
CombiGCN: An Effective GCN Model
for Recommender System

Loc Tan Nguyen and Tin T. Tran(B)

Faculty of Information Technology, Ton Duc Thang University,
Ho Chi Minh city, Vietnam

51900375@student.tdtu.edu.vn, trantrungtin@tdtu.edu.vn

Abstract. Graph Neural Networks (GNNs) have opened up a potential
line of research for collaborative filtering (CF). The key power of GNNs
is based on injecting collaborative signal into user and item embeddings
which will contain information about user-item interactions after that.
However, there are still some unsatisfactory points for a CF model that
GNNs could have done better. The way in which the collaborative signal
are extracted through an implicit feedback matrix that is essentially built
on top of the message-passing architecture of GNNs, and it only helps to
update the embedding based on the value of the items (or users) embed-
dings neighboring. By identifying the similarity weight of users through
their interaction history, a key concept of CF, we endeavor to build a
user-user weighted connection graph based on their similarity weight.

In this study, we propose a recommendation framework, CombiGCN,
in which item embeddings are only linearly propagated on the user-item
interaction graph, while user embeddings are propagated simultaneously
on both the user-user weighted connection graph and user-item interac-
tion graph graphs with Light Graph Convolution (LGC) and combined
in a simpler method by using the weighted sum of the embeddings for
each layer. We also conducted experiments comparing CombiGCN with
several state-of-the-art models on three real-world datasets.

Keywords: Recommender System · Collaborative Filtering ·
Collaborative signal · Graph Convolution Network · Embedding
Propagation

1 Introduction

Recommendation systems play an important role in online businesses because
of the economic benefits they bring by suggesting suitable products or services
to customers. That motivation has driven research to improve algorithms to
offer powerful recommendation engines, typically collaborative filtering (CF).
Concurrent with the rise of deep learning, especially the use of GNNs to learn
representations of users and items (as known as embeddings), many recent stud-
ies have focused on enriching embeddings by encoding them with collaborative
signals, which carry information about user-item interactions [1–5]. These signals
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are extracted through the message-passing architecture of GNNs. More specif-
ically, considering a user u as a node in the graph whose embedding is eu, at
each propagation time this user node will adjust its embedding by aggregat-
ing all embeddings of neighboring items. During the aggregation progress, each
embedding ei from a neighboring node item i will be multiplied by a coefficient
pui = 1/

√|Nu||Ni|, where Nu and Ni denote the first-hop neighbors of user
u and item i, so the updated embedding value eu not only carries information
about neighboring items, it also reflects the mutual importance between user u
and item i through the pui coefficient.

However, GNN models only help each user or item embedding in the user-
item interaction graph to be similar to neighboring nodes without regard to
the weights of the links between nodes during the entire propagation process.
There has been some research on adding weights to the embedding encoding
process, such as [4,5]. These studies construct a user-user graph where each
connection between two users is the number of items shared by them. Aiming
at addressing this problem, we have normalized the user-user graph based on
Jaccard similarity and integrated these weights, which improves the quality of the
extracted collaborative signal over each propagation and produces satisfactory
embeddings for CF. Combining embedding propagated from two graphs has also
been conducted through many studies [3–5]. SocialLGN has proven that their
proposed graph fusion operation is a state-of-the-art combination embeddings
from the two graph method [3]. Their results are more accurate than results
from graph fusion operations based on GCN methods [6] or GraphSage [7].

In this paper, we propose a model named CombiGCN based on Light Graph
Convolution (LGC) [2] to propagate user and item embeddings on the user-item
interaction graph; in the meantime, user embedding is also propagated on the
user-user weighted connection graph. To fuse two user embeddings obtained after
each propagation into an integrated embedding, instead of using the fusion graph
operation of SocialLGN, we simply use the weighted sum of the embeddings.
We demonstrate the superior performance of CombiGCN by comparing it with
state-of-the-art recommendation models on three real-world datasets that we
preprocessed to avoid cold-start and over-fitting.

2 Related Work

2.1 Graph Convolution Networks

Due to its superior ability to model graph-structured data, Graph Neural Net-
works (GNNs) have become the state-of-the-art technology for recommendation
systems. A graph convolution network (GCN) is a special type of GNNs that
uses convolution aggregations. Spatial GCNs based on 1-hop neighbor propaga-
tion and in each layer GCN neighborhood aggregations are required and thus
the computational cost is significantly reduced. In the recommended context,
spatial GCN contains NGCF [1], WiGCN [4] and GCMC [8]. A recent study [2]
developed Light Graph Convolution (LGC) based on the GCN architecture but
eliminates trainable matrices and non-linear activation functions in GCN. The
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experiment reported in [2] also shows that LGC outperform GCN. Today’s most
modern CF models [2,3,5] also use LGC instead of traditional GCN.

2.2 Multi-layer Perceptron and Backpropagation

In machine learning models involving Neural Networks like GNNs, learning the
trainable parameters includes forward-propagation and back-propagation. The
forward-propagation stage calculates the embedding value of each node in the
neural network with trainable parameters. In matrix form, these parameters
include the trainable matrices W k and embeddings Ek in the k-th layer. In
addition, non-linear activation functions such as ReLU and tanh are also applied
to the results. The calculations in forward-propagation produce the prediction
result in the last layer. To train the model, an optimization function to this
result and propagate back to adjust the trainable parameters [E,W ]. When
training neural networks, forward-propagation and back-propagation depend on
each other. For the recommendation problem using GNNs also follows this rule.
However, a recent study [2] has demonstrated the redundancy of the trainable
matrices W k and non-linear activation functions in recommendation models, the
reason being that the embeddings mapped from user and item IDs are not many
features, so using too many trainable parameters makes the model heavy and
ineffective.

3 Our Proposed Method

We proposed our model, which includes a method to pre-process data set and the
CombiGCN model, in this chapter. CombiGCN will explores the user and item
interaction and weighted similarity matrix as the input, and make prediction at
the output as recommendations. The overview of CombiGCN model is illustrated
in Fig. 1.

3.1 Pre-processing Data

Algorithm 1 brings two main benefits in the learning process of the recommen-
dation model: 1) Avoid over fitting, the dataset obtained from Algorithm has
the most common features in the original dataset, so there will be little infor-
mation about the typical interactions that cause the over fitting; 2)Remove
noisy-negative interactions in implicit feedback [15], in the first step we
have determined the set of items Ic and throughout the next steps when collect-
ing users we only collect interactions with items contained in set Ic. This will
limit unpopular interactions, which are likely to be noisy-negative interactions.

3.2 Adjacent Graph and Weighted References Matrix

In this article, we use two graphs as the data sources including the user-item
interaction graph and the user-user weighted connection graph denote by GR and
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Algorithm 1. Inference for data pre-processing
Input: U × I � Interaction between users and items in original dataset

r � ratio between users and items you want to obtain
Output: R = U × I ⊆ U × I

for each item i ∈ I do
seti ← list of users that interact with item i
leni = total number of users in seti

end for
m̃ ← cardinality of set I
Ic ← m items have highest leni

ñ ← m̃ × r
for each user u ∈ U do

setu ← list of items interacted by user u
simu = Jaccard distance betweenIcand setu

end for
Uc ← ñ users have highest simu

U ← n users from ñ users of set Uc have more than 10 interactions with items
I ← m items have interacted by users in set U
return R = U × I

GW , U = [u1, . . . , un](|U | = n) denotes the user nodes across both GR and GW

and and I = [i1, . . . , im](|I| = m) denotes the item nodes in GR. R ∈ R
n×m is

the binary matrix with entries only 0 and 1 that represent user-item interactions
in GR.

In WiGCN [4], matrix Wu = RRT ∈ R
n×n accumulates the paths connecting

two user via shared items. However, the matrix Wu only shows the number of
intersections between the two sets of items Ii of user ui and Ij of user uj , but
has not recorded the influence of couple of users i, j to all interaction data. We
build the weight users matrix W to represent the user-user weighted connection
graph through the matrix Wu.

W = Wu � (DRJ + (DRJ)T − Wu)−1 (1)

where, DR ∈ R
n×n is a diagonal matrix with each entry DRii

represents the
number of neighboring items of user i, J ∈ R

n×n is the matrix of ones (or all-ones
matrix) and � denote element-wise product. From a mathematical perspective,
each element of Wu represents the intersection while (DRJ + (DRJ)T − Wu)
represents the union of two list items of two users ui and uj . Therefore Eq. 1
calculates the similarity between the pair of users i, j based on Jaccard Similarity.
To avoid over-fitting the model when using both matrices W and R during the
propagation process, we mapping the values of W to a number of discrete values
in the interval [0, 1] where value 0.0 represents no correlation between these two
users while value 1.0 represents very high correlation.
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3.3 CombiGCN

The general design of the proposed model is shown in Fig. 1, our model includ-
ing three components - 1) Embeddings layer that use the unique identifiers of
users and items to create embedding, 2) Propagation layers, which propagate
the representations of users and items in LGC architecture and, 3) Predic-
tion layer, that predicts the score between users and items pair based on final
embeddings obtained after L propagation layers.

Fig. 1. The architecture of the CombiGCN model

Embedding Layer. Following the mainstream well-known models [1,2,4], we
initialize user and item embeddings by map unique its ID into the latent space,
and obtain dense vectors el=0

u ∈ R
d(el=0

i ∈ R
d). Where l denote the number

of layer propagation. The dimension of embeddings is denoted by d. We denote
El ∈ R

(n+m)×d is the set of all embeddings during propagation, i.e. El contains
the set of n user embeddings and m item embeddings at l-th layer.

El = El
U ‖ El

I = [el
u1

, . . . , el
un

, el
i1 , . . . , el

im ] (2)

Propagation Layers. In order to clearly introduce the embedding propagation
process, we will first show this propagation process in the first layer of LGC
architecture, and then show the general formula in the higher propagation layers.
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User Embeddings Propagation. The input of first layer is embedding E0
U , we will

propagate this user embedding in two graphs, user-item interaction graph GR

and user-user weighted connection graph GW respectively to obtain two user
embeddings E1

UR
and E1

UW
.

E1
UR

= R̃E0
I ;E1

UW
= W̃E0

U (3)

We further define R̃ = D
−1/2
R RD

−1/2

RT , where DR ∈ R
n×n is a diagonal matrix

with each entry DRii
represents the number of neighboring items of user i and

DRT ∈ R
m×m is a diagonal matrix with each entry DRT

jj
represents the number

of neighboring users of item j. Similarly, W̃ is a symmetrically normalized matrix
of W and W̃ = D

−1/2
W WD

−1/2
W . We then combine the two embedding users E1

UR

and E1
UW

into E1
U .

E1
U = E1

UR
+ E1

UW
(4)

Item Embeddings Propagation. For item embeddings, we just propagate them on
LGC architecture only with user-item interaction graph. We also define R̃T =
D

−1/2

RT RT D
−1/2
R .

E1
I = R̃T E0

U (5)

The General Equation Embeddings Propagation. We have presented the first
propagation step in LGC architecture, in the next steps the process is similar,
but the input will be user embeddings of the previous layer and not E0

U and E0
I .

Equation (8) represents the propagation processes of embedding at higher levels.

El = (El
UR

+ El
UW

) ‖ El
I = (R̃El−1

I + W̃El−1
U ) ‖ R̃T El−1

U
(6)

Prediction and Optimization. After L embedding propagation layer we will
get L + 1 embeddings, the arrival of L + 1 after L propagation layer is due to
including initial embedding E0.

E∗ = α0E
0 + α1E

1 + . . . + αLEL (7)

where αl = 1/(L + 1), that mentioned in [2] denotes the importance of the
l-th layer embedding in constituting the final embedding. To perform model
prediction, we conduct the inner product to estimate user preference for the
target.

ŷui = e∗
u

T e∗
i (8)

To learn parameters Φ = [E0
U , E0

I ], CombiGCN have been applied Bayesian
Personalized Ranking (BPR) [9]. BPR assumes observed interactions have higher
preferences than an unobserved interactions. To optimize the prediction model
we use mini-batch Adam [10] and minimize the BPR loss.

Lossbpr =
∑

Ω+
ui

∑

Ω−
uj

−lnσ(ŷui − ŷuj) + λ ‖ Φ ‖22 (9)
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4 Experiments

4.1 Datasets Description

We make experiments with our proposed model on three well-known datasets,
which are Ciao, Epinions, and Foursquare. Each dataset is being pre-processed
and divided into two sets: 80% for training and 20% for testing.

– Ciao [11,12]: The Ciao dataset is an online shopping dataset containing the
ratings given by users on a larger number of items.

– Epinions [11,12]: Epinions is a popular online consumer review website.
– Foursquare [13,14]: The Foursquare dataset record check-in data for differ-

ent cities in the world.

4.2 Experimental Settings

Setting Parameters. To ensure that the experimental results are fair, we set
the parameters to be the same across all models. Specifically, the learning rate is
0.001, the coefficient of L2 normalization is 0.00001, and the number of layers of
LGC is 3, with each layer having an embedding size of 64. We also use the same
early stop strategy as NGCF and LightGCN; specifically, if in 50 consecutive
epochs, the recall at 20 on the test result does not increase, the model will be
stopped.

Baseline. We use the same datasets and repeat the experiments on all the
following baseline models to demonstrate the result:

– BPR-MF [9] is matrix factorization optimized by the Bayesian personalized
ranking (BPR) loss, which exploits the user-item direct interactions only as
the target value of interaction function.

– GCMC [8] adopts GCN encoder to generate the representations for users
and items, where only the first-order neighbors are considered. Hence one
graph convolution layer, where the hidden dimension is set as the embedding
size.

– WiGCN [4] is developed on top NGCF and add the connection between
each user-user and item-item pair in the interaction graph by the number of
shared items or users.

– NGCF [1] conducts propagation processes on embeddings with several itera-
tions. The stacked embeddings on output contains high-order connectivity in
interactions graph. The collaborative signal is encoded into the latent vectors,
making the model more sufficient.

– LightGCN [2] focus on the neighborhood aggregation component for col-
laborative filtering. This model uses linearly propagating to learn users and
items embeddings for interaction graph.
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4.3 Experiment Results

Table 1. Overall Performance Comparisons

Dataset Ciao Epinions Foursquare

precision recall ndcg precision recall ndcg precision recall ndcg

BPR-MF 0.01047 0.03182 0.02221 0.00087 0.00613 0.00330 0.01923 0.02479 0.02721

GCMC 0.01439 0.04785 0.03484 0.00097 0.00825 0.00460 0.02066 0.03102 0.03006

NGCF 0.01596 0.05170 0.03825 0.00120 0.00955 0.00506 0.02094 0.03177 0.03107

WiGCN 0.01606 0.05317 0.03985 0.00147 0.01088 0.00683 0.02424 0.03433 0.03592

LightGCN 0.01673 0.05674 0.04294 0.00184 0.01219 0.00663 0.02612 0.03602 0.03778

CombiGCN 0.01730 0.05845 0.04406 0.00204 0.01398 0.00720 0.02621 0.03801 0.03818

The overall performance comparison is shown in Table 1. The results clearly show
that our model consistently achieves the best performance in all three metrics
and all three datasets. Further, MF performance is much inferior to that of
GNN-based models because it cannot capture collaborative signals. Although
GCMC uses GCN, it only captures neighborhood information in the first layer,
so it is less effective than the NGCF and WiGCN. WiGCN has better accuracy
than NGCF because it introduces information about the weights of users and
items during embedding propagation, which makes the WiGCN model more
efficient in capturing collaborative signals. LightGCN is an LGC-based model
that has removed components that have been shown to negatively affect the
model training process, so the results of LightGCN are very good, only worse
than those of CombiGCN.

5 Conclusion

In this work, we attempted to improve the embedding quality by adding con-
nection weights between users based on their interaction history. To do that, we
introduce the CombiGCN model, which implements embedded functions on two
graphs: a user-item interaction graph and a user-item weighted connection graph
based on the Light Graph Convolution architecture. The key to CombiGCN lies
in its ability to combine embedding functionality across multiple graphs in a sim-
ple and effective way. We provide three preprocessed datasets with our algorithm
to reduce cold start, over-fitting, and data noise problems for evaluation exper-
iments. The results of experiments with state-of-the-art models are a valuable
demonstration of the success of weight addition and the multi-graph combination
architecture of CombiGCN.
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