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Abstract. We propose efficient algorithms for enumerating the cele-
brated combinatorial structures of maximal planar graphs, called canon-
ical orderings and Schnyder woods, and the related classical graph draw-
ings by de Fraysseix, Pach, and Pollack [Combinatorica, 1990] and by
Schnyder [SODA, 1990], called canonical drawings and Schnyder draw-
ings, respectively. To this aim (i) we devise an algorithm for enumerating
special e-bipolar orientations of maximal planar graphs, called canonical
orientations; (ii) we establish bijections between canonical orientations
and canonical drawings, and between canonical orientations and Schny-
der drawings; and (iii) we exploit the known correspondence between
canonical orientations and canonical orderings, and the known bijection
between canonical orientations and Schnyder woods. All our enumeration
algorithms have O(n) setup time, space usage, and delay between any
two consecutively listed outputs, for an n-vertex maximal planar graph.

Keywords: Enumeration algorithms · Planar graphs · Canonical
orderings · Schnyder woods · Worst-case delay

1 Introduction and Overview

An enumeration algorithm lists all the solutions of a problem, without duplicates,
and then stops. Its efficiency is measured in terms of setup time, space usage,
and delay between the outputs of two consecutive solutions; see, e.g., [3,42,50,
58]. In this paper, we present efficient algorithms to enumerate: (i) straight-
line grid drawings produced with the algorithms by de Fraysseix, Pach, and
Pollack [25,26] (FPP-algorithm) and by Schnyder [52] (S-algorithm), and (ii)
the corresponding combinatorial structures. To the best of our knowledge, these
are the first enumeration algorithms for drawings of graphs.

Notable applications of graph drawing enumeration algorithms include:
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Fig. 1. (a), (b) The two canonical orderings with first vertex u of a maximal planar
graph G. (c) The unique canonical orientation with first vertex u of G. (d) The unique
Schnyder wood of G.

(1) Users can benefit from having multiple alternative drawings that highlight
different features of the graph, enabling them to choose the most suitable
for their specific needs; this strategy has been used already in [8].

(2) Machine-learning-based graph drawing tools profit from multiple drawings
of a graph; small-delay enumeration algorithms may fuel the training process
of these tools.

(3) Computer-aided systems that aim to verify geometric and topological state-
ments can leverage enumeration algorithms to explore the solution space of
graph drawing problems.

Preliminary Definitions. We consider graphs and digraphs with multiple
edges. A maximal planar graph is a planar graph without parallel edges to which
no edge can be added without losing planarity or simplicity. A plane graph is a
planar graph with a prescribed embedding.

Let G be a maximal plane graph and let (u, v, z) be the cycle delimit-
ing its outer face, where u, v, and z appear in this counter-clockwise order
along the cycle. A canonical ordering of G with first vertex u is a labeling of the
vertices v1 = u, v2 = v, v3, . . . , vn−1, vn = z such that, for every 3 ≤ k ≤ n − 1
(see Figs. 1(a), 1(b), and [26]):

(CO-1) The plane subgraph Gk ⊆ G induced by v1, v2, . . . , vk is 2-connected; let
Ck be the cycle bounding its outer face;

(CO-2) vk+1 is in the outer face of Gk, and its neighbors in Gk form an (at least
2-element) subinterval of the path Ck − (u, v).

A canonical ordering of G is a canonical ordering of G with first vertex x,
where x ∈ {u, v, z}. If G′ is a maximal planar graph, a canonical ordering of
G′ is a canonical ordering of a maximal plane graph isomorphic to G′. Let
π = (v1, . . . , vn) be a canonical ordering of G with first vertex v1. Orient every
edge (vi, vj) of G from vi to vj if and only if i < j. The resulting orientation
is the canonical orientation of G with respect to π. An orientation D of G is a
canonical orientation with first vertex u if there exists a canonical ordering π of
G with first vertex u such that D is the canonical orientation of G with respect
to π; see Fig. 1(c). A canonical orientation of G is a canonical orientation with
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first vertex x, where x is a vertex in {u, v, z}. Finally, if G′ is a maximal planar
graph, a canonical orientation of G′ is a canonical orientation of a maximal plane
graph isomorphic to G′.

A vertex or edge of G is internal if it is not incident to the outer face and
outer otherwise. A Schnyder wood of G is an assignment of directions and of the
colors 1, 2 and 3 to the internal edges of G such that (see Fig. 2 and [52]):

(S-1) For i = 1, 2, 3, each internal vertex x has one outgoing edge ei of color i.
The outgoing edges e1, e2, and e3 appear in this counter-clockwise order
at x. Further, for i = 1, 2, 3, all the incoming edges at x of color i appear
in the clockwise sector between ei+1 and ei−1, where i + 1 = 1 if i = 3
and i − 1 = 3 if i = 1.

(S-2) At the outer vertices u, v, and z, all the internal edges are incoming and of
color 1, 2, and 3, respectively. If G′ is a maximal planar graph, a Schnyder
wood of G′ is a Schnyder wood of a maximal plane graph isomorphic to
G′.
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Fig. 2. Illustration for the properties of a Schnyder wood.

Our Contributions. First, we present an algorithm that enumerates all canoni-
cal orientations of an n-vertex maximal plane graph G by applying edge contrac-
tion or removals. This results in smaller graphs, whose canonical orientations are
recursively enumerated and modified to obtain canonical orientations of G by
orienting the contracted or removed edges. To achieve polynomial delay, contrac-
tions and removals should be applied only if the corresponding branch of compu-
tation produces at least one canonical orientation of G. We determine necessary
and sufficient conditions for a subgraph of G to allow for an orientation that can
be extended to a canonical orientation of G. We establish topological properties
that determine whether applying a contraction or a removal results in a graph
satisfying these conditions. Additionally, we create efficient data structures for
testing and applying the operations based on these properties.

Second, we prove that canonical orderings are topological sortings of canoni-
cal orientations. This allows our algorithm for enumerating the former to be used
for enumerating the latter. Moreover, since canonical orientations are in corre-
spondence with Schnyder woods [22, Theorem 3.3], our algorithm for enumer-
ating canonical orientations can also be used to enumerate all Schnyder woods
of G.
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Third, we show that applying the FPP-algorithm with different canonical
orderings corresponding to the same canonical orientation yields the same draw-
ing of G. This establishes a correspondence between the canonical orientations
of G and the drawings produced by the FPP-algorithm. Together with our
algorithm for enumerating canonical orientations, this allows us to enumerate
such drawings.

Finally, we show that the drawings generated by the S-algorithm are in bijec-
tion with the Schnyder woods. This, the bijection between canonical orientations
and Schnyder woods, and our algorithm for enumerating canonical orientations
enable us to enumerate the drawings of G produced by the S-algorithm.

All our enumeration algorithms have O(n) setup time, space usage, and worst-
case delay.

Related Results. The planar straight-line drawings of maximal planar graphs
generated by the FPP-algorithm [25,26] and by the S-algorithm [52] are funda-
mental in graph drawing [28,45,57] and find applications in other fields, e.g.,
knot theory [15,36,37] and computational complexity [7,34,51]. Further, the
combinatorial structures conceived for these algorithms, i.e., canonical order-
ings and Schynder woods, are used for a plethora of problems in graph draw-
ing [1,2,4,20,23,27,30,31,33,41,46] and beyond [5,11–13,18,38,39]. Canonical
orderings and Schnyder woods appear to be distant concepts. However, Schny-
der [52] has shown how to get a Schnyder wood from a canonical ordering. Also,
their relationship is explained by the concept of canonical orientations, which
in [22] are proved to be in bijection with the Schnyder woods; see also [44].

While enumerating graph drawings is a novel subject, the enumeration of
graph orientations has a rich literature. The enumeration of acyclic orientations
and k-arc-connected orientations are studied in [6,19,55] and [10], respectively.
An st-orientation of a graph G is an acyclic orientation of G such that s and t are
its unique source and sink, respectively. In [24] a polynomial-delay algorithm is
provided for enumerating st-orientations. In [53], the algorithm in [24] is refined
to obtain linear delay, if the input is biconnected and planar. Our paper is
connected to these algorithms through a result by de Fraysseix and Ossona de
Mendez [22]: There is a bijection between the canonical orientations and the
bipolar orientations such that every internal vertex has at least two incoming
edges. Our enumeration algorithm for canonical orientations follows the strategy
of [24,53] for enumerating bipolar orientations of biconnected planar graphs.
However, requiring that every internal vertex has at least two incoming edges
dramatically increases the complexity of the problem and reveals new and, in
our opinion, interesting topological properties of the desired orientations.

The canonical orientations of a maximal plane graph form a distributive
lattice L [32]. By the fundamental theorem of finite distributive lattices [9],
there is a finite poset P whose order ideals correspond to the elements of L
and it is known that |P | is polynomial in n [32, page 10]. Enumerating the order
ideals of P is a studied problem. In [35] an algorithm is presented that lists all
order ideals of P in O(Δ(P )) delay, where Δ(P ) is the maximum indegree of the
covering graph of P . However, the algorithm has three drawbacks that make it
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unsuitable for solving our problems. First, the guaranteed delay of the algorithm
is amortized, and not worst-case. Second, the algorithm uses O(w(P ) · |P |) =
O(n3) space, where w(P ) = O(n) is the width of P , and O(|P |2) = O(n4)
preprocessing time. Third and most importantly, each order ideal is produced
twice by the algorithm, rather than just once as required by an enumeration
algorithm. Similarly, the algorithms in [48,54,56] are affected by all or by part
of the above drawbacks.

Open Problems. Our research sparkles new questions. In general, for a graph
G and a drawing style D, we may ask for algorithms to enumerate the drawings
of G respecting D. Examples include: (i) enumerating the planar straight-line
drawings of a planar graph on a given grid; (ii) enumerating the orthogonal
representations of a plane graph with at most b bends; and (iii) enumerating the
upward planar embeddings of a single-source or triconnected DAG.

Full details of omitted or sketched proofs can be found in the full version of
the paper [21].

2 Canonical Orientations

In [22, Lemma 3.6–3.7, Theorem 3.3], the following characterization has been
shown, for which we provide an alternative proof in the full version of the paper.

Theorem 1. ([22]). Let G be an n-vertex maximal plane graph and let (u, v, z)
be the cycle delimiting its outer face, where u, v, and z appear in this counter-
clockwise order along the cycle. An orientation D of G is a canonical orientation
with first vertex u if and only if D is a uz-orientation in which every internal
vertex has at least two incoming edges.

Our proof of Theorem 1 also implies the following.

Lemma 1. Any topological sorting of a canonical orientation with first vertex
u of a maximal plane graph G is a canonical ordering of G with first vertex u.

Let h1 and h2 be parallel edges in a plane graph. We denote by �(h1, h2)
the open region bounded by h1 and h2, and say that �(h1, h2) is a multilens if
it contains no vertices in its interior. Note that �(h1, h2) might contain edges
parallel to h1 and h2 in its interior, or it might coincide with an internal face of
the graph; see Fig. 3. We now provide some crucial definitions.

Definition 1. A biconnected plane graph G with two distinguished vertices s and
t is called well-formed if it satisfies the following conditions (refer to Fig. 3):

(1) s and t (which are called the poles of G) are incident to the outer face of G
and s immediately precedes t in clockwise order along the cycle Co bounding
such a face;

(2) all the internal faces of G have either two or three incident vertices;
(3) multiple edges, if any, are all incident to s; and
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Fig. 3. Any two of the edges r1, r2, and r3 form a multilens, the edges b2 and b3
form a multilens, whereas neither b2 nor b3 forms a multilens with b1; the multilenses
�(r1, r2), �(r2, r3), and �(b2, b3) are also faces.

(4) if two parallel edges h1 and h2 with end-vertices s and x exist such that
�(h1, h2) is not a multilens, then two parallel edges h′

1 and h′
2 between s

and a vertex y �= x exist such that �(h′
1, h

′
2) is a multilens and such that

�(h′
1, h

′
2) ⊂ �(h1, h2).

Definition 2. An st-orientation D of a well-formed biconnected plane graph G
with poles s and t is inner-canonical if every internal vertex has at least two
incoming edges in D.

Definition 3. Let G be a plane graph. The contraction of an edge e = (u, v)
removes e from G and “merges” u and v into a new vertex w. Let e, eu

1 , . . . , eu
h and

e, ev
1, . . . , e

v
k be the clockwise order of the edges incident to u and to v, respectively.

Then the clockwise order of the edges incident to w is eu
1 , . . . , eu

h, ev
1, . . . , e

v
k.

Note that the contraction of an edge may introduce parallel edges or self-
loops.

Let G be a well-formed biconnected plane graph with poles s and t. Let
e1, e2, . . . , em be the counter-clockwise order of the edges incident to s, where
e1 and em are the rightmost and leftmost edge incident to s, respectively, and
let v1, . . . , vm be the end-vertices of e1, . . . , em different from s, respectively.
Moreover, let G∗ be the plane multigraph resulting from the contraction of e1 in
G; see Fig. 4(a). Also, if G contains parallel edges, let j ∈ {1, . . . , m − 1} be the
smallest index such that ej and ej+1 define a multilens of G; denote by G− the
plane graph resulting from the removal of e1, . . . , ej from G; see Fig. 4(b). The
next lemmas prove that, under certain conditions, G∗ and G− are well-formed
multigraphs and can be used to obtain inner-canonical orientations of G.

Lemma 2. Suppose that G does not contain parallel edges between s and w1,
where w1 is the vertex that follows s in counter-clockwise direction along the outer
face of G. Then G∗ is a well-formed biconnected plane graph with poles s and t.
Also, let D∗ be an inner-canonical orientation of G∗. The orientation D of G
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Fig. 4. Illustration for the contraction of e1 (a) and the removal of e1, . . . , ej (b).

obtained from D∗ by orienting the edge (s, w1) away from s and by keeping the
orientation of all other edges unchanged is inner-canonical.

Lemma 3. Suppose that G contains parallel edges and let j ∈ {1, . . . , m− 1} be
the smallest index such that ej and ej+1 define a multilens of G. Suppose also
that either j = 1, or j > 1 and v2, . . . , vj are not incident to the outer face of
G. Then the graph G− is a well-formed biconnected plane graph with poles s and
t. Also, let D− be an inner-canonical orientation of G−. The orientation D of
G obtained from D− by orienting the edges e1, e2, . . . , ej away from s and by
keeping the orientation of all other edges unchanged is inner-canonical.

By induction on |E(G)| and using Lemmas 2 and 3 we can prove the following.

Lemma 4. Every well-formed biconnected plane graph G with poles s and t has
at least one inner-canonical orientation.

Section 2.1 is devoted to the proof of the following main result.

Theorem 2. Let G be a well-formed biconnected plane graph with ϕ edges.
There is an algorithm with O(ϕ) setup time and space usage listing all the inner-
canonical orientations of G with O(ϕ) delay.
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Provided that Theorem 2 holds, we can prove the following.

Lemma 5. Let G be an n-vertex maximal plane graph and (u, v, z) be the cycle
delimiting its outer face fo, where u, v, and z appear in this counter-clockwise
order along fo. There is an algorithm with O(n) setup time and space usage
listing all the canonical orientations of G with first vertex u with O(n) delay.

Proof (sketch): We have that G is a well-formed biconnected plane graph with
poles u and z. By Theorem 1, any canonical orientation of G with first vertex
u is a uz-orientation such that every internal vertex has at least two incoming
edges, i.e., an inner-canonical orientation. Also, any inner-canonical orientation
of G is canonical. This, combined with G having O(n) edges, implies that the
algorithm in Theorem 2 enumerates all canonical orientations of G within the
stated bounds. ��

Theorem 3. There is an algorithm A1 (resp. A2) with O(n) setup time and
space usage listing all canonical orientations of an n-vertex maximal plane (pla-
nar) graph with O(n) delay.

Proof (sketch): Algorithm A1 uses the algorithm for the proof of Lemma 5
three times, i.e., once for each choice of the first vertex among the three vertices
incident to the outer face of the input graph G. Algorithm A2 applies 4n − 8
times algorithm A1, since there are 4n − 8 maximal plane graphs that are iso-
morphic to G. ��

2.1 The Inner-Canonical Enumerator Algorithm

We now describe the Inner-Canonical Enumerator (ICE) algorithm that
enumerates all the inner-canonical orientations of a well-formed biconnected
plane graph G with poles s and t (see Theorem 2). In the full version of the
paper [21], we provide implementation details, data structures, and pseudocode
for achieving the claimed worst-case bounds.

The ICE algorithm works recursively as follows. In the base case, G is the
single edge em = (s, t), and its unique inner-canonical orientation is the one with
the edge em directed from s to t. Otherwise, the algorithm considers four cases.

In Cases 1 and 2, G contains parallel edges and e1 is the unique edge between
s and w1. Let j ∈ {2, . . . , m − 1} be the smallest index such that ej and ej+1

define a multilens of G. In Case 1, there exists an index i ∈ {2, . . . , j} such
that vi is incident to the outer face of G, while in Case 2 such an index does not
exist. In Case 3, G does not contain parallel edges. Finally, in Case 4, G contains
parallel edges between s and w1. Note that exactly one of Cases 1–4 applies to G.

In Cases 1 and 3, we contract the edge (s, w1). Let G∗ be the resulting plane
graph which, by Lemma 2, is biconnected and well-formed. Thus, the algorithm
can be applied recursively to enumerate all inner-canonical orientations of G∗.
The algorithm obtains all inner-canonical orientations of G from the ones of G∗

as in Lemma 2.
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In Case 4, we remove the edges e1, e2, . . . , ej . Let G′ be the resulting plane
graph which, by Lemma 3, is biconnected and well-formed. Thus, the algorithm
can be applied recursively in order to enumerate all inner-canonical orientations
of G′. The algorithm obtains all inner-canonical orientations of G from the ones
of G′ as in Lemma 3.

In Case 2, the algorithm branches and applies both the contraction and
the removal operations. Precisely, first we contract the edge (s, w1), obtaining
a well-formed biconnected plane graph G∗. After all inner-canonical orientations
of G∗ have been used to produce inner-canonical orientations of G as in Lemma
2, we remove the edges e1, e2, . . . , ej from G, obtaining a well-formed biconnected
plane graph G′, from which the remaining inner-canonical orientations of G are
produced as in Lemma 3.

Note that the ICE algorithm outputs an inner-canonical orientation each
time the base case applies. The next lemma summarizes its correctness.

Lemma 6. The ICE algorithm outputs all and only the inner-canonical orien-
tations of G without repetitions.

3 Enumeration of Canonical Orderings and Drawings

We show how to efficiently enumerate the canonical orderings and drawings of
a maximal plane or planar graph G. By Theorem 3, the canonical orientations
of G can be generated efficiently. By Lemma 1, for every canonical orientation D
of G, the canonical orderings π of G such that D is the canonical orientation of G
with respect to π are the topological sortings of D. Since there exist O(1)-delay
algorithms [47,49] for listing all such topological sortings, we get the following.

Theorem 4. There is an algorithm with O(n) setup time and space usage listing
all canonical orderings of an n-vertex maximal plane/planar graph with O(n)
delay.

Fig. 5. Illustrations for the FPP-algorithm. (a) Γk. (b) Γk+1.

We show how to enumerate the planar straight-line drawings produced by
the FPP-algorithm [26]. Its input is an n-vertex maximal plane graph G, whose
outer face is delimited by a cycle (u, v, z) and a canonical ordering π = (v1 =
u, v2 = v, v3, . . . , vn = z) of G. The FPP-algorithm works in steps.
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The first step constructs a planar straight-line drawing Γ3 of G3 with v1,
v2, and v3 at (0, 0), (2, 0), and (1, 1), respectively, and defines sets M3(v1) =
{v1, v2, v3}, M3(v3) = {v2, v3}, and M3(v2) = {v2}.

For k = 3, . . . , n−1, step k−1 constructs a planar straight-line drawing Γk+1

of Gk+1 by modifying Γk as follows; see Fig. 5. Let w1 = u,w2, . . . , wr = v be
the clockwise order of the vertices along the outer face of Gk. Assume that step
k − 2 has defined, for i = 1, . . . , r, a subset Mk(wi) of the vertices of Gk, where
Mk(w1) ⊃ · · · ⊃ Mk(wr). Let wp, wp+1, . . . , wq be the neighbors of vk+1 in Gk,
where p < q. Then Γk+1 is obtained from Γk by increasing the x-coordinate of
each vertex in Mk(wp+1) by one unit, the x-coordinate of each vertex in Mk(wq)
by one additional unit, and placing vk+1 at the intersection of the line through wp

with slope +1 and the line through wq with slope −1. Then step k − 1 proceeds
to define the sets:

(i) Mk+1(wi) = Mk(wi) ∪ {vk+1}, for i = 1, . . . , p;
(ii) Mk+1(vk+1) = Mk(wp+1) ∪ {vk+1}; and
(iii) Mk+1(wi) = Mk(wi), for i = q, . . . , r.

We call canonical drawing with base edge (u, v) the drawing Γn of G constructed
by the FPP-algorithm; we often say that Γn corresponds to π. The following is
the main tool for our enumeration algorithm.

Theorem 5. Let G be an n-vertex maximal plane graph and (u, v, z) be the cycle
delimiting the outer face of G, with u, v, and z in this counter-clockwise order
along the cycle. There is a bijective function f from the canonical orientations of
G with first vertex u to the canonical drawings of G with base edge (u, v). Also,
given a canonical orientation with first vertex u, the corresponding canonical
drawing with base edge (u, v) can be constructed in O(n) time.

Proof (sketch): The function f is as follows. Consider any canonical orienta-
tion D of G with first vertex u and let π be any canonical ordering with first
vertex u that extends D (that is, the canonical orientation of G with respect π is
D). Then f(D) is the canonical drawing with base edge (u, v) that corresponds
to π. Since π can be computed as any topological sorting of D in O(n) time [40]
and the FPP-algorithm can be implemented in O(n) time [17], the second part
of the statement follows. Clearly, f is injective. Indeed, any distinct canonical
orientations D1 and D2 of G differ on the orientation of some edge (a, b). Thus,
for any two canonical orderings π1 and π2 that extend D1 and D2, respectively,
we have that b follows a in π1 and precedes a in π2 (or vice versa). Hence, the
y-coordinate of b is larger than the one of a in f(D1) and smaller than the one of
a in f(D2) (or vice versa), thus f(D1) and f(D2) are not the same drawing. The
core of the proof that f is surjective is in the proof of the following statement.

Claim 1. Any two canonical orderings π and τ that extend D are such that the
canonical drawings of G corresponding to π and τ are the same drawing.

The proof of Claim 1 is by induction on |V (G)| and it relies on a natural extension
of the concepts of canonical ordering, orientation, and drawing to biconnected
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internally-triangulated plane graphs; hence, in the following, the outer face of G
might have more than three incident vertices. The proof of Claim 1 exploits the
following claim, which is also proved by induction on the size of G.

Claim 2. Let z1, . . . , zr be the clockwise order of the vertices along the outer face
of G, let Mπ(z1), . . . , Mπ(zr) (let Mτ (z1), . . . , Mτ (zr)) be the sets associated
to z1, . . . , zr, respectively, by the FPP-algorithm, when applied with canonical
ordering π (resp. τ). For i = 1, . . . , r, the sets Mπ(zi) and Mτ (zi) coincide.

The inductive proof of Claim 1 distinguishes two cases.
In Case 1, π and τ have the same last vertex. This can be removed from both,

resulting in canonical orderings λ and ξ, respectively, of a smaller graph G′. By
induction, the canonical drawings of G′ corresponding to λ and ξ coincide. This
and the fact that the sets associated to the vertices along the boundary of G′

by the FPP-algorithm when applied with canonical orderings λ and ξ coincide
imply that the canonical drawings of G corresponding to π and τ also coincide.

In Case 2, π and τ do not have the same last vertex. Then we define a
sequence of canonical orderings of G such that: (i) the first canonical ordering in
the sequence is τ ; (ii) any two canonical orderings consecutive in the sequence
coincide, except for two vertices, whose positions are adjacent and swapped in the
two canonical orderings; and (iii) the last canonical ordering in the sequence has
the same last vertex as π. Note that the last canonical ordering in the sequence
and π are such that the corresponding canonical drawings of G are the same
drawing, by Case 1. The proof that the canonical drawings of G corresponding
to two consecutive canonical orderings in the sequence are the same drawing
relies on the similarity of such canonical orderings. By transitivity, we get that
the canonical drawings of G corresponding to π and τ are the same drawing. ��

Theorem 3 and Theorem 5 imply the following.

Theorem 6. There is an algorithm with O(n) setup time and space usage list-
ing all canonical drawings of an n-vertex maximal plane/planar graph with
O(n) delay.

4 Enumeration of Schnyder Woods and Drawings

We now show how to efficiently enumerate the Schnyder woods and drawings
of an n-vertex maximal plane graph G. The Schnyder woods and the canonical
orientations of G are in bijection [22]. Further, given a canonical orientation of
G, the corresponding Schnyder wood of G can be constructed in O(n) time [14,
16,26,27,29,43,52]. This, together with Theorem 3, implies the following.

Theorem 7. There is an algorithm with O(n) setup time and space usage listing
all Schnyder woods of an n-vertex maximal plane/planar graph with O(n) delay.

We now deal with the enumeration of the planar straight-line drawings pro-
duced by the algorithm by Schnyder [52], known as Schnyder drawings. The
S-algorithm takes as input (see Fig. 6(a)) an n-vertex maximal plane graph G,
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whose outer face is delimited by a 3-cycle (u1, u2, u3), where u1, u2, and u3

appear in this counter-clockwise order along the cycle, and a Schnyder wood
W = (T1, T2, T3) of G, where Ti contains ui, for i = 1, 2, 3.

Fig. 6. (a) A Schnyder wood W of a maximal plane graph G. (b) Paths P1(4), P2(4),
and P3(4), and cycles Cx(4) and Cy(4). (c) The Schnyder drawing s(W).

The S-algorithm assigns coordinates (0, 0), (2n − 5, 0), and (0, 2n − 5) to u1,
u2, and u3, respectively. For a cycle C, let #f (C) be the number of internal faces
of G inside C. For i = 1, 2, 3, properties (S-1) and (S-2) of W imply that Ti

contains a directed path Pi(w) from any internal vertex w to ui; see Fig. 6(b).
Also, P1(w), P2(w), and P3(w) only share w [52]. Let Cx(w) and Cy(w) be the
cycles P1(w)∪P3(w)∪ (u1, u3) and P1(w)∪P2(w)∪ (u1, u2), respectively. Then
the algorithm assigns coordinates (#f (Cx(w)),#f (Cy(w))) to w; see Fig. 6(c).

The following is the main tool for our enumeration algorithm.

Theorem 8. Let G be an n-vertex maximal plane graph. There is a bijective
function s from the Schnyder woods of G to the Schnyder drawings of G. Also,
given a Schnyder wood of G, the corresponding Schnyder drawing of G can be
constructed in O(n) time.

Proof (sketch): The function s is the S-algorithm, which can be implemented
in O(n) time [52], from which the second part of the statement follows. The core
of the proof that s is bijective consists of proving that a Schnyder drawing Γ
uniquely determines the Schnyder wood W = (T1, T2, T3) such that s(W) = Γ .
This follows from the fact that in Γ , for each vertex v of G, the edges of T1, T2,
and T3 incoming into v have slopes in the intervals (0◦, 90◦), (135◦, 180◦), and
(270◦, 315◦), respectively, while the edges of T1, T2, and T3 outgoing from v have
slopes in the intervals (180◦, 270◦), (315◦, 360◦), and (90◦, 135◦), respectively; see
[27]. Thus, whether each edge (u, v) of G belongs to T1, T2, or T3 and whether it
is directed from u to v or vice versa is uniquely determined by its slope in Γ . ��

Theorem 7 and Theorem 8 imply the following.

Theorem 9. There is an algorithm with O(n) setup time and space usage listing
all Schnyder drawings of an n-vertex maximal plane graph with O(n) delay.
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