTINGS

Parameter Value

Experimental Environment Ubuntu 20.04 (64 bit)
Network Simulator NS-3.30
Vehicular Mobility Simulator SUMO 0.32.0
Vehicular Density 20, 40, 60, ..., 160 veh/km
Maximum Vehicular Speed 60 km/h
Vehicular Distribution Poisson Distribution
Car Following Model Krauss model
Number of Lanes 4 per direction
Wireless Radio Range 250m
Channel Bandwidth 6 Mbps
MAC Layer Protocol IEEE 802.11p
Radio Propagation Model Two Ray Ground Reflection
Emergency Packet Size 1024 bytes
Total Simulation Time 350 s
Beacon Interval 100ms

All protocols are implemented using the Network Simulator NS-3 (version
3.30) on an Ubuntu 20.04 (64-bit) platform. We employ IEEE 802.11p as the
MAC layer protocol. The Two Ray Ground Reflection Model is also utilized in
the simulations, with the channel bandwidth set at 6 Mbps. Vehicles are config-
ured to broadcast beacons at intervals of 100ms to enable cooperative awareness.
To facilitate the evaluation of the protocol’s performance, two vehicles, marked
as A and B, are parked at each end of the segment. Every second, vehicle A
broadcasts an emergency message intended for vehicle B at the other end. The
following evaluation metrics are considered in our simulations: (1) Packet Deliv-
ery Ratio: Defined as the ratio of the emergency messages received by B to the
total number of messages broadcast by A, this metric can evaluate the broadcast
reliability of the opportunistic multi-hop protocol. (2) Average Delivery Time:
This metric represents the average end-to-end transmission time of emergency

A Fast, Reliable, Adaptive Multi-hop Broadcast Scheme for VANETs 461

messages. (3) Number of Redundant Packets: This metric can reflect the col-
lision probability of different protocols. A larger number of redundant packets
indicates that more messages are being re-forwarded by candidate vehicles. The
simulation parameters are listed in Table 1.

4.2 Varying Vehicular Densities

In this section, we estimate the influence of vehicular density on different pro-
tocols’ network performance by varying the number of vehicles per kilometer
from 20 to 160. The maximum speed of vehicles is set to 60 km/h. The other
simulation settings are the same as the default settings.

Fig. 2. Number of redundant packets varying the number of vehicles.

Figure 2 and Fig. 3 depict the influence of vehicular density on the number
of redundant packets and the packet delivery ratio for each protocol, respec-
tively. During wireless transmission, the simultaneous forwarding of messages by
multiple candidate vehicles can cause channel collisions, leading to transmission
failures. As vehicular density increases, the likelihood of simultaneous forward-
ing by multiple candidate vehicles also grows. In scenarios where an opportunis-
tic multi-hop broadcast scheme, such as FLOOD, fails to effectively mitigate
transmission collisions, the number of concurrently forwarding candidate vehi-
cles can quickly rise. This increase is evidenced by a swift rise in redundant
packets and a rapid decrease in the packet delivery ratio, as depicted in Fig. 2
and Fig. 3. Notably, FLOOD’s number of redundant packets across all vehic-
ular densities exceeds 60,000. For visualization purposes, we have marked its
maximum value as 60,000 in Fig. 2. In contrast to FLOOD, the FMA protocol
differentiates the forwarding times of candidate vehicles by assigning contention

462 P. Liu et al.

Fig. 3. Packet delivery ratio varying the number of vehicles.

windows with a common start time but varying lengths, determined by their dis-
tance from the sending vehicle. Additionally, FMA dynamically adjusts the size
of the contention window in response to vehicular density, effectively lengthening
the window as vehicular density increases. This, in turn, reduces the likelihood
of simultaneous message forwarding by multiple candidate vehicles, leading to
fewer redundant packets and lessening the transmission collision impact on the
packet delivery ratio. As illustrated in Fig. 2, although the number of redundant
packets in FMA does show a gradual increase with growing vehicular density,
it remains significantly lower than that of the FLOOD protocol. FMA sustains
a packet delivery ratio of around 1 across all vehicular densities, as shown in
Fig. 3. In comparison to FMA, FRA implements a more efficient contention-
based scheme. It employs an adaptive forwarding priority function to categorize
candidate vehicles into different priority groups and assigns each group con-
tention windows with distinct start and end times. This differentiation ensures
that the contention windows for different priority groups do not overlap, thereby
preventing transmission collisions between vehicles from different groups. Fur-
thermore, as vehicular density increases and forwarding priority decreases, the
contention window length expands exponentially, further reducing the collision
likelihood among vehicles within the same priority group. In scenarios with high
vehicular density, the adaptive priority function employed by the FRA protocol
also mitigates the likelihood of redundant transmissions, as explained in Sect. 3.1.
Figure 2 demonstrates that FRA generates significantly fewer redundant packets
than both the FLOOD and FMA protocols in each scenario. Notably, the num-
ber of redundant packets generated by FRA is less than half that of the FMA
protocol. Owing to FRA’s remarkable capacity to reduce collision probability, it
consistently upholds a high packet delivery ratio, regardless of vehicular density
scenarios.

A Fast, Reliable, Adaptive Multi-hop Broadcast Scheme for VANETs 463

Fig. 4. Average delivery time varying the number of vehicles.

Fig. 5. Packet delivery ratio varying the speed of vehicles.

Figure 4 presents the variation in the average delivery time of different pro-
tocols in response to changes in the number of vehicles. In the FLOOD protocol,
the maximum time is capped at 100,000ms for better visualization. As illustrated
in Fig. 4, both the FRA and FMA protocols are effective in reducing the average
delivery time of emergency messages, even though their delivery times display a
gradual increase in correspondence with a rise in vehicular density. This is largely
due to the increased likelihood of collisions under conditions of higher vehicular
density. Under conditions of low vehicular densities, FRA ensures that vehicles
with higher priority are assigned shorter waiting times compared to those with

464 P. Liu et al.

lower priority. This strategy reduces vehicle wait times and results in a lower
average delivery time compared to the FMA protocol. During high vehicular
density scenarios, the adaptive forwarding priority function employed by FRA
intentionally lowers the priority of vehicles located too far away to reduce redun-
dant packets, which results in a slightly higher average delivery time compared
to FMA.

4.3 Varying Vehicular Speeds

In this section, we evaluate the impact of vehicular speed on the performance
of different protocols under a medium-density scenario, featuring 80 vehicles per
kilometer. Vehicular speed varies from 20 km/h to 60 km/h, with all other sim-
ulation parameters remaining consistent with the default settings. The packet
delivery ratio, number of redundant packets, and average delivery time of differ-
ent protocols are depicted in Fig. 5, Fig. 6, and Fig. 7, respectively.

Fig. 6. Number of redundant packets varying the speed of vehicles.

Vehicular speed directly impacts the stability of the network topology
in VANETs. The higher the speed, the more frequent the network topology
changes. In urban environments, where vehicular speeds on roads fluctuate fre-
quently, opportunistic broadcast protocols should exhibit robustness against
these changes to ensure stable network performance. The simulation results
depicted in Fig. 5, Fig. 6, and Fig. 7 demonstrate that alterations in speed do
not significantly impact the performance of the three protocols. They exhibit
insensitivity to changes in vehicle speed.

A Fast, Reliable, Adaptive Multi-hop Broadcast Scheme for VANETs 465

Fig. 7. Average delivery time varying the speed of vehicles.

5 Conclusion

This paper introduces an adaptive contention-based opportunistic multi-hop
broadcast protocol, FRA, designed to enhance the reliability of vehicular ad hoc
networks in complex environments while reducing communication overhead. We
observe that when the channel collision rate is high, the packet reception ratio
for receiving vehicles situated far from the transmitting vehicle is considerably
lower than for those closer. In response, we develop an adaptive forwarding pri-
ority function that diminishes the priority of vehicles at greater distances under
conditions of high collision rates. We also propose an adaptive contention-based
scheme for calculating vehicle waiting times. This scheme dynamically adjusts
the window size according to the vehicle’s priority and the number of vehicles
within the same priority group. More importantly, it ensures that high-priority
vehicles consistently have shorter waiting times than their lower-priority coun-
terparts. All these designs effectively reduce the collision probability and com-
munication overhead. Simulation results demonstrate the effectiveness of the
proposed protocol. However, the current approach to adjusting the contention
window length could be refined further. In future work, we aim to design a
method that allows for more finely-tuned window lengths, with the aim of fur-
ther enhancing network performance.

Acknowledgements. This paper is supported by the Innovation Team and Talents
Cultivation Program of the National Administration of Traditional Chinese Medicine
(No. ZYYCXTD-D-202208).

466 P. Liu et al.

References

1. Abbasi, H.I., Voicu, R.C., Copeland, J.A., Chang, Y.: Towards fast and reliable
multihop routing in VANETs. IEEE Trans. Mob. Comput. 19(10), 2461–2474
(2019)

2. Briesemeister, L., Hommel, G.: Role-based multicast in highly mobile but sparsely
connected ad hoc networks. In: 2000 First Annual Workshop on Mobile and Ad
Hoc Networking and Computing, MobiHOC (Cat. No. 00EX444), pp. 45–50. IEEE
(2000)

3. Bujari, A., Conti, M., De Francesco, C., Palazzi, C.E.: Fast multi-hop broadcast of
alert messages in VANETs: an analytical model. Ad Hoc Netw. 82, 126–133 (2019)

4. Chen, C., Wang, C., Qiu, T., Xu, Z., Song, H.: A robust active safety enhance-
ment strategy with learning mechanism in vehicular networks. IEEE Trans. Intell.
Transp. Syst. 21(12), 5160–5176 (2019)

5. Chou, Y.H., Chu, T.H., Kuo, S.Y., Chen, C.Y.: An adaptive emergency broadcast
strategy for vehicular ad hoc networks. IEEE Sens. J. 18(12), 4814–4821 (2017)

6. De Francesco, C., Palazzi, C.E., Ronzani, D.: Fast message broadcasting in vehic-
ular networks: model analysis and performance evaluation. IEEE Commun. Lett.
24(8), 1669–1672 (2020)

7. Guesmia, S., Semchedine, F., Djahel, S.: A scalable time-division-based emergency
messages broadcast scheme for connected and autonomous vehicles in urban envi-
ronment. Veh. Commun. 38, 100544 (2022)

8. Li, P., Zeng, Y., Li, C., Chen, L., Wang, H., Chen, C.: A probabilistic broadcasting
scheme for emergent message dissemination in urban internet of vehicles. IEEE
Access 9, 113187–113198 (2021)

9. Liu, B., et al.: A novel V2V-based temporary warning network for safety message
dissemination in urban environments. IEEE Internet Things J. 9(24), 25136–25149
(2022)

10. Mahi, M.J.N., et al.: A review on VANET research: perspective of recent emerging
technologies. IEEE Access 10, 65760–65783 (2022)

11. Naderi, M., Ghanbari, M.: Adaptively prioritizing candidate forwarding set in
opportunistic routing in VANETs. Ad Hoc Netw. 140, 103048 (2023)

12. Palazzi, C.E., Ferretti, S., Roccetti, M., Pau, G., Gerla, M., et al.: How do
you quickly choreograph inter-vehicular communications? A fast vehicle-to-vehicle
multi-hop broadcast algorithm, explained. In: CCNC, pp. 960–964 (2007)

13. Pei, Z., Chen, W., Li, C., Du, L., Liu, H., Wang, X.: Analysis and optimization
of multihop broadcast communication in the internet of vehicles based on C-V2X
Mode 4. IEEE Sens. J. 22(12), 12428–12443 (2022)

14. Rani, P., Sharma, R.: Intelligent transportation system for internet of vehicles
based vehicular networks for smart cities. Comput. Electr. Eng. 105, 108543 (2023)

15. Taha, M.B., Alrabaee, S., Choo, K.K.R.: Efficient resource management of micro-
services in VANETs. IEEE Trans. Intell. Transp. Syst. 24, 6820–6835 (2023)

16. Viriyasitavat, W., Tonguz, O.K., Bai, F.: UV-CAST: an urban vehicular broadcast
protocol. IEEE Commun. Mag. 49(11), 116–124 (2011)

17. Wisitpongphan, N., Tonguz, O.K., Parikh, J.S., Mudalige, P., Bai, F., Sadekar, V.:
Broadcast storm mitigation techniques in vehicular ad hoc networks. IEEE Wirel.
Commun. 14(6), 84–94 (2007)

18. Yang, Y.T., Chou, L.D.: Position-based adaptive broadcast for inter-vehicle com-
munications. In: 2008 IEEE International Conference on Communications Work-
shops, ICC Workshops, pp. 410–414. IEEE (2008)

A Fast, Reliable, Adaptive Multi-hop Broadcast Scheme for VANETs 467

19. Zemouri, S., Djahel, S., Murphy, J.: A fast, reliable and lightweight distributed
dissemination protocol for safety messages in urban vehicular networks. Ad Hoc
Netw. 27, 26–43 (2015)

20. Zhang, H., Zhang, X., Sung, D.K.: A fast, reliable, opportunistic broadcast scheme
with mitigation of internal interference in VANETs. IEEE Trans. Mob. Comput.
22, 1880–1893 (2021)

A Grouping-Based Multi-task Scheduling
Strategy with Deadline Constraint
on Heterogeneous Edge Computing

Xiaoyong Tang, Wenbiao Cao, Tan Deng(B), Chao Xu, and Zhihong Zhu

School of Computer and Communication Engineering,
Changsha University of Science and Technology, Changsha, Hunan 410114, China

dengtan0510@csust.edu.cn

Abstract. In heterogeneous edge computing, multiple tasks often com-
pete for limited computing resources on the same edge server. These
tasks request different edge computing services and usually have a dead-
line. Efficiently scheduling them is a complex and challenging problem.
In this paper, we first develop a model for grouping and mapping limited
edge computing resources. Then, we mathematically describe the multi-
task scheduling problem with deadline constraints. Third, we propose
a grouping-based multi-task scheduling strategy called GMTSS, which
includes task regrouping and priority sorting, a resource-aware greedy
scheduling algorithm, and a task adjusting method. Task regrouping
and priority sorting are designed to balance the efficiency and fairness
of scheduling multiple tasks. The greedy scheduling algorithm assigns
tasks to an optimal node based on the status of resource groups. Addi-
tionally, task adjusting aims to achieve a better scheduling scheme that
will meet the maximum number of deadlines or higher long-term satisfac-
tion of system service, called LTSS. We conduct large-scale simulations,
and the experimental results clearly show that our proposed GMTSS
outperforms the current state-of-the-art benchmark strategy in terms of
task completion rate within deadlines and LTSS. Furthermore, GMTSS
performs well in terms of task completion time.

Keywords: Deadline constraint · Heterogeneous edge computing
system · System service satisfaction · Task scheduling

1 Introduction

In recent years, the rapid development of IoT technology has driven the pros-
perity of cloud computing [7]. Unfortunately, deploying applications to public
clouds leads to network congestion due to the high volume of data access and
computing requests [13]. This approach will also result in a lower quality of
experience (QoE) for delay-sensitive applications [9]. Therefore, edge computing
has emerged as a promising computing paradigm to alleviate this problem [5].
However, limited and heterogeneous computing resources pose challenges for effi-
cient task scheduling in edge computing [1]. Besides, the diversity of tasks leads
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 468–483, 2024.
https://doi.org/10.1007/978-981-97-0801-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_27&domain=pdf
https://doi.org/10.1007/978-981-97-0801-7_27

GMTSS with Deadline Constraint on Heterogeneous Edge Computing 469

to resource competition among multiple tasks on edge servers, which is also an
urgent problem to be solved.

Table 1. Performance of Heterogeneous Edge Nodes.

Computing node Cores & Frequency Computing resource

Edge Gateway 4, 1.2–1.5 GHz CPUs/GPUs
Local Server 4–24, 2.2–3.5 GHz CPUs/GPUs
Small Data Centers 32–64, 2.6–3.5 GHz CPUs/GPUs/FPGAs

Generally, computing resources in edge networks are often heterogeneous,
as shown in Table 1. Meanwhile, multiple APs receive tasks offloaded from edge
devices. These tasks are usually delay-sensitive and have deadlines [2]. Dispatch-
ing a deadline-constrained task to different heterogeneous nodes may result in
different results in deadlines, missed or non-missed. Furthermore, edge servers
deployed with limited services that cannot respond to all types of computing
requests. So, multiple deadline-constrained tasks requesting different services
arriving at the same time will inevitably lead to resource competition on an
edge server. Task scheduling for these tasks faces new challenges [10]. It is worth
noting that violating the deadlines of tasks will negatively impact the quality of
experience(QoE) [8]. In other words, multiple delay-sensitive tasks have varying
impacts on QoE. Thus, we introduce the concept of long-term satisfaction of
system service called LTSS to reflect QoE and task completion rate to reflect
the quality of service (QoS).

There are many studies on task scheduling in edge computing. Some studies
consider both task dispatching and resource allocation, i.e., task scheduling
[6,11,16]. Some studies also consider the heterogeneity of resources and dead-
lines to optimize different goals [14,18]. Some studies have proposed scheduling
strategies to consider different task service quality requirements [12]. Other stud-
ies use existing optimization theories to optimize task scheduling strategies in
edge computing, such as reinforcement learning, queuing theory, and genetic
algorithm [3,16,17]. However, some of the above studies set the processing time
of tasks to a certain value that overlooks the impact of resource heterogeneity on
task scheduling. The majority of studies fail to consider the resource competition
of tasks on resource-constrained edge computing. Thus, we consider a dynamic
situation where multiple tasks arrive randomly and the information about these
tasks is unknown until they arrive. At the same time, there is a resources com-
petition for multiple tasks. Our work focus on problem of efficiently scheduling
multiple deadline-constrained tasks in heterogeneous edge systems.

The rest of this paper is organized as follows: We introduce the heterogeneous
edge computing system model and architecture in Sect. 2. The details of the task
scheduling problem with deadline constraints are explained in Sect. 3. Then we
introduce our proposed grouping-based multi-task scheduling strategy in Sect. 4.
We present and discuss the simulation experiment results in Sect. 5. Finally, we
draw conclusions in Sect. 6.

470 X. Tang et al.

2 System Model and Architecture

This section describes the cloud-edge-end, a three-layer system architecture [5,
7,15] used in our work. The detailed architecture diagram is shown in Fig. 1.

2.1 Edge Network Model

The edge network consists of multiple edge servers. Every few edge servers in
a nearby geographical area are connected to an access point (AP), denoted as
E ∈ {E1, E2, . . . , En}. In our model, an AP is defined as the summary node
E∗. APs maintain a static routing table between each other, where αi,j and βi,j

represent the propagation delay and communication bandwidth between APi

and APj . Edge computing nodes in nearby areas are interconnected by fiber
optics, which have a low communication delay [4].

Fig. 1. thr detailed architecture for heterogeneous edge computing system.

2.2 Remote Cloud Model

In our system, the remote cloud Ecloud is regarded as a special server with suffi-
cient computing resources. By flexibly launching relevant instances, all comput-
ing requests can be responded to by Ecloud. We assume that scheduling tasks to

GMTSS with Deadline Constraint on Heterogeneous Edge Computing 471

Ecloud is non-blocking but incurs significant communication delays. The network
propagation delay is denoted by αcloud, the communication bandwidth between
E∗ and Ecloud is denoted by βcloud, and the computational performance of the
remote cloud is denoted by fcloud.

2.3 Edge Resource Model

There are n edge servers managed by the summary node E∗. Each server is het-
erogeneous and configured with limited application services. For edge server Ei,
we use Ec

i to represent the parallelism, Em
i to represent the memory resources,

fi to represent the computational performance, and Si to represent the set of
application services. The computation resource of Ei is represented in the form
of a triple:

Resource(Ei) =< Ec
i , E

m
i , Si > (1)

Fig. 2. One-to-one mapping relationship for request-service and one-to-many mapping
relationship for service-computing resource.

We redefine the edge computing units in a logical way to manage heteroge-
neous edge computing resources and alleviate resource competition. Firstly, we
define multiple slot nodes for the parallelism Ec

i of Ei. Furthermore, we clas-
sify computing nodes into multiple computing unit groups Xh, represented by
an k-dimensional vector Xh = {xh,1, xh,2, ..., xh,k}. The k-th computing slot in
the h-th computing unit group is defined as xh,k. Each group provides similar
computing services. Heterogeneous edge resources can be defined as a resource
matrix R∗, represented as

R∗ = [X1,X2, ...,Xh] (2)

472 X. Tang et al.

At time τ , let Ava(xh,k) ∈ {0, 1} represent whether xh,k is idle or not. The
available resources for the h-th application service are represented as

Xnum(h) =
∑

xh,k∈Xh,k=1,2,...

Ava(xh,k) (3)

By uniformly managing the granularity of computing units, we have achieved
unified resource mapping, as shown in Fig. 2.

2.4 Task Arrival and Execution Model

Multiple user devices D access the edge network through WiFi or a 4G/5G
mobile network and offload requests to the nearest edge summary node E∗. Each
requests may include multiple tasks that request different types of services. These
tasks are independent and indivisible module of applications, such as speech and
face recognition, crowd sensing, and object detection applications. Moreover,
multiple computing requests may arrive at any time. The E∗ maintains a waiting
queue for dispatching, denoted by Q∗. When requests arrive, the system responds
to tasks according to arrival time and schedules tasks to computing units for
execution. The requirement and information of tj are unknown until it arrives,
expressed as

Req(tj) =< tkindj , tloadj , tdataj , tarrivalj , tdeadlinej > (4)

where, tkindj represents the requested service type, tloadj represents the number
of CPU cycles to be completed, tdataj represents the amount of data, tarrivalj

represents arrival time, tdeadlinej represents its deadline.
We assume that the device offloads tj at time rsj . The total delay of tj

includes two parts: upload delay and response time. The upload delay includes
propagation and transmission delays. We use α∗ to denote the propagation delay
of tj . The transmission delay of tj can be expressed as T trans

j = α∗ + tdataj /β∗.
We use Twait

j and T back
j to denote the waiting time and the back time of tj

for results. Twait
j includes the waiting time of dispitch at E∗ and the waiting

time at xh,k, which are denoted to Twait
j,∗ and Twait

j,h,k . The process time of tj at
xh,k can be expressed as T process

j,h,k = tloadj /fh,k. So, the response delay of tj can
be expressed as

T rsp
j = T process

j,h,k + Twait
j + T back

j (5)

Here, Twait
j,∗ represents the delay generated by the scheduling process, taking a

small average here. Since the amount of data in the computing result is usually
small, T back

j can be approximated to the propagation delay α∗. The total delay
of tj can be expressed as

Tj = T rsp
j + T trans

j = 2α∗ +
tdataj

β∗ +
tloadj

fh,k
+ Twait

j (6)

GMTSS with Deadline Constraint on Heterogeneous Edge Computing 473

If current resource status of edge cannot meet deadline of task, task will be
scheduled to the remote cloud for execution. We assume that scheduling task
for the cloud will be executed immediately without waiting. Therefore, the total
delay of the scheduling task in the cloud can be expressed as

T cloud
j = 2αcloud + (1 + ρ)

tdataj

βcloud
+

tloadj

fcloud
+ Twait

j,∗ (7)

Here, ρ is the packet loss rate caused by network jitter during task transmission.

3 Problem Formulation

We introduce the concepts of “penalty” and “reward” to express the impact of
scheduling multiple tasks with resource competition on service quality. Here,
penalties are defined as the influencing factor for the long-term satisfaction of
system services called LTSS. LTSS is used to reflect the quality of user experience
(QoE). If the task is completed within its deadline, the system will receive a
positive reward; otherwise, the it will receive a negative penalty.

Meanwhile, we introduce a variable ϑj ∈ {−1, 0, 1} to indicate the execution
status of the task. If tj is completed within the deadline, then ϑj = 1; otherwise,
if tj responded but was not completed within the deadline, ϑj = −1; otherwise,
ϑj = 0, represented as:

ϑj =

⎧
⎨

⎩

1, rsj + Tj ≤ tdeadlinej ,
−1, rsj + Tj > tdeadlinej ,
0, otherwise.

(8)

We use CRD to denote task completion rate within deadlines and introduce
a variable yj

h,k ∈ {0, 1} to represent the allocation of tasks. If tj is assigned to
computing node xh,k, yj

h,k = 1; otherwise, set yj
h,k = 0. The slack time of tj

from current to deadline can be expressed as T slack
j = tdeadlinej − tarrivalj . We

use w ∈ {w1, w2, . . . , wh} to denote an initial weight factor for each service. The
penalty of tj is expressed as

ϕj = wj × exp(− T slack
j

tdeadlinej − rsj
) (9)

The task completion reward of tj is expressed as

rwj = yj
h,kϑjϕj (10)

The total reward of system is expressed as

Rw =
∑

j=1,2,...,m

rwj (11)

The main objective function is to maximize CRD, while the secondary objec-
tive is to maximize RW .

474 X. Tang et al.

4 Grouping-Based Multi-task Scheduling Strategy

In this section, we propose a grouping-based multi-task scheduling strategy
(GMTSS) to solve task scheduling problems with resource competition and dead-
line constraints. Our strategy is divided into three main parts. Firstly, we develop
models of task regrouping and priority sorting to balance efficiency and fair-
ness in the response to tasks. Furthermore, we propose a resource-aware greedy
scheduling algorithm. This algorithm aims to find a suitable node based on the
state of the resource group. Then, we proposed a task adjusting method to
achieve a better task scheduling solution, especially for tasks that cannot meet
deadlines. Next, we will provide a detailed introduction to these three parts of
the strategy. The process of scheduling is illustrated in Fig. 3.

Fig. 3. The process of Grouping-Based Multi-task Scheduling Strategy.

4.1 Task Grouping and Priority Sorting Model

In our model, multiple requests for applications arrive randomly, and each
request includes multiple tasks. The information about these tasks is unknown
until they arrive. Prioritizing tasks is necessary to utilize more fragmented
resources. Firstly, the Monitor component takes charge of determining the
request information associated with each task and subsequently grouping them
based on inherent priority and resource requirements.

Furthermore, the system assigns new priorities to the tasks within each group.
The priority weight of tj is represented as

pj =
rpj

T slack
j

(12)

Due to the heterogeneity of computing nodes, we cannot directly and accu-
rately calculate the remaining execution time of tj , i.e. rpj when tj arrives online.
So, we determine the priority of tj by introducing the average execution time on
m computing node, which deploys the services requested by tj , represented as

rpj =
∑m

k=1 fk

k × tloadj

(13)

GMTSS with Deadline Constraint on Heterogeneous Edge Computing 475

According to Eq. (14), it is evident that for tasks with the same deadline,
the larger the pj , the less reserved time for task computation and return, and
the more urgent the response.

Algorithm 1. Priority Sorting in Group
Input: PreQueue, node’s performance table fTable
Output: NewQueue
1: Initialize array of p, NewQueue as ∅
2: for each i ∈ PreQueue do
3: r̄pi ← Calculate r̄pi of PreQueue[i] by Eq.(14)
4: p[i] ← Calculate p[i] by Eq.(13)
5: end for
6: NewQueue ← Sort tasks of PreQueue by p
7: return NewQueue

4.2 Resource-Aware Greedy Scheduling Algorithm

The greedy scheduling strategy tries to schedule tasks to computing nodes based
on the state of resources. A scheduling decision considers three factors: the cur-
rent status of resources within the computing group, the deadline of task, and
the type of task. Generally, computing resources have two states: idle and tight.
So, the scheduling strategy must consider utilizing different scheduling strategies
for two states. The pseudocode of the algorithm is shown in Algorithm 2.

Firstly, Scheduler map tj to the corresponding computing resource group
Xh. Then, Scheduler searches in the computing group Xh. If there are idle
computing nodes in the Xh, greedily dispatch tasks to the node with the shortest
execution time. Otherwise, The state of computing resources within the group
is tight. Scheduler preassigns tj to each node within Xh and calculate the
earliest completion time for the array of EFT []. If there is a node xh,k that
meets tdeadlinej , tj is assigned a task-node pair<tj , xh,k> at time eaj . Initial
strategy follows the FCFS for resource allocation. If there are no nodes meeting
tdeadlinej , call Algorithm 2 to find whether there is a feasible solution. If there is
a feasible solution, perform task adjusting; otherwise, schedule tj to Ecloud.

4.3 Task Adjusting Method

Due to resource constraints, some tasks may inevitably miss their deadlines.
However, the impact of missed deadlines on LTSS varies among different tasks.
We try to adjust the execution order and location of tasks to achieve smaller
resource utilization gaps. When we have to abandon some tasks due to resource
competition, we prioritize those tasks that have less impact on LTSS. Here, we
see the waiting queue for resource allocation as a schedule. As a result, task
adjusting seeks to produce an optimal feasible schedule (BestScheme) rather
than the original schedule (PreScheme). The BestScheme must satisfy the
following two conditions, i.e., Eq. (15).

476 X. Tang et al.

Algorithm 2. Resource-aware Greedy Scheduling Algorithm
Input: Task tj , Resource Matrix R∗, Service Set S,
Output: Task-Computing node allocation pair <tj ,xh,k>
1: Initialize array of AvaNode, EFT , EAT as ∅
2: if tkind

j ∈ S then
3: mapping tj into Computing Group Xh from R∗

4: for each k ∈ Xh do
5: if xh,k is idle then
6: add xh,k to array of AvaNode, Xnum (h) ++
7: end if
8: end for
9: end if

10: if Xnum (h) != 0 then
11: xh,k ← Select a node from AvaNode with the shortest execution time
12: Obtain allocation pair <tj ,xh,k>, yj

h,k = 1
13: else
14: EAT ← Update the earliest idle time of Xh

15: EFT ← Calculate the earliest completion time of computing nodes within Xh

16: xh,k ← Search for the index of candidate node with the smallest in EFT
17: if EFT (xh,k) <= tdeadline

j then
18: Obtain allocation pair <tj ,xh,k>, yj

h,k = 1
19: Scheduling tj to computing node xh,k

20: else
21: Preallocation tj to candidate node xh,k, calling Algorithm 3
22: if Algorithm 3 exist a feasible solution then
23: Obtain allocation pair <tj ,xh,k>, yj

h,k = 1
24: Scheduling tj to computing node xh,k and execute task adjusting
25: else
26: yj

h,k = 0
27: Scheduling tj to Ecloud

28: end if
29: end if
30: end if

Condition 1: BestScheme must obtain the same or more tasks completed
within the deadline than PreScheme.

Condition 2: BestScheme must achieve a higher reward of LTSS from com-
pleting tasks than PreScheme.

{
RDBestScheme ≥ RDPreScheme

RWBestScheme > RWPreScheme
(14)

We assume that all tasks in the current schedule can be completed within
the deadline. The remaining slack time of tj is defined as

RD(tj) = tdeadlinej − (eaj + rpj) (15)

The algorithm seeks feasible solutions through the following three methods
in sequence. The pseudocode of task adjusting method is shown in Algorithm 3.

GMTSS with Deadline Constraint on Heterogeneous Edge Computing 477

Algorithm 3. Task Adjusting Method
Input: Task tj , Resource Matrix R∗, Original schedule PreScheme
Output: an optimal schedule BestScheme
1: PreCpN ← Calculate number of tasks completed within deadlines of PreScheme
2: PreReward ← Calculate RW of PreScheme by Eq. (11)
3: SlackTime ← Calculate RD(tj) of tasks in PreScheme by Eq. (16)
4: Index ← Calculate Index of inserting tj into PreScheme
5: Divide PreScheme into AQ(tk) and NAQ(tk) by Index
6: if rpj ≤ min

{
RDk∈AQ(tk)(tk)

}
then

7: BestScheme ← Insert tj into Index of PreScheme
8: else
9: CurReward,NewScheme ← Calculate RW of inserting tj into PreScheme

10: CurCompleteNum ← Calculate number of tasks completed within deadlines of
NewScheme

11: if CurBenefits>PreReward && CurCompleteNum>=PreCpN then
12: BestScheme ← NewScheme
13: Rescheduling the affected task
14: else
15: NewScheme ← Select a appropriate task to replacet from NAQ(tk)
16: RlcReward ← Calculate RW of NewScheme
17: if RlcReward > PreReward then
18: BestScheme ← PreScheme after executing task replacement
19: Rescheduling the replaced task
20: else
21: Scheduling tj to Ecloud

22: end if
23: end if
24: end if

DirectInsertion(DI): We first calculate the queue insertion position of tj
that meets the deadline, denoted as Index. Theoretically, inserting tj into a
certain position of PreScheme only affects the tasks arranged behind tj and
delays their completion time. Therefore, the PreScheme can be divided into
two parts: the affected queue AQ(tk) and the unaffected queue NAQ(tk). Then,
calculate the remaining slack time of AQ(tk).

rpj ≤ min
{
RDk∈AQ(tk)(tk)

}
(16)

If the remaining execution time of tj is less than the minimum remaining
slack time of AQ(tk), this means that it meets Condition 1 and will definitely
meet Condition 2, i.e., Eq. (16). So, tj can directly insert into the position of
Index in PreScheme. Then, update the earliest allocation time eak of tk, here
tk ∈ AQ(tk).

HighestRewardInsertion(HRI): If there is no feasible solution for DI, the
algorithm attempts to find a schedule for the highest reward insertion. We first
calculate the completion reward of NewScheme after inserting tj into position
of Index, and compare it with PreScheme. If the number of tasks completed

478 X. Tang et al.

within deadlines for NewScheme is equal to PreScheme but the total reward
is greater than PreScheme, it’s also a better schedule, i.e.,

{
rpj > min

{
RDk∈AQ(tk)(tk)

}

RWNewScheme > RWPreScheme
(17)

This indicates that NewScheme satisfies both Condition 1 and Condition 2,
and that there exists a feasible solution for the highest reward insertion(HRI).

Inserting tj into the position of Index must result in a task not meeting
the deadline in AQ(tk). However, affected tasks may still meet the deadline
after being scheduled to another node of the computing group. So, we introduce
a rescheduling mechanism to handle this task. Considering the heterogeneity
of resources, the rescheduling of tj from node xh,k to node xh,k′ will lead to
a change in execution time. The pseudocode of task rescheduling is shown in
Algorithm 4. The change of rpj is expressed as

rpj =
fh,k ∗ rpj

fh,k′
(18)

Algorithm 4. Task Rescheduling Algorithm
Input: Task tj , Resource Matrix R∗, pre-allocation yj

h,k

Output: New Task-Computing node allocation pair <tj ,xh,k
′ >

1: Initialize array of EFT as ∅
2: mapping tj into Computing Group Xh

3: for each i ∈ Xh do
4: EFT [i] ← Calculate the earliest completion time of xh,i

5: end for
6: xh,k

′ ← Find the candidate node with Min{EFT}
7: if EFT [k

′
] <= tdeadline

j then
8: Update allocation pair <tj ,xh,k

′ >, yj

h,k
′ = 1

9: rpj ← Calculate rpj by by Eq. (19)
10: Rescheduling tj to computing node xh,k

′

11: else
12: Scheduling tj to Ecloud

13: end if

MaximumRewardReplacement(MRR): If there is no feasible solution for
both DI and HRI, the algorithm attempts to replace a task in the executing or
NAQ(tk) to find a schedule that is better than PreScheme. Due to replacing
a task to form NewScheme, it must meet Condition 1. A feasible schedule of
MRR also needs to meet Condition 2 and Condition 3. Finally, the replaced
task will be rescheduled within the computing group.

Condition 3: the NewScheme achieves a lower average completion time.
{

ACTNewScheme < ACTPreScheme

RWNewScheme > RWPreScheme
(19)

GMTSS with Deadline Constraint on Heterogeneous Edge Computing 479

5 Experimental Setup and Performance Evaluation

In this section, we evaluate the performance of our proposed GMTSS and com-
pare it with the current state-of-the-art benchmark strategy. We develop an edge-
cloud collaborative simulation system for deadline-constrained task scheduling
using Python, named D-Edge-CloudSim. These simulation experiments were con-
ducted by implementing the proposed GMTSS and benchmark strategy on a PC
with a Core Ryzen 7 6800H 3.2 GHz, and 16 GB RAM, running Windows 11.

5.1 Experimental Setup

In our experiment, we set up 4 edge servers, 2 Aps as the summary node, 1 public
remote cloud, and multiple edge devices. The edge servers are configured with
2–8 cores, computing performance of cores ranging from 1.2GHz to 3.2GHz,
and configured with 3–5 application services. The computing performance for
the public remote cloud is set to 4GHz. The communication bandwidth for edge
nodes is set within the range of 400 to 500 Mbps. The bandwidth of the core
network between edge nodes and the Remote Cloud is set at 200 Mbps, and the
propagation delay is set between 200 and 300 ms.

We simulated real applications and randomly generated a large number of
tasks in container instances. These tasks are delay-sensitive, such as face recog-
nition, machine tracking recognition, and sensor detection. Multiple tasks of the
application request arrive randomly. We simulate a total of 50,000 tasks. We
adjust the release time and deadline for these tasks based on real data. Mean-
while, we divide 50,000 tasks into 5 groups based on their arrival density, denoted
as L1-L5, with the lowest density for L1 and the highest density for L5. Then,
we introduce eight types of tasks based on real data. We set the workload to a
range of 0.2 G to 0.5 G and the size of data to a range of 5 Mb to 20 Mb for
each task. The minimum action time slot of the system is set to 50 ms.

Evaluation Parameters: We utilize three indicators to evaluate the perfor-
mance of our proposed GMTSS: task completion rate within deadline (CRD),
task completion reward (RW), and average completion time (ACT). We use
three benchmark strategies for task dispatching and three benchmark strategies
for resource allocation, and combine them into four combined task scheduling
strategies to effectively compare the overall performance of GMTSS as follows:

Dispatching strategy:
Random: Randomly dispatch task to a node.
LeastLoad: Dispatch task to a node with the shortest queue length.
ShortestWait: Dispatch task to a node with Minimum waiting time.
Resource allocation strategy: EDF(Earliest Deadline First), SRPT

(Shortest Remain Process Time) and FCFS(First Come First Service).
Four Combination benchmark strategies as follow.

• MLEDF: LeastLoad + EDF.
• RSPT: Random + SRPT.

480 X. Tang et al.

• SWFF: ShortestWait + FCFS.
• MLSPT: LeastLoad + SRPT.

5.2 Evaluate Experimental Results

Firstly, we evaluate the completion rate of tasks within the deadline, i.e., CRD.
As results shown in Fig. 4, our proposed GMTSS outperforms MLEDF by 41.6%
,and RSPT by 8.2%, and SWFF by 45.5%, and MLSPT by 14% on average. We
can see that as the task density increases, other benchmark strategies have a
serious performance decline.

Fig. 4. The completion rate of tasks within the deadlines.

Fig. 5. The reward is used to reflect the quality of user experience(QoE).

Next, we evaluate the total and average task completion reward, i.e., RW .
As shown in Fig. 5, the average rewards for GMTSS, MLEDF, RSPT, SWFF

GMTSS with Deadline Constraint on Heterogeneous Edge Computing 481

and MLSPT are 1.307, -0.384, -0.613, -0.447, and 0.165 respectively. Our pro-
posed GMTSS has the highest overall task completion reward (RW) due to the
following two points: a) GMTSS has a high task completion rate. b) GMTSS
always generates a better schedule, ensuring higher RW . Those tasks generating
higher RW are also more urgent.

Fig. 6. The completion time of tasks.

Finally, we evaluate the completion time of tasks. From the results of Fig. 6,
it shows that the average completion time for GMTSS, MLEDF, RSPT, SWFF
and MLSPT are 0.6, 0.934, 1.562, 0.944 and 0.692. It is worth noting that RSPT
has advantages in general scenarios, but the advantage disappears as the task
density increases. Our proposed GMTSS is slightly superior in ACT for all bench-
mark scheduling strategies. The reason can be summarized as follows: a) GMTSS
achieves full utilization of resource fragments by adjusting tasks within the com-
puting group. b) GMTSS outperforms MLEDF and MLSPT in terms of com-
pletion time because they do not consider the impact of resource heterogeneity
on task execution.

The above experimental results show that our proposed GMTSS has obvious
advantages in a resource-constrained heterogeneous edge computing system with
multi-tasks arriving randomly.

6 Conclusion

As a promising computing paradigm, edge computing has attracted more and
more attention from researchers in various fields. It is a key challenge to achieve
efficient task scheduling to improve QoS of heterogeneous edge systems with
resource competition. In realizing this, we first build a model for resource man-
agement. Meanwhile, we consider the impact of task completion with differ-
ent levels of urgency on QoS and QoE of the system, proposing a group-based
multi-task scheduling strategy called GMTSS. Finally, we develop an edge-cloud
collaborative simulation system to test our proposed GMTSS, named D-Edge-
CloudSim. Experimental results show that our proposed GMTSS can effectively
schedule multiple tasks with resource competition.

482 X. Tang et al.

Acknowledgements. This work was supported in part by the National Natural Sci-
ence Foundation of China (Grant Nos. 61972146, 62002032, 62372064), the Postgrad-
uate Scientific Research Innovation Project of Hunan Province(CX20220942).

References

1. Abadi, Z.J.K., Mansouri, N., Khalouie, M.: Task scheduling in fog environment-
challenges, tools & methodologies: a review. Comput. Sci. Rev. 48, 100550 (2023)

2. Bellendorf, J., Mann, Z.Á.: Classification of optimization problems in fog comput-
ing. Futur. Gener. Comput. Syst. 107, 158–176 (2020)

3. Fang, J., Zhang, J., Lu, S., Zhao, H., Zhang, D., Cui, Y.: Task scheduling strategy
for heterogeneous multicore systems. IEEE Consumer Electron. Mag. 11(1), 73–79
(2021)

4. Feng, A., Dong, D., Lei, F., Ma, J., Yu, E., Wang, R.: In-network aggregation for
data center networks: a survey. Comput. Commun. 198, 63–76 (2023)

5. Filali, A., Abouaomar, A., Cherkaoui, S., Kobbane, A., Guizani, M.: Multi-access
edge computing: a survey. IEEE Access 8, 197017–197046 (2020)

6. Han, Z., Tan, H., Li, X.Y., Jiang, S.H.C., Li, Y., Lau, F.C.: Ondisc: online latency-
sensitive job dispatching and scheduling in heterogeneous edge-clouds. IEEE/ACM
Trans. Netw. 27(6), 2472–2485 (2019)

7. Hong, C.H., Varghese, B.: Resource management in fog/edge computing: a survey
on architectures, infrastructure, and algorithms. ACM Comput. Surv. (CSUR)
52(5), 1–37 (2019)

8. Jagadish, T., Apte, O., Pradeep, K.: Task scheduling algorithms in fog comput-
ing: a comparison and analysis. In: 2022 International Conference on Automation,
Computing and Renewable Systems (ICACRS), pp. 483–488. IEEE (2022)

9. Li, J., et al.: Maximizing user service satisfaction for delay-sensitive Iot applications
in edge computing. IEEE Trans. Parallel Distrib. Syst. 33(5), 1199–1212 (2021)

10. Luo, Q., Hu, S., Li, C., Li, G., Shi, W.: Resource scheduling in edge computing: a
survey. IEEE Commun. Surv. Tutorials 23(4), 2131–2165 (2021)

11. Meng, J., Tan, H., Li, X.Y., Han, Z., Li, B.: Online deadline-aware task dispatching
and scheduling in edge computing. IEEE Trans. Parallel Distrib. Syst. 31(6), 1270–
1286 (2019)

12. Oo, T., Ko, Y.B.: Application-aware task scheduling in heterogeneous edge cloud.
In: 2019 International Conference on Information and Communication Technology
Convergence (ICTC), pp. 1316–1320. IEEE (2019)

13. Tang, X., et al.: Cost-efficient workflow scheduling algorithm for applications with
deadline constraint on heterogeneous clouds. IEEE Trans. Parallel Distrib. Syst.
33(9), 2079–2092 (2022)

14. Xu, B., et al.: Fine-grained task scheduling based on priority for heterogeneous
mobile edge computing. In: 2022 China Automation Congress (CAC), pp. 4889–
4894. IEEE (2022)

15. Yu, W., et al.: A survey on the edge computing for the internet of things. IEEE
access 6, 6900–6919 (2017)

16. Yuan, H., Tang, G., Li, X., Guo, D., Luo, L., Luo, X.: Online dispatching and
fair scheduling of edge computing tasks: a learning-based approach. IEEE Internet
Things J. 8(19), 14985–14998 (2021)

GMTSS with Deadline Constraint on Heterogeneous Edge Computing 483

17. Yuchong, L., Jigang, W., Yalan, W., Long, C.: Task scheduling in mobile edge
computing with stochastic requests and m/m/1 servers. In: 2019 IEEE 21st Inter-
national Conference on High Performance Computing and Communications; IEEE
17th International Conference on Smart City; IEEE 5th International Confer-
ence on Data Science and Systems (HPCC/SmartCity/DSS), pp. 2379–2382. IEEE
(2019)

18. Zhu, T., Shi, T., Li, J., Cai, Z., Zhou, X.: Task scheduling in deadline-aware mobile
edge computing systems. IEEE Internet Things J. 6(3), 4854–4866 (2018)

Real-Time Driver Fatigue Detection
Method Based on Comprehensive Facial

Features

Yihua Zheng1, Shuhong Chen1(B), Jianming Wu1, Kairen Chen1, Tian Wang2,
and Tao Peng1

1 School of Computer Science and Cyber Engineering, Guangzhou University,
Guangzhou, Guangdong, China

shuhongchen@gzhu.edu.cn
2 BNU-UIC Institute of Artificial Intelligence and Future Networks,

Beijing Normal University, Zhuhai, Guangdong, China

Abstract. In recent years, there have been frequent cases of vehicle
accidents caused by fatigued driving, leading to considerable economic
losses and a high number of casualties. Accordingly, it has an important
social significance for avoiding accident risks to remind tried drivers to
take a break promptly. Fatigue driving detection based on facial fea-
ture recognition technology has attracted much attention due to its non-
invasive, low-cost, and convenient detection advantages. However, the
current fatigue driving technology faces the challenge of balancing real-
time performance and accuracy in practical applications. Therefore, a
fatigue driving detection model based on deep learning is proposed to
address this issue. This model includes modules for object detection, head
pose estimation, fatigue detection, and distraction detection. First, this
paper proposes a facial feature detection algorithm based on YOLOv5
and FSA-Net, which can quickly detects the driver’s eye state, mouth
state, and head state. Second, in order to better avoid accident risks, the
designed system detects driver distraction behaviors during driving pro-
cess from both cognitive distraction and visual distraction perspectives
based on the facial feature detection algorithm. Finally, a comprehen-
sive dangerous driving behavior detection and warning system based on
closed-eye detection, yawning detection, 3D head pose estimation, and
object detection is designed by integrating multiple fatigue and distrac-
tion indicators. The experimental results show that the developed detec-
tion and warning system has high detection accuracy, which can provide
timely warning when dangerous driving behavior occurs and helps ensure
driving safety.

Keywords: object detection · computer vision · fatigue driving

1 Introduction

Fatigue driving is characterized by the driver’s tiredness and drowsiness caused
by long hours of driving or lack of sufficient rest. This situation can lead to
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 484–501, 2024.
https://doi.org/10.1007/978-981-97-0801-7_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0801-7_28&domain=pdf
https://doi.org/10.1007/978-981-97-0801-7_28

Real-Time Driver Fatigue Detection Method 485

serious traffic accidents, endangering the lives of the driver and other road users.
In recent years, fatigue driving has become an important cause of traffic acci-
dents [1–3]. If the driver is reminded in time when they are fatigued, 90% of such
accidents can be avoided [4]. With the development of deep learning theory, deep
learning algorithms have been widely applied in driver fatigue detection [5–8].
Dwivedi et al. [9] used a convolutional neural network to learn facial features
and used the trained network model to classify the driver’s state. Zhang et al.
[12] proposed a yawning detection system consisting of a facial detector, a nose
detector, a nose tracker, and a yawning detector. The system uses deep learning
algorithms to detect the driver’s facial area and nose position. Then, combined
with a Kalman filter and TLD-based tracker, the system tracks the target in
dynamic driving situations. Finally, a neural network is established using mul-
tiple features to detect yawning. Although this method has high accuracy, it
is difficult to perform real-time detection on embedded devices due to its high
requirements on the performance of the equipment. Liu et al. [11] proposed a
real-time driver fatigue detection method based on Convolutional Neural Net-
work and Long Short-Term Memory (CNN-LSTM). The method applies CNN
to detect features of the driver’s eyes and mouth. These parameters are then
inputted into LSTM as continuous time series, including eye feature parameter
Perclos, mouth feature parameter MClosed, and face orientation feature parame-
ter Phdown, to output the level of fatigue. Ansari et al. [10] proposed the XSENS
motion capture system to detect the driver’s head movements. They designed
a novel bidirectional long short-term memory deep neural network with recti-
fied linear unit layers, which leverages 3D time-series head angular acceleration
data. The network has demonstrated a high accuracy in recognizing the driver’s
active, fatigue, and transition states. Fatigue driving detection algorithms based
on deep learning are not only non-contact, but they can also detect the driver’s
fatigue status directly by detecting facial features with high accuracy and speed.
However, these algorithms still have some drawbacks:

1. The detection of driver’s facial features are susceptible to the influence of
lighting, background, angles, and individual differences, leading to inaccurate
results.

2. The detection model for facial features is relatively complex, and it is difficult
to balance real-time performance and accuracy.

3. Relying on a single judgment index can easily result in missed detection or
false alarms.

To address the above issues, this paper proposes a fatigue detection algorithm
based on YOLOv5 and FSA-Net. Compared to other advanced fatigue detection
algorithms, the proposed algorithm in this paper achieves one-step completion of
facial feature localization and real-time state detection of the driver. It encodes
the state of the driver’s eyes, mouth, and head in each frame of video for a
comprehensive analysis of fatigue. According to the encoding sequence, it calcu-
lates the PERCLOS value, PERYAWN value, and PERNOD value. The main
contributions of this paper are as follows:

486 Y. Zheng et al.

1. To ensure real-time detection, this paper proposes a facial feature detection
algorithm based on YOLOv5 and FSA-Net, which can quickly detect the
driver’s eye, mouth, and head posture.

2. To improve accident prevention, this paper proposes an algorithm that detects
cognitive distraction using YOLOv5 and an algorithm that detects visual
distraction using FSA-Net. These algorithms determine whether the driver’s
attention is on the road, reducing the risk of accidents.

3. In order to avoid the missed detection and false alarm problem of a single
judgment index, a comprehensive dangerous driving system combining mul-
tiple feature indicators is developed.

2 Related Work

Research on fatigue driving mainly focuses on detecting the driver’s fatigue level
from three aspects: physiological characteristics, driving behavior, and facial
features. The fatigue detection method based on physiological characteristics
usually utilizes sensors to measure the driver’s physiological parameters, such
as electrocardiogram (ECG) signals, electroencephalogram (EEG) signals, and
electromyogram (EMG) signals, to determine whether the driver is fatigued. Sug-
aniya Murugan et al. [13] extracted fatigue features from electroencephalogram
(EEG) signals for statistical analysis, and selected features based on principal
component analysis. Machine learning methods such as support vector machines
and ensemble classifiers were used to classify the features. The method based on
physiological characteristics is the most accurate, reliable, and has strong anti-
interference ability. However, it is usually invasive, requiring the driver to wear
related equipment, which may affect the driving experience. In addition, the rel-
evant equipment is often expensive, structurally complex, and difficult to imple-
ment for widespread use. Fatigue detection methods based on driving behavior
data commonly involve using specialized equipment to collect data on various
aspects of the vehicle’s performance during operation, including steering wheel
angle, vehicle speed, accelerator and brake pedal position, and steering wheel grip
force. Afterwards, the collected data is typically analyzed to determine whether
the driver is fatigued. Sha Chunfa et al. [14] collected data on steering wheel grip
force and EEG signals, and established a fatigue detection model based on steer-
ing wheel grip force using neural networks. Schwarz C [15] input information on
driving behavior, such as the degree of pedal opening and closing, vehicle speed,
and turning angle, into a Bayesian algorithm for fatigue detection. Fatigue detec-
tion methods based on driving behavior characteristics are cost-effective, easy to
collect information, and have minimal impact on drivers. However, these meth-
ods are easily affected by driving habits and external factors, so their accuracy
are not high.

Fatigue detection methods based on facial features have gained research
attention due to their advantages of non-contact detection and convenient appli-
cation, making them highly promising for a wide range of applications. These
methods have relatively high accuracy and real-time performance, without rely-
ing too much on fixed parameter thresholds. In early studies, Wang et al. [16]

Real-Time Driver Fatigue Detection Method 487

proposed a fatigue detection algorithm that tracks mouth movements, classi-
fies mouth states, and issues warnings when the driver is fatigued. Pan et al.
[17] designed an adaboost-based face detector to segment and track the eyes.
They used a proposed fuzzy comprehensive evaluation method to determine the
open/closed state of the eyes and utilized the PERCLOS metric to calculate the
frequency of eye closure for fatigue detection. Zhang et al. [18] designed a fatigue
detection algorithm based on estimating head posture using facial landmarks.
The method involves real-time capture of the face through a camera and utilizes
a facial landmark detection algorithm based on the Dlib library to determine the
state of the eyes, mouth, and head movement. Experimental results show that
the proposed method has good real-time performance and high accuracy. Zhao
et al. [19] proposed a fully automatic fatigue detection algorithm using driving
images, which utilized the MTCNN network for face detection and key point
detection, and introduced the EM-CNN network to detect the mouth and eye
states from the region of interest (ROI). Finally, the fatigue state was determined
by using two parameters, PERCLOS and mouth opening degree (POM). Shulei
et al. [31] designed an adaBoost face detection algorithm based on Haar features,
and used a facial landmarks localization algorithm to obtain facial landmarks.
They then computed the eye aspect ratio based on the feature point data and
set an appropriate threshold to detect the driver’s fatigue level. Additionally,
they introduced the Road Rage Extent Measure (RBEM) for the first time to
assess whether the driver exhibited road rage characteristics. Akrout et al. [32]
proposed a fusion system based on yawning detection, drowsiness detection, and
3D head pose estimation and evaluated it using three distinct databases. The
system introduces four basic alertness levels: alert, slightly drowsy, fatigued, and
inattentive.

Computer vision has found widespread applications in various fields, such
as autonomous driving, medical diagnosis, smart home systems, and industrial
manufacturing. This paper conducts research on fatigue detection technology
based on computer vision, which determines the driver’s fatigue state by detect-
ing facial features. The main research content of this paper includes the detection
of facial features, head posture estimation, and determination of fatigue and dis-
traction states. The detection methods for facial features include methods based
on feature point and methods based on deep learning. The method based on
feature point is more stable, but the annotation of each feature point requires
significant manual effort, leading to a higher workload. On the other hand, the
method based on deep learning detects facial features by training deep neural
networks, allowing for automatic feature extraction and high detection accuracy.
This method has been widely applied in face recognition and detection.

Object detection methods based on deep learning can be classified into two-
stage and single-stage detection methods. Two-stage object detection algorithms
are comprised of two steps to complete the object detection task. Firstly, a region
proposal network is used to generate candidate boxes. Then, each candidate
box is fed separately into a neural network for more detailed feature extrac-
tion. Finally, the method outputs detection results based on the classification

488 Y. Zheng et al.

scores and position regression results. Examples of representative algorithms
include R-CNN [20], SPP-Net [21], Fast R-CNN [22], and Faster R-CNN [23].
Two-stage object detection algorithms are generally more accurate than single-
stage object detection algorithms, but they are notably slower in speed. Single-
stage object detection algorithms do not require generating candidate boxes
in advance. Instead, they directly classify and regress the position of the entire
image to output the detection results. Therefore, when compared with two-stage
object detection algorithms, single-stage object detection algorithms have better
speed performance and are more applicable for real-time object detection tasks.
Common single-stage object detection algorithms include the YOLO series [24–
26] and SSD [27]. Because of the high demand for real-time detection speed in
fatigue driving detection, this paper designs a facial feature detection algorithm
that utilizes the YOLOv5 model and can be used for real-time monitoring in
embedded devices.

Head pose estimation refers to the estimation of a person’s head rotation
angles in 3D space using computer vision techniques. Currently, the primary
methods for head pose estimation include face key point detection technology,
traditional machine learning techniques, and deep learning techniques. Deep
learning-based head pose algorithms such as 3DDFA [28], FSA-Net [29], and
Deep Head Pose [30] have shown promising results. FSA-Net, in particular, is
a fast and highly-accurate method that treats regression tasks as classification
tasks. By providing an RGB image as input, FSA-Net can estimate head pose in
real-time. With a model size of around 5M, FSA-Net is lightweight and suitable
for real-time detection applications. Thus, this paper uses FSA-Net for head
pose estimation.

3 Dangerous Driving Detection Algorithms

3.1 Overall Design Scheme

Most existing fatigue detection algorithms are based on a single network. When
drivers are fatigued, the symptoms exhibited by each individual may vary. Some
may exhibit frequent blinking, involuntary nodding, or frequent yawning. The
fatigue detection algorithm proposed in this paper comprises two networks with
different functions to accurately detect all facial features of the driver. In case
of facial obstruction, the proposed multi-feature fusion detection algorithm can
effectively address the issue. Specifically, the algorithm can detect a driver’s
fatigue status by analyzing their mouth and head posture when wearing glasses,
and by analyzing their eye status and head posture when wearing a mask.

The detection method proposed in this paper consists of three components:
an object detection model that detects the driver’s eyes, mouth, and hands;
a head pose estimation model; and a fatigue and distraction detection model.
The detailed flow of the model is shown in Fig. 1. First, real-time driving video
frames are captured using a camera and inputted into the object detection model
YOLOv5 for detecting the driver’s eye and mouth states. At the same time, the
head pose estimation model FSA-Net is used to obtain three Euler angles of the

Real-Time Driver Fatigue Detection Method 489

Fig. 1. Dangerous driving detection model

head pose, which are pitch, roll, and yaw. Then, the information detected are
inputted into the fatigue and distraction detection model. The model encodes
and stores the driver’s eye features, mouth features, head pose state, and hand
state in time sequence. The Perclos value, PerYawn value and PerNod of the data
within a certain time sequence are calculated. At the same time, we count the
number of times the driver is distracted and calculate the frequency of distraction
by relying on hand state and head posture information. Finally, fatigue driving
judgment and distraction driving judgment are made by setting multiple feature
thresholds.

Facial Feature Detection Module. The primary function of the facial fea-
ture detection module is to rapidly and accurately capture the driver’s eye and
mouth features in complex driving environments. As fatigue detection technol-
ogy demands real-time performance, an algorithm for facial feature extraction
based on the YOLOv5 object detection model was designed. The YOLOv5 model
comprises a backbone network, a neck network, and a head layer. The enhanced
DarkNet-53 network is used as the backbone to extract features, which are then
fused through the neck network. Finally, the head layer outputs the detection
category and location information.

Head Pose Estimation Module. The Head Pose Estimation module’s pri-
mary function is to estimate the driver’s head posture angle and ascertain
whether they are focusing on the road ahead. Facial keypoint-based algorithms
are commonly used in head pose estimation. However, detecting facial keypoints
can increase the model’s computational load and affect the real-time detection
speed. Therefore, some methods directly use an RGB image to estimate the head
pose and provide missing 2D information on a 3D image. FSA-Net network is
built on the SSR network and adopts a progressive soft regression approach to

490 Y. Zheng et al.

head pose estimation. The FSA-Net divides the input image into two streams
for processing. As depicted in Fig. 1, there are three stages, and each stream
extracts a feature map at one stage, followed by pairwise fusion. The feature
maps are first multiplied pairwise, then fused with a 1×1 convolutional kernel,
and finally pooled to obtain the w × h× c feature map Uk. Then, Uk is fed into
the aggregation module for feature refinement. In order to extract important fea-
tures further, the FSA-Net network also introduces a scoring function to assign
a pixel-level importance score to each feature map Uk, resulting in an attention
map Ak. These feature maps Uk and attention maps Ak are then fed together
into the fine-grained structure mapping module to extract representative fea-
tures Ũ , which are subsequently input into the feature aggregation module to
generate a representative feature set V . Finally, the feature set V is fed into the
SSR module to predict the three angles of the head poses.

3.2 Fatigue Detection Methods

The relevant experimental data indicates that when a driver is fatigued, they
will involuntarily yawn, experience uncontrollable nodding of the head, and an
increase in the duration of eye closure. The PERCLOS [33] represents the dura-
tion of eye closure during a unit of time, which is an indicator used to measure
fatigue. This indicator usually has three standards: EM, which represents the
proportion of time that the eyelid covers more than 50% of the eyeball area;
P70, which represents the proportion of time that the eyelid covers more than
70% of the eyeball area; P80, which represents the proportion of time that the
eyelid covers more than 80% of the eyeball area. The research data shows that
the P80 standard has the strongest correlation with the degree of fatigue, so the
fatigue detection indicator of the eye features used in this paper is based on the
P80 standard. The formula for calculating the PERCLOS is as follows:

PERCLOS =
∑N

i=1 fi
N

× 100% (1)

where fi represents a frame with closed eyes,
∑N

i=1 fi represents the number of
frames with closed eyes per unit time, and N represents the total number of
frames per unit time.

When drivers are fatigued, they tend to yawn involuntarily, and the frequency
of yawning increases with the degree of fatigue. Therefore, the frequency of
yawning can be used to determine the level of fatigue. This paper utilizes the idea
of PERCLOS to compute the frequency of yawning, which is determined as the
ratio of yawning frames to the total number of detection frames captured within
a specific time frame. To prevent normal mouth movements, such as talking or
singing, with a small degree of mouth opening or short duration, from being
mistakenly identified as yawning, this paper records the number of continuous
frames fyawn of a yawn. Only when the degree of mouth opening exceeds a

Real-Time Driver Fatigue Detection Method 491

certain threshold and fyawn surpasses a specific threshold, it can be considered
as a yawn. The formula for calculating the yawn frequency is as follows:

PERY AWN =
∑N

i=1 fi
N

× 100% (2)

where fi indicates a frame with the mouth open,
∑N

i=1 fi represents the number
of consecutive frames in which the mouth is opened within a unit time, and N
represents the overall number of frames within that unit time.

When a driver is excessively fatigued, they may involuntarily nod their head.
Therefore, the fatigue level of the driver can be determined based on the fre-
quency of nodding. When the head posture estimation algorithm detects that
the head is tilted beyond a threshold angle and the eyes are closed, it is judged
as a nodding state. The formula for calculating nodding frequency is:

PERNOD =
∑N

i=1 fi
N

× 100% (3)

where fi is a frame of nodding,
∑N

i=1 fi indicates the number of frames where
the driver is nodding during a unit of time, and N represents the total number
of frames per unit of time.

3.3 Distraction Behavior Judgment

While driving, the driver needs to continuously keep an eye on the road ahead,
but external factors or unrelated behavior (such as using a mobile phone, looking
at roadside billboards, turning their head to talk to a passenger, etc.) may cause
the driver’s gaze to deviate from the road ahead, leading to visual distraction.
This deviation of the gaze is usually accompanied by a turn of the head. By
monitoring the driver’s head posture, we can determine whether there is visual
distraction. The driver’s image is input into the FSA-Net model, which outputs
three dimensions of head pose: pitch, roll, and yaw. The range of normal head
pose deviation is given in formula (4):

⎧
⎨

⎩

P1 ≤ pitch ≤ P2

R1 ≤ Roll ≤ R2

Y1 ≤ Y aw ≤ Y2

(4)

Considering the situation where the driver’s head deviation is too large to detect
facial features, this paper sets up a set of rules for detecting distracted driving:

1.If the driver’s eye and mouth status cannot be detected at the same time,
it is considered a severe distracted behavior.

2.If the driver’s facial features can be detected, the head posture estimation
is performed. If any of the estimated head posture angles exceed the normal
range set and last for a long time, it is considered visual distraction.

However, not all distracted behaviors in reality involve head movement, such
as using a phone, smoking, or eating. These behaviors can still divert the driver’s

492 Y. Zheng et al.

attention, leading to a slow response to unexpected events. Therefore, this paper
proposes the detection of cognitive distraction behavior based on object detection
algorithms. The YOLOv5 model is utilized to detect whether the driver is holding
an object. If the duration of holding the object exceeds a certain threshold, it
is considered as cognitive distraction. This paper selects two common objects,
phones and cigarettes, as detection targets for assessing cognitive distraction.

3.4 Algorithm for Detecting Dangerous Driving Behavior

The dangerous driving detection algorithm based on Yolov5 and FSA-Net is as
shown above, with the following specific steps:

1) First, the algorithm Captures a driving image by the real-time camera and
inputs it the pre-trained YOLOv5 model and FSA-Net model to perform
target detection and head pose estimation tasks respectively.

2) Secondly, the algorithm utilizes YOLOv5 to detect the eye and mouth sta-
tus. If the eyes are closed, the eye state is encoded as 1, otherwise 0. The
PERCLOS value is calculated and updated. If PERCLOS value exceeds the
threshold, a fatigue warning is triggered. Similarly, if the degree of mouth

Algorithm 1. Detection of dangerous driving behavior
Output: Totall frames T , eye threshold E , mouth threshold M, head threshold H,

threshold for cognitive distraction C, threshold of visual distraction V.
Input: Fatigue F , Distracted D.

for all f ∈ {1,..., T } do
F ← 0, D ← 0
stateeye, statemouth, phone, cigarette ← Y OLOv5(f)
statehead ← FSA − Net(f)
Calculate and update the PERCLOS value by Eq.(1).
Calculate and update the PERYAWN value by Eq.(2).
Calculate and update the PERNOD value by Eq.(3).
Calculate and update the countc value.
Calculate and update the countv value.
if PERCLOS≥ E or PERYAWN≥ M or PERNOD≥ H then

F ← 1
else

F ← 0
end if
if countc ≥ C or countv ≥ V then

D ← 1
else

D ← 0
end if

end for

Real-Time Driver Fatigue Detection Method 493

opening exceeds a certain threshold, the mouth state is encoded as 1, other-
wise 0. If the coding continues to be 1 for a certain time period (about 1.5 s),
the yawn count is increased. If the yawn count exceeds three times within one
minute, a fatigue warning is triggered.

3) Then, the algorithm utilizes the FSA-Net model to obtain the pitch of the
head posture. If the pitch is below a certain threshold and the eyes are closed,
the head state is encoded as 1, otherwise 0. When the ratio of frames encoded
as 1 within 10 s to the total detected frames exceeds 30%, a fatigue warning
is triggered.

4) If the driver is holding a phone or a cigarette in the current frame, the cogni-
tive distraction count will be incremented. Otherwise, the count will be reset
and the algorithm will continue to detect the next frame of the video. If the
cognitive distraction count equals the total number of detected frames within
a certain period of time, the system will issue a warning.

5) The algorithm determines whether the driver’s head deviates from the normal
range. If so, the visual distraction count is incremented. Otherwise, the count
is reset and the algorithm continues to detect the next frame. If the visual
distraction count equals the total number of detected frames within a certain
period of time, a warning will be issued.

6) If the driver’s eyes and mouth are not detected, it is considered as severe
distraction, and a warning will be issued immediately.

4 Experimental Results and Analysis

4.1 Construction of Experimental Dataset

This paper collected sample data from different genders, lighting conditions,
and age groups, totaling over 4,000 images of real driving environments. The
dataset is divided into seven categories, i.e.,open eyes, closed eyes, yawning,
closed mouth, wearing a mask, using a phone call, and smoking. The details are
shown in Table 1. The samples in the dataset include images with slightly opened
eyes or mouths, and when annotating these images, this paper categorized them

Table 1. Training set and testing set

Category Training set Testing set

Closed 834 151

Open 1893 317

Yawn 561 138

Normal 1561 304

Mask 644 25

Phone 1256 232

Cigarette 962 270

494 Y. Zheng et al.

into the closed eye and closed mouth categories. The purpose is to avoid errors
caused by shooting angles or individual differences as much as possible. For
example, there may be some samples in a talking or smiling state with their
mouths open, but the degree of opening in these cases is very small.

4.2 Experimental Environment and Design

The experimental environment of this paper is based on Ubuntu 20.04 operating
system, with NVIDIA GeForce RTX 3080 GPU, Intel Xeon Platinum 8255C
CPU, 43 GB memory, and 10 GB graphics memory. The Python language used
is version 3.8, the deep learning framework used is Pytorch 1.11.0, and the cuda
version is 11.3. The software packages used include Pycharm and Anaconda.

4.3 Evaluation Metrics

To evaluate the performance of the trained Yolov5 model, this paper used com-
mon evaluation metrics for object detection models including mAP, Params,
FLOPs, and FPS.

mAP is one of the common metrics to evaluate the performance of object
detection algorithms, which represents the mean of the average precision (AP)
for all categories. AP is the average precision for a single category. The mAP
value is calculated by sorting the predicted boxes by confidence, calculating the
corresponding precision values (AP) according to different IoU thresholds, and
finally taking the average of the AP for all categories to obtain the mAP value.
The calculation formula is shown in Equation (5).

mAP =
1
n

n∑

i=1

AP (i) (5)

Params: represents the size of the model’s parameters which determines the
hardware requirements of the model. Smaller parameter sizes are desirable since
they require less computing resources, making them more practical to deploy.
Therefore, smaller model parameters are often preferred.

FLOPs: represents the number of floating-point operations, used to measure
the computational complexity and efficiency of the model. The larger the FLOPs,
the more complex the model.

FPS: represents the number of frames detected per second and is used to mea-
sure the inference speed of the model. The higher the FPS, the better the real-
time performance. Since this study requires high real-time detection speed of the
model, the FPS indicator is particularly important for evaluating the model.

4.4 Training and Analysis of the Object Detection Model

At first, the model is initialized with pre-trained weights, and Mosaic data aug-
mentation is applied to enhance the dataset’s variability and improve the net-
work’s capacity for generalization. Due to the relatively small size of the self-built

Real-Time Driver Fatigue Detection Method 495

Fig. 2. The loss rate of model training changes

dataset, the model is trained for only 300 epochs, using a batch size of 32 and
the SGD optimizer. Moreover, the initial learning rate is set to 0.01, while the
input image resolution is fixed at 640×640.

This paper discusses the training and testing of three models (YOLO5n,
YOLOv5s, and YOLOv5m) and uses YOLOv5s as an example to illustrate how
position loss, classification loss, and confidence loss change during training on the
self-built dataset. Figure 2 show the trends in these loss functions. During train-
ing, the classification loss, position error, and confidence error of the training set
initially decreased linearly, and then plateaued. However, during validation (as
indicated in Fig. 2.b and Fig. 2.c), the loss and confidence loss of the validation
set first decreased and then slightly increased. This may be due to the small size
and unbalanced categories of the self-built dataset, which can lead to overfitting.
The training process took 1.70 h, with an average time of 21.1 s per epoch. At
the 189th epoch, the model’s performance peaked, and this iteration was saved
as the best model.

Table 2. models’ AP value

version AP
open closed yawn normal mask phone cigarette

Yolov5n 86.8 80.7 98.8 89.6 93.8 71.4 74.0

Yolov5s 87.8 83.2 99.1 89.3 94.9 77.5 75.5

Yolov5m 86.3 79.6 99.1 89.8 93.1 78.0 79.4

This paper uses metrics such as mAP, params, FLOPs, and FPS to evaluate
and compare object detection models. The experimental results are shown in
Tables 2 and 3

According to Tables 2 and 3, the YOLOv5n model has the smallest number
of parameters and the fastest detection speed compared to other models, but at
the cost of sacrificing some accuracy. Although YOLOv5m has a similar mAP

496 Y. Zheng et al.

Table 3. Comparison of models

version mAP Params/M FLOPs/G FPS

Yolov5n 85.0 3.75 4.2 126.37

Yolov5s 86.8 13.8 15.8 117.87

Yolov5m 86.5 40.3 47.9 88.24

to YOLOv5s, it has the largest number of parameters and the slowest detection
speed. In comparison, although YOLOv5s has a slower detection speed than
YOLOv5n, it has the highest detection accuracy. Except for the categories of
phones and cigarettes, the detection accuracy of other categories is above 80%,
and the mAP reaches 86.8%. Therefore, in this study, the YOLOv5s version is
adopted as the basic model for fatigue driving and distracted driving detection.

4.5 Detection Results of the Model

To verify the effectiveness of the proposed method in practical application sce-
narios, four testers simulated the normal, fatigued, and distracted driving state.
The examples are shown in Fig. 3. Testers A and B are in well-lit conditions,
while testers C and D are in dim light conditions. The four selected test videos
were input into the detection model, and the eye status, mouth status, and head
pitch angle of the four testers were obtained during the detection period. The
results are as shown in Fig. 4. It can be seen from the Fig. 4 that the mouth state
of tester A exhibited brief fluctuations, potentially indicating moments of speech.
The eye-closed duration and blink frequency of testers A and C were both lower

Fig. 3. Real-time fatigue and distraction detection

Real-Time Driver Fatigue Detection Method 497

Fig. 4. Statistics on changes in the eyes, mouth and head states of 4 testers in one
cycle

Table 4. Validation of fatigue driving detection

Tester Frames Closed-eyes Perclos Yawns PerYawn Nods PerNod Detected status Actual status

A 300 11 0.037 0 0 0 0 awake awake

B 300 193 0.643 2 0.177 3 0.103 drowsy drowsy

C 300 40 0.133 0 0 0 0 awake awake

D 300 145 0.483 3 0.343 0 0 drowsy drowsy

Table 5. Validation of distracted driving detection

Tester Time/min Calling Smoking Visual distraction Warning

A 2 3 1 0 4

B 2 2 2 1 5

C 2 1 1 1 4

D 2 3 1 2 5

compared to those of testers B and D. Furthermore, during the second half of
the period, tester B exhibited more frequent changes in the head pitch angle.
Both testers B and D had intervals where their mouths remained open. Finally,

498 Y. Zheng et al.

according to the fatigue judgment method in this paper, the fatigue judgment
results of the four testers are shown in Table 4. It can be seen from the results in
the table that the detection results of this model are consistent with the actual
simulation results.

At the same time, in order to verify the effectiveness of the distraction detec-
tion algorithm, four testers individually conducted a two-minute distracted driv-
ing simulation. It was set that the tester was distracted for more than ten sec-
onds as a distraction. The model counts the number of distractions, and the
test results are shown in Table 5. Based on the data presented in the table, it
is evident that Tester C experienced distraction only three times, whereas the
distraction detection model issued four warnings. Furthermore, Tester D was
distracted by using their mobile phone three times, whereas the model detected
it only twice. This could potentially be attributed to the model’s limitations
in detecting distractions under dim light conditions, resulting in missed detec-
tions and false alarms. Nevertheless, apart from this issue, the model’s overall
detection results align reasonably well with the actual situation.

In addition, this paper sets the fatigue indicator thresholds based on numer-
ous simulated experiments. These experimental data indicate that when a person
is fatigued, the PERCLOS is usually greater than 0.3, and the mouth opening
duration during yawning generally exceeds 1 s. Additionally, the deviation of
pitch is typically more than 20 degrees. Therefore, this article sets the threshold
of PERCLOS to 0.3 and the head deviation angle to 25 degrees, and sets the
duration of one yawning to be not less than 1 s. In fact, the judgment thresh-
old for fatigue driving actually varies due to different reaction and physiological
states of individuals. Therefore, using a fixed threshold may not be optimal. To
solve this problem, our developed system allows users to either choose the default
threshold setting or set their own judgment threshold that is more appropriate
for their individual needs.

5 Conclusion

To avoid traffic accidents and reduce economic losses and casualties, this paper
focuses on the deficiencies of fatigue driving detection and distracted driv-
ing detection, and conducts research using deep learning methods. Using the
YOLOv5 and FSA-Net models as frameworks, we have designed fatigue detec-
tion algorithms based on facial features, as well as distracted driving detection
algorithms.

In this paper, we trained and tested the YOLOv5 model using a self-built
dataset. The experimental results have demonstrated the high accuracy and
speed of our model, which effectively solves the problem of reduced detection
accuracy in fatigue detection algorithms that rely on facial landmarks, resulting
from occlusion and inadequate lighting.

This paper combines the facial detection algorithm based on YOLOv5 and
the head pose estimation algorithm based on FSA-Net to design a fatigue detec-
tion algorithm capable of identifying eye features, mouth features, and head

Real-Time Driver Fatigue Detection Method 499

features. Multiple feature indicators are used to determine the driver’s fatigue
state, ensuring real-time and high-precision detection.

Moreover, We uses the YOLOv5 model to determine driver’s cognitive dis-
tractions and adopts the lightweight FSA-Net network for visual distraction
detection. This approach effectively addresses the limitations of image-based
classification methods which only detect limited distracted driving behavior cat-
egories. Besides, it resolves the issues with traditional head pose estimation
methods, which may suffer from low accuracy, slow processing, and difficulty
in deployment. By setting appropriate threshold values, real-time and effective
distracted driving detection can be achieved.

Acknowledgements. This work was supported by the Guangdong Provincial Natural
Science Foundation under Grant No. 2022A1515011386, the National Key Research and
Development Program of China under Grant No. 2020YFB1005804, the National Natu-
ral Science Foundation of China under Grant 61632009, and the Guangdong Provincial
Natural Science Foundation under Grant 2017A030308006.

References

1. Khunpisuth, O., Chotchinasri, T., Koschakosai, V., Hnoohom, N.: Driver drowsi-
ness detection using eye-closeness detection. In: 2016 12th International Conference
on Signal-Image Technology & Internet-Based Systems (SITIS), pp. 661–668 (2016)

2. Zhou, Z., Cai, Y., Ke, R., Yang, J.: A collision avoidance model for two-pedestrian
groups: considering random avoidance patterns. Phys. A 475, 142–154 (2017)

3. Zhou, Z., Zhou, Y., Pu, Z., Xu, Y.: Simulation of pedestrian behavior during the
flashing green signal using a modified social force model: Transportmetrica A:
Transport. Science 15, 1019–1040 (2019)

4. Koh, S., et al.: Driver drowsiness detection via PPG biosignals by using multimodal
head support. In: 2017 4th International Conference on Control, Decision and
Information Technologies (CoDIT), pp. 0383–0388 (2017)

5. Anund, A., Fors, C., Ahlstrom, C.: The severity of driver fatigue in terms of line
crossing: a pilot study comparing day- and night time driving in simulator. Eur.
Transp. Res. Rev. 9, 1–7 (2017)

6. Ravi, A., Phanigna, T.R., Lenina, Y., Ramcharan, P., Teja, P.S.: Real time driver
fatigue detection and smart rescue system. In: 2020 International Conference on
Electronics and Sustainable Communication Systems (ICESC), pp. 434–439 (2020)

7. Savas, B.K., Becerikli, Y.: Real time driver fatigue detection system based on
multi-task ConNN. IEEE Access. 8, 12491–12498 (2020)

8. Zhao, Y., Xie, K., Zou, Z., He, J.B.: Intelligent recognition of fatigue and sleepiness
based on inceptionV3-LSTM via multi-feature fusion. IEEE Access. 8, 144205–
144217 (2020)

9. Dwivedi, K., Biswaranjan, K., Sethi, A.: Drowsy driver detection using repre-
sentation learning. In: 2014 IEEE International Advance Computing Conference
(IACC), pp. 995–999 (2014)

10. Ansari, S., Naghdy, F., Du, H., Pahnwar, Y.N.: Driver mental fatigue detection
based on head posture using new modified reLU-BiLSTM deep neural network.
IEEE Trans. Intell. Transp. Syst. 23, 10957–10969 (2022)

11. Liu, M.-Z., Xu, X., Hu, J., Jiang, Q.N.: Real time detection of driver fatigue based
on CNN-LSTM. IET Image Proc. 16, 576–595 (2022)

500 Y. Zheng et al.

12. Zhang, W., Murphey, Y.L., Wang, T., Xu, Q.: Driver yawning detection based on
deep convolutional neural learning and robust nose tracking. In: 2015 International
Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2015)

13. Murugan, S., Selvaraj, J., Sahayadhas, A.: Detection and analysis: driver state
with electrocardiogram (ECG). Phys Eng Sci Med. 43, 525–537 (2020)

14. Sha, C.F., Li, R., Zhang, M. M.: Research on fatigue driving detection based on
steering wheel grip force. Sci. Technol. Eng. Vol. 16, pp. 299–304(2016)

15. McDonald, A.D., Lee, J.D., Schwarz, C., Brown, T.L.: A contextual and temporal
algorithm for driver drowsiness detection. Accident Anal. Prevent. 113, 25–37
(2018)

16. Rongben, W., Lie, G., Bingliang, T., Lisheng, J.: Monitoring mouth movement for
driver fatigue or distraction with one camera. In: Proceedings. The 7th Inter-
national IEEE Conference on Intelligent Transportation Systems (IEEE Cat.
No.04TH8749), pp. 314–319 (2004)

17. Pan, Z.G., Liu, R.F., Zhang, M.M.: Research on fatigue driving detection algorithm
based on fuzzy comprehensive evaluation. J. Software 30, 2954–2963 (2019)

18. Zhang, N., Zhang, H., Huang, J.: Driver fatigue state detection based on facial key
points. In: 2019 6th International Conference on Systems and Informatics (ICSAI),
pp. 144–149 (2019)

19. Zhao, Z., Zhou, N., Zhang, L., Yan, H., Xu, Y., Zhang, Z.: Driver fatigue detection
based on convolutional neural networks using EM-CNN. Computational Intelli-
gence and Neuroscience (2020)

20. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. Presented at the Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–
587(2014)

21. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional
networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37, 1904–
1916 (2015)

22. Girshick, R.: Fast R-CNN. In: Presented at the Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 1440–1448(2015)

23. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: Advances in Neural Information Pro-
cessing Systems. Curran Associates, Inc. (2015)

24. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. Presented at the Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition(CVPR), pp. 779–788(2016)

25. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Presented at the
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion(CVPR), pp. 7263–7271(2017)

26. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. Computer Vision
Pattern Recognition, Vol. 1804, pp. 1–6(2018)

27. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.:
SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) Computer Vision-ECCV 2016, pp. 21–37. Springer International Publishing,
Cham (2016)

28. Zhu, X., Liu, X., Lei, Z., Li, S.Z.: Face alignment in full pose range: a 3D total
solution. IEEE Trans. Pattern Anal. Mach. Intell. 41, 78–92 (2019)

29. Yang, T.Y., Chen, Y.T., Lin, Y.Y., Chuang, Y.Y.: FSA-Net: learning fine-grained
structure aggregation for head pose estimation from a single image. In: Presented

Real-Time Driver Fatigue Detection Method 501

at the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1087–1096(2019)

30. Ruiz, N., Chong, E., Rehg, J.M.: Fine-grained head pose estimation without key-
points. In: Presented at the Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pp. 2074–2083(2018)

31. Shulei, W., et al.: Road rage detection algorithm based on fatigue driving and
facial feature point location. Neural Comput. Applic. 34, 12361–12371 (2022)

32. Akrout, B., Mahdi, W.: A novel approach for driver fatigue detection based on
visual characteristics analysis. J Ambient Intell Human Comput. 14, 527–552
(2023)

33. Trutschel, U., Sirois, B., Sommer, D., Golz, M., Edwards, D.: PERCLOS: An Alert-
ness Measure of the Past. Driving Assessment Conference. 6 (2011)

Author Index

C
Cai, Hongyun 255
Cao, Ronghui 73
Cao, Wenbiao 73, 468
Cao, Yuanlong 112
Chen, Bing 394
Chen, Changrong 275
Chen, Kairen 484
Chen, Shizhan 112
Chen, Shuhong 484
Chen, Yifei 411
Chen, Zhiyan 327
Cheng, Yuxia 411
Cui, Jianming 40, 207

D
Deng, Tan 73, 468
Ding, Junwen 360
Dong, Yangchen 53
Dou, Yong 311
Du, Chunfeng 1
Duan, Yali 40

F
Fan, Guodong 112
Fang, Minhui 411
Feng, Yuanhang 53

G
Gong, Xiaoli 92
Guo, Haifeng 168, 186
Guo, Jiayang 1
Guo, Jihu 22

H
Han, Jizhong 53
Hawbani, Ammar 452
He, Daojing 292
He, Ligang 327
He, Ronghua 360

He, Xingzhen 411
Hong, Jingxuan 92
Hu, Qi 235
Hu, Songlin 53
Hua, Bei 452
Huang, Fanding 411
Huang, Haiyan 381
Huang, Hejiao 292

J
Jia, Yungang 40
Jiang, Lin 347
Jiang, Zoe Lin 292

L
Lan, Yanzhi 235
Lei, Gang 112
Li, Mengmeng 168, 186
Li, Shaonan 433
Li, Shixue 73
Li, Siyuan 360
Li, Tianbao 186
Li, Xiaoshan 147
Li, Xinyu 235
Li, Xueqiang 327
Li, Yuancheng 347
Li, Zhetao 147
Li, Zhongbo 433
Liao, Pengfei 411
Liu, Haolin 147
Liu, Jie 22
Liu, Ming 40, 207
Liu, Ping 452
Liu, Qin 275
Liu, Shuai 347
Liu, Wenzheng 73
Long, Saiqin 147
Lü, Zhipeng 360

M
Mao, Bo 1

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2024
Z. Tari et al. (Eds.): ICA3PP 2023, LNCS 14488, pp. 503–504, 2024.
https://doi.org/10.1007/978-981-97-0801-7

https://doi.org/10.1007/978-981-97-0801-7

504 Author Index

N
Niu, Gen 235

P
Pan, Guanyan 411
Pan, Yijie 1
Peng, Tao 484
Peng, Wenbing 411

Q
Qi, Jin 433
Qiao, Peng 311

S
Shan, Rui 347
Shao, Xuetao 221
Song, Liangcai 360
Su, Zhouxing 360
Sun, Xiaowen 381
Sun, Zhenglun 311

T
Tan, Zehang 147
Tang, Xiaoyong 73, 468
Tang, Xuehai 53
Tao, Ming 327
Tian, Shujuan 147
Tian, Yumeng 433
Tu, Hang 275

W
Wang, Bei 411
Wang, Hongzhi 168, 186
Wang, Liangpu 235
Wang, Qinglin 22
Wang, Shengzhe 1
Wang, Shiyun 255
Wang, Tao 130
Wang, Tian 484
Wang, Wang 53
Wang, Xi 394
Wang, Xingfu 452
Wang, Xuqiang 92
Wang, Yanping 73
Wu, Chen 360
Wu, Jianming 484

Wu, Suzhen 1
Wu, Yuhan 168

X
Xiang, Wenyu 292
Xiao, Jianmao 112
Xiao, Naian 1
Xie, Yongqiang 433
Xie, Yukang 275
Xu, Chao 468
Xu, Zhipeng 112

Y
Yan, Yuanting 221
Yang, Donghua 168, 186

Z
Zhang, Bin 381
Zhang, Donghua 112
Zhang, Fenghe 381
Zhang, Fuxin 235
Zhang, Jiale 394
Zhang, Jin 92
Zhang, Lifeng 130
Zhang, Meiling 255
Zhang, Xiao 381
Zhang, Xiaojun 292
Zhang, Xuejun 381
Zhang, Yu 255
Zhang, Yuang 130
Zhang, Zixuan 92
Zhao, Ao 255
Zhao, Jie 292
Zhao, Liang 452
Zhao, Shikun 92
Zhao, Yanchao 394
Zhao, Yixuan 207
Zheng, Bo 168, 186
Zheng, Xiangwei 130
Zheng, Yihua 484
Zhou, Biyu 53
Zhou, Yuxuan 1
Zhu, Jiayang 347
Zhu, Xiaoxiong 22
Zhu, Zhihong 468

	 Preface
	 Organization
	 Contents – Part II
	LearnedSync: A Learning-Based Sync Optimization for Cloud Storage
	1 Introduction
	2 Background and Motivation
	2.1 Cloud Sync
	2.2 Workload Characteristics and Environmental Conditions
	2.3 Motivation

	3 The Design of LearnedSync
	3.1 System Overview
	3.2 State Monitor
	3.3 Sync Method Selector
	3.4 Sync Record Directory
	3.5 The Training Process for LearnedSync

	4 Performance Evaluations
	4.1 Prototype Implementation
	4.2 Experimental Setup and Methodology
	4.3 Performance Results and Analysis

	5 Related Work
	6 Conclusion
	References

	Optimizing CSR-Based SpMV on a New MIMD Architecture Pezy-SC3s
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Row Granularity Matrix Partition
	3.2 Workload Balance Within Matrix Chunks
	3.3 Vectorization

	4 Experimental Results and Evaluation
	4.1 Preprocessing Overhead
	4.2 Floating-Point Performance
	4.3 Bandwidth Utilization
	4.4 SpeedUp

	5 Conclusion
	References

	Intrusion Detection Method for Networked Vehicles Based on Data-Enhanced DBN
	1 Introduction
	2 Intrusion Detection Model Based on Data Augmentation
	2.1 Data Processing and Augmentation
	2.2 Improved DBN Model

	3 Experimental Design and Result Analysis
	3.1 Dataset Labels
	3.2 Experiments and Analysis

	4 Conclusion
	References

	A Multi-source Domain Adaption Approach to Minority Disk Failure Prediction
	1 Introduction
	2 Related Work
	3 Motivation
	3.1 Problem Statement
	3.2 Generalization Error Bound Analysis

	4 Method
	4.1 Overview of DiskDA
	4.2 Domain Invariant Representation Learning
	4.3 Confidence-Based Sample Selection

	5 Experiment
	5.1 Methodology
	5.2 Experimental Results
	5.3 Sensitivity Study

	6 Conclusion
	7 Appendix
	References

	Sequenced Quantization RNN Offloading for Dependency Task in Mobile Edge Computing
	1 Introduction
	2 Related Work
	3 System Model and Problem Formula
	3.1 System Model
	3.2 Problem Formula

	4 Sequenced Quantization Based on RNN Offloading Algorithm
	4.1 Generation of Unload Actions
	4.2 Sequenced Quantization Offloading Actions
	4.3 Experience Pool Recycling

	5 Simulation Experiments and Result Analysis
	5.1 Experimental Setup
	5.2 Algorithm Parameter Selection
	5.3 Result Analysis
	5.4 The Impact of the Number of Subtasks on the SQ-RNN Algorithm

	6 Conclusion
	References

	KylinArm: An Arm Gesture Recognition System for Mobile Devices
	1 Introduction
	2 Related Work
	2.1 IMU-Based Gesture Recognition
	2.2 Algorithms for Sensor-Based Gesture Recognition

	3 Design and Implementation of KylinArm
	3.1 Framework Design of KylinArm
	3.2 Gesture-Controlled Command Set
	3.3 Classification Module: Dual-Branch 1D-CNN Classifier
	3.4 Arm Gesture Recognition
	3.5 CORAL-Based Generalization Optimization

	4 Evaluation
	4.1 DataSet Description
	4.2 Performance of Dual-Branch 1D-CNN Model
	4.3 Performance of Inference Modules
	4.4 Performance of CORALREVERSE
	4.5 Real-World Evaluation of KylinArm

	5 Summary
	References

	FCSO: Source Code Summarization by Fusing Multiple Code Features and Ensuring Self-consistency Output
	1 Introduction
	2 Related Work
	3 The Architecture of Approach
	3.1 Data Preprocessing
	3.2 Feature Extraction
	3.3 Feature Fusion
	3.4 Self-consistency Output

	4 Experiment
	4.1 Experiment Settings
	4.2 Comparison Experiment and Ablation Experiment
	4.3 Code Summarization Examples

	5 Conclusion
	References

	Graph Structure Learning-Based Compression Method for Convolutional Neural Networks
	1 Introduction
	2 Related Work
	2.1 Compression of CNNs
	2.2 Graph Structure Learning

	3 The Proposed Method
	3.1 Overview
	3.2 Graph Construction
	3.3 Graph Structure Learner with Dual-Branch
	3.4 Pruning Filters

	4 Experiments
	4.1 Pruned VGG-16
	4.2 Pruned ResNet-101

	5 Conclusions and Future Works
	References

	Reliability-Aware VNF Provisioning in Homogeneous and Heterogeneous Multi-access Edge Computing
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Network Model
	3.2 Task Model
	3.3 Cost Model

	4 Homogeneous MEC Scenario
	4.1 Reliability Model
	4.2 Problem Formulation
	4.3 Local Ratio Based Algorithm
	4.4 Algorithm Analysis

	5 Heterogeneous MEC Scenario
	5.1 Reliability Model
	5.2 Problem Formulation
	5.3 Benefit-Cost Ratio Preference Algorithm
	5.4 Algorithm Analysis

	6 Simulation Evaluation
	6.1 Experimental Parameters
	6.2 Impact of Number of Tasks
	6.3 Impact of Number of Servers

	7 Conclusion
	References

	Approximate Query Processing Based on Approximate Materialized View
	1 Introduction
	2 Overview
	2.1 Problem Definition
	2.2 Data Aggregation

	3 Reuse of Approximate Materialized View
	3.1 Aggregation and Precomputing
	3.2 Approximate Interval Recognition
	3.3 Analysis for Twice Approximations

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Accuracy
	4.3 The Summary of Experimental Results

	5 Influence of Parameters
	5.1 Sample Size
	5.2 Number of Partition Points
	5.3 The Summary of Parameter Setting

	6 Related Work
	7 Conclusion
	References

	Schema Integration on Massive Data Sources
	1 Introduction
	2 Preliminary
	2.1 Knowledge Base
	2.2 Distance Function
	2.3 Edit Distance and Q-Gram
	2.4 Problem Definition

	3 Overview
	3.1 Initialization
	3.2 Batch Integration
	3.3 Incremental Integration
	3.4 Verification

	4 Join Schema Integration
	4.1 ED Join
	4.2 Semantic Join

	5 Batch Integration
	5.1 Flow of Batch Integration
	5.2 Resolving

	6 Experiments
	6.1 Experimental Settings
	6.2 Accuracy
	6.3 Efficiency

	7 Related Work
	8 Conclusions and Future Work
	References

	A Hybrid Few-Shot Learning Based Intrusion Detection Method for Internet of Vehicles
	1 Introduction
	2 Design of Intrusion Detection Model for IoV
	2.1 Data Pre-processing
	2.2 Feature Extraction

	3 Meta-learning Training Network Process
	4 Simulation and Results Evaluation
	4.1 Metrics
	4.2 Experimental Results and Comparative Analysis

	5 Conclusion
	References

	Noise-Robust Gaussian Distribution Based Imbalanced Oversampling
	1 Introduction
	2 Related Work
	2.1 Resampling Methods
	2.2 Gaussian Distribution Based Oversampling (GDO)

	3 Proposed Method
	3.1 Analysis of the GDO Algorithm
	3.2 Local Information of Samples
	3.3 Estimation of Weight for Minority Class Sample Selection
	3.4 Probabilistic Seed Sample Selection and Time Complexity

	4 Experiments and Analysis
	4.1 Experimental Settings
	4.2 Experimental Results and Analysis

	5 Conclusion
	References

	LAST: An Efficient In-place Static Binary Translator for RISC Architectures
	1 Introduction
	2 Background
	2.1 Static Binary Translation
	2.2 Address Relocation Problem in SBT
	2.3 Performance Overhead in SBT

	3 Design
	3.1 Overview
	3.2 In-place Instruction Translation Design
	3.3 System Call Design
	3.4 ISA-Level Support

	4 Implementation
	4.1 Register Mapping
	4.2 In-place Instruction Translation
	4.3 System Call Handling
	4.4 Delay Slot

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Performance
	5.3 Translation vs. Compilation

	6 Conclusion
	References

	Personalized Privacy Risk Assessment Based on Deep Neural Network for Image Sharing on Social Networks
	1 Introduction
	2 Related Work
	3 The Framework of PPRAS
	3.1 Problem Description and Definition
	3.2 The Framework of PPRAS

	4 Experimental Results and Evaluation
	4.1 Dataset
	4.2 Evaluation Metrics and Baseline Methods
	4.3 Train the Neural Network
	4.4 Comparison of PPRAS and Two Variants in Three Performance Metrics
	4.5 Comparison of PPRAS and Two Variants in Time Utility
	4.6 Utility Analysis
	4.7 Parametric Analysis

	5 Conclusions
	References

	A Pipelined AES and SM4 Hardware Implementation for Multi-tasking Virtualized Environments
	1 Introduction
	2 Background
	2.1 Overview of AES and SM4
	2.2 Related Works and Discussion

	3 Proposed AES and SM4 Architecture
	3.1 AES Encryption and Decryption Architecture
	3.2 SM4 Encryption/Decryption Architecture

	4 A Prototype Cryptosystem for Virtualization
	4.1 Prototype Cryptosystem Architecture
	4.2 Programming Sequence of the Prototype Cryptosystem

	5 Experimental Results
	5.1 Circuit Performance Comparison
	5.2 Multi-guest Efficiency Improvement

	6 Discussion
	7 Conclusion
	References

	Blockchain-Assisted Privacy-Preserving Public Auditing Scheme for Cloud Storage Systems
	1 Introduction
	2 Related Work
	3 Technical Preliminaries
	3.1 Bilinear Pairing and Hardness Problem
	3.2 Homomorphic Hash Function
	3.3 System Model
	3.4 Adversary Model and Design Goals

	4 Our Protocol
	5 Evaluation of the Proposed Mechanism
	5.1 Correctness
	5.2 Security Analysis

	6 Comprehensive Performance Evaluation
	6.1 Comparison of the Computation Costs
	6.2 Comparison of the Communication Overhead
	6.3 On-Chain Consumption Evaluation

	7 Conclusions and Future Work
	References

	MANet: An Architecture Adaptive Method for Sparse Matrix Format Selection
	1 Introduction
	2 Background
	2.1 Sparse Matrix Storage Format
	2.2 Influence of Nonzeros Distribution

	3 Methodology
	3.1 Overview
	3.2 Matrix Labeling
	3.3 Matrix Normalization and Matrix Feature Extraction
	3.4 Architecture Feature Extraction
	3.5 Network Design

	4 Evaluation
	4.1 Experiment Setting
	4.2 Speedup
	4.3 Adaptation and Accuracy
	4.4 The Influence of Architecture

	5 Related Work
	6 Conclusion
	References

	Service-Aware Cooperative Task Offloading and Scheduling in Multi-access Edge Computing Empowered IoT
	1 Introduction
	2 Related Work
	3 System Model and Problem Formulation
	3.1 Edge Computing Model
	3.2 Cloud Computing Model

	4 Problem Formulation
	5 Algorithm Design
	5.1 Offloading Profile Optimization Problem
	5.2 Computing Capacity Allocation Profile Optimization Problem

	6 Simulation Results
	7 Conclusions
	References

	Dynamic Multi-bit Parallel Computing Method Based on Reconfigurable Structure
	1 Introduction
	2 Dynamic Configurable Scheme Design
	2.1 Requirements Analysis of Computational Granularity
	2.2 Multi-bit Data Parallel Processing Method Design
	2.3 Hardware Structure of Reconfigurable Array

	3 Design of Dynamic Configuration Circuit
	3.1 Design and Implementation of Fetching Module
	3.2 Design and Implementation of Decoding Module
	3.3 Design and Implementation of Execution Module
	3.4 Design and Implementation of Write-Back Module

	4 FPGA Experimental Results and Analysis
	5 Summarize
	References

	A Heuristic Method for Data Allocation and Task Scheduling on Heterogeneous Multiprocessor Systems Under Memory Constraints
	1 Introduction
	2 Literature Review
	3 Problem Definition and Formulation
	3.1 Problem Description
	3.2 The Integer Linear Programming Formulation of HDATS

	4 Algorithm Description
	4.1 Greedy Construction Procedure for Initial Solution
	4.2 The Proposed Tabu Search Procedure
	4.3 Memory Update Procedure

	5 Experiment Design and Analysis
	5.1 Parameter Settings and Experimental Protocol
	5.2 Implementation of Reference Algorithms and Comparison
	5.3 Effect of Mixed Evaluation Strategy
	5.4 Effect of High Speed Memory Ratio on Makespan

	6 Conclusions
	References

	ACDP-Floc: An Adaptive Clipping Differential Privacy Federation Learning Method for Wireless Indoor Localization
	1 Introduction
	2 Our Proposed Method
	2.1 System Framework
	2.2 Adaptive Privacy Protection
	2.3 Framework Detail

	3 Experimental Evaluation
	3.1 Experimental Settings
	3.2 Evaluation Metrics
	3.3 Gradient Descent
	3.4 Accuracy

	4 Conclusion
	References

	Label-Only Membership Inference Attack Against Federated Distillation
	1 Introduction
	2 Related Work
	2.1 Membership Inference Attacks
	2.2 Data Reconstruction Attack
	2.3 Defense Method Against Privacy Leakage

	3 Preliminaries
	3.1 Federated Distillation
	3.2 Generative Adversarial Networks
	3.3 Threat Model

	4 Proposed Membership Inference Attack in FD
	4.1 Pre-attack Based on Data Reconstruction
	4.2 Attack Overview
	4.3 Attack Algorithm

	5 Performance Evaluation
	5.1 Datasets and Evaluation Goals
	5.2 Experimental Settings
	5.3 Performance of Data Reconstruction
	5.4 Performance of Membership Inference

	6 Discussion
	7 Conclusion
	References

	Efficient Proactive Resource Allocation for Multi-stage Cloud-Native Microservices
	1 Introduction
	2 Related Works
	3 Adaptive Deployment Optimization for Microservice-Based SaaS Environments
	3.1 Multi-stage Applications Composed of Cascading Microservices
	3.2 Request Scheduler
	3.3 Forecasting
	3.4 Constrained Programming
	3.5 Judgment Selection
	3.6 Execution Module Implementation

	4 Evaluation
	4.1 Experiment Setup

	5 Conclusion
	References

	Reliable Function Computation Offloading in Cloud-Edge Collaborative Network
	1 Introduction
	2 Related Work
	3 System Model and Problem Formulation
	3.1 Network Model
	3.2 Problem Formulation

	4 Solutions to Reliability-Aware FCO Scheduling
	4.1 Overview of Reliable Function Computation Offloading
	4.2 Redundancy Determining
	4.3 Heuristic Node Selection for Non-redundant Functions
	4.4 Reinforcement Learning for Node Selection of Redundant Functions
	4.5 Complexity Analysis

	5 Evaluation
	5.1 Simulation Setup
	5.2 Impact of the Number of Functions
	5.3 Impact of the Number of Computing Nodes
	5.4 Impact of the Reliability
	5.5 Convergence of Proposed Method

	6 Conclusion
	References

	A Fast, Reliable, Adaptive Multi-hop Broadcast Scheme for Vehicular Ad Hoc Networks
	1 Introduction
	2 Related Work
	3 Adaptive Contention-Based Multi-hop Broadcast Scheme
	3.1 Adaptive Forwarding Priority Functions
	3.2 Adaptive Contention-Based Scheme

	4 Performance Evaluation
	4.1 Simulation Settings
	4.2 Varying Vehicular Densities
	4.3 Varying Vehicular Speeds

	5 Conclusion
	References

	A Grouping-Based Multi-task Scheduling Strategy with Deadline Constraint on Heterogeneous Edge Computing
	1 Introduction
	2 System Model and Architecture
	2.1 Edge Network Model
	2.2 Remote Cloud Model
	2.3 Edge Resource Model
	2.4 Task Arrival and Execution Model

	3 Problem Formulation
	4 Grouping-Based Multi-task Scheduling Strategy
	4.1 Task Grouping and Priority Sorting Model
	4.2 Resource-Aware Greedy Scheduling Algorithm
	4.3 Task Adjusting Method

	5 Experimental Setup and Performance Evaluation
	5.1 Experimental Setup
	5.2 Evaluate Experimental Results

	6 Conclusion
	References

	Real-Time Driver Fatigue Detection Method Based on Comprehensive Facial Features
	1 Introduction
	2 Related Work
	3 Dangerous Driving Detection Algorithms
	3.1 Overall Design Scheme
	3.2 Fatigue Detection Methods
	3.3 Distraction Behavior Judgment
	3.4 Algorithm for Detecting Dangerous Driving Behavior

	4 Experimental Results and Analysis
	4.1 Construction of Experimental Dataset
	4.2 Experimental Environment and Design
	4.3 Evaluation Metrics
	4.4 Training and Analysis of the Object Detection Model
	4.5 Detection Results of the Model

	5 Conclusion
	References

	Author Index

