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Abstract. We consider the weighted MAX–SAT problem with an addi-
tional constraint that at most k variables can be set to true. We call
this problem k–WMAX–SAT. This problem admits a (1 − 1

e
)-factor

approximation algorithm in polynomial time [Sviridenko, Algorithmica
2001] and it is proved that there is no (1 − 1

e
+ ε)-factor approximation

algorithm in f(k) · no(k) time for Maximum Coverage, the unweighted
monotone version of k–WMAX–SAT [Manurangsi, SODA 2020]. There-
fore, we study two restricted versions of the problem in the realm of
parameterized complexity.
1. When the input is an unweighted 2–CNF formula (the problem

is called k–MAX–2SAT), we design an efficient polynomial-size
approximate kernelization scheme. That is, we design a polynomial-
time algorithm that given a 2–CNF formula ψ and ε > 0, com-
presses the input instance to a 2–CNF formula ψ� such that any
c-approximate solution of ψ� can be converted to a c(1 − ε)-
approximate solution of ψ in polynomial time.

2. When the input is a planar CNF formula, i.e., the variable-clause
incident graph is a planar graph, we show the following results:

– There is an FPT algorithm for k–WMAX–SAT on planar CNF
formulas that runs in 2O(k) · (C + V ) time.

– There is a polynomial-time approximation scheme for k–

WMAX–SAT on planar CNF formulas that runs in time 2O( 1
ε
) ·

k · (C + V ).
The above-mentioned C and V are the number of clauses and vari-
ables of the input formula respectively.

Keywords: Parameterized Algorithms · MAX–SAT · MAX–2SAT

1 Introduction

In this paper, we study the well-studied MAX–SAT problem with cardinality
constraint. The weighted version of the problem is formally defined as follows.
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Weighted MAX–SAT with Cardinality Constraint (k–WMAX–SAT)

Parameter: k
Input: A set of t clauses CF = {C1, C2, . . . , Ct} of a CNF formula F , a weight
function w : CF → R

+ and a positive integer k.
Objective: Find a subset S of variables such that |S| ≤ k and setting vari-
ables of S to true and other variables to false, maximizes the weight of the
satisfied clauses.

k–MAX–SAT and its monotone version (a version in which negated literals
are not allowed) Maximum Coverage are well studied both in the realm of
approximation algorithms and parameterized complexity. The input of Maxi-

mum Coverage is a family F of subsets of a universe U and a positive integer
k. The goal is to find S1, S2, . . . , Sk ∈ F that maximizes |S1 ∪ S2 ∪ · · · ∪ Sk|.

Maximum Coverage, and hence k–MAX–SAT are known to be NP-
complete and W[2]-hard because Maximum Coverage is a more general case
of the Dominating Set problem. A simple greedy approximation algorithm
for Maximum Coverage outputs a (1 − 1

e )-approximate solution, where e
is the base of the natural logarithm. This greedy approximation algorithm is
essentially optimal for Maximum Coverage [7]. Sviridenko [18] obtained a
(1− 1

e )-factor approximation in polynomial time for k–WMAX–SAT. Recently,
Manurangsi [14] showed that there is no f(k) · no(k) time algorithm that can
approximate Maximum Coverage within a factor of (1 − 1

e + ε) for any ε > 0
and any function f , assuming Gap Exponential Time Hypothesis (Gap-ETH).
Thus, to obtain tractable results for k–WMAX–SAT in the realm of parame-
terized complexity and approximation algorithms, we need to restrict the input
to different classes of formulas. We study cardinality constrained unweighted
MAX–SAT when the number of literals in each clause is at most 2. This prob-
lem is called k–MAX–2SAT. The problem is formally defined below.

MAX–2SAT with Cardinality Constraint (k–MAX–2SAT)

Parameter: k
Input: A set of t clauses CF = {C1, C2, . . . , Ct} of a 2–CNF formula F and
a positive integer k.
Objective: Find a subset S of variables such that |S| ≤ k and setting vari-
ables of S to true and other variables to false, maximizes the number of the
satisfied clauses.

k–MAX–2SAT and its monotone version Max–k–Vertex Cover (shortly
Max k–VC) are extensively studied [3,9,10,13,16,17]. The best-known
polynomial-time approximation ratio for k–MAX–2SAT is 0.75 [9]. Raghaven-
dra and Tan [17] designed an α-approximation algorithm for some α > 0.92
that runs in time npoly(n/k), where n is the number of variables in the input
formula [13]. That is, this algorithm runs in polynomial time when k is a con-
stant fraction of V . Assuming Unique Games Conjecture (UGC), it is NP-hard
to approximate k–MAX–2SAT with a factor better than 0.929 [1].
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The monotone variant of the problem, Max k–VC gives an interesting con-
nection between approximate kernelization and approximation algorithms. Here,
given a graph G, our objective is to find a vertex subset S of size k such that
the number of edges in G with at least one endpoint in S is maximized. Max

k–VC is W[1]-hard and Marx [15] designed the first FPT approximation scheme
for the problem, where k is the parameter. Lokshtanov et al. [12] showed that,
indeed the steps of the algorithm by Marx can be converted to get an effi-
cient polynomial-size approximate kernelization scheme (EPSAKS). We refer to
Sect. 2 for the definition of approximate kernelization. Manurangsi [13] improved
the kernel size to O(k/ε) and the running time of FPT approximation scheme to
(1/ε)O(k)nO(1) for Max k-VC. Manurangsi applied the algorithm of Raghaven-
dra and Tan [17] for k–MAX–2SAT on the linear size approximate kernel to
obtain an approximation factor of 0.92 for Max k–VC. Approximating Max

k–VC with a factor better than 0.929 is also NP-hard assuming UGC [1]. We
prove that k–MAX–2SAT admits an EPSAKS.

Theorem 1. Given a set of t clauses CF = {C1, C2, . . . , Ct} of a 2–CNF for-
mula F and a positive integer k, there is an EPSAKS (efficient polynomial-size
approximate kernelization scheme) for k–MAX–2SAT such that the size of the
output of the reduction algorithm is upper-bounded by O

(
k5

ε2

)
.

We also study k–WMAX–SAT when the input is a planar CNF formula, that
is, the variable-clause incident graph is a planar graph. Restricting MAX–SAT
to planar formulas has been already considered in the realm of approximation
algorithms [4,11]. We prove the following result for k–WMAX–SAT on planar
CNF formulas.

Theorem 2. Given a set of t clauses CF = {C1, C2, . . . , Ct} of a planar CNF
formula F , a weight function w : CF → R

+ and a positive integer k, there is an
FPT algorithm for k–WMAX–SAT that runs in O(236k · k3 · |CF ∪ VF |) time.

Khanna and Motwani [11] already designed a PTAS for k–MAX–SAT (the
unweighted version) on planar formulas. Using a similar technique, we show that
the weighted version k–WMAX–SAT also admits a PTAS.

Theorem 3. Given a set of t clauses CF = {C1, C2, . . . , Ct} of a planar CNF
formula F , a weight function w : CF → R

+ and a positive integer k, there is
a polynomial-time approximation scheme that runs in O( 1

ε2 · 2
36
ε · k · |CF ∪ VF |)

time and finds S ⊆ VF such that |S| ≤ k and

k–WMAX–SAT(CF , w, k, S) ≥ (1 − ε) · OPT(CF , w, k)

Here, OPT(CF , w, k) is the maximum total weight of clauses in CF that can be
satisfied by an assignment where at most k variables are set to true.
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2 Preliminaries

Definition 1 (Conjunctive Normal Form (CNF)). A formula is said to be
in Conjunctive Normal Form (CNF) if it looks like C1 ∧C2 ∧· · ·∧Ct where each
Ci = (l1 ∨ l2 ∨ · · · ∨ lti

) is called a clause and each li is called a literal. A literal
is either a variable, called positive literal, or the negation of a variable, called
negative literal.

A formula is said to be in 2–Conjunctive Normal Form (2–CNF) if it is in
CNF and all of its clauses contain 2 literals.

We assume, without loss of generality, that for each variable v, at most one
of the v and ¬v is contained in a clause, no literal is repeated in a clause and all
clauses are distinct.

For a CNF formula F , the set of clauses and the set of variables appeared in
F are denoted by CF = {C1, C2, . . . , Ct} and VF = {v1, v2, . . . , vn}, respectively.

2.1 Parameterized Complexity

For a parameterized maximization problem Π and a solution s to the instance
(I, k) of Π, we denote the value of s by Π(I, k, s), and the task is to find a
solution with the maximum possible value. We state the following definitions
slightly modified from the Kernelization book [8].

Definition 2 (FPT optimization problem). A parameterized optimization
problem Π is fixed-parameter tractable (FPT) if there is an algorithm (called
FPT algorithm) that solves Π, such that the running time of the algorithm on
instances of size n with parameter k is upper-bounded by f(k) · nO(1) for a com-
putable function f .

Definition 3 (α-approximate polynomial-time preprocessing algo-
rithm). Let 0 < α ≤ 1 be a real number and Π be a parameterized maximiza-
tion problem. An α-approximate polynomial-time preprocessing algorithm A for
Π is a pair of polynomial-time algorithms. The first one is called the reduction
algorithm RA, and given an instance (I, k) of Π, it outputs another instance
(I ′, k′) = RA(I, k). The second algorithm is called the solution lifting algo-
rithm. This algorithm takes an instance (I, k) of Π, the output instance (I ′, k′)
of the reduction algorithm, and a solution s′ to the instance (I ′, k′). The solution
lifting algorithm works in time polynomial in |I|, k, |I ′|, k′ and |s′|, and outputs
a solution s to (I, k) such that

Π(I, k, s)
OPT (I, k)

≥ α · Π(I ′, k′, s′)
OPT (I ′, k′)

Definition 4 (α-approximate kernelization). An α-approximate kerneliza-
tion (α-approximate kernel) is an α-approximate polynomial-time preprocess-
ing algorithm A such that sizeA is upper-bounded by a computable function
g : N → N where sizeA is defined as follows:
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sizeA(k) = sup{|I ′| + k′ : (I ′, k′)
= RA(I, k) for any instance (I, k)of the problem}

If the upper-bound g(·) is a polynomial function of k, we say A is an α-
approximate polynomial kernel.

Definition 5 (polynomial-size approximate kernelization scheme
(PSAKS)). A polynomial-size approximate kernelization scheme (PSAKS)
for a parameterized maximization problem Π, is a family of (1 − ε)-approximate
polynomial kernels for every 0 < ε < 1.

Definition 6 (Efficient PSAKS). An efficient PSAKS (EPSAKS) is a
PSAKS such that for every (1 − ε)-approximate polynomial kernel A in that,
sizeA(k) is upper-bounded by f(1ε ) · kc for a function f and a constant c inde-
pendent of I, k and ε.

2.2 Tree Decomposition and Tree-Width

We state the following definitions and lemmas from the Parameterized Algo-
rithms book [5].

Definition 7 (Tree decomposition). A tree decomposition of a graph G is
a pair T = (T, {Xt}t∈V (T )), where T is a tree whose every node t is assigned a
vertex subset Xt ⊆ V (G), called a bag, such that the following three conditions
hold:

– Vertex coverage:
⋃

t∈V (T ) Xt = V (G), i.e., every vertex of G is in at least
one bag.

– Edge coverage: For every uv ∈ E(G), there exists a node t of T such that
bag Xt contains both u and v.

– Coherence: For every u ∈ V (G), the set Tu = {t ∈ V (T ) : u ∈ Xt}, i.e., the
set of nodes whose corresponding bags contain u, induces a connected subtree
of T .

The width of tree decomposition T = (T, {Xt}t∈V (T )) equals maxt∈V (T ) |Xt| − 1.

Definition 8 (Tree-width). The tree-width of a graph G is the minimum
possible width of a tree decomposition of G.

Definition 9 (Nice tree decomposition). A tree decomposition T = (T,
{Xt}t∈V (T )), rooted from r ∈ V (T ), is called nice if the following conditions are
satisfied:

– Xr = ∅ and Xl = ∅ for every leaf l of T .
– Every non-leaf node of T is of one of the following three types:

• Introduce node: a node t with exactly one child t′ such that Xt = Xt′ ∪
{v} for some vertex v /∈ Xt′ . We say that v is introduced at t.
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• Forget node: a node t with exactly one child t′ such that Xt = Xt′ \ {w}
for some vertex w ∈ Xt′ . We say that w is forgotten at t.

• Join node: a node t with two children t1, t2 such that Xt = Xt1 = Xt2 .

Lemma 1. If a graph G admits a tree decomposition of width at most d, then it
also admits a nice tree decomposition of width at most d. Moreover, given a tree
decomposition T = (T, {Xt}t∈V (T )) of G of width at most d, one can in time
O(d2 · max(|V (T )|, |V (G)|)) compute a nice tree decomposition of G of width at
most d that has O(d · |V (G)|) nodes.

3 EPSAKS for k–MAX–2SAT with Cardinality
Constraint

In this section, we show that k–MAX–2SAT admits an EPSAKS. That is we
prove Theorem 1.

There are two main observations used in the algorithm. First, since one can
satisfy all clauses containing at least one negative literal by setting all the vari-
ables to false, the optimal value is not less than the number of clauses containing
negative literals. Second, if a variable v appears positively in many clauses, then
one can satisfy all those clauses by setting v true and all the other variables
false.

Let F be a 2–CNF formula with clause set CF and variable set VF . For a
variable v ∈ VF , we denote the number of clauses in the form of (v∨u), (v∨¬u),
(¬v∨u) and (¬v∨¬u) by d++(v), d−

+(v), d+−(v) and d−
−(v) respectively. For V ⊆ VF

we denote the set of negation of variables in V with ¬V , i.e., ¬V = {¬s | s ∈ V }.
Let PF = {p1, p2, . . . , pl} be the set of variables that appear only in clauses
containing two positive literals, i.e., in the form of (v ∨ u), and NF = VF \ PF .
We suppose, without loss of generality, d++(p1) ≥ d++(p2) ≥ · · · ≥ d++(pl).

We now describe a (1 − ε)-approximate polynomial-time preprocessing algo-
rithm Aε for an arbitrary ε.

Reduction AlgorithmRε: Rε takes the set of clauses CF = {C1, C2, . . . , Ct} of a 2–

CNF formula F and a parameter k as input. Set λ to be equal to
4·(k

2)
ε . Recall that

PF = {p1, p2, . . . , pl} is the set of variables that appear only in clauses containing
two positive literals. Let P̃F = {p1, p2, . . . , pl̃} where l̃ = min(l, k + kλ) and
C̃F ⊆ CF be the set of clauses whose both variables are in PF \ P̃F . If both of
the following requirements are satisfied, Rε outputs (CF \ C̃F , k), otherwise it
outputs ({C1}, k + 1).

(R1) There are < λ clauses with at least one negative literal.
(R2) d++(v) < λ for every variable v ∈ VF .

Solution Lifting Algorithm Lε: The algorithm takes (CF , k), the output of the
reduction algorithm (C′

F ′ , k′) and a set S′ of at most k′ variables appeared in F ′.
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If k′ = k, Lε outputs S = S′. Otherwise, let VF = {v1, v2, . . . , vn} and without
loss of generality suppose

d++(v1) − d+−(v1) ≥ d++(v2) − d+−(v2) ≥ · · · ≥ d++(vn) − d+−(vn)

Then the algorithm outputs

S = {v ∈ {v1, v2, . . . , vk} | d++(v) − d+−(v) > 0}

We next show that Aε is a (1−ε)-approximate polynomial-time preprocessing
algorithm. To do so, we need to prove the following lemmas.

Lemma 2. Suppose d++(v) < λ for every v ∈ VF . Let S∗ be an optimal solu-
tion for (CF , k) such that S∗ ∩ PF is lexicographically smallest with respect to
p1, p2, . . . , pl. Then (S∗ ∩ PF ) ⊆ P̃F = {p1, p2, . . . , pl̃}.

Proof. If l̃ = l, we have P̃F = PF . So (S∗ ∩ PF ) ⊆ PF = P̃F and we are done.
So suppose l̃ = k + kλ and for the sake of contradiction, suppose there is p ∈
(S∗ ∩ PF ) such that p /∈ P̃F . Define the set A as the following:

A = S∗ ∪ {v ∈ VF | ∃(v ∨ u) ∈ CF : u ∈ S∗}

Since |S∗| ≤ k and ∀v ∈ VF : d++(v) < λ, we have |A| < k + kλ. Therefore, there
is a variable q ∈ {p1, p2, . . . , pk+kλ} which is not in A, i.e., q ∈ P̃F \ A.

Note that since p, q ∈ PF , p and q appear only in clauses with two positive
literals, So we have

k–MAX–2SAT(CF , k, S∗ \ {p} ∪ {q})

≥ k–MAX–2SAT(CF , k, S∗) − d++(p) + d++(q) (since p ∈ PF and q /∈ A)

≥ k–MAX–2SAT(CF , k, S∗) (since p /∈ P̃F and q ∈ P̃F )
= OPT(CF , k)

Therefore, S∗ \ {p} ∪ {q} is an optimal solution and since p /∈ P̃F but q ∈ P̃F ,
(S∗ \ {p} ∪ {q}) ∩ PF is lexicographically smaller than S∗ ∩ PF , which implies a
contradiction.

Lemma 3. If d++(v) < λ for every v ∈ VF , then OPT(CF , k) = OPT(CF \C̃F , k).

Proof. Since (CF \ C̃F ) ⊆ CF , we have OPT(CF , k) ≥ OPT(CF \ C̃F , k). For the
other direction, let S∗ be the optimal solution of (CF , k) described in the Lemma
2. By Lemma 2 we know S∗ ∩ (PF \ P̃F ) = ∅ and therefore, by setting only
variables of S∗ true, none of the clauses with both literals from PF \ P̃F , i.e.,
clauses in C̃F , gets satisfied. This implies

k–MAX–2SAT(CF , k, S∗)︸ ︷︷ ︸
=OPT(CF ,k)

= k–MAX–2SAT(CF \ C̃F , k, S∗)︸ ︷︷ ︸
≤OPT(CF \C̃F ,k)

which proves the lemma.
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Lemma 4. Aε is a (1−ε)-approximate polynomial-time preprocessing algorithm.

Proof. Clearly, both Rε and Lε are polynomial algorithms. In the solution lifting
algorithm, note that C′

F ′ ⊆ CF and thus S′ ⊆ VF . This implies that the output
of Lε is a subset of VF with size ≤ k and therefore a solution to instance (CF , k)
of k–MAX–2SAT.

We now show that

k–MAX–2SAT(CF , k, S)
OPT(CF , k)

≥ (1 − ε) · k–MAX–2SAT(C′
F ′ , k′, S′)

OPT(C′
F ′ , k′)

We consider two cases:

1. The aforementioned requirements, (R1) and (R2) are satisfied.
In this case, Rε outputs (C′

F ′ , k′) = (CF \ C̃F , k) and since k = k′, Lε would
output S = S′. Since CF \ C̃F ⊆ CF , we have

k–MAX–2SAT(CF , k, S′) ≥ k–MAX–2SAT(CF \ C̃F , k, S′)

And by Lemma 3 we get

k–MAX–2SAT(CF , k, S′)
OPT(CF , k)

≥ k–MAX–2SAT(CF \ C̃F , k, S′)
OPT(CF \ C̃F , k)

≥ (1 − ε) · k–MAX–2SAT(CF \ C̃F , k, S′)
OPT(CF \ C̃F , k)

Which completes the proof for the first case.
2. At least one of the requirements, (R1) and (R2) is not satisfied.

If (R1) is not satisfied we have k–MAX–2SAT(CF , k, ∅) ≥ λ. If (R2) is
not satisfied, there is a variable v ∈ VF such that d++(v) ≥ λ, thus
k–MAX–2SAT(CF , k, {v}) ≥ λ. Therefore, in this case OPT(CF , k) ≥ λ. Note
that for any solution S:

k–MAX–2SAT(CF , k, S) =
∑

v∈VF

d+−(v) − |{(¬v ∨ u) | v ∈ S, u ∈ VF \ S}|

+

∑
v∈VF d−

−(v)
2

− |{(¬v ∨ ¬u) | v, u ∈ S}|

+
∑
v∈S

d++(v) − |{(v ∨ u) | v, u ∈ S}|

And also:

|{(¬v ∨ u) | v ∈ S, u ∈ VF \ S}| =

(∑
v∈S

d+−(v) − |{(¬v ∨ u) | v, u ∈ S}|
)
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Which implies:

k–MAX–2SAT(CF , k, S) =
∑

v∈VF

d+
−(v) −

(
∑

v∈S

d+
−(v) − |{(¬v ∨ u) | v, u ∈ S}|

)

+

∑
v∈VF d−

−(v)

2
− |{(¬v ∨ ¬u) | v, u ∈ S}|

+
∑

v∈S

d+
+(v) − |{(v ∨ u) | v, u ∈ S}| (1)

And since |S| ≤ k and all clauses are distinct, we have:

|{(¬v ∨ ¬u)|v, u ∈ S}| , |{(v ∨ u)|v, u ∈ S}| ≤
(

k

2

)

Therefore, considering Eq. (1) we have:

k–MAX–2SAT(CF , k, S) ≥
∑

v∈VF

d+
−(v) −

(
∑

v∈S

d+
−(v) − |{(¬v ∨ u) | v, u ∈ S}|

)

+

∑
v∈VF d−

−(v)

2
−

(
k

2

)
+

∑

v∈S

d+
+(v) −

(
k

2

)

=
∑

v∈VF

d+
−(v) + |{(¬v ∨ u) | v, u ∈ S}|

+

∑
v∈VF d−

−(v)

2
+

(
∑

v∈S

d+
+(v) −

∑

v∈S

d+
−(v)

)
− 2 ·

(
k

2

)

(2)

Note that in this case Rε outputs (C′
F ′ , k′) = ({C1}, k + 1) and since k �= k′,

Lε outputs S = {v ∈ {v1, v2, . . . , vk}|d++(v) − d+−(v) > 0}. Let S∗ ⊆ VF be an
optimal solution to (CF , k). Then we have:

∑
v∈S

d++(v) − d+−(v) ≥
∑

v∈S∗
d++(v) − d+−(v)

And considering inequality (2):

k–MAX–2SAT(CF , k, S)

≥
∑

v∈VF

d+−(v) + |{(¬v ∨ u)|v, u ∈ S}|

+

∑
v∈VF d−

−(v)
2

+

( ∑
v∈S∗

d++(v) −
∑

v∈S∗
d+−(v)

)
− 2 ·

(
k

2

)

=
∑

v∈VF

d+−(v) −
( ∑

v∈S∗
d+−(v) − |{(¬v ∨ u)|v, u ∈ S∗}|

)

+ (|{(¬v ∨ u)|v, u ∈ S}| − |{(¬v ∨ u)|v, u ∈ S∗}|)
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+

∑
v∈VF d−

−(v)
2

+
∑
v∈S∗

d++(v) − 2 ·
(

k

2

)

≥ k–MAX–2SAT(CF , k, S∗) + |{(¬v ∨ u)|v, u ∈ S}|

− |{(¬v ∨ u)|v, u ∈ S∗}| − 2 ·
(

k

2

)
(By Eq. 1)

Plugging |{(¬v ∨ u)|v, u ∈ S∗}| ≤ 2 ·
(
k
2

)
into the above inequality, we get:

k–MAX–2SAT(CF , k, S) ≥ k–MAX–2SAT(CF , k, S∗) − 4 ·
(

k

2

)

= OPT(CF , k) − ελ (since S∗ is an optimal solution and λ =
4·(k

2)
ε )

Finally, as OPT(CF , k) ≥ λ we have:

k–MAX–2SAT(CF , k, S) ≥ (1 − ε) · OPT(CF , k)

Which implies k–MAX–2SAT(CF ,k,S)
OPT(CF ,k) ≥ (1 − ε) ≥ (1 − ε) · MAX–2SAT(C′

F′ ,k′,S′)
OPT(C′

F′ ,k′)

and proves the second case.

The next lemma states an upper-bound for sizeAε
(k).

Lemma 5. sizeAε
(k) is of O

(
k5

ε2

)
where sizeAε

(k) is defined in Definition 4.

Proof. Note that Rε returns either ({C1}, k + 1) or (CF \ C̃F , k). In the first
case sizeAε

(k) is of O(1) and so we need to only consider the case of returning
(CF \ C̃F , k). In this case, (R1) and (R2) are satisfied. Since (R1) is satisfied,
there are less than 2λ variables that appear in at least one clause with at least one
negative literal, i.e., |NF | < 2λ. Therefore, |NF ∪ P̃F | ≤ 2λ + l̃ ≤ 2λ + kλ + k =
O(kλ). (R1) and (R2) together imply that d++(v) + d−

+(v) + d+−(v) + d−
−(v) <

d++(v) + λ < 2λ which means every variable v ∈ VF appears in less than 2λ

clauses of F . Therefore, |CF \C̃F | is less than 2λ·|NF ∪P̃F | = O(kλ2) = O
(

k5

ε2

)
.

We finally prove Theorem 1. For convenience, we restate the theorem here.

Theorem 1. Given a set of t clauses CF = {C1, C2, . . . , Ct} of a 2–CNF for-
mula F and a positive integer k, there is an EPSAKS (efficient polynomial-size
approximate kernelization scheme) for k–MAX–2SAT such that the size of the
output of the reduction algorithm is upper-bounded by O

(
k5

ε2

)
.

Proof. According to Definition 6, the proof is directly derived from Lemma 4
and Lemma 5.



128 F. Panolan and H. Yaghoubizade

4 k–WMAX–SAT with Cardinality Constraint on Planar
Formulas

In this section, we present an FPT algorithm as well as a PTAS (Polynomial-
time approximation scheme) for k–WMAX–SAT on a special family of sparse
CNF formulas that we will refer to as planar formulas. We now describe this
family of formulas.

For a CNF formula F , let GF = (CF ∪ VF , E− ∪ E+) be a bipartite graph
such that (Ci, vj) ∈ E+ if Ci contains vj and (Ci, vj) ∈ E− if Ci contains ¬vj .
We call F a planar CNF formula if GF is a planar graph.

Both algorithms presented in this section are designed using Baker’s tech-
nique [2] and dynamic programming on tree decomposition. First, we need the
following lemmas.

Lemma 6 (Eppstein [6]). Let planar graph G have diameter d. Then G has
tree-width at most 3d − 2, and a tree-decomposition of G with such a width can
be found in time O(d · |V (G)|).

Lemma 7. Let F be a planar CNF formula. Then there is an algorithm with
running time O(23d · kd · |CF ∪ VF |) that takes CF = {C1, C2, . . . , Ct}, a weight
function w : CF → R

+, a positive integer k, and a tree decomposition of GF of
width at most d with O(d · |V (GF )|) nodes as input and solves k–WMAX–SAT,
i.e., finds S ⊆ VF such that |S| ≤ k and setting variables of S to true and other
variables to false maximizes the weight of the satisfied clauses.

Proof. First, we construct a nice tree decomposition T = (T, {Xt}t∈V (T )) of
width at most d with O(d · |V (GF )|) nodes in time O(d3 · |V (GF )|) using Lemma
1. Then, we use a dynamic programming routine.

For each t ∈ V (T ) let Vt ⊆ V (GF ) = CF ∪ VF be the union of all the
bags present in the subtree of T rooted at t, including Xt. For each t ∈ V (T ),
S ⊆ (Xt ∩ VF ), C ⊆ (Xt ∩ CF ) and 0 ≤ i ≤ k define the following:

dp[t, S, C, i] :=

Maximum possible weight of satisfied clauses in Vt if we set at
most i variable from Vt to true, set other variables of Vt to
false and ignore variables of VF \ Vt such that Ŝ ∩ Xt = S and
Ĉ ∩ Xt = C where Ŝ is the set of true variables and Ĉ is the
set of satisfied clauses in Vt.

If we manage to compute values of dp, then since Xr = ∅, where r is the root of
T , the answer would be dp[r, ∅, ∅, k] and we can fill the dp array in a bottom-up
manner and in the following way:

– Leaf node: If t is a leaf, Xt = ∅ and we have dp[t, ∅, ∅, i] = 0 for all 0 ≤ i ≤ k.
So in this case, filling each cell of dp takes O(1) time.

– Introduce node: If t is an introduce node with child t′ that Xt = Xt′ ∪ {v},
we consider two cases and fill the entries dp[t, S, C, i] in the following way.
1. v ∈ VF , i.e., v is a variable. Then C ′ ⊆ C might be the set of satisfied

clauses of Xt′ , if it satisfies one of the two below conditions:
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(C1) All clauses in C \ C ′ contain a positive literal of v, i.e., Setting v to
true satisfies all clauses in C \ C ′.

(C2) All clauses in C \ C ′ contain a negative literal of v, i.e., setting v to
false satisfies all clauses in C \ C ′.

So we can compute dp[t, S, C, i] as follows
{

maxC′satisfies (C1) dp[t′, S \ {v}, C ′, i − 1] + w(C \ C ′) if v ∈ S
maxC′satisfies (C2) dp[t′, S, C ′, i] + w(C \ C ′) if v /∈ S

So in this case, filling one cell of dp takes O(2d) time.
2. v ∈ CF , i.e., v is a clause. Note that because of edge coverage and coher-

ence properties, Var(v) ∩ Vt = Var(v) ∩ Xt where Var(v) is the set of
variables present in the clause v, either as a positive or negative literal.
So, there are two possibilities:

(P1) v ∈ C and v gets satisfied by setting all variables of S to true, Xt \ S
to false and ignoring variables of VF \ Xt.

(P2) v /∈ C and v is not satisfied by setting all variables of S to true, Xt \S
to false and ignoring variables of VF \ Xt.

Therefore, we have:

dp[t, S, C, i] =

⎧
⎨
⎩

dp[t′, S, C \ {v}, i] + w(v) if (P1) is true
dp[t′, S, C, i] if (P2) is true
INVALID otherwise

So, in this case filling one cell of dp takes O(1) time.
Overall we can fill dp[t, S, C, i] for an introduce node t in O(2d) time.

– Forget node: If t is a forget node with child t′ that Xt = Xt′ \{w}, we again
consider two cases:
1. w ∈ VF , i.e., w is a variable. Note that w is either set to true or false

and therefore:

dp[t, S, C, i] = max
{

dp[t′, S, C, i] setting w to false
dp[t′, S ∪ {w}, C, i] setting w to true

2. w ∈ CF , i.e., w is a clause.

dp[t, S, C, i] = max
{

dp[t′, S, C, i] w does not get satisfied
dp[t′, S, C ∪ {w}, i] w gets satisfied

Note that in this case filling one cell of dp takes O(1) time.
– Join node: If t is a join node with children t1 and t2 that Xt = Xt1 = Xt2 ,

we consider all possibilities of S1, S2 and C1, C2, and compute the value of
dp[t, S, C, i] by:

max
S1∪S2=S, C1∪C2=C, |S1|≤j≤i

⎛
⎝

dp[t1, S1, C1, j]
+ dp[t2, S2, C2, i − j + |S1 ∩ S2|]
− w(C1 ∩ C2)

⎞
⎠

So in the case of join nodes, we can compute the value of each cell of dp in
O(22d), because of 2d possibilities for S1 ∪ C1 and at most 2d possibilities for
S2 ∪ C2.
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The total number of array’s cells is O(|V (T )| · 2d · k) and we can fill each cell
in time O(22d), since by Lemma 1 |V (T )| = O(d · |V (GF )|) = O(d · |CF ∪ VF |)
we can fill all the cells in time O(23d · kd · |CF ∪ VF |). Again by Lemma 1,
constructing T is done in time O(d3 · |CF ∪VF | which gives us the overall runtime
of O(23d · kd · |CF ∪ VF |).

Finally, using the standard technique of backlinks, i.e., memorizing for every
cell of dp how its value was obtained, we can find an optimal solution, i.e., a
subset S ⊆ VF such that |S| ≤ k and setting its variables to true maximizes the
weight of the satisfied clauses, within the same running time.

4.1 FPT Algorithm

Here, we use Lemma 6 and Lemma 7 to show that k–WMAX–SAT on planar
formulas is FPT. That is we prove Theorem 2. For convenience, we restate the
theorem here.

Theorem 2. Given a set of t clauses CF = {C1, C2, . . . , Ct} of a planar CNF
formula F , a weight function w : CF → R

+ and a positive integer k, there is an
FPT algorithm for k–WMAX–SAT that runs in O(236k · k3 · |CF ∪ VF |) time.

Proof. Construct GF and without loss of generality suppose the graph is con-
nected. Then, do a breadth-first search (BFS) on the graph starting from an
arbitrary variable. Since GF is bipartite the first level would contain variables,
the second level would contain clauses, the third level would contain variables,
etc.

If the number of levels is more than 2k, for each 0 ≤ i label the level 2i + 1,
which contains variables, with [i mod (k + 1)]. Note that since the number of
levels is at least 2k + 1, we would use all the k + 1 different labels and therefore
there should be a label that all of its variables are set to false in the optimal
answer. We consider all the k + 1 possibilities for this label and each time,
set variables of one of the k + 1 labels, say label l, to false. This makes some
clauses satisfied, then we remove variables with label l and also satisfied clauses
to get a new graph GF,l. Each connected component of GF,l would contain
at most 2k + 1 levels and therefore its diameter is at most 4k. Using Lemma
6 a tree decomposition of GF,l with width at most 12k can be found in time
O(k · |VF ∪ CF |), and thus with O(k · |VF ∪ CF |) nodes. Then using Lemma 7
we can solve k–WMAX–SAT on the CNF formula induced by GF,l in time
O(236k · k2 · |CF ∪ VF |). By doing so for every label 0 ≤ l < k + 1, we can find
the optimal solution in time O(236k · k3 · |CF ∪ VF |).

If the number of levels is at most 2k, we can use Lemma 6 and Lemma 7 on
GF directly.
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4.2 Polynomial-Time Approximation Scheme

Now, we prove Theorem 3. For convenience, we restate the theorem here.

Theorem 3. Given a set of t clauses CF = {C1, C2, . . . , Ct} of a planar CNF
formula F , a weight function w : CF → R

+ and a positive integer k, there is
a polynomial-time approximation scheme that runs in O( 1

ε2 · 2
36
ε · k · |CF ∪ VF |)

time and finds S ⊆ VF such that |S| ≤ k and

k–WMAX–SAT(CF , w, k, S) ≥ (1 − ε) · OPT(CF , w, k)

Proof. Fix an arbitrary 0 < ε ≤ 1, let d = � 1
ε � and suppose S∗ ⊆ VF is an optimal

solution to k–WMAX–SAT on (F , w, k), i.e., |S∗| ≤ k and setting variables of
S∗ to true maximizes the weight of the satisfied clauses. Also, let C∗ be the
set of clauses that get satisfied by setting variables of S∗ to true. Construct
GF and without loss of generality suppose the graph is connected. Then, do a
breadth-first search (BFS) on the graph starting from an arbitrary clause.

If the number of levels is at least 2d, for each 0 ≤ i label the level 2i + 1,
which contains clauses, with [i mod d]. Let CF,l be the set of all clauses with
label l. Note that since the number of levels is at least 2d, we would use all the d
different labels and therefore there should be a label l∗ such that w(C∗ ∩CF,l) ≤
w(C∗)

d = OPT(CF ,w,k)
d .

We consider all the d possibilities for l∗ and each time remove clauses with
one of the labels, say label l, to get a new graph GF,l. Each connected component
of GF,l contains at most 2d levels, and therefore its diameter is at most 4d.

Using Lemma 6 a tree decomposition of GF,l with width at most 12d can be
found in time O(d · |VF ∪ CF |) and thus with O(d · |VF ∪ CF |) nodes. Then using
Lemma 7 we can solve k–WMAX–SAT on the CNF formula induced by GF,l in
time O(236d · kd · |CF ∪ VF |). Let Sl be the optimal solution of k–WMAX–SAT

on the CNF formula induced by GF,l and let k–WMAX–SAT(C, w, k, S) be the
weight of satisfied clauses in C ⊆ CF if we set variables of S to true. Then we
have the following for every label 0 ≤ l < d:

k–WMAX–SAT(CF , w, k, Sl) ≥ k–WMAX–SAT(CF \ CF,l, w, k, Sl)
≥ k–WMAX–SATT(CF \ CF,l, w, k, S∗)
= k–WMAX–SAT(CF , w, k, S∗) − w(C∗ ∩ CF,l)
= OPT(CF , w, k) − w(C∗ ∩ CF,l)

And for l∗ we also have:

k–WMAX–SAT(CF , w, k, Sl∗) ≥ OPT(CF , w, k) − w(C∗ ∩ CF,l∗)

≥ OPT(CF , w, k) − OPT(CF , w, k)
d

≥ (1 − ε) · OPT(CF , w, k)

Therefore, by finding Sl for every label 0 ≤ l < d, we can find the optimal
solution in time O( 1

ε2 · 2
36
ε · k · |CF ∪ VF |).
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5 Conclusion

In this work, we showed that k–MAX–2SAT admits an EPSAKS of size O(k5

ε2 ).
As the monotone variant of the problem, Maximum k–Vertex Cover, admits
an EPSAKS of size O(k

ε ) [13], which also works for weighted graphs, is it possible
to improve the kernel size for k–MAX–2SAT or design an EPSAKS for its
weighted version?

We also showed that k–WMAX–SAT on planar graphs admits an FPT
algorithm as well as a PTAS. Does this problem also admit a kernelization?
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