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Abstract. Given an edge-weighted (metric/general) complete graph
with n vertices, the maximum weight (metric/general) k-cycle/path
packing problem is to find a set of n

k
vertex-disjoint k-cycles/paths such

that the total weight is maximized. In this paper, we consider approxi-
mation algorithms. For metric k-cycle packing, we improve the previous
approximation ratio from 3/5 to 7/10 for k = 5, and from 7/8 ·(1−1/k)2

for k > 5 to (7/8 − 0.125/k)(1 − 1/k) for constant odd k > 5 and to
7/8 · (1 − 1/k + 1

k(k−1)
) for even k > 5. For metric k-path packing, we

improve the approximation ratio from 7/8 · (1 − 1/k) to 27k2−48k+16
32k2−36k−24

for
even 10 ≥ k ≥ 6. For the case of k = 4, we improve the approxima-
tion ratio from 3/4 to 5/6 for metric 4-cycle packing, from 2/3 to 3/4 for
general 4-cycle packing, and from 3/4 to 14/17 for metric 4-path packing.

Keywords: Approximation algorithms · Cycle packing · Path packing

1 Introduction

In a graph with n vertices, a k-cycle/path packing is a set of n
k vertex-disjoint

k-cycles/paths (i.e., a simple cycle/path on k different vertices) covering all
vertices. For an edge-weighted complete graph, every edge has a non-negative
weight. Moreover, it is called a metric graph if the weight satisfies the triangle
inequality; Otherwise, it is called a general graph. Given a (metric/general)
graph, the maximum weight (metric/general) k-cycle/path packing problem
(kCP/kPP) is to find a k-cycle/path packing such that the total weight of the
k-cycles/paths in the packing is maximized.

When k = n, kCP becomes the well-known maximum weight traveling sales-
man problem (MAX TSP). One may obtain approximation algorithms of kCP
and kPP by using approximation algorithms of MAX TSP. In the following, we
let α (resp., β) denote the current-best approximation ratio of MAX TSP on
metric (resp., general) graphs. We have α = 7/8 [19] and β = 4/5 [9].

1.1 Related Work

For k = 2, kCP and kPP are equivalent with the maximum weight perfect match-
ing problem, which can be solved in O(n3) time [10,20]. For k ≥ 3, metric kCP
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and kPP become NP-hard [17], and general kCP and kPP become APX-hard
even on {0, 1}-weighted graphs (i.e., a complete graph with edge weights 0 and
1) [22]. There is a large number of contributions on approximation algorithms.

General kCP. For k = 3, Hassin and Rubinstein [13,14] proposed a randomized
(0.518 − ε)-approximation algorithm, Chen et al. [7,8] proposed an improved
randomized (0.523− ε)-approximation algorithm, and Van Zuylen [32] proposed
a deterministic algorithm with the same approximation ratio. For lager k, Li
and Yu [21] proposed a 2/3-approximation algorithm for k = 4 and a β · (1 −
1/k)2-approximation algorithm for k ≥ 5. On {0, 1}-weighted graphs, Bar-Noy
et al. [2] gave a 3/5-approximation algorithm for k = 3. Note that Berman
and Karpinski [4] gave a 6/7-approximation algorithm for the Maximum Path
Cover Problem, which seeks a set of node disjoint paths such that the number
of edges in all the paths is maximal. Their algorithm could be used to obtain
a (6/7 − ε)-approximation algorithm for general kCP and kPP with k = n on
{0, 1}-weighted graphs.

Metric kCP. For k = 3, Hassin et al. [15] firstly gave a deterministic 2/3-
approximation algorithm and Chen et al. [5] proposed a randomized (0.66768 −
ε)-approximation algorithm. For lager k, Li and Yu [21] proposed a 3/4-
approximation algorithm for k = 4, a 3/5-approximation algorithm for k = 5,
and an α · (1 − 1/k)2-approximation algorithm for k ≥ 6.

General kPP. For k = 3, Hassin and Rubinstein [13] proposed a randomized
(0.5223 − ε)-approximation algorithm, Chen et al. [27] proposed a determin-
istic (0.5265 − ε)-approximation algorithm, and Bar-Noy et al. [2] proposed
an improved 7/12-approximation algorithm. For lager k, Hassin and Rubin-
stein [11] proposed a 3/4-approximation algorithm for k = 4, and a β · (1−1/k)-
approximation algorithm for k ≥ 5. On {0, 1}-weighted graphs, Hassin and
Schneider [16] gave a 0.55-approximation algorithm for k = 3 and the ratio
was improved to 3/4 [2].

Metric kPP. Li and Yu [21] proposed a 3/4-approximation algorithm for k = 3,
a 3/4-approximation algorithm for k = 5, and an α · (1 − 1/k)-approximation
algorithm for k ≥ 6. The best-known result for k = 4 is still 3/4 due to the
general 4PP, by Hassin and Rubinstein [11]. On {1, 2}-weighted graphs, there is
a 9/10-approximation algorithm for k = 4 [23].

General/metric kCP and kPP can be seen as a special case of the weighted
k-set packing problem, which admits an approximation ratio of 1

k−1 − ε [1],
2

k+1 − ε [3], and 2
k+1−1/31850496 − ε [24]. Recently, these results have been fur-

ther improved (see [25,26,28]). They can be used to obtain a 1/1.786 ≈ 0.559-
approximation ratio for general 3CP [28].

1.2 Our Results

We study approximation algorithms for metric/general kCP and kPP.
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Firstly, we consider metric kCP. We propose a (7/8 − 0.125/k)(1 − 1/k)-
approximation algorithm for constant odd k and a 7/8 · (1 − 1/k + 1

k(k−1) )-
approximation algorithm for even k, which improve the best-known approxima-
tion ratio of 3/5 for k = 5 [21] and 7/8 · (1 − 1/k)2 for k ≥ 6 [21]. Moreover, we
propose an algorithm based on the maximum weight matching, which can further
improve the approximation ratio from 17/25 to 7/10 for k = 5. An illustration
of the improved results for metric kCP with k ≥ 5 can be seen in Table 1.

Table 1. Improved approximation ratios for metric kCP with k ≥ 5

Metric kCP 5 6 7 8

Previous Ratio [21] 0.600 0.607 0.642 0.669

Our Ratio 0.700 0.758 0.734 0.781

Secondly, we consider metric kPP. We propose a 27k2−48k+16
32k2−36k−24 -approximation

algorithm for even 10 ≥ k ≥ 6, which improves the best-known approximation
ratio of 7/8 · (1 − 1/k) [11]. An illustration of the improved results for metric
kPP with even 10 ≥ k ≥ 6 can be seen in Table 2.

Table 2. Improved approximation ratios for metric kPP with even 10 ≥ k ≥ 6

Metric kPP 6 8 10

Previous Ratio [11] 0.729 0.765 0.787

Our Ratio 0.767 0.783 0.794

At last, we focus on the case of k = 4 for metric/general kCP and kPP. For
metric 4CP, we propose a 5/6-approximation algorithm, improving the best-
known ratio 3/4 [21], and as a corollary, we also give a 7/8-approximation
algorithm on (1, 2)-weighted graphs. For general 4CP, we propose a 3/4-
approximation algorithm, improving the best-known ratio 2/3 [21]. For metric
4PP, we propose a 14/17-approximation algorithm, improving the best-known
ratio 3/4 [11]. An illustration of the improved results for the case of k = 4 can
be seen in Table 3.

Table 3. Improved results for the case of k = 4

Metric Graphs General Graphs

4CP 3/4 [21] → 5/6 2/3 [21] → 3/4

4PP 3/4 [11] → 14/17 3/4 [11]

Due to limited space, the proofs of lemmas and theorems marked with “*”
were omitted and they can be found in the full version of this paper [31].
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1.3 Paper Organization

The remaining parts of the paper are organized as follows. In Sect. 2, we intro-
duce basic notations. In Sect. 3, we consider metric kCP. In Sect. 3.1, we present
a better reduction from metric kCP to metric TSP, which has already led to an
improved ratio for k ≥ 5. In Sect. 3.2, by using some properties of the current-
best approximation algorithm for metric TSP, we obtain a further improved
ratio. In Sect. 3.2, we consider a simple algorithm based on matching with a bet-
ter ratio for k = 5. In Sect. 4, we consider metric kPP and propose an improved
algorithm for even 10 ≥ k ≥ 6. Note that metric kPP is harder to improve, unlike
metric kCP. In Sect. 5, we propose non-trivial algorithms for metric/general kCP
and kPP with k = 4. In Sect. 5.1, we obtain a better algorithm for general 4CP.
In Sect. 5.2, we obtain a better algorithm for metric 4CP. In Sect. 5.3, we obtain a
better approximation algorithm for metric 4PP. Finally, we make the concluding
remarks in Sect. 6.

2 Preliminaries

We use G = (V,E) to denote an undirected complete graph with n vertices such
that n mod k = 0. There is a non-negative weight function w : E → R≥0 on the
edges in E. For an edge uv ∈ E, we use w(u, v) to denote its weight. A graph
is called a metric graph if the weight function satisfies the triangle inequality;
Otherwise, it is called a general graph. For any weight function w : X → R≥0,
we define w(Y ) =

∑
x∈Y w(x) for any Y ⊆ X.

Two subgraphs or subsets of edges of a graph are vertex-disjoint if they
do not appear a common vertex. We only consider simple paths and simple
cycles with more than two vertices. The length of a path/cycle is the number
of vertices it contains. A cycle packing is a set of vertex-disjoint cycles such
that the length of each cycle is at least three and all vertices in the graph are
covered. Given a cycle packing C, we use l(C) to denote the minimum length
of cycles in C. We also use C∗ to denote the maximum weight cycle packing.
A path (resp., cycle) on k different vertices {v1, v2, . . . , vk} is called a k-path
(resp., k-cycle), denoted by v1v2 · · · vk (resp., v1v2 · · · vkv1). A k-path packing
(resp., k-cycle packing) in graph G is a set of vertex-disjoint n/k k-paths (resp.,
k-cycles) such that all vertices in the graph are covered. Note that we can obtain
a k-cycle packing by completing every k-path of a k-path packing. Let P∗

k (resp.,
C∗
k) denote the maximum weight k-path packing (resp., k-cycle packing). We can

get w(C∗) ≥ w(C∗
k) for k ≥ 3.

A 2-path packing is called a matching of size n/2. The maximum weight
matching of size n/2 is denoted by M∗. An n-cycle is called a Hamiltonian
cycle. MAX TSP is to find a maximum weight Hamiltonian cycle. We simply use
general/metric TSP to denote MAX TSP in general/metric graphs. We use H∗

to denote the maximum weight Hamiltonian cycle. For a k-path P = v1v2 · · · vk
where k is even, we define w̃(P ) =

∑k/2
i=1 w(v2j−1, v2j).
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3 Approximation Algorithms for Metric kCP

In this section, we improve the approximation ratio for metric kCP with k ≥ 5.
We will first present a better black-box reduction from metric kCP to metric
TSP, which is sufficient to improve the previous ratio for k ≥ 5. Then, based
on the approximation algorithm for metric TSP, we prove an improved approx-
imation ratio. Finally, we consider a matching-based algorithm that can further
improve the ratio of metric 5CP.

3.1 A Better Black-Box

Given an α-approximation algorithm for metric TSP, Li and Yu [21] proposed
an α · (1−1/k)2-approximation algorithm for metric kCP. We will show that the
ratio can be improved to α · (1− 0.5/k)(1− 1/k). Moreover, for even k, the ratio
can be further improved to α · (1 − 0.5/k)(1 − 1/k + 1

k(k−1) ). We first consider a
simple algorithm, denoted by Algorithm 1, which mainly contains three following
steps.

Step 1. Obtain a Hamiltonian cycle H using an α-approximation algorithm
for metric TSP;
Step 2. Get a k-path packing Pk with w(Pk) ≥ (1 − 1/k)w(H) from H:
we can obtain a k-path packing by deleting one edge per k edges from H;
since there are (1 − 1/k)n edges in Pk and n edges in H, if we carefully
choose the initial edge, we can make sure that the weight of Pk is at least
(1 − 1/k)n · (1/n) · w(H), i.e., on average each edge has a weight of at least
(1/n) · w(H).
Step 3. Obtain a k-cycle packing Ck by completing the k-path packing Pk.

To analyze the approximation quality, we use the path patching technique,
which has been used in some papers [12,18,19].

Lemma 1 ([12,18]). Let G be a metric graph. Given a cycle packing C, there
is a polynomial-time algorithm to generate a Hamiltonian cycle H such that
w(H) ≥ (1 − 0.5/l(C))w(C).

Since the length of every k-cycle in the maximum weight k-cycle packing C∗
k

equals to k, we have l(C∗
k) = k. By Lemma 1, we have the following lemma.

Lemma 2. w(H∗) ≥ (1 − 0.5/k)w(C∗
k).

Theorem 1. Given an α-approximation algorithm for metric TSP, Algorithm 1
is a polynomial-time α · (1− 0.5/k)(1− 1/k)-approximation algorithm for metric
kCP.

Proof. By the algorithm, we can easily get that w(Ck) ≥ w(Pk) ≥ (1 −
1/k)w(H) ≥ α · (1 − 1/k)w(H∗). By Lemma 2, we have w(Ck) ≥ α · (1 −
0.5/k)(1− 1/k)w(C∗

k). Therefore, the algorithm achieves an approximation ratio
of α · (1 − 0.5/k)(1 − 1/k) for metric kCP. �
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Next, we propose an improved α ·(1−0.5/k)(1−1/k+ 1
k(k−1) )-approximation

algorithm for even k, denoted by Algorithm 2. The previous two steps of Algo-
rithm 2 are the same as Algorithm 1. However, Algorithm 2 will obtain a better
k-cycle packing in Step 3:

New Step 3. For each k-path Pi = vi1vi2 · · · vik ∈ Pk, we obtain k − 1 k-
cycles {Ci1, . . . , Ci(k−1)} where Cij = vi1vi2 · · · vijvikvi(k−1) · · · vi(j+1)vi1 (See
Fig. 1 for an illustration); let Ciji denote the maximum weight cycle from these
cycles; return a k-cycle packing Ck = {Ciji}n/ki=1 .

vi1 vi2 · · · vij vi(j+1) · · · vi(k−1) vik

Fig. 1. An illustration of the k-cycle Cij obtained from Pi, where j ∈ {1, 2, . . . , k− 1}

Lemma 3. It holds that w(Ck) ≥ k−2
k−1w(Pk) + 2

k−1 w̃(Pk).

Proof. Since Ciji is the maximum weight cycle from these cycles, we have

w(Ciji) ≥ 1
k − 1

k−1∑

j=1

w(Cij)

=
1

k − 1

k−1∑

j=1

(w(Pi) + w(vi1, vi(j+1)) + w(vij , vik) − w(vij , vi(j+1)))

=
1

k − 1

⎛

⎝(k − 1)w(Pi) +
k−1∑

j=1

(w(vi1, vi(j+1)) + w(vij , vik)) − w(Pi)

⎞

⎠

=
1

k − 1

⎛

⎝(k − 2)w(Pi) +
k−1∑

j=1

(w(vi1, vi(j+1)) + w(vij , vik))

⎞

⎠ .

By the triangle inequality, we can get that

k−1∑

j=1

w(vi1, vi(j+1)) = w(vi1, vi2) +
k/2∑

j=2

(w(vi1, vi(2j−1)) + w(vi1, vi(2j)))

≥ w(vi1, vi2) +
k/2∑

j=2

w(vi(2j−1), vi(2j))

=
k/2∑

j=1

w(vi(2j−1), vi(2j))

= w̃(Pi).
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Similarly, we can get
∑k−1

j=1 w(vij , vik) ≥ w̃(Pi). Hence,

w(Ciji) ≥ 1
k − 1

⎛

⎝(k − 2)w(Pi) +
k−1∑

j=1

(w(vi1, vi(j+1)) + w(vij , vik))

⎞

⎠

≥ (k − 2)w(Pi) + 2w̃(Pi)
k − 1

.

By doing this for all k-paths in Pk, we can get a k-cycle packing Ck such that
w(Ck) ≥ (k−2)w(Pk)+2w̃(Pk)

k−1 . �

Theorem 2. Given an α-approximation algorithm for metric TSP, for metric
kCP with even k, Algorithm 2 is a polynomial-time α·(1−0.5/k)(1−1/k+ 1

k(k−1) )-
approximation algorithm.

Proof. Recall that all k-paths in Pk are obtained from the α-approximate Hamil-
tonian cycle H. By deleting one edge per k edges from a Hamiltonian cycle H
and choosing the initial edge carefully, we can get a k-path packing Pk such that

(k − 2)w(Pk) + 2w̃(Pk) ≥ (k − 2)(k − 1) + k

k
w(H) =

(k − 1)2 + 1
k

w(H)

since (k−2)w(Pk)+2w̃(Pk) contains the weight of n(k−2)(k−1)+nk
k (multi-)edges

in H. By Lemma 3, we can obtain a k-cycle packing Ck such that

w(Ck) ≥ (k − 2)w(Pk) + 2w̃(Pk)
k − 1

≥ (k − 1)2 + 1
k(k − 1)

w(H)

=
(

1 − 1/k +
1

k(k − 1)

)

w(H).

Since w(H) ≥ α · w(H∗) ≥ α · (1 − 0.5/k)w(C∗
k) by Lemma 2, we have w(Ck) ≥

α · (1 − 0.5/k)(1 − 1/k + 1
k(k−1) )w(C∗

k). �

Note that for metric TSP there is a randomized (7/8 − O(1/
√

n))-
approximation algorithm [12], a deterministic (7/8 − O(1/ 3

√
n))-approximation

algorithm [6], and a deterministic 7/8-approximation algorithm [19]. By Theo-
rem 2, we obtain an approximation ratio of 7/8 · (1 − 0.5/k)(1 − 1/k) for metric
kCP with odd k, and 7/8 · (1 − 0.5/k)(1 − 1/k + 1

k(k−1) ) for metric kCP with
even k.

3.2 A Further Improvement

In this subsection, we show that the approximation ratio of Algorithm 2 can be
further improved based on the properties of the 7/8-approximation algorithm
for metric TSP [19]. We recall the following result.
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Lemma 4 ([19]). Let G be a metric graph with even n. There is a polynomial-
time algorithm to get a Hamiltonian cycle H with w(H) ≥ 5

8w(C∗) + 1
2w(M∗).

For any k-cycle packing with k being even or Hamiltonian cycle with an
even number of vertices, the edges can be decomposed into two edge-disjoint
matchings of size n/2. We can get the following bounds.

Lemma 5. It holds that w(M∗) ≥ 1
2w(C∗

k) for even k and w(M∗) ≥ 1
2w(H∗)

for even n.

Note that for metric kCP with even k, the number of vertices is always even
since it satisfies n mod k = 0. But for odd k, the number may be odd, and
then there may not exist a matching of size n/2. Since we mainly consider the
improvements for constant k, for the case of odd k and n, we can first use nO(k) =
nO(1) time to enumerate a k-cycle in C∗

k , and then consider an approximate k-
cycle packing in the rest graph. The approximation ratio preserves. Hence, we
may assume that n is even for the case of constant k.

Theorem 3 (*). For metric kCP, there is a (7/8 − 0.125/k)(1 − 1/k)-
approximation algorithm for constant odd k and a 7/8 · (1 − 1/k + 1

k(k−1) )-
approximation algorithm for even k.

3.3 An Improved Algorithm Based on Matching

Consider metric kCP with odd k. By deleting the least weighted edge from every
k-cycle in C∗

k , we can get a k-path packing Pk with w(Pk) ≥ (1 − 1/k)w(C∗
k).

Note that Pk can be decomposed into two edge-disjoint matchings of size p :=
(n/k) · (k − 1)/2. Let M∗

p be the maximum weight matching of size p, which can
be computed in polynomial time [10,20]. Then, we can get 2w(M∗

p) ≥ w(Pk) ≥
(1 − 1/k)w(C∗

k). Note that there are also n/k isolated vertices not covered by
M∗

p. Next, we construct a k-cycle packing using M∗
p with the isolated vertices.

The algorithm, denoted by Algorithm 3, is shown as follows.

Step 1. Arbitrarily partition the p edges of M∗
p into n/k sets with the same

size, denoted by S1,S2, . . . ,Sn/k. Note that each edge set contains m :=
(k − 1)/2 edges. For each of the n/k edge sets, arbitrarily assign an isolated
vertex.
Step 2. Consider an arbitrary edge set Si = {e1, e2, . . . , em} with the isolated
vertex v. Assume w.o.l.g. that w(e1) ≥ w(em) ≥ w(ei) for 2 ≤ i < m, i.e.,
w(e1) + w(em) ≥ (2/m)w(Si). Orient each edge ei uniformly at random from
the two choices. Let ti (resp., hi) denote the tail (resp., head) vertex of ei.
Construct a k-cycle Ci such that Ci = vt1h1t2h2 · · · tmhmv.
Step 3. Get a k-cycle packing Ck by packing the k-cycles from the edge sets
and the isolated vertices.

Algorithm 3 can be derandomized efficiently by conditional expectations [29].
Next, we analyze the expected weight of Ci = vt1h1t2h2 · · · tmhmv, obtained

from the edge set Si and the isolated vertex v.
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Lemma 6. It holds that E[w(v, t1)] ≥ 1
2w(e1), E[w(v, hm)] ≥ 1

2w(em), and
E[w(hi, ti+1)] ≥ 1

4 (w(ei) + w(ei+1)) for 1 ≤ i < m.

Proof. Consider E[w(v, t1)]. Since we orient the edge e1 uniformly at ran-
dom, each vertex of e1 has a probability of 1/2 being t1. Hence, we can get
E[w(v, t1)] = 1

2

∑
u∈e1

w(v, u) ≥ 1
2w(e1) by the triangle inequality. Similarly, we

can get E[w(v, hm)] ≥ 1
2w(em).

Consider E[w(hi, ti+1)]. We can get E[w(hi, ti+1)] = 1
4

∑
u∈ei

∑
w∈ei+1

w(u,w).
Let ei = u′u′′ and ei+1 = o′o′′. By the triangle inequality, we can get that

∑

u∈ei

∑

w∈ei+1

w(u,w) = w(u′, o′) + w(u′, o′′) + w(u′′, o′) + w(u′′, o′′)

≥ w(o′, o′′) + w(u′, u′′)
= w(ei) + w(ei+1).

Therefore, E[w(hi, ti+1)] ≥ 1
4 (w(ei) + w(ei+1)) for 1 ≤ i < m. �

Lemma 7. It holds that E[w(Ci)] ≥ 3m+1
2m w(Si).

Proof. Note that

w(Ci) = w(v, t1) + w(v, hm) +
m−1∑

i=1

(w(ti, hi) + w(hi, ti+1))

= w(Si) + w(v, t1) + w(v, hm) +
m−1∑

i=1

w(hi, ti+1).

We can get that

E[w(Ci)] ≥ w(Si) +
1
2
(w(e1) + w(em)) +

1
4

m−1∑

i=1

(w(ei) + w(ei+1))

= w(Si) +
1
2
(w(e1) + w(em)) +

1
2
w(Si) − 1

4
(w(e1) + w(em))

=
3
2
w(Si) +

1
4
(w(e1) + w(em))

≥
(

3
2

+
1

2m

)

w(Si)

=
3m + 1

2m
w(Si),

where the first inequality follows from Lemma 6, and the second from w(e1) +
w(em) ≥ (2/m)w(Si) by the algorithm. �

Theorem 4. For metric kCP with odd k, Algorithm 3 is a polynomial-time
(3/4 − 0.25/k)-approximation algorithm.
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Proof. Recall that 2w(M∗
p) ≥ (1 − 1/k)w(C∗

k) and M∗
p =

⋃n/k
i=1 Si. Using a

derandomization based on conditional expectations [29], by Lemma 7, we can
get that

w(Ck) ≥
n/k∑

i=1

3m + 1
2m

w(Si) =
3m + 1

2m
w(M∗

p) ≥ 3m + 1
4m

(

1 − 1
k

)

w(C∗
k).

Since m = (k − 1)/2, we can get an approximation ratio of 3m+1
4m (1 − 1

k ) =
3/4 − 0.25/k. �

By Theorem 4, we obtain a 7/10-approximation algorithm for metric 5CP,
which improves the previous ratio 17/25 in Theorem 3, and the ratio 3/5 in [21].

Corollary 1. For metric 5CP, Algorithm 3 is a 7/10-approximation algorithm.

4 Approximation Algorithms for Metric kPP

In this section, we consider metric kPP. Using a reduction from metric kPP to
metric TSP, metric kPP admits a 7/8 · (1 − 1/k)-approximation algorithm [11].
Note that, unlike metric kCP, it is not easy to construct a better black box
to improve the ratio. However, we will combine the properties of the 7/8-
approximation algorithm for metric TSP with an algorithm based on matching
to obtain a better approximation ratio for even 6 ≤ k ≤ 10. Next, we assume
that k is even.

The first algorithm, denoted by Algorithm 4, is to use the reduction from
metric kPP to metric TSP [11].

Step 1. Obtain a Hamiltonian cycle H using the 7/8-approximation algo-
rithm for metric TSP [19];
Step 2. Get a k-path packing Pk with w(Pk) ≥ (1−1/k)w(H) from H using
the same method in Step 2 of Algorithm 1.

For every Pi = vi1vi2 · · · vik ∈ P∗
k , let E ′

i = {vi(2j−1)vi(2j)}k/2j=1 and E ′′
i =

{vi(2j)vi(2j+1)}(k−2)/2
j=1 . Then, we can obtain a matching Mn/2 =

⋃
i E

′
i of size

n/2 and a matching Mp =
⋃

i E
′′
i of size p := (n/k) · (k − 2)/2. Note that

w(Mn/2) + w(Mp) = w(P∗
k ). We have the following bounds.

Lemma 8 (∗). w(C∗
k) ≥ k−2

k−1w(P∗
k ) + 2

k−1w(Mn/2).

Lemma 9 (∗). w(Pk) ≥ 5k−10
8k w(P∗

k ) + 2k+3
4k w(Mn/2).

Next, we propose an algorithm, denoted by Algorithm 5, to obtain another
k-path packing P ′

k, which can be used to make a trade-off with Pk. The frame-
work of Algorithm 5 is similar to Algorithm 3 in Sect. 3.3. Let M∗

p denote the
maximum weight matching of size p = (n/k) · (k − 2)/2, which can be computed
in polynomial time [10,20]. Note that w(M∗

p) ≥ w(Mp). There are 2n/k isolated
vertices not covered by M∗

p. Next, we construct a k-path packing using M∗
p with

isolated vertices. Algorithm 5 mainly contains three steps.
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Step 1. Arbitrarily partition the p edges of M∗
p into n/k sets with the same

size, denoted by S1,S2, . . . ,Sn/k. Note that each edge set contains m :=
(k − 2)/2 edges. For each of the n/k edge sets, arbitrarily assign two isolated
vertices.
Step 2. Consider an arbitrary edge set Si = {e1, e2, . . . , em} with the two
isolated vertices u and v. Assume w.o.l.g. that w(e1) ≥ w(em) ≥ w(ei) for
2 ≤ i < m, i.e., w(e1) + w(em) ≥ (2/m)w(Si). Orient each edge ei uniformly
at random from the two choices. Let ti (resp., hi) denote the tail (resp., head)
vertex of ei. Construct a k-path P ′

i such that P ′
i = ut1h1t2h2 · · · tmhmv.

Step 3. Get a k-path packing P ′
k by packing the k-paths from the edge sets

and the isolated vertices.

Algorithm 5 can also be derandomized by conditional expectations.
Next, we analyze the expected weight of P ′

i = ut1h1t2h2 · · · tmhmv, obtained
from the edge set Si and the two isolated vertices u and v.

Lemma 10 (∗). It holds that E[w(u, t1)] ≥ 1
2w(e1), E[w(v, hm)] ≥ 1

2w(em), and
E[w(hi, ti+1)] ≥ 1

4 (w(ei) + w(ei+1)) for 1 ≤ i < m.

Lemma 11 (∗). It holds that E[w(P ′
k)] ≥ 3k−4

2k−4w(M∗
p).

Lemma 12 (∗). w(P ′
k) ≥ 3k−4

2k−4w(Mp).

Theorem 5 (*). There is a 27k2−48k+16
32k2−36k−24 -approximation algorithm for metric

kPP with even k.

The approximation ratio in Theorem 5 is better than 7/8 · (1 − 1/k) for even
10 ≥ k ≥ 6. For k = 4, the ratio is even worse than the ratio 3/4 in [11]. But, in
the next section, we show an improved 14/17 ≈ 0.823-approximation algorithm.

5 Approximation Algorithms for the Case of k = 4

In this section, we study the case of k = 4 for metric/general kCP and kPP. For
metric 4CP, we improve the best-known ratio from 3/4 [21] to 5/6. For general
4CP, we improve the best-known ratio from 2/3 [21] to 3/4. For metric 4PP, we
improve the best-known ratio from 3/4 [11] to 14/17.

5.1 General 4CP

Zhao and Xiao [30] observed some structural properties of the minimum weight
4-cycle packing and the minimum weight matching of size n/2. In fact, these
properties even hold for the maximum weight 4-cycle packing C∗

4 and the maxi-
mum weight matching M∗ of size n/2.

Lemma 13 ([30]). Given C∗
4 and M∗, there is a way to color edges in C∗

4 with
red and blue such that
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(1) the blue (resp., red) edges form a matching of size n/2 Mb (resp., Mr);
(2) C∗

4 = Mb ∪ Mr;
(3) Mb ∪ M∗ is a cycle packing and the length of every cycle is divisible by 4.

An alternative proof of Lemma 13 could be found in [23]. Next, we describe
the approximation algorithm for general 4CP, denoted by Algorithm 6.

Step 1. Find a maximum weight matching M∗ of size n/2.
Step 2. Construct a multi-graph G/M∗ such that there are n/2 super-
vertices one-to-one corresponding to the n/2 edges in M∗, i.e., there is a
function f , and for two super-vertices f(ei), f(ej) such that ei, ej ∈ M∗,
there are four super-edges f(ei)f(ej) between them, corresponding to the
four edges uv with a weight of w(u, v) (u ∈ ei, v ∈ ej).
Step 3. Find a maximum weight matching M∗∗

n/4 of size n/4 in graph G/M∗.
Note that M∗ ∪ M∗∗

n/4 corresponds to a 4-path packing P4 in graph G.
Step 4. Obtain a 4-cycle packing C4 by completing the 4-path packing P4.

Note that w(C4) ≥ w(P4) = w(M∗) + w(M∗∗
n/4).

Lemma 14 (∗). w(M∗∗
n/4) ≥ 1

2w(Mb).

Lemma 15 (∗). w(P4) ≥ 1
2w(M∗) + 1

2w(C∗
4 ).

Theorem 6 (*). Algorithm 6 is a 3/4-approximation algorithm for general
4CP.

5.2 Metric 4CP

Li and Yu [21] proved an almost trivial approximation ratio of 3/4. We show that
their algorithm, denoted by Algorithm 7, actually achieves an approximation
ratio of 5/6.

Step 1. Find a maximum weight matching M∗ of size n/2.
Step 2. Construct a multi-graph G/M∗ such that there are n/2 super-
vertices one-to-one corresponding to the n/2 edges in M∗, i.e., there is a
function f , and for two super-vertices f(ei), f(ej) such that ei, ej ∈ M∗, there
are two super-edges f(ei)f(ej) between them, corresponding to the edge sets
{uz, xy} and {uy, xz} with a weight of w(u, z)+w(x, y) and w(u, y)+w(x, z)
(ux ∈ ei, yz ∈ ej).
Step 3. Find a maximum weight matching M∗∗

n/4 of size n/4 in graph G/M∗.
Note that M∗ ∪ M∗∗

n/4 corresponds to a 4-cycle packing C4 in graph G if we
decompose each super-edge of M∗∗

n/4 into two normal edges.
Step 4. Return C4.

Note that C4 is the maximum weight 4-cycle packing containing the edges of
M∗ by the optimality of M∗∗

n/4. Recall that we can get a 4-path packing P4 such

that w(P4) ≥ 1
2w(M∗)+ 1

2w(C∗
4 ) by Lemma 15. Moreover, if P4 = {uixiyizi}n/4i=1,

M∗ represents the edge set {uixi, yizi}n/4i=1. Let P4 denote the edge set {uizi}n/4i=1.
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Lemma 16 (∗). w(C4) ≥ 3
4w(C∗

4 ) + w(P4).

Lemma 17 (∗). w(C4) ≥ w(C∗
4 ) − 2w(P4).

Theorem 7 (*). Algorithm 7 is a 5/6-approximation algorithm for metric
4CP.

On {1, 2}-weighted graphs we may obtain a better approximation ratio.

Theorem 8 (*). On {1, 2}-weighted graphs, Algorithm 7 is a 7/8-approxi-
mation algorithm for metric 4CP.

5.3 Metric 4PP

At last, we will consider metric 4PP. Recall that we can get a 4-path packing P4

such that w(P4) ≥ 1
2w(M∗) + 1

2w(C∗
4 ) by Lemma 15. For metric 4PP, we will

construct another 4-path packing P ′
4. The algorithm, denoted by Algorithm 8,

is shown as follows.

Step 1. Obtain a 4-path packing P4 such that w(P4) ≥ 1
2w(M∗) + 1

2w(C∗
4 )

using Algorithm 6.
Step 2. Obtain a maximum weight matching M∗∗

n/4 of size n/4 in graph G.
Note that there are also n/2 isolated vertices not covered by M∗∗

n/4.
Step 3. Arbitrarily assign two isolated vertices ui, zi for each edge xiyi ∈
M∗∗

n/4. Assume w.l.o.g. that w(ui, xi) + w(yi, zi) ≥ w(zi, xi) + w(yi, ui).
Step 4. Obtain another 4-path packing P ′

4 by taking a 4-path uixiyizi for
every edge xiyi ∈ M∗∗

n/4 with the two isolated vertices ui, zi.

Let C4 be the 4-cycle packing obtained by completing the maximum weight
4-path packing P∗

4 , i.e., for every 4-path Pi = uixiyizi ∈ P4, we obtain a 4-cycle
Ci = uixiyiziui. Then, let C4 = P∗

4 ∪ P∗
4 . Moreover, let C4 = M1 ∪ M2 such

that M1 and M2 are two matchings of size n/2, and M1 ∩ P∗
4 = ∅. Obtain

another 4-cycle packing C′
4 such that for every 4-path Pi = uixiyizi ∈ P4 there

is a 4-cycle C ′
i = uixiziyiui in C′

4.

Lemma 18 (∗). w(P4) ≥ max{ 1
2w(M1) + 1

2w(P∗
4 ) + 1

2w(P∗
4 ), 3

2w(M1) −
w(P∗

4 )}.
Lemma 19 (∗). w(P ′

4) ≥ 2w(P∗
4 ) − 2w(M1).

Theorem 9 (*). There is a 14/17-approximation algorithm for metric 4PP.

6 Conclusion

In this paper, we consider approximation algorithms for metric/general kCP and
kPP. Most of our results are based on simple algorithms but with deep analysis.
In the future, it would be interesting to improve these approximation ratios,
even on {0, 1}-weighted or {1, 2}-weighted graphs. In particular, one challenging
direction is to design better algorithms for metric/general 3CP and 3PP.
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