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Abstract. Recently, Large Language Models (LLMs), represented by
ch1ChatGPT, have garnered significant attention in the field of educa-
tion due to its impressive capabilities in text generation, comprehension,
logical reasoning, and conversational abilities. We incorporate LLMs into
the theoretical and experiment teaching of our Digital Logic and Com-
puter Organization courses to enhance the teaching process. Specifically,
we propose and implement an assistant teaching system consisting of
a knowledge-based Question and Answer (Q&A) system and an assis-
tant debugging and checking system. For the theoretical teaching ses-
sion, the Q&A system utilizes historical Q&A records and ChatGPT
to answer students’ questions. This system reduces the repetitive work-
load for teachers by answering similar questions, and allows students
to receive answers in time. For the Field-Programmable Gate Array
(FPGA)-based experiment teaching session, the assistant debugging and
checking system employ debug assistance module to explain error mes-
sages for students. Furthermore, a LLM-generated code checking module
assists teachers in detecting academic misconduct among students’ code
submissions.

Keywords: Computer Science · Hardware Courses · Assistant
Teaching System · Large Language Models · FPGA

1 Introduction

Digital Logic and Computer Organization Principles are fundamental courses in
computer science education, significantly influencing students’ comprehension
of the underlying principles of computer. In addition to theoretical teaching in
the fundamental concepts and principles of digital circuits and computer archi-
tecture, we have introduced experiment courses to culture students’ practical
skills [1]. These experiments require students to apply Hardware Description
Languages (HDLs) like Verilog [2] to implement functional modules on Xilinx
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Nexys 4 FPGA development boards [3]. In the Digital Logic course, students
engage in the implementation of basic modules of digital circuits, including
basic gate circuits, data selector and distributor, encoders and decoders, bar-
rel shifter, data comparator, trigger, PC register, RAM, ALU and so on. In
the Computer Organization Principles course, students progress beyond these
foundational modules to tackle more advanced experiments, such as multiplier,
divider, interrupt handling experiments, ultimately culminating in the design of
a MIPS CPU. Previously, we have meticulously crafted a comprehensive teach-
ing strategy [1] and developed an automatic testing system for HDL practice
teaching [4–6].

During our teaching practice, we have encountered several challenges in
the Digital Logic and Computer Organization courses. These courses are dis-
tinguished by their extensive content, high complexity, and inherent concept
abstraction. Both in theoretical teaching and laboratory exercises, students fre-
quently encounter difficulties and experience delays in obtaining answers to their
inquiries. Many of these difficulties are recurrent and shared among students,
placing additional burden on educators to repeatedly address similar questions.
Furthermore, a significant portion of these challenges is concentrated in the
FPGA practical process of the courses. HDLs differ substantially from the soft-
ware programming languages that students have previously encountered, and
the error messages generated by Integrated Development Environments (IDEs)
such as Vivado [7] and ModelSim [8] are often challenging to understand. These
obstacles hinder the learning process, especially for novice learners.

Recent advancements in Large Language Models (LLMs), including Chat-
GPT [9], ChatGLM [10], and Llama [11], have garnered significant attention for
their exceptional capabilities in text generation, comprehension, logical reason-
ing, and dialogue engagement. This growing interest extends to their potential
applications in the field of education [12–15]. In this paper, we integrate LLMs
into our computer hardware course teaching and propose an assistant teaching
system, consisting of two main components: a question and answer (Q&A) sys-
tem and an assistant debugging and checking system. The Q&A system first
utilizes historical records and ChatGPT to promptly respond to questions sub-
mitted by students. Teacher intervention is reserved solely for new questions that
cannot be resolved by the system, thereby reducing the redundancy in teacher
workload. The Q&A system continuously updates and accumulates language
data through the Q&A module, improving its response capabilities over time.
Furthermore, we develop an assistant debugging and checking system for exper-
iment courses. On the one hand, debug assistance module utilizes ChatGPT to
explain error messages of the Verilog programs, aiding students in debugging. On
the other hand, considering that the advent of LLMs also introduces potential
academic integrity risks, a LLM-generated code checking module is introduced to
check whether students’ submitted code is generated by GPT. In summary, our
assistant teaching system aims to enhance teaching efficiency, improve students’
understanding of course content, and mitigate potential academic integrity risks
in our computer hardware courses.
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2 Related Technical Methods

Recently, LLMs usch as BERT [16], GPT3 [17], GPT4 [18] have emerged
as a groundbreaking technology in the field of Natural Language Processing
(NLP). Through extensive pre-training on vast text corpora and fine-tuning
with specific instructions, they have exhibited remarkable performance in lan-
guage generation and comprehension tasks. One common application scenario
for LLMs is Q&A systems, such as ChatGPT [9], ChatGLM [10], claude [19],
and LLaMA2Chat [11]. While LLMs showcase impressive capabilities in general
domains, their limitations become evident when applied to specialized fields. As
LLMs are pretrained on general corpora, they may lack domain-specific expertise
in specialized fields. To address this issue, two primary approaches are consid-
ered. The first approach involves fine-tuning of pre-trained LLM on a domain-
specific dataset, such as ChatDoctor [20], ChatLaw [21], EduChat [13]. This
method allows LLMs to acquire specific domain knowledge and communicate
effectively within a particular knowledge context. However, this fine-tuning app-
roach requires a substantial amount of domain-specific data and significant GPU
computing resources. The second approach utilizes embedding technology [22–
24]. It involves computing vectors for specific knowledge using embedding mod-
els and then storing these vectors, along with their corresponding content, in
a database. During the query phase, similarity queries are performed to match
relevant top K results. At present, there is not enough corpus available to fine-
tune large models to create a specialized LLM for hardware course teaching. We
have opted the second approach to construct a Q&A system that responds to
students’ questions based on existing QA records within our courses.

As widely recognized, compiler error messages often pose a significant obsta-
cle to beginners when learning programming. Previous studies have harnessed
LLMs to generate explanations of error messages in programming education in
languages such as C [15] and Python [14], making them easier to understand.
Our course includes practical exercises where students write Verilog HDL code
and deploy it onto FPGA. We have previously proposed an automatic testing
system for Verilog HDL programs [5,6]. This testing system categorizes errors
into two types. The first, Compile Error (CE), indicates compilation errors and
returns error messages from ModelSim. The second, Wrong Answer (WA), indi-
cates that the code compiles but produces incorrect simulation and returns a
comparison report between simulation result and standard one. While this test-
ing system can correctly assess the correctness of submitted code, it often fails to
provide helpful guidance due to the incomprehensible error messages. Therefore,
inspired by methods [14,15], we introduce a debug assistance module to enhance
students’ understanding of error messages.

Measure of Software Similarity (MoSS) [25] is widely used as a code plagia-
rism detection tool in programming courses, coding competitions, and research.
MoSS’s primary function is to identify similarity between two or more source
code files, and it also supports HDLs like Verilog and VHDL. To counteract
the possibility of specific students utilizing ChatGPT to generate code for their
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assignments, we introduce an LLM-generated code checking system based on
code similarity.

3 Proposed Assistant Teaching System

3.1 Q&A System

We construct a question-and-answer(Q&A) system based on LLM. The workflow
is shown as Fig. 1.

Fig. 1. Flow chart of Q&A system.

When a student submits a query, the system follows a 2-stage process to
address the question. Search Stage: The system initially employs a search mod-
ule to query the knowledge base for relevant historical question-and-answer pairs.
This step aims to provide the student with immediate access to existing solutions
to similar queries from the past. Q&A Stage: If the student’s question remains
unanswered after the search module’s results, the system proceeds to the Q&A
stage. First, it connects to the OpenAI API, utilizing ChatGPT to attempt to
answer the student’s question. ChatGPT engages in a conversation with the stu-
dent, providing responses. Questions that cannot be solved by the GPT are then
answered by the teacher. Once the question is resolved, whether by ChatGPT
or a teacher, the system logs this Q&A interaction into the knowledge base.
This ensures that the newly answered question becomes part of the knowledge
repository for future reference, helping other students with similar queries. In
addition, the embedding-based search module can find the most relevant content
with greater accuracy and efficiency.
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3.2 Assistant Debugging and Checking System

The emergence of LLM brings new changes in teaching and learning. Through
experimental testing, we have observed that when design objectives, desired
functionalities, and well-defined input-output interfaces are explicitly described
within the prompt, ChatGPT is capable to generate Verilog code and success-
fully pass our automatic testing procedures. This signifies that ChatGPT has
the potential to assist the learning of the HDL verilog in the practical course.
However, it also raises the concern that students may resort to direct copying
the Verilog code generated by ChatGPT.

Fig. 2. Flow chart of assistant debugging and checking system.

In previous work, we have implemented an automatic detection system (dot-
ted line parts in Fig. 2). To harness the potential of LLMs in educational assis-
tance while mitigating the risk of academic misconduct, We propose an assis-
tant debugging and checking system. Considering that students often encounter
challenges during the practical phase of writing Verilog code, we propose a
debug assistance module to utilize ChatGPT for interpreting error messages,
thus assisting students in the debugging process. To avoid the risks that stu-
dents may cheat by directly utilizing ChatGPT to generate Verilog code, we
introduce a LLM-generated code checking module.

4 System Implementation

4.1 Q&A System Implementation

For the scheme above, we develop a Q&A website for a concrete implementation,
as shown in Fig. 3. The entire system consisting of a front-end pages and a back-
end server is implemented based on the Python Flask framework. The front-
end serves as an interfacial interaction for students to submit questions and
query results, and allows teachers to provide answers to unresolved inquiries.
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The backend consists of two distinct modules. The Q&A module collaborates
with ChatGPT and the teacher to answer the student’s question and inserts the
solved quastion-answer records into the database. The search module retrieves
relevant Q&A records from the existing records in the database as references for
students.

Fig. 3. Q&A system framework.

During the early stages of system operation, the primary focus is on knowl-
edge accumulation through the Q&A module. Given that ChatGPT may not
always provide satisfactory answers, teacher involvement is often required. After
the system has been running for a while, the Q&A module has accumulated a
sufficient number of question-and-answer records in the database. At this point,
relying solely on the historical records returned by the search module is sufficient
to address the majority of issues. Only when new questions arise that cannot
be answered by the existing knowledge, is the Q&A module and the perhaps
involvement of teachers required to further supplement the database.

Embedding-Based Search Module. The embedding-based search module
evaluates similarity with the feature embeddings of question sentence and returns
the top K most relevant QA records. The user’s input question sentence is first
vectorized into an embedding with the OpenAI’s API text-embedding-ada-002.
Afterwards, vector similarity is measured using cosine similarity based on the
embeddings, and the system searches the database to retrieve the top K questions
that are most similar to the submitted question.

For traditional relational databases, the specific process is as illustrated in
Fig. 4. The query module first retrieves two columns, the question IDs and
question embeddings from the database. After calculating the cosine similarity
between the submitted question’s embedding and all existing embeddings, the
top K most similar records are selected. Finally, the complete Q&A records are
retrieved according to the selected question IDs from the database and sent to the
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Fig. 4. UML of search module with relational database.

student’s terminal. Embeddings are typically high-dimensional vectors. Specif-
ically, OpenAI’s text-embedding-ada-002 embeds text into a 1536-dimensional
vector. In traditional relational databases, the need to extract entire embed-
ding columns results in a significant amount of read and write operations, which
can be time-consuming. Additionally, similarity computation for all rows also
imposes a large computational effort. These limitations indeed restrict the scale
of databases.

Fig. 5. UML of search module with vector database.

Vector databases are specifically designed for the storage and processing of
vector data, offering efficient vector retrieval capabilities. The workflow as shown
in Fig. 5, involves the creation of embedding, subsequently querying the database
for similar vectors, and directly returning the corresponding content associated
with these vectors. The core functionality of vector databases lies in similarity
search, accomplished by calculating the distance between a vector and all other
vectors to identify the most similar ones. Most vector databases provide efficient
similarity measurement methods, such as cosine similarity, and are optimized
to accelerate these queries. Vector databases align seamlessly with our solution.
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Specifically, we chose Milvus [26] vector database to implement efficient similar-
ity search.

Q&A Module. The Q&A module is responsible for addressing questions that
cannot be answered by the historical records. It consists of two stages.

Fig. 6. UML of Q&A stage 1.

In the first stage, the Q&A module begins by attempting to address inquiries
using ChatGPT as shown in Fig. 6. This module generates prompts by incorpo-
rating information including the course name, submitted question into a prede-
fined template. When applied to specialized vertical domains such as knowledge
within the course and Verilog programming, ChatGPT lacks domain-specific
knowledge and often fails to provide effective answers. Although the historical
records returned by the search module cannot directly provide a satisfactory
solution to the submitted problem, they can serve as contextual prompts for
ChatGPT to reference. ChatGPT suffers from the hallucination problem, where
the generated response may be not truthful and mislead students. Therefore, it
is essential to emphasize this point in the prompt. The prompt template example
is as follows:

You are an expert in digital circuit and computer architecture. And you will
help students study ¡course name¿.

I face the following problems ¡submitted question¿, please answer them.
Here are some historical records that might help ¡related Q&A¿
If you don’t know the answer just say you don’t know. DO NOT try to make

up an answer.
The module sends the generated prompts via an HTTP API call to OpenAI’s

gpt-3.5-turbo, and then forwards the answers to the student’s terminal. If the
student feedback that the question has been resolved, the question is marked
as resolved, and both the question and answer records are inserted into the
database.



Assistant Teaching System for Computer Hardware Courses 309

Fig. 7. UML of Q&A stage 2.

Otherwise, it proceeds to the second stage, where the teacher takes responsi-
bility for answering as shown in Fig. 7. The question is marked as unsolved and
sent to the teacher’s terminal. Once the teacher answers it, both the question
and answer records are inserted into the database.

4.2 Assistant Debugging and Checking System Implementation

Debug Assistance Module. In order to help students debug, the debug assis-
tance module leverages ChatGPT to provide more comprehensible explanations
for errors occurring during the compilation and simulation procedures of Verilog
code. The specific workflow is as shown in Fig. 8.

Fig. 8. UML of debug assistance module.

It first generates a prompt based on the information from the testing mod-
ule. The prompt is then transmitted to ChatGPT through an API call, seeking
explanations for the error message. Ultimately, the ChatGPT-generated error
explanations are appended to the test report and delivered to the students’ ter-
minals.

The prompt is generated with a predefined template. It begins by outlining
the objectives of the code, including functional description and interface defini-
tions, just as in the previous section. Next, it incorporates the submitted design
code along with the testbench code from the server. Finally, it populates the
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error types and error messages based on the report generated by the testing
module. Additionally, it is important to emphasize that the generated feedback
serves as an educational tool to aid students rather than a replacement for their
efforts. The prompt template is as follows:

You are a tutor helping a student to explain the error in verilog program. Do
not fix the program. Do not provide code.

I want to implement a module.: <module description>.
This is my Verilog design code: <submitted source code>.
This is my Verilog testbench code: <testbench code>.
An error occurred during the <error types>, help me understand this error

message: <error reports>.
Remember, you are tutor helping a student. Do not write code for the student.

LLM-Generated Code Checking Module. Current LLMs have the capabil-
ity to generate accurate Verilog code and pass the automatic testing. However,
this also means that students can potentially plagiarize from LLMs, which is a
situation we want to avoid. To address this concern, we propose a LLM-generated
code checking scheme.

Before the module is put into operation, we need to utilize current leading
LLMs such as ChatGPT and Claude to generate reference code as a basis for
LLM-generated code checking. To enable LLMs to generate effective Verilog
code, the prompt necessitates the inclusion of the functional descriptions, along
with explicit input/output(I/O) interface definitions. Here is a prompt example
of a data selector:

Write the Verilogg code for the data selector. A Data Selector is a fundamen-
tal logic circuit that is used to choose one of several input signals based on the
state of input switching signals.

The interface is defined as: the switching is controlled by the encoding of two
control signals s0 and s1, c0∼c3 are the data inputs and z is the output.

selector41(
input [3:0] iC0, //four-bit input signal c0
input [3:0] iC1, //four-bit input signal c1
input [3:0] iC2, //four-bit input signal c2
input [3:0] iC3, //four-bit input signal c3
input iS1, //selection signal s1
input iS0, //selection signal s0
output [3:0] oZ //four-bit output signal z
);
The workflow of this plagiarism detection module is shown in Fig. 9. When

a student submits a code for a particular assignment, the detection module will
perform a similarity check between the submitted code and the reference code
generated by the LLMs for that specific experiment. Specifically, we utilize the
MoSS [25] provided by stanford to implement code similarity checks and obtain
detection reports. If the similarity is too high, it raises suspicion of using LLM-
generated content. It’s important to note that code similarity doesn’t certainly
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Fig. 9. UML of LLM-generated code checking module.

indicate plagiarism, but this module flags it and provides a report for adminis-
trators and teachers to review. This module serves only as an aid, and the final
judgment is made by the teacher.

5 Conclusion

In this paper, we propose an assistant teaching system based on large language
models for our courses in digital logic and computer organization. This sys-
tem effectively improves teaching efficiency in both theoretical and experiment
courses, enhances student understanding of course content, and reduces poten-
tial academic integrity risks. In the practical application of teaching, this sys-
tem can greatly facilitate both students and teachers. The Q&A system can
swiftly answer students’ questions, helping them quickly resolve uncertainties
in their learning process and providing real-time support. By storing historical
Q&A records, a knowledge base can be built, thereby accumulating and dissem-
inating knowledge. The search module utilizes LLM to extract semantics and
matches relevant Q&A records based on feature embeddings, enabling the system
to answer similar questions more effectively in subsequent queries. By utilising
knowledge base and ChatGPT, Q&A systems can address a significant portion
of questions, thereby substantially reducing the burden on teachers. In exper-
iment teaching, using ChatGPT to assist students in debugging can expedite
issue identification and resolution, thereby boosting efficiency in students’ pro-
gramming and experimental learning. Finally, the LLM-generated code checking
system helps mitigate potential academic integrity risks.
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