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Abstract. With the rapid development of big data and AI technology,
programming is in high demand and has become an essential skill for
students. Meanwhile, researchers also focus on boosting the online judg-
ing system’s guidance ability to reduce students’ dropout rates. Previous
studies mainly targeted at enhancing learner engagement on online plat-
forms by providing personalized recommendations. However, two signif-
icant challenges still need to be addressed in programming: C1 ) how to
recognize complex programming behaviors; C2 ) how to capture intrin-
sic learning patterns that align with the actual learning process. To fill
these gaps, in this paper, we propose a novel model called Programming
Exercise Recommender with Learning Style (PERS), which simulates
learners’ intricate programming behaviors. Specifically, since program-
ming is an iterative and trial-and-error process, we first introduce a
positional encoding and a differentiating module to capture the changes
of consecutive code submissions (which addresses C1 ). To better pro-
file programming behaviors, we extend the Felder-Silverman learning
style model, a classical pedagogical theory, to perceive intrinsic program-
ming patterns. Based on this, we align three latent vectors to record and
update programming ability, processing style, and understanding style,
respectively (which addresses C2 ). We perform extensive experiments
on two real-world datasets to verify the rationality of modeling pro-
gramming learning styles and the effectiveness of PERS for personalized
programming guidance.

Keywords: Programming Education · Sequential Recommendation ·
Learning Style

1 Introduction

The rapid advancement of AI technology has profoundly influenced on individ-
uals of diverse backgrounds and skill levels. In this connection, online judge
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systems have emerged as an indispensable avenue for those seeking to boost
their programming proficiency1. However, despite the growing popularity of this
learning modality, high dropout rates have been observed, attributable to the
inadequate provision of personalized instructions tailored to learners’ unique
learning preferences [22].

Recently, recommender systems have been widely applied in online edu-
cation scenarios to facilitate personalized learning. There are various recom-
mendation models, including CF(collaborative filtering)-based methods [20,31],
content-based methods [1,13] and deep-learning-based methods [7,8]. These gen-
eral models aim to provide personalized recommendations by capturing users’
interests and needs through static preferences and individual interactions. In the
context of programming, however, the learning process exhibits a dynamic and
progressive nature. This represents an essential application of the sequential rec-
ommendation (SR) task, which predicts subsequent behavioral sequences based
on historical records [12,27,29,32].

While extant SR models have yielded successful results in e-learning contexts,
there remain significant gaps in directly deploying them to programming scenar-
ios [18]. As illustrated by Fig. 1, programming learning differs from traditional
learning in two crucial respects: i) it enables learners to make multiple attempts
on the same exercise and edit their previous submissions based on the feedback
received from the compiler and, ii) the platform can record fine-grained behav-
ioral data related to programming, including code snippets, compilation time,
and compilation status. Furthermore, current sequential models prioritize learn-
ers’ patterns with little regard to their intrinsic behaviors, including learning
styles. These styles reflect the ways in which learners process and comprehend
information, and are thus factors that cannot be ignored.

Consequently, the study of SR in programming learning confronts two sig-
nificant challenges. First, it is imperative to model distinctive and fine-grained
patterns involved in programming, including code-related side features and iter-
ative submission behavior (C1 ). Second, there is an urgent need to incorporate
pedagogical theory into the model to bolster its interpretability with the actual
learning process (C2).

To address the above challenges, we propose a new model named
Programming Exercise Recommender with Learning Style (PERS). To simulate
the iterative process in programming, we employ a two-step approach. Firstly,
we map programming exercises and code-related features (such as code snippets,
execution time, and execution status) into embeddings using a representation
module with positional encoding. Secondly, we formulate a differentiating module
that calculates the changes between consecutive code submissions. This module
can adeptly capture fine-grained learning patterns by effectively distinguishing
between intra-exercise or inter-exercise attempts (for C1 ). To enhance the con-
sistency between our proposed model and the actual learning process, we draw

1 A theory proposed by Richard M. Felder and Linda K. Silverman to describe indi-
viduals’ preferred ways of learning. Further details will be provided in the related
work section.
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inspiration from a pedagogical theory known as the Felder-Silverman Learning
Style Model (FSLSM) [4], which is widely utilized in educational scenarios for
mining learning patterns and delivering personalized guidance. Considering the
processing and understanding dimensions in FSLSM, we present a formal def-
inition and detailed descriptions of programming learning styles in this paper.
On this foundation, we develop three latent vectors: programming ability, pro-
cessing style, and understanding style, which are designed to track the learners’
intrinsic behavioral patterns during the programming process (for C2 ). After
obtaining the above vectors, our model employs a multilayer perceptron (MLP)
to generate personalized predictions that align individuals’ learning preferences.
In summary, the main contributions of this paper are summarized as follows:

• Our study endeavors to furnish personalized programming guidance by emu-
lating the iterative and trial-and-error programming learning process, thereby
offering a novel vantage point on programming education.

• We have meaningfully incorporated the FSLSM pedagogical theory into our
model, enabling us to effectively capturing the intrinsic behavioral patterns
of students while also enhancing rationality and consistency.

• We conduct experiments on two real-world datasets to validate the efficacy
and interpretability of our approach.

2 Related Works

2.1 Sequential Recommendation

Sequential recommendation models aim to incorporate users’ personalized and
contextual information based on their historical interactions [16] to predict the
future behaviors.

In earlier studies, researchers considered Markov chains as a powerful method
to model interaction processes and capture users’ sequential patterns [2,9]. Later,
the advent of recurrent neural networks (RNN) greatly has expanded the poten-
tial of recommender systems to process multi-type input data and understand
complex item transitions. For example, [10] first adopt RNN on real-life session-
based recommendations and then enhance the backbone with parallel RNN to
leverage more rich features [11]. There are various techniques designed to improve
the RNN-based models, such as data augmentation (GRU4Rec [29]), data recon-
struction (SRGNN [32]), and unified module injection (SINE [28], CORE [12]).
Recently, another line of works has seeked to use the Transformer module to
capture global information, which RNN overlooks. For instance, BERT4Rec [27]
utilize bidirectional self-attention with Cloze tasks during training to enhance
the hidden representation.

2.2 Sequential Recommendation in E-Learning

Existing research on SR in e-learning typically focus on recommending the most
appropriate resources, such as courses and exercises, to learners by capturing
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their static and dynamic characteristics through their past behavioral record [14].
For instance, [15] and [19] propose a cognitive diagnostic method to model stu-
dents’ proficiency on each exercises based on probabilistic matrix factorization
and students’ proficiency. [25] apply a knowledge tracing model with an enhanced
self-attention to measures students’ mastery states and assist model to recom-
mend. These methods effectively capture students’ preferences and mastery of
knowledge points. However, they often overlook the impact of students’ internal
learning styles.

In the field of programming, some preliminary attempts have been made to
explore the personalized recommendations. For example, [18] apply BERT [3] to
encode students’ source code and propose a knowledge tracing model to capture
mastery of programming skills. However, the dynamic sequential patterns in
existing works are not consistent with real programming process due to ignore
the iterative process.

2.3 Learning Style Model

Learning styles refer to the way in which students prefer to obtain, pro-
cess and retain information [5]. The most common theoretical models include
Felder-Silverman Learning Style Model (FSLSM), Kolb’s learning style [17] and
VARK model [23]. Previous research has demonstrated that the FSLSM is more
comprehensible and appropriate for identifying learning styles in online learn-
ing compared to other models [21]. This model describes learning styles from
four dimensions: the perspective of perception (sensitive/intuitive), information
input (visual/verbal), processing (active/reflective) and understanding (sequen-
tial/global) based on the learner’s behavior patterns during learning process.

3 Preliminaries

3.1 Programming Learning Style Model

Inspired by the FSLSM, we define a programming learning style model (PLSM)
centered around the problem-solving behavior observed in online judging sys-
tems.

As shown in Table 1, the PLSM delineates the inherent learning patterns
during programming through two dimensions: processing and understanding. In
terms of processing, learners can be classified as either active or reflective. When
solving exercises, active learners tend to think through a complete answer before
submitting their solution, while reflective learners prefer to attempt the same
exercise multiple times and refine their previous submissions based on the com-
piler feedback. As for the dimension of understanding, learners can be labeled
as sequential or global. Sequential learners tend to approach learning tasks in a
progressive sequence, such as in numerical or knowledge concept order. In con-
trast, global learners tend to approach tasks in a non-linear fashion, such as by
selecting tasks that they find most interesting or engaging. These distinct learn-
ing styles reflect learners’ preferences and can significantly impact the trajectory
of their problem-solving process.
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Table 1. Programming Learning Style Model

Dimension Label Learning Characteristics

Processing Active Solving exercises by figuring out a complete answer before submitting
Reflective Solving exercises through multiple trials and errors

Understanding Sequential Solving step-by-step
Global Solving by leaps and bounds

3.2 Problem Definition

To foster learners’ involvement and enhance their programming skills in online
judge systems, we present a new task called programming exercise recommenda-
tion (PER). The definition of PER is as follows and an example of data model
is depicted in Fig. 1.

Fig. 1. Data model for PER task

Definition: Programming Exercise Recommendation. Suppose there are
n online learning users U = {u1, u2, · · · , un} with problem-solving behavior logs
B = {B1, B2, · · · , Bn} and m programming exercises P = {p1, p2, · · · , pm}.
Specifically, the i-th record Bi = {b1, b2, · · · , bli} represents the interaction
sequence of the i-th learner ui, where li represents the length of the sequence.
Each element bj in the sequence is a triple 〈pbj , cbj , rbj 〉 consisting of the problem
pbj , the code cbj and the compilation result rbj . The ultimate goal of program-
ming exercise recommendation is to predict learners’ learning preferences in the
future based on the past interaction behavior Bi between learners and exercises.
that is, the next exercise pbli+1 that will be tried. Correspondingly, in machine
learning methods, the optimization objective is:

li =max
A

∏

(bi,pbli+1 )∈B∪B−
logA(pbli+1 |Bi)yi(1 − A(pbli+1)|Bi)(1−yi), (1)
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where A is a probabilistic prediction model, such as neural networks, whose
output is to predict the probability of interacting with the next exercise pbli+1

based on the historical behavior sequence Bi. B− is a set of negative samples,
i.e., the exercises that learner ui has not interacted with label yi = 1 if and only
if (Bi, pbli+1) ∈ B, otherwise yi = 0.

4 PERS Framework

In this section, we propose a deep learning framework, namely PERS, to solve
programming exercise recommendation. As shown in Fig. 2, the architecture of
PERS is mainly composed of four functional modules: representing, differenti-
ating, updating and predicting. The details of the four modules are given in the
following.

Fig. 2. PERS Architecture

4.1 Representing Module

The representing module mainly focuses on obtaining the embedding of the two
inputs: exercises and codes.
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Exercise Representation. As demonstrated in Fig. 1, learners typically
attempt a programming exercise multiple times until they pass all test cases.
Even when trying the same exercise, the compilation results for each attempt are
distinct and progressive. Therefore, the exercise embedding and the positional
embedding in the sequence are both critical. Suppose pt denotes the program-
ming exercise coded by the learners at time t. First, we use a projection matrix
Ep ∈ R(N+2)×dp to represent each exercise by its id, where N is the total num-
ber of exercises and dp is the dimension. The first dimension of the projection
matrix here is N + 2 because two zero pads are added. Then the representation
vector for the problem pt can be obtained as ept

∈ Rdp . In addition, inspired by
the work [30], we use the sinusoidal function to acquire the position embedding
post at time t:

pos(t,2i) = sin(t/100002i/dpos), (2)

pos(t,2i+1) = cos(t/100002i/dpos). (3)

where dpos denotes the dimension. Based on the exercise embedding ept
and

the position embedding post, we obtain the enhanced exercise embedding e
′
pt

through an MLP:

e
′
pt

= WT
1 [ept

⊕ post] + b1, (4)

where ⊕ denotes the vector concatenation, W1 ∈ R(dp+dpos)×dk , b1 ∈ Rdk are
learnable parameters.

Code Representation. Suppose ct denotes the code submitted by the learn-
ers at time step t. First, we apply a code pre-training model CodeBERT [6] to
obtain the initial embedding of code ect ∈ Rdc . Additionally, we employ differ-
ent projection matrices to obtain the representation vectors of code-related side
features: the execution time etct ∈ Rdct , the execution memory emct ∈ Rdcm ,
and the execution status esct ∈ Rdcs . After all the representation vectors are
generated, we can obtain the enhanced code embedding e

′
ct by an MLP:

e
′
ct = WT

2 [ect ⊕ esct ⊕ etct ⊕ emct ] + b2, (5)

where W2 ∈ R(dc+dcs+dct+dcm)×dk is the weight matrix, b2 ∈ Rdk is the bias
term.

4.2 Differentiating Module

As the introduction highlights, one of the challenges in PER is to simulate the
iterative and trial-and-error process of programming learning. In this paper,
we develop a differentiating module to capture fine-grained learning patterns.
To distinguish whether students are answering the same exercise or starting
a new one, we first calculate the exercise difference embedding Δept

between
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students’ present exercise embedding e
′
pt

and previous exercise embedding e
′
pt−1

by subtraction. Then, we feed the above three embeddings into a multi-layer
perceptron to output the final exercise difference embedding Δ

′
ept

:

Δept
= e

′
pt

− e
′
pt−1

(6)

Δ
′
ept

= WT
3 [Δept

⊕ e
′
pt

⊕ e
′
pt−1

] + b3, (7)

For the same exercise, the codes students submit are different at each
attempt, which can indicate their progress in the trial-and-error process. There-
fore, we use students’ present code embedding e

′
ct , previous code embedding

e
′
ct−1

and the difference between them Δect to obtain the final code difference
embedding Δ

′
ect :

Δect = e
′
ct − e

′
ct−1

, (8)

Δ
′
ect = WT

4 [Δect ⊕ e
′
ct ⊕ e

′
ct−1

] + b4, (9)

where W3,W4 ∈ R3dk×dk is the weight matrix, b3,b4 ∈ Rdk is the bias term.

4.3 Updating Module

The purpose of this module is to update the latent states that represent the
learner’s intrinsic learning style. Inspired by the classic learning style model
FSLSM, we propose two hidden vectors, processing style PSt and understanding
style USt, to capture the programming learning style of learners. In addition,
motivated by the programming knowledge tracing research [33], we introduce
another hidden vector called programming ability PAt to enhance the modeling
of programming behavior.

First, we assume that all learners start with the same programming ability
PA0, and their programming ability will gradually improve as they progress
through exercises. The learners’ programming ability PAt at time step t depends
on their performance in completing the current exercises as well as their previous
programming ability PAt−1. The corresponding update process is as follows:

ΔPA = WT
5 [e

′
pt

⊕ e
′
ct ] + b5, (10)

PAt = WT
6 [ΔPA ⊕ PAt−1] + b6, (11)

where W5,W6 ∈ R2dk×dk are weight matrices, b5,b6 ∈ Rdk are bias terms.
When t = 0, PA0 ∈ Rdk is initialized as a vector of all zeros.

Similarly, the initial processing style PS0 ∈ Rdk at time t = 0 is also initial-
ized as a vector of all zeros. As shown in Table 1, the learner’s processing style
mainly manifests in their continuous trial-and-error behavior on the same exer-
cise. Leveraging the difference of exercise Δ

′
ept

and code Δ
′
ect generated from

the difference module, we introduce a gating mechanism to update the learner’s
processing style vector PSt. We first calculate a selection gate gps using Δ

′
ept

,
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which determines whether the current exercise is identical to the previous one.
Then gps is multiplied by Δ

′
ect to figure out how much semantic information

should be learned from the code. Finally, we concatenate the result with the pre-
vious processing style PSt−1 and employ a multi-layer perception to fuse these
vectors as follows:

gps = tanh(WT
7 Δ

′
ept

+ b7), (12)

PSt = WT
8 [PSt−1 ⊕ (gps � Δ

′
ect)] + b8, (13)

where tanh is the non-linear activation function, W7 ∈ Rdk×dk , W8 ∈ R2dk×dk ,
b7,b8 ∈ Rdk are trainable parameters, � is the vector element-wise product
operation.

Another latent vector is the understanding style USt, which indicates
whether learners prefer to learn step-by-step or in leaps and bounds. It is
derived from the learner’s historical records. Thus, the initial understanding
style US0 ∈ Rdk is also initialized as a vector of zeros. Similar to the processing
style, we also employ a gating mechanism to determine whether the learner is
attempting the same exercise, and subsequently update the current understand-
ing style USt based on the previous one USt−1:

gus = tanh(WT
9 Δ

′
ept

+ b9), (14)

USt = USt−1 +WT
10(gus � e

′
pt
) (15)

where W9,W10 ∈ Rdk×dk are weight matrices, b9 ∈ Rdk is the bias term.

4.4 Predicting Module

After obtaining the learner’s programming ability PAt, processing style PSt,
and understanding style USt, we can predict the next exercise in the predicting
module. First, the three intrinsic vectors are concatenated and then projected
to the output layer using a fully connected network to get Pret. After that, we
encode Pret into an m-dimensional project matrix and obtain the final proba-
bility vector pn of exercises being recommended at the next step.

Pret = WT
11[PLt ⊕ PSt ⊕ USt] + b11, (16)

pn = WT
12Pret + b12 (17)

where W11 ∈ R3dk×dk and W12 ∈ Rdk×dn are weight matrices, b11 ∈ Rdk and
b12 ∈ Rdm is the bias term.

5 Experiments

In this section, we aim to evaluate the effectiveness of PERS on programming
exercise recommendation through empirical evaluation and answer the following
research questions:
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• RQ1: How does PERS perform compared with state-of-the-art pedagogical
methods and sequential methods on programming exercise recommendation?

• RQ2: What is the impact of different components on the performance of
PERS ?

• RQ3: How do the primary hyperparameters influence the performance of our
model?

• RQ4: Can the proposed method learn meaningful intrinsic representations of
students during programming?

5.1 Experimental Settings

Datasets. We evaluate our proposed method PERS on two real-world datasets:
BePKT [33]and CodeNet [24]. The two datasets are both collected from online
judging systems, including problems, codes and rich contextual information such
as problem descriptions and code compilation results. Due to the millions of
behaviors and contextual data in CodeNet, memory overflow exists when pro-
cessing contextual features such as code and problem descriptions. Therefore, we
sample the CodeNet dataset based on sequence length and submit time, resulting
in two smaller-scale datasets: CodeNet-len and CodeNet-time. A brief overview
of each dataset is listed as follows:

• BePKT: collected from an online judging system2 targeted at university
education, with its users primarily being college students who start learning
to program.

• CodeNet: collected and processed by IBM researchers from two large-scale
online judgment systems AIZU3 and AtCoder4. The dataset contains hun-
dreds of thousands of programming learners from different domains.

• CodeNet-len: a subset of the CodeNet dataset, which only keeps learners’
programming behavioral sequences with lengths between 500 and 600.

• CodeNet-time: a subset from the CodeNet dataset with submission times-
tamps between March and April 2020.

Table 2 presents detailed statistics for the above datasets. Specifically, the
calculation formula of #Sparsity is as follows:

#Sparsity = 1 − #Interactions
#Students × #Exercises

, (18)

2 https://judgefield.shuishan.net.cn/.
3 https://onlinejudge.u-aizu.ac.jp/home.
4 https://atcoder.jp/.

https://judgefield.shuishan.net.cn/
https://onlinejudge.u-aizu.ac.jp/home
https://atcoder.jp/


224 Y. Liu et al.

Table 2. Detailed statistics of all datasets in experiments, where #Learners denotes
the number of learners, #Interactions denotes the number of interactions, #Exer-
cises denotes the number of exercises, #Sparsity denotes the sparsity of the dataset,
#Pass-Rate denotes the proportion of successful submissions in all submissions, and
#APE(short for Avg-Attempts-Per-Exercise) denotes the average number of attempts
on the same programming exercise.

Dataset #Learners #Interactions #Exercises #Sparsity #Pass-Rate #APE

BePKT 907 75,993 553 84.85% 32.03% 3.18
CodeNet 154,179 13,916,868 4,049 97.77% 53.61% 2.05
CodeNet-time 26,270 811,465 2,465 98.75% 53.42% 1.89
CodeNet-len 1,107 605,661 3,308 83.46% 56.88% 1.87

Baselines. We compare PERS with the following 8 comparable baselines, which
can be grouped into two categories:

• Pedagogical methods: ACKRec [8] and LPKT [26] are two representative
methods in e-learning recommendation. ACKRec constructs a heterogeneous
information network to capture entity relationships. LPKT develops a model
by simulating students’ learning processes.

• Sequential methods: We introduce 6 state-of-the-art sequential models,
which are 1) GRU4Rec [29] introduces data augmentation on recurrent neu-
ral network to improve model performance. 2) GRU4Recf [11] further inte-
grates a parallel recurrent neural network to simultaneously represent clicks
and feature vectors within interactions. 3) BERT4Rec [27] introduces a two-
way self-attention mechanism based on BERT [3]. 4) SRGNN [32] converts
user behavior sequences into graph-structured data and introduces a graph
neural network to capture the relationship between items. 5) SINE [28] pro-
poses a sparse interest network to adaptively generate dynamic preference.
6) CORE [12] designs a representation consistency model to pull the vectors
into the same space.

Since all the above baselines do not incorporate code as the model input, for
a fair comparison, we implement a degraded version of PERS:

• ERS: Remove the code feature input and all subsequent related modules in
PERS.

Evaluation Metrics. To fairly compare different models, inspired by the previ-
ous [8], we choose the HR@10 (Hit Ratio), NDCG@10 (Normalized Discounted
Cumulative Gain), and MRR@10 (Mean Reciprocal Rank) as the evaluation
metrics.
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Table 3. The overall performance on two full datasets and two sample datasets. OOM
refers to out of memory.

Datasets Metrics Pedegogicals Sequentials Ours
LPKT ACKRec GRU4Rec GRU4Recf BERT4Rec SRGNN SINE CORE ERS PERS

BePKT HR@10 0.8762 0.8849 0.9172 0.9135 0.7369 0.9074 0.6419 0.9172 0.9256 0.9288
MRR@10 0.6743 0.6838 0.7057 0.7053 0.5324 0.6870 0.4059 0.6923 0.7104 0.7153
NDCG@10 0.7128 0.7269 0.7573 0.7560 0.5816 0.7408 0.4623 0.7466 0.7645 0.7688

CodeNet HR@10 0.8423 0.8372 0.8728 OOM 0.6715 0.8700 0.7276 0.8566 0.8803 OOM
MRR@10 0.6372 0.6305 0.6927 OOM 0.4205 0.6879 0.4643 0.5934 0.7012 OOM
NDCG@10 0.6983 0.6847 0.7374 OOM 0.4811 0.7332 0.5285 0.6581 0.7435 OOM

CodeNet-len HR@10 0.7539 0.7754 0.7812 0.7767 0.1157 0.7821 0.4602 0.7865 0.7934 0.8010
MRR@10 0.5816 0.5938 0.6189 0.6143 0.0453 0.6073 0.2411 0.5251 0.6235 0.6322
NDCG@10 0.6043 0.6139 0.6590 0.6545 0.0614 0.6504 0.2934 0.5850 0.6631 0.6704

CodeNet-time HR@10 0.8532 0.8425 0.8993 0.8991 0.7517 0.8989 0.7742 0.8962 0.9058 0.9167
MRR@10 0.6931 0.6852 0.7309 0.7316 0.6473 0.7236 0.5458 0.6060 0.7422 0.7574
NDCG@10 0.7348 0.7233 0.7731 0.7735 0.5978 0.7675 0.6016 0.6775 0.7841 0.7923

Training Details. For pedagogical methods, we use the original codes released
by their authors56. Additionally, we implement the PERS model and other base-
line models using PyTorch and the RecBole library7. We run all the experiments
on a server with 64G memory and two NVIDIA Tesla V100 GPUs. For all mod-
els, we set the max sequence length to 50, the batch size of the training set to
2048 and the test set to 4096, and the optimizer to Adam. For the PERS model,
we set the exercise and code representation embedding dimensions to 128. We
perform the hyper-parameter tuning for the learning rate {0.1, 0.01, 0.001}, the
layer number {1, 2, 3}, and the dropout rate {0.1, 0.3, 0.5}. For all methods, we
fine-tune the hyperparameters to achieve the best performance and run experi-
ments three times to report the average results.

5.2 RQ1: Overall Performance

Table 3 summarizes the performance results. We evaluate the methods on four
datasets under three evaluation metrics. The best results are highlighted in bold
and the best baselines are underlined. From results in the Table 3, we make the
following observations:

• Our proposed models, PERS and ERS, demonstrate state-of-the-art perfor-
mance on large-scale programming learning datasets. For instance, in the
case of the CodeNet dataset, our models exhibit a significant improvement
of 1.41% on HR@10, 1.30% on MRR@10, 1.12% on NDCG@10 over the best
baseline.

• Code features can significantly improve the performance of the model. In
the BePKT, CodeNet-len, and CodeNet-time datasets, the PERS model with

5 https://github.com/JockWang/ACKRec.
6 https://github.com/bigdata-ustc/EduKTM/tree/main/EduKTM.
7 https://recbole.io/.

https://github.com/JockWang/ACKRec
https://github.com/bigdata-ustc/EduKTM/tree/main/EduKTM
https://recbole.io/
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code features outperforms the ERS model This finding highlights that code-
related features contribute to modeling students’ programming learning pref-
erences.

• RNN-based sequential models exhibit superior capabilities in capturing learn-
ing behaviors. Our PERS and ERS, which extends recurrent neural networks,
achieve the best performance. Additionally, the GRU4Rec and GRU4Recf
models, designed based on recurrent neural networks, outperform all other
sequential methods. This observation suggests that RNNs are particularly
adept at capturing sequential programming behaviors.

5.3 RQ2: Ablation Study

We conduct an ablation study on PERS to understand the importance of the
primary components. We obtain five variants: 1) PERS-ep, which removes the
exercise position encoding; 2) PERS-cr, which removes the code representation;
3) PERS-pa, 4) PERS-ps, and 5) PERS-us are another three variants that
remove PAt, PSt and USt, respectively. Figure 3 displays the results of the
PERS model and the its variants on the CodeNet-len and CodeNet-time datasets.
From the figure, we can observe:

(a) CodeNet-len (b) CodeNet-time

Fig. 3. Ablation Study Results on CodeNet-len(left) and CodeNet-time(right)

• Both the representating and updating modules play a crucial role in capturing
programming behaviour. As can be observed, the removal of any component of
the PERS adversely affects its performance, which emphasizes the rationality
and effectiveness of the proposed methods.

• The impact of different components varies across different stages of learn-
ing. Specifically, in the CodeNet-len dataset, the performance is significantly
affected when removing the position encoding of exercises (PERS-ep variant).
On the other hand, in the CodeNet-time dataset, the performance sharply
declines when the code representation (PERS-cr variant) is removed. This
is because the CodeNet-len dataset comprises the latter part of students’
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behavioral sequences, where students have developed a fixed behavioral pat-
tern. Consequently, the representation of the exercises significantly impacts
the model’s performance. Similarly, removing different intrinsic latent vec-
tors leads to different degrees of performance decline. The finding indicates
that processing style is more critical in the initial learning stages while the
understanding style are more influential as the learning pattern becomes more
fixed.

5.4 RQ3: Sensitivity Analysis of Hyperparameters

We conduct a sensitivity analysis on the hyperparameter of PERS with two
datasets: CodeNet-len and Code-time. In particular, we study three main hyper-
parameters: 1) sequence length λ ∈ {50, 100, 150, 200}, 2) dimension of exer-
cise embedding dp ∈ {32, 64, 128, 256}, and 3) dimension of code embedding
dc ∈ {32, 64, 128, 256}. In our experiments, we vary one parameter each time
with others fixed. Figure 4 illustrates the impacts of each hyperparameter and
we can obtain the following observations:

Fig. 4. Influence of three key hyperparameters on the performance of the PERS.

• Our model is capable of capturing long sequence dependencies. In Fig. 4(a),
PERS performs better as the sequence length increases, while the results of
GRU4Rec remain unchanged or even decline.

• As shown in Fig. 4(b), the performance of both PERS and GRU4Rec initially
improves and then declines as the dimension of exercise embedding increases.
The optimal performance is achieved at approximately dp = 128.

• As the dimension of code embedding increases, the performance of PERS
in Fig. 4(c) shows a consistent enhancement, highlighting the significance of
code features in capturing programming learning patterns.

5.5 RQ4: Case Study on Visualization Analysis

To demonstrate the interpretability of our approach, we conduct a visualization
analysis of three latent vectors involved in the PERS, i.e., programming ability
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(a) u222602662

(b) u737111725

Fig. 5. Case study on latent vectors visualization

PAt, processing style PAt and understanding style USt. We randomly selected
the behavioral sequences of two students from the CodeNet dataset for the case
study. From the exercise sequence of each student, we can observe that u222602662

tends to make multiple attempts at the same exercise and solve problems in
a systematic manner, while u737111725 prefers solving problems by leaps and
bound. We extract these three instinct vectors from the last time step of the
model and visualize the dimensional reduction results in Figure 5. We note some
observations in the visualization results:

• The extent of variation in students’ programming abilities differs between
inter-exercise and intra-exercise. Taking u222602662 as an example, as he made
multiple attempts on p03053, his programming ability continuously improved.
However, when he attempted the next exercise, his PAt showed a notice-
able decline. Therefore, fine-grained modeling of inter-exercise contributes to
better capturing students’ learning state.

• The changing patterns of learning styles among different students is consis-
tent with their learning process. For u222602662, the value of PSt and USt

gradually approach 1 during the programming learning process, suggesting a
reflective and sequential learning style. As for u737111725, his corresponding
latent vectors exhibit a gradual tendency towards -1, indicating an active and
global learning style. This shows that the latent vectors can learn valuable
information, thereby validating the rationality of our model.

6 Conclusions

In this paper, we study programming exercise recommendation (PER) to
enhance engagement on online programming learning platforms. To solve PER,
we propose a novel model called PERS based on simulating learners’ intricate
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programming behaviors. First, we extend the Felder-Silverman learning style
model to the programming learning domain and present the programming learn-
ing style. After that, based on the programming learning style, we construct
latent vectors to model learner’s states, including programming ability, process-
ing style, and understanding style. In particular, we introduce a differentiating
module to update the states based on enhanced context, which are positions for
exercises and compilation results for codes, respectively. Finally, the updated
states at the last time step are sent to predict. Extensive experiments on two
real-world datasets demonstrate the effectiveness and interpretability of our app-
roach. In future work, we will explore incorporating the difference of structural
features from students’ submitted code to further enhance the performance of
the model.
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