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Abstract. Real-time urban crowd surveillance is essential for riot
supervision, epidemic prevention, and urban emergency management.
Unmanned aerial vehicles (UAVs) provide a promising way for real-
time crowd surveillance due to their convenient deployment and flexi-
ble mobility. However, the limited wireless transmission bandwidth and
the large capacity of high-definition video pose great challenges to the
real-time transmission of UAV-captured videos. Although existing edge
computing-based video compression algorithms can partially solve this
dilemma, the complexity of these algorithms makes them inapplicable for
edge devices with limited processing capacity. To this end, we propose a
lightweight spatiotemporal fusion based low-loss video compression algo-
rithm, which consists of two parts: feature clustering-based temporal
sampling and dynamic encoding-based spatial sampling. The first mod-
ule clips the video content from a temporal perspective by identifying
inter-frame redundancy. The second module compresses the video con-
tent from a spatial perspective by examining regions of interest (RoIs)
within each frame and utilizing background filtering to analyze intra-
frame encoding. This lightweight algorithm effectively reduces the size
of the video file while maintaining high-quality output, which is com-
patible with edge devices’ constrained process power. The experimen-
tal results demonstrate that the proposed algorithm maintains minimal
loss in crowd detection accuracy while reducing transmission latency by
31.3%.

Keywords: Urban crowd surveillance · UAVs · Constrained processing
capabilities · Low-loss video compression · Spatio-temporal fusion

1 Introduction

Urbanization has led to a rapid increase in population density, increasing the risk
of stampedes and riots in urban areas, which poses a serious threat to public
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safety [10]. Therefore, crowd surveillance gains paramount importance in urban
safety emergency management. Currently, crowd surveillance mainly relies on
fixed cameras deployed in cities [19], but they suffer from blind spots, poor
mobility, as well as high deployment and maintenance costs [6]. Other crowd
surveillance methods based on WiFi or millimeter-wave radar have also been
studied widely. However, they have low accuracy in detecting mobile crowds and
limited detection range, making them insufficient to use in practical scenarios.

Fortunately, Unmanned aerial vehicles (UAVs) have become increasingly pop-
ular in civil and commercial applications due to their low cost, flexible mobil-
ity, and wide range of video capturing capabilities, which provides a promis-
ing way for large-scale urban crowd surveillance [24,28]. Although some works
have studied UAV-based crowd surveillance systems, they either improve high-
precision detection networks that require high-resolution videos, leading to high
latency [7–9,33], or only consider real-time performance and use lossy compres-
sion on the video, resulting in reduced accuracy [27,32]. Relevant experiments
are also conducted to verify the problems:
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Fig. 1. Analysis of UAV transmission latency and detection accuracy at different res-
olutions and transmission distances.

i) High-precision drone surveillance systems are difficult to achieve real-time
requirements. As shown in Fig. 1a, When transmitting an 800p high-definition
resolution 10-minute video from a drone to a ground station, only 30m away,
the latency exceeds 30min, causing severe lag in crowd surveillance informa-
tion and making it unable to ensure the real-time safety of urban crowds.

ii) Compressed video leads to a drop in crowd detection accuracy. As illustrated
in Fig. 1b, when the transmission distance is fixed, compressing the video
frames from 800p to 320p reduces the transmission latency by 65.7%. How-
ever, the compression also leads to a sharp drop in detection accuracy from
80% to 64%, making it incapable of meeting the high precision requirements
of crowd target detection.
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Table 1. Comparisons of edge-computing devices [1].

Lightweight devices High-performance devices

Devices RP3 RP3+ICS JetsonNano OrinNX AGXOrin

AI Performance - - 0.472TFLOPs 70TOPS 200TOPS

Models (fps) InveptionV4 - - 11 593 1337
TinyYoloV3 0.5 - 25 1156 2611
Unet - 5 - 183 387
DashcamNet - - 11 689 1482

Weight (kg) 0.1 0.2 0.241 0.76 1.5

Power (watt) 2 2 5 20 40

To address the above issues, UAV-mounted lightweight edge devices is utilized
to extract effective crowd information from drone-captured video and remove
redundant content to achieve low transmission latency and high detection accu-
racy in drone-based crowd surveillance. However, achieving this goal confronts
the following two challenges:

• Designing lightweight algorithms adapted to edge devices with lim-
ited processing capability is challenging. As depicted in Table. 1, high-
performance edge devices have large weight and high power consumption,
while the drone (such as S500 [4]) has a mass of only 1.3 kg and a power
consumption of 50W. If equipped with AGXOrin (1.5 kg, 40W), the UAV’s
endurance will be reduced by 75% at least. However, the processing power of
lightweight devices (e.g., RP3 and JetsonNano) is severely constrained. There-
fore, designing lightweight video processing algorithms for limited capabilities
is challenging.

• It is hard to extract effective crowd information and filter out
invalid content in drone-captured videos. Drone footages contain redun-
dant information, including inter-frame repeated content and intra-frame
background regions. However, conventional methods for lightweight video
compression either fail to utilize image and crowd features related to crowd
surveillance tasks, leading to compressed crowd areas inside frame and a
decline in detection accuracy [19,29], or only clip between frames or com-
press inside frames, resulting in a still relatively large processed video vol-
ume [22,23]. Hence, efficiently extracting crowd information while filtering
out invalid content to minimize latency and achieve high-precision crowd
surveillance is a huge challenge.

To address the above challenges, this paper proposes the Spatiotempo-
ral Fusion based Low-loss Video Compression Algorithm tailored to
edge devices with limited computational capabilities. Specifically, the algorithm
consists of two modules: 1) Feature Clustering based Temporal Video
Sampling module. The crowd and scene features are initially extracted from
the UAV-captured videos to comprehensively characterize the frames’ informa-
tion relevant to the crowd detection task. Then, using a feature similarity-based
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clustering algorithm with a sliding window, we clip the redundant video frames
and retain keyframes, minimizing the inter-frame similarities. 2) Dynamic
Encoding based Spatial Video Sampling module. For the temporally sam-
pled keyframes, the regions of interest (RoIs) are extracted for video encoding
based on lightweight background filtering and target detection in the spatial
domain. Subsequently, dynamic video encoding is executed to maximize the
reduction of redundant non-RoIs data while maintaining the visual quality of
the crowd region. As a result, our algorithm retains only useful data related to
crowd surveillance in intra-frames and inter-frames, while irrelevant information
is excluded, which satisfies the capability limitations of UAV-end lightweight
devices and ensures the minimum video transmission delay and loss rate of tar-
get detection.

In summary, this paper makes the following contributions:

1. We present an intelligent UAV-based edge computing system to realize low-
latency and high-accuracy crowd surveillance through intelligent collaborative
processing between UAVs and ground stations at the edge side.

2. We propose a lightweight spatio-temporal fusion based low-loss video com-
pression algorithm for computing capacity limitation of the UAV end, using
crowd and scene features and edge detection information to compress surveil-
lance video from the temporal and spatial aspects to ensure the minimization
of video transmission latency and loss rate of target detection.

3. We build the system prototype and give an extensive performance evalua-
tion. The experimental results show that the proposed algorithm can reduce
the transmission delay by 31.3% while losing only within 2% of the crowd-
counting accuracy.

The rest of the paper is organized as follows. First, the system architecture
is presented in Sect. 2. Then we design the spatio-temporal fusion based low-
loss video compression algorithm in Sect. 3. In Sect. 4, we conduct extensive
experiment evaluations, while implementing the system prototype for real-world
application in Sect. 5. Finally, we review related work in Sect. 6 and conclude
this paper in Sect. 7.

2 System Overview

In this section, we present an overview of the intelligent UAV-based edge com-
puting system for real-time surveillance of urban large-scale crowd gathering. As
shown in Fig. 2, it consists of the following two components:

• UAV module. This module includes drones and the mounted lightweight
edge processing devices, such as Jetson Nano [2]. It performs mobile surveil-
lance and video capturing of crowd areas. The captured videos are then com-
pressed by the lightweight edge device with spatiotemporal low-loss video
compression techniques and transmitted to the ground control station in real-
time.
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Fig. 2. System architecture.

• Ground Control Station module. This module comprises a ground con-
trol station (GCS) and a user interface for crowd supervision, responsible for
controlling the UAV’s flight trajectory and processing the compressed videos
from the UAV node for the relevant crowd analysis applications. The ana-
lyzed results are finally transmitted to the cloud server for data storage and
aggregation.

The workflow of the system is as follows: i) Supervisors deploy the ground control
station in crowded areas (e.g., commercial plazas and tourist spots, etc.) and set
drones’ patrol trajectories. ii) The drones capture videos of the gathering crowds
while the mounted edge device processes the videos with the spatio-temporal
fusion based video compression method proposed in this paper and transmits
them to the ground control station with low latency and high precision. iii)
The ground control station receives the UAV-captured videos for crowd surveil-
lance applications such as crowd counting [20] and social distancing analysis [24].
Meanwhile, the crowd analysis results are uploaded to the cloud server for data
visualization. Besides, the ground control station feedbacks the crowd analysis
results (e.g., crowd detection counts, proposed bounding boxes, confidence level,
tracking trajectory, etc.) to the UAV node through wireless networks so that
the UAV node can refine the detection results for more accurate spatio-temporal
video compression.

The key of the intelligent UAV-based edge computing system is the spatio-
temporal fusion based low-loss video compression algorithm on the UAV node,
satisfying the computational constraints of lightweight edge devices while mini-
mizing the video transmission latency under a specific loss rate of target detec-
tion. Hence, the algorithm design will be specified in Sect. 3.
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3 Algorithm Design

In this section, the lightweight low-loss video compression algorithm based on
spatio-temporal fusion sampling is proposed to mitigate the video transmission
delay and adapt to the limited processing capability of the edge devices at the
UAV node. As illustrated in Fig. 3, it consists of two modules:

1) Feature clustering based temporal video sampling (Sect. 3.1): Utilizing the
frame clustering based on the crowd feature and scene feature, we clip the
redundant frame sequences of UAV-captured video to reduce the number of
video frames.

Background filtering

Dynamic video encoding

Lightweight detection

Scene feature 
extraction

Redundant frame clipping

Crowd feature 
extraction

UAV–captured 
video frames

Spatio-temporal compressed
video frames

Fig. 3. Low-loss video compression framework based on spatio-temporal sampling
fusion.

2) Dynamic encoding based spatial video sampling (Sect. 3.2): To further reduce
the inefficient information inside a frame, we distinguish regions of interest
(RoIs) of the frame and dynamically encode the frame according to the divi-
sion of the encoding RoIs.

3.1 Feature Clustering Based Temporal Video Sampling

This module clips the drone-captured video based on the feature similarity
between frames to significantly remove the redundant frames without affect-
ing the accuracy of crowd detection. As depicted in Fig. 4, the crowd and scene
features of video frames are first extracted, and then feature clustering and
redundant frames are cut according to the feature similarity of the video frames.
Finally, the number of redundant frames in the output video frames is signifi-
cantly reduced compared with the original input video.
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Table 2. Frequently used notations.

Notations Descriptions

Ik The kth frame
Nk The number of bounding box of kth frame
dki The center coordinate of ith bounding box in kth frame
cki The confidence levels of ith bounding box in kth frame
mk The crowd density map of kth frame
Pk The crowd feature of kth frame
Fk,Lk,Y k The frequency domain, luminance and contrast feature of kth frame
HR

k ,HG
k ,HB

k The distribution ratio for R, G, B channels of kth frame
Sk The scene feature of kth frame
Vorig ,Vout The input and output frames of temporal video sampling
Iorig, Iout The input and output frame of spatial video sampling
Xk1,k2 The spectral value of two-dimensional discrete cosine transform
Redge, Rdet The output RoIs of the background filtering and lightweight detection

Crowd Feature Extraction. Considering the detection speed and accuracy,
we utilize a lightweight network model to extract the crowd features of the image
(e.g., the number of people and their location distribution, etc.) as the basis for
the similarity determination of the temporal sampling.

Specifically, to adapt to the extremely limited computational power of UAV
edge devices (e.g., Jetson Nano), the lightweight network yolov4-tiny [5] is used
for crowd detection of the UAV-captured videos. The number of bounding boxes
of kth image Ik is denoted as Nk, and the center coordinates and the confi-
dence levels of the ith bounding box in the frame are denoted as dk

i and ck
i , and

ck
i ∈ (0, 1]. Then a Gaussian kernel is applied to convolve with the above crowd

detection results to obtain the crowd density map mk of the kth frame as follows:

mk =
N∑

i=1

ck
i · δ(x − dk

i ) ∗ Gδi(x) (1)

where Gδi(x) is the two-dimensional Gaussian kernel and δ(x−dk
i ) is the impulse

function. Finally, to alleviate the computation burden of the lightweight edge
device, the crowd density map mk is uniformly pooled to obtain the compressed
crowd density map Pk with reduced image size. Pk is then used as the crowd
feature of that frame. The frequently used notations are shown in Table 2.

Scene Feature Extraction. We utilize the image’s frequency-domain and
structural information as its scene features to determine the variations in the
video background during crowd surveillance. When extracting scene features,
the frame’s low-frequency information is retained to depict the scene contours of
UAV-captured videos. In particular, we apply two-dimensional Discrete Cosine
Transform (2D-DCT) [13] for each frame according to Eq. (2) and retain the low-
frequency region where the spectral energy is concentrated as the low-frequency
spectrum.
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Fig. 4. Temporal video sampling.
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where N1 and N2 denote the height and width of the original frame, respectively,
and k1 and k2 are the frequency domain coordinates of the 2D-DCT and satisfy
0 ≤ k1 ≤ N1 −1 and 0 ≤ k2 ≤ N2 −1. When k1 = 0, the coefficient ak1=1/

√
N1;

when 1 ≤ k1 ≤ N1 − 1, ak1=
√

2/N1. When k2 = 0, the coefficient ak2=1/
√

N2;
when 1 ≤ k2 ≤ N2 − 1, ak2=

√
2/N2. According to whether the spectral DCT

value is greater than the mean value, each DCT value is quantized to 0 or 1
(i.e., above the DCT mean value is assigned as 1; otherwise, it is assigned as 0).
Finally, the quantized result is taken as the frequency domain feature F k of the
kth frame.

Furthermore, the structural information is extracted to capture the structure
changes in the scene of the continuous UAV-captured frames. Specifically, the
kth frame is uniformly divided into rectangular blocks, and the variance and
mean of grayscale values of each block are calculated as the local luminance and
contrast. Then the local luminance and contrast values of all blocks are concate-
nated to form the luminance feature Lk and contrast feature Y k. Next, the pixel
distribution ratios of different grayscale levels for the R, G, B channels of the
kth frame is denoted as HR

k ,HG
k ,HB

k , which serve as the color distribution fea-
tures. Finally, the frequency-domain, luminance, contrast, and color distribution
features of the kth frame are combined as the scene feature Sk.
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Feature Clustering Based Frame Clipping. The image’s crowd and scene
features are jointly employed as the combined features, and feature similarity-
based clustering is used to extract keyframes and remove redundant ones. The
temporal video sampling process is demonstrated in Algorithm 1, mainly involv-
ing the following two steps:

Step 1: Calculation of inter-frame similarity based on sliding window. Since
video frames captured by UAV have similarity within a continuous time range
, we use a sliding window to cover consecutive video frames and calculate the
cosine similarity as the inter-frame similarity based on the combined features for
all frames within the window coverage, according to Eq. (3).

Similarity(X,Y ) =
X · Y

‖X‖ × ‖Y ‖ (3)

Step 2: Video frame clustering and redundant frame removal. Based on the
inter-frame similarity within the sliding window, the DBSCAN algorithm [16]
is applied to feature-based clustering of video frames. Then, based on the clip-
ping threshold, we determine whether to remove each cluster of video frames in
the clustering result. Finally, the sliding window is moved in steps, and the fea-
ture clustering and redundant frame removal process continues until the sliding
window traverses all input frames.

Algorithm 1: Feature Clustering based Temporal Video Sampling.
Input: UAV-captured continuous video sequence with N frames

Vorig = {I1, · · · , IN}
Output: Sampled video sequence with K frames

Vout = {Ii, · · · , Ij} , 1 ≤ i, j ≤ N .
1 Initialize: Clipping threshold ε = ε0; Sliding window length LS = LS0 ; Sliding

step d = �LS/2�; Vout = ∅.
2 for i ← 0 to �(N − d)/d� −1 do
3 for j ← 1 to LS do
4 for k ← 1 to LS do
5 Calculate the inter-frame similarity simi+j,i+k according to Eq. (3)
6 end
7 end
8 Cls = DBSCANcluster({simi+1,i+1, · · · , simi+LS ,i+LS}, Vorig)
9 Vkeep = FrameCut(Cls, ε)

10 Vout = Vout ∪ Vkeep

11 end
12 return Vout.
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3.2 Dynamic Encoding Based Spatial Video Sampling

Edge detection-based 
background filtering

Lightweight crowd detection

Encoding RoI division

Temporal sampled 
video frames

Dynamic RoI encoding

Fig. 5. Spatial video sampling.

Although the duplicate content between frames is filtered out via temporal video
sampling, each frame still contains many inefficient background regions (such
as streets, sky, and other non-crowd areas in crowd surveillance), occupying a
large file volume. Therefore, we design the spatial video sampling module based
on dynamic encoding to filter out the non-regions of interest (non-RoIs) while
maintaining the visual quality of the crowd areas. As shown in Fig. 5, the back-
ground regions are filtered out with edge detection and then lightweight crowd
detection results are utilized to correct the misclassification of crowd regions as
non-RoIs in the edge detection, thus obtaining an accurate division of encoding
RoIs. Finally, the frames are dynamically encoded according to the RoI division,
i.e., the task-related RoIs are losslessly encoded, while the non-RoIs are lossy
encoded.

Background Filtering Based on Edge Detection. Compared to the tex-
ture and contours in the crowd regions, the edge texture information in the
background regions of images is relatively simple. Hence, we utilize the edge
texture information of different objects to distinguish and filter the background
regions in the image. Lightweight edge detection utilizes the Prewitt operator [13]
(Eqs. (4) and (5)). Specifically, for the input image Ik, the horizontal and vertical
gradients at pixel (x, y) is calculated according to Eqs. (6) and (7):
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dx =

⎡

⎣
1 1 1
0 0 0

−1 −1 −1

⎤

⎦ (4)

dy =

⎡

⎣
−1 0 1
−1 0 1
−1 0 1

⎤

⎦ (5)

Gx = dx ∗ Ik (6)

Gy = dy ∗ Ik (7)

where ∗ denotes the 2D convolution operator. Then each element’s value gxy(i, j)
of the gradient magnitude matrix Gxy is calculated as follows:

gxy(i, j) =
√

gx(i, j)
2 + gy(i, j)

2 (8)

where gx(i, j) and gy(i, j) represent the values of the horizontal and vertical
gradient matrices at position (i, j). If gxy(i, j) < λedge · gxy(i, j), the pixel at
position (x, y) is labeled as RoI, otherwise it is labeled as non-RoI. The final
output RoIs is defined as Redge = {(x, y)|gxy(i, j) ≥ λedge · gxy(i, j)}.

Moreover, to adapt to the limited computation capabilities of the drone
nodes, this lightweight edge detector has a time complexity of only O(HW ·
log(HW )) for edge detection with the image size of H×W , equivalent to a sin-
gle convolutional layer in a neural network. The algorithm’s execution time on
actual lightweight edge devices (i.e., Jetson Nano) is less than 3ms for 800p
frame. Hence, this algorithm incurs minimal computational overhead and negli-
gible processing latency at the edge node.

Lightweight RoI Correction. Since background filtering based on edge detec-
tion relies solely on the intensity of edge textures to distinguish background
regions without considering the crowd distribution in the image, it is a common
issue of misclassifying crowd areas as background regions [21]. To reduce the
computational workload on lightweight edge devices, the crowd detection results
in the temporal sampling process is reused to reclassify crowd areas erroneously
labeled as background into non-background regions. For the crowd density map
mk obtained in temporal sampling, if an element value in mk is greater than
the maximum value of the detection threshold e0 and the mean value of mk, it
is designated as RoI; otherwise, it is labeled as non-RoI. The final output RoIs
of the lightweight detection is Rdet = {(x, y)|mk(x, y) ≥ max {e0,mk}}.

The RoIs from lightweight crowd detection are used to complement and revise
the background filtering results, thus the final RoI division is defined as Rf =
Redge ∪ Rdet.

Dynamic Quality Encoding. Upon obtaining the final partition of the video
frames into RoIs, we utilize a video encoder for dynamic quality encoding of the
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frames. The encoding quality map for each frame is dynamically computed based
on the RoI partition of the frame, defining the encoding quality for each block
within the frame (i.e., RoIs are set to lossless encoding, while non-RoIs are set
to lossy encoding). Then, based on the encoding quality map of each frame, the
video encoder performs corresponding lossless or lossy encoding for each image
block.

Algorithm 2: Dynamic Encoding based Spatial Video Sampling.
Input: Coloured video frame Iorig with pixel size m×m
Output: Spatially sampled video frame Iout; Encoding RoI set R.

1 Initialize: Edge detection threshold εd = εd0 ; R = ∅; Iout = Iorig.
2 B=Division(Iorig)
3 for box in B do
4 Redge=EdgeDetect(box,εd)
5 Rdet=CrowdDetect(box)
6 if |Redge| > 0 or |Rdet| > 0 then
7 R = R ∪ {Redge ∪ Rdet}
8 Iout=HighQualityEncode(Iout, box) /* lossless encoding*/
9 else

10 Iout=LossyQualityEncode(Iout, box) /* lossy encoding*/
11 end
12 end
13 return Iout and R.

The spatial video sampling algorithm based on dynamic encoding is illus-
trated in Algorithm 2. Its input is m×m colored video frame Iorig. Line 1 ini-
tializes the parameters. Then we obtain the results of RoI division (line 2). In
line 3–12, the edge detection, lightweight crowd detection and dynamic video
encoding are executed. At last, the algorithm outputs the dynamically encoded
video frame Iout with the RoI set R.

To sum up, by jointly incorporating the results of edge filtering and
lightweight crowd detection, dynamic encoding-based spatial video sampling
achieves lossless encoding for crowd areas while applying lossy compression to the
background regions of non-surveillance targets. This module can further reduce
video transmission volume without compromising crowd surveillance accuracy.

4 Evaluation

4.1 Experimental Setup

Datasets Description. The drone crowd surveillance datasets used in this
paper include The Oxford Town Centre (OTC) [14], Group-detection (GD) [26],
the self-labeled drone-captured Multi-scenario Crowd Dataset (MCD), Drone
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Vision Challenge dataset VisDrone2019 [12]. All the datasets are compatible
with the crowd detection tasks and contain over 20,000 UAV-captured crowd-
gathering video frames with resolutions up to 1280 × 720 and above, including
multiple scenarios such as crowd riots, large-scale gatherings and city street
parades.

Experimental Methodology and Settings. Jetson Nano is deployed as
lightweight edge processing device on the UAV side and a GPU-equipped lap-
top is used as a ground base station for data communication via wireless wifi.
Deep network inference and video processing is based on TenorRT [3] and FFm-
peg. Yolov5 is trained as crowd detection network for GCS with VisDrone2019
dataset on the training server equipped with NVIDIA 3090 GPU.

To show the effectiveness of our algorithm, we evaluate the overall latency,
detection accuracy and recall at different crowd scene density and image reso-
lution. The communication distance between the UAV end and the GCS end is
set to 30m. Besides, to simulate the scene switching of the real drone-captured
video, the video frames of different scenes are mixed and sampled to form the
testing set.

Baseline Methods. To comprehensively evaluate the performance of edge com-
puting systems, four typical comparison methods with different performances are
used in this paper:

• Un-CVP: Uncompressed Video Processing method directly transmits the
whole UAV-captured video frames to GCS without any compressing. Thus,
this method achieves the highest detection accuracy but incurs the largest
overall latency.

• CVP [19]: Compressed Video Processing method processes all the UAV-
captured video frames with lossy compression.

• CFRC [30]: Clipped Fixed-RoI Compressing method first clips the UAV-
captured video with structural similarity and then compresses frames with
fixed RoIs.

• REMIX [18]: This algorithm compresses video frames based on adaptive
image region segmentation in different compression qualities according to the
crowd density of each region.

Furthermore, to evaluate the performance of each module of our algorithm,
the following two comparison algorithms are used:

• TSO: Temporal Sampling Only algorithm compresses the UAV-captured
videos via the temporal sampling module in this paper.

• SSO: Spatial Sampling Only algorithm compresses the UAV-captured videos
by the spatial sampling module in this paper.

Evaluation Metrics. For the experimental studies, we adopt three metrics to
evaluate the algorithm performance: 1) Average Processing Time(APT),
which is the sum of the average processing delay of the UAV-captured video at
the edge of the UAV and the average transmission delay of the compressed video
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to the ground station per frame; 2) Precision(P), which refers to the proportion
of the detection results in the relevant categories to the total returned results,
as in Eq. (9); 3) Recall(R), the proportion of relevant categories to the total
relevant categories in the detection results, as in Eq. (10).

P =
|TP |
|TE | (9)

R =
|TP |
|TG| (10)

where TP , TE and TG denote the sets of the correct detection results, the whole
detection results, and the ground-truth, respectively.

4.2 Experimental Results

Algorithm Performance Evaluation. First, we assess the impact of different
video resolutions on crowd detection performance and system processing latency.
As depicted in Fig. 6a, the video frame resolution gradually decreases from 800p
to 240p, and the experiment results show that our algorithm achieves 98.6%
detection accuracy and 95.7% recall of the Un-CVP method. Compared to our
algorithm, the detection accuracy of the REMIX, CFRC, and CVP methods
is, on average, reduced by 2.2%, 17.2%, and 23.2%, respectively. This signifi-
cant difference in accuracy demonstrates that only our algorithm and REMIX
consider crowd information during video processing, ensuring crowd detection
accuracy and recall. Moreover, as shown in Fig. 6b, our algorithm reduces the
average APT of the Un-CVP and the REMIX methods by 31.3% and 33.25%,
respectively.

Next, we evaluate the impact of crowd-gathering scenes in different densities
on crowd-detection performance and system processing latency. As shown in
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Fig. 6. Evaluation of crowd detection performance with different video resolutions, in
terms of precision, recall, and latency.
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Fig. 7. Evaluation of crowd detection performance in different crowd density scenarios,
in terms of precision, recall, and latency.

Fig. 7a, when the resolution of different crowd density scenes is set to 800p, our
algorithm improves the accuracy by 23.6% and 32.6%, and the recall by 21.6%
and 20.5% compared to the CVP and CFRC, while achieving crowd detection
accuracy and recall close to the Un-CVP. Furthermore, as shown in Fig. 7b,
compared with low-density scenes, our algorithm and the REMIX increase the
APT by an average of 5.1% and 4.6%, respectively, in medium and high-density
scenes due to the increased delay in processing crowd features. In all crowd
density scenes, our algorithm reduces average processing latency by 55.2% and
22.3% compared to the Un-CVP and REMIX methods, respectively, with an
average reduction of 77.6ms and 18.0ms.
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Fig. 8. Evaluation of crowd detection performance with different algorithm modules,
in terms of precision, recall, and latency.

Algorithm’s Module Evaluations via Ablation Studies. We conduct abla-
tion experiments to evaluate the effectiveness of each module in our algorithm.
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Fig. 9. Evaluation of crowd detection performance with different numbers of image
divisions, in terms of precision, recall, and latency.

As shown in Fig. 8a, the accuracy of our algorithm, the TSO, and SSO reached
96.7%, 98.6%, and 94.3% of the Un-CVP method, and the recalls reached 96.7%,
96.6%, and 94.6% of the Un-CVP method, respectively. Then, the experimental
results of system processing delay, as shown in Fig. 8b, illustrate that our algo-
rithm reduces the average APT of the Un-CVP method by 38.2%. The delay of
the TSO and SSO algorithms at higher resolutions (800p and 480p) is reduced by
an average of 34.3% and 33.5%, compared to the Un-CVP, while at lower resolu-
tions (320p and 240p), the delay is increased by 36.3% and 47.2%, respectively.
This difference in delay can be attributed to the fact that both the TSO and SSO
use neural networks, resulting in inherent processing delay that cannot be effec-
tively reduced at lower resolutions. On the other hand, our algorithm’s temporal
and spatial sampling modules enable the neural network’s time consumption to
be evenly distributed, reducing the APT remarkably.

Algorithm’s Parameter Evaluations. We evaluate the impact of the block
division parameter bin on the algorithm’s performance. As depicted in Fig. 9a
and Fig. 9b, when the number of image block division bin increases from 5 to 25,
the experimental results show that with the increase of the bin, the detection
accuracy and recall are improved by 2.6% and 2.1%, and the APT is increased
by 3.4ms on average. As a result, increasing the bin can improve the detection
performance to some extent but also lead to a growth of the APT.

Additionally, our algorithm is tested on video frames of four large-scale
gatherings scenarios. As illustrated in Fig. 10, the scenes in column 1 to 4 are
crowded city streets, election rallies, square clusters, and mass crowd gatherings
of marathons, respectively. The detection results demonstrate that the crowd
detection performance of compressed images with the CVP method significantly
decreases, while the detection performance of video frames processed by our algo-
rithm is similar to the uncompressed video frames (Un-CVP) in all scenarios.
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Fig. 10. Illustration of crowd detection results in large-scale gatherings scenarios.

In summary, the above experimental results further validate the effectiveness
of our algorithm for real-time high-precision video compression in crowd surveil-
lance. In comparison with baseline methods, our algorithm achieves remarkable
improvement in reducing video transmission latency by 31.3% while maintaining
the detection accuracy loss within 2%. Also, the performance of our algorithm is
stable and robust, making it adaptable to crowd supervision in various surveil-
lance scenarios.

5 Implementation

To validate the effectiveness and feasibility of our design, we build a prototype
UAV-based urban crowd surveillance system. As shown in Fig. 11(a), we utilize
an S500 drone [4] equipped with a Jetson Nano lightweight processing device
as an edge node. The drone also carries a 2k motion camera, flight control, and
a wireless transceiver to capture and stream HD video. And a GPU-equipped
laptop is used as the ground station, communicating with the drone in real time
via wireless wifi.

The prototype system practically executes crowd surveillance tasks in the
following steps: 1) we deploy the ground station near crowded places in urban
areas and set up patrol areas for UAVs; 2) the UAVs fly around to capture videos
of gathering crowds while the edge devices on board UAVs perform the spatio-
temporal low-loss video compression and transmit the compressed videos to the
ground side with low latency; 3) the ground station conducts crowd surveillance
applications, such as crowd counting and density analysis on the UAV-captured
videos, and uploads the results to a cloud server for visualization, as depicted in
Fig. 11(b), the user interface of the system displays real-time streaming video,
detection results of crowds, the UAVs’ flight trajectories and status, specific
person recognition results, and crowd density information.
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(a) UAV-based crowd-surveillance prototype system                                   (b) System Interface

Fig. 11. Intelligent UAV-based real-time crowd surveillance prototype system.

6 Related Work

Some work has been done on UAV-based crowd surveillance systems and
lightweight video compression algorithms.

UAV-Based Crowd Surveillance Systems. UAVs are often combined with
crowd-surveillance methods for urban security applications [17,24,25] due to
their small size, low cost, and high safety. Singh et al. [25] used ScatterNet
for human pose estimation to identify violent behavior from the UAV-captured
footage. Castellano et al. [9] embedded cameras and GPUs in UAVs for real-time
crowd density estimation. Woźniak et al. [31] used specially designed UAVs with
large edge devices to run deep neural networks for crowd surveillance, reducing
endurance and difficulty applying to conventional UAVs. As UAV technology
continues to advance, its applications in various fields have further expanded.
However, due to the limitations of endurance and size, UAVs cannot carry large-
scale processing devices, making it difficult to handle complex computing tasks.
Therefore, solving the problem of limited UAV edge computing capabilities has
become the focus of current research.

Lightweight Video Compression Algorithms. Due to edge devices’ extre-
mely limited computing resources, lightweight video compression algorithms have
been widely studied to solve such problems. Lu et al. [22] utilized optical flow
motion information and autoencoder networks for efficient video encoding. Cohen
et al. [11] proposed a modified entropy-constrained quantizer design algorithm for
lightweight computing between clouds and edges. He et al. [15] designed the over-
fitted repair neural network (ORNN) to obtain overfitted images. Park et al. [23]
proposed a fast decision scheme for lightweight neural networks using multi-type
trees (MTT) to reduce encoding complexity. Although lightweight video compres-
sion algorithms partly solves the video transmission latency, some still have high-
performance requirements making it difficult to run on lightweight devices. In
addition, the lightweight video compression methods currently are not adapted
to crowd detection tasks. Accordingly, achieving high-precision and low-latency
drone-captured video compression is still an open problem.
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Unlike previous studies, this paper proposes a spatio-temporal low-loss video
compression algorithm running on a capability-limited UAV node. It performs
inter-frame comprehensive feature extraction and similarity clustering based on
video clipping and RoI-based dynamic encoding of videos within frames, ensuring
the accuracy of crowd detection and reducing video transmission latency.

7 Conclusion

This paper proposes an intelligent UAV-based edge computing system for real-
time urban crowd surveillance. The system aims to address the high latency in
video transmission and the low accuracy of compressed videos in UAV-based
crowd surveillance with limited processing capabilities. Specifically, we propose
a spatio-temporal fusion algorithm for low-loss video compression tailored for
UAVs with limited edge capabilities. By integrating feature-based clustering for
temporal sampling and dynamic encoding for spatial sampling, the algorithm
achieves low-loss compression of UAV-captured videos while minimizing trans-
mission latency under a certain detection information loss rate. The compressed
videos are transmitted with low latency from the UAV to the ground station,
enabling real-time and accurate UAV-based crowd surveillance. Furthermore,
based on the actual UAV, ground station, and cloud server, we build a pro-
totype UAV-based edge intelligent system and conduct comprehensive and in-
depth experimental evaluations. The experimental results demonstrate that the
proposed approach effectively reduces transmission latency while meeting high
accuracy requirements.
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