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Abstract. Lane detection represents a fundamental task within autono-
mous driving. While deep learning has made remarkable advancements
in the source domain, its ability to generalize to unseen target domains
still poses a challenge. To address this issue, we present a Fourier-based
instance selective whitening framework. This framework utilizes the dis-
tinct frequencies within the Fourier spectrum to decompose data style
into environment and texture styles. Our method preserves semantic fea-
tures by stabilizing the phase component, while also extending the style
through perturbing and amalgamating the amplitude component. Fur-
ther, we propose a standardized instance selective whitening strategy
to analyze overall distributional changes, emphasizing general features
and reducing domain-specific information. Our approach is validated
through extensive experiments across multiple challenging datasets, such
as Tusimple, CULane, and LLAMAS, which demonstrates significant
effectiveness when compared to existing methods.

Keywords: Lane detection · Domain generalization · Fourier
transform

1 Introduction

Lane detection is a key part of the autonomous driving task, and it is the
front module of systems such as Lane Keeping Assist (LKA) and Lane Depar-
ture Warning (LDW). With the development of deep learning networks, lane
detection methods have made great breakthroughs [36,41]. These methods have
achieved satisfactory results in the source domain, but they perform very poorly
when faced with unknown domains, especially those that we cannot access. This
is due to the model degradation caused by the distribution shift between the
source domain and the target domain. However, the source domain cannot con-
tain all the data distribution, so it is particularly important to reduce the domain
shift between the source domain and the target domain.

Domain Adaptation (DA) [2,8,15,34,38,40] extracts data information from
the target domain to alleviate the difference in features or distributions between
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the source domain and the target domain. However, these approaches essentially
rely on the availability of target domain data, limiting the generalization to
unseen target domains. Additionally, there is no single ideal target domain that
encompasses all possible distributions. In contrast, domain generalization (DG)
focuses on acquiring generalized content features from the domain, preventing
the model from overfitting to the unique style features of the source domain. It
achieves the generalization of previously unseen target domains without requir-
ing additional target data.

In recent researches [37,38], Fourier-based data augmentation has been pro-
posed as a method for addressing the domain shift problem, showing remark-
able performance improvements. The Fourier transformation has a particular
advantage: the phase component retains high-level semantics, while the ampli-
tude component encapsulates low-level statistics [13,22,23,27]. This property
contributes to generate data that more closely aligns with the real data distribu-
tion. Nevertheless, learning basic features through gradient backward propaga-
tion remains challenging due to the difficulty networks face in distinguishing style
differences. Concurrently, several studies [9,10,24,26,30,32,33] have explored the
combination of instance normalization and instance whitening to constrain mod-
els by removing domain-specific style information from the data, enabling the
learning of general domain content features. A recent study [6] has focused on
the correlation between style and feature covariance matrices to identify style-
sensitive elements within features for whitening. However, the single style of
source domain and the random enhancement bring difficulties in distinguishing
these sensitive elements. This approach leads to elements whitened, which con-
tains critical semantic features. It also results in a decrease in performance when
applied to an unseen target domain.

In this paper, we propose two modules: Fourier-based Style Extension (FSE)
and Standardized Instance Selective Whitening (SISW). FSE utilizes different
frequencies from the Fourier spectrum to decompose semantic features into envi-
ronmental and texture features. Then the amplitude component is disturbed and
mixed to extend the distribution of the source domain with diverse styles, as well
as ensure the preservation of semantics by fixing the phase component. This
effectively emphasizes domain-independent information. Based on FSE, SISW
standardizes and analyzes the overall feature covariance matrices to identify ele-
ments responsible for domain shifts. Then whitening these elements to enhance
the discrimination ability of essential features. Our method alleviates the lack
of semantic information during style expansion and improves the accuracy in
selecting style-sensitive elements. Unlike methods that let the network learn by
itself, such as data augmentation, our approach explicitly guides the network
to learn the domain-independent features. Thus, our method leads to effective
generalization across various domains.

Our main contributions are as follows:

• We propose a novel domain generalization framework for lane segmentation,
which extends the source styles with Fourier transform before catching and
removing domain-specific information to learn content common features.
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• The proposed domain-specific style whitening modules, FSE and SISW, are
plug-and-play and convenient to migrate to different backbones. It effectively
improves the generalization with ignorable time consumption.

• Our approach aims at the lane detection domain generalization. Through
qualitative and quantitative evaluations, the proposed method shows state-
of-the-art efficacy across different domains.

2 Relate Work

Semantic Segmentation on Lane Detection. Semantic segmentation is a
task of pixel-level classification. Lane segmentation is an important application of
it. With the development of deep learning, many advanced methods of lane seg-
mentation have been proposed, such as [25] generalizes traditional deep convolu-
tions to slice-by-slice convolutions on the four directions to enhance feature extrac-
tion, [35] adds an embedding model for pixel and combines binary segmentation to
cluster lane instances, [14] proposes self-attention distillation to learn from itself
from contextual information, [36] adopts multitask framework contains lane seg-
mentation, road segmentation and object detection to mutual restraint. Although
these methods are effective within the source domain, they perform poorly when
tested on unseen target domains. As far as we know, there have been no existing
methods to address domain generalization within lane segmentation.

Domain Generalization. DomainGeneralization (DG) aims to acquire domain-
independent common features to effectively generalize to unseen target domains.
Unlike Domain Adaptation (DA), DG has no access to the target domain informa-
tion during training, posing significant challenges to the task. Previous research in
DG has been mainly focused on image classification tasks, such as meta-learning
[3,17], adversarial training [18,28], auto encoder [11,18], metric learning [7,20],
data augmentation [12,39,42]. There are a few recent studies on domain gener-
alization for semantic segmentation, which research from two aspects: domain
style diversity, normalization and whitening. The methods of domain style diver-
sity adopt data augmentation and extension to enrich the data style of the source
domain. [16] augments the source domain features to resemble wild styles and
stylizes the data, subsequently enhancing the capability to distinguish category
semantics within the feature space. The methods of normalization and whiten-
ing enhance the generalization ability of network by eliminating distribution noise
and reducing feature redundancy. [33] proves instance normalization will reserve
content information to avoid overfitting the data distribution. Further, [24] adds
batch normalization to improve the feature discriminability. [26] combines IN with
other whitening methods to learn essential features. [6] proposes an instance selec-
tive whitening to extract domain-specific features to normalize and whiten. These
two aspects complement each other: domain style diversity highlights domain-
independent general features, while normalization and whitening capture general
features and eliminate redundant information. The effective combination of these
two aspects opens up new possibilities for domain generalization, and our aim is
to explore these possibilities to enhance model generalization ability.
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Fig. 1. Visualization of the low-frequency component and high-frequency component.
(a) original image; (b) reconstructed image with low-frequency component; (c) recon-
structed image with high-frequency component.

3 Methods

In this section, we apply the Fourier transform to break down the style of the
data from the source domain into two different styles: environmental and textu-
ral. We extend the new data style by changing the amplitude component. Subse-
quently, we combine this process with standardized instance selective whitening
to selectively remove domain-specific style information, thereby enhancing the
generalization of model. The overall learning process is outlined in Fig. 3.

3.1 Fourier-Based Source Domain Style Extension

We consider that overfitting to the data style of the source domain is the primary
factor leading to the decline in the generalization of model. While common data
extension methods attempt to address this issue, they often present limitations.
Moreover, the generated data does not consistently align with the real-world
distribution, resulting in the loss of certain aspects of semantic information.

To address this challenge, we propose a Fourier-based data style extension
method, which introduces random variations or mixes the amplitude information
to extend the data styles. This method can diversify data styles while preserving
semantic features, effectively alleviating incomplete semantic cases. Specifically,
for a single-channel image, we obtain its Fourier transform:

F(x)(u, v) =
∑

h,w

x(h,w)e−j2π( h
H u+ w

W v) (1)

FA(x)(u, v) =
[
R2(x)(u, v) + I2(x)(u, v)

]1/2

FP (x)(u, v) = arctan
[

I(x)(u, v)
R(x)(u, v)

] (2)

where R(x) and I(x) represent the real and imaginary part of F(x), and F−1(x)
represents the inverse transform of Fourier, and the two processes can be effi-
ciently calculated by [21].

Utilizing the diverse frequency ranges of the Fourier transform to represent
various degrees of grayscale change, we attempt to break down the data style,
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Fig. 2. Fourier-based style extension (FSE). We decompose the amplitude and phase
components, dividing them into low-frequency and high-frequency regions. The seman-
tic information in regions where they intersect is difficult to distinguish, so we don’t
address them here. Subsequently, we use different enhancement strategies for low-
frequency and high-frequency amplitudes to extend styles.

as the Fig. 1. We consider the low-frequency signal in the Fourier domain as
representing relatively smooth environmental features, while the high-frequency
signal embodies the significantly changeable texture features. To represent these
distinct types of signals separately, we define masks Mβlow and Mβhigh :

Mβl
(h,w) = 1l(h,w)∈[−βlH:βlH,−βlW :βlW ]

Mβh
(h,w) = 1 − 1l(h,w)∈[−βhH:βhH,−βhW :βhW ]

(3)

where 1l denotes value in the range is 1 and outside is 0. βl, βh ∈ (0, 1) and
βl + βh < 1, as the Fig. 2.

In recent studies [13,22,23,27], it has been proved that the Fourier phase com-
ponent can effectively preserve semantic information. Based on this, we highlight
the semantic feature by fixing the phase component of Fourier space. Then, we
introduce random variations in the amplitude to extend the data styles. Inspired
by [37,38], for the low-frequency component, we engage in random linear inter-
polation of the amplitudes from two arbitrary images. Considering the similarity
in style information from the source domain image, we randomly adjust the value
of the amplitude component, either by enlarging or reducing it, before the lin-
ear interpolation of the amplitudes. Combined with the random transform, the
extension of environmental styles can be expressed as:

FA
env(xi) = Mβl

◦ ((1 − λ)wiFA(xi) + λwi′ FA(xi′ )) + (1 − Mβl
) ◦ FA(xi) (4)

where λ ∈ (0, 1) is the fusion factor, wi and wi′ are the disturbance factors of
low frequency about different samples xi and xi′ .

We attempted to apply a similar method to the high-frequency component,
but it did not yield an improved outcome. This was primarily due to the high-
frequency component containing a portion of semantic information. When com-
bined with another image, the mix resulted in the destruction of semantic infor-
mation. Consequently, we only and randomly reduce the amplitude, proportion-
ally, in order to preserve the original semantics and prevent the loss of semantic
details.
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Fig. 3. The framework of the proposed FSW. En denotes our model is trained after n
iterations. It stops training to generate a selective matrix, and then adds standardized
instance selective whitening loss during subsequent training.

FA
tex(xi) = Mβh

◦ biFA(xi) + (1 − Mβh
) ◦ FA(xi) (5)

where bi is the disturbance factor of high frequency. Thus, for the source domain
image xi and arbitrary sample xi′ . We extend environmental features and texture
features in turn. The style extension can be formalized as:

(FA
env(xi),FA

tex(xi)) → F̂A(xi) (6)

xext = F−1([F̂A(xi),FP (xi)]) (7)

where FA
env(xi) and FA

tex(xi) are two relatively independent processes that need
to be executed sequentially, with no strict order between them.

3.2 Standardized Instance Selective Whitening

The previously mentioned Fourier-based style extension method enriches the
data distribution of the source domain. However, merely constraining the model
through the comparison loss results in the model overfitting the new distribution.
This approach makes it challenging to learn domain-generalized content features.
Recent studies [9,10] have highlighted the relationship between style and feature
statistics. The adjustment of feature statistics using the IN layer proves bene-
ficial in enhancing feature diversity. Inspired by [6], we propose standardized
instance selective whitening, a method that standardizes the covariance matrix
and selects the style-sensitive feature elements for whitening. We determine the
feature sensitivity to style through overall distribution changes in covariance
matrices. This enables us to improve the discernment of domain-specific fea-
tures and accurately remove redundant style information.



Fourier-Based Instance Selective Whitening 421

Following [6,24], we add the instance standardization layer [33] into shallow
networks. Initially, we train n epochs without containing whitening loss to enable
the networks to learn basic semantic features. Subsequently, we infer both the
original image and its stylistically extended image, calculating the covariance
matrix for each:

μ = 1
HW X · 1 ∈ R

C×1 (8)

Σ = 1
HW (X − μ · 1�)(X − μ · 1�)

� ∈ R
C×C (9)

where X ∈ R
C×HW denotes the feature map with the dimensions of C, H and

W, expanded along the channel dimension. 1 ∈ R
HW is a column vector of ones,

and μ and Σ are the mean vector and the covariance matrix.
[6] uses the mean of instance variance to describe the style sensitivity of fea-

ture elements. Nevertheless, the variance of individual instances has limitations.
We consider the changes in the overall distribution might provide more accurate
representations. As there are inherent differences among the feature covariance
matrices of distinct images, our method standardizes covariance matrices ini-
tially. Then, we represent the style sensitivity of feature elements by the variance
of overall distribution, thereby obtaining the variance matrix:

V =
1
N

N∑

i=1

σ2
i (10)

μΣ =
1

2N

N∑

i=1

(Σs(xi) + Σs(τ(xi)) − 2Σsta(xi)) (11)

σ2
i =

1
2
((Σs(xi) − Σsta(xi) − μΣ)2 + (Σs(τ(xi)) − Σsta(xi) − μΣ)2) (12)

where N is the number of samples, xi is the i-th image sample, τ is the Fourier-
based style extension, and Σsta(·) denotes the regularized covariance matrix, here
we simply use the covariance matrix of the original image, Σsta(·) = Σs(·).

The above studies [9,10] indicate that the feature covariance of a model with
poor generalization is sensitive to style shifts. The variance matrix V accurately
reflects this sensitivity. Consequently, we assume that the elements with higher
variance in the covariance matrix may contain more domain-specific styles. To
select these elements, we follow the method of [6], utilizing k-means clustering
to assign the elements Vi,j(i < j) into k clusters. Subsequently, we select the
elements in clusters with the top m high variance values as Ghigh. We can get
the mask matrix M from Ghigh:

Mi,j =

{
1, if Vi,j ∈ Ghigh

0, otherwise
(13)

The mask represents the domain-specific style elements within the features. Con-
sequently, we propose standardized instance selective whitening (SISW) loss and
implement it within the instance normalization layer to optimize the network:
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LFISW = E
[∥∥Σs � M

∥∥
1

]
(14)

Combining with lane segmentation tasks, our total loss can be described as

L = Lseg + Lexist +
1
L

L∑

i

Li
FISW (15)

where Lseg is the cross-entropy loss for lane segmentation, Lexist is the lane exist
loss, i and L denotes separately the layer and the total number which applies
SISW.

4 Experiments

In this section, we conduct many experiments between simple and complex scenes
to prove the efficiency of our method. Besides, we compare our method with
multiple representative methods of feature normalization and whitening in the
field of domain generalization for semantic segmentation.

4.1 Dataset

We focus on the domain generalization of lane detection and design two standard
benchmark settings: “Tusimple to CULane” and “Tusimple to LLAMAS”. These
aim to verify the generalization ability of models from a single scene to a complex
scene.

Tusimple [1] is a small-scale dataset containing urban driving scene images
with the resolution of 1280 × 720. The images are collected from high-speed
roads. It provides 3626 training and 2782 testing images.

CULane [25] is a large-scale dataset for lane detection with the resolution
of 1680 × 590. It collects more than 55 h videos and extract 133235 frames. The
dataset is split into 88880 training, 9675 validation and 34680 testing images.
The test set contains normal class and 8 challenging classes.

LLAMAS [4] is a large-scale and high-quality dataset for lane detection. It
contains 100042 labeled images with the resolution of 1276×717. Since the label
of testset is not public, we use the validation set for evaluation.

4.2 Experimental Setup

We conducted training on the Tusimple dataset and evaluated the performance
of the model on the CULane and LLAMAS datasets to assess its generalization
ability across a range of scenarios, from simple scenes to complex ones. In our
comparison with other normalization methods, we re-implemented IBN-Net [24],
IW [19], GIW [5], and ISW [6] on our baseline models. Metrics were consistently
measured using the same evaluation standards for all approaches. To ensure fair
comparisons, models were selected and trained on the last epoch.
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Fig. 4. Visualization results on CULane. From left to right are (a) Input image, (b)
Baseline, (c) Ours (FSW) and (d) Groundtruth.

4.3 Implementation Details

We adopt ERFNet [29] pre-trained on ImageNet [31] as the network backbone.
We use SGD optimizer with a momentum of 0.9 and weight decay of 1e-4. The
initial learning rate is set to 1e-2 and is decreased using the polynomial policy
with a power of 0.9. We train a model for 12 epochs with a batch size of 16.
Before training, all datasets are preprocessed to contain a maximum of four
categories (ranging from two lanes on each side), and all images are resized to
976 × 208.

We implement our method on PyTorch and use a single NVIDIA RTX 3090
GPU for our experiments. Following lane detection works, we use F1-score as
the evaluation metric.

4.4 Comparison with DG Methods

We construct a simple to complex adaptation scenario to verify the effective-
ness of FSW. We compare our results with other representative normalization
methods: IBN-Net [24], IW [19], GIW [5] and ISW [6]. Table 1 shows the gen-
eralization performance test on CULane dataset. Note that all the methods use
ERFNet [29] as the network backbone. We select the model from the last epoch
of training to test for each method. FSW outperforms other methods on all chal-
lenging classes of CULane except the Crossroad. In addition, for styles that do
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Table 1. Quantitative comparison on “TuSimple to CULane”. *: For cross, it only
shows FP.

Methods Normal Crowded Dazzle Shadow No line Arrow Curve Cross* Night F1@50

Baseline [29] 32.26 13.12 8.09 6.29 7.37 20.82 20.76 9656 4.70 16.82

IBN [24] 36.07 13.73 7.59 7.07 6.82 23.66 25.18 8597 8.54 18.48

IW [26] 38.07 14.70 10.95 6.39 7.82 26.61 26.31 8249 8.06 19.62

GIW [5] 39.25 16.05 12.48 8.94 9.11 27.91 28.09 818081808180 10.88 21.11

ISW [6] 40.10 17.59 10.62 8.32 8.43 28.93 28.49 9075 12.37 21.69

Ours 41.8441.8441.84 19.6519.6519.65 13.2013.2013.20 10.0010.0010.00 10.0910.0910.09 30.3030.3030.30 29.3529.3529.35 8802 15.2715.2715.27 23.6923.6923.69

Table 2. Quantitative comparison over multiple domains.

Methods →CULane →LLAMAS

Baseline [24] 16.83 66.17

IBN [24] 18.48 69.9569.9569.95

IW [26] 19.62 65.19

GIW [5] 21.11 65.66

ISW [6] 21.69 65.17

Ours 23.6923.6923.69 68.99

not exist in the source domain, such as dazzle and night, our method has signif-
icant improvements compared with other methods. To prove the generalization
ability over multiple domains, we use the same model to verify the performance
on CULane and LLAMAS datasets. Given in Table 2, our approach also achieves
significant results, only slightly lower than IBN on the LLAMAS dataset, but we
are much higher than it on the more complex CULane dataset. The visualization
results are shown in Fig. 4.

Table 3. Ablation analysis of FSE and SISW.

Methods FSE SISW F1@50

Baseline [24] 16.83

+ISW 21.69

+ISW � 22.98

+ISW � � 23.6923.6923.69
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4.5 Ablation Studies

In order to further analyze the effectiveness of FSE and SISW, we extend exper-
iments on the domain generalization scene from Tusimple to CULane. We evalu-
ate the effectiveness through method stacking. As shown in Table 3, the baseline
model, trained only with FSE module, achieves an F1-score of 22.98% with
+6.15% improvement. This shows that style extensions with more semantic
information will contribute to selecting elements that are sensitive to domain
shift more accurately. Further, we adopt SISW module to achieve an F1-score
of 23.69%. This shows the distribution of global covariance based on standard-
ization is better for representing the sensitivity of features to domain shift.

5 Conclusions

This paper proposes a novel Fourier-based standardized instance selective
whitening framework, which contains two modules: Fourier-based Style Exten-
sion (FSE) and Standardized Instance Selective Whitening (SISW). FSE focuses
on preserving semantic information through the Fourier spectral phase while
extending the amplitude to diversify the style. SISW selectively removes the
domain-specific information to enhance common feature learning. The collabo-
ration between the two modules, SISW and FSE, proves to be complementary.
SISW encourages networks to learn style-independent essential features while
FSE contributes to improving the discrimination of style-sensitive feature ele-
ments. Extensive experiments confirm its effectiveness in generalizing from sim-
pler to more complex scenes. However, challenges remain in extending styles not
present in the source domain, such as shadow and night scenes, this leads to a
considerable performance gap between the source and target domains. Address-
ing these challenges will be a primary focus of our future work.
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