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Abstract. Online judge (OJ) systems have been widely used for pro-
gramming skill evaluation in various fields, including programming edu-
cation, programming competition and talent recruitment. Existing OJ
systems put the codes into a judge queue according to the order of user
submission, and use the judge server to evaluate the correctness of the
codes in turn. With the surge in the number of code submissions, this
scheduling method causes the rapid increase of average response time for
judge requests, resulting in a decline in user experience. To alleviate the
problem, we develop an intelligent scheduling system, which consists of
two modules. In the first module, we employ a deep representation learn-
ing model to predict the running time of the codes in the judge queue; in
the second module, the judge queue is divided into fixed-size windows.
The codes in each window are sorted according to their predicted run-
ning time in ascending order, and are scheduled to the judge server using
the shortest job first algorithm. The experimental results show that, 1)
the constructed prediction model predicts the running time of the codes
accurately; 2) compared with the scheduling algorithm of existing OJ
systems, the proposed scheduling algorithm can effectively reduce the
average response time for large-scale online judging. Furthermore, by
varying the code running time distribution and window size in the judge
queue, we demonstrate the performance improvements of the proposed
intelligent scheduling system under different settings, compared with the
existing systems.

Keywords: online judge - intelligent scheduling - running time
prediction - shortest job first - deep representation learning model

1 Introduction

Online Judge (OJ) [26] systems automatically assess the correctness of codes
by running them with the pre-defined use cases and comparing the output with
the standard results. Because of the convenience, OJ systems have been widely
used in programming education [7], programming competitions [27], and talent
recruitment 2. For example, the China Computer Federation (CCF) uses an

! https://www.hackerrank.com/.
2 https:/ /www.qualified.io/.
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OJ system to organize a series of programming exams for “Software Professional
Certification”, usually with more than 10,000 examinees in a single exam [25]. For
another example, on Chinese University MOOC?, there might be up to 100,000
students who take the same programming course and practice programming in
the built-in OJ system at the same time. In a typical OJ system, the codes
submitted by users are inserted into a queue according to the submission order,
and the judge server runs the codes in the queue based on the “First Come
First Serve (FCFS)” scheduling algorithm, determining their correctness and
returning the results to the corresponding users. As the amount of users and
the number of code submissions grow, this scheduling method causes the rapid
increase of the average response time for judging requests, i.e., the time between
a code submission and the return of the evaluation results, thereby seriously
affecting users’ programming experience. Figure 1 shows the experimental results
of average response time according to the FCFS scheduling algorithm, where the
average running time of the experimented codes is only 96(484) ms. However,
when the number of codes in the queue grows from 100 to 1,000, the average
response time of the judging request rapidly increases from less than 5s to more
than 80s.
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Fig. 1. Average response time vs. number of codes in the queue

In order to improve user experience, especially to reduce the anxiety of wait-
ing for assessment results during competitions or exams, how to reduce the aver-
age response time in large-scale online judging scenarios is worth investigating.
Some related works have proposed to build scalable OJ systems from a system
architecture perspective to alleviate the load pressure caused by a single system.
For example, Wang et al. [25] develop the MetaOJ system, which reduces the
response time under high loads by building a distributed OJ system. Nerantzis
et al. [19] develop the MI-OPJ system based on the micro-service architecture,
which utilize Kubernetes to orchestrate the container services and realize the
elastic scaling of the services of the OJ system.

3 https://www.icourse163.org/.
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Unlike the above work, we investigate how to improve the responsiveness of
a single system in the face of large-scale judging loads, and the proposed method
can be easily integrated into any existing OJ system, including those based on
the distributed and micro-service architectures mentioned above. Specifically,
we build an intelligent scheduling system that reduces the average response time
of judging requests by prioritizing the judgements of codes in the queue with
a shorter running time. The entire scheduling system is divided into two mod-
ules. First, in order to predict the running time of the codes in the queue, we
employ a deep representation learning model to predict the code running time.
In particular, we select three code representation models, i.e., graph2vec [18],
ASTNN [29], and CodeBERT [8], to construct the prediction model and evalu-
ate the performance. Through comparison, the ASTNN-based model is finally
selected to predict the code running time. Second, we modify the FCFS schedul-
ing algorithm to “Shortest Job First (SJF)” scheduling algorithm to prioritize
the judgments of codes with a shorter predicted running time. In order to prevent
the codes with a long running time from being unable to be judged for a long
period of time, we divide the code queue into fixed-size windows, and in each
window, the codes are sorted in ascending order according to their predicted
running time and judged using the SJF scheduling algorithm. At the window
level, the FCFS scheduling algorithm is still used to ensure that the codes with
a long running time can be judged in the windows where they are inserted.

It is worth mentioning that in traditional CPU architectures, predicting code
running time incurs considerable additional overhead, which greatly diminishes
the judging response improvement brought by the above scheduling system. For-
tunately, today’s CPU-GPU heterogeneous architecture makes this overhead
negligible: predicting a code’s running time using GPUs is much faster than
judging its correctness in the judge server, which is typically run on CPUs. As a
result, except for the prediction and sorting time of the codes in the first window
of the judge queue, which needs to be factored into the response time, the rest of
the codes can complete the running time prediction and sorting during the wait-
ing time for judgement, thus having no impact on the response time. The exper-
imental results show that the model constructed in this paper can accurately
predict the running time of the code, and the proposed SJF scheduling algo-
rithm can effectively reduce the average response time of the judging requests.
In addition, we vary the distribution of code running time in the dataset, and
demonstrate how the proposed intelligent scheduling system reduces the average
response time compared to the FCFS scheduling under different distributions.
Finally, we vary the size of the window in the judge queue and demonstrate how
the proposed system reduces the average response time under different combi-
nations of queue length and window size.

In summary, we contribute in this work on the following three aspects:

— We propose to improve the responsiveness of a stand-alone OJ system for
large-scale online judging by changing the scheduling algorithm of the judge
server from FCFS to window-based SJF. To the best of our knowledge, this
paper is the first to propose such an approach.
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— In order to adopt the SJF scheduling algorithm, we construct a deep learning
model to predict the running time of the codes, as a basis of the SJF schedul-
ing algorithm. The experimental results show that the constructed model can
accurately predict the code running time.

— We conduct experiments to demonstrate that the proposed intelligent schedul-
ing system can effectively reduce the average response time of an OJ system
under large-scale online judging. We vary the code running time distribution
and the queue/window size to demonstrate the performance improvement
over the traditional scheduling system under different settings.

2 Related Work

The intelligent scheduling system proposed in this paper contains two main
parts: code running time prediction and code judging based on SJF scheduling
algorithm. The former part belongs to the research category of running time
prediction and the latter part belongs to the category of improving OJ systems.
This section presents the related work in the two areas respectively.

2.1 Code Running Time Prediction

Predicting code running time has important applications in both industry and
education. In industry, accurate prediction of code running time ensures that
specific tasks in real-time systems do not exceed a preset time, guaranteeing
system stability. In education, predicting code running time can give students
real-time feedback and motivate them to write more efficient code.

Puschner and Koza [21] propose to split a complete code into different com-
ponents, such as sequential, looping, branching, etc., and estimate the maximum
running time of each component, and finally add them together to get the esti-
mation of the maximum running time of the complete code. Park [20] combines
the static analysis based on simple timing diagrams and the dynamic analysis
based on execution paths to obtain tighter upper bounds on the running times
of sequential programs. Benz and Bringmann [4] point out that accurate static
code analysis relies heavily on loop boundaries, control flow constraints, and
other program flow facts that need to be labeled by the user, and is difficult to
apply in real-time systems. They improve code running time prediction using a
scene-aware analysis based on the mode of operation, application-related pro-
gram flow facts, and image resolution.

Another research area closely related to code running time prediction is code
complexity prediction. Although the goals of the two prediction problems are
slightly different, the way the code features are extracted in the proposed meth-
ods can be cross-referenced. For example, Gulwani et al. [10] propose both control
flow refinement and progress invariant methods and combine them to estimate
the complexity of codes with nested and multi-path loop structures. Chatterjee
et al. [5,6] use sorting functions and linear programming to compute worst-case
upper bounds for non-polynomials in codes. There is also a body of work that



An Intelligent Scheduling System for Large-Scale Online Judging 269

focuses on the problem of predicting code complexity in recursive functions. For
example, Albert et al. [1] use “evaluation trees” to mine recursive relationships
and derive complexity bounds for subsumption and sorting based on the mining
results. Ishimwe et al. [14] use pattern matching to learn recursive relations in
recursive programs, and represent asymptotic complexity bounds for recursive
programs by obtaining closed-form schemes. With the public availability of huge
amounts of code data and the widespread use of neural networks, deep learning-
based approaches have emerged. For example, Sikka et al. [22] propose a deep
learning-based code complexity prediction method, which uses graph2vec [18]
to represent the code, and constructs a multi-classification model to predict the
complexity of the code.

Due to the significant differences in the structural features of different codes,
traditional prediction methods do not generalize well. Therefore, in this paper,
we collect a large amount of codes and train a deep learning model to predict
the code running time.

2.2 Improving OJ Systems

As OJ systems are widely used, researchers propose various improvement meth-
ods to cope with the application of OJ systems in different scenarios. For exam-
ple, in order to adapt the OJ system to educational scenarios, Sun et al. [23]
design the YOJ platform for classroom teaching scenarios by focusing on the cur-
riculum, and develop modules such as course management, problem discussion,
function evaluation, offline assignments, and online tests to facilitate teaching
and learning. Francisco and Ambrosio [9] develop an automatic question group-
ing system based on the difficulty classification of questions to assist in the design
of assignments and tests, with the goal of improving the ease of use of OJ sys-
tems. They also develop a student reporting system based on behavioral data to
provide feedback to students on their learning performance. Hou et al. [13] uti-
lize the error reporting information from compilation tools and judging servers
to give feedback to users, in order to improve their programming training and
testing efficiency. Wang et al. [25] build a stand-alone OJ system to alleviate the
service response latency problem caused by large-scale cross-region online pro-
gramming testing, by building a distributed OJ system and deploying it on the
cloud. In order to cope with the load pressure caused by large-scale online train-
ing during the Covid-19 epidemic, Nerantzis et al. [19] follow the micro-service
architecture to reconstruct an OJ system, which can be massively scaled using
software such as Kubernetes, Apache Kafka, and NextJS. Other improvement
works of OJ systems include [28,30] and so on.

Among them, the works in [25] and [19] have the closet goals to our work,
that is, improving the responsiveness of the OJ system to deal with large-scale
online judging by improving the back-end structure. The difference is that these
two works propose distributed and micro-service architectures, respectively, to
rebuild the existing stand-alone OJ system, while we try to improve the sys-
tem responsiveness by improving the intrinsic judging scheduling mechanism in
existing OJ systems. The approach proposed in this paper is orthogonal to the
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approaches in [25] and [19], which is more lightweight and can be flexibly adapted
to any existing OJ system.

3 The Intelligent Scheduling System for Online Judging

The overall architecture of the intelligent scheduling system proposed in this
paper is shown in Fig.2. The code submitted by OJ users is first put into an
judging queue according to the submission order, and the system divides the
queue into fixed-size windows. In each window, the system predicts the running
times of the codes, and sorts the codes in ascending order according to the pre-
dicted running time. Subsequently, the system combines all the windows into a
queue again following the original window order, and judges the codes in the
queue sequentially. The whole system is divided into two key modules: code run-
ning time prediction and judging scheduling based on running time prediction.

Code Submislsion Queue
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- ; J \ _'_ )
Code Window Code Window Jl
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Fig. 2. The overall architecture of the proposed intelligent scheduling system
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3.1 Code Running Time Prediction Based on Deep Representation
Models

In recent years, code representation models based on deep learning have been
applied to various tasks in the field of software engineering, including program
classification [3], clone detection [2], code repair [12], etc., and have achieved the
performance far beyond that of traditional algorithms. Therefore, in this paper
we also predict the running time of code using deep representation learning
models, since accurate prediction is very important to the subsequent scheduling
algorithm.

We select three representative deep code representation learning models. The
first model is graph2vec [18], which has been used to build models for predicting
code complexity [22], and thus is closely related to our work. Graph2vec borrows
the idea from word2vec [17] and doc2vec [16] to train graph representations by
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Fig. 3. The classification and regression model for evaluating the predictive perfor-
mance of code representation learning models.

maximizing the probability of occurrence of the associated subgraphs of each
node in the graph. When applied to code representation learning in this paper,
we first convert the code into Abstract Syntax Tree (AST) intermediate repre-
sentation, and consider the AST as a graph. Then we input the ASTs into Graph
Attention Networks (GAT) [24] and train the code representation by applying the
graph2vec algorithm. The second model is ASTNN [29], which performs promi-
nently well among small-scale code representation models [11]. ASTNN splits
the AST of a code into a set of statement subtrees, each of which corresponds
to a complete statement, and then inputs the encoded sequence of subtrees into
the bi-directional GRU, and finally performs max pooling over the hidden states
of all time steps to obtain the representation of the entire code. The third model
is CodeBERT [8], which is the first programming language pre-training model
with strong code representation capability. The input of CodeBERT is a piece
of code text and its natural language comments. Two pre-training tasks are
designed to learn the code representation, which are masked token prediction
and replaced token detection. After training, the encoding of the [CLS] token
can be used to represent the input code. In order to evaluate the performance of
the above three representation learning models, we construct both classification
and regression models to predict the code running time, as shown in Fig. 3. In
the classification task, we categorize the code running time into 5 classes, which
are 0-50 ms, 50-100 ms, 100-200 ms, 200-500 ms, and 500-1000 ms, according to
the distribution of actual code running time in the dataset. We add a linear layer
with the Softmax activation on top of the code representation model to predict
the classes and employ cross-entropy as the loss function. In the regression task,
we similarly add a linear layer on top of the representation model, outputting a
single value, which is finally converted into a value between 0-1000, representing
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the predicted running time in milliseconds. The regression model uses the mean
square error as the loss function.

3.2 Code Judging Scheduling Based on Running Time Prediction

Based on the above evaluation tasks, we select the best deep model to predict
the code running time in preparation for judging scheduling. Specifically, we
first predict the running time of each code in the queue. In traditional archi-
tectures, predicting code running time, whether using symbol-based or machine-
learning-based approaches, incurs considerable additional overhead, which affects
the judging response time. However, in the GPU-CPU heterogeneous architec-
ture, we can use a GPU to run deep models to efficiently and accurately predict
the code running time and use a CPU to run the judging service of the OJ sys-
tem, without interfering with each other. In Sect. 4, we will see that predicting
code running time using a GPU is much faster than judging the code in the
0OJ’s judge server. As such, the prediction overhead does almost not increase the
response time of the code judging.

Algorithm 1: Average response time for judging code using the SJF
scheduling.
Input: Code queue @ formed according to user submission time, window size w
Output: Average response time for judging codes in Q: rtgug.
divide @ into disjoint windows of size w;
foreach window W in @ do
foreach code c in window do
prt = predict RunTime(c) /* Predicting the running time prt of code ¢
using a GPU */
end
sort the codes in W according to their prt in the ascending order
7 RT,, = judge AndCalRspTime(W) /* Feed W to the judge server and
calculate the response time for each code */
8 end
9 calculate rt4,¢ using RT, of all the windows in Q
10 return 7taug

W N =

[N

To implement the SJF scheduling algorithm, the codes in the queue need to
be sorted in ascending order of predicted running time from shortest to longest
and then fed to the judge server. A straightforward approach is to sort the entire
queue, which may minimize the average response time. However, this approach
makes the codes with long predicted running time unable to be judged for a quite
long time, which affects the programming experience of the corresponding users.
Therefore, we adopt a window-based SJF scheduling approach. Specifically, we
divide the entire queue into windows of fixed size, sort the codes according to
the predicted running time and use the SJF scheduling inside each window. On
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the other hand, different windows still maintain the order in the initial queue,
and are sent to the judge server in turn, i.e., the FCFS scheduling is still used
at the window level. Finally, we obtain the judging response time of each code
and compute the average time for the entire queue. The complete procedure for
calculating the average judging response time is shown in Algorithm 1.

It is worth noting that although Algorithm 1 is a serial pseudo-code writ-
ten according to the judging process, in practice, the GPU predicting the code
running time and the CPU running the judging service work in parallel.

4 Performance Evaluation

In this section, we empirically evaluate the proposed intelligent scheduling sys-
tem. First, we evaluate the accuracy of the models in predicting the code running
time. Then, we evaluate the effectiveness of the SJF scheduling algorithm based
on the predicted running time for reducing the average response time. Our code is
written in Python and PyTorch, and all experiments are conducted on a machine
with 4 cpu-cores and 16 GB memory, equipped with a Tesla V100.

4.1 The Dataset

The code dataset used for the experiments is collected from 242 programming
exercises of our OJ system, and a total of 63,355 C codes are collected. The
running time distribution of these codes on the experimental machine is shown
in Table 1.

Table 1. The distribution of the actual running time of the code in the data set.

Running Time | Number of Codes
0-50 ms 35854
50-100 ms 5977
100-200 ms 5611
200-500 ms 5550
500-1000ms | 10363
Total 63355

We can see that more than half of the code running times are smaller than
50ms, and only about 16% of the running times are larger than 500 ms. We divide
the entire dataset into training set, validation set and test set with proportion
6:2:2, and train the deep learning models to predict the code running time.

In the code judging scheduling experiment, we randomly select N codes from
the test set to form the judging queue, and then slice the queue into fixed-
size windows. Within each window, we use the ASTNN-based model to predict
the code running time, and sort the codes in ascending order according to the
predicted results. Finally, the codes in each window are fed into the judge server
in turn.
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4.2 Evaluation Metrics

In the running time prediction experiment, we treat the prediction task as a clas-
sification and regression task, respectively, and use Accuracy and Mean Absolute
Error (MAE) as the evaluation metrics. In the classification task, the classes are
the five classes in Table 1. In the regression task, the models directly predict the
running time of the code.

In the code judging scheduling experiment, we compute the average response
time of the codes in the judging queue. We randomly assign a submission time to
each code and ensure that all codes in a queue are submitted within one second.
The response time for each code is the time that the judge server returns the
result subtracting the submission time. Finally, the average of the response times
of all codes in the queue is calculated.

4.3 Hyperparameter Settings

When encoding the codes, the lengths of both the input embedding vector and
the output token vector are set to 128. The length of the hidden layer vector for
both graph2vec and ASTNN is set to 256, and the number of heads in the graph
attention module of graph2vec is set to 4. The batch size for training is 64, and
the maximum epoch is set to 20. We use adaMax [15] as the optimizer, and set
the learning rate to 0.002. We use the default settings of CodeBERT.

In the judging scheduling experiments, the window size for dividing the queue
is fixed to 50.

4.4 The Results

Code Running Time Prediction. Table2 demonstrates the performance of
the three running time prediction models. Table 3 demonstrates the performance
in different running time classes.

From the two tables, we observe that ASTNN achieves the best performance
in both the classification and regression task. ASTNN extracts from the AST the
statement subtrees of the corresponding independent components in the code,
which may make it capture better the execution structure of the code, and thus
be more accurate at predicting the running time. Graph2vec focuses on the sub-
graph structure associated with each node, which does not necessarily represent
a complete piece of code when applied to ASTs, making it worse at capturing the

Table 2. Predictive performance comparison of the three code representation models

code representation model | Accuracy | MAE
graph2vec|8] 0.872 20.64
ASTNNI9] 0.946 | 15.26
CodeBERT][10] 0.923 18.71
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Table 3. Predictive performance comparison of the three code representation models
for different classes of running time (ms)

Models Accuracy MAE

<50 | 50-100 | 100200 | 200-500 | >500 | <50 |50-100 | 100-200  200-500 | >500
graph2vec |0.884 |0.803 |0.852 0.824 0.912 |7.41 |15.70 |18.10 31.88 55.69
ASTNN 0.961 | 0.917 | 0.926 0.896 0.956 | 3.21|10.91 |15.73 24.82 38.04
CodeBERT | 0.953 1 0.899 |0.867 0.916 |0.909 |4.46 |13.91 |22.73 30.64 42.26

execution structure of the code. CodeBERT does not use C codes in pre-training
and does not learn structural features from intermediate representations such as
ASTs and control flow graphs. Therefore it performs a bit worse than ASTNN.
In order to achieve higher accuracy, in the future, pre-trained models that incor-
porate structural features such as GraphCodeBERT can be considered to train
the prediction model [26].

Code Judging Scheduling. The ASTNN-based model is the most accurate
among the three prediction models, so we use it to predict the running time of
the code in the judging scheduling experiment. Based on the prediction results,
we sort the codes in each window and prioritize the codes with shorter predicted
running time. We refer to this scheduling algorithm as “SJF based on predicted
running time”. For comparison, we additionally implement “SJF based on cyclo-
matic complexity”. Cyclomatic complexity is commonly used to measure the
static complexity of a code and represents the number of linearly independent
paths in the code, which is usually calculated as the number of closed paths in
the control flow graph. The SJF algorithm based on cyclomatic complexity pri-
oritizes codes with lower complexity for judging. Finally, in order to obtain the
upper bound on the performance of the SJF scheduling algorithm, we sort and
judge the codes based on their actual running time. We refer to this algorithm as
“SJF based on actual running time”. For each algorithm, we vary the number of
codes in the judging queue from 100 to 1000 with increments 100, and compute
the corresponding average response time of code judging.

Figure 4 shows the results. First, we can see that compared to FCFS schedul-
ing, both SJF based on predicted running time and SJF based on cyclomatic
complexity scheduling algorithms reduce the average response time. With the
increase of the number of codes in the queue, the average response time is reduced
more. This proves that the SJF scheduling algorithm can effectively improve the
judging efficiency for large-scale online judging. Second, SJF based on predicted
running time can reduce more average response time than SJF based on circle
complexity, which indicates that the code running time is more suitable for the
SJF scheduling algorithm and the constructed model can predict the running
time accurately. Finally, SJF based on actual running time further reduces the
average response time than SJF based on predicted running time, indicating
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that the scheduling performance of the current system can be further promoted
by improving the accuracy of code running time prediction.

It is worth mentioning that in our experiments we can predict the running
times of 30 codes per second using a Tesla V100 GPU, i.e., predicting the running
time of the codes in a window of size 50 takes a bit more than 1s. On the other
hand, judging the codes in the window takes about 5s. In other words, predict
and sorting the codes in each window is much faster than judging them in the
judge server. The overhead of code running time prediction does almost not
increase the average judging response time when using a GPU as a standalone
prediction module.
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Impact of Code Running Time Distribution. The SJF scheduling algo-
rithm is effective because the running times of the codes in the queue are quite
different. In this section, we vary the distribution of code running times in the
queue and observe the impact of the SJF scheduling algorithm on the average
response time. Based on the collected dataset, we define codes with running time
below 500 ms as “non-time-consuming code” and codes with running time above
500 ms as “time-consuming code”. We increase the percentage of time-consuming
codes from 0% to 100% with increments 10%, and randomly select 1,000 codes
from the test set under each percentage control to calculate the average response
time of code judging. Figure 5 shows the results. We can see that when the per-
centage of time-consuming codes is small or large, the SJF scheduling has a small
reduction on the average response time over the FCFS scheduling, because the
running times of all codes are more converged. The SJF scheduling algorithm
based on predicted running times reduces the average response time the most
when there are 50% time-consuming codes. This is instructive for designing code
judging queues in OJ systems: one can group codes with different complexities
into a queue, and use the scheduling system proposed in this paper to improve
the average response time of the whole OJ system.
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The Impact of Window Size in the Queue. In order to avoid the situation
that codes with long running time are not able to be judged for a long time, we
propose to divide the code queue into windows of fixed size, and use the SJF
scheduling algorithm for the codes in each window, while different windows still
follow the FCF'S scheduling algorithm. Therefore, the window size has an impact
on the overall performance of the scheduling system. We vary the code queue
length from 100 to 1000 with increments 100, and for each queue length, we
vary the window size from 10 to 100 with increments 10. Therefore, we obtain a
10 x 10 matrix, where each element of the matrix represents the average response
time reduction of the SJF algorithm based on predicted running time over the
FCEFS algorithm, for the corresponding combination of queue length and window
size. We visualize this matrix using a heat map. The more we reduce the average
response time, the darker the color of the corresponding element in the matrix.
Figure 6 illustrates the experimental results. We can observe that the matrix
gets progressively darker from the top left to the bottom right, i.e., overall the
longer the queue and the larger the window, the more the average response time
is reduced by using the SJF scheduling algorithm. The results are as expected,
again demonstrating the accuracy of the running time prediction and the effec-
tiveness of the SJF scheduling algorithm. In real systems, the length of the
judging queue is usually determined by the system cache, and the administrator
can dynamically adjust the window size according to the actual judging load,
in order to meet the dynamic balance between the average response time of the
codes with a long running time and the average response time of all codes.

5 Conclusion

In this paper, we address the problem of rapidly growing judging response time
of OJ systems for large-scale online judging. We propose to reduce the average
response time by improving the scheduling mechanism of the judging service,
and construct a corresponding scheduling system. The system consists of two
modules: the prediction module predicts the running times of the codes using a
deep model, and the scheduling module judges the codes using a window-based
SJF scheduling algorithm according to the predicted running time. Experimental
results demonstrate that by accurately predicting the code running time, the
scheduling algorithm proposed in this paper can effectively reduce the average
judging response time of OJ systems. Importantly, the constructed intelligent
scheduling system can be integrated into any existing OJ system.

In the future, we will continue to improve the scheduling system on two
aspects. First, the experimental results prove that the response time using the
predicted running time scheduling is still much larger than the response time
using the actual running time scheduling. Therefore, we will investigate how
to further improve the accuracy of code running time prediction. Second, we
currently utilize a GPU for real-time prediction of code running time. For servers
not equipped with a GPU, the benefit of intelligent scheduling will be affected
by the prediction time. Therefore, we consider to predict and store the running
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times of a huge amount of codes offline. For online judging, we will design a
retrieval algorithm to obtain the predicted running time of each submitted code,
so as to improve the prediction efficiency on CPU-only machines.
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