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Preface

The 18th International Conference and Workshop on Algorithms and Computation
(WALCOM 2024) was held at Kanazawa Bunka Hall, Kanazawa, Japan during March
18–March 20, 2024. The conference covered diverse areas of algorithms and compu-
tation, that is, approximation algorithms, algorithmic graph theory and combinatorics,
combinatorial algorithms, combinatorial optimization, computational biology, combi-
natorial reconfiguration, computational complexity, computational geometry, discrete
geometry, data structures, experimental algorithm methodologies, graph algorithms,
graph drawing, parallel and distributed algorithms, parameterized algorithms, param-
eterized complexity, network optimization, online algorithms, randomized algorithms,
and string algorithms. The conferencewas sponsored by theAlgorithmic Foundations for
Social Advancement (AFSA) Grant-in-Aid for Transformative Research Areas, MEXT,
Japan and Japan Advanced Institute of Science and Technology. It was also supported
by the Special Interest Group for ALgorithms (SIGAL) of the Information Processing
Society of Japan (IPSJ), Technical Committees on Theoretical Foundations of Comput-
ing (COMP) of the Institute of Electronics, Information and Communication Engineers
(IEICE) and the Japan Chapter of the European Association of Theoretical Computer
Science (EATCS Japan).

This volume of Lecture Notes in Computer Science contains 28 contributed papers
that were presented at WALCOM 2024. There were 78 submissions from 25 countries.
Each submission was reviewed by at least three Program Committee members with
the assistance of external referees. The volume also includes the extended abstracts of
two invited talks presented by Shin-ichi Minato and Naomi Nishimura. Two special
issues, one of Theoretical Computer Science and one of Journal of Graph Algorithms
and Applications, are being prepared for some selected papers among those presented
at WALCOM 2024.

We wish to thank all who made this meeting possible: the authors for submitting
papers, the Program Committee members and external referees (listed in the follow-
ing pages) for their excellent work, and our two invited speakers. We acknowledge the
Steering Committee members for their continuous encouragement and suggestions. We
also wish to express our sincere appreciation to the sponsors, local organizers, Proceed-
ings Committee, and the editors of the Lecture Notes in Computer Science series and
Springer for their help in publishing this volume. Finally, we thank the EasyChair con-
ference management system, which was very effective in handling the entire reviewing
process.

March 2024 Ryuhei Uehara
Katsuhisa Yamanaka

Hsu-Chun Yen
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Recent Research Activities on Algorithmic
Foundations for Social Advancement

Shin-ichi Minato(B)

Kyoto University, Kyoto, Japan
minato@i.kyoto-u.ac.jp

Abstract. Algorithms, the theories, techniques and logical procedures
of information processing, perform a key part of the recent sophisticated
information society. A five-year nation-wide research project on algo-
rithmic techniques, initiated in 2020, is currently in progress in Japan.
This presentation aims to provide an overview of the “AFSA” (Algorith-
mic Foundations for Social Advancement) project and introduce some
selected topics from our recent research activities.

1 Background and Purpose of AFSA Project

With the rapid advancements in the technologies of integrated circuits, optical
communication, and storage devices, our personal computing and communica-
tion terminals have experienced a remarkable improvement in cost-performance
ratios, ranging from thousands to a million times, over recent 30 years. Such
rapid technological progress is unprecedented in human history. For instance,
although the fundamental algorithmic techniques in deep learning and artificial
intelligence were already developed in the 1990s, their full potential has only
recently been realized due to a significant increase in computational power and
the facilitated acquisition of big data. For the next 10 to 20 years, we expect the
further progress in algorithmic technology leveraging such significant improve-
ment in computational power, and it will become a source of competitive advan-
tage to realize social advancement.

For activating the algorithm research communities, we have the following
awareness of issues. As shown in Fig. 1, in the early days of computer science,
individuals often conducted research on both theory and application. However,
in the recent era characterized by advanced information technologies, the gap
between theoretical researchers and applied researchers has widened, making it
challenging to deeply commit to the both research communities simultaneously.
Now it becomes more important to provide the methodologies and software
tools contributing to practical applications as a research outcome of algorithmic
foundations. Thus, we started to organize a research project to form “Art” layer
to bridge Science and Engineering, crossing the gap. Our project logo (Fig. 2)
symbolizes this research vision.

Our project aims to develop and organize state-of-the-art techniques on
algorithms. The project is named “AFSA” (Algorithmic Foundations for Social
Advancement) [13], a five-year national research project started from 2020. The
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
R. Uehara et al. (Eds.): WALCOM 2024, LNCS 14549, pp. 1–8, 2024.
https://doi.org/10.1007/978-981-97-0566-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0566-5_1&domain=pdf
https://doi.org/10.1007/978-981-97-0566-5_1
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Fig. 1. Research communities in theoretical computer science.

Fig. 2. A visual identity of the project.

results will be provided as open academic resources for many scientists and
engineers in various fields, to be utilized for social advancement. Based on the
recent drastic progress of computation power, upcoming innovative computation
devices, and new concepts from social sense of values, we will reformulate and
organize practical computation models to bridge theory and practice. We will
also create and organize computational theories and state-of-the-art techniques
for algorithms, such as discrete structure manipulation, constraint satisfaction
problem solving, enumeration, discrete optimization, quantum computation the-
ory, etc.

2 Organization of the Project

As shown in Fig. 3, our AFSA project consists of six research groups in two
categories A and B. The groups in A (A01 and A02) investigate the interface
layer to bridge theory and practice, and the groups in B (B01, B02, B03, and
B04) investigate specific theories and techniques to support the interface layer.
Each research group consists of six or seven PIs (principal investigators). For the
application layer, we have a number of external collaborators affiliated with many
kinds of research projects in the specific application domains. Those external
researchers and engineers communicate with AFSA project members through the
interface developed by the research groups A01 and A02. The detailed contents
of the six research groups are as shown below.

A01: New Problem Formulation on Next Generation Informatics and
Researches on their Algorithms:
Collaborating with researchers in the application layer, this group dis-
cusses and formulates a set of new problems to be considered in the future
society. We also design efficient algorithms based on a new approach.
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Fig. 3. An organization chart of AFSA project.

A02: Socially-Oriented Algorithm Implementation:
This group implements the algorithms proposed in our project and orga-
nizes the algorithmic foundations for social advancement. It provides an
interface between theoretical researchers and application engineers.

B01: Algorithmic Foundations Based on Large-Scale Discrete Struc-
tures:
By the collaboration of theoretical researchers and application engineers,
this group tackles how to deal with exponentially large-scale discrete
structures and develops innovative design methodologies of efficient algo-
rithms.

B02: New Computational Models for Algorithms and Discrete Opti-
mization
This group investigates basic research topics in the areas of discrete math-
ematics, combinatorial optimization, machine learning, etc. to develop
efficient algorithms for solving very large-scale problems required in our
society.

B03: Creation of Innovative Foundations to Bridge Theory and Prac-
tice of Quantum Algorithms
Combining the knowledge of classical computation and new quan-
tum models, this group constructs useful algorithmic foundations to
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Fig. 4. Tokyo-Kanda Laboratory.

Fig. 5. Kyoto-Teramachi Laboratory.

implement practically efficient quantum computers connected to conven-
tional systems.

B04: Exploration and Development of the Basic Theory of Algorithms
This group investigates important problems in theoretical computer sci-
ence, such as performance assurance, preserving fairness and stability, new
computation models and design methodologies for social requirements.

We also have publicly selected 17 individual research projects based on call
for proposals to work on additional related research topics. They are strongly
recommended to collaborate with at least two different research groups in the
AFSA project.

To facilitate the collaborative research work, we opened two meeting offices in
central Tokyo and Kyoto dedicated for AFSA project activities. The two offices,
Tokyo-Kanda Lab. (Fig. 4) and Kyoto-Teramachi Lab. (Fig. 5) are both located
nearby the central stations of the two big cities so that many researchers in differ-
ent universities/institutes can easily access to one of the offices and frequently
meet with each other to have research discussions. Unfortunately, due to the
overlap of the first year of launching AFSA project and the widespread impact
of COVID-19, the project members could not gather closely for discussion. How-
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ever, we established the two offices as hub centers aiming for the best mix of
online and offline activities. Even after the easing of COVID-19 restrictions, it
continues to operate effectively as a hybrid activity hub.

3 Recent Research Activities

International Competition on Graph Counting Algorithms

In 2023, the AFSA project conducted International Competition on Graph
Counting Algorithms (ICGCA). The graph counting problem is to count the
subgraphs satisfying specified constraints on a given graph. The problem belongs
to #P-complete, a computationally tough class. Graph counting algorithms are
sometimes a key technology to efficiently scan all the subgraphs representing the
feasible states of some kinds of societal systems, such as power supply networks
[5], communication networks [14], railroad systems [10], electoral districting [9]
, and many other systems. In this competition, contestants were asked to count
the paths under a length constraint. The benchmark set includes 150 challenging
instances, emphasizing on graphs resembling to infrastructure networks.

The competition was held from April to July in 2023. In total eleven solvers
were submitted and ranked by the number of benchmarks correctly solved within
a time limit. The evaluation results are revealed in the commendation ceremony
and symposium at the 22nd annual Forum on Information Technology (FIT
2023), in Osaka, Japan, September 7, 2023. The winning solver, TLDC, was
designed based on three fundamental approaches: backtracking search, dynamic
programming, and model counting or #SAT (a counting version of Boolean
satisfiability). Detailed analyses show that each approach has its own strengths,
and one approach is unlikely to dominate the others. The codes and papers of the
participating solvers are available at https://afsa.jp/icgca/. A detailed report of
this competition will be published as a journal article [6,7].

Our first trial of ICGCA has been finished successfully. We decided to con-
tinue this competition next year. The second ICGCA is scheduled to be held
from spring to summer in 2024.

Graphillion-2.0: Development of Graph Enumeration Software Tools

Graphillion [4,8] is a software library for very large sets of (vertex-)labeled
graphs, based on zero-suppressed binary decision diagrams (ZDDs) [12].
Graphillion was mainly developed by JST ERATO Minato project about ten
years ago, but still now well-maintained for solving many kinds of practical prob-
lems. Graphillion is implemented as a Python library to encourage easy develop-
ment of its applications, without introducing significant performance overheads.
Graphillion allows us to exhaustively but efficiently search a graphset (a set of
many subgraphs in a given graph) with complex, even nonconvex, constraints. In
addition, we can find top-k optimal graphs from the complex graphset and can
also extract common properties among all graphs in the set. Thanks to these

https://afsa.jp/icgca/
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features, Graphillion has a variety of applications including graph database,
combinatorial optimization, and a graph structure analysis.

In the AFSA project, we are planning to develop an updated version of
“Graphillion-2.0” as an interface between algorithmic foundations and appli-
cations for social advancement. We are considering various extensions of
Graphillion family, to handle extended graph models such as directed graphs
(Di-Graphillion), vertex sets of graphs (VertexSet-Graphillion), cost-weighted
graphs (Weighted-Graphillion), multi-graphs (Multi-Graphillion), and hyper
graphs (Hyper-Graphillion). The development is now ongoing. We also hope
to leverage the new insights obtained from the ICGCA competition in our devel-
opment.

Theoretical Results to be Utilized for Practical Applications

In our project, the research groups in B investigate specific theories and tech-
niques to be utilized for practical applications in future. We already have a num-
ber of excellent theoretical results. Some selected topics are briefly summarized
as follows.

– In 2021, Kawaharabayashi (group B02) extended the theorem on a graph-
cut algorithm of undirected planar graphs to directed ones [11]. This solved
a long-standing problem in theoretical computer science, and it expected to
contribute to the future development of this research field.

– Hirahara (group B02) successfully achieved to show NP-Hardness of learning
programs [3], which was a long-standing problem from 1991. The result is
recognized as the Complexity Result of the Year 2022 [1].

– Hanaka and Ono (group B04) received the Outstanding Paper Award [2] at
APDCM 2023, an international workshop in IPDPS 2023, for solving a graph
optimization problem inspired by a practical application to the frequency
allocation in wireless mobile networks.

– Yamamoto and Shibuya (group B04) developed efficient and highly accu-
rate methods [15] for differentially private statistical genomic analysis. They
received the Outstanding Award at IEEE TrustCom2022, a top conference in
security and privacy in computing and communications.

4 Concluding Remarks

AFSA project is ongoing until March 2025. This project will lead an active
research community where theory and practice meet together. Our expected
outputs are not only to produce top conference papers and journal publications,
but also to contribute to real-life social problems by collaborating with applica-
tion research engineers. These algorithmic foundations will be useful for various
fields of science and technologies and aim to contribute to social advancement
over the long-term.
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Abstract. The goal of the talk is to give ideas and inspiration to every-
one in the audience, whether currently working in combinatorial recon-
figuration or new to the area. Organized as a series of reasons to love
combinatorial reconfiguration, the presentation will bring non-experts up
to speed, setting the stage for a more in-depth investigation. The talk
is not intended to be a comprehensive survey of the field, but instead a
personal and idiosyncratic tour, full of suggestions for future directions
of research.

Keywords: Combinatorial Reconfiguration · Algorithms

1 Introduction

The talk will begin with a demonstration of how reconfiguration can be used to
introduce the ideas of research and graphs to a non-technical audience, in the
process giving a brief introduction to the reconfiguration framework to those
new to the area.

Equipped with all the necessarily terminology for a more technical explo-
ration, we will then cover an eclectic collection of results, ideas, and open ques-
tions at varying levels of detail.

In lieu of outlining the entire talk, this abstract provides definitions,
resources, and references, as well as a sampling of the topics to be presented.

2 A Primer on Reconfiguration

Stated in its simplest form, the reconfiguration framework, as introduced in
2011 [13], encompasses a large variety of problems that can be characterized as
follows:

– a configuration, such as a feasible or optimal solution to an instance of an
optimization problem, or a snapshot in time of a puzzle, game, or geometric
object;

Research supported by the Natural Sciences and Engineering Research Council of
Canada.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
R. Uehara et al. (Eds.): WALCOM 2024, LNCS 14549, pp. 9–14, 2024.
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– a reconfiguration step that makes a small change from one configuration into
another; and

– a question.

Many investigations that fall under this broad umbrella were conducted well
before 2011, including work on the 15 puzzle dating at least as far back as
1879 [15]. In recent years, terminology has been standardized, and reconfigura-
tion has been formulated in terms of graphs.

To form a reconfiguration graph, we create one node for each possible con-
figuration and create an edge between each pair of nodes representing adjacent
configurations, where two configurations are adjacent if one can be formed from
the other by a single reconfiguration step. The terminology is chosen to allow
us to distinguish between a node in a reconfiguration graph and a vertex in an
instance of an optimization problem.

Frequently-studied questions pertain to properties of the graph, such as:

– Reachability: Does there exist a path (or reconfiguration sequence) from one
specified configuration (the source configuration) to another specified config-
uration (the target configuration)?

– Shortest path: What is the shortest path between a specified pair of con-
figurations?

– Connectivity: Is the reconfiguration graph connected?
– Diameter: What is the diameter of each connected component of the recon-

figuration graph?

Recent work on reconfiguration typically uses a classical problem as a starting
point, where configurations are feasible or optimal solutions to an instance of the
classical problem. As such, reconfiguration provides an avenue for the study of
the solution space of such a problem. For configurations that can be represented
as a subset of the vertices of a graph, a solution can be viewed as an assignment
of tokens to vertices. Generalizing movements found in sliding block puzzles, such
as the 15 puzzle, the reconfiguration step of token sliding entails the movement
of a token from a vertex to an adjacent free vertex. In a token jumping step, a
token can be moved to a non-adjacent vertex, and in token addition and removal
a token can be added to a free vertex or removed from a vertex. References for
the steps and more information can be found in the surveys listed in Sect. 3.

Due to the vast range of possible configurations, reconfiguration steps, and
questions to consider, unexplored areas of inquiry are easy to find. Much of
the work to date has entailed attempts to delineate the boundary between
tractable and intractable instances for reachability, with more effort on Indepen-
dent Set, Colouring, and Dominating Set than other classical problems,
and more work on token sliding and token jumping (and for Colouring, the
recolouring of a single vertex or the swapping of two colours in a component)
than on other types of reconfiguration steps. Results on other combinations of
configurations, reconfiguration steps, and questions are sparser.
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3 How to Get Started

The list below provides suggestions on how to start (or continue) your
exploration of reconfiguration. You can find links to much of the informa-
tion below, in addition to many more papers, talks, and events, at the site
reconf.wikidot.com, maintained by Duc A. Hoang.

– Watch Takehiro Ito’s excellent talk “Invitation to Reconfiguration”, presented
at the 16th International Conference and Workshops on Algorithms and Com-
putation, WALCOM 2022.

– Read a survey on reconfiguration:
• van den Heuvel’s “The complexity of change” [12] provides an excellent

introduction to the area, with extensive coverage of colouring and gener-
alizations of the 15 puzzle.

• “Introduction to Reconfiguration” [19] was intended to supplement the
previous survey. In the spirit of an annotated bibliography, it attempts
to cover all the work on reconfiguration known at the time of writing.

• Mynhardt and Nasserasr’s “Reconfiguration of colourings and dominating
sets in graphs” [18] provides in-depth coverage of two of the most well-
studied problems.

• Bousquet, Mouwad, Nishimura, and Siebertz focus on parameterized com-
plexity in “A survey on the parameterized complexity of the independent
set and (connected) dominating set reconfiguration problems” [4].

– Look through a list of open problems, such as listed in the report for the
Banff International Research Station workshop 22w5090, linked off of the
page https://www.birs.ca/events/2022/5-day-workshops/22w5090. The site
www.birs.ca also contains a link to the workshop held in 2017 (17w5066);
for both the workshops, you can download slides and watch videos of various
presentations.

– Participate in a Core challenge, a programming competition aimed at find-
ing practical solutions to combinatorial reconfiguration problems; please see
https://core-challenge.github.io/2023/ for information on the 2023 challenge.

– Attend - or organize - a workshop. For information on workshops, sign up for
the mailing list at lists.uwaterloo.ca/mailman/listinfo/reconf. Past
workshops have included talks, mentoring sessions, and open problem ses-
sions.

4 A Sampling of Research Directions

The talk will present specific results and open questions that address ways to
expand the range of configurations, reconfiguration steps, and questions to inves-
tigate, as well as the relationship among multiple reconfiguration graphs, con-
nections to other areas of research, and applications. Below is a sampling of
topics to be covered.

https://www.birs.ca/events/2022/5-day-workshops/22w5090
www.birs.ca
https://core-challenge.github.io/2023/
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4.1 Extending Configurations

We can enrich the set of problems under consideration by departing even slightly
from the standard configuration as a set of tokens on vertices, such as by placing
tokens on edges [11] or by adding labels to tokens [6,17].

By being less stringent as to what constitutes a configuration, we expand
the realm of tractable solutions to reconfiguration-related problems. Current
research includes the investigation of the impact of allowing a bounded num-
ber of adjacent vertices in what would otherwise be an independent set [21]. In
the solution discovery framework [8,9], to be discussed further below, configura-
tions include both feasible and infeasible solutions to problems, allowing one to
navigate from an infeasible solution to a reachable feasible solution.

4.2 Extending Questions

Considering only a single reconfiguration graph, there are additional algorith-
mic and structural questions to consider. Algorithmic questions can be subject to
different types of analysis, such as fixed-parameter tractability [4] and approx-
imation [20]. Since a reconfiguration graph is a graph, one can study various
ways of characterizing reconfiguration graphs [3], such as considering Hamil-
tonicity, girth, and whether a reconfiguration graph matches the instance of the
problem [2,10].

Instead of providing a source and a target configuration, the optimization
variant [14] seeks the best configuration reachable from a given configuration.
The area of solution discovery extends this idea to consider the reconfiguration
graph of both feasible and infeasible solutions to an instance of a source problem
(perhaps with constraints imposed on which solutions qualify as configurations),
seeking to modify an infeasible solution into a feasible one in a bounded number
of steps. Results to date include algorithms, hardness results, differences based
on different reconfiguration steps, and the parameterized complexity of such
problems [8,9].

In the new area of resource-focused reconfiguration, the goal is to minimize
the extra resources needed to make reconfiguration possible. As one example, we
consider rearranging virtual machines on physical machines in a data centre, for
such purposes as maintenance and load-balancing. In addition to asking when
such rearrangements are possible, given the original resources, once can also ask
how many extra physical machines might be required [16].

4.3 Applications

Reconfiguration not only provides a way of analyzing and characterizing the
solution space of a problem, but also captures types of step-by-step changes
that occur in real-life problems. Potential uses of reconfiguration include the
analysis of gerrymandering [1] and the aforementioned reassignment of virtual
machines to physical machines in a data centre [16].
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The Power Supply problem [13] was introduced as a motivation for recon-
figuration; here, customers, each with a demand, are assigned to power stations,
each with a capacity, with the system functioning when all demands are met
and no capacities are exceeded. To ensure that there is no system-wide shut-
down when one configuration needs to be changed to another, each move of a
customer to a different power station is required to result in a still-functioning
system. Practice caught up to theory when reconfiguration was used to solve
problems for power stations in Japan [22].

In ongoing work, reconfiguration is being used in preparing atoms for use in
quantum simulation. The process of loading atoms into arrays of optical traps
results in roughly half of the traps being filled. Reconfiguration algorithms deter-
mine how to rearrange atoms into a dense and regular arrangement, such as all
locations in a grid, using moving optical tweezers [5–7].

Acknowledgments. I wish to thank all of my co-authors, and all members of this
welcoming and supportive research community, for inspiring the title and much of the
content of the talk.
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Nowé, A., Nalepa, G.J., Fairstein, R., Radulescu, R. (eds.) ECAI 2023–26th Euro-
pean Conference on Artificial Intelligence, 30 September–4 October 2023, Kraków,
Poland - Including 12th Conference on Prestigious Applications of Intelligent Sys-
tems (PAIS 2023). Front. Artif. Intell. Appl. 372, 700–707. IOS Press (2023)

9. Grobler, M., Maaz, S., Megow, N., Mouawad, A.E., Ramamoorthi, V., Schmand,
D., Siebertz, S.: Solution discovery via reconfiguration for problems in P. CoRR
abs/2311.13478 (2023)

https://doi.org/10.1007/978-3-030-75242-2_4
https://doi.org/10.1007/978-3-030-96731-4_22
https://doi.org/10.1007/978-3-030-96731-4_22


14 N. Nishimura

10. Haas, R., Seyffarth, K.: The k-dominating graph. Graphs Comb. 30(3), 609–617
(2014)

11. Hanaka, T., et al.: Reconfiguring spanning and induced subgraphs. Theor. Comput.
Sci. 806, 553–566 (2020)

12. van den Heuvel, J.: The complexity of change. Surv. Comb. 2013(409), 127–160
(2013)

13. Ito, T., et al.: On the complexity of reconfiguration problems. Theor. Comput. Sci.
412(12–14), 1054–1065 (2011)

14. Ito, T., Mizuta, H., Nishimura, N., Suzuki, A.: Incremental optimization of inde-
pendent sets under the reconfiguration framework. J. Comb. Optim. 43(5), 1264–
1279 (2022)

15. Johnson, W.W., Story, W.E.: Notes on the “15” puzzle. Am. J. Math. 2(4), 397–404
(1879)

16. Kam, J., Kamali, S., Miller, A., Nishimura, N.: Reconfiguration of multisets with
applications to bin packing. In: Proceedings of the 18th International Conference
and Workshops on Algorithms and Computation (2023)

17. Moore, B.R., Nishimura, N., Subramanya, V.: Reconfiguration of graph minors.
In: Potapov, I., Spirakis, P.G., Worrell, J. (eds.) 43rd International Symposium
on Mathematical Foundations of Computer Science, MFCS 2018, 27–31 August
2018, Liverpool, UK. LIPIcs, vol. 117, pp. 75:1–75:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2018)

18. Mynhardt, C.M., Nasserasr, S.: Reconfiguration of colourings and dominating sets
in graphs. In: 50 Years of Combinatorics, Graph Theory, and Computing, chap.
10, pp. 171–191. CRC Press (2019)

19. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018)
20. Ohsaka, N.: Gap preserving reductions between reconfiguration problems. In:

Berenbrink, P., Bouyer, P., Dawar, A., Kanté, M.M. (eds.) 40th International Sym-
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Abstract. For an angle α ∈ (0, π), we consider plane graphs and multi-
graphs in which the edges are either (i) one-bend polylines with an angle
α between the two edge segments, or (ii) circular arcs of central angle
2(π −α). We derive upper and lower bounds on the maximum density of
such graphs in terms of α. As an application, we improve upon bounds
for the number of edges in αAC=

1 graphs (i.e., graphs that can be drawn
in the plane with one-bend edges such that any two crossing edges meet
at angle α). This is the first improvement on the size of αAC=

1 graphs
in over a decade.

Keywords: circular arc · one-bend drawing · α-angle crossing drawing

1 Introduction

According to a well-known corollary of Euler’s formula, an edge-maximal planar
straight-line graph on n ≥ 3 vertices has at most 3n− 6 edges, which is attained
on any set of n ≥ 3 points in general position with a triangular convex hull;
and at least 2n − 3 edges, which is attained for n points in convex position.
Specifically, on a given set P of n points in the plane in general position, h ≥ 3
of which are on the convex hull of P , the maximum number of edges of a planar
straight-line graph is M(P ) = 3n−h−3. This paper explores analogous questions
for graphs where the edges are one-bend polylines or circular arcs with a fixed
angle. Importantly, there may be multiple edges between a pair of vertices in
these drawing styles, and multigraphs become relevant.

For an angle α ∈ (0, π), an α-bend edge between vertices a and c is a
polyline (a, b, c) with one bend at b such that the interior angle of the triangle
Δ(abc) at b is α; and an α-arc edge is a circular arc between a and c with
central angle 2(π − α). By the Inscribed Angle Theorem, if e is an α-arc edge
between a and c, and b is any interior point of the arc e, then the polyline (a, b, c)
is an α-edge; see Fig. 1 for an example.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
R. Uehara et al. (Eds.): WALCOM 2024, LNCS 14549, pp. 15–31, 2024.
https://doi.org/10.1007/978-981-97-0566-5_3
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Fig. 1. The relation between an α-arc edge and an α-bend edges.

A simple graph embedded1 in the plane such that every edge is α-bend
(resp., α-arc) is an α-bend graph (resp., α-arc graph). Similarly, a multigraph
embedded in the plane such that every edge is α-bend (resp., α-arc) is an α-bend
multigraph (resp., α-arc multigraph). See Fig. 2 for examples. For a finite
set P ⊂ R

2, denote by Ma(P, α) and Mb(P, α), resp., the maximum number of
edges in an α-arc graph and an α-bend graph. Similarly, the maximum number of
edges in an α-arc and α-bend multigraph is denoted by M

‖
a (P, α) and M

‖
b (P, α),

respectively. It may be hard to compute Ma(P, α), Mb(P, α), M
‖
a (P, α), and

M
‖
b (P, α), for a given point set P and a given angle α ∈ (0, π); see Problem 1 in

Sect. 6.

Fig. 2. A π
2
-bend graph, a π

2
-bend multigraph, and a π

2
-arc muligraph

For n ∈ N, let Ma(n, α) = sup|P |=n Ma(P, α), and define Mb(n, α), M
‖
a (n, α)

and M
‖
b (n, α) analogously. Our bounds on these quantities are in Table 1.

Table 1. Overview of results for n ≥ 3 (without assuming general position).

Angle α → 0 α ∈ (0, π
2
] α ∈ (π

2
, 2π

3
] α ∈ [ 5π

5
, 5π

6
] α ∈ ( 2π

3
, π) α → π

Ma(n, α) 2n − 3 2n − 3 ≤ . ≤ 3n − 6 3n − 6 3n − 6 3n − 6 3n − 6

Mb(n, α) 3n − 6 3n − 6 3n − 6 3n − 6 3n − 6 3n − 6

M
‖
a (n, α) 2n − 2 2n − 2 ≤ . ≤ 4n − 6 4n − 6 4n − 6 6n − O(

√
n) 6n − 12

M
‖
b (n, α) 4n − 6 4n − 6 4n − 6 6n − O(

√
n) 6n − O(

√
n) 6n − 12

1 An embeddng of a graph into a surface is a continuous injective map of the 1-
dimensional simplicial complex formed by the vertices and edges of the graph.
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Motivation: RAC and αAC= Drawings. A right angle crossing drawing (or
RAC drawing, for short) of a graph G = (V,E) is a drawing in which edges
are polylines and crossing edges meet at angle π

2 . A RACb drawing is a RAC
drawing where every edge is drawn as a polyline with b bends; and a graph
G = (V,E) is a RACb graph if it admits such a drawing. Didimo et al. [13]
proved that a RAC0-graph on n ≥ 3 vertices has at most 4n − 10 edges, and
this bound is the best possible; see also [15]. They also showed that every graph
is a RAC3 graph. Angelini et al. [4] proved that an n-vertex RAC1 graph has
at most 5.5n − O(1) edges, and this bound is asymptotically tight. Arikushi et
al. [7] showed that an n-vertex RAC2 graph has at most 74.2n edges, which was
recently improved to 20n [20], and is conjectured to be 10n − O(1) [5]. Refer to
the surveys [12,14] for an overview on RAC drawings and their relatives.

Dujmović et al. [15] extended the notion of RAC drawings to drawings where
the crossing edges meet at an angle greater than some α, for α ∈ (0, π

2 ), and call
such drawings α angle crossing drawings (αAC drawings, for short). They
proved that an n-vertex graph with a straight-line αAC drawing has at most
π
α (3n − 6) edges. Ackerman et al. [2] defined αAC=

b graphs, which are graphs
that can be drawn such that the edges are polylines with at most b bends per
edge and every crossing occurs exactly at angle α. They proved that n-vertex
αAC=

1 and αAC=
2 graphs have O(n) edges for any α ∈ (0, π

2 ]. In an αAC=
1

drawing, each edge is a polyline with two segments that are also called end-
segments. In an αAC=

2 drawing, each edge is a polyline with three segments:
Two end-segments incident to the vertices, and one middle segment.

Fig. 3. Left: A RAC2 drawing of a graph G = (V, E) and the red graph (V, Γ ). Right:
Perturbation of overlapping red edges yields a π

2
-bend multigraph. (Color figure online)

The main technical tool in the proofs by Ackerman et al. [2] were α-bend
graphs, although they did not use this terminology. For example, suppose that
we are given an αAC=

2 -drawing of a directed graph G = (V,E) in which the
edge directions determine a first and a last end-segment, and suppose that all
crossings are between first and last end-segments; see Fig. 3. We can create the
multigraph (V, Γ ), called the red graph, as follows: If the first end-segment s of
some edge crosses any other edge, then we create an edge γ(s) ∈ Γ as a directed
path in the planarization of the αAC=

2 -drawing: The path γ(s) starts from the
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(unique) vertex in V incident to s, then follows s until its first crossing with
the end-segment s′ of some other edge, and then it follows s′ to the (unique)
vertex in V incident to s′. Each edge of the red graph is an α-bend or a (π −α)-
bend edge. The edges of (V, Γ ) do not cross—they may partially overlap, but
they can be perturbed to remove overlaps. Thus (V, Γ ) is the union of two plane
multigraphs: an α-bend and a (π − α)-bend multigraph.

Ackerman et al. [2] proved that every n-vertex αAC=
1 -graph has at most 27n

edges for α ∈ (0, π
2 ]. We improve this bound to 21n − 36 for n ≥ 3 (Theorem 3)

using the bound M
‖
b (n, α) ≤ 4n−6 for α ∈ (0, 2π

3 ] (Theorem 1), applied to a red
α-bend or (π − α)-bend multigraph. This is the first improvement on the size of
αAC=

1 -graphs in more than a decade.

Further Related Previous Work. Angle constraints in graph drawing have been
considered since the 1980s. Vijayan [21] introduced angle graphs, which are
graphs such that at every vertex, the rotation of incident edges as well as the
angles between consecutive edges in the rotation are given, and asked whether
a given angle graph can be realized by a straight-line drawing (possibly with
crossings). Planarity testing for angle graphs is NP-hard [9,18], but there is a
linear-time algorithm for triangulations (with a triangular outer face) [11]. Note
that a realization of an angle graph may have crossing edges: Efrat et al. [16]
showed that for cycles, one can find a realization with the minimum number of
crossings. Importantly, the edges of an angle graph are realized by straight-line
segments. In contrast, we consider graphs with one-bend or circular arc edges of
a fixed angle, however the angles between adjacent edges are unconstrained.

Circular arcs and one-bend polylines are among the most popular graph
drawing styles. In general, both drawing styles allow more flexibility than
straight-line drawings. For example, there are universal point sets of size O(n)
for planar n-vertex graphs if the edges are drawn as circular arcs [6] or as one-
bend polylines [17], even if the bend points are restricted to the universal point
set [19], while the current best universal point set for straight-line embeddings is
of size n2/2 [8]. Chaplick et al. [10] showed that an n-vertex RAC drawing with
circular arc edges can have 4.5n − O(

√
n) edges, as opposed to at most 4n − 10

edges in a straight-line RAC drawing. Refer to the surveys [12,14] for a variety
of results on RAC drawings.

One-bend polylines and circular arcs lose most of their competitive advantage
against straight-line drawings if the angle α is fixed. A small angle α > 0 may
even be a disadvantage. Our objective is to obtain quantitative bounds to com-
pare planar straight-line graphs to α-bend and α-arc graphs and multigraphs.

2 Preliminaries

We show that the multiplicity of any edge in a α-bend and an α-arc graph is at
most two.
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Proposition 1. For every α ∈ (0, π) and every pair of points a, c ∈ R
2, a plane

α-bend (resp., α-arc) multigraph contains at most two edges between a and c, at
most one in each halfplane bounded by the line ac.

Proof. Let α ∈ (0, π), and let a and c be distinct points in the plane. There
are precisely two circular arcs of central angle π − α between a and c, which
lie in distinct halfplanes bounded by the line ac. Hence there are at most two
α-arc edges between a and c. Every α-bend edge between a and c is a polyline
(a, b, c) where the bend pointy b is on an α-arc edge between a and c. However,
if (a, b1, c) and (a, b2, c) are α-bend edges, then b1 and b2 lie on distinct α-arcs
between a and c, otherwise the two α-bend edges would cross: Indeed, assume
w.lo.g. that the points a, b1, b2, c are in this order along the same circular arc
from a to c. Then the line segments ab2 and b1c cross, hence the two α-bend
edges cross. ��

It is easy to find the maximum number of edges for collinear points.

Proposition 2. For every set P of n ≥ 3 collinear points, we have

1. Mb(P, α) = 3n − 6 and M
‖
b (P, α) = 4n − 6 for all α ∈ (0, π);

2. Ma(P, α) = 3n − 6 and M
‖
a (P, α) = 4n − 6 for all α ∈ [π

2 , π);
3. Ma(P, α) = 2n − 3 and M

‖
a (P, α) = 2n − 2 for all α ∈ (0, π

2 ).

Proof. Assume w.l.o.g. that P = {p1, . . . , pn} is a set of n points on the x-axis
sorted by increasing x-coordinates.

Upper Bounds. By definition, α-arc and α-bend graphs are simple planar
graphs. By Euler’s polyhedron formula, Ma(P, α) ≤ 3n−6 and Mb(P, α) ≤ 3n−6.
Suppose that multiple edges are allowed. By Proposition 1, the edges in each
halfplane form a simple graph. Since all vertices are on the boundary of both
halfplanes, the edges in each halfplane form an outerplanar graph each with at
most 2n − 3 edges. This proves M

‖
a (P, α) ≤ 4n − 6 and M

‖
b (P, α) ≤ 4n − 6 for

all α ∈ (0, π).
It remains to consider α-arc graphs and multigraphs for α ∈ (0, π

2 ). Recall
that an α-arc edge is a circular arc between two points with central angle
2(π −α). Note that 2(π −α) ∈ (π, 2π) for α ∈ (0, π

2 ), thus an α-arc edge is more
than a halfcircle. Let G = (V,E) be an α-arc multigraph, and let G+ = (V,E+)
and G− = (V,E−) be the subgraphs formed by the edges in the upper and lower
halfplane, respectively. If i < j < k and α ∈ (0, π

2 ), then the α-arc edges pipj and
pjpk would cross if they are both in the upper halfplane (or both in the lower
halfplane). Consequently, in both G+ and G−, each vertex is either to the left or
to the right of all of its neighbors. It follows that neither G+ nor G− can contain
cycles, hence they each have at most n−1 edges. This implies M

‖
a (P, α) ≤ 2n−2

for all α ∈ (0, π
2 ). Note that if G is a simple graph, then G+ and G− cannot both

contain the edge p1pn. Assume w.l.o.g. that G− does not contain the edge p1pn.
Then G− cannot contain any path from p1 to pn, consequently it is a forest with
at least two components, and so it has at most n−2 edges. This yields the upper
bound Ma(P, α) = 2n − 3 for α ∈ (0, π

2 ).
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Lower Bound Constructions. We start with α-arc graphs. For α ∈ [π
2 , π), an

α-arc edge pipj is an x-monotone arc that lies in the vertical strip bounded by
the vertical lines through pi and pj . Add α-arc edges pipi+1 for all i = 1, . . . , n−1
and edges p1pj for all j = 2, . . . n in the upper halfplane; and edge pjpn for all
j = 2, . . . , n−2 in the lower halfplane. This yields (n−1)+(n−2)+(n−3) = 3n−6
edges; see the red edges in Fig. 4 (left). We can augment this construction to an
α-arc multigraph by adding α-arc edges pipi+1 for all i = 1, . . . , n − 1 and the
edge pipn in the lower halfplane as well. This yields an α-arc multipraph with
(3n − 6) + n = 4n − 6 edges; see Fig. 4 (left).

For α ∈ (0, π
2 ), we construct an α-arc graph with 2n − 3 edges as follows. In

the upper halfplane, we use the star formed by p1pi for all i = 2, . . . , n; and in
the lower halfplane, the star formed by pjpn for all j = 2, . . . , n−2. For an α-arc
multigraph with 2n − 4 edges, we add the edge p1pn in the lower halfplane as
well. Both are subgraphs of the constructions in Fig. 4 (left).

Fig. 4. Left: a π
2
-arc multigraph with 4n − 6 edges; the red edges form a π

2
-arc graph

with 3n − 6 edges. Right: a π
3
-bend multigraph with 4n − 6 edges; the red edges form

a π
3
-bend graph with 3n − 6 edges. In both examples, n = 6.

We can construct an α-bend graph with 3n − 6 edges and an α-bend multi-
graph with 4n−6 edges by connecting the same pair of vertices for any α ∈ (0, π).
We describe the construction is three steps: (1) Draw all α-arc edges described
above (these edges may cross for α < π/2). (2) For each α-arc pipj , create an
α-bend polyline (pi, b, pj) such that b is the midpoint of the α-arc, which implies
that Δ(pibpj) is an isosceles triangle. Such an α-bend edge pipj is an x-monotone
arc for any α ∈ (0, π). Consequently, these α-bend edges do not cross, but adja-
cent edges may partially overlap. (3) We successively perturb the α-bend edges
as follows; see Fig. 4 (right). We perform the perturbation in each halfplane inde-
pendently. Consider the edges pipj in the upper (resp., lower) halfplane ordered
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by nonincreasing length. For an edge pipk, if both pipj and pjpk are edges for
some i < j < k, then perturb both pipj and pjpk by slightly moving their bend
points along the corresponding α-arc towards each other (i.e., counterclockwise
and clockwise). The perturbation eliminates the overlap between adjacent edges,
and yields an α-bend graph with 3n − 6 edges and an α-bend multigraph with
4n − 6 edges. ��
Corollary 1. For every integer n ≥ 3, we have Mb(n, α) = 3n − 6 for all
α ∈ (0, π); and Ma(n, α) = 3n − 6 for all α ∈ [π

2 , π).

3 Asymptotics: Large and Small Angles

In this section, we study the maximum number of edges in α-bend and α-arc
graphs as the angle α tends to 0 or π.

3.1 Large Angles

For a sufficiently large α, the α-bend and α-arc edges are similar to straight-line
edges.

Proposition 3. For every P ⊂ R
2 in general position, there exists a threshold

α0 ∈ (0, π) such that, for every α ∈ (α0, π), we have Ma(P, α) = Mb(P, α) =
M(P ) and M

‖
a (P, α) = M

‖
b (P, α) = 2M(P ).

Proof. Let G be a planar straight-line graph on P with the maximum number
of edges (i.e., with M(P ) edges). Then G is a triangulation of the convex hull
of P . Let β be the minimum interior angle over all triangular faces of G, and
α1 = π − β. Recall that the bisectors of the interior angles of a triangle T meet
the center c(T ) of the inscribed circle of T . Subdivide each triangular face T of G
into three subtriangles by connecting the corners of T to the center c(T ). Then
each subtriangle incident to two points in P , and contains an α-arc edge between
them for any α ∈ (α1, π). The outer face of G is the exterior of conv(P ), and it
contains an α-arc edge between any two consecutive vertices of conv(P ) for any
α ∈ (π

2 , π). Furthermore, these α-arc edges are pairwise noncrossing. Overall,
we can find 2|E(G)| = 2M(P ) pairwise noncrossing α-arc edges, which form an
α-arc multigraph on P . These constructions show that M

‖
a (P, α) ≥ 2M(P ) and

M
‖
b (P, α) ≥ 2M(P ) for α ∈ (α1, π).
By choosing an arbitrary bend point in each α-arc edge, construct 2|E(G)| =

2M(P ) pairwise noncrossing α-bend edges. By deleting double edges, we also
obtain α-arc and α-bend graphs with |E(G)| = M(P ) edges. Consequently,
Ma(P, α) ≥ M(P ) and Mb(P, α) ≥ M(P ) for α ∈ (α1, π).

For matching upper bounds, let α2 be the maximum angle between any
two adjacent straight-line edges determined by P . Then, given any α-arc graph
HG on P , the convex hull of any edge ab does not contain any other vertices
in P . Consequently, we can replace each α-arc edge in H with a straight-line
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edge, and obtain a planar straight-line graph with |E(H)| edges. This proves
Ma(P, α) ≤ M(P ) and Mb(P, α) ≤ M(P ) for α ∈ (α2, π). For multigraphs, up
to two parallel edges could be replaced by a straight-line edge by Proposition 1,
consequently M

‖
a (P, α) ≥ 2M(P ) and M

‖
b (P, α) ≥ 2M(P ) for α ∈ (α2, π).

Overall, we put α0 = max{α1, α2}, and then for all α ∈ (α0, π), we have
Ma(P, α) = Mb(P, α) = M(P ) and M

‖
a (P, α) = M

‖
b (P, α) = 2M(P ). ��

3.2 Small Angles

In the other end of the spectrum, for sufficiently small α > 0, both Mb(P, α)
and M

‖
b (P, α) have the same behavior as for collinear points.

Proposition 4. For every set P of n points in the plane, there exists a threshold
α0 ∈ (0, π) such that for all α ∈ (0, α0), we have Mb(P, α) = 3n − 6 and
M

‖
b (P, α) = 4n − 6.

Proof. By applying a rotation, if necessary, we may assume that the points in P
have distinct x-coordinates. Let P = {p0, . . . , pn−1} be sorted by (increasing) x-
coordinate. Let α0 be the minimum angle between a vertical line and a segment
pi−1pi for i = 1, . . . , n − 1. Now for any angle α ∈ (0, α0), we can follow the
argument in the proof of Proposition 2; see Fig. 5 (left). The x-monotone path
(p0, . . . , pn−1) plays the role of the x-axis: It separates upper and lower edges.
We initially draw each α-bend edge pipj so that its two segments have slopes
± cot α

2 , and then perturb overlapping edges as in the proof of Proposition 2. ��

p0

p1
p2

p3
p4 p0 p1

p2

p3

p4

p5

p6

p7

p8

Fig. 5. Left: an α-bend multigraph with 4n − 6 edges; the red edges form an α-bend
graph with 3n−6 edges. Right: an α-bend graph with 3n−7 = M(P ) edges for a point
set P with a quadrilateral convex hull. (Color figure online)

For points in general position and for α-bend graphs, we can take the thresh-
old α0 in Proposition 4 to be π

2 ; see Fig. 5 (right).

Proposition 5. For every set P ⊂ R
2 of n ≥ 3 points in general position, and

for every α ∈ (0, π
2 ], we have Mb(P, α) ≥ 3n − 7 and Mb(P, α) ≥ M(P ).
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Proof. Let {p0, p1} ⊂ P be a diametric pair of points, which maximizes the
pairwise distances in P . By applying a rotation, if necessary, we may assume that
the line segment p0p1 is horizontal. Since P is in general position, no two points
in P \ {p0, p1} have the same y-coordinate. Label the points in P such that p0 is
the leftmost point, p1 is the rightmost point, and P \ {p0, p1} = {p2, . . . , pn−1}
sorted in increasing y-coordinates; see Fig. 5 (right).

We construct an α-bend graph on P as follows. For all i ∈ {2, . . . , n − 1},
add α-bend edges p0pi and pip1 such that the edge segments incident to pi are
horizontal, and lie to the left and right of pi, respectively. Since α ∈ (0, π

2 ], then
the edge segments incident to p0 lie in the closed halfplane left of p0; and the
edge segments incident to p1 lies to the right of p1. Note also that the edge
segments incident to p0 and p1 may overlap: We perturb these edges to maintain
α-bend edges, but eliminate the overlap (as a result, the edge segments incident
to pi are no longer horizontal, but almost horizontal). Add the edge p0p1 as
well, where the edge segment incident to p0 is almost horizontal, and the edge
segment incident to p1 is very short. We have added 2(n − 2) + 1 = 2n − 3 edges
so far.

For all i ∈ {2, . . . , n − 3}, if both pi and pi+1 are on the same side of the
horizontal line p0p1, then we add an α-bend edge pipi+1 in the horizontal strip
between pi and pi+1. The edge segment incident to pi should almost horizontal
(but disjoint from the edges p0pi and p1pi), and on the same side (left or right) of
pi that contains pi+1. This determines the direction of the edge segment incident
to pi+1. There is at most one i ∈ {2, . . . , n − 3} such that pi and pi+1 are on
opposite sides of the line p0p1, so we add at least n−4 edges. We obtain an α-bend
graph with (2n−3)+(n−4) = 3n−7 edges. This proves that M(P, α) ≥ 3n−8.

If the convex hull of P contains 4 or more points, then M(P ) ≤ 3n − 7,
consequently M(P, α) ≥ M(P ). Suppose that the convex hull of is a triangle.
Then p0p1 is one side of the triangle, and all other points lie on one side of the
line p0p1. In this case, we add edges pipi+1 for all i ∈ {2, . . . , n − 3}, and the we
obtain an α-bend graph with (2n − 3) + (n − 3) = 3n − 6 = M(P ) edges. ��

For circular arcs, the number of edges goes down to 2 as α tends to zero.

Proposition 6. For every finite P ⊂ R
2 in general position, there exists a

threshold α0 ∈ (0, π) such that, for every α ∈ (0, α0), we have Ma(P, α) = 1 and
M

‖
a (P, α) = 2.

Proof. Let P ⊂ R
2 be a set of n points in general position, let W be the set of

intersection points of the n
2 lines spanned by P . Let ε > 0 be so small that the

ε-radius disks centered at the points in W are pairwise disjoint, and let D be a
large disk that contains the ε-disks centered at all points in W . Finally, let α0

be so small that for every point pair {p, q} ⊂ P , the intersection of disk D and
the circle containing an α0-arc edge is in the ε-neighborhood of the line spanned
by pq. Note that the same property holds for α-arc edges for all α ∈ (0, α0).

For the lower bound, it is clear that an α-arc graph can contain any one
α-arc edge pq, and an α-arc multigraph can contain any α-arc double-edge pq.
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For the upper bound, suppose to the contrary, that α ∈ (0, α0) and a plane α-
arc graph G contains two α-arc edges p1q1 and p2q2, where {p1, q1} 	= {p2, q2}.
The circles containing the α-arc edges p1q1 and p2q2 cross at some point in the
ε-neighborhood of the intersection point of lines p1q1 and p2q2, which is in D.
Consequently they also cross at another point, say x, outside of D. The point x
lies on both α-arc edges, and so these edges cross, contradicting the assumption
that G is a plane graph. ��
A combination of Propositions 2 and 6 yields the following.

Corollary 2. For every finite P ⊂ R
2, where the maximum number of collinear

points is k, there exists a threshold α0 ∈ (0, π) such that, for every α ∈ (0, α0),
we have Ma(P, α) = 2k − 3 and M

‖
a (P, α) = 2k − 2.

4 The Size of α-Bend and α-Arc Multigraphs

Let G be an α-bend multigraph. The union of two parallel edges between vertices
a and b is a closed curve that contains the line segment ab in its interior by
Proposition 1. Let G denote the straight-line graph comprising a straight-line
edge for each double edge in G. A lens of G is the interior of the closed curve
formed by two parallel edges. A lens is empty if it does not contain any vertex
of G. Note that if all double edges in G form empty lenses, then G is a planar
straight-line graph.

Lemma 1. For α ∈ (0, 2π
3 ], let G be an α-bend multigraph where every double

edge is an empty lens, and let C = (p1, . . . , pm) be a cycle of double edges. Then
the edges of G in the (straight-line) polygon C do not contain a triangulation of
C. (In particular, G does not contain any 3-cycle of double edges, and there is
no diagonal in a 4-cycle of double edges.)

Proof. Suppose, for contradiction, that C = (p1, . . . , pm) is a cycle of double
edges and the edges of G in the (straight-line) polygon C form a triangulation
of C; see Fig. 6. Let pq be an edge in C. Then two closed curves pass through p
and q: An empty lens formed by two α-bend edges, and the straight-line cycle
C. These curves can cross only at p and q. The straight-line segment pq is in the
interior of the empty lens, and all vertices of C are in its exterior. Consequently,
one of the α-bend edges between p and q lies in the interior of C.

Let T be a dual graph of the triangulation of C, where the nodes correspond
to triangles, and two nodes are adjacent if the corresponding triangles share an
edge. The dual graph is a tree T . We define an orientation on the edges of T
as follows. Consider two adjacent triangles, t1 and t2, that share an edge pipj .
Direct the edge as (t1, t2) if and only if the α-bend edge pipj and triangle t2
are on the same halfplane of line pipj . Every directed tree contains a sink. Let
t = Δ(pipjpk) be a sink.

From the discussion above, the straight-line triangle Δ(pipjpk) contains three
α-bend edges: pipj , pjpk, and pkpi. The concatenation of these edges is a simple
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Fig. 6. Left: a cycle of double edges C = (p1, . . . , pm), with two internal and two
external diagonals. Right: The corresponding polygon C, a triangulation of C with
one-bend edges, and the directions of the dual edges.

hexagon H (formed by three vertices and three bend points). At every bend
point the interior angle of H is 2π − α > 2π − 2π

3 = 4π
3 . The sum of these three

interior angles is greater than 4π. The sum of all interior angles of a hexagon,
however, is at most (6 − 2)π = 4π: a contradiction. ��
Lemma 2. For α ∈ (0, 2π

3 ], let G be an α-bend multigraph on n ≥ 3 vertices
where every double edge is an empty lens. Then G has at most 4n − 7 edges.

Proof. If the double edges do not form any cycle, then there are at most n − 1
double edges, hence G has at most (3n−6)+(n−1) = 4n−7 edges, as required.
Assume now that G contains a cycle of double edges.

Consider the graph G (where each straight-line edge represents a double edge
in G). By Lemma 1, G is triangle-free. By Euler’s polyhedron formula, if G has
f bounded faces, it has n+f −1 edges. That is, G has n+f −1 double edges. By
Lemma 1, each bounded face of G contains a face of G with 4 or more vertices.
By replacing the n+f −1 double edges with single edges, and triangulating each
face that has 4 or more vertices, we obtain a triangulation T . Note that T may
have parallel edges in the interior and exterior of a face f , but parallel edges
cannot form an empty lens, and so T has at most 3n − 6 edges. Consequently,
|E(G)| − (n + f − 1) + f ≤ 3n − 6, which yields |E(G)| ≤ 4n − 7, as claimed. ��
Theorem 1. For α ∈ (0, 2π

3 ] and n ≥ 2, we have M
‖
b (n, α) ≤ 4n − 6.

Proof. We proceed by induction on n. The base case n = 2 trivially follows from
Proposition 1. Let G be an α-bend graph on n > 2 vertices, and assume that the
theorem holds for every subgraph of G on fewer than n vertices. If all double
edges are empty-lenses, then |E(G)| ≤ 4n − 7 by Lemma 2. Otherwise, delete all
vertices that lie in the interior of a lens (i.e., a cycle formed by double edges),
and let G′ be the induced subgraph of the remaining n′ ≥ 2 vertices. Then G′

has at most 4n′ − 7 edges by Lemma 2 if n′ ≥ 3; and at most 2 = 4n′ − 6 by
Proposition 1 if n′ = 2. In both cases, G′ has at most 4n′ − 6 edges.

Note that the lenses of a plane multigraph form a laminar system (i.e., two
lenses are either disjoint or one contains the other), and so the maximal lenses
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of G are pairwise disjoint. If L1, . . . , Lk are the maximal lenses that contain
n1, . . . nk vertices in their interior, then n = n′ + k

i=1 ni. For i = 1, . . . , k let
Gi denote the subgraph induced by all vertices inside and on the boundary of
Li. The boundary of the lens contains two vertices and two (parallel) edges. In
particular Gi has ni + 2 vertices. It has at most 4(ni + 2) − 6 = 4ni + 2 edges
by induction, but two of these edges are already included in G′. Consequently,
|E(G)| = |E(G′)| + k

i=1 4ni ≤ (4n′ − 6) + 4 k
i=1 ni = 4n − 6, as claimed. ��

When α ∈ (2π
3 , π), then M

‖
b (n, α) is close to the trivial upper bound of

6n − 12, established by Proposition 1.

Proposition 7. For α ∈ (2π
3 , π), we have M

‖
b (n, α) ≥ 6n − O(

√
n).

Proof. Let n points be arranged in a section of a triangular grid. The unit-
length edges form a plane graph, with 3n − O(

√
n) edges, where all bounded

faces are equilateral triangles. We can replace each unit-length edge by two α-
bend edges, which form an empty lens, such that the two segments of each edge
have equal length. Each equilateral triangle contains three α-bend edges, which
are crossing-free. This yields a plane α-bend multigraph with 6n−O(

√
n) edges.

��
For α-arc multigraphs, Lemma 2, Theorem 1, and Proposition 7 carry over

with essentially the same proof, but the angle threshold increases from α ≤ 2π
3

to α ≤ 5π
6 , as a triangle Δ(p1p2p3) cannot contain three α-arc edges between its

vertices for α ≤ 5π
6 . We summarize the result and omit the details.

Theorem 2. For α ∈ (0, 5π
6 ] and n ≥ 2, we have M

‖
a (n, α) ≤ 4n − 6. For

α ∈ (5π
6 , π), we have M

‖
a (n, α) ≥ 6n − O(

√
n).

5 Applications to αAC=
1 Graphs

Ackerman et al. [2] proved that every n-vertex αAC=
1 graph has at most 27n

edges, for every α ∈ (0, π
2 ]. More precisely, they proved an upper bound of

24.5n if α 	= π
3 and 27n if α = π

3 . We improve these bounds to 18.5n and 21n,
resp., using the same general strategy combined with Theorem 1 from Sect. 4.
For α = π

2 (i.e., for RAC1-graphs), however, an asymptotically tight bound of
5.5n − O(1) is known [4]. We recall Lemma 2.1 from [2].

Lemma 3 (Ackerman et al. [2]). Let α ∈ (0, π
2 ] and let S be a finite set of

line segments in the plane such that any two segments may cross only at angle
α. Then S can be partitioned into at most three subsets of pairwise noncrossing
segments. Moreover, if π

α is irrational or if π
α = p

q , where gcd(p, q) = 1 and p
is even, S can be partitioned into at most two subsets of pairwise noncrossing
segments.

The line segments in S may overlap (i.e., intersect in a line segment of posi-
tive length). Crossings between line segments is usually defined as follows: Two
segments cross if they intersect in a single point that lies in the relative interior
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of both segments. For the application to αAC=
1 graphs, we relax the definition

of crossings: Given a set S of line segments and a set V of segment endpoints,
two segments in S cross if their intersect in a single point that is not in V . The
following lemma strengthens Lemma 3, and holds under either notion of crossing.

Lemma 4. Let α ∈ (0, π
2 ] and let S be a finite set of line segments in the plane

such that any two segments may cross only at angle α. If π
α is irrational or

if π
α = p

q , where gcd(p, q) = 1 and 2 | p, then there exists a subset S′ ⊂ S of
pairwise noncrossing segments with |S′| ≥ 1

2 |S|. Else π
α = p

q , where gcd(p, q) = 1
and p = 2k+1 for some k ∈ N, and then there exists a subset S′ ⊂ S of pairwise
noncrossing segments with |S′| ≥ k

2k+1 |S|.
Proof. If π

α is irrational or if π
α = p

q , where gcd(p, q) = 1 and 2 | p, then the
claim follows directly from Lemma 3.

Assume that π
α = p

q , where gcd(p, q) = 1 and p = 2k+1 is an odd integer. The
direction of a segment s ∈ S, denoted dir(s), is the minimum counterclockwise
angle from the x-axis to a line parallel to s. Note that dir(s) ∈ [0, π). Let
D = {dir(s) : s ∈ S}, that is, the set of directions of the segments in S. For
each direction d ∈ D, let S(d) = {s ∈ S : dir(s) = d} be the set of segments of
direction d.

We define a vertex-weighted graph GD = (D,ED), in which two directions
d1, d2 ∈ D are joined by an edge if and only if they differ by α; and the weight
of a direction d ∈ D is the cardinality of S(d). Clearly, the maximum degree of a
vertex in GD is at most two, and so GD is the disjoint union of paths and cycles.
Furthermore, if d1, d2 ∈ D are in the same component of GD, then they differ
by a multiple of α = q

p · π. Since gcd(p, q) = 1, then m · α ≡ 0 mod π if and only
if m ≡ 0 mod p. Consequently, every cycle in GD is isomorphic to Cp = C2k+1.

Note that if segment s1, s2 ∈ S cross, then dir(s1) and dir(s2) are adjacent in
GD. We can now construct a subset S′ of S. In each connected component H of
GD, we choose a maximum independent set I(H) as follows. (1) If H is a path,
then it is 2-colorable, and the weight of one of the color classes is at least half of
the weight of H; let I(H) be such a color class. (2) If H is isomorphic to C2k+1,
then it has 2k + 1 maximum independent sets (each containing k vertices), and
every vertex lies in precisely k independent sets. By the pigeonhole principle, the
weight of an independent set is at least k

2k+1 times the weight of H; let I(H)
be such an independent set. Let I ⊂ D be the union of independent sets over
all components H of GD; and note that I is an independent set in GD, and its
weight is at least k

2k+1 times the weight of GD, which is |S|. Now let S′ be the
union of the sets S(d) for all d ∈ I. Clearly, the segments in S′ are pairwise
disjoint and |S′| ≥ k

2k+1 |S|, as required. ��
Corollary 3. Let α ∈ (0, π

2 ] and let S be a finite set of line segments in the
plane such that any two segments may cross only at angle α. Then there exists
a subset S′ ⊂ S of pairwise noncrossing segments with |S′| ≥ |S|/3.
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Lemma 5. Let α ∈ (0, π
2 ], and let G = (V,E) be a graph on n ≥ 3 vertices that

admits an αAC=
1 drawing such that for every edge e ∈ E, both edge segments

cross at least one other edge in E. Then

(i) |E| ≤ 15n − 27 for all α ∈ (0, π
2 ];

(ii) |E| ≤ 12n − 18 for α ∈ (0, π
3 );

(iii) |E| ≤ 10n − 15 if α ∈ (π
3 , π

2 ); and
(iv) |E| ≤ 10n − 18 if π

α is irrational or π
α = p

q , where gcd(p, q) = 1 and 2 | p.

Proof. (i) Let S be the set of edge segments of all edges in E; hence |S| = 2 |E|.
For each segment s ∈ S, create a directed path γ(s) as follows: Start from the
(unique) vertex in V incident to s, then follow s until the first crossing with
some other segment s′, and then follow s′ to the (unique) vertex in V incident
to s′. Each path γ(s) is either an α-bend edge or a (π − α)-bend edge. We make
three observations: (1) For every s ∈ S, the first segment of γ(s) is crossing free;
(2) if s1 	= s2, then γ(s1) 	= γ(s2), since the initial segments of the γ paths are
distinct; (3) for s1 	= s2, the paths γ(s1) and γ(s2) may correspond to the same
undirected polygonal path with opposite directions.

Let Γ = {γ(s) : s ∈ S}, and let (V, Γ ) be the red graph. Let Γ1 ⊂ Γ be the
set of red edges where the second segment crosses some other edge in Γ ; and let
Γ2 = Γ \ Γ1 be the set of red edges where both segments are crossing-free.

Two edges in Γ1 cannot follow the same path in opposite directions because
the first segment of every red edge is crossing-free. Let S1 be the set of second
segments of the red edges in Γ1. By Corollary 3, there is a subset S′

1 ⊆ S1 of
pairwise noncrossing segments of size |S′

1| ≥ 1
3 |S1|. Let Γ ′

1 be the set of edges in
Γ1 whose second segment lies in S′

1, with |Γ ′
1| ≥ 1

3 |Γ1|. If Γ2 contains two edges
that follow the same path in opposite directions, then omit one arbitrarily, and
let Γ ′

2 ⊆ Γ2 be the remaining edges, with |Γ ′
2| ≥ 1

2 |Γ2|.
Consider the multigraph (V, Γ ′

1 ∪ Γ ′
2), and note that |Γ ′

1 ∪ Γ ′
2| ≥ 1

3 |Γ1| +
1
2 |Γ2| ≥ min{ 1

3 , 1
2}(|Γ1| + |Γ2|) = 1

3 |Γ |. The edges in Γ ′
1 ∪ Γ ′

2 are pairwise non-
crossing but they may overlap. However, if a segment of γ(s) ∈ Γ ′

1 ∪ Γ ′
2 overlaps

with another edge in Γ ′
1 ∪ Γ ′

2, then the other segment of γ(s) is overlap-free.
Indeed, the first segments of red edges and the edges in Γ ′

2 are pairwise nonover-
lapping; and the second segments of edges in Γ ′

1 are pairwise noncrossing (in the
strong sense). Consequently, we can partition Γ ′

1 ∪ Γ ′
2 into subsets of pairwise

overlapping red edges; and we can perturb the edges in each subset to remove
overlaps while maintaining the angles between segments. After perturbation,
(V, Γ ′

1 ∪ Γ ′
2) is a plane multigraph, composed of α-bend and (π − α)-bend edges.

Let Γ3 ⊂ Γ ′
1 ∪ Γ ′

2 be the set of α-bend edges; and let Γ4 ⊆ Γ ′
1 ∪ Γ ′

2 be
the set of (π − α)-bend edges. By Theorem 1, |Γ3| ≤ 4n − 6. In general, the
multiplicity of every edge in (V, Γ4) is at most two by Proposition 1, and so
|Γ4| ≤ 2(3n − 6) = 6n − 12. Hence we have |Γ | ≤ 3 |Γ ′

1 ∪ Γ ′
2| = 3 |Γ3 ∪ Γ4| ≤

3
Ä

(4n − 6) + (6n − 12)
ä

= 30n − 54. Overall, this yields |E| = 1
2 |Γ | ≤ 15n − 27.

(ii) When α < π
3 , we can apply Theorem 1 for both α-bend and (π − α)-bend

multigraphs. Consequently, |Γ ′
1 ∪ Γ ′

2| = |Γ3| + |Γ4| ≤ 2(4n − 6) = 8n − 12. This
yields |Γ | ≤ 3 |Γ ′

1 ∪ Γ ′
2| ≤ 3(8n − 12) = 24n − 36, hence |E| = 1

2 |Γ | ≤ 12n − 18.
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(iii) When α ∈ [π
3 , π

2 ), then π − α < 2π/3, and |Γ4| ≤ 4n − 6 by Theorem 1.
Consequently, |Γ ′

1 ∪ Γ ′
2| = |Γ3| + |Γ4| ≤ 2(4n − 6) = 8n − 12. If π

α = p
q with

gcd(p, q) = 1 and q = 2k + 1 is an odd integer, then k ≥ 2 and |S′
1| ≥ 2

5 |Γ1|
by Lemma 4. This yields |Γ | ≤ 2.5 |Γ ′

1 ∪ Γ ′
2| ≤ 2.5(8n − 12) = 20n − 30, hence

|E| = 1
2 |Γ | ≤ 10n − 15.

(iv) When π
α is irrational or π

α = p
q with gcd(p, q) = 1 and 2 | p, then the size

of S′
1 is bounded by |S′

1| ≥ 1
2 |Γ1| by Lemma 4. This yields |Γ | ≤ 2(10n − 18) =

20n − 36, hence |E| = 1
2 |Γ | ≤ 10n − 18. ��

Theorem 3. If G = (V,E) is an αAC=
1 graph with n ≥ 3 vertices, then

(i) |E| ≤ 21n − 36 for α = π
3 ;

(ii) |E| ≤ 18.5n − 34 for α ∈ (0, π
3 );

(iii) |E| ≤ 16.5n − 31 if α ∈ (π
3 , π

2 ]; and
(iv) |E| ≤ 16n − 30 if π

α is irrational or π
α = p

q , where gcd(p, q) = 1 and 2 | p.

Proof. Let α ∈ (0, π
2 ]; and let G = (V,E) be a graph with n ≥ 4 vertices with an

αAC=
1 drawing. Let E1 ⊆ E denote the set of edges in E that have at least one

crossing-free end segment. Let G1 = (V,E1) and G2 = (V,E\E1). By Corollary 3,
there is a subset S′

1 ⊆ S1 of pairwise noncrossing segments of size |S′
1| ≥ 1

3 |E1|.
The graph G′

1 corresponding to these edges is planar, with at most 3n−6 edges.
Hence E1 contains at most 3 · (3n − 6) = 9n − 18 edges. By Lemma 5(i), G2 has
at most 15n − 18 edges. Hence, G has at most (9n − 18) + (15 − 18) = 24n − 36
edges in general. However, we can improve on this bound for all α ∈ (0, π

2 ].

(i) When α = π
3 , we can use Lemma 5(ii), which yields at most (9n − 18) +

(12n − 18) = 21n − 36 edges.

(ii) When α ∈ (0, π
2 ) and α 	= π

3 , then G1 is quasi-planar (i.e., it does not contain
three pairwise crossing edges). Indeed, suppose to the contrary that three edges
in G1 in pairwise cross. As every edge in G1 has two segments, one of which is
crossing-free, then these edges contain three segments that pairwise cross. These
segments form a triangle, in which every interior angle is α or π−α. Since interior
angles of a triangle sum to π, it follows that α = π

3 ; a contradiction.
It is known [1,3] that a simple quasi-planar n-vertex graph has at most

6.5n − 20 for n ≥ 4, hence at most 6.5n − 16 edges for n ≥ 3. Combined with
Lemma 5(i), G has at most 18.5n − 34 edges.

(iii) When α ∈ (π
3 , π

2 ), then again G1 is quasi-planar, with at most 6.5n − 16
edges due to [1,3]. Combined with Lemma 5(iii), G has at most 16.5n−31 edges.

(iv) When π
α is irrational or π

α = p
q , where gcd(p, q) = 1 and 2 | p. Then we can

assume |S′
1| ≥ 1

2 |E1| by Lemma 4, hence |E1| ≤ 2 · (3n−6) = 6n−12. Combined
with Lemma 5(iv), G has at most 16n − 30 edges in this case. ��
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6 Conclusions and Open Problems

We have introduced α-bend and α-arc graphs and multigraphs for any α ∈
(0, π), and derived upper and lower bounds on the maximum number of edges,
Ma(P, α) and Mb(P, α), for a point set P in these drawing styles. However,
the computational complexity of the corresponding optimization problems is
unknown.

Problem 1. Is it NP-hard to determine Ma(P, α) (resp., Mb(P, α)) for a given
point set P ⊂ R

2 and angle α ∈ (0, π)? Is it ∃R-hard to determine Mb(P, α)?

Intuitively, allowing one-bend edges instead of straight-line edges gives extra
flexibility. In several cases, we have shown that an α-bend graph on a point
set P has at least as many edges as a straight-line triangulation on P , that
is, Mb(P, α) ≥ M(P ). However, we have also shown that α-arc edges become
obstacles as α tends to zero, and Ma(P, α) < M(P ) for all sufficiently small
α > 0. For α-bend edges in general, this remains an open problem.

Problem 2. Does there exist a finite point set P ⊂ R
2 and an angle α ∈ (0, π)

such that Mb(P, α) < M(P ) ?

It is also an open problem to improve the upper or lower bounds for the
number of edges in αAC=

1 graphs and αAC=
2 graphs.

Problem 3. Determine the maximum number of edges in an n-vertex αAC=
1

graph and an n-vertex αAC=
2 graph for all angles α ∈ (0, π

2 ].

Acknowledgments. Research on this paper was partially supported by the NSF
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15. Dujmović, V., Gudmundsson, J., Morin, P., Wolle, T.: Notes on large angle crossing
graphs. Chic. J. Theor. Comput. Sci. 2011 (2011). http://cjtcs.cs.uchicago.edu/
articles/CATS2010/4/contents.html

16. Efrat, A., Fulek, R., Kobourov, S.G., Tóth, C.D.: Polygons with prescribed angles
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Abstract. In this paper, we initiate the study of quantum algorithms in
the Graph Drawing research area. We focus on two foundational drawing
standards: 2-level drawings and book layouts. Concerning 2-level draw-
ings, we consider the problems of obtaining drawings with the minimum
number of crossings, k-planar drawings, quasi-planar drawings, and the
problem of removing the minimum number of edges to obtain a 2-level
planar graph. Concerning book layouts, we consider the problems of
obtaining 1-page book layouts with the minimum number of crossings,
book embeddings with the minimum number of pages, and the prob-
lem of removing the minimum number of edges to obtain an outerplanar
graph. We explore both the quantum circuit and the quantum anneal-
ing models of computation. In the quantum circuit model, we provide an
algorithmic framework based on Grover’s quantum search, which allows
us to obtain, at least, a quadratic speedup on the best classical exact
algorithms for all the considered problems. In the quantum annealing
model, we perform experiments on the quantum processing unit provided
by D-Wave, focusing on the classical 2-level crossing minimization prob-
lem, demonstrating that quantum annealing is competitive with respect
to classical algorithms.

Keywords: Quantum complexity · Grover’s algorithm · QUBO ·
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1 Introduction

We initiate the study of quantum algorithms in the Graph Drawing
research area1.

The Problems. We focus on two foundational graph drawing standards: 2-level
drawings and book layouts. In a 2-level drawing (refer, e.g., to [2,4,6,10,15,16,
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Fig. 1. Examples of graph drawing standards: (a) a 2-level drawing and (b) a 3-page
book embedding.

19]), the graph is bipartite, the vertices are placed on two horizontal lines, and
the edges are drawn as y-monotone curves; see Fig. 1a. In this drawing standard,
we consider the search version of the Two-Level Crossing Minimization

(TLCM) problem, where given an integer ρ we seek a 2-level drawing with at
most ρ crossings, and of the Two-Level Skewness (TLS) problem, where
given an integer σ we seek to determine a set of σ edges whose removal yields
a 2-level planar graph, i.e., a forest of caterpillars [18]. The minimum value of
σ is the 2-level skewness of the considered graph. We also consider the Two-

Level Quasi Planarity (TLQP) problem, where we seek a drawing in which
no three edges pairwise cross, i.e., a quasi-planar drawing, and the Two-Level

k-Planarity (TLKP) problem, where we seek a drawing in which each edge
participates to at most k crossings, i.e., a k-planar drawing. In a book layout
(refer, e.g., to [7–9,11,37]), the drawing is constructed using a collection of half-
planes, called pages, all having the same line, called spine, as their boundary; see
Fig. 1b. The vertices lie on the spine and each edge is drawn on a page. In this
drawing standard, we consider the search version of the One-Page Crossing

Minimization (OPCM) problem, where given an integer ρ we seek a 1-page
layout with at most ρ crossings; the Book Thickness (BT) problem, where
we search a τ -page layout where the edges in the same page do not cross, i.e.,
a τ -page book embedding; and the Book Skewness (BS) problem, where given
an integer σ we seek a set of σ edges whose removal yields a graph admitting a
1-page book embedding, i.e., it is outerplanar [9]. The minimum value of σ is the
book skewness of the considered graph.

The Models. We delve into both the quantum circuit [29,31] and the quantum
annealing [28] models of computation. In the former, quantum gates are used
to compose a circuit that transforms an input superposition of qubits into an
output superposition. The circuit design depends on both the problem and the
specific instance being processed. The output superposition is eventually mea-
sured, obtaining the solution with a certain probability. The quality of the cir-
cuit is measured in terms of its circuit complexity, i.e., the number of elementary
gates it contains, of its depth, i.e., the maximum length of a chain of elementary
gates from the input to the output, and of its width, i.e., the maximum number
of elementary gates “along a cut” separating the input from the output. It is



34 S. Caroppo et al.

natural to upper bound the time complexity of the execution of a quantum circuit
either by its depth, assuming the gates at each layer can be executed in parallel,
or by its circuit complexity, assuming the gates are executed sequentially. The
width estimates the desired level of parallelism. In the latter, quantum annealing
processors, in general quite different from those designed for the quantum circuit
model, consist of a fixed-topology network, whose vertices correspond to qubits
and whose edges correspond to possible interactions between qubits. A problem
is mapped to an embedding on such a topology. During the computation, the
solution space of a problem is explored, searching for minimum-energy states,
which correspond to, in general approximate, solutions.

Our Contributions. In the quantum circuit model, we first show that the above
graph drawing problems can be described by means of quantum circuits.

The first problem that we have to solve is choosing an effective representation
for inputs and outputs. Since all problems we tackle require the selection of a
permutation of n vertices, a tempting idea is to have as inputs-outputs binary
variables explicitly representing the precedence between pairs of vertices. How-
ever, this requires to represent the superposition of a number of qubits which
is quadratic in n. Hence, we use as inputs-outputs the vertex coordinates, that
implicitly represent a permutation and require just n log n qubits. On the other
hand, to solve the above problems, we have to transform the coordinates into
orderings. Thus, the first contribution of the paper is a set of efficient quan-
tum methods, that can be of general usage in Quantum Graph Drawing, that
allow to transform coordinates of vertices into precedence between vertices and
vice versa. These methods use a reduced number of “ancilla” qubits. Second, we
present an algorithmic framework based on Grover’s quantum search [22]. This
framework enables us to achieve, at least, a quadratic speedup compared to the
best exact classical algorithms for all the problems under consideration. Table 1
overviews our complexity results and compares them with classical algorithms.
Within this framework we introduce quantum phase inversion methods com-
posed by building blocks suitable to be combined to solve several types of graph
drawing problems. In the quantum annealing model, we focus on the actual
processing unit provided by D-Wave, which allows us to perform hybrid com-
putations, which are partly classical and partly quantum. We first show that
it is relatively easy to use D-Wave for implementing heuristics for the above
problems. Second, we focus on the classical TLCM problem. Through experi-
ments, we demonstrate that quantum annealing exhibits competitiveness when
compared to classical algorithms. Figure 7 illustrates our experimental findings,
whose raw data are provided in Table 2 of the full version of the paper [13].

State of the Art. Problems TLCM [21], TLQP [3], TLS [34], OPCM [27], BT [35],
and BS [36] are NP-complete, whereas the complexity of TLKP is not known.
FPT results with respect to the natural parameters (total number of crossings ρ,
number of crossings per edge k, maximum number of allowed mutually crossing
edges, number of pages τ , and number of edges to be removed σ) are known for
TLCM [26], TLS [17], and OPCM [5]. Since TLQP and BT are para-NP-hard
with respect to their natural parameter, FPT algorithms do not exist for these
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Table 1. Results presented in this paper and comparison with exact classic algorithms.
FPT algorithms are given, if any, with respect to the natural parameter. CC stands for
Circuit Complexity. M denotes the number of problem solutions.

Problem Classic
Algorithm
Running Time

Upperbound
for m

FPT
Time

Quantum Oracle
Calls

Oracles

CC Depth Width

TLCM 2n log nO(m2) O( 3
√

ρ · n2) [4] 2O(ρ) + nO(1) [26] π
4

√
2n log n

M
O(m2) O(n2) O(m2)

TLKP 2n log nO(m2) O(
√

k · n) [4] - π
4

√
2n log n

M
O(m2) O(m log2 m) O(m)

TLQP 2n log nO(m3) O(n) [4] Para-NP-hard [3] π
4

√
2n log n

M
O(m6) O(m4) O(m2)

TLS O(mσn) O(n + σ) 2O(σ3)n [17] π
4

√
2n log n+σ log m

M
O(m2) O(m) O(m)

OPCM 2n log nO(m2) O( 3
√

ρ · n2) [32] Courcelle’s Th. [5] π
4

√
2n log n

M
O(n8) O(n6) O(m2)

BT 2n log n+m log τO(τn) O(τ · n) Para-NP-hard [27] π
4

√
2n log n+m log τ

M
O(n8) O(n6) O(m)

BS O(mσn) O(n + σ) - π
4

√
2n log n+σ log m

M
O(n8) O(n6) O(m)

problems (unless P=NP). Upper bounds for the density of positive instances
for all problems are given in Table 1. Let n and m denote the number of ver-
tices and edges of an input graph, respectively. To the best of our knowledge,
no exact algorithms for these problems are known that perform asymptotically
better than trivial algorithms based on considering each candidate solution and
verifying whether it is positive, which can easily be done in polynomial time
for each solution. For problems TLCM, TLKP, TLQP, and OPCM, a candidate
solution is uniquely identified by one of the possible n! ∈ Θ(2n log n) vertex order-
ings. For problems TLS and BS, together with a vertex ordering, a candidate
solution needs also to consider one of the possible

(
m
σ

) ∈ O(mσ) choices of σ
edges to be removed. For problem BT, together with a vertex ordering, a candi-
date solution needs also to consider one of the τm possible page assignments of
the edges to τ pages.

Details of omitted and sketched proofs can be found in the full version of the
paper [13].

2 Preliminaries

For basic concepts related to graphs and their drawings, we refer the reader
to [14,33]. For the standard notation we use for quantum gates and circuits, and
for basic concepts about quantum computation, we refer the reader to [29,31].

Let k be a positive integer. To ease the description, we will denote the value
�log2 k� simply as log k, and the set {0, . . . , k − 1} as [k]. We refer to any of the
permutations of the integers in [k] as a k-permutation. A k-set is a set of size k.

Let X be a ground set. Let Xk be the set of all k-sets of distinct elements
of X, i.e., Xk = {{a1, a2, . . . , ak}|∀i �= j : ai �= aj , ai ∈ X}. A subset S of Xk is
cross-independent if, for any two k-sets si, sj ∈ S, it holds that si ∩ sj = ∅. To
prove the depth bounds of our circuits, we will exploit the following.

Lemma 1. The set Xk of all k-sets of distinct elements of a set X can be
partitioned in O(

√
kk · |X|k−1) cross-independent sets of size at most 
 |X|

k �, if
k < n+2

3 .
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Fig. 2. The quantum graph drawing framework based on Grover’s approach.

We introduce the mathematical formulations used in the D-Wave quantum
annealing platform. A constrained binary optimization (CBO) is the mathemat-
ical formulation of an optimization problem, in which the variables are binary.
In some cases, we focus on CBO formulations in which the objective function is
not defined, and we aim at verifying whether a problem instance only satisfies
the given constraints. A quadratic unconstrained binary optimization (QUBO) is
the mathematical formulation of an optimization problem, in which the variables
are binary, the optimization function is quadratic, and there are no constraints.

3 A Quantum Framework for Graph Drawing Problems

In this section, we establish a framework for dealing with several NP-complete
graph drawing problems; refer to Fig. 2. The framework is based on Grover’s app-
roach for quantum search [22], which builds upon three circuits. The first circuit
is a Hadamard gate that builds a uniform superposition of a sequence of qubits
representing a potential, possibly not well-formed, solution to the problem. The
second circuit exploits an oracle to perform the so-called Phase Inversion. The
third circuit executes the so-called Inversion about the Mean. The second
and the third circuit are executed a number of times which guarantees that a
final measure outputs a solution, if any, with high probability.

Theorem 1 (Grover’s search [1,22]). Let P be a search problem whose solu-
tions can be represented using � bits and suppose that there exists a Phase

Inversion circuit for P with c(�) circuit complexity and d(�) depth. Assume that
c(�) and d(�) are Ω(log �). Then, there exists a quantum circuit that outputs a

solution for P , if any, with π
4

√
2�

M ·O(c(�)) circuit complexity and π
4

√
2�

M ·O(d(�))
depth, where M is the number of solutions of P .

Let n and m be the number of vertices and edges of an input graph G, respec-
tively. Note that, in all the problems we consider, G admits the sought layout if
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and only if each of its connected components does. Hence, in the following, we
assume that G is connected, and therefore m ≥ n − 1. During the computation,
we will manage a superposition |Γ 〉 = |Φ〉 |Ψ〉 |Θ〉, where |Φ〉 is a superposition of
n log n qubits, |Ψ〉 is a superposition of m log τ qubits, and |Θ〉 is a superposition
of σ log m qubits. In particular, for some of the problems, |Ψ〉 and/or |Θ〉 might
not be present. We denote by � the value (n log n)+ (m log τ)+ (σ log m), where
the second and/or third terms might be missing.

We denote the set of binary values {0, 1} by B. The superposition |Φ〉 =∑
φ∈Bn log n cφ |φ〉 simultaneously represents all sequences of n natural numbers

with values in [n], each corresponding to a binary string φ of length n log n.
We denote by φ[i] the i-th natural number contained in φ. The purpose of |Φ〉
is to represent the position of each vertex of G in a total order. To this aim,
observe that, within the superposition |Φ〉, all possible states corresponding to
assignments of positions from 0 to n − 1 for each vertex in G are included. The
purpose of |Ψ〉 is to represent a coloring of the edges of G with colors in [τ ].
The purpose of |Θ〉 is to represent a subset of the edges of G of size at most σ,
each labeled with an integer in [m]. For problems TLCM, TLKP, TLQP, and
OPCM, we have that |Γ 〉 = |Φ〉. For problem BT, we have that |Γ 〉 = |Φ〉 |Ψ〉.
Finally, for problems TLS and BS, we have that |Γ 〉 = |Φ〉 |Θ〉.

Next, we present an overview of how the superposition |Γ 〉 evolves within the
three main circuits of the framework; refer to Fig. 2. For space limitations, we
will mostly focus only on problem TLCM, and hence we assume that |Γ 〉 = |Φ〉.
In [13], we give details for all the considered problems. We denote by |0k〉 the
quantum basis state composed of k qubits set to |0〉.

First, in all problems we study, � qubits set to |0〉 enter an Hadamard
gate that outputs the uniform superposition |Γ 〉 = H⊗� |0�〉 = 1√

2�

∑
γ∈B� |γ〉.

Note that, within |Γ 〉, all possible solutions of the considered problems are
included, if any exist. Second, in Grover’s approach, the Inversion about

the Mean circuit is prescribed. Hence, we now focus on the Phase Inversion

circuit. In the first iteration, it receives as input (i) the uniform superposition
|Γ 〉 = H⊗� |0�〉, (ii) α ancilla qubits set to |0〉, where α depends on the type
of problem, and (iii) a qubit set to |−〉. Namely, it receives as input the super-
position |Γ 〉 |0α〉 |−〉, where |Γ 〉 = 1√

2�

∑
γ∈B� |γ〉. It outputs the superposition

1√
2�

∑
γ∈B�(−1)f(γ) |γ〉 |0α〉 |−〉, where f(γ) = 1 if and only if γ represents a

valid solution to the considered problem. In general, the Phase Inversion cir-
cuit receives in input the superposition |Γ 〉 |0α〉 |−〉, where |Γ 〉 =

∑
γ∈B� cγ |γ〉.

It outputs the superposition
∑

γ∈B�(−1)f(γ)cγ |γ〉 |0α〉 |−〉. We remark that the
values of the complex coefficients cγ depend on the iteration.

For each problem we consider, we provide a specific Phase Inversion cir-
cuit. All such circuits consist of three circuits (see Fig. 2), the first is called Input

Transducer and is denoted by UI , the second is called Solution Detector

and is denoted by US , and the third is the inverse U−1
I of the Input Trans-

ducer. The purpose of the Input Transducer circuits is to “filter out” the
states of |Γ 〉 that do not correspond to “well-formed” candidate solutions. The
purpose of the Solution Detector circuits is to invert the amplitude of the
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states of |Γ 〉 that correspond to positive solutions, if any. The purpose of U−1
I

is to restore the state of the ancilla qubits to |0〉 so that they may be reused in
the subsequent iterations of the amplitude-amplification process.

The Input Transducer circuits are described in Sect. 4. The Solution

Detector circuits are described in Sect. 5, where the corresponding circuit
bounds are also shown (see Table 1). Such bounds and Theorem1 imply the fol-
lowing.

Theorem 2. In the quantum circuit model, the TLCM, TLKP, TLQP, TLS,
OPCM, BT, and BS problems can be solved with the following sequential (ST)
and parallel (PT) time bounds (where M denotes the number of solutions):

TLCM ST:
√

2n log n

M O(m2), PT:
√

2n log n

M O(n2). TLKP ST:
√

2n log n

M O(m2),

PT:
√

2n log n

M O(m log2 m). TLQP ST:
√

2n log n

M O(m6), PT:
√

2n log n

M O(m4).

TLS ST:
√

2n log n+σ log m

M O(m2), PT:
√

2n log n+σ log m

M O(m). OPCM ST:
√

2n log n

M O(n8), PT:
√

2n log n

M O(n6). BT ST:
√

2n log n+m log τ

M O(n8), PT:
√

2n log n+m log τ

M O(n6). BS ST:
√

2n log n+σ log m

M O(n8), PT:
√

2n log n+σ log m

M O(n6).

4 Input Transducer Circuits

We use two different versions of circuit UI , depending on the considered problem.
Namely, for all problems but for the TLS and the BS problems, circuit UI consists
of just one circuit UOT , called Order-Transducer (see Fig. 3). For problems
TLS and BS, circuit UI executes, in parallel to UOT , another circuit UST , called
Skewness-Transducer, whose details can be found in the full version.

Let φ be a binary string of length n log n, which we interpret as a sequence
of n binary integers, each consisting of log n bits. Recall that, we denote by φ[i]
the i-th binary integer contained in φ. Let |φ〉 be the basis state corresponding
to φ.

Lemma 2. There exists a gate UOT that, when provided with the input superpo-
sition |φ〉 |0α〉, where α = n

2 (n−1+ log n)+1, produces the output superposition
|φ〉 |f(φ)〉 |x0,1〉 . . . |xi,j〉 . . . |xn−2,n−1〉

∣
∣0n

2 log n

〉
, such that |xi,j〉 = 1 if and only

if φ[i] < φ[j] and f(φ) = 1 if and only if φ represents an n-permutation. Gate
UOT has O(n2 log n) circuit complexity, and O(n log n) depth and width.

Proof (Sketch). The gate UOT uses gate UC , called Collision Detector, and
gate UP , called Precedence-Constructor; see Fig. 3. The purpose of UC is to
compute the superposition |φ〉 |f(φ)〉, where f(φ) = 1 if and only if φ represents
an n-permutation. The purpose of UP is to compute the superposition |φ〉 |x〉,
where |x〉 = |x0,1〉 . . . |xi,j〉 . . . |xn−2,n−1〉 and xi,j = 1 if and only if φ[i] < φ[j].
To achieve O(n log n) depth, gate UP exploits Lemma 1 to compare all unordered
pairs of integers φ[i] and φ[j] in parallel.
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Fig. 3. The Order Transducer gate UOT .

5 Solution Detector Circuits

In this section, we first present the Solution Detector circuit US for problem
TLCM, and then we sketch the modifications that need to be introduced to
address the remaining problems. We refer the reader to the full version for details.

Consider a 2-level drawing of a bipartite graph G = (U, V,E). Let the vertices
in U be u0, . . . , u|U |−1, and the vertices of V be v|U |, . . . , v|U |+|V |−1. Let �u and
�v be two horizontal lines. We denote by D(x) the 2-level drawing of G defined
as follows. Let wi and wj be two vertices of G. Suppose that wi, wj belong to
U (resp. to V ). If xi,j = 1, then wi ≺ wj along the horizontal line �u (resp. �v),
otherwise, wj ≺ wi along �u (resp. �v). Suppose now that wi ∈ U and wj ∈ V ,
then xi,j = 0, which corresponds to the absence of a precedence between such
vertices. Note that, if φ is not an n-permutation, then D(x) does not correspond
to an actual 2-level drawing. In this case, we say that D(x) is degenerate.

We will exploit |x〉 to compute a superposition |χ0,1〉 . . . |χi,j〉 . . . |χm−2,m−1〉,
which we will denote for simplicity by |χ〉. We use the values χi,j to represent
the existence of crossings between pairs of edges in a graph drawing. Namely,
for every 0 ≤ a < b ≤ m − 1, consider the value χa,b, where ea = (vi, vk) and
eb = (vj , v�). If D(x) corresponds to a 2-level drawing of G, then we have that
χa,b = 1 if ea and eb belong to E and cross (i.e., xi,j �= xk,�), and χa,b = 0 if
either ea and eb belong to E and do not cross (i.e., xi,j = xk,�) or at least one
of ea and eb does not belong to E. Note that, the values χa,b are completely
determined by x.

We call TLCM the Solution Detector circuit for problem TLCM.

Lemma 3. There exists a gate TLCM that, when provided with the input super-
position |f(φ)〉 |x〉 |0h〉 |−〉, where h = 5m(m−1)

2 − log m− log(m−1)−2, produces
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Fig. 4. TLCM Oracle Pipeline.

the output superposition (−1)g(x)f(φ) |f(φ)〉 |x〉 |0h〉 |−〉, where g(x) = 1 if D(x)
is not degenerate and the 2-level drawing D(x) of G has at most ρ crossings.
Gate TLCM has O(m2) circuit complexity, O(n2) depth, and O(m2) width.

Proof (Sketch). Gate TLCM uses four gates: tl-Cross Finder Uχ, Cross

Counter Ucc, Cross Comparator Uc<, and Final Check Ufc. These gates
are followed by the inverse gates U−1

c< , U−1
cc , and U−1

χ , whose purpose is to restore
the h ancilla qubit to |0〉 to be reused in the subsequent iterations. See Fig. 4.

tl-cross finder. The purpose of Uχ is to compute the crossings in D(x) (under
the assumption that D(x) is not degenerate); see Fig. 5b. When provided with
the input superposition |x〉 |0k〉, where k = m(m−1)

2 , the gate Uχ outputs the
superposition |x〉 |χ〉. Gate Uχ exploits the auxiliary gate Ucr, whose purpose is
to check if two edges cross; see Fig. 5a. When provided with the input superposi-
tion |xi,j〉 |xk,�〉 |0〉, gate Ucr outputs the superposition |xi,j〉 |xk,�〉 |χa,b〉, where
ea = (ui, vk), eb = (uj , v�), and χa,b = xi,j ⊕xk,� (which is 1 if and only if ea and
eb cross in D(x)). It is implemented using two Toffoli gates with three inputs and
outputs. The first one is activated when xi,j = 1 and xk,� = 0. The second one
is activated when xi,j = 0 and xk,� = 1. Gate Ucr has O(1) circuit complexity,
depth, and width. The gate Uχ works as follows. Consider that if two variables
xi,j and xk,� are compared to determine whether the edges (ui, vk) and (uj , v�)
cross, none of these variables can be compared with another variable at the same
time. Therefore, we partition the pairs of such variables using Lemma1 (with
k = 2 and |X| = n(n−1)

2 ) into r ∈ O(n2) cross-independent sets S1, . . . , Sr each
containing at most �n(n−1)

4 � pairs. For i = 1, . . . , r, the gate Uχ executes in par-
allel a gate Ucr, for each pair (xi,j , xk,�) in Si (see Fig. 5b), in order to output the
qubit |χa,b〉. Gate Uχ has O(n4) circuit complexity, and O(n2) depth and width.

cross counter. The purpose of gate Ucc is to count the total number of
crossings in the drawing D(x). When provided with the input superposition
|χ〉 |0d〉 |0k〉, gate Ucc outputs the superposition |χ〉 |σ(x)〉 |0d〉, where σ(x) =∑

ei,ej∈E χi,j is a binary integer of length d representing the total number of
crossings. Gate Ucc exploits an auxiliary gate U1s, whose design is given in the
full version, that counts the number of 1s contained in a binary string. Note
that the number of crossings in D(x) is at most m(m−1)

2 . Therefore, σ(x) can be
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Fig. 5. Gate Ucr (a) and gate Uχ (b). In (b), it holds k = m(m−1)
2

.

represented by a binary string of length d ≤ log m + log(m − 1). Gate Ucc can
be implemented with O(m2) circuit complexity, O(log2 m) depth, and O(m2)
width.

cross comparator. The purpose of gate Uc< is to verify if σ(x) is less than
the allowed number of crossings ρ. If provided with the input superposition
|σ(x)〉 |ρ〉 |0h〉 |0〉, it outputs the superposition |σ(x)〉 |ρ〉 |0h〉 |g(x)〉, where g(x) =
1 if D(x) is not degenerate and σ(x) < ρ. Gate Uc< is an instance of the gate U<,
which compares two binary integers (its design is given in the full version). Gate
Uc< can be implemented with O(log m) circuit complexity, depth, and width.

final check. The purpose of gate Ufc is to check if the current solution is
admissible, i.e., if D(x) is not degenerate and the corresponding 2-level draw-
ing of G has at most ρ crossings. See Fig. 6. When provided with the input
superposition |f(φ)〉 |g(x)〉 |−〉, the gate Ufc produces the outputs superposition
(−1)g(x)f(φ) |f(φ)〉 |g(x)〉 |−〉. Ufc exploits a Toffoli gate with three inputs and
outputs. The control qubits are |f(φ)〉 and |g(x)〉, and the target qubit is |−〉. If
f(φ) = g(x) = 1, the target qubit is transformed into the qubit − |−〉; otherwise,
it leaves unchanged. Gate Ufc has O(1) circuit complexity, depth, and width.

Fig. 6. Gate Ufc.
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Correctness and Complexity. For the correctness, note that the gates Uχ, Ucc,
Uc<, and Ufc verify all the necessary conditions for which D(x) has at most ρ
crossings, assuming that D(x) is not degenerate. Thus, the sign of the output
superposition of gate TLCM, determined by the expression (−1)g(x)f(φ), is pos-
itive if either D(x) is degenerate or D(x) is not degenerate and the number of
crossings σ(x) in D(x) is larger than ρ, and it is negative if D(x) is not degen-
erate and the number of crossings σ(x) in D(x) is smaller than ρ. The bounds
on the circuit complexity and width of TLCM come from Ucc, and the one on
the depth comes from Uχ.

Recall that the Solution Detector circuits US for the remaining problems
may additionally receive, together with |Φ〉, the superpositions |Ψ〉 and/or |Θ〉.
For TLKP, US exploits gates to check if the number of crossings on each edge is
at most k. For TLQP, US exploits gates to manipulate a qubit associated with
a triple of edges. The state of such a qubit is set to |1〉 if the corresponding
three edges mutually cross. For TLS, US also receives in input a superposition
|θ〉 (which identifies a selection of σ edges to be removed) and exploits gates to
check if the remaining edges do not cross. For OPCM, US exploits gates suited
to detect crossing edges in book layouts. For BT, US also receives in input a
superposition |ψ〉 (which identifies a page assignment of the edge of G) and
exploits gates to check that the edges assigned to the same page do not cross.
For BS, US only differs from TLS in the gate used to detect crossing edges
in book layouts.

6 Exploiting Quantum Annealing for Graph Drawing

In this section, we explore the 2-level problems and the book layout problems,
that we have addressed so far from the quantum circuit model perspective, in
the context of the quantum annealing model of computation. We pragmatically
concentrate on the D-Wave platform, which offers quantum annealing services
based on a large-scale quantum annealing solver. To utilize the hybrid facility
of D-Wave for solving an optimization problem, there are essentially two ways:
Either the problem is provided with its QUBO formulation or it is provided with
a CBO formulation with constraints that are at most quadratic. Also, given a
CBO formulation, it is quite simple to construct a QUBO formulation. Hence, in
the full version, we first provide CBO formulations for the problems introduced
in the previous section. Second, we overview a standard method for transforming
a CBO formulation into a QUBO formulation.

In what follows, we discuss an experimentation conducted on the quantum
annealing platform provided by D-Wave, specifically focusing on TLCM, which
has extensive experimental literature compared to other problems considered in
this paper. These experiments evaluate the efficiency of D-Wave with respect to
well-known classical approaches to the TLCM problem.

We performed our experiments on TLCM using the hybrid solver of D-Wave,
which suitably mixes quantum computations with classic tabu-search and simu-
lated annealing heuristics. The obtained results are not guaranteed to be optimal.
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(a) Time comparison. (b)
the optimum number of crossings.

Fig. 7. D-Wave experimentation results: (a) comparison of times and (b) quality of the
solutions.

We used the hybrid solved by D-Wave with two CBO formulations: One with
linear constrains and one with quadratic constraints. Roughly, D-Wave hybrid
solver works as follows. First, it decomposes the problem into parts that fit the
quantum processor. The decomposition aims at selecting subsets of variables,
and hence sub-problems, maximally contributing to the problem energy. Sec-
ond, it solves the sub-problems with the quantum processor. Third, it injects
the obtained results into the original overall problem that is solved with classi-
cal heuristics. These steps can be repeated several times, since an intermediate
solution can re-determine the set of variables that contribute the most to the
problem energy. An interesting description of the behaviour and of the limita-
tions of D-Wave is presented in [24], although it refers to the quantum processor
called Chimera that has been replaced by the new processors called Pegasus and
Zephyr.

We compare our results with the figures proposed in [12], where three exact
algorithms for TLCM are compared: LIN (the standard linearization approach),
JM (the algorithm in [25]), and SDP (the branch-and-bound in [30]). Their
experiments were carried out on an Intel Xeon processor with 2.33 GhZ.

Figure 7 illustrate the results of the experimentation on the D-Wave platform.
We focused on exactly the same set of graphs used in [12]. Namely, for each value
of n, i.e., number of vertices per layer, and for each value of d, i.e., density, we
performed 10 experiments on 10 distinct graph instances. Figure 7a reports for
each pair n, d, consisting of number of vertices n and density d: (1) the time
spent to find the optimum by the fastest classical algorithm between LIN, JM,
and SDP, (2) the time spent by our implementation using linear constraints, and
(3) the time spent by our implementation using quadratic constraints. All the
values are the average computed on the cited 10 instances.
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Figure 7b shows that the number of crossings obtained by the quadratic
implementation was the optimal one for all graphs with up to 14 vertices per
layer and up to 40% of density. Also, the number of crossings obtained by the
quadratic (resp., linear) implementation, in all sets of instances deviates of at
most 8% (resp., 9%) from the optimal one. Further, for 60% of the sets both the
linear and the quadratic implementations achieve the optimum.

The comparison of the time employed by D-Wave (linear and quadratic) with
the one of the best exact methods is quite promising, even if the times of [12] are
the results of a computation performed on a non-up-to-date classical hardware,
and indicate that D-Wave can be used to efficiently tackle instances of TLCM.
The comparison between linear and quadratic CBO formulations indicates that
the quadratic formulation is more efficient, since it generates fewer constraints.
Their behaviour in terms of number of crossings are quite similar. The time we
report is the overall time elapsed between the remote call from our client and
the reception of the result. The actual time spent on the quantum processor is
always between 0.016 and 0.032 sec.

7 Conclusions and Open Problems

We initiate the study of quantum algorithms in the Graph Drawing research
area providing a framework that allows us to tackle several classic problems
within the 2-level and book layout drawing standards. Our framework, equipped
with several quantum circuits of potential interest to the community, builds
upon Grover’s quantum search approach. It empowers us to achieve, at least,
a quadratic speedup compared to the best classical exact algorithms for all
the problems under consideration. In addition, we conducted experiments using
the D-Wave quantum annealing platform for the Two-Level Crossing Min-

imization problem. Our experiments demonstrated that the platform is highly
suitable for addressing graph drawing problems and showcased significant effi-
ciency when compared to the top approaches available for solving such problems.
The encounter between Graph Drawing and Quantum Computing is still in its
nascent stage, offering a vast array of new and promising problems. Virtually,
all graph drawing problems can be explored through the lenses of quantum com-
putation, utilizing both the quantum circuit model and, more pragmatically,
quantum annealing platforms.
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Abstract. We study the crossing-minimization problem in a layered
graph drawing of planar-embedded rooted trees whose leaves have a given
total order on the first layer, which adheres to the embedding of each
individual tree. The task is then to permute the vertices on the other
layers (respecting the given tree embeddings) in order to minimize the
number of crossings. While this problem is known to be NP-hard for
multiple trees even on just two layers, we describe a dynamic program
running in polynomial time for the restricted case of two trees. If there
are more than two trees, we restrict the number of layers to three, which
allows for a reduction to a shortest-path problem. This way, we achieve
XP-time in the number of trees.

Keywords: layered drawing · tree drawing · crossing-minimization ·
dynamic program · XP-algorithm

1 Introduction

Visualizing hierarchical structures as directed trees is essential for many appli-
cations, from software engineering [2] to medical ontologies [1] and phylogenetics
in biology [12]. Phylogenetic trees in particular can serve as an example to illus-
trate the challenges of working with hierarchical structures, as they are inferred
from large amounts of data using various computational methods [19] and need
to be analyzed and checked for plausibility using domain knowledge [9]. From
a human perspective, visual representations are needed for this purpose. Most
available techniques focus on the visualization of a single tree [7]. However, cer-
tain tasks may require working with multiple, possible interrelated trees, such
as the comparison of trees [9,11] or analyzing ambiguous lineages [13]. Graham
and Kennedy [7] provide a survey for drawing multiple trees in this context.
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While there are many different visualization styles for trees (see an overview
by Schulz [15]), directed node-link diagrams are the standard. The most com-
mon approach to visualize a directed graph as a node-link diagram is the layered
drawing approach due to Sugiyama et al. [17]. After assigning vertices to layers,
the next step is to permute the vertices on each layer such that the number of
crossings is minimized, as crossings negatively affect the readability of a graph
drawing [14,18]. However, this problem turns out to be hard even when restrict-
ing the number of layers or the type of graphs. For example, if the number
of layers is restricted to two, crossing minimization remains NP-hard for gen-
eral graphs [6], even if the permutation on one layer is fixed [5], known as the
one sided crossing minimization (OSCM) problem. However, it is known that
OSCM is fixed-parameter tractable in the number of crossings, which has first
been shown by Dujmovic and Whitesides [4]. For the special case of a single
tree on two layers, OSCM can be solved in polynomial time [8] and in the case
that both layers are variable, the problem can be reduced to the minimum linear
arrangement problem [16], which is polynomial-time solvable [3]. For an arbi-
trary number of layers, the problem is still NP-hard even for trees [8], however,
the obtained trees in the reduction [8] are not drawn upward in the direction
from the leaves to a root vertex (and we do not see an obvious way to adjust
their construction). With respect to forests, the general case where k ∈ O(n) is
known to be NP-hard [10] even for � = 2 layers and trees of maximum degree 4.

Our Contributions. We consider the crossing-minimization problem for an n-
vertex forest of k trees whose vertices are assigned to � layers such that all leaves
are on the first layer in a fixed total order and the vertices on each of the other
layers need to be permuted. In other words, the task is to draw k layered rooted
trees whose leaves may interleave simultaneously, while minimizing the number
of crossings.

We show that the case of k = 2 trees is polynomial-time solvable for arbi-
trary � using a dynamic program (see Sect. 3). Furthermore, we describe an
XP-algorithm1 in the number k of trees modeling the solution space by a k-
dimensional grid graph for � = 3 layers. Our result generalizes to planar graphs
under certain conditions (see Sect. 4). We conclude with the open case of k ≥ 3
and � ≥ 4 (see Sect. 5).

2 Preliminaries

Let F be a given forest of k disjoint rooted trees T1, . . . , Tk directed towards
the roots such that all vertices except for the roots have out-degree 1. For an
integer � ≥ 2, let an assignment of the vertices to � layers be given, such that
each tree Ti is drawn upward, i.e., for any directed edge (u, v) ∈ Ti, we have
that the layer of u, denoted by L(u), is strictly less than L(v). This implies that
1 XP is a parameterized running-time class and an XP-algorithm has a running time

in O(|I|f(k)), where |I| is the size of the instance, f a computable function, and k the
parameter. Note that every FPT-algorithm is an XP-algorithm but not vice versa.
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Fig. 1. (a) Upward drawing of k disjoint directed rooted trees T1, . . . Tk on � layers.
As indicated by the filled vertices, the total order <1 of layer 1 is given, while the
total orders <2, . . . , <� need to be determined. In the following figures, we drop the
arrowheads and assume an upward direction. (b) Illustration of positions (gray boxes)
with respect to T1 and their respective ideal positions indicated by a directed gray
arrow from each position p to its ideal position p�.

if L(u) = 1, u is a leaf of Ti. The other way around, we also require that for
any leaf v, L(v) = 1. Note that the roots of the trees can be placed on different
layers, while layer � hosts the root of every tree with height exactly �. We refer
to the set of vertices of Ti on layer j as Vj(Ti) and we define the set of all vertices
on layer j as Vj(F) = Vj(T1) ∪ · · · ∪ Vj(Tk).

We further require that the total order <1 of layer 1 (i.e., the order of all
leaves) is given as part of the input, with the additional restriction that <1

induces a planar embedding Ei with respect to each individual tree Ti, that is,
there exists an ordering of the (non-leaf) vertices of Ti such that no two edges
of Ti cross, see Fig. 1a for an illustration. Since the leaves of each Ti are all
on layer 1, the embedding Ei is unique and implies a total ordering <i

j of the
vertices of Ti on every layer j ∈ {2, . . . , �}. Therefore, we henceforth assume that
Vj(Ti) appears in the corresponding vertex order <i

j , and if we combine all <i
j

for i ∈ {1, . . . , k}, we obtain a partial order, which we call ≺j .
The task is to find a total order <j of Vj(F) extending the partial order ≺j

for each j ∈ {2, . . . , �} such that the total number of pairwise edge crossings
implied by a corresponding straight-line realization of F is minimized.

We restrict the notion of an upward drawing even further since we require
that for any directed edge (u, v) ∈ Ti, we have that L(u)+1 = L(v). If our input
does not fulfill this requirement, this can be achieved by subdividing edges which
span several layers (as commonly done, e.g., in the Sugiyama framework). In the
following, we assume that n is the number of vertices after subdivision and let
n1, . . . , nk be the number of vertices of T1, . . . , Tk, respectively. Furthermore, we
denote the number of vertices of tree Ti on layer j by ni|j = |Vj(Ti)|.
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3 Two Trees on Arbitrarily Many Layers

In this section, we assume that we are given a forest F = {T1, T2} with embed-
dings E1 and E2. We fix the drawing of T1 according to E1 and the only remaining
task is to add the non-leaf vertices of T2 in the order prescribed by E2 such that
the number of crossings is minimized. To this end, we describe a dynamic pro-
gramming approach, which leads to the following theorem.

Theorem 1. Let F be an n-vertex layered forest of two rooted trees, where all
leaves are assigned to layer 1 and have a fixed order, which prescribe a planar
embedding of each tree individually. We can compute a drawing of F where each
tree is drawn in the prescribed planar embedding with the minimum number of
crossings in O(n3) time.

Proof. As stated before, we fix the drawing of T1 according to E1. Hence it
remains to prove that our dynamic program embeds T2 according to E2, which
we do in Lemma 1. In Lemma 2, we show that the resulting drawing has the
minimum number of crossings. This proves the correct behavior of our algorithm.
In Lemma 3, we also show the runtime bound of O(n3). ��

Description of the Dynamic Program. Consider some layer j ∈ {2, . . . , �} and
index the vertices in Vj(T1) according E1 from left to right by 1, . . . , n1|j . In a
complete drawing, we define, for a vertex v of T2, its position p on layer j with
respect to the index of the closest vertex of T1 to the left of v. If there is no
such vertex, we set p = 0. Let Cv = {c1, c2, . . . , cindeg(v)} be the ordered set of
children of v in T2, which lie on layer j − 1, where indeg(v) is the in-degree of v.

For our dynamic program, we define a function o, which has as first parameter
a vertex v of T2 and as second parameter a position p on layer L(v). The value
of o shall describe the number of crossings in an optimal partial solution for
the drawing of the subtree of T2 rooted at v and placed at position p. As usual
in a dynamic program, we compute a function value once and then save it in
a lookup table. Additionally, we save the recursive dependencies that led to a
value to reconstruct a drawing in the end. If j ≥ 3, we define o as follows.

o[v, p] =
|Cv|∑

i=1

min
q∈{0,...,n1|j−1}

(
o[ci, q] + χj−1(q, p)

)

where χx(y, z) is a crossing function describing the number of crossings an edge
between layers x and x + 1 admits if its source is arranged at position y (of
layer x) and its target is arranged at position z (of layer x + 1). If for some ci,
there is more than one position for q resulting in a minimum value of o[v, p], we
choose the position q that maximizes χj−1(q, p).

For the recursive function o, we add a terminating formulation for the vertices
on layer j = 2. Recall that for the leaves on layer 1, there is a total order <1

given. Hence, for a vertex v ∈ V2(T2), the position of each child of v is fixed,
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leading to the following simplified formulation of o, where pci is the given position
of leaf ci.

o[v, p] =
|Cv|∑

i=1

χ1(pci , p)

To compute the value o� of the dynamic program as a whole, we take the
minimum of all values of o for the root r2 of T2:

o� = min
p∈{0,...,n1|L(r2)}

o[r2, p].

We return a drawing corresponding to o�, i.e., we specify for each vertex v of T2

its position with respect to T1 when computing o�. Finally, for vertices of T2

having the same position, we arrange them in the order given by E2.

Correctness. Next, we prove the correct behavior of our dynamic program by
showing that T2 is embedded according to E2 (Lemma 1) and by showing that
the resulting drawing has the minimum number of crossings (Lemma 2). Mainly
because Lemma 1 is rather intricate to prove, we next introduce some more
notation and concepts, for which we show four claims that lead to the proofs of
these lemmas.

A key observation is that for a position p on layer j, there is precisely one
ideal position p� on layer j − 1 such that χj−1(p�, p) = 0 and for two positions
p, q with p < q on layer j, the ideal positions p�, q� on layer j − 1 appear in the
same order, i.e., p� < q�. (Imagine going down the gap of E1 where p is located
as illustrated in Fig. 1b.) In Claim 1, we formalize another observation regarding
ideal positions. Essentially, the claim says the further the endpoints of an edge
are away from a pair of position and ideal position, the more crossings occur.
For simplicity, we assume henceforth that each of the functions o and χj returns
∞ for parameters outside of its domain.

Claim 1. On a layer j ∈ {2, . . . , L(r1)}, let p ∈ {0, . . . , n1|j} be a position and
let p� ∈ {0, . . . , n1|j−1} be the ideal position of p on layer j − 1. For any x ∈ N0,
it holds that χj−1(p� ±x, p) = x and χj−1(p�, p±(x+1)) > χj−1(p�, p±x)) ≥ x.

Proof. Consider an edge (u, v) of T2 with its endpoints being placed at p� and p.
We know that χj−1(p�, p) = 0. Now, for every position that we move u (resp. v)
to the left or right of p� (of p), we change sides with a vertex w of T1. Because w
has exactly (at least) one incident edge going upwards (downwards) to its parent
(a child) that we have not crossed before, the number of crossings increases by
exactly (at least) 1. ��

For a vertex v ∈ Vj(T2) on a layer j, we define Popt(v) as the set of
every position p where o[v, p] is minimum. We analyze the properties of Popt in
Claim 2.
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Fig. 2. Example of a vertex v of V2(T2) having three children c1, c2, c3, where the
position pc of a child c and the position p of v determine the value of o[v, p]. Here, we
perceive χ and o as functions dependent on p.

Claim 2. For every layer j ∈ {2, . . . , L(r2)}, let v1, v2, . . . , vn2|j be the vertices
in Vj(T2) in the order of E2. It holds that minPopt(v1) ≤ minPopt(v2) ≤ . . . ≤
minPopt(vn2|j ) and maxPopt(v1) ≤ . . . ≤ maxPopt(vn2|j ).

Further, for every v ∈ Vj(T2), Popt(v) is an interval of natural numbers and,
for any x ∈ N0, o[v,minPopt(v) − (x + 1)] > o[v,minPopt(v) − x] ≥ x and
o[v,maxPopt(v) + (x + 1)] > o[v,maxPopt(v) + x] ≥ x.

Proof. We show this claim by induction over the layers j = 2, 3, . . .
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For j = 2 and every v ∈ Vj(T2), the children of v have fixed positions and,
therefore, o[v, p] only depends on the number of crossings induced by the posi-
tion p ∈ {0, . . . , n1|j}; see Fig. 2 for an example. We next show that Popt(v) is
an interval. Observe that o[v, p] =

∑|Cv|
i=1 χ1(pci , p) is a sum of discrete functions

(with variable p) where each admits its minimum value for one or two neighboring
values of p and apart from at most two values at or around this minimum, all of
these functions increase or decrease by the same amount if we add or subtract 1
to p, which follows by the argument presented in the proof of Claim 1. (These
functions here are weakly unimodal, i.e., they have a global minimum and they
increase monotonously when moving away from that minimum.) Now to find
the positions where that sum is minimum, we traverse the values of its domain:
we start with p = 0. If we increase p by one, then all functions that have not
yet reached its minimum decrease, while the functions that had already reached
their minimum increase by the same amount. Hence, this sum is minimum in
the interval of the domain that has the minima of the single crossing functions
equally distributed on the left and on the right side. Furthermore, for each posi-
tion further to the left or right, the sum increases by at least one. It remains to
show that the minima and maxima of Popt(v1),Popt(v2), . . . ,Popt(vn2|j ) increase
monotonously. Since the children of the vertices on layer 2 (i.e., the leaves) are
ordered, the minima and maxima of all crossing functions are ordered and so are
the minima and maxima of the sums.

Now consider j > 2. Again o[v, p] is a sum, but now we add, for every
child c of v and a position q, o[c, q] and χj−1(q, p). The sum of minima is again
a sum of unimodal functions with similar properties as before: the χj−1(q, p)
summands increase and decrease around their minimum as before, while the
o[c, q] summands increase and decrease before and after their minimum at least
as much as a χj−1(q, p) summand due to the induction hypothesis. (They behave
like a weighted χj−1(q, p) summand.) Hence, if we sum them up, we apply a
weighted version of the previous argument to obtain the properties stated in the
claim. In particular, the minima and maxima of Popt(v1),Popt(v2), . . . ,Popt(vn2|j )
increase monotonously since the minima and maxima of Popt of the children on
layer j − 1 are ordered by the induction hypothesis. ��

For a vertex u on a layer j − 1, we define the natural position pnat(u, p) of u
with respect to the position p of its parent vertex on layer j as

pnat(u, p) =

⎧
⎪⎨

⎪⎩

p�, if p� ∈ Popt(u)
maxPopt(u), if p� > maxPopt(u)
minPopt(u), if p� < minPopt(u).

In Claim 3, we describe, for a vertex v, the behavior of the natural positions of
v’s children and their relationship to o[v, p].

Claim 3. For a vertex v ∈ Vj(T2) on a layer j, let c1, . . . , c|Cv| be the chil-
dren of v. For any position p ∈ {0, . . . , n1|j}, it holds that pnat(c1, p) ≤ . . . ≤
pnat(c|Cv|, p) and o[v, p] =

∑|Cv|
i=1 (o[ci,pnat(ci, p)] + χj−1(pnat(ci, p), p)).
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Proof. We partition the children of v into three groups: if for a child ci (where i ∈
{1, . . . , |Cv|}), p� ∈ Popt(ci), we set qi = p�. If for a child ci, p� > maxPopt(ci),
we set qi = maxPopt(ci), and, symmetrically, if p� < minPopt(ci), we set qi =
minPopt(ci). By Claim 2, we observe that q1 ≤ . . . ≤ q|Cv|. Since qi = pnat(ci, p),
this proves the first part of the claim.

Now for the second part, if o[v, p] 
= ∑|Cv|
i=1 (o[ci, qi] + χj−1(qi, p)), then for

some i, o[ci, qi] + χj−1(qi, p) > minq′∈{0,...,n1|j−1}(o[ci, q
′] + χj−1(q′, p)). Let q̂ ∈

{0, . . . , n1|j−1} be a position such that o[ci, qi]+χj−1(qi, p) > o[ci, q̂]+χj−1(q̂, p).
Since we know o[ci, qi] ≤ o[ci, q̂], it follows that χj−1(qi, p) > χj−1(q̂, p).

First note that p� /∈ Popt(ci) because otherwise χj−1(qi, p) < χj−1(q̂, p). It
follows that qi is the minimum or maximum position of Popt(ci) – assume w.l.o.g.
that qi = maxPopt(ci). Then, qi < q̂ (and hence q̂ /∈ Popt(ci)) because otherwise
again χj−1(qi, p) < χj−1(q̂, p).

We distinguish two cases. The first case is qi < q̂ ≤ p�. By Claim 1, we know
that χj−1(qi, p)−χj−1(q̂, p) = q̂−qi. By Claim 2, we know that o[ci, q̂]−o[ci, qi] ≥
q̂ − qi. Hence, we have o[ci, q̂]− o[ci, qi] ≥ χj−1(qi, p)− χj−1(q̂, p), which we can
reformulate as o[ci, qi] +χj−1(qi, p) ≤ o[ci, q̂] +χj−1(q̂, p), which contradicts our
initial assumption.

The second case is qi < p� < q̂. Now we have χj−1(qi, p) = p� − qi and
χj−1(q̂, p) = q̂ − p�. If we add up these two equations, we get χj−1(qi, p) +
χj−1(q̂, p) = q̂ − qi. As we still have o[ci, q̂] − o[ci, qi] ≥ q̂ − qi, we get o[ci, qi] +
χj−1(qi, p) ≤ o[ci, q̂] − χj−1(q̂, p), which, of course, also contradicts our initial
assumption. ��

Now in the last claim, which is Claim 4, we directly investigate the positions
that are chosen by our dynamic program as the positions of the children of a
vertex – they turn out to be the natural positions.

Claim 4. For a vertex v ∈ Vj(T2) on a layer j and a position p ∈ {0, . . . , n1|j},
the dynamic program selects pnat(c1, p), . . . ,pnat(c|Cv|, p) as the positions of v’s
children c1, . . . , c|Cv| on layer j − 1.

Proof. Recall that, for any i ∈ {1, . . . , |Cv|}, if there is more than one position
for ci resulting in a minimum value of o[v, p], the position of q with the maximum
value of χj−1(q, p) is used as a tie-breaker rule. If pnat(ci, p) = p�, then p� is the
only position of ci that can lead to a minimum value of o[v, p] and our claim is
true.

Now, due to symmetry, we assume w.l.o.g. that pnat(ci, p) = maxPopt(ci).
Let p′ 
= pnat(ci, p) be a position of ci yielding a minimum value of o[v, p]. The
position p′ cannot lie within Popt(ci) by Claim 1 since this would result in a larger
number of crossings, while o[ci, p

′] = o[ci,pnat(ci, p)]. Hence, pnat(ci, p) < p′. By
Claim 2, o[ci, p

′] − o[ci,pnat(ci, p)] ≥ p′ − pnat(ci, p). This means, that, for each
position further to the right of pnat(ci, p), the value of the dynamic program
for ci increases by at least one, while the number of crossings according to the
function χj−1 increases by exactly one (see Claim 1). Thus, pnat(ci, p) is one
(of possibly several) position(s) of ci admitting a minimum value of o[v, p]. If p′

also admits a minimum value of o[v, p], but o[ci, p
′] > o[ci,pnat(ci, p)], it follows
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that χj−1(p′, p) < χj−1(pnat(ci, p), p). Hence, due to the tie-breaker rule, our
algorithm would have selected pnat(ci, p) instead of p′. ��

Now we have gathered everything to establish the key lemma of this section.

Lemma 1. The drawing of T2 is embedded according to E2.

Proof. We prove that the vertices of T2 are ordered according to <2
j by induction

on layer j, starting with the layer of the root r of T2. On layer j = L(r2), there
is only r, which, of course, cannot contradict <2

j .
Let j < L(r2) and v1, v2, . . . vn2|j+1 be the vertices on layer j + 1. Then, by

Claims 3 and 4, the children Cvi
on layer j have increasing positions respect-

ing <2
j for every i ∈ {1, . . . , n2|j+1} and the edges to these children do not cross.

It remains to show that no pair of edges between layers j and j + 1 without a
common endpoint cross. By our induction hypothesis, for two vertices vi, vi′ on
layer j + 1 with i < i′, the position pi of vi is not greater than the position pi′

of vi′ . By Claim 1, it follows for the ideal positions of pi and pi′ that p�
i ≤ p�

i′ .
By Claim 2, the min and max values of the Popt of the vertices on layer j are
monotonically increasing. Hence, by Claim 4 and the definition of pnat, there
are no crossings between edges with target vi and edges with target vi′ , as this
would contradict p�

i ≤ p�
i′ . Hence, the edges between layer j and j+1 are planar,

which concludes the induction step. ��
After we have now shown that the dynamic program yields a valid solution,

i.e., a drawing where both trees are internally crossing-free, it remains to prove
that the number of crossings between T1 and T2 is minimum.

Lemma 2. The number of crossings in the computed drawing is minimum.

Proof. We show by induction over the layers j = 2, 3, . . . that for a vertex v and
a position p, o[v, p] is the minimum number of crossings induced by (T1 and) the
subtree of T2 rooted at v, which we call Tv, across all drawings of Tv when we
place v at position p. For j = 2, this is clear as we just sum up the number of
crossings induced by the edges to the leaves.

Let j ≥ 3. By Claim 4, we know that the dynamic program has selected the
positions pnat(c1, p) ≤ . . . ≤ pnat(c|Cv|, p) for the children c1, . . . , c|Cv| of v. By our
induction hypothesis, we know that, for each c ∈ Cv, o[c,pnat(c, p)] corresponds to
a drawing of Tc at position pnat(c, p) with the minimum number of crossings. We
add up the number of crossings between layer j−1 and j, and by the formulation
of the dynamic program, we know that this is again minimum across all positions
of c. ��

Running Time. It remains to analyze the running time of our dynamic program.

Lemma 3. The running time of our algorithm is in O(n2
1 · n2) ⊆ O(n3).

Proof. For a vertex v of Vj(T2) and a position p ∈ {0, . . . , n1|j}, we can com-
pute o[v, p] by finding, for each child c ∈ Cv and a position q in a subset of
{0, . . . , n1|j−1}, the minimum of o[c, q] + χj−1(q, p).
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The number of children over all steps is in O(n2) as T2 is a tree and the
number of positions is in O(n1). We can pre-compute and store all values χj(q, p)
in O(n2

1) time. We have O(n1n2) entries of o[v, p], which we can compute in
overall O(n2

1n2) ⊆ O(n3) time. The optimal root placement can be found in
linear time. For the backtracking when constructing the final drawing, we simply
store for each entry o[v, p] a pointer to the entries it is based on. ��

4 Multiple Trees on Three Layers

In this section, we consider the case that we are given a forest F = {T1, . . . , Tk}
of k trees spanning (at most) three layers each, and we show the following result.

Theorem 2. Let F be an n-vertex layered forest of k rooted trees on three layers,
where all leaves are assigned to layer 1 and have a fixed order, which prescribes
a planar embedding of each tree individually. We can compute a drawing of F
where each tree is drawn in the prescribed planar embedding with the minimum
number of crossings in O(nk) time.

The first property we use to prove Theorem 2 is that the order of roots on
layer 3 is fixed, similar to the order of the leaves on layer 1. We can assume this
because there are only up to k roots on layer 3, with at most k! ways to arrange
them. We simply consider each permutation of the roots on layer 3 individually,
and henceforth assume that both total orders <1 and <3 are given, fixing the
roots and leaves, and the only remaining task is to compute <2 of the vertices
on layer 2 while maintaining their partial order ≺2. Note that if any tree has its
root on layer 2, we treat this root like the other vertices of layer 2.

As in Sect. 3, we use the notion of positions and crossing functions, however,
we slightly adjust their definitions to better suit the setting of this section.
Let σ be a permutation of V2(F) indexed by 1, 2, . . . and respecting the partial
order ≺2. For i ∈ {1, . . . , k} and some vertex v ∈ V2(F) \ V2(Ti), we denote
the position (starting at 0) of v within the subsequence of σ consisting of the
vertices V2(Ti)∪{v} by pv

i .2 Note that, in a drawing using σ as <2, we can charge
every crossing to precisely two vertices of V2(F) as any crossing occurs between
two edges that have two distinct endpoints on layer 2. Now observe that for a
vertex v ∈ V2(Tj), where j ∈ {1, . . . , k}, the number of crossings charged to v
with respect to σ depends only on pv

i for each i ∈ {1, . . . , k} \ {j}. Therefore, we
introduce the crossing function χv

i (p) returning the resulting number of crossings
when we insert v at a position p ∈ {0, . . . , ni|2} into the planar embedding of Ti.
The number χσ(v) of crossings charged to v when using permutation σ is then
χσ(v) =

∑
i∈{1,...,k}\{j} χv

i (p
v
i ) and the total number χ(σ) of crossings when

using permutation σ is then χ(σ) =
∑

v∈V2(F) χσ(v)/2.

Lemma 4. For all combinations of i ∈ {1, . . . , k}, v ∈ V2(F) \ V2(Ti), and
p ∈ {0, . . . , ni|2}, we can compute every value χv

i (p) in a total of O(n2) time.

2 This is a generalization of the positions introduced in Sect. 3 where all positions
were relative to (the given embedding of) T1.
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Proof. First save, for every v ∈ V2(F), the star Sv induced by v and v’s neighbors
in total O(n) time. Now for a fixed i ∈ {1, . . . , k}, consider the given planar
embedding Ei of Ti. Also fix v ∈ V2(F) \ V2(Ti) and compute χv

i (0) by checking,
for every pair of edges of Sv and Ti, if there is a crossing if v is the leftmost vertex
on layer 2. Then for p = 1, . . . , ni|2, update χv

i (p − 1) to χv
i (p) by checking each

pair of edges from Sv and the star around the p-th vertex of V2(Ti). Over all of
these steps, all vertices, and all trees, every pair of edges is considered at most
four times, which yields a running time in O(n2). ��

Reduction to a Shortest-Path Problem. We now construct a weighted directed
acyclic st-graph H (see Fig. 3c) whose st-paths represent precisely all total orders
of V2(F) that respect the vertex orders <1

2, . . . , <
k
2 given for each tree by its pre-

scribed planar embedding (see Fig. 3a). Moreover, for an st-path π representing
a total order σ of V2(F), the weight of π is twice the number of crossings induced
by σ. We let H be the k-dimensional grid graph of side lengths n1|2 × · · · × nk|2
directed from one corner to an opposite corner. More precisely, H has the node
set {(x1, . . . , xk) | x1 ∈ {0, . . . , n1|2}, . . . , xk ∈ {0, . . . , nk|2}} and there is a
directed edge from (x1, . . . , xk) to (y1, . . . , yk) if xj + 1 = yj for exactly one
j ∈ {0, . . . , k} and xi = yi otherwise. Observe that, within H, (0, . . . , 0) is the
unique source and (n1|2, . . . , nk|2) is the unique sink, which we denote by s and t,
respectively. We let an edge e from (x1, . . . , xk) to (y1, . . . , yk) where xj +1 = yj

represent (i) taking the yj-th vertex of V2(Tj), to which we refer as v next,
(ii) after having taken xi vertices of V2(Ti) for each i ∈ {1, . . . , k}. Thus, we let
the weight we of e in H be the number of crossings charged to v in this situation,
that is, we =

∑
i∈{1,...,k}\{j} χv

i (xi).
Clearly, any st-path π in H has (unweighted) length n2. If we traverse π,

we can think of layer 2 as being empty when we start at s, and then, for each
edge of π, we take the corresponding vertex of V2 and add it to layer 2. Since
edge weights equal the number of crossings the corresponding vertices would
induce in this situation, finding a lightest st-path in H means finding a crossing-
minimal total order of layer 2 (see Fig. 3c). By constructing H (using Lemma 4
to compute the edge weights) and searching for an st-path of minimum weight,
we obtain an XP-algorithm in k; see Theorem 2, which we formally prove next.

Proof (of Theorem 2). For F , we fix each order of layer 3 once and compute the
corresponding k-dimensional grid graph H. We first argue that the st-paths of
H represent precisely the possible total orders of V2(F) and their weights are
twice the number of crossings in the corresponding drawing of F . Thereafter, we
argue about the running time.
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Fig. 3. Reducing the problem of finding a layered drawing of k trees on three layers
with the minimum number of crossings, where the leaves and the roots are fixed, to a
shortest-path problem in a weighted k-dimensional grid graph.

Since we have a k-dimensional grid graph, any st-path in H traverses n1|2
edges in the first dimension, n2|2 edges in the second dimension, etc. We can
interleave the edges of different dimensions arbitrarily to obtain different paths.
Hence, each path is equivalent to exactly one total order σ extending the partial
order ≺2, which is given by <1

2, . . . , <
k
2 . The number of crossings of a drawing

only depends on σ. Every crossing occurs between two edges being incident
to precisely two distinct vertices of V2(F). We charge the crossing to these two
vertices. Hence, we can add up the numbers of crossings charged to each vertex v
(i.e., χσ(v)) and divide the sum by two. These numbers of crossings charged to
the vertices are by definition the edge weights of H. Therefore, each minimum-
weight st-path in H is equivalent to a minimum-crossing drawing of F for the
given order of leaves and roots.
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It remains to argue about the running time. The number of directed edges
of H is upper-bounded by

E(H) =
k∑

j=1

nj|2
∏

i∈{1,...,k}\{j}

(
ni|2 + 1

)

≤ k
k∏

i=1

(
ni|2 + 1

) ≤ k
(n

k

)k

.

To compute the weight of each such edge, we sum up k − 1 values of χv
i (p),

which we have pre-computed in O(n2) time using Lemma 4. Therefore, we can
construct H including the assignment of edge weights in O(k2(n/k)k) time and
we can find a minimum-weight path in H in O(k(n/k)k) time using topological
sorting. Recall that we construct a graph H for at most k! permutations of the
roots on layer 3. For the final minimum-crossing drawing, we use the permutation
of V2(F) and the permutation of V3(F) that correspond to the lightest minimum-
weight path in any H. Hence, the total running time is in O(k!k2(n/k)k) ⊆
O(k3 · (k − 1) · . . . · 2 · 1/kk · nk) ⊆ O(nk). ��

Finally, we remark that our XP-algorithm from Theorem 2 can be generalized
in two ways.

Remark 1. By definition, ≺2 has only constraints between vertices of the same
tree. We can extend ≺2 by (arbitrarily many) constraints between vertices of
different trees and Theorem 2 still holds. This is because we can easily adjust
our reduction: say x is the i-th vertex on layer 2 of the first tree, y is the j-th
vertex on layer 2 of the second tree, and let the constraint x ≺2 y be given.
Then, in H, we set the weight of every edge representing x and lying in the y-
dimension at a position ≥ j to ∞. Symmetrically, we set the weight of every edge
representing y and lying in the x-dimension at a position < i to ∞. This way, we
prevent that a lightest path chooses an edge representing y before it chooses an
edge representing x. If and only if there is an st-path with non-infinity weight
in H, there is a valid arrangement of the vertices on layer 2.

Remark 2. Requiring trees on the three layers is a stronger restriction than actu-
ally needed. For our reduction, we only use the property that the vertex order on
layer 3 is fixed, which we achieve by trying all permutations. For this approach,
it suffices if layer 3 is sparse. Hence, our result also holds for k planar-embedded
graphs provided that on layer 3, there are O(k) vertices. Moreover, for planar-
embedded graphs and an arbitrary number of vertices on layer 3, Theorem 2
holds as well if the total order of vertices on layer 3 is prescribed.

5 Conclusion and Open Problems

In this work, we approach the problem of crossing minimization of layered
rooted trees from two directions. First, by describing a cubic-time dynamic pro-
gram in Theorem 1, keeping the number of trees k small, namely k = 2, while
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allowing an arbitrary number of layers. Inversely, our second result stated in
Theorem 2 is an XP-time algorithm for an arbitrary number of trees, restricted
to only three layers. Hence, there is a gap between these two results, which has
not yet been explored and naturally raises the following open problem. Going
one step further, is the case k = 3 trees and � = 4 layers polynomial-time solv-
able, and if so, for which k and � does it become hard? Moreover, we pose the
question of improving the complexity class for the case of � = 3 and k > 2,
namely, can we solve the case of three layers in FPT-time in the number k of
trees? Alternatively this may be proved to be W[1]-hard. Lastly, note that in our
setting, we require that every tree preserves its given planar embedding (imposed
by the order of its leaves). It is not clear, whether there exists a solution with
less crossings without this restriction, although our current believe is that, in
any minimum-crossing solution, all of them are drawn planar.
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Abstract. The Euclidean Steiner tree problem asks to find a min-cost
metric graph that connects a given set of terminal points X in R

d, pos-
sibly using points not in X which are called Steiner points. Even though
near-linear time (1+ε)-approximation was obtained in the offline setting
in seminal works of Arora and Mitchell, efficient dynamic algorithms
for Steiner tree is still open. We give the first algorithm that (implic-
itly) maintains a (1+ ε)-approximate solution which is accessed via a set
of tree traversal queries, subject to point insertion and deletions, with
amortized update and query time O(poly log n) with high probability.
Our approach is based on an Arora-style geometric dynamic program-
ming, and our main technical contribution is to maintain the DP sub-
problems in the dynamic setting efficiently. We also need to augment the
DP subproblems to support the tree traversal queries.

Keywords: Steiner Tree · Dynamic Algorithms · Approximation
Schemes

1 Introduction

In the Euclidean Steiner tree problem, a set X ⊂ R
d of points called terminals

is given, and the goal is to find the minimum cost metric graph that connects
all points in X. The optimal solution is a tree, and this tree can also use points
other than terminals, called Steiner points. Euclidean Steiner tree is a fundamen-
tal problem in computational geometry and network optimization, with many
applications in various fields.

In the offline setting, Euclidean Steiner tree is known to be NP-hard [8], even
when the terminals are restricted to lie on two parallel lines [23]. An immedi-
ate approximation algorithm is via minimum spanning tree (MST), which gives
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O(1)-approximation, and MST can be computed in near-linear time in Euclidean
R

d. For a better approximation, seminal works by Mitchell [20] and Arora [1]
developed PTAS’s, i.e., (1 + ε)-approximate polynomial time algorithms for the
Euclidean Steiner tree, which are based on geometric dynamic programming
techniques.

Due to its fundamental importance, Steiner tree has also been studied in the
dynamic setting. Dynamic algorithms are algorithms that can handle modifica-
tions to the input data efficiently (in terms of running time), such as insertions
and deletions. Specifically, the study of dynamic Steiner tree in a graph setting
was first introduced by Imase and Waxman [15]. In this setting, the objective
is to find a minimum-weight tree that connects all terminals for a given undi-
rected graph with non-negative edge weights. Results for similar settings were
also studied in followup papers [9,10,17,19].

Even though an O(1)-approximation may be obtained from dynamically
maintaining MST efficiently [7,12], we are not aware of any previous work that
explicitly studies the dynamic algorithm for the Euclidean Steiner tree, especially
whether one can convert the Mitchell/Arora’s PTAS into an efficient dynamic
algorithm to still achieve (1 + ε)-approximation. Technically, the Euclidean set-
ting can differ greatly from the graph setting. In the former, updates typically
involve point insertion/deletion, whereas in the latter, updates involve more
localized edge insertion/deletion.

1.1 Our Results

In this paper, we investigate the Euclidean Steiner tree problem in the fully
dynamic setting, where terminal points in R

d can be inserted and deleted in each
time step. We give the first fully dynamic algorithm that (implicitly) maintains
(1 + ε)-approximation for the Steiner tree in amortized polylogarithmic time. In
particular, the algorithm maintains a) the total weight and b) the root node of
this implicit tree. Moreover, it can also answer several tree traversal queries: a)
report whether a given point is in the solution tree and b) return neighbors of a
given point p in the solution tree, i.e., its parent and the list of its children.

Theorem 1 (Informal; see Theorem 41). There exists a fully-dynamic algo-
rithm for Euclidean Steiner tree that for any 0 < ε, δ < 1 and any operation
sequence handles the t-th update in amortized O(poly log(t) log 1/δ) time for
every t, such that with probability at least 1 − δ, the maintained Steiner tree
is (1 + ε)-approximate at all time steps simultaneously. Furthermore, condition-
ing on the randomness of the maintained solution, the algorithms for accessing
the maintained tree are deterministic.

Note that here we do not consider time cost for pre-computation (see Sect. 4
for the detailed discussion), i.e., constructing an empty solution, and t is the

1 In this informal statement we consider d and ε as constants and their dependence
are hidden in the big-O.
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upper bound of the cardinality of the active set (see Sect. 2 for a formal defini-
tion).

Notice that our algorithm can report a (1 + ε)-approximation to the optimal
value. This value estimation can be generalized to TSP and related problems,
including all solvable problems mentioned in [1] such as k-MST and matching.
This is due to the fact that the geometric dynamic programming is defined on
a quadtree with height O(log n), and that an update only requires to change
O(poly log n) subproblems associated with a leaf-root path of length O(log n).
We give a detailed discussion of this in Sect. 1.2.

However, the same approach cannot readily yield an efficient algorithm for
maintaining a solution (which is a set of edges). One outstanding issue is that
even though only poly log n subproblems change, the solution that is deduced
from the DP subproblems can change drastically. We thus seek for a weaker
guarantee, which still offers sufficient types of queries to traverse the implicit
tree, instead of explicitly maintaining all edges. Even though one may maintain
the solution within O(1)-approximation by maintaining MST in poly log n time
per update [7,12], it is an open question to improve the ratio to 1+ε. Indeed, we
remark that maintaining (1+ε)-approximate solutions for other related problems,
such as TSP, is also open, although it may be possible to achieve a weaker
guarantee that can be used to reconstruct the solution via multiple queries,
similar to our Theorem 1.

1.2 Technical Overview

Conceptually, our algorithm is based on Arora’s geometric DP [1] which gives
PTAS’s for Euclidean Steiner tree and various related problems in the offline
setting, and our main technical contribution is to make it dynamic. For simplicity,
we expose the ideas only in 2D, and the input is situated in a discrete grid [Δ]2,
where Δ is a parameter. We start with a brief review of Arora’s approach.

Review of Arora’s Approach. Let n be the number of points in the input
dataset (recalling here we are working with a static dataset), and again for sim-
plicity we assume Δ = poly(n). To begin, the algorithm builds a randomly-
shifted quadtree on [2Δ]2. Specifically, the bounding square [2Δ]2 is evenly
divided into four sub-squares of half the edge-length, and this process is done
recursively, until reaching a unit square. This recursive process naturally defines
a tree whose nodes are the squares. Then crucially, the entire quadtree is ran-
domly shifted independently in each coordinate i by a uniformly random value
vi ∈ [−Δ, 0]. Indeed, in [1], it was shown that over the randomness of the shift,
with constant probability, a “structured” solution that is (1 + ε)-approximate
exists, and finally, such a “structured” solution may be found by a dynamic pro-
gram. The dynamic program is somewhat involved, but at a high level, it defines
poly log n subproblems for each square in the quadtree, and each subproblem
can be evaluated from the information of the poly log n subproblems associated
with the child squares.
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Making Arora’s Approach Dynamic: Value Estimation. Our main obser-
vation is that, for a fixed quadtree, when a point x is inserted or deleted,
only subproblems that are associated with squares containing x need to be
updated/recomputed (and other subproblems do not change). The number of
levels is O(log Δ) = O(log n) and in each level only O(1) squares are involved
and need to be recomputed, hence the number of subproblems to be re-evaluated
is poly log n. This observation directly leads to an efficient dynamic algorithm
that maintains an approximation to the optimal Steiner tree. Moreover, this is
very general as it only uses the quadtree structure of DP, hence, our result for
value estimation also generalizes to other related problems such as TSP, partic-
ularly those solvable in [1].

Other Queries. However, in the abovementioned approach, the solution defined
by the DP, which is a set of edges, is not guaranteed to have a small change per
update. Instead, we maintain an implicit solution that supports the following
operations: (i) querying the root, (ii) determining whether a point is Steiner
point, and (iii) reporting for a given point p its parent and a list of children.
To support these queries, we augment Arora’s DP and include additional infor-
mation in each subproblem. In the original Arora’s DP, a subproblem is defined
with respect to a square R. Intuitively, if one restricts a global solution to R,
then it breaks the solution into several small subtrees. Thus, in Arora’s app-
roach, the subproblems associated with R also need to describe the connectivity
of these subtrees. Now, in our algorithm, we additionally designate the root of
each subtree, and encode this in the subproblem. This information about the
root is crucial for answering the several types of queries including the root query
and children-list query. Since we add this new information and requirement in
the subproblems, we need to modify Arora’s DP, and eventually we show this
can be maintained by enlarging the time complexity by only a poly log n factor.

1.3 Related Work

Steiner Tree in the Graph Setting. The Steiner tree Problem is a well-known
problem in graph theory that involves finding the minimum cost tree spanning
a given set of vertices in a graph, i.e., given an undirected graph with edge
weights and a subset of vertices, the objective of the problem is to find a tree
that connects all of the specified vertices at the lowest possible cost. The tree can
also include additional vertices (known as Steiner points) that are not part of
the original subset. Steiner trees have been used in various applications, such as
VLSI design of microchips [11], multipoint routing [15], transportation networks
[6], and phylogenetic tree reconstruction in biology [14]. However, the Steiner
tree problem in general graphs is NP-hard [14] and cannot be approximated
within a factor of 1 + ε for sufficiently small ε > 0 unless P = NP [3]. There-
fore, efficient approximation algorithms are sought instead of exact algorithms.
A series of papers gradually improved the best approximation ratio achievable
within polynomial time from 2 to 1.39 for the Steiner tree problem in general
graphs [2,4,13,16,18,21,22,24,25].
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Fully-dynamic Algorithms for Steiner Tree. As noted by [6], the under-
standing the dynamic complexity of Steiner Tree problem is an important
research question due to its practical applications in transportation and commu-
nication networks. In the dynamic setting, a sequence of updates would be made
to an underlying point set, and the goal of the dynamic Steiner tree problem is
to maintain a solution dynamically and efficiently for each update. Imase and
Waxman [15] first introduced this problem, and various papers have explored
this direction [9,10,19]. For general graphs, �Lacki and Sankowski [17] achieved
the current best approximation ratio for the dynamic setting at (6+ ε), utilizing
a local search technique. Let D denotes the stretch of the metric induced by G,
the time complexity for each addition or removal is Õ(

√
n log D) (note that n is

the size of the terminal set). However, there is no polynomial time approximation
scheme for the dynamic Steiner tree problem.

2 Preliminaries

Notations. For integer n ≥ 1, let [n] := {1, . . . , n}. In Euclidean space R
d, a

metric graph is a graph whose vertex set is a subset of Rd, and the edges are
weighted by the Euclidean distance between the end points. For any x, y ∈ R

d,
the distance between them is defined as dist(x, y) := ‖x − y‖. For a point set
S ⊂ R

d, let diam(S) := maxx,y∈S dist(x, y) be its diameter. When we talk about
graphs (e.g., tours, trees) we always refer to a metric graph. For a (metric)
graph G = (V,E) where V is the set of vertices and E is the set of edges. The
weight of an edge (x, y) ∈ E is defined as w(x, y). Define the weight of the graph
w(G) =

∑
(x,y)∈E w(x, y). (Note that in this paper, w(x, y) = dist(x, y).)

When we talk about a d-dimension hypercube in R
d, we consider both its

boundary (its 2d facets) and interior. For a set of points X, we will use OPT(X)
to denote the cost of the optimal Steiner tree with respect to X.

Definition 1 (Euclidean Steiner Tree). Given n terminal points X ⊂ R
d,

find a min-weight graph that connects all points in X. In a solution of Steiner
tree, non-terminal points are called Steiner points.

Implicit Steiner Tree and Queries. As mentioned, our algorithm maintains
an (implicit) (1 + ε)-approximate Steiner tree along with its cost and the root
node. By implicit, we mean we do not maintain an explicit edge set; instead,
we provide access to this tree indirectly via queries. The algorithm supports the
membership queries and the neighbor queries. The concrete definitions are given
below.

– Membership queries. Given a point u, if u is a node in the implicit Steiner
tree, return “Yes”; otherwise, return “No”.

– Neighbor queries. Given a point u, if u is not a node in the implicit Steiner
tree, return “Null”; if a point u is a node in the underlying Steiner Tree,
return its all neighbors in the implicit Steiner tree, i.e., the parent and the
list of children of u.
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Fully Dynamic Setting. We study the Euclidean Steiner Tree problem in a
dynamic setting. Suppose X is the underlying dataset, and we assume X ⊆ [Δ]d

for some integer parameter Δ. This is a natural assumption, since in the typical
setting where the set X has at most n points and the aspect ratio of the distances
is poly(n), the dataset can be discretized and rescaled so that it fits into [Δ]d grid
for Δ = poly(n). For any time step t ∈ N, an update operation σt ∈ X × {+,−}
consists of a point xt ∈ R

d and a flag indicating whether the update is an
insertion (+) or a deletion (−).

Multiple updates can be performed on the same coordinate, involving the
insertion or deletion of multiple points. We track a ‘multiplicity’ value for each
coordinate, initially set to 0. When a point is inserted, the coordinate’s multi-
plicity increases by 1, and when a point is deleted, the multiplicity decreases by
1. Let Xt be the active set at time step t, which contains all the co-ordinates (we
will view them as points) that have non-zero multiplicity. Note that for Steiner
tree, the multiplicity of points do not affect the cost (as they can be connected
with 0-length edges). An update operation is valid if a point to be deleted is in
the active set. Queries will be made after each update.

Amortized Time Cost. Suppose At is the cost for time step t, the amortized
time cost for t is the average time cost for the first t steps, i.e., 1

t

∑t
i=1 Ai.

2.1 Review of Arora’s Approach [1]

Randomly-shifted Quadtree. Assume the input is in [Δ]d. Without loss of gen-
erality, we assume Δ is a power of 2. For each i ∈ {1, 2, . . . , d}, pick si uni-
formly at random in [0,Δ]. Take the hypercube Rlog Δ as [2Δ]d shifted by −si

in each coordinate i, and this still contains the dataset. We evenly subdivide
this hypercube into 2d child clusters, and we continue this process recursively
until the hypercube is of diameter at most 1. This process naturally induces a
2d-ary tree, i.e., Rlog Δ is the root, and each non-leaf cluster has 2d child clusters.
For i ∈ {0, . . . , log Δ}, a level-i cluster is a hypercube Ri with side-length 2i.
Denote Ri as the collection of all such hypercubes with side-length 2i. Denote
R := ∪log Δ

i=0 Ri.

(m, r)-Light Graph. For every hypercube R in R, designate its 2d corners as well
as m evenly placed points on each of R’s 2d facets as portals. Specifically, portals
in a facet is an orthogonal lattice in the (d−1)-dimension hypercube. If the side
length of the hypercube is � and the spacing length between the portals is α · �,
then we will have m ≤ ( 1

α +1)d−1. For example, in 2D, a hypercube is a square,
and portals in this case is 4m − 4 points evenly placed on the 4 boundaries. An
(m, r)-light graph is a geometric graph such that for all R in R, it crosses each
facet in R only via the m portals for at most r times.

Theorem 2 (Structural Property [1] in R
d). For every 0 < ε < 1 and

terminal set X in R
d, there is a (random) Steiner tree solution T ′ defined with
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respect to the randomly-shifted quadtree R of X, such that T ′ is (m := O(d
3
2 ·

log Δ
ε )d−1, r := O(d2

ε )d−1)-light2 and

Pr[w(T ′) ≤ (1 + ε) · OPT] ≥ 1
2
.

Dynamic Programming (DP). One can find the optimal (m, r)-light solution for
Steiner tree in near-linear time using dynamic programming (for m, r guaranteed
by Theorem 2). In the original DP for Steiner tree [1], a DP entry is indexed by
a tuple (R,A,Π), where

– R is a hypercube in R,
– A is a subset of the active portals of R such that A contains at most r portals

from each facet in R,
– Π is a partition of A.

If R is a leaf node, then |A| ≤ 1. In the case that R contains a terminal, then
|A| = 1; if |A| = 0, this means that R contains no Steiner point. The value of
a subproblem (R,A,Π) is the minimum weight of an (m, r)-light graph G, such
that for A 
= ∅,

– G connects all points X ∩ R to some point in A, and
– points in the same part of Π are connected in G.

If A = ∅, then X ⊆ R and the value is the minimum weight of an (m, r)-light
graph G such that G is contained inside R and all terminals in X are connected
in G.

3 Static Algorithms for Euclidean Steiner Tree

In this section, we introduce an algorithm that answers the queries in the static
setting, as stated in the following Theorem 3. We will show how to make the
algorithm fully-dynamic in the next section.

Theorem 3. There is an algorithm that, for every 0 < ε < 1, given as input an
n-point dataset X ⊂ R

d, pre-processes X and computes an implicit Steiner tree
T ′ for X in O(n) · (log n)O(d2dε−d) · 2O(4dd4dε−2d) time such that T ′ is (1 + ε)-
approximate with constant probability. After this pre-processing, the algorithm
can deterministically report the weight of T ′, report the root node of T ′, answer
membership query and answer neighbor query, in O(1), O(d2

ε )d−1, O(2d log n)
and (log n)O(d2dε−d) · 2O(4dd4dε−2d) time, respectively.

We impose the quadtree decomposition with random shifts on the input ter-
minal set X as described in Sect. 2.1. Since there is no inherent parent-child

2 We state the exact dependence of d which was not accurately calculated in [1], see
the appendix for the details.
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relationship between nodes in a Steiner tree, the global root can be chosen arbi-
trarily. We assume that the global root is selected based on a predefined priority
assigned to all clusters. Specifically, for each level of the quadtree, a deterministic
function is used to determine which cluster should contain the global root. The
deterministic property ensures that we do not have the issue of failure probabil-
ity after answering however many queries, and that the failure probability only
needs to be analyzed for the error of the implicity Steiner tree

After we construct the quadtree, we can find an (1+ ε)-approximate solution
by applying the original dynamic programming (DP) in Arora’s approach, since
the original DP can find the optimal (m, r)-light solution and Theorem 2 ensures
the existence of a solution that is (m, r)-light and (1 + ε)-approximate with 1

2
probability. Note that since n = Δd is an upper bound on the cardinality of X,
we analyze the time complexity in terms of n. Also the depth of the quadtree is
O(log Δ), hence for simplicity, we slightly relax the bounds by using O(log n) as
the depth.

As mentioned, to answer the other types of queries, our plan is to augment
the original DP of Arora such that each DP entry is indexed by extra objects
and each entry stores a small data structure in addition to a value. The focus
is to analyze the running time of computing the augmented DP, as well as the
correctness and the time complexity of answering each type of these queries.
Then, Theorem 3 would follow from all of these components.

Augmented DP for Steiner Tree. Each entry in the augmented DP is indexed
by (R,A,Π,ϕ), where ϕ contains additional information for each part S in Π
(recalling that Π is the partition of A). Specifically, ϕ(S) specifies (i) whether
the connected component containing S inside R includes the global root of the
entire Steiner tree, and (ii) the node in S that is the closest to the global root,
which we shall call the root of S, denoted as r(S). In this context, closeness is
defined as the number of edges between a point and the global root. It is worth
noting that, since the root of S, namely r(S), is the point that is closest to the
global root, it ensures that all points in the connected component containing S
(inside R) must connect to the global root via r(S).

Data Structure in Each Entry. For a DP entry indexed by (R,A,Π,ϕ), in
addition to a value as in the original DP, the following information is stored: if
R is not a leaf cluster, then for each child cluster Rj (where j ∈ [2d]) of R, there
is a pointer to some DP entry (Rj , Aj ,Πj , ϕj) in the DP entry.

Consistent Conditions. Moreover, there is a collection E (E would not be
stored) of directed edges with vertex set in ∪jAj that is consistent in the follow-
ing sense. The collection of entries {(Rj , Aj ,Πj , ϕj) : j ∈ [2d]} and the directed
edges collection E is consistent with (R,A,Π,ϕ) if the following conditions hold.

– If we consider each part in ∪jΠj as a supernode, the edges E will form a for-
est graph among these supernodes. In this graph, an edge in E must connect
components originating from different child clusters, meaning it connects dis-
tinct active portals from different child clusters. For the purpose of checking
for no cycle, we assume that there is an edge between two parts for every
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common portal they share. Two parts from two different child clusters can
share a common portal that lies on the common face between the two child
clusters. The edges in E, along with the edges connecting common portals,
will collectively form tree graphs among these supernodes as defined earlier.

– There can be at most one part S ∈ ∪jΠj that contains the global root.
– The direction of an edge in E is interpreted as going from a parent to a child.

For any part S ∈ ∪jΠj , the root of S can have both outgoing and incoming
edges in E, while all other portals in S can only have outgoing edges in E.

– Several parts in ∪jΠj are merged to become a single part in Π (the portals
lying on the common faces would be excluded since they are no longer portals
for parts in Π). This is because either an edge in E connects two different
parts, or there is a common portal between two parts.

– If a ∈ ∪jAj and a is not a portal of R, then either a is incident to some edge
in E or a is a common portal between two parts from different child clusters.
If a is also a portal of R, then a must be in A if a is not incident to any edges
in E, otherwise a may or may not appear in A.

– The partition Π of A must be consistent with the aforementioned merging
process. (Recall that when several parts are merged, the direction of the
edges in E must be consistent with the information in the ϕj ’s.)
Moreover, for the new part S ∈ Π, whether S contains the global root or
which portal is the root of S must be consistent with ϕ.

In what follows, we use the same m and r as guaranteed by Theorem 2 for
the augmented DP for Steiner tree.

Lemma 1 (Time Complexity of Computing Augmented DP). The
augmented DP for Steiner tree can be solved with time complexity O(n) ·
(log n)O(d2dε−d) · 2O(4dd4dε−2d).

Lemma 2 (Weight of the Steiner Tree). After solving the augmented DP
for Steiner tree, we can report the weight of the implicit Steiner tree with time
complexity O(1), and the value is (1 + ε)-approximate with probability 1

2 .

Lemma 3 (Global Root of the Steiner Tree). After solving the augmented
DP for Steiner Tree, we can report the global root of the Steiner tree with time
complexity O(d2

ε )d−1.

Proof. Let I be the entry whose associated cluster is Rlog Δ in the final solution.
I would point to 2d subproblems I ′ = {(Ri, Ai,Πi, ϕi)}2d

i=1. The global root
would belong to exactly one part S ∈ ∪2d

i=1Πi. By checking ϕi(S) such that
S ∈ Πi for every i ∈ {1, 2, . . . , 2d}, exactly one part would report “Yes” and the
root of S would be the global root.

There are 2d subproblems, each subproblem corresponds to a partition and
each partition has O(r) = O(d2

ε )d−1 parts. We can check ϕ of each part in O(1),
hence the total running time would be 2d · O(d2

ε )d−1 = O(d2

ε )d−1. �



Fully Dynamic Algorithms for Euclidean Steiner Tree 71

Lemma 4 (Membership Queries). After solving the augmented DP for
Steiner Tree, we can correctly answer membership queries. The time complexity
for answering the query is O(2d log n).

Lemma 5 (Neighbor Queries). After solving the augmented DP for Steiner
Tree, we can correctly answer the neighbor queries. The time complexity for
answering the query is O(log n)O(d2dε−d) · 2O(4dd4dε−2d).

4 Dynamic Algorithm

In Sect. 3, we have introduced an algorithm that can answer all types of queries in
the static setting. In this section, we will show how to make the algorithm fully-
dynamic. Specifically, we propose an algorithm that can efficiently maintain a
data structure that supports the insertions/deletions of point as well as the afore-
mentioned queries in the dynamic setting, as formally stated in the following
Theorem 4. As we mention, we consider update sequences whose data points
always lie on a discrete grid [Δ]d at any time step. Let n := [Δ]d. This n is an
upper bound for the number of points in the active point set at any time step,
and hence we can use n as a parameter for measuring the complexity.

Theorem 4. There exists a fully-dynamic algorithm that for any 0 < ε, δ < 1,
and any operation sequence σ whose underlying dataset belongs to [Δ]d at any
time step, maintains an implicit Steiner tree along with its weight and its root
node. This tree is maintained in amortized O(log t

δ )·(log n)O(d2dε−d)·2O(4dd4dε−2d)

time for the t-th operation (∀t ≥ 1), and with probability at least 1− δ, it is (1+
ε)-approximate at all time steps simultaneously. The subroutine for answering
membership and neighbor queries are deterministic, and run in time O(2d log n)
and (log n)O(d2dε−d) · 2O(4dd4dε−2d), respectively.

Note that we have already shown in Theorem 3 that all these queries can
be answered efficiently after computing the augmented DP. Hence, our proof of
Theorem 4 aims to maintain the augmented DP efficiently instead of computing
it from scratch after each update.

We mostly focus on the simpler version where a single update can be handled
with constant success probability. Then to make the algorithm handle all updates
and succeed for all of them simultaneously, a standard amplification is to repeat
the algorithm for log(1/δ) times, so that the failure probability is reduced to δ.
However, the operation sequence can be indefinitely long so it is not possible to
set a target failure probability δ in advance, so that the total failure probability
is still bounded. Our solution is to rebuild the data structure with a decreased
target failure probability whenever sufficiently many updates are preformed.

Next, we would introduce a dynamic data structure wrapping the static algo-
rithm described in Sect. 3 that supports updates.

Data Structure for Dynamic Algorithms. Let Γε be a data structure storing
a set of tuples that correspond to all subproblems in the augmented dynamic
programming described in Sect. 3. We use the same m and r as guaranteed by
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Theorem 2 (however, note that the parameters may be different from previous
sections since the size of bounding box has changed), i.e., in a tuple (R,A,Π,ϕ),
A is a size of r := O(d2

ε )d−1 subset of the m := O(d
3
2 · log n

ε )d−1 portals of R. Γε

supports the following operations:

– Initialize(). Conduct the tree decomposition with random shifts on the
bounded area. Then we use the augmented dynamic programming described
in Sect. 3 to find the optimal (m, r)-light solution. All subproblems will be
identified as a set of tuples (R,A,Π,ϕ) and will be stored together with their
evaluated values. Note each subproblem will have optimal value 0 since there
are no points when initializing.

– Insert(x). When we call Insert(x), we find the set of all clusters Rx ⊂ R
that contain x. There will be exactly a cluster containing x in each level.
Let Rx

i ∈ Rx be the level-i cluster that contains x. Note that when a point
x is inserted, if it is not the new root of the Steiner Tree, then only the
subproblems associated with clusters in Rx will be affected. If x is the new
root, let y be the old root, then the subproblems associated with clusters in
Rx ∪ Ry will be affected. We will update the values of these subproblems in
a bottom-up manner. Specifically speaking, the subproblems associated with
Rk

0 (k can be either x or y) will be updated trivially since k is the only point in
the cluster; for the subproblems I = (Rk

i , A,Π, ϕ), where i ∈ {1, 2, . . . , log Δ},
we consider all combinations of entry indices I ′ and directed edges E′ that
are consistent with I, and update the value of I to the minimum sum of the
DP values of I ′s and the weight of E′ over those combinations.

– Delete(x). Deletion procedure is similar to that of insertion. We need to
update the values of all subproblems whose corresponding clusters contain x
in a bottom-up approach. If x is the root, let y be the new root. We need to
update the values of all subproblems whose corresponding clusters contain y
in a bottom-up approach.

Pre-computation. Note that the initialization of Γε is independent of σ. Hence,
we can construct enough copies of Γε by calling Initialize() before the start of σ
and this part of cost would not count in the time complexity analysis for each
update.

Lemma 6 (The Correctness of the Data Structure). Let 0 < ε < 1, Γε

can maintain an implicit Steiner tree that is 1 + ε-approximate with probability
at least 1

2 , and report the weight w and the global root of the implicit Steiner
tree. The time complexity for Γε to finish a single operation of Initialize(Z) is
O(n) · (log n)O(d2dε−d) · 2O(4dd4dε−2d); and the time complexity to finish a single
operation of Insert(x) or Delete(x) is (log n)O(d2dε−d) · 2O(4dd4dε−2d).

Lemma 7 (Answering the Queries). By maintaining a copy of Γε we can,
for any time step t, maintain the weight and the global root of an implicit
Steiner tree that is (1+ε)-approximation with probability at least 1

2 , and can cor-
rectly answer the membership queries and the neighbor queries about the implicit
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Steiner tree, at any time step t. The time complexity for answering the two types
of queries are O(2d log n) and (log n)O(d2dε−d) · 2O(4dd4dε−2d), separately.

Proof. We can construct a copy of Γε and call Initialize to initialize. Then for
each update call Insert or Delete. According to Lemma 6, the implicit Steiner
tree maintained by Γε is (1+ ε)-approximate with probability at least 1

2 , and we
can report the weight and the global root of the implicit Steiner tree.

According to Lemma 4 and Lemma 5, we can correctly answer membership
queries and parent-child queries by using those methods on Γε with time com-
plexity O(2d log n) and (log n)O(d2dε−d) · 2O(4dd4dε−2d), separately. �
Lemma 8 (High Probability Guarantee by Repetition). For any 0 <
ε, δ < 1 and any operation sequence σ with length T , we can maintain an
implicit Steiner tree that is (1 + ε)-approximate with probability at least 1 − δ
along with its weight and global root, for all time steps simultaneously by
maintaining log T

δ independent copies of Γε. The time cost for each update is
O(log T

δ ) · (log n)O(d2dε−d) · 2O(4dd4dε−2d). We can also correctly answer the mem-
bership queries and the neighbor queries with probability 1, at any time step t,
with time complexity O(2d log n) and (log n)O(d2dε−d) · 2O(4dd4dε−2d), separately.

Proof. We can maintain an (1+ε)-approximation to the optimal value with prob-
ability at least 1

2 by one copy of Γε according to Lemma 7. Having log T
δ indepen-

dent copies can then guarantee that with probability at least 1−(12 )log
T
δ = 1− δ

T
at least one copy can maintain an (1 + ε)-approximation to the optimal value.
Then by a union bound, the probability that all time steps succeed simulta-
neously is 1 − δ. Note that each approximate value corresponds to a feasible
solution to the Euclidean Steiner tree problem, we hence fix the copy Γ̃ with the
minimum approximate value to perform further queries.

The time cost comes from two parts: the update (Insert and Delete),
and finding Γ̃ after each update. The initialization of O(log T

δ ) copies in the
pre-computation. According to Lemma 6, each update takes (log n)O(d2dε−d) ·
2O(4dd4dε−2d). There are log T

δ copies in the algorithm, hence each update would
take log T

δ · (log n)O(d2dε−d) · 2O(4dd4dε−2d) time. After each update, according to
Lemma 2, we need O(log T

δ ) time to find Γ̃ .
Moreover, a global root is maintained in Γ̃ according to Lemma 7, and we

can also correctly answer the queries by performing those queries on Γ̃ . Hence
the correctness and time complexity for other queries are as desired. �
Proof (Proof of Theorem 4). According to Lemma 7, we can maintain an
implicit Steiner tree that is (1 + ε) with probability at least 1

2 , report the
weight and the global root of the implicit Steiner tree, and correctly answer
the membership queries and the parent-child queries, at any time step t. The
time complexity for answering the two types of queries are O(2d log n) and
(log n)O(d2dε−d) · 2O(4dd4dε−2d), separately.
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Then we analyze the per time step cost. The time cost comes from the updates
(Insert and Delete) (note that Initialize is done in pre-computation). According
to Lemma 6, each update would take (log n)O(d2dε−d) · 2O(4dd4dε−2d) time.

Partition σ into phases with different lengths indexed from 1. Specifically, the
i-th phase would have 2in time steps. For the i-th phase, we would guarantee
that we can maintain an implicit Steiner tree that with probability at least 1− δ

2i

is (1 + ε)-approximate. By a union bound on the phases, we can guarantee that
all time steps succeed simultaneously with probability at least 1−∑

i
δ
2i ≥ 1−δ.

Then we need to maintain log 2in
δ = O(i+log n+log 1

δ ) copies for the i-th phase
according to a similar analysis as in the proof of Lemma 8.

Note that we do not need to reconstruct all copies at the beginning of each
phase, instead, we just need to add some new copies since Theorem 2 has no
dependency on the time step. We will keep inserting all points in the active point
set to the new copies for later updates.

We first analyze the reconstruction cost for the copies. The time step t would
lie in the O(log t

n )-th phase and there are O(2log
t
n n) = O(t) time steps in the

phase. The total number of copies of Γε needed for the first t steps is O(log t
δ ).

For each copy, we may need to insert at most n points for reconstruction. Hence
the total cost for this part is n · O(log t

δ ) · (log n)O(d2dε−d) · 2O(4dd4dε−2d).
Then we analyze the update cost for the first t steps. Since there are log 2in

δ =
O(i+log n+log 1

δ ) copies in the i-th phase, hence the total update cost would be
∑log t

n
i=1 O((i + log n + log 1

δ ) · (2i) · n) · (log n)O(d2dε−d) · 2O(4dd4dε−2d) = O(t log t
δ ·

(log n)O(d2dε−d) · 2O(4dd4dε−2d).
Note that t > n. Therefore, the amortized time cost for the time step t is

log t
δ · (log n)O(d2dε−d) · 2O(4dd4dε−2d).
The correctness and time complexity for other queries are also as desired

according to Lemma 8. �
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Abstract. In Terminal Monitoring Set (TMS), the input is an undi-
rected graph G = (V, E), together with a collection T of terminal pairs
and the goal is to find a subset S of minimum size that hits a shortest
path between every pair of terminals. We show that this problem is W[2]-
hard with respect to solution size. On the positive side, we show that
TMS is fixed parameter tractable with respect to solution size plus dis-
tance to cluster, solution size plus neighborhood diversity, and feedback
edge number. For the weighted version of the problem, we obtain a FPT
algorithm with respect to vertex cover number, and for a relaxed version
of the problem, we show that it is W[1]-hard with respect to solution
size plus feedback vertex number.

Keywords: monitoring set · hitting set · hub location · parameterized
complexity · fixed parameter tractability

1 Introduction

Consider a communication network and a set of pairs of nodes, say T =
{{x1, y1}, {x2, y2}, . . . {xm, ym}} such that every pair in T is communicating
through the shortest path between them. Our goal is to monitor this data while
deploying monitoring devices at minimum number of nodes in the network. The
motivation also comes from incremental deployment of a software defined net-
work over a legacy network by deploying costly smart switches at only a few
locations.

Motivated by the above scenarios, we formulate the Terminal Monitoring Set
(TMS) problem defined below.

TERMINAL MONITORING SET (TMS):
Input: An instance I = (G,T, k), where G = (V,E) is an undirected
graph, T = {{u1, v1}, . . . , {ul, vl}} where ui, vi ∈ V and k ∈ N.
Output: YES, if G contains a set S ⊆ V of size at most k such that for
every i ≤ l, ∃w ∈ S : d(ui, w) + d(w, vi) = d(ui, vi) ; NO otherwise.
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We refer to any set S satisfying the above definition (regardless of its size) as a
terminal monitoring set for T . We remark that a vertex can belong to multiple
pairs in the list T , but we assume without loss of generality that no terminal
pair appears twice. Further, we assume distance between every terminal pair in
T is finite (they are reachable by each other, hence belong to a same connected
component).

While there are similar problems in the literature, some of which we will dis-
cuss in the next section, to the best of our knowledge, the optimization equivalent
of TMS has not been studied before.

1.1 Related Work

The closest related problem to TMS in the literature is the (k, r)-center prob-
lem, where we are given an undirected graph and it is asked if there exists a
vertex set S ⊆ V (G) such that |S| ≤ k and for every vertex v ∈ V (G) \ S there
exists a vertex u ∈ S such that distance between u and v is at most r. Opti-
mization of r for a fixed k is studied in [7,13,14,17,18,21], and optimization of
k for fixed r is studied in [3,5,8,20]. Recently Katsikarelis, Lampis, Paschos [16]
studied parameterized complexity of (k, r)-center with respect to various struc-
tural parameters. Benedito, Melo, and Pedrosa [4] studied a problem related to
(k, r)-center, under the name of Multiple Allocation k-Hub Center, which is also
a closely related problem to TMS.

Another related problem is hub location where packets must travel from each
source to its corresponding destination via a small number of hubs. Surveys of
hub location can be found in [2,11].

The TMS problem can be formulated as a Hitting Set problem, and thus it
is natural that results on Hitting Set are relevant to this work. In particular,
we mention the results of [1,12] that use the sunflower lemma to set systems of
bounded size. We use similar ideas in some of our algorithmic results.

1.2 Our Results

Theorem 1. (a) TMS is NP-hard.
(b) TMS is W[2]-hard with respect to solution size.

On the positive side, we have the following results.

Theorem 2. TMS admits a FPT algorithm when parameterized by solution size
plus distance to cluster.

Theorem 3. TMS admits a FPT algorithm when parameterized by solution size
plus neighborhood diversity.
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Theorem 4. Weighted-TMS admits a FPT algorithm when parameterized by
vertex cover number.

Theorem 5. TMS admits a FPT algorithm when parameterized by the feedback
edge number.

We leave open the parameterized complexity of TMS by feedback vertex
number; however we obtain a hardness result for the following relaxation of
TMS.

α-RELAXED TERMINAL MONITORING SET (α-RTMS):
Input: An instance I = (G, T , k), where G = (V,E) is an undirected
graph, T = {{u1, v1}, . . . , {ul, vl}} where ui, vi ∈ V , k ∈ N and α ∈ Q≥0.
Output: YES, if G contains a subset S of size at most k such that for
every i ≤ l, ∃w ∈ S : d(ui, w)+d(w, vi) ≤ (1+α)·d(ui, vi) ; NO otherwise.

Theorem 6. For every fixed 0 < α ≤ 0.5, α-RTMS is W[1]-hard with respect
to feedback vertex number of the input graph plus solution size.

2 Preliminaries

We refer [10] for basic graph notations and terminologies. For a graph G, we
use V (G) and E(G) are its vertex set and edge set respectively. For F ⊆ E(G),
V (F ) is the vertex set of F . For S ⊆ V (G), G[S] is the induced sub graph of
G on vertex set S, and G − S is the graph G[V (G) \ S]. A component C of a
graph G is a maximally connected subgraph of G. For F ⊆ E(G), G[F ] is the
sub graph of G with vertex set V (F ) and edge set F . We use v ∈ G instead of
v ∈ V (G) when it is clear that v is a vertex. For a weighted graph G, w(e) is
the weight of an edge e ∈ E(G). For a graph G, d(u, v) is the distance between
vertices u and v in G. Given a graph G, and u, v ∈ V (G), we define SPG(u, v)
to be the set {x ∈ V (G) : d(u, x) + d(x, v) = d(u, v)}. When the context is
clear, we simply write SP (u, v). Thus, TMS is equivalent to finding a minimum
size hitting set for the family {SP (u, v) | {u, v} ∈ T}. For undirected graphs,
SP (u, v) and SP (v, u) are the same; and we avoid writing SP ({u, v}).

We define the core of a set family F to be ∩S∈FS and denote it by core(F).
We say that a collection F of sets forms a sunflower if there is a set C such
that S ∩T = C for every distinct pair S, T ∈ F . Notice that C = core(F) in this
case (see [9,12] for details on sunflower, sunflower lemma, and its application
to Hitting Set). For details on parameterized complexity and fixed parameter
tractability (FPT) we refer to [9,12]. For the details on neighborhood diversity
we refer to [19].
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hitting subgraphs in a graph (HSG):
Input: An instance I = (G,V, k), where G = (V,E) is an undirected
graph, V is a collection of subsets of V (G), and k ∈ N.
Output: YES, if G contains a S ⊆ V (G) of size at most k that hits every
set in V; NO otherwise.

If HSG has the constraint that every vertex set in V induces a simple path
in G, then we call the problem hitting paths in a graph (HPG) [15].

Lemma 1 (folklore, discussed in [15]). hitting paths in a graph can be
solved in polynomial time if the input graph G is a tree.

From [15] we recall that a graph G is a flower graph if it has a specific vertex
z (called its core) such that G−{z} is a disjoint union of paths, each such path is
called its petal, and no internal vertex of any such path is adjacent to z, assume
an arbitrary but distinct ordering {R1, R2, . . . Rl} of these petals.

hitting paths in a flower with budgets (HPFB)[15]:
Input: An instance I = (G, z, P, b), where G is a flower graph with core z
and petals R1, R2, . . . Rl, a set P of simple paths in G, and b : [l] → N≥1.
Question: Is there a set S ⊆ V (G)\{z} hitting every path in P such that
|S ∩ V (Ri)| = b(i) for every i ∈ [l]?.

Lemma 2 ([15]). HPFB is polynomial time solvable.

3 FPT Algorithms

Our main idea for the first three results is to create an equivalent instance of
Hitting Set where the number of sets is a function of k plus the structural
parameter. A Hitting Set instance with a set family having m sets over a n-
element universe can be solved in O(2m ·(n+m)O(1)) time by a standard dynamic
programming algorithm (see [9]); this gives the corresponding FPT algorithm for
TMS.

Another idea that we use is the following, which we shall call the standard
vertex cover reduction. This is the reduction applied to obtain a quadratic kernel
for vertex cover, in [6].

Observation 1. Let F = F1 ∪ F2 be a family of sets, such that every set in F2

is of size 2. Then, given the instance (F , k) for some integer k, we can replace
F2 by a family F3, where |F3| = O(k2) such that (F , k) is a YES instance if and
only if (F1 ∪ F3, k) is a YES instance.
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We remark that this can be generalized to subfamilies of bounded size and we
indeed do this in a slightly more general way later in this paper (Proposition 1).

On an input instance (G,T, k) of TMS, we will also assume that the following
reduction rule has been applied exhaustively, so that it is not applicable to the
instance given as input in each algorithm.

Reduction Rule 0: For two distinct pairs {u, v} and {x, y} in T , if
SP (u, v) ⊆ SP (x, y), then remove {u, v} from the list of terminal pairs. In
the case of equality, remove one of the two pairs arbitrarily.

3.1 Distance to Cluster: Proof of Theorem 2

Let (G,T, k) be the input instance of TMS. We may assume that G is con-
nected (otherwise we find the optimal solution for each connected component
separately). We define the auxiliary graph GT = (VT , ET ) as ET = T and
VT = V (ET ). We say that a graph H on a subset S ⊆ V is core-invariant
if it is a subgraph of GT and the family {SP (u, v) : {u, v} ∈ E(H)} forms a
sunflower.

Reduction Rule 1: Given a core-invariant graph H with at least k + 2
edges, remove all but k + 1 of these pairs from T .

Note that to apply Reduction Rule 1, the subgraph H must be known. The
rule is safe because any set of size at most k that hits (k+1) sets in the sunflower
must hit the core, and hence hit all the sets SP (u, v) for every edge {u, v} in H.

Let M ⊆ V be of cardinality at most q such that every connected component
of G[V \ M ] is a clique. Let these clique components be C1, C2 . . . , Cr and let
C = C1 ∪ C2 . . . ∪ Cr. Let T0 = {{u, v} ∈ T ∩ E}, T1 = {{u, v} ∈ T \ T0 : u ∈
C, v ∈ M} and T2 = {{u, v} ∈ T \ T0 : u, v ∈ C}.

We shall first reduce the size of T2. We fix an arbitrary ordering between
both the vertices of every pair {u, v} ∈ T2, and thus {u, v} is denoted by (u, v)
or (v, u) depending on the ordering. The ordering will not affect SP (u, v) for
{u, v}. For X ⊆ M × {1, 2} × M × {1, 2}, we say that (u, v) ∈ T2 is of type
X if for every shortest path P from u to v, there exists (x, i, y, j) ∈ X such
that x and y are the closest vertices in V (P ) ∩ M to u and v respectively, and
d(u, x) = i, d(v, y) = j, and X is the smallest such set (wrt inclusion).

Note that the number of possible types X is at most 24q2
. Every pair in T2

is of some type X, and given (u, v) and X, we can verify in polynomial time
whether (u, v) is of type X. For each type X, we define an auxiliary graph
HX = (VX , EX) with VX = {1, 2, . . . , r} and {i, j} ∈ EX if there exists a pair
(u, v) ∈ T2 of type X such that one of its endpoint (either u or v) belong to
Ci and the other endpoint belong to Cj . These auxiliary graphs HX can be
computed in polynomial time.
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Claim 1. If |EX | > (2(k + 2))3, then we can find a core-invariant subgraph of
GT with at least (k + 2) edges, and hence apply Reduction Rule 1.

Proof-sketch. If |EX | > (2(k +2))3, then HX must contain a vertex of degree at
least (2(k +2))2 or (by Vizing’s theorem), a matching A of size at least 2(k +2).
Case 1: HX contains a matching A of size at least 2(k + 2). In this case, for
every edge in A, pick exactly one terminal pair from T2 which corresponds to
its construction, let A∗ be these picked pairs, every vertex in V (A∗) belongs to
a disinct cluster and every pair in A∗ is of type X, it follows that GT [A∗] is
core-invariant with k + 2 edges, and we can apply Reduction Rule 1.
Case 2: HX contains a vertex i of degree at least (2(k + 2))2. For every edge
incident on i, pick exactly one terminal pair from T2 which corresponds to its
construction, let B be the set of these picked pairs. Consider the graph GT [B],
there must either be a vertex u in GT [B] which belong to Ci and has 2(k + 2)
neighbors in GT [B] each of which belongs to a distinct cluster of G − M , or
there must be a matching MB in GT [B] of size 2(k +2) such that for every edge
of MB , its one endpoint is a distinct vertex of Ci and the other endpoint is a
vertex of a distinct cluster in G − M .
Case 2a: vertex u in GT [B] belonging to Ci has 2(k + 2) neighbors in GT [B]
each of which belongs to a distinct cluster of G−M . Let U be the set of terminal
pairs which correspond to these 2(k+2) neighbors of u in GT [B]. Let U1 be those
terminal pairs of U where the first vertex is u (Ex. (u, v)), and let U2 be those
terminal pairs in U where the second vertex is u (Ex. (x, u)). At least one of U1

or U2 has at least k + 2 pairs, let it be U1. Then every pair in U1 is of type X
and each second vertex in the pair belongs to a distinct cluster. It follows that
GT [U1] is core-invariant with (k + 2) edges. Similar arguments holds when U2

has at least k + 2 pairs.
Case 2b: matching MB in GT [B] of size 2(k+2) such that for every edge of MB,
its one endpoint is a distinct vertex of Ci and the other endpoint is a vertex of
a distinct cluster in G−M . Let U be the set of terminal pairs which correspond
to these 2(k + 2) edges, let U1 (resp U2) be the set of those terminal pairs of U
where the first vertex (resp. second vertex) belongs to Ci. Suppose that U1 has
at least k + 2 pairs. Then every pair in U1 is of type X and its first vertex is a
distinct vertex of Ci and second vertex belongs to a distinct cluster, it follows
that GT [U1] is core-invariant with k +2 edges, similar arguments holds when U2

has at least k + 2 pairs. 	


Claim 2. If there exist i, j ∈ [r] such that there are more than (2(k+2))2 distinct
pairs in T2 of a same type X with one endpoint in Ci and another endpoint in
Cj, then we can find a core-invariant subgraph of GT with at least k + 2 edges.
Hence, apply Reduction Rule 1.

The proof of the above claim is similar to that of Claim 1 and hence we skip it.
For every type X, we apply Reduction Rule 1 repeatedly while the condition in
Claim 1 or the condition in Claim 2 holds.
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We now have |EX | ≤ (2(k + 2))3. Further, for every edge {i, j} ∈ EX , the
number of pairs in T2 with one endpoint in Ci and the other end-point in Cj

is at most (2(k + 2))2 (because Claim 2 is not applicable). Thus, we obtain a
reduced set T2 such that |T2| ≤ (2(k + 2))524q2

.
We shall now reduce the size of T1 in a similar manner. We fix an ordering

between both the vertices of every pair {u, v} ∈ T1 such that its first vertex
belong to C, and thus {u, v} denoted by (u, v) when u belongs to C and v to M .
For X ⊆ M × {1, 2}, we say that (u, v) ∈ T1 is of type X if for every shortest
path P from u to v, there exists (x, i) ∈ X such that x is the closest vertex in
V (P ) ∩ M to u and d(u, x) = i, and X is the smallest such set.

As before, we define an auxiliary bipartite graph HX = (VX , EX), where
VX = {1, 2, . . . , r} ∪ M and for i ∈ [r] and m ∈ M , {i,m} ∈ EX if there exists a
pair (u,m) ∈ T1 of type X such that u ∈ Ci.

Claim 3. If there is a vertex m ∈ M with at least (k + 2) neighbors in HX ,
then we can find a core-invariant subgraph of GT with at least (k + 2) edges and
apply Reduction Rule 1.

Claim 4. If there exists i ∈ [r] and m ∈ M such that there are more than (k+2)
distinct pairs in T1 of a same type X with one endpoint in Ci and other endpoint
being vertex m, then we can find a core-invariant subgraph of GT with at least
k + 2 edges, and apply Reduction Rule 1.

The above claims are similar to that of Claim 1 and we skip their proof.
For every type X, we apply Reduction Rule 1 repeatedly while the condition in
Claim 3 or the condition in Claim 4 holds.

We now obtain: |T1| ≤ q(k + 2)222q.
Finally, we apply Observation 1 to the family {SP (u, v) : {u, v} ∈ T0} so

that we obtain a reduced set T0 such that |T0| = O(k2).
Thus, we obtain an instance with the number of terminal pairs are bounded

by O(q(k + 2)524q2
). We then solve the Hitting Set Instance where the input

family is {SP (u, v) : {u, v} ∈ T}, in time FPT in q+k. This completes the proof
of Theorem 2.

3.2 Neighborhood Diversity: Proof of Theorem 3

Our main idea is to directly use existing kernels for the hitting set problem with
a small modification.

Definition 1. Given a family F and a set S, we define the effective size of S
with respect to F to be |S \ core(F)|. We define the effective size bound of F
to be the maximum effective size of S wrt F , taken over all S ∈ F .

The following result is an adaptation of a well-known application of the
sunflower lemma to hitting sets, see e.g.: [1,9,12].

Proposition 1. There is an algorithm, that given set families F1, . . . ,Fm each
with an effective size bound of d, and an integer k, finds set families C1, . . . , Cm

in time polynomial in m, d, and the number of sets such that:
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– |Ci| = O(kd · d!);
– (∪iFi, k) is a YES instance of hitting set if and only if (∪iCi, k) is a YES

instance of hitting set.

Let (G,T, k) be an input to TMS with G having neighborhood diversity t.
We assume that G is connected. Let V (G) = V1 ∪ . . . Vt where each Vi induces
an independent set or clique and such that for every pair i, j, there are either no
edges between Vi and Vj or there are all possible edges between them.

For each pair (i, j) such that 1 ≤ i ≤ j ≤ t, let Ti,j = {{u, v} ∈ T : u ∈
Vi, v ∈ Vj}. We define the family Fi,j = {SP (u, v) | {u, v} ∈ Ti,j}. Each Fi,j

has an effective size bound ≤ 2, where core(Fi,j) ⊇
(
∪S∈Fi,j

S
)
\ (Vi ∪Vj). Thus,

using Proposition 1, we obtain an equivalent hitting set instance with O(t2k2)
sets.

3.3 Weighted TMS and Vertex Cover: Proof of Theorem 4

In this section, we consider TMS where the underlying graph G has positive
weights on its edges which satisfy the triangle inequality, i.e. w(x, y)+w(y, z) ≥
w(x, z) for all x, y, z. The distance is then the shortest weighted distance and
SP (u, v) is defined accordingly.

Let C = {v1, . . . , vt} be a given vertex cover and I = V \ C. Let S be an
optimal solution with k = |S|. Note that we may assume that k ≤ t; otherwise
C itself is a solution of size t.

We first guess a binary matrix M indexed by C and then search for a solution
S satisfying the following condition.

∀u, v ∈ C : S ∩ SP (u, v) �= ∅ ⇔ M(u, v) = 1. (1)

Note that when u = v, the above condition translates to : v ∈ S if and only if
M(v, v) = 1. We call such a solution an M -compatible solution.

We shall construct a Hitting Set instance (F , l) which is a YES instance if
and only if (G,T, k) has an M -compatible solution.

To this end, let C1 = {v ∈ C : M(v, v) = 1} and C0 = C \ C1. Let
S0 = ∪M(u,v)=0SP (u, v). Note that we are looking for a solution S such that
S ∩ S0 = ∅. If {u, v} ∈ T be such that u, v ∈ C and M(u, v) = 0, then no M
compatible solution exist. If S0∩C1 �= ∅, then M is inconsistent and we make the
next guess. If there exist u, v ∈ C such that M(u, v) = 1 and SP (u, v) \ S0 = ∅,
then no M compatible solution exist and we make the next guess.

Let F1 = {SP (u, v) \ S0 : u, v ∈ C,M(u, v) = 1}. The family F will include
all the sets of F1 so that SP (u, v) is hit for every u, v ∈ C for which M(u, v) = 1.
Let T1 = {{u, v} ∈ T : ∃x, y ∈ C : SP (x, y) ⊆ SP (u, v) and M(x, y) = 1}. Then
every hitting set for F1 also hits SP (u, v) for all terminal pairs {u, v} ∈ T1.
Thus, it is sufficient to focus on T0 = T \ T1. We also note that the set T0 can
be computed in polynomial time.

Reduction Rule 2: Let T ∗
0 = T0, l = k. While there exists a pair {u, v} ∈ T ∗

0

such that u ∈ I, v ∈ C0, do the following:
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– Include u into the solution set;
– Let T ∗

0 = T ∗
0 \ {{x, y} : u ∈ SP (x, y)}.

– Decrement l.

The above reduction rule is sound because if the solution set does not contain
u, then it must contain a vertex from SP (w, v) for some w ∈ C; but this would
imply that M(w, v) = 1 and hence that {u, v} ∈ T1, a contradiction.

We apply Reduction Rule 2 exhaustively until it can no longer be applied.
Let T ∗

0 , l be the resulting terminal pair set and solution budget respectively.
Let {u, v} ∈ T ∗

0 be such that u, v ∈ I. We claim that we must include at least
one of u, v in the solution. Otherwise S must contain a vertex z ∈ C1 such that
z is neighbor of both u, v and d(u, v) = w(u, z) + w(z, v) or S must intersect
SP (z, y) for some z, y ∈ C such that d(u, v) = w(u, z) + d(z, y) + w(y, v). In
either case, it would imply that {u, v} ∈ T1.

Let F2 = {{u, v} ∈ T ∗
0 : u, v ∈ I} and F = F1 ∪ F2. Then, there is a hitting

set of F of size at most l if and only if there is a M -compatible solution for
(G,T, k).

Further, by applying Observation 1 to F2, we can obtain a new collection F3

replacing F2 such that |F3| = O(k2) and such that F has a hitting set of size l
if and only if F1 ∪ F3 has a hitting set of size l.

We solve the instance (F1 ∪ F3, l); since |F1 ∪ F3| ≤ t2 + O(k2) = O(t2), we
can solve this instance in time FPT in t. This finishes the proof of Theorem 4.

3.4 Feedback Edge Number: Proof of Theorem 5

Jansen [15] gave an algorithm (which we refer to as Jansen’s algorithm) running
in time FPT by feedback edge number of the input graph to solve hitting
paths in a graph. In TMS, we need to hit a set of connected subgraphs (union
of all the shortest paths between a terminal pair), and we found that Jansen’s
algorithm solves TMS correctly, and for the proof sketch of Theorem 5, we will
recall and discuss Jansen’s algorithm [15] in this section.

We may assume that input graph G is connected. We create a clique on 4
vertices Z = {z1, z2, z3, z4} and connect this clique to G by adding an arbitrary
edge. This will increase feedback edge number of G by a constant, and it will
not change the solution, as no new shortest path between any terminal pair
introduced. In the rest of the section we assume that feedback edge number
of G is t. Given an instance (G,T, k) of TMS, the following preprocessing is
performed.

Preprocessing 1 (adapted from Observation 3 in [15]): While there is a
vertex v ∈ G of degree one.

– If there is a terminal pair {v} in T , then put v in solution S, decrease k by one,
and remove every terminal pair containing v from T . Otherwise, we replace
every terminal pair {v, y} with {u, y} in T where u is the only neighbor of v
in G. Remove v from G.
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The above preprocessing is safe, if both vertices of a pair are v then v must
be in the solution, else v can be replaced by u in any solution containing v.

G

Fig. 1. G with minimum degree two, darkened vertices forms V≥3.

After Preprocessing 1, G has minimum degree two, and we will assume that
for every I = (G,T, k), G has minimum degree at least two. For a graph G with
degree at least two, let V≥3 be the set of all the vertices of G with degree at
least three (Fig. 1), G − V≥3 is a disjoint union of paths as V≥3 �= ∅ (we added
a clique on Z in G) and G is connected. Let D be the set of all the components
(paths) in G − V≥3. Observe that every component of D is connected to rest of
the graph by 2 edges, each of which connecting an endpoint of D to a vertex of
V≥3 as every vertex in D has degree two in G (see also [15]). In the remaining
part, for the graph in context, we simply use V≥3 and D for it as defined above.
Given an instance I = (G,T, k) of TMS, the following holds.

Observation 2. For every {x, y} ∈ T , SP (x, y) induces a connected graph and
every vertex in SP (x, y) \ {x, y} has degree at least two in G[SP (x, y)].

Proof. It follows from the fact that graph induced by every SP (x, y) is a union
of all the shortest path between a terminal pair. 	


Observation 3. For every {x, y} ∈ T and D ∈ D it holds that: if SP (x, y) ⊆
V (D), then SP (x, y) induces a sub path of D in G.

Similar to [15], given an instance (G,T, k) of TMS, for every D ∈ D, let
opt(D) be the minimum size of a terminal monitoring set for {{x, y} | {x, y} ∈
T ∧SP (x, y) ⊆ V (D)}. From Observation 3 and Lemma 1, we have that opt(D)
can be computed in polynomial time for every D ∈ D.

Lemma 3 (Lemma 5 in [15], stating for TMS). Given an instance (G,T, k)
of TMS, there exists a minimum size terminal monitoring set S′ for T such that:
for every D ∈ D, S′ contains either opt(D) or opt(D)+1 vertices of D.

Proof of Lemma 3 follows from the proof of [15, Lemma 5] by supplementing
it with Observation 2 and Observation 3.

Jansen’s algorithm [15] while solving an instance of HPG makes successive
guesses (to branch), and if it decides that a guess may lead to a solution within
the budget, it constructs an instance of HPFB, and solves it in polynomial time.
We found that Jansen’s algorithm correctly solves TMS as well, crucially by cor-
rectly constructing instances of HPFB for input I = (G,T, k). For completeness,
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we recall steps of Jansen’s algorithm from [15] which are divided into branch-
ing and construction of HPFB, we demonstrate them for the input instance
I = (G,T, k) of TMS.

Branching (Sect. 3.2 in [15]): Guess fv : V≥3 → {0, 1} and fd : D → {0, 1}.
If k ≥

∑
v∈V≥3

fv(v)+
∑

D∈D(opt(D) + fd(D)), then construct an instance of
HPFB.

Construction of HPFB (Section 3.2 in [15]): Given fv, fd. Create G1, D1

as copies of G, D respectively, and fd remains same for D1. Construct U1 =
{SP (x, y) | {x, y} ∈ T}. Do the following. (1) For every U ∈ U1: if U contains
a vertex v ∈ V≥3 such that fv(v) = 1 or U contains all the vertices of a D ∈ D
such that (opt(D) + fd(D)) > 0, then remove U form U1. (2) For every D ∈ D1

such that (opt(D) + fd(D)) = 0: remove D from D1, remove V (D) from G1,
and remove V (D) from every set U ∈ U1. (3) For every v ∈ V≥3 such that
fv(v) = 1: remove v from G1. (4) Contract remaining vertices of V≥3 in G1 into
a single vertex z in G1, and replace U ∩ V≥3 (if non empty) with z in every
U ∈ U1. (5) Assign a distinct number in [|D1|] to every remaining path in D1,
set b(i) = (opt(D) + fd(Di)), where Di ∈ D1. Output (G1, z,U1, b).

For input instance I = (G,T, k) of TMS, for every guess fv, fd, and corre-
spondingly constructed (G1, z,U1, b), the following claims hold.

Claim 5 (Claim 5 in [15], stating for (G,T, k)). G1 is a flower graph with
core z and every vertex set in U1 induces a simple path in G1.

Claim 6 (Claim 6 in [15], stating for (G,T, k)). The following two state-
ments are equivalent.

– There exists a terminal monitoring set S for T such that : |S ∩ V (D)| =
opt(D) + fd(D) for every D ∈ D, and v ∈ S ⇔ fv(v) = 1 for every v ∈ V≥3.

– There exists a solution for instance (G1, z,U1, b) of HPFB.

Proof of Claim 5 and proof of Claim 6 for instance I follow from proof of
[15, Claim 5] and proof of [15, Claim 6] respectively by supplementing them
with arguments based on Observation 2 and Observation 3. If any constructed
instance of HPFB has a solution, then Jansen’s algorithm returns YES, otherwise
NO [15]. Further, correctness on I follows from Claim 6, Claim 5, and Lemma 3.

Size of V≥3 and D can be bounded by 2t and 3t respectively if V≥3 �= ∅ [15].
We recall from [15] that Jansen’s algorithm makes at most 25t guesses, and its
running time is bounded by 25t · (|V (G)| + |U|)O(1).

4 Hardness Results

4.1 Proof of Theorem 1

We reduce red-blue dominating set (rbds) to TMS. In rbds we are given a
bipartite graph G = (VB ∪VR, E), and it is asked if there is a vertex set D ⊆ VB
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of size at most k such that every vertex in VR is adjacent to at least one vertex
in D. It is known that rbds is W[2]-hard for parameter solution size k (see [9]).

Let I = (G = (VB ∪ VR, E), k) be the input instance of rbds , let VR =
{r1, r2, . . . rn}, and let VB = {b1, b2, . . . bm}. We construct an instance I ′ of TMS
as follows. We construct the graph G′ as follows. Create a vertex set V ′

R =
{r′

1, r
′
2, . . . r

′
n}. For every i ∈ [n], we connect r′

i to all the neighbors of ri in VB,
and call the set of all these introduced edges as E′. Essentially we are creating a
twin vertex for every r ∈ VR. We construct terminal set T = {{ri, r

′
i} | i ∈ [n]}.

The instance I ′ = (G′ = (VB ∪ VR ∪ V ′
R, E ∪ E′), T, k).

Lemma 4 (�1). I is a yes instance of red-blue dominating set if and only
if I ′ is a yes instance of TMS.

4.2 Proof of Theorem 6

ui,1

ui,2

ui,4

ui,5
ui,1

ui,2

ui,4

ui,5

ui,3
ui,3

b

pi
P (ui,5, b)

L− 1

P (ui,1, b)

L− 1

Lp − 1

Lv

Lv

Fig. 2. An example of Hi connected to bridge vertex b, with each path P (ui,j , b) and
P (u′

i,j , b) is of length L and contains L − 1 intermediate vertices.

We reduce multi color independent set (W[1]-hard by solution size k [9],
and a standard problem in parameterized complexity) to α-rtms. Let I = (G, k)
such that V (G) is partitioned into {V1, V2, . . . , Vk}, be an instance of multi
color independent set, and we need to decide if there exists an independent
set S containing exactly one vertex from every Vi, where i ∈ [k]. We may assume
that for every i ∈ [k], |Vi| = n, and n is odd. We begin our construction by first
defining following values.

For 0 � α ≤ 0.5, we set L = � 1
2α · n�; Lv = �2 · α · L + 1 − n�; Lp = �n−1

α �.
The construction of G′ is as follows (Fig. 2). We create a vertex b and call

it the bridge vertex. For every vertex set Vi in G we construct a gadget Hi as
follows.

1 Proofs for claims marked with a � have been omitted.
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– Create a set U ′
i = {u′

i,j | vi,j ∈ Vi} and make a path on these vertices as
(u′

i,1, u
′
i,2, . . . u

′
i,n). Create another set Ui = {ui,j | vi,j ∈ Vi} and create a

path (ui,1, ui,2, . . . ui,n) as well. Connect u′
i,1 to ui,n by creating a path with

Lv vertices and connect one endpoint of this path to u′
i,1 and another to ui,n.

Similarly, connect u′
i,n to ui,1 by creating a path on Lv vertices.

– create a vertex pi, create a path with Lp−1 vertices, and connect one endpoint
of this path to pi and another endpoint with vertex ui,(n+1)/2, We denote
this path from pi to ui,(n+1)/2 by P (pi, ui,(n+1)/2) which include both pi and
ui,(n+1)/2.

For every i ∈ [k], we connect the vertices of Hi to b as follows.

– For every i ∈ [k] and j ∈ [n], connect ui,j to b by creating a path with
L − 1 intermediate vertices, denote this path P (ui,j , b). Thus, d(ui,j , b) = L.
Similarly, connect u′

i,j with vertex b by creating a path with L−1 intermediate
vertices, and denote this path by P (u′

i,j , b). Thus, d(u′
i,j , b) = L.

We now construct the terminal set T as follows.

– From every Hi we put {pi, ui,(n+1)/2} in T . It is a vertex selection constraints.
– Let Ei,j be the set of edges with one endpoint in Vi and another in Vj in G,

for every i, j ∈ [k], such that i < j, construct Ti,j = {{u′
i,i′ , u′

j,j′} | i′, j′ ∈
[n]∧vi,i′vj,j′ ∈ Ei,j}. Addition of these terminal pairs acts as edge verification
contraints.

– T =
⋃

1≤i<j≤k Ti,j .

The instance I ′ = (G′, T , k). We can see that if we remove vertices b and
ui,1 for every i ∈ [k] then G′ becomes acyclic, thus the feedback vertex number
of G′ is k + 1, thus the parameter FVN + solution size remain O(k). We now
move on to show the correctness of our reduction. We start with stating some
observation which will help establishing equivalence.

Observation 4. For every distinct i, j ∈ [k], for every x ∈ U ′
i ∪ Ui and every

y ∈ U ′
j ∪ Uj, the distance d(x, y) = 2L.

Definition 2. For an i ∈ [k], we say a vertex w ∈ V (G′) is Hi-representative
if the following holds.

– w belongs to V (P (pi, ui,(n+1)/2)) (OR) d(ui,(n+1)/2, w) ≤ n−1
2 .

Observation 5. No vertex in V (G′) can be Hi-representative for two or more
distinct i ∈ [k].

Proof. This is because distance between ui,(n+1)/2 and uj,(n+1)/2 for every dis-
tinct i, j ∈ [k] is 2L and L is at least n. 	


Lemma 5 (�). If S is a solution to the instance (G′, T , k), then for every i ∈ [k],
there is a vertex w ∈ S such that w is an Hi-representative.

Definition 3. A solution set S of I ′ is nice if and only if the following holds.
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– |S ∩ Ui| = 1 for every i ∈ [k]; (AND) S =
⋃

i∈[k] S ∩ Ui.

Lemma 6 (�). If there is a solution S for instance (G′, T , k) then there exists
a nice solution S∗ for instance (G′, T , k).

Lemma 7 (�). For every distinct i, j ∈ [k], and for every i′, j′ ∈ [n], the fol-
lowing holds:

– d(u′
i,i′ , ui,i′) + d(ui,i′ , u′

j,j′) � (1 + α) · d(u′
i,i′ , u′

j,j′).
– d(u′

j,j′ , uj,j′) + d(uj,j′ , u′
i,i′) � (1 + α) · d(u′

i,i′ , u′
j,j′).

Lemma 8 (�). For every distinct i, j ∈ [k], and for every distinct i′, i′′ ∈ [n]
and distinct j′, j′′ ∈ [n], the following holds:

– d(u′
i,i′ , ui,i′′) + d(ui,i′′ , u′

j,j′) ≤ (1 + α) · d(u′
i,i′ , u′

j,j′).
– d(u′

j,j′ , uj,j′′) + d(uj,j′′ , u′
i,i′) ≤ (1 + α) · d(u′

i,i′ , u′
j,j′).

Lemma 9 (�). I is a yes instance of multi colored independent set if
and only if I ′ is a yes instance of α-rtms.

The above lemma finishes the proof of Theorem 6.
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Abstract. We present a two-stage algorithm for generating cyclic 2-Gray codes
for q-decreasing words. In the first step, a simple recursive algorithm is used
to generate a cyclic 2-Gray code for q-run constrained words, which are q-
decreasing words that start with a 0. Then, by considering the first block of 1 s
and concatenating cyclic Gray code listings of q-run constrained words of differ-
ent length n, we construct the first known cyclic 2-Gray code for q-decreasing
words for all positive real numbers q.

Keywords: q-decreasing word · Fibonacci word · Qubonacci word · run-con-
strained word · Fibonacci sequence · Fibonacci cube · hypercube · Gray code

1 Introduction

A q-decreasing word is a binary string in which every maximal factor of the form 0a1b

satisfies the condition where a = 0 or qa > b, with q being a positive real number. As
an example, the 21 q-decreasing words of length n = 6 and q = 1 are

000000, 000001, 000010, 000011, 000100, 000110, 001000,
001001, 100000, 100011, 100010, 100100, 100001, 110000,
110001, 110010, 111000, 111001, 111100, 111110, 111111.

(1)

Note that q can be any positive real number, without being restricted to integers. For
example, the 31 q-decreasing words of length n = 5 and q = π are

00000, 00001, 00010, 00011, 00100, 00101, 00110, 00111, 01000, 01001, 01010,
01011, 01100, 01101, 01110, 10000, 10001, 10010, 10011, 10100, 10101, 10110,
10111, 11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111.

The set of q-decreasing words is in bijection with the set of Fibonacci words when q is
an integer, which are binary strings that avoid the occurrence of 1q+1 [2].

The number of q-decreasing words is an interesting topic in combinatorics due to its
close relationship with the famous Fibonacci sequence. For example when q = 1, the
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
R. Uehara et al. (Eds.): WALCOM 2024, LNCS 14549, pp. 91–102, 2024.
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initial six terms of the enumeration of q-decreasing words are 1, 1, 2, 3, 5, 8, 13, which
precisely matches the famous Fibonacci sequence. More interestingly, when q is a pos-
itive integer, the number of q-decreasing words corresponds to multi-step Fibonacci
numbers [10]. For instance when q = 2, the initial six terms of the enumeration of
q-decreasing words are 1, 1, 2, 5, 8, 15, 28, which aligns with the famous tribonacci
number. Similarly when q = 3, the number of q-decreasing words follows the tetranacci
number, and this property holds for all positive integers q. For more information about
multi-step Fibonacci sequences, see [6,7,13]. In general, when q is a positive rational
number, Kirgzov [10] derived a linear recurrence formula that enumerates the number
of q-decreasing words:

Qn =
∑

j∈J

Qn−j + Qn−(c+d),

where Qn denotes the number of q-decreasing words of length n, and J denotes
the set of powers derived from the model polynomial Pq= c

d
(x, x). The enumeration

sequences for q-decreasing words can be accessed on the Online Encyclopedia of Inte-
ger Sequences for various values of q [15].

The study of q-decreasing words and their variations has attracted significant atten-
tion from mathematicians [1–4,10,11]. One noteworthy variant that has attracted con-
siderable interest is run-constrained words. The set of run-constrained words is in
bijection with the subset of q-decreasing words that consists of q-decreasing words
beginning with a 0. These strings have been studied in the context of induced sub-
graphs of hypercubes [3–5]. Moreover, q-decreasing words have been found to have
applications in coding theory, specifically in encoding binary words that avoid con-
secutive 1 s. This is attributed to the fact that q-decreasing words are in a bijective
relationship with Fibonacci words [2]. For more applications of q-decreasing words,
see [5,8,9,12,14,16,17,20].

One of the most important aspects of combinatorial generation is to list the instances
of a combinatorial object so that consecutive instances differ by a specified closeness
condition involving a constant amount of change. Lists of this type are called Gray
codes. This terminology is due to the eponymous binary reflected Gray code (BRGC)
by Frank Gray, which orders the 2n binary strings of length n so that consecutive strings
differ in one bit. For example, when n = 5 the order is

00000, 00001, 00011, 00010, 00110, 00111, 00101, 00100,
01100, 01101, 01111, 01110, 01010, 01011, 01001, 01000,
11000, 11001, 11011, 11010, 11110, 11111, 11101, 11100,
10100, 10101, 10111, 10110, 10010, 10011, 10001, 10000.

(2)

The BRGC listing is a 1-Gray code in which consecutive strings differ by one bit
change. We note that the order is also cyclic because the last and first strings also dif-
fer by the closeness condition, and this property holds for all n. In this paper, we are
focusing on 2-Gray code, where consecutive strings differ by at most two bit changes.

An interesting problem related to q-decreasing words is thus to discover a Gray code
for such strings. There is, however, no 1-Gray code for the set of q-decreasing words for
all values of q. To demonstrate this non-existence result, consider the case where n = 5
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and q = 2
3 . In this scenario, there are a total of twelve q-decreasing words as follows,

and among them, seven of them have an even number of 1 s (even parity), while only
five of them have an odd number of 1 s (odd parity):

– Even parity: 00001, 00100, 00010, 10000, 11001, 11100, 11111;
– Odd parity: 00000, 10010, 10001, 11000, 11110.

It is well known that in order for a 1-Gray code to exist, the parity difference (the
difference between the number of strings with even parity and the number of strings
with odd parity) has to be equal to 0, 1, or −1. Consequently, it follows that a 1-Gray
code cannot exist for the set of q-decreasing words for all positive real numbers q.

The problem of finding a 1-Gray code for q-decreasing words when q is an integer
was initially studied by Eǧecioǧlu and Iršič [3,4]. They conjectured that a 1-Gray code
exists for q-decreasing words when q = 1. Later, Baril, Kirgizov, and Vajnovszki [2]
constructed a 1-Gray code for q-decreasing words when q = 1, thus proving the con-
jecture to be correct. They also proved that the binary reflected Gray code induces or
filters a 3-Gray code for q-decreasing words for all positive real numbers q [2,21]. For
example, filtering the binary reflected Gray code in listing 2 produces the following
3-Gray code for q-decreasing words of length n = 5 and q = 1:

00000, 00001, 00011, 00010,���00110,���00111,���00101, 00100,
���01100,���01101,���01111,���01110,���01010,���01011,���01001,���01000,
11000, 11001,���11011,���11010, 11110, 11111,���11101, 11100,
���10100,���10101,���10111,���10110, 10010,���10011, 10001, 10000.

For more information about Gray codes induced by the binary reflected Gray code,
see [18,19,21]. Baril et. al further conjectured that a 1-Gray code exists for q-decreasing
words when q is a positive integer, however, this conjecture has not yet been proven.

In this paper, we present a two-stage algorithm for generating cyclic 2-Gray codes
for q-decreasing words. This is the first known cyclic 2-Gray code for q-decreasing
words for all positive real numbers q. It is worth noting that since there is no 1-Gray
code available for q-decreasing words for all positive real numbers q (as demonstrated
in the previous example when q = 2

3 ), our Gray code is optimal.
The rest of the paper is outlined as follows. In Sect. 2, we describe a simple recursive

algorithm for generating a cyclic 2-Gray code for q-run constrained words and prove
their Gray code property. Then, in Sect. 3, we present an algorithm that leverages our
approach for generating q-run constrained words to construct a cyclic 2-Gray code for
q-decreasing words for all positive real numbers q.

2 Generating Gray Code for q-Run Constrained Words

In this section, we first describe a simple recursive algorithm for generating a cyclic
2-Gray code for q-run constrained words. A run-constrained word is a binary string
in which every block (also known as run) of 1 s is immediately followed by a strictly
longer block of 0 s. For example, the eight run-constrained words of length n = 6 are

000000, 000100, 001000, 010000, 011000, 100000, 100100, 110000.
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These strings are used to define Fibonacci-run graphs, which were introduced in [3,
4]. Notably, when we reverse each run-constrained word, they correspond to the q-
decreasing words of length n = 6 and q = 1 starting with a 0 as indicated in listing 1,
and this property holds for all positive integers n.

We generalize the concept of run-constrained word to different values of q by intro-
ducing the notion of q-run constrained word. A q-run constrained word is a binary
string in which every maximal factor of the form 0a1b satisfies the condition qa > b,
where q is a positive real number. For example, the eight q-run constrained words of
length n = 6 and q = 1 are

000000, 000001, 000010, 000011, 000100, 000110, 001000, 001001.

The listing contains exactly the reversal of run-constrained words for length n = 6 and
q = 1. The set is also clearly a subset of q-decreasing words of length n = 6 and q = 1.

All strings considered in this paper are binary. Our algorithms use a run-length rep-
resentation for binary strings using a series of blocks which are maximal substrings of
the form 0∗1∗. Each block Bi can be represented by two integers (si, ti) corresponding
to the number of 0 s and 1 s respectively. For example, the string α = 000110100011001
can be represented by B1B2B3B4 = (3, 2)(1, 1)(3, 2)(2, 1). We first prove the follow-
ing lemmas.

Lemma 1. A string B1B2 · · · Bk is a q-run constrained word if and only if B1 and
B2B3 · · · Bk are both q-run constrained words.

Proof. The proofs for both directions are straightforward from the definition. ��
Lemma 2. If α = b1b2 · · · bn is a q-run constrained word of length n, then β =
0b1b2 · · · bn is a q-run constrained word of length n + 1.

Proof. Let α = b1b2 · · · bn = B1B2 · · · Bk and B1 = (s1, t1). Since α is a q-run
constrained word, clearly each blockBi is of the form 0a1b which satisfies the condition
qa > b. Then we have β = B′

1B2 · · · Bk with B′
1 = (s1 + 1, t1), and it is clear that

each block in β of the form 0a1b also satisfies the condition qa > b (qs1 > t1 implies
q(s1 + 1) > t1). ��
Lemma 3. If Bi = (si, ti) is a block of length � in a q-run constrained word, then
� �

q+1� < si ≤ � and 0 ≤ ti < � − � �
q+1�.

Proof. Assume by contrapositive that Bi = (si, ti) is a block such that si ≤ � �
q+1�.

Then, ti = � − si ≥ � q�
q+1�. Thus, it holds that qsi ≯ ti, and thus Bi cannot be a block

of a q-run constrained word. ��
Lemma 4. The shortest possible length � of the first block B1 = (s1, t1) in a q-
constrained word is � = � 1

q � + 2 when n ≥ � 1
q � + 2.

Proof. For the length � to be minimal, the block must end with a 1; otherwise, its length
would be equal to the total length of the word n with � = n ≥ � 1

q � + 2. Moreover,
the number of 1 s of the shortest first block should be minimized to have the shortest
possible first block, and thus t1 = 1. Since qs1 > t1, the smallest possible value of s1
that satisfies qs1 > 1 is s1 = � 1

q � + 1. Therefore, � = s1 + t1 = � 1
q � + 2. ��
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The main idea of our recursive algorithm is to leverage Lemma 1 by generating a
list of all possible first blocks B1 for q-run constrained words. If the length of B1 is less
than n (|B1| < n), we proceed to fill the remaining part of the string with all possible
q-run constrained words of length n − |B1|. We begin by defining G�

q as a listing of
q-run constrained words of length �, each consisting of only a single block. The listing
G�

q starts with the string 0�−11, and each subsequent string is obtained by progressively

changing the last 0 of the string to a 1 until it reaches the string 0� �
q+1 �+11�−� �

q+1 �−1

(Lemma 3). For example,

– G9
1 : 000000001, 000000011, 000000111, 000001111;

– G7
2 : 0000001, 0000011, 0000111, 0001111.

We also use the notation (G�
q)

−1 and G�

q to refer to the listing obtained by reversing G�
q ,

and we use both notations interchangeably. For instance,

– G9

1 = (G9
1)

−1: 000001111, 000000111, 000000011, 000000001;
– G7

2 = (G7
2)

−1: 0001111, 0000111, 0000011, 0000001.

Similarly, (G�
q)

−k represents the listing obtained by reversing G�
q k times. Thus, when k

is even (G�
q)

−k = G�
q , and when k is odd (G�

q)
−k = (G�

q)
−1.

Let B1 · L denote the listing L with the block B1 prepended to the beginning of
each string in L. Furthermore, we use the notation

∏
i∈{1,2,...,k} Li to represent the list-

ing resulting from concatenating the listings L1,L2, . . . ,Lk with L1 appearing before
L2, and L2 appearing before L3, and so on. For example,

∏
L∈{G9

1 ,G7
2} L is the listing

formed by concatenating the listings G9
1 and G7

2 as follows:

000000001, 000000011, 000000111, 000001111, 0000001, 0000011, 0000111, 0001111.

We proceed to define Rn
q as our Gray code listing of q-run constrained words of

length n. Our recursive definition maintains a variable p which stores the complement
of the last bit of the string generated by our algorithm. For instance, if the string just
generated by our algorithm is 0000111, then p = 0. The listing Rn

q can be recursively
defined as follows:

Rn
q =

∏

i∈{0,1,...,n−� 1
q �−2}

(
∏

B1∈(Gn−i
q )−i

B1 · (Ri
q)

−p

)
, 0n.

As an example, suppose q = 1 and n = 8, then we have

–
∏

B1∈G8
1

B1 · (R0
1)

−p = G8
1 = 00000001, 00000011, 00000111;

–
∏

B1∈G7
1

B1 · (R1
1)

−p = 0000111 · (R1
1)

−0, 0000011 · (R1
1)

−1, 0000001 · (R1
1)

−1

= 00001110, 00000110, 00000010;
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Algorithm 1. Recursive algorithm to generate Rn
q for q-run constrained words.

1: function QRUN(n, q)
2: R ← []
3: p ← 1
4: for i from 0 to n − � 1

q
� − 2 do

5: if i is even then
6: for j from 1 to n − i −

⌊
n−i
q+1

⌋
− 1 do

7: R ← {R, 0n−i−j1j ·QRUN(i, q)−p}
8: b1b2 · · · bn ← last string in R
9: p ← 1 − bn

10: else
11: for j from n − i −

⌊
n−i
q+1

⌋
− 1 to 1 do

12: R ← {R, 0n−i−j1j ·QRUN(i, q)−p}
13: b1b2 · · · bn ← last string in R
14: p ← 1 − bn

15: R ← {R, 0n}
16: return R

–
∏

B1∈G6
1

B1 · (R2
1)

−p = 000001 · (R2
1)

−1, 000011 · (R2
1)

−1

= 00000100, 00001100;
–

∏

B1∈G5
1

B1 · (R3
1)

−p = 00011 · (R3
1)

−1, 00001 · (R3
1)

−0

= 00011000, 00011001, 00001001, 00001000;
–

∏

B1∈G4
1

B1 · (R4
1)

−p = 0001 · (R4
1)

−1 = 00010000, 00010010, 00010001;

–
∏

B1∈G3
1

B1 · (R5
1)

−p = 001 · (R5
1)

−0

= 00100001, 00100011, 00100010, 00100100, 00100000.

As such, the recursive listing for q-run constrained words of q = 1 and n = 8, that is
R8

1, is as follows:

00000001, 00000011, 00000111, 00001110, 00000110, 00000010, 00000100,
00001100, 00011000, 00011001, 00001001, 00001000, 00010000, 00010010,
00010001, 00100001, 00100011, 00100010, 00100100, 00100000, 00000000.

The listing Rn
q can be generated recursively with the base cases Rt

q = 0t for all integers
0 ≤ t < � 1

q � + 2 (proof of Lemma 4), and using the recursive definition of Rn
q .

Pseudocode of the recursive algorithm to generate Rn
q is given in Algorithm 1.

Corollary 1. The listing Rn
q starts with the string 0n−11 and ends with the string 0n

when n ≥ � 1
q � + 2.
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Proof. If n ≥ � 1
q � + 2, then 0n−11 is a q-run constrained word by Lemma 4. The first

string in Gn
q is thus 0n−11, and the last string in Rn

q is 0n by definition. ��
Corollary 2. The listing Rn

q contains all q-run constrained words of length n.

Proof. This is a direct application of Lemma 1. ��
Lemma 5. Each consecutive strings in Rn

q differ from each other by at most two bits.

Proof. The proof is by induction on n. In the base case when n < � 1
q � + 2, Rn

q =
{0n} where consecutive strings (there is only one string) differ by at most two bits.
Inductively, assuming consecutive strings in Rn

q differ by at most two bits for n ∈
{1, 2, . . . , k − 1}, we consider the case when n = k and two consecutive strings α and
β in Rk

q , where W.L.O.G. α comes before β. There are four cases:

– α and β have the same first block: α and β are consecutive strings in B1 · (Rm
q )−p

for some 1 ≤ m < k with their n − |B1| suffixes corresponding to two consecutive
strings in Rm

q . Thus, α and β differ by at most two bits by induction;
– α and β have a different first block but their first blocks have the same length: α and

β are consecutive strings in
∏

B1∈(Gn−m
q )−m B1 · (Rm

q )−p with a different B1 and

thus by the definition of Gn−m
q , their first blocks differ by one bit. Furthermore by

the definition of p, the strings α and β share the same n−|B1| suffix and thus α and
β differ by one bit;

– α and β have their first blocks of different lengths and β 	= 0n: Let j be the length of
the first block of α, and α = a1a2 · · · an and β = b1b2 · · · bn. Thus aj+1aj+2 · · · an

is a q-run constrained word of length n − j by Lemma 1. Observe that α and β
are consecutive strings that come from different subsequences

∏
B1∈(Gn−m

q )−m B1 ·
(Rm

q )−p. By the definition of Gn−m
q , the length j prefixes of α and β differ by at

most two bits, and bj = 0. Furthermore by Lemma 2, since aj+1aj+2 · · · an is a q-
run constrained word, 0aj+1aj+2 · · · an is also a q-run constrained word. Therefore
based on the definition of p, we have β = b1b2 · · · bj−10aj+1aj+2 · · · an which
implies α and β differ by at most two bits;

– β = 0n: The first block B1 of α is 0� 1
q �+11 by Lemma 4. The length n − � 1

q � − 2

suffix of α is either 0n−� 1
q �−2 or 0n−� 1

q �−31 by Corollary 1. In either case α differs
with β = 0n by at most two bits.

Therefore, by induction, consecutive strings in Rn
q differ from each other by at most

two bits. ��
Together, Corollary 1, Corollary 2 and Lemma 5 prove the following theorem.

Theorem 1. The algorithm QRUN generates a list of all q-run constrained words of
length n, where q can be any positive real number, in cyclic 2-Gray code order.
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3 Generating Gray Code for q-Decreasing Words

In this section, we leverage our results on q-run constrained words to generate a cyclic
2-Gray code for q-decreasing words. Observe that the set of q-decreasing words can
be constructed by taking the union of all strings in the format 1rγ, where γ is a q-run
constrained word of length n − r. For instance, consider the set of q-decreasing words
for n = 6 and q = 1 as shown in listing 1. This set can be partitioned into subsets, with
each subset containing strings in the format 1rγ as follows:

– r = 0: {000000, 000001, 000010, 000011, 000100, 000110, 001000, 001001};
– r = 1: {100000, 100011, 100010, 100100, 100001};
– r = 2: {110000, 110001, 110010};
– r = 3: {111001, 111000};
– r = 4: {111100};
– r = 5: {111110};
– r = 6: {111111}.
Removing the prefix 1r from the strings of each subset results in a set that contains all
possible q-decreasing words of length n − r.

The main idea of our algorithm is thus to utilize our recursive algorithm QRUN

(Algorithm 1) to generate a cyclic 2-Gray code for q-run constrained words of all pos-
sible length n − r, with the addition of prepending the corresponding prefix 1r to each
q-run constrained word. Our Gray code listing Qn

q for q-decreasing words consists of
blocks of subsequences in the form 1r · (Rn−r

q )−p, where p similarly stores the com-
plement of the last bit of the string just generated by our algorithm, and we initialize
p = 1.

The Gray code listingQn
q is composed of two parts. The first part begins with blocks

of 1r · (Rn−r
q )−p with r = n, representing a listing consisting solely of the string 1n.

We then decrement r by two until it reaches r = 0 when n is even or r = 1 when n
is odd. For the second part of the listing Qn

q , we follow a similar process but start with
r = n−1, which represents a listing containing the string 1n−10. Again, we decrement
the value of r by two until it reaches r = 1 when n is even or r = 0 when n is odd.
Finally, we reverse the entire second part of the listing. The formal definition of Qn

q is
given as follows:

Qn
q =

{∏
r∈{n,n−2,...,0} 1

r · (Rn−r
q )−p,

∏
r∈{n−1,n−3,...,1} 1

r · (Rn−r
q )−p if n is even;∏

r∈{n,n−2,...,1} 1
r · (Rn−r

q )−p,
∏

r∈{n−1,n−3,...,0} 1
r · (Rn−r

q )−p if n is odd.

As an example, consider the case where n = 6 and q = 1. Then, we have

– 16 · (R0
1)

−p = 111111;
– 14 · (R2

1)
−p = 14 · (R2

1)
−0 = 111100;

– 12 · (R4
1)

−p = 12 · (R4
1)

−1 = 110000, 110010, 110001;
– 10 · (R6

1)
−p = (R6

1)
−0

= 000001, 000011, 000110, 000010, 000100, 001000, 001001, 000000;

– 15 · (R1
1)

−p = 15 · (R1
1)

−1 = 111110.
– 13 · (R3

1)
−p = 13 · (R3

1)
−1 = 111000, 111001;
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Algorithm 2. A simple algorithm to generate Qn
q for q-decreasing words.

1: function QDEC(n, q)
2: Q ← []
3: p ← 1
4: r ← n
5: while r ≥ 0 do
6: Q ← {Q, 1r·QRUN(n − r, q)−p}
7: b1b2 · · · bn ← last string in Q
8: p ← 1 − bn
9: r ← r − 2

10: Q′ ← []
11: p ← 1
12: r ← n − 1
13: while r ≥ 0 do
14: Q′ ← {Q′, 1r·QRUN(n − r, q)−p}
15: b1b2 · · · bn ← last string in Q′

16: p ← 1 − bn
17: r ← r − 2

18: Q ← {Q,Q′}
19: return Q

– 11 · (R5
1)

−p = 11 · (R5
1)

−0 = 100001, 100011, 100010, 100100, 100000;

As such, the Gray code listing for q-decreasing words for q = 1 and n = 6, that is Q6
1,

is as follows:

111111, 111100, 110000, 110010, 110001, 000001, 000011,
000110, 000010, 000100, 001000, 001001, 000000, 100000,
100100, 100010, 100011, 100001, 111001, 111000, 111110.

Similarly when n = 5 and q = 1, we have

– 15 · (R0
1)

−p = 11111;
– 13 · (R2

1)
−p = 13 · (R2

1)
−0 = 11100;

– 11 · (R4
1)

−p = 11 · (R4
1)

−1 = 10000, 10010, 10001;
– 14 · (R1

1)
−p = 14 · (R1

1)
−0 = 11110;

– 12 · (R3
1)

−p = 12 · (R3
1)

−1 = 11000, 11001;
– 10 · (R5

1)
−p = (R5

1)
−0 = 00001, 00011, 00010, 00100, 00000.

Similarly, the Gray code listing for q-decreasing words for q = 1 and n = 5, that is Q5
1,

is as follows:

11111, 11100, 10000, 10010, 10001, 00000, 00100,
00010, 00011, 00001, 11001, 11000, 11110.

Observe that consecutive strings in both listings Q6
1 and Q5

1 differ by at most two bits.
This property holds for all positive integers n and all positive real numbers q. We also
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note that the Gray code order is cyclic since the last and first strings of the listings also
differ by only one bit.

The listing Qn
q can be generated by maintaining the first block and utilizing the

function QRUN for Rm
q . Pseudocode of the algorithm to generate Qn

q is given in Algo-
rithm 2. A complete Python implementation of the algorithm is given in the Appendix.

Theorem 2. The algorithm QDEC generates a list of all q-decreasing words of length
n, where q can be any positive real number, in cyclic 2-Gray code order.

Proof. Clearly, the algorithm QDEC generates all possible q-decreasing words. We now
demonstrate that consecutive strings in Qn

q differ by at most two bits.
Let α = 1xγ and β = 1yρ be consecutive strings in Qn

q and W.L.O.G. we assume
x ≥ y. Since consecutive strings in Rn

q differ by at most two bits (Theorem 1), it is
evident that consecutive strings in Qn

q with x = y also differ by at most two bits.
Now if x 	= y, we consider two cases. Recall that Qn

q consists of two parts. If
x− y ≥ 2, then by the definition of Qn

q , we must have x− y = 2 and α and β originate
from the same part of Qn

q . Consequently, based on the definition of p, the strings α and
β share the same n−x suffix, resulting in a difference of two bits between α and β. On
the other hand, if x − y < 2, then α and β come from different parts of Qn

q , implying
that x = 1 and y = 0. Furthermore, the suffixes γ and ρ correspond to either the first or
last string generated by the function QRUN. Thus, we have γ ∈ {0n−x, 0n−x−11} and
ρ ∈ {0n−y, 0n−y−11}. In either case, α and β differ by at most two bits.

Finally, the first string of Qn
q is 1n, and the last string of Qn

q is 1n−10, differing by
one bit. Hence, Qn

q constitutes a cyclic 2-Gray code for q-decreasing words. ��

4 Final Remarks

Efficient algorithms that utilize dynamic programming to generate the same 2-Gray
codes for q-decreasing words and q-run constrained words in constant amortized time
per string have been developed, and the details will be presented in the full version of
the paper.
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Appendix: Python code to generate q-decreasing words and q-run
constrained words in cyclic 2-Gray code order

1 import math
2

3 def qrun(n, q):
4 R = []
5 p = 1
6 for i in range(0, n-(math.floor(1/q)+2)+1):
7 if (i+1)%2: j_range = (1, n-i-(math.floor((n - i)/(q + 1))+1)+1, 1)
8 else: j_range = (n-i-(math.floor((n-i)/(q+1))+1), 0, -1)
9

10 for j in range(*j_range):
11 if p%2:
12 R += ["0"*(n-i-j) + "1"*j + s for s in reversed(qrun(i, q))]
13 else:
14 R += ["0"*(n-i-j) + "1"*j + s for s in qrun(i, q)]
15 p = 1 - int(R[-1][-1])
16

17 R.append("0"*n)
18 return R
19

20 def qdecreasing(n, q):
21 Q = []
22 p = 1
23 for r in range(n, -1, -2):
24 if p%2: Q += ["1"*r + s for s in reversed(qrun(n-r, q))]
25 else: Q += ["1"*r + s for s in qrun(n - r, q)]
26 p = 1 - int(Q[-1][-1])
27

28 _Q = []
29 p = 1
30 for r in range(n-1, -1, -2):
31 if p%2: _Q += ["1"*r + s for s in reversed(qrun(n-r, q))]
32 else: _Q += ["1"*r + s for s in qrun(n - r, q)]
33 p = 1 - int(_Q[-1][-1])
34

35 return Q + list(reversed(_Q))
36

37 print(’ =========================================’)
38 print(’ 1. q-decreasing words’)
39 print(’ 2. q-run constrained words\n’)
40 print(’ =========================================’)
41 print(’ Enter selection #: ’)
42 this_type = int(input())
43 print(’Enter n:’)
44 this_n = int(input())
45 print(’Enter q:’)
46 this_p = float(input())
47

48 if this_type == 1: qr = qdecreasing(this_n, this_p)
49 else: qr = qrun(this_n, this_p)
50

51 for curr in qr: print(curr)
52 print(’total: {}’.format(len(qr)))
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5. Eǧecioǧlu, O., Klavžar, S., Mollard, M.: Fibonacci Cubes With Applications And Variations.
World Scientific Publishing Company (2023)

6. Feinberg, M.: Fibonacci-Tribonacci. Fibonacci Q. 1(3), 71–74 (1963)
7. Flores, I.: Direct calculation of k-generalized Fibonacci numbers. Fibonacci Q. 5(3), 259–

266 (1967)
8. Goulden, I., Jackson, D.: Combinatorial Enumeration. A Wiley-Interscience Publication.

John Wiley & Sons Inc., New York (1983)
9. Hsu, W.-J.: Fibonacci cubes - a new interconnection topology. IEEE Trans. Parallel Distrib.

Syst. 4(1), 3–12 (1993)
10. Kirgizov, S.: q-bonacci words and numbers. Fibonacci Q. 60(5), 187–195 (2022)
11. Kirgizov, S., Ramı́rez, J.: Polyominoes and graphs built from Fibonacci words. Fibonacci Q.

60(5), 196–211 (2022)
12. Knuth, D.: The Art of Computer Programming, vol. 4A. Addison-Wesley Professional, Com-

binatorial Algorithms (2011)
13. Miles, E.: Generalized Fibonacci numbers and associated matrices. Amer. Math. Monthly

67(8), 745–752 (1960)
14. Mütze, T.: Combinatorial Gray codes - an updated survey. arXiv Preprint, Feb. 2022.

arXiv: arxiv.org/abs/2202.01280
15. OEIS Foundation Inc., The on-line encyclopedia of integer sequences, published electroni-

cally at oeis.org (2023)
16. Ruskey, F.: Combinatorial Generation. Book under preparation (2003)
17. Savage, C.: A survey of combinatorial Gray codes. SIAM Rev. 4, 605–629 (1997)
18. Sawada, J., Williams, A., Wong, D.: Inside the binary reflected Gray code: Flip-swap lan-

guages in 2-Gray code order. In: Lecroq, T., Puzynina, S. (eds.) Combinatorics on Words,
pp. 172–184, Cham (2021)

19. Sawada, J., Williams, A., Wong, D.: Flip-swap languages in binary reflected Gray code order.
Theor. Comput. Sci. 933, 138–148 (2022)

20. Stanton, D., White, D.: Constructive Combinatorics. Springer Science & Business Media
(2012)

21. Vajnovszki, V.: Gray code order for Lyndon words. Discret. Math. Theor. Comput. Sci., 9(2)
(2007)

http://arxiv.org/2202.01280


On the Hardness of Gray Code Problems
for Combinatorial Objects

Arturo Merino1, Namrata2(B), and Aaron Williams3

1 University of Saarland and Max Planck Institute for Informatics, Saarbrücken, Germany
merino@cs.uni-saarland.de

2 Department of Computer Science, University of Warwick, Coventry, England
namrata@warwick.ac.uk

3 Department of Computer Science, Williams College, Williamstown, USA
aaron.williams@williams.edu

Abstract. Can a list of binary strings be ordered so that consecutive strings
differ in a single bit? Can a list of permutations be ordered so that consecu-
tive permutations differ by a swap? Can a list of non-crossing set partitions be
ordered so that consecutive partitions differ by refinement? These are examples
of Gray coding problems: Can a list of combinatorial objects (of a particular
type and size) be ordered so that consecutive objects differ by a flip (of a par-
ticular type)? For example, 000, 001, 010, 100 is a no instance of the first ques-
tion, while 1234, 1324, 1243 is a yes instance of the second question due to the
order 1243, 1234, 1324. We prove that a variety of Gray coding problems are NP-
complete using a new tool we call a Gray code reduction.

1 Introduction

In a 1947 patent application, Bell Labs engineer Frank Gray devised an order of the 2n

binary strings of length n in which consecutive strings differ by flipping a single bit
(i.e., they have Hamming distance one) [10]. He referred to the order as reflected binary
code due to its recursive structure. Although the order had previously been observed by
others, including another Bell Labs engineer George R. Stibitz [35], the order became
known as the binary reflected Gray code (BRGC), or simply, the Gray code.

While Bell Labs was able to solve their ordering problem several times, similar pur-
suits are often quite challenging. For example, the well-studied middle levels conjecture
[2] asked if the same type of ordering exists for the binary strings of length 2k + 1 with
either k or k + 1 copies of 1. Knuth gave this conjecture a difficulty rating of 49/50 [16]
before it was settled in the affirmative by Mütze [22], with subsequent work simplifying
[24], specializing [18], and generalizing [11,20] the result.

Centuries earlier, bell-ringers developed an order of the n! permutations of [n] =
{1, 2, . . . , n} (viewed as strings) where consecutive permutations differ by a swap (or
adjacent-transposition) meaning that two neighboring symbols are exchanged [6].
Plain changes was rediscovered independently by Johnson [14], Trotter [37], and Stein-
haus [33] in the 1960s for its use in the efficient generation of permutations by computer.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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In general, when presented with a combinatorial object and a flip operation, one may
ask for an order in which successive objects differ by a flip. Suitable orders are some-
times referred to as minimal change orders or combinatorial Gray codes. Academic
surveys have been written by Savage [29] and more recently Mütze [23], with Ruskey
[27] and Knuth [16] devoting extensive textbook coverage to the subject. Despite the
long history of the subject, there are still natural Gray code questions that haven’t been
answered or even posed. For example, in Sect. 4 we’ll consider such a question involv-
ing non-crossing set partitions.

1.1 Gray Codes and Computational Complexity

When Gray codes are mixed with computational complexity the focus is typically on
generation problems: How efficiently can a particular order can be generated? For
example, Ehrlich’s well-known paper [9] provides loopless algorithms for the binary
reflected Gray code and plain changes using the shared object model. In other words,
one instance of the object is shared between the generation algorithm and the appli-
cation, and it is modified in worst-case O(1)-time to create the next instance. More
recent work has focused on limiting generation algorithms to constant additional mem-
ory [17,34].

We instead show that there are computationally hard existence problems that under-
lie the problems solved by Bell Labs engineers, bell-ringers, and many others through-
out history. More specifically, we consider existence problems like the following:

Q1 Can a list of binary strings be ordered so that consecutive strings differ by a bitflip?
Q2 Can a list of permutations of be ordered so that consecutive strings differ by a swap?

For example, 000, 001, 010, 100 is a no instance of Q1, while 1234, 1324, 1243 is a yes
instance of Q2 due to the order 1243, 1234, 1324. Note that in these decision problems
the type of object and flip operation is fixed, and the input is the list of objects under
consideration. To be clear, each object in the list is provided as part of the input, so the
size of the input increases along with the number of objects in the list1.

We refer to these existence problems as Gray coding problems, with the connotation
that we are trying to do something to the list of objects. We consider classic combina-
torial objects including binary strings, permutations, combinations, (non-crossing) set
partitions, and graphs. In each case, we identify at least one flip operation for which the
Gray coding problem is NP-complete (including Q1 and Q2).

1.2 Outline

In Sects. 2–3 we establish that two specific Gray coding problems are NP-complete.
Then Sect. 4 introduces our notion of a Gray code reduction. Sections 5–7 use these
reductions to obtain additional hardness results for a variety of combinatorial objects.
Final remarks are contained in Sect. 8.

1 Conceptually, the input could be described as a subset of the objects. However, subsets of an
n-set are often encoded as n-bit incidence vectors, and we want to avoid this misinterpretation.
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2 A First NP-Complete Problem

In this section, we discuss a first Gray coding problem that is NP-complete.

2.1 2-Tuple Gray Codes

In the 2-tuple Gray coding problem, we are given some integer 2-tuples, and we want
to decide if we can order the 2-tuples such that consecutive 2-tuples differ only in ±1 in
one of the coordinates. More formally, we use Pm to denote the permutations of length
m and have the following problem.

2TupleGC
Input: A list L of m integer 2-tuples (a1, b1), . . . , (am, bm) ∈ N × N.
Question: Is there a ±1 Gray code for L? In other words, is there a permutation

π ∈ Pm such that |aπ(i) −aπ(i+1)|+ |bπ(i) −bπ(i+1)| = 1 for every i ∈ [m−1]?

For technical reasons, we also consider a version of 2TupleGC where the integers
have no gaps between them. We say that a list of integer 2-tuples (a1, b1), . . . , (am, bm)
is continuous if the set of values that ai and bi take for i ∈ [m] are consecutive integers
starting from 1; i.e., {ai | i ∈ [m]} = [maxi∈[m] ai] and {bi | i ∈ [m]} = [maxi∈I bi].

2TupleGC’
Input: A continuous list L of m integer 2-tuples (a1, b1), . . . , (am, bm) ∈ N × N.
Question: Is 2TupleGC(L) true?

2.2 Grid Graph Hamiltonicity

Hamilton Path problems have been central to evolution of computational complexity,
dating back to Karp’s initial list of 21 NP-complete problems [15].

A grid graph is a graph, where the vertex set is given by some integer 2-tuples
L = {(a1, b1), . . . , (am, bm)} and there are edges between all pairs of 2-tuples that differ
by 1 on a single coordinate. Since the grid graph is completely defined by the integer
2-tuples, we denote by grid(L) the unique grid graph that has L as vertices.

Of particular relevance to us, is the powerful sharpening of this result by Itai,
Papadimitriou, and Szwarcfiter which shows hardness for Hamiltonian paths problems
on grid graphs [13]. More formally, the following problem is hard.

GridHamPath
Input: A list L of m integer 2-tuples (a1, b1), . . . , (am, bm) ∈ N × N.
Question: Is there a Hamilton path in grid(L)?

Theorem 1 ([13]). GridHamPath is NP-complete.

2.3 Hardness Results

The problem GridHamPath can be easily translated into an equivalent 2TupleGC prob-
lem. In fact, they are essentially the same problem.
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Corollary 1. 2TupleGC is NP-complete.

Proof. We note that both problems have the same input, and L = (a1, b1), . . . , (am, bm)
is a Hamilton path of grid(L) if and only if L is a ±1 Gray code. ��

Furthermore, 2TupleGC is hard even when we restrict the input to be continuous.
Intuitively, non-continuous inputs give rise to disconnected grid graphs or can be trans-
lated to a continuous instance. We have the following theorem.

Theorem 2. 2TupleGC’ is NP-complete.

Proof. It is clear that the problem is in NP, as π ∈ Pm is a polynomially checkable
certificate.

We reduce from 2TupleGC. Let L = (a1, b1), . . . , (am, bm) ∈ N×N be an instance of
2TupleGC. We only need to deal with the case of L being non-continuous, as otherwise
we simply map L to itself. Let A = {ai | i ∈ I} and B = {bi | i ∈ I}. If L is non-
continuous, then either (1) there exists a partition of [m] into I and J, and α ∈ N such
that ai < α < a j for every i ∈ I and j ∈ J, (2) there exists a partition of [m] into I and J,
and α ∈ N such that bi < α < b j for every i ∈ I and j ∈ J, (3) A and B are the discrete
intervals A = {min A, . . . , ,max A} and B = {min B, . . . ,max B}. Furthermore, we can
decide if we are in case 1, 2 or 3 in time O(m logm) by sorting A and B.

If (1) or (2) holds, then for every i ∈ I and j ∈ J we have that |ai − a j| +
|bi − b j| ≥ 2, which implies that L is a no-instance. If (3) holds, we map L to
L′ := (a′1, b

′
1), . . . , (a′m, b′m) by shifting the instance so that the minimum among the

first and second coordinates is one; i.e.,

(a′1, b
′
1), . . . , (a′m, b

′
m) = (1+a1−min A, 1+b1−min B), . . . , (1+am−min A, 1+bm−min B).

Note that the encoding size of L′ is at most the encoding size of L and that the mapping
can be computed in polynomial time. Furthermore, for every i, j ∈ [m] we have that

|a′i − a′j | + |b′i − b′j | = |1 + ai −min A − (1 + a j −min A)| + |1 + bi −min B − (1 + b j −min B)|
= |ai − a j | + |bi − b j |,

so L is a yes-instance if and only if L′ is a yes-instance. This concludes the proof. ��

2.4 Application: Swap Gray Codes for Permutations

Here we show that 2TupleGC’ can be used as a source problem for establishing the
hardness of other Gray coding problems. Consider the following problem.

PermSwapGC
Input: A list of m permutations of length n, τ1, . . . , τm ∈ Pn.
Question: Is there a permutation π ∈ Pm such that τπ(i) and τπ(i+1) differ in an

adjacent transposition for every i ∈ [m − 1]?

Theorem 3. PermSwapGC is NP-complete.
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Proof. It is clear that the problem is in NP. To see hardness, we reduce from 2TupleGC’;
see Fig. 1.

Let L = (a1, b1), . . . , (am, bm) ∈ N×N be a list of continuous 2-tuples. Let a = max
i∈[m]

ai

and b = max
i∈[m]

bi. Given a 2-tuple (x, y) ∈ [a]× [b], we define a permutation τ := φ(x, y) ∈
Pa+b+2 as the unique permutation of length a + b + 2 such that τ−1(a + b + 1) = x,
τ−1(a + b + 2) = a + y, and after the removing symbols (a + b + 1) and (a + b + 2) from
τ, we get the identity permutation 1 · · · (a + b).

We map the instance, L to L′ = φ(a1, b1), . . . , (am, bm). Note that every permutation
has encoding size of (a + b + 2) log(a + b + 2) ≤ (2m + 2) log(2m + 2) and that φ can be
implemented in polynomial time.

Note that the permutations produced can only differ on swaps involving either the
symbol (a+b+1) or the symbol (a+b+2). Furthermore, for two permutations produced
by φ, say τ, ρ ∈ φ([a]× [b]), they differ if and only if the positions of symbol (a+ b+ 1)
are adjacent or the positions of the symbol (a + b + 2) are adjacent, but not both; i.e.,

|τ−1(a + b + 1) − ρ−1(a + b + 1)| + |τ−1(a + b + 2) − ρ−1(a + b + 2)| = 1. (1)

Finally, if τ = φ(x, y) and ρ = φ(z,w), the left side of (1) is |x−z|+ |y−w|. Consequently,
L is a yes-instance if and only if L′ is a yes-instance, and the theorem follows. ��

We will see an alternative proof of Theorem 3 in later subsections.

Fig. 1. The reduction used in Theorem 3, where L is an instance of 2TupleGC’ and L′ has the
corresponding permutations in (a), with the resulting grid graph in (b).

3 A Second Source for NP-Completeness

While 2TupleGC’ is a useful source problem, we find it convenient to introduce another
NP-complete Gray coding problem for subsequent reductions. Recall that the binary
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reflected Gray code lists all 2n bitstrings so that consecutive strings differ in one bit.
Thus, it is natural to ask which bitstrings have bitflip Gray codes (i.e., Q1 from Sect. 1).
We’ll show that this BitstringGC problem is hard by a reduction from 2TupleGC’.

BitstringGC
Input: A list of m bitstrings of length n, x1, . . . , xm ∈ {0, 1}n.
Question: Is there a permutation π ∈ Pm such that xπ(i) and xπ(i+1) differ in a bitflip

for every i ∈ [m − 1]?

Theorem 4. BitstringGC is NP-complete.

Proof. It is clear that BitstringGC is in NP, as the permutation π ∈ Pm is a polynomially
checkable certificate. Thus, it only remains to prove NP-hardness.

We reduce from 2TupleGC’. Let L = (a1, b1), . . . , (am, bm) ∈ N × N be a list of
continuous 2-tuples. Let a = max

i∈[k]
and b = max

i∈[k]
bi. For each tuple (ai, bi) we define the

bitstring xi ∈ {0, 1}a+b as xi := 0ai1a−ai0bi1b−bi . Since L is continuous, we have a + b ≤
2m, and consequently, the mapping of the 2TupleGC’ instance L to the BitstringGC
instance L′ := x1, . . . , xm runs in time polynomial in the encoding size of L.

We now show that I is a yes-instance for 2TupleGC’ if and only if I′ is a yes-
instance for BitstringGC. Note that for i, j ∈ [k] the bitstrings xi = 0ai1a−ai0bi1b−bi and
x j = 0a j1a−a j0b j1b−b j differ in a single bitflip if and only if |ai−a j|+ |bi−b j| = 1. Hence,
for every permutation π ∈ Pm and every i ∈ [m− 1] it holds that xπ(i) and xπ(i+1) differ in
a single bitflip if and only if |ai − a j| + |bi − b j| = 1. This concludes the proof. ��

Note that the mapping used in Theorems 4 and 3 is not polynomial time without
continuity. This can be easily seen, in the non-continuous input 2-tuple (n, n) which
needs O(log n) bits to be represented, but it is mapped to the bitstring 02n that needs
O(n) bits.

A similar reduction idea has been also used to show that solving the Rubik’s cube
optimally is hard [5].

4 Polynomial-Time Gray Code Reductions via Hypercubes

There is a natural graph associated with every Gray code: represent each object with a
vertex, and join two vertices by an edge if their objects differ by a flip. These graphs are
known as flip graphs, and a Gray code provides a Hamilton path. For example, the flip
graph for bitstrings of length n and bitflips is the n-dimensional hypercube or n-cube.

Let Y be a type of combinatorial object, and Ym be those objects of size m. In addi-
tion, let F : Y → Y be a type of flip operation acting on objects of type Y without
changing their size. In particular, let Fm : Ym → Ym be the flip operation applied to the
objects of size m. To prove that the Gray coding problem on Y and F is hard, we will
use a new type of reduction defined below.

Definition 1. A polynomial-time Gray code reduction via hypercubes to Y and F is a
poly-time computable function f : Bn → Ym that maps bitstrings of length n to an
object of type Y and size m, such that two binary string b ∈ Bn and b′ ∈ Bn differ in a
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single bit if and only if the corresponding objects f (b) ∈ Ym and f (b′) ∈ Ym differ by a
flip of type Fm.

For brevity, we use the term Gray code reduction for polynomial-time Gray code
reduction via hypercubes in the rest of the document. An immediate consequence of
Definition 1 is the following remark.

Remark 1. If there is a Gray code reduction from objects Y and flips F, then the
flip graph (Ym, Fm) contains an induced subgraph that is isomorphic to hypercubes of
dimension n inside the flip graph of dimension m associated with Y . Moreover, we can
efficiently find induced subgraphs of the flip graph that are isomorphic to any induced
subgraph of the hypercube.

We now present our main theorem for proving that various Gray coding problems
are NP-hard.

Theorem 5. If there is a Gray code reduction f : Bn → Ym for flips of type Fm, then
the following Gray coding problem is NP-hard.

Gray Coding Problem for Objects Ym and Flips Fm

Input: A list L of elemenets in Ym.
Question: Is there a Fm flip Gray code for L?

Proof. Consider a list of binary strings B ⊆ Bn, and the associated bitflip Gray code
problem BitstringGC(L). If there is a Gray code reduction f : Bn → Ym for flips of
type Fm, then consider the following list

L := { f (b) | b ∈ B}. (2)

By definition of a Gray code reduction, we know that b ∈ Bn and b′ ∈ Bn differ in a
single bit if and only if f (b) ∈ Ym and f (b′) ∈ Ym differ by a flip of type Fm. Therefore,
BitstringGC(L) is a yes-instance, if and only if, GrayCoding(L, Fm) is a yes-instance.
Also, note that L can be created in polynomial-time with respect to the size of the
original input B. Since BitstringGC is NP-hard, we conclude that GrayCoding(L, Fm)
is NP-hard. ��

4.1 Example: (Non-crossing) Set Partitions by Refinement

To visualize Theorem 5, let’s consider a Gray coding problem that has not been posed
in the literature. Let S×n be the set of non-crossing set partitions of [n], which are set
partitions in which no pair of subsets cross (i.e., if a and b are in one subset and x and
y are in another, then a < x < b < y is not true). Two different set partitions differ by a
refinement if one can be obtained from the other by splitting a single subset or merging
two subsets. The corresponding flip graph is S×n .

NCSetPartRefGC
Input: A list L of non-crossing partitions from S×n .
Question: Is there a refinement Gray code for L?
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A Gray code reduction from BitstringGC to NCSetPartRefGC problem is shown
in Fig. 2. In particular, we map binary strings of length n to non-crossing set partitions
of [n + 1] as follows: if bi = 0, then i + 1 is a singleton subset, and otherwise i + 1 is
in the same subset as 1. Thus, toggling bi is equivalent to moving element i + 1 in or
out of 1’s subset, and this move is a refinement. As a result, the mapping provides an
induced subgraph of S×n+1 that is isomorphic to Hn (as highlighted). Moreover, f can
be computed in polynomial-time for each binary string, so we can efficiently find an
induced subgraph of S×n+1 that is isomorphic to any induced subgraph of Hn. Hence, we
can conclude that NCSetPartRefGC is NP-hard. Careful readers may have noticed that
hardness also follows for SetPartRefGC (i.e., NCSetPartRefGC but on set partitions)
since every non-crossing set partition is also a set partition. Both problems are also
clearly in NP, so we have the following theorem.

Theorem 6. NCSetPartRefGC and SetPartRefGC are NP-complete.

Fig. 2. A Gray code reduction from BitstringGC to NCSetPartRefGC. The one-to-one function
f : Bn → S×n+1 maps binary strings to non-crossing set partitions in such a way that b ∈ Bn and
b′ ∈ Bn differ by a bit-flip, if and only if, f (b) ∈ S×n+1 and f (b′) ∈ S×n+1 differ by refinement. In (c)
we use ◦, ◦, ◦, ◦ for 1, 2, 3, 4 and the non-singleton subsets are surrounded.

In subsequent sections, we visualize our Gray code reductions by illustrating the
induced subgraph isomorphic to a hypercube. In other words, we illustrate the list L =
{ f (b) | b ∈ Bn} (i.e., (2) for the full set of binary strings) and argue that the mapping f
can be computed in polynomial-time.

For the sake of comparison, the approach taken in Sects. 2.4 and 3 can be defined
as a polynomial-time Gray code reduction via grid graph, where the source problem
was 2TupleGC’ rather than BitstringGC.

5 Combinations

A combination is a subset of [n] of a fixed size k, where 0 ≤ k ≤ n. We denote the set
of all combinations of [n] of fixed size k by Bkn. Commonly, it is represented as a binary
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string b1b2 . . . bn where bi := 1 if i is in the set, otherwise bi := 0. The first transposition
Gray code for combinations appeared in [36]. Subsequently, many Gray code results
were published in the literature notably [2,8], and [28].

CombSwapGC/CombTransGC/CombCompGC/CombRevGC
Input: A list L of combinations from Bkn.
Question: Is there a swap / transposition / substring complement/ substring reversal

Gray code for L?

Theorem 7. CombSwapGC,CombTransGC,CombCompGC,CombRevGC are NP-
hard.

Proof. We use a Gray code reduction; see Fig. 3b. For CombSwapGC, we define the
following list of combinations from Bn2n

L := {c1c2 . . . c2n−1c2n | c2i−1c2i ∈ {01, 10} for 1 ≤ i ≤ n }, (3)

where each bit bi is implemented by the pair c2i−1c2i. We map each binary string of
length n to a combination of length 2n with n many 1 s as

f (b1b2 · · · bn) := c1c2 . . . c2n−1c2n, where c2i−1c2i = 01 if bi = 0 or 10 if bi = 1. (4)

To understand this construction, note that elements of L can only be modified
using the intended swaps within a single pair (i.e., c2i−1c2i) rather than between the
pair (c2ic2i+1). Similar arguments for CombTransGC show that the intended swaps are
the only transpositions that can modify members of L.

Fig. 3. Gray code reduction to prove the NP-hardness for combinations. (Color figure online)

The list in (3) does not establish the result for CombCompGC. This is because one
substring complement can modify multiple pairs of bits e.g., 01 10 gives 10 01. To avoid
this, we insert a padding bit 1 between pairs and use these combinations from B2n−1

3n−1

L := {c1c2 1 c3c4 1 . . . 1 c2n−1c2n | c2i−1c2i ∈ {01, 10} for 1 ≤ i ≤ n }. (5)



112 A. Merino et al.

The 1 bits of padding prevent any substring complement of length > 2 from modifying
elements of L; it is also clear that substring complements of length 1 cannot modify L.
As a result, the only valid complements are internal to the pair (c2i−1c2i).

Similarly, the list in (5) does not establish the result for CombRevGC. This is
because a single substring reversal can reverse multiple pairs of bits e.g., reversing
01 1 01 gives 10 1 10. To avoid this, we use two bits of padding 01 and the following list
of combinations from B2n−1

4n−1

L := {c1c2 01 c3c4 01 . . . 01 c2n−1c2n | c2i−1c2i ∈ {01, 10} for 1 ≤ i ≤ n }. (6)

The 01 padding ensures that the only substring reversals that can modify the elements
of L are the intended swaps within the pair (c2i−1c2i).

Similar to Eq. 4, we can efficiently map a binary string b1b2 . . . bn with combina-
tions of length 3n − 1 with 2n − 1 many 1 s and of length 4n − 1 with 3n − 1 many 1 s,
comprising of padding bits for CombCompGCand CombRevGC, respectively. ��

6 Problems on Permutations Including Pattern-Avoidance

For the set of permutations Pn, we consider an ordering where two consecutive permuta-
tions differ by swaps. Gray codes then emerged involving transpositions [3,31], as well
as prefix-reversals [26] and prefix shifts [4] and [30]. Given a permutation π = p1 · · · pn
with a substring pi · · · p j where pi > pi+1 · · · p j, a right-jump of the value pi by j−i steps
is a cyclic left rotation of this substring by one position to pi+1 · · · p jpi. Analogously,
we define a left-jump. Jump Gray codes were given in [12].

PermSwapGC/PermTransGC/PermRevGC/PermRotGC/PermJumpGC
Input: A list L of permutations from Pn.
Question: Is there a swap / transposition / substring reversal/ substring rotation/

jump Gray code for L?

Theorem 8. PermSwapGC,PermTransGC,PermRevGC,PermRotGC,PermJumpGC
are NP-hard.

Proof. We use a Gray code reduction; see Fig. 4. Let b1b2 · · · bn is a bitstring of length n.
For PermSwapGC, we use the following list of permutations from P2n

L := {p1p2 . . . p2n−1p2n | p2i−1, p2i ∈ {2i − 1, 2i} for 1 ≤ i ≤ n }, (7)

where each bit bi is implemented by the pair (p2i−1, p2i). We map each binary string of
length n to a permutation of length 2n,

f (b1 · · · bn) := p1 . . . p2n−1p2n, where p2i−1p2i = 2i−1 2i if bi = 0 or 2i 2i−1 if bi = 1.
(8)

The elements of L can only be modified using the intended swaps within the
pair (p2i−1, p2i). Similarly, the intended swaps are the only transpositions, substring
reversals, substring rotations, and jumps that can modify the elements of L. Note that
unlike Theorem 7, we need not redefine the set L for different operations. ��
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Fig. 4. Gray code reductions to prove the NP-hardness for permutations. (Color figure online)

A peak in a permutation p1 · · · pn is a triple pi−1pipi+1 with pi−1 < pi > pi+1. A set
of permutations without a peak, also called a peakless permutation is denoted by P∨n .
We consider the following Gray coding problem on peakless permutations.

PeakPermJumpGC
Input: A list L of permutations from P∨n .
Question: Is there a jump Gray code for L?

Theorem 9. PeakPermJumpGC is NP-hard.

Proof. We use a Gray code reduction; see Fig. 4. We define the list of peakless permu-
tations as P∨n := {p1p2 · · · pn | �i where pi−1 < pi > pi+1}.

We map a binary string b2 · · · bn to a permutation π ∈ P∨n as follows: we start with
1 and then insert the values i = 2, . . . , n one by one, either at the leftmost or rightmost
position, depending on whether the bit bi is 1 or 0, respectively. Thus a bitstring of
length n maps to a permutation of length n + 1 and two permutations in P∨n differ in a
jump if and only if the mapped bitstrings differ in a bitflip. ��

For n ≥ k, let π ∈ Pn and τ ∈ Pk. We say that π contains τ, if and only if π = p1 · · · pn
contains a subpermutation pi1 · · · pik with the same relative order as the elements in τ.
Otherwise, p avoids τ. We denote Pn(τ) as the set of all permutations of length n that
avoids τ. Moreover, Pn(τ1 ∧ · · · ∧ τ�) is the set of permutations of length n avoiding
each of the patterns τ1, . . . , τ�. Gray codes for pattern-avoiding permutations appeared
in [1,7,12].

Remark 2. Peakless permutations of [n] are (132 ∧ 231)-avoiding permutations of [n].

We extend Theorem 9 to multiple permutation patterns consisting of ANDs.

Corollary 2. For a set of permutation patterns {τ1, τ2, . . . , τ�}, if every τi contains a
peak, then the Gray code problem is NP-hard for on jumps the list of permutations
from Pn(τ1 ∧ . . . ∧ τ�).
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Fig. 5. Gray code reductions for set partitions and graphs. (Color figure online)

7 Problems on Graphs

In this section, we discuss some graph-related problems. Our reductions are based on
a particular graph namely, the diamond-path graph. Informally, the n-th diamond-path
graph consists of n squares joined through edges. More formally, we define the graph
Dn by considering the vertex set {N, S , E,W} × [n], and the edge set {NiEi ∪ NiWi ∪
S iEi ∪ S iWi | i ∈ [n]} ∪ {EiWi+1 | i ∈ [n − 1]}; see Fig. 5a.

7.1 Spanning Trees

A spanning tree of a graph G is a connected acyclic subgraph of G. We denote the
set of all spanning trees of a fixed graph G by STG. We say that two spanning trees
T,T ′ of G differ in an edge exchange if they differ in exactly two edges; i.e., there exist
edges e ∈ T \ T ′ and f ∈ T ′ \ T such that T = T ′ + e − f . Gray codes for spanning
trees under edge exchanges have been widely studied from both the combinatorial and
computational point of view [19,21,25,32].

SpanningTreeGC
Input: A list L of spanning trees from STDn .
Question: Is there an edge-exchange Gray code for L?

Theorem 10. SpanningTreeGC is NP-hard.

Proof (of Theorem10). We use a Gray code reduction; see Fig. 5b. For bitstrings in Bn,
we define the following list of spanning trees of Dn

L := {WiS i | i ∈ [n]} ∪ {EiS i | i ∈ [n]} ∪ {EiWi+1 | i ∈ [n − 1] ∪
⋃

i:bi=0

{WiNi} ∪
⋃

i:bi=1

{EiNi}.

In other words, a spanning tree in L contains all the edges between diamonds, the edges
that are incident on S i vertices, and to join Ni, we use either the edge Wi or Ei, depending
on the value of bi. Therefore, two spanning trees Tb,Tb′ ∈ L differ in an edge exchange
if and only if b, b′ ∈ Bn differ in a bitflip. ��
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7.2 Perfect Matchings

A perfect matching of a graph is a set of edges M ⊆ E such that every vertex is incident
to exactly one edge in M. We denote the set of all perfect matchings of a fixed graph G
by PMG. We say that two perfect matchings M,M′ of G differ in an alternating cycle if
their symmetric difference forms a cycle in G. Every graph with a perfect matching has
an alternating cycle Gray code for PMG that can be efficiently computed [19,25].

PerfectMatchingGC
Input: A list L of perfect matchings from PMDn .
Question: Is there an alternating cycle Gray code for L?

Theorem 11. PerfectMatchingGC is NP-hard.

Proof (of Theorem11). We use Gray code reductions; see Fig. 5c. For bitstrings in Bn,
we define the following list of perfect matchings of Dn

L :=
⋃

i:bi=0

{WiNi, EiS i} ∪
⋃

i:bi=1

{EiNi,WiS i}.

There are two possible choices of perfect matchings for every diamond in Dn. There-
fore, two perfect matchings Mb,Mb′ ∈ L differ in an alternating cycle if and only if
b, b′ ∈ Bn differ in a bitflip. ��
Theorems 10 and 11 also extend the hardness when we are given the host graph G as
input and ask for edge-exchange or alternating cycles Gray codes for lists of spanning
trees or perfect matchings, respectively, of G.

8 Final Remarks

We proved that the Gray coding problems are NP-complete for various classical objects.
Future work could involve investigating optimization and approximation variants. Fur-
thermore, our techniques apply to many other objects, for example, those involving
geometry, that we plan to explore in the full version of this paper.

We note that we were unable to establish NP-hardness for certain subset problems
using grid or hypercube reductions. These problems include operations that do not sup-
port independent involutions. In other words, there is no way to make and unmake mul-
tiple local changes, which is a hallmark of hypercube reductions. It is also important to
note that some subset problems are poly-time solvable (e.g., those associated with de
Bruijn sequences and universal cycles).
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Abstract. We consider the weighted MAX–SAT problem with an addi-
tional constraint that at most k variables can be set to true. We call
this problem k–WMAX–SAT. This problem admits a (1 − 1

e
)-factor

approximation algorithm in polynomial time [Sviridenko, Algorithmica
2001] and it is proved that there is no (1 − 1

e
+ ε)-factor approximation

algorithm in f(k) · no(k) time for Maximum Coverage, the unweighted
monotone version of k–WMAX–SAT [Manurangsi, SODA 2020]. There-
fore, we study two restricted versions of the problem in the realm of
parameterized complexity.
1. When the input is an unweighted 2–CNF formula (the problem

is called k–MAX–2SAT), we design an efficient polynomial-size
approximate kernelization scheme. That is, we design a polynomial-
time algorithm that given a 2–CNF formula ψ and ε > 0, com-
presses the input instance to a 2–CNF formula ψ� such that any
c-approximate solution of ψ� can be converted to a c(1 − ε)-
approximate solution of ψ in polynomial time.

2. When the input is a planar CNF formula, i.e., the variable-clause
incident graph is a planar graph, we show the following results:

– There is an FPT algorithm for k–WMAX–SAT on planar CNF
formulas that runs in 2O(k) · (C + V ) time.

– There is a polynomial-time approximation scheme for k–

WMAX–SAT on planar CNF formulas that runs in time 2O( 1
ε
) ·

k · (C + V ).
The above-mentioned C and V are the number of clauses and vari-
ables of the input formula respectively.

Keywords: Parameterized Algorithms · MAX–SAT · MAX–2SAT

1 Introduction

In this paper, we study the well-studied MAX–SAT problem with cardinality
constraint. The weighted version of the problem is formally defined as follows.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
R. Uehara et al. (Eds.): WALCOM 2024, LNCS 14549, pp. 118–133, 2024.
https://doi.org/10.1007/978-981-97-0566-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0566-5_10&domain=pdf
http://orcid.org/0000-0001-6213-8687
http://orcid.org/0000-0003-0762-1398
https://doi.org/10.1007/978-981-97-0566-5_10


On MAX-SAT with Cardinality Constraint 119

Weighted MAX–SAT with Cardinality Constraint (k–WMAX–SAT)

Parameter: k
Input: A set of t clauses CF = {C1, C2, . . . , Ct} of a CNF formula F , a weight
function w : CF → R

+ and a positive integer k.
Objective: Find a subset S of variables such that |S| ≤ k and setting vari-
ables of S to true and other variables to false, maximizes the weight of the
satisfied clauses.

k–MAX–SAT and its monotone version (a version in which negated literals
are not allowed) Maximum Coverage are well studied both in the realm of
approximation algorithms and parameterized complexity. The input of Maxi-

mum Coverage is a family F of subsets of a universe U and a positive integer
k. The goal is to find S1, S2, . . . , Sk ∈ F that maximizes |S1 ∪ S2 ∪ · · · ∪ Sk|.

Maximum Coverage, and hence k–MAX–SAT are known to be NP-
complete and W[2]-hard because Maximum Coverage is a more general case
of the Dominating Set problem. A simple greedy approximation algorithm
for Maximum Coverage outputs a (1 − 1

e )-approximate solution, where e
is the base of the natural logarithm. This greedy approximation algorithm is
essentially optimal for Maximum Coverage [7]. Sviridenko [18] obtained a
(1− 1

e )-factor approximation in polynomial time for k–WMAX–SAT. Recently,
Manurangsi [14] showed that there is no f(k) · no(k) time algorithm that can
approximate Maximum Coverage within a factor of (1 − 1

e + ε) for any ε > 0
and any function f , assuming Gap Exponential Time Hypothesis (Gap-ETH).
Thus, to obtain tractable results for k–WMAX–SAT in the realm of parame-
terized complexity and approximation algorithms, we need to restrict the input
to different classes of formulas. We study cardinality constrained unweighted
MAX–SAT when the number of literals in each clause is at most 2. This prob-
lem is called k–MAX–2SAT. The problem is formally defined below.

MAX–2SAT with Cardinality Constraint (k–MAX–2SAT)

Parameter: k
Input: A set of t clauses CF = {C1, C2, . . . , Ct} of a 2–CNF formula F and
a positive integer k.
Objective: Find a subset S of variables such that |S| ≤ k and setting vari-
ables of S to true and other variables to false, maximizes the number of the
satisfied clauses.

k–MAX–2SAT and its monotone version Max–k–Vertex Cover (shortly
Max k–VC) are extensively studied [3,9,10,13,16,17]. The best-known
polynomial-time approximation ratio for k–MAX–2SAT is 0.75 [9]. Raghaven-
dra and Tan [17] designed an α-approximation algorithm for some α > 0.92
that runs in time npoly(n/k), where n is the number of variables in the input
formula [13]. That is, this algorithm runs in polynomial time when k is a con-
stant fraction of V . Assuming Unique Games Conjecture (UGC), it is NP-hard
to approximate k–MAX–2SAT with a factor better than 0.929 [1].
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The monotone variant of the problem, Max k–VC gives an interesting con-
nection between approximate kernelization and approximation algorithms. Here,
given a graph G, our objective is to find a vertex subset S of size k such that
the number of edges in G with at least one endpoint in S is maximized. Max

k–VC is W[1]-hard and Marx [15] designed the first FPT approximation scheme
for the problem, where k is the parameter. Lokshtanov et al. [12] showed that,
indeed the steps of the algorithm by Marx can be converted to get an effi-
cient polynomial-size approximate kernelization scheme (EPSAKS). We refer to
Sect. 2 for the definition of approximate kernelization. Manurangsi [13] improved
the kernel size to O(k/ε) and the running time of FPT approximation scheme to
(1/ε)O(k)nO(1) for Max k-VC. Manurangsi applied the algorithm of Raghaven-
dra and Tan [17] for k–MAX–2SAT on the linear size approximate kernel to
obtain an approximation factor of 0.92 for Max k–VC. Approximating Max

k–VC with a factor better than 0.929 is also NP-hard assuming UGC [1]. We
prove that k–MAX–2SAT admits an EPSAKS.

Theorem 1. Given a set of t clauses CF = {C1, C2, . . . , Ct} of a 2–CNF for-
mula F and a positive integer k, there is an EPSAKS (efficient polynomial-size
approximate kernelization scheme) for k–MAX–2SAT such that the size of the
output of the reduction algorithm is upper-bounded by O

(
k5

ε2

)
.

We also study k–WMAX–SAT when the input is a planar CNF formula, that
is, the variable-clause incident graph is a planar graph. Restricting MAX–SAT
to planar formulas has been already considered in the realm of approximation
algorithms [4,11]. We prove the following result for k–WMAX–SAT on planar
CNF formulas.

Theorem 2. Given a set of t clauses CF = {C1, C2, . . . , Ct} of a planar CNF
formula F , a weight function w : CF → R

+ and a positive integer k, there is an
FPT algorithm for k–WMAX–SAT that runs in O(236k · k3 · |CF ∪ VF |) time.

Khanna and Motwani [11] already designed a PTAS for k–MAX–SAT (the
unweighted version) on planar formulas. Using a similar technique, we show that
the weighted version k–WMAX–SAT also admits a PTAS.

Theorem 3. Given a set of t clauses CF = {C1, C2, . . . , Ct} of a planar CNF
formula F , a weight function w : CF → R

+ and a positive integer k, there is
a polynomial-time approximation scheme that runs in O( 1

ε2 · 2
36
ε · k · |CF ∪ VF |)

time and finds S ⊆ VF such that |S| ≤ k and

k–WMAX–SAT(CF , w, k, S) ≥ (1 − ε) · OPT(CF , w, k)

Here, OPT(CF , w, k) is the maximum total weight of clauses in CF that can be
satisfied by an assignment where at most k variables are set to true.
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2 Preliminaries

Definition 1 (Conjunctive Normal Form (CNF)). A formula is said to be
in Conjunctive Normal Form (CNF) if it looks like C1 ∧C2 ∧· · ·∧Ct where each
Ci = (l1 ∨ l2 ∨ · · · ∨ lti

) is called a clause and each li is called a literal. A literal
is either a variable, called positive literal, or the negation of a variable, called
negative literal.

A formula is said to be in 2–Conjunctive Normal Form (2–CNF) if it is in
CNF and all of its clauses contain 2 literals.

We assume, without loss of generality, that for each variable v, at most one
of the v and ¬v is contained in a clause, no literal is repeated in a clause and all
clauses are distinct.

For a CNF formula F , the set of clauses and the set of variables appeared in
F are denoted by CF = {C1, C2, . . . , Ct} and VF = {v1, v2, . . . , vn}, respectively.

2.1 Parameterized Complexity

For a parameterized maximization problem Π and a solution s to the instance
(I, k) of Π, we denote the value of s by Π(I, k, s), and the task is to find a
solution with the maximum possible value. We state the following definitions
slightly modified from the Kernelization book [8].

Definition 2 (FPT optimization problem). A parameterized optimization
problem Π is fixed-parameter tractable (FPT) if there is an algorithm (called
FPT algorithm) that solves Π, such that the running time of the algorithm on
instances of size n with parameter k is upper-bounded by f(k) · nO(1) for a com-
putable function f .

Definition 3 (α-approximate polynomial-time preprocessing algo-
rithm). Let 0 < α ≤ 1 be a real number and Π be a parameterized maximiza-
tion problem. An α-approximate polynomial-time preprocessing algorithm A for
Π is a pair of polynomial-time algorithms. The first one is called the reduction
algorithm RA, and given an instance (I, k) of Π, it outputs another instance
(I ′, k′) = RA(I, k). The second algorithm is called the solution lifting algo-
rithm. This algorithm takes an instance (I, k) of Π, the output instance (I ′, k′)
of the reduction algorithm, and a solution s′ to the instance (I ′, k′). The solution
lifting algorithm works in time polynomial in |I|, k, |I ′|, k′ and |s′|, and outputs
a solution s to (I, k) such that

Π(I, k, s)
OPT (I, k)

≥ α · Π(I ′, k′, s′)
OPT (I ′, k′)

Definition 4 (α-approximate kernelization). An α-approximate kerneliza-
tion (α-approximate kernel) is an α-approximate polynomial-time preprocess-
ing algorithm A such that sizeA is upper-bounded by a computable function
g : N → N where sizeA is defined as follows:
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sizeA(k) = sup{|I ′| + k′ : (I ′, k′)
= RA(I, k) for any instance (I, k)of the problem}

If the upper-bound g(·) is a polynomial function of k, we say A is an α-
approximate polynomial kernel.

Definition 5 (polynomial-size approximate kernelization scheme
(PSAKS)). A polynomial-size approximate kernelization scheme (PSAKS)
for a parameterized maximization problem Π, is a family of (1 − ε)-approximate
polynomial kernels for every 0 < ε < 1.

Definition 6 (Efficient PSAKS). An efficient PSAKS (EPSAKS) is a
PSAKS such that for every (1 − ε)-approximate polynomial kernel A in that,
sizeA(k) is upper-bounded by f(1ε ) · kc for a function f and a constant c inde-
pendent of I, k and ε.

2.2 Tree Decomposition and Tree-Width

We state the following definitions and lemmas from the Parameterized Algo-
rithms book [5].

Definition 7 (Tree decomposition). A tree decomposition of a graph G is
a pair T = (T, {Xt}t∈V (T )), where T is a tree whose every node t is assigned a
vertex subset Xt ⊆ V (G), called a bag, such that the following three conditions
hold:

– Vertex coverage:
⋃

t∈V (T ) Xt = V (G), i.e., every vertex of G is in at least
one bag.

– Edge coverage: For every uv ∈ E(G), there exists a node t of T such that
bag Xt contains both u and v.

– Coherence: For every u ∈ V (G), the set Tu = {t ∈ V (T ) : u ∈ Xt}, i.e., the
set of nodes whose corresponding bags contain u, induces a connected subtree
of T .

The width of tree decomposition T = (T, {Xt}t∈V (T )) equals maxt∈V (T ) |Xt| − 1.

Definition 8 (Tree-width). The tree-width of a graph G is the minimum
possible width of a tree decomposition of G.

Definition 9 (Nice tree decomposition). A tree decomposition T = (T,
{Xt}t∈V (T )), rooted from r ∈ V (T ), is called nice if the following conditions are
satisfied:

– Xr = ∅ and Xl = ∅ for every leaf l of T .
– Every non-leaf node of T is of one of the following three types:

• Introduce node: a node t with exactly one child t′ such that Xt = Xt′ ∪
{v} for some vertex v /∈ Xt′ . We say that v is introduced at t.
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• Forget node: a node t with exactly one child t′ such that Xt = Xt′ \ {w}
for some vertex w ∈ Xt′ . We say that w is forgotten at t.

• Join node: a node t with two children t1, t2 such that Xt = Xt1 = Xt2 .

Lemma 1. If a graph G admits a tree decomposition of width at most d, then it
also admits a nice tree decomposition of width at most d. Moreover, given a tree
decomposition T = (T, {Xt}t∈V (T )) of G of width at most d, one can in time
O(d2 · max(|V (T )|, |V (G)|)) compute a nice tree decomposition of G of width at
most d that has O(d · |V (G)|) nodes.

3 EPSAKS for k–MAX–2SAT with Cardinality
Constraint

In this section, we show that k–MAX–2SAT admits an EPSAKS. That is we
prove Theorem 1.

There are two main observations used in the algorithm. First, since one can
satisfy all clauses containing at least one negative literal by setting all the vari-
ables to false, the optimal value is not less than the number of clauses containing
negative literals. Second, if a variable v appears positively in many clauses, then
one can satisfy all those clauses by setting v true and all the other variables
false.

Let F be a 2–CNF formula with clause set CF and variable set VF . For a
variable v ∈ VF , we denote the number of clauses in the form of (v∨u), (v∨¬u),
(¬v∨u) and (¬v∨¬u) by d++(v), d−

+(v), d+−(v) and d−
−(v) respectively. For V ⊆ VF

we denote the set of negation of variables in V with ¬V , i.e., ¬V = {¬s | s ∈ V }.
Let PF = {p1, p2, . . . , pl} be the set of variables that appear only in clauses
containing two positive literals, i.e., in the form of (v ∨ u), and NF = VF \ PF .
We suppose, without loss of generality, d++(p1) ≥ d++(p2) ≥ · · · ≥ d++(pl).

We now describe a (1 − ε)-approximate polynomial-time preprocessing algo-
rithm Aε for an arbitrary ε.

Reduction AlgorithmRε: Rε takes the set of clauses CF = {C1, C2, . . . , Ct} of a 2–

CNF formula F and a parameter k as input. Set λ to be equal to
4·(k

2)
ε . Recall that

PF = {p1, p2, . . . , pl} is the set of variables that appear only in clauses containing
two positive literals. Let P̃F = {p1, p2, . . . , pl̃} where l̃ = min(l, k + kλ) and
C̃F ⊆ CF be the set of clauses whose both variables are in PF \ P̃F . If both of
the following requirements are satisfied, Rε outputs (CF \ C̃F , k), otherwise it
outputs ({C1}, k + 1).

(R1) There are < λ clauses with at least one negative literal.
(R2) d++(v) < λ for every variable v ∈ VF .

Solution Lifting Algorithm Lε: The algorithm takes (CF , k), the output of the
reduction algorithm (C′

F ′ , k′) and a set S′ of at most k′ variables appeared in F ′.
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If k′ = k, Lε outputs S = S′. Otherwise, let VF = {v1, v2, . . . , vn} and without
loss of generality suppose

d++(v1) − d+−(v1) ≥ d++(v2) − d+−(v2) ≥ · · · ≥ d++(vn) − d+−(vn)

Then the algorithm outputs

S = {v ∈ {v1, v2, . . . , vk} | d++(v) − d+−(v) > 0}

We next show that Aε is a (1−ε)-approximate polynomial-time preprocessing
algorithm. To do so, we need to prove the following lemmas.

Lemma 2. Suppose d++(v) < λ for every v ∈ VF . Let S∗ be an optimal solu-
tion for (CF , k) such that S∗ ∩ PF is lexicographically smallest with respect to
p1, p2, . . . , pl. Then (S∗ ∩ PF ) ⊆ P̃F = {p1, p2, . . . , pl̃}.

Proof. If l̃ = l, we have P̃F = PF . So (S∗ ∩ PF ) ⊆ PF = P̃F and we are done.
So suppose l̃ = k + kλ and for the sake of contradiction, suppose there is p ∈
(S∗ ∩ PF ) such that p /∈ P̃F . Define the set A as the following:

A = S∗ ∪ {v ∈ VF | ∃(v ∨ u) ∈ CF : u ∈ S∗}

Since |S∗| ≤ k and ∀v ∈ VF : d++(v) < λ, we have |A| < k + kλ. Therefore, there
is a variable q ∈ {p1, p2, . . . , pk+kλ} which is not in A, i.e., q ∈ P̃F \ A.

Note that since p, q ∈ PF , p and q appear only in clauses with two positive
literals, So we have

k–MAX–2SAT(CF , k, S∗ \ {p} ∪ {q})

≥ k–MAX–2SAT(CF , k, S∗) − d++(p) + d++(q) (since p ∈ PF and q /∈ A)

≥ k–MAX–2SAT(CF , k, S∗) (since p /∈ P̃F and q ∈ P̃F )
= OPT(CF , k)

Therefore, S∗ \ {p} ∪ {q} is an optimal solution and since p /∈ P̃F but q ∈ P̃F ,
(S∗ \ {p} ∪ {q}) ∩ PF is lexicographically smaller than S∗ ∩ PF , which implies a
contradiction.

Lemma 3. If d++(v) < λ for every v ∈ VF , then OPT(CF , k) = OPT(CF \C̃F , k).

Proof. Since (CF \ C̃F ) ⊆ CF , we have OPT(CF , k) ≥ OPT(CF \ C̃F , k). For the
other direction, let S∗ be the optimal solution of (CF , k) described in the Lemma
2. By Lemma 2 we know S∗ ∩ (PF \ P̃F ) = ∅ and therefore, by setting only
variables of S∗ true, none of the clauses with both literals from PF \ P̃F , i.e.,
clauses in C̃F , gets satisfied. This implies

k–MAX–2SAT(CF , k, S∗)︸ ︷︷ ︸
=OPT(CF ,k)

= k–MAX–2SAT(CF \ C̃F , k, S∗)︸ ︷︷ ︸
≤OPT(CF \C̃F ,k)

which proves the lemma.
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Lemma 4. Aε is a (1−ε)-approximate polynomial-time preprocessing algorithm.

Proof. Clearly, both Rε and Lε are polynomial algorithms. In the solution lifting
algorithm, note that C′

F ′ ⊆ CF and thus S′ ⊆ VF . This implies that the output
of Lε is a subset of VF with size ≤ k and therefore a solution to instance (CF , k)
of k–MAX–2SAT.

We now show that

k–MAX–2SAT(CF , k, S)
OPT(CF , k)

≥ (1 − ε) · k–MAX–2SAT(C′
F ′ , k′, S′)

OPT(C′
F ′ , k′)

We consider two cases:

1. The aforementioned requirements, (R1) and (R2) are satisfied.
In this case, Rε outputs (C′

F ′ , k′) = (CF \ C̃F , k) and since k = k′, Lε would
output S = S′. Since CF \ C̃F ⊆ CF , we have

k–MAX–2SAT(CF , k, S′) ≥ k–MAX–2SAT(CF \ C̃F , k, S′)

And by Lemma 3 we get

k–MAX–2SAT(CF , k, S′)
OPT(CF , k)

≥ k–MAX–2SAT(CF \ C̃F , k, S′)
OPT(CF \ C̃F , k)

≥ (1 − ε) · k–MAX–2SAT(CF \ C̃F , k, S′)
OPT(CF \ C̃F , k)

Which completes the proof for the first case.
2. At least one of the requirements, (R1) and (R2) is not satisfied.

If (R1) is not satisfied we have k–MAX–2SAT(CF , k, ∅) ≥ λ. If (R2) is
not satisfied, there is a variable v ∈ VF such that d++(v) ≥ λ, thus
k–MAX–2SAT(CF , k, {v}) ≥ λ. Therefore, in this case OPT(CF , k) ≥ λ. Note
that for any solution S:

k–MAX–2SAT(CF , k, S) =
∑

v∈VF

d+−(v) − |{(¬v ∨ u) | v ∈ S, u ∈ VF \ S}|

+

∑
v∈VF d−

−(v)
2

− |{(¬v ∨ ¬u) | v, u ∈ S}|

+
∑
v∈S

d++(v) − |{(v ∨ u) | v, u ∈ S}|

And also:

|{(¬v ∨ u) | v ∈ S, u ∈ VF \ S}| =

(∑
v∈S

d+−(v) − |{(¬v ∨ u) | v, u ∈ S}|
)
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Which implies:

k–MAX–2SAT(CF , k, S) =
∑

v∈VF

d+
−(v) −

(
∑

v∈S

d+
−(v) − |{(¬v ∨ u) | v, u ∈ S}|

)

+

∑
v∈VF d−

−(v)

2
− |{(¬v ∨ ¬u) | v, u ∈ S}|

+
∑

v∈S

d+
+(v) − |{(v ∨ u) | v, u ∈ S}| (1)

And since |S| ≤ k and all clauses are distinct, we have:

|{(¬v ∨ ¬u)|v, u ∈ S}| , |{(v ∨ u)|v, u ∈ S}| ≤
(

k

2

)

Therefore, considering Eq. (1) we have:

k–MAX–2SAT(CF , k, S) ≥
∑

v∈VF

d+
−(v) −

(
∑

v∈S

d+
−(v) − |{(¬v ∨ u) | v, u ∈ S}|

)

+

∑
v∈VF d−

−(v)

2
−

(
k

2

)
+

∑

v∈S

d+
+(v) −

(
k

2

)

=
∑

v∈VF

d+
−(v) + |{(¬v ∨ u) | v, u ∈ S}|

+

∑
v∈VF d−

−(v)

2
+

(
∑

v∈S

d+
+(v) −

∑

v∈S

d+
−(v)

)
− 2 ·

(
k

2

)

(2)

Note that in this case Rε outputs (C′
F ′ , k′) = ({C1}, k + 1) and since k �= k′,

Lε outputs S = {v ∈ {v1, v2, . . . , vk}|d++(v) − d+−(v) > 0}. Let S∗ ⊆ VF be an
optimal solution to (CF , k). Then we have:

∑
v∈S

d++(v) − d+−(v) ≥
∑

v∈S∗
d++(v) − d+−(v)

And considering inequality (2):

k–MAX–2SAT(CF , k, S)

≥
∑

v∈VF

d+−(v) + |{(¬v ∨ u)|v, u ∈ S}|

+

∑
v∈VF d−

−(v)
2

+

( ∑
v∈S∗

d++(v) −
∑

v∈S∗
d+−(v)

)
− 2 ·

(
k

2

)

=
∑

v∈VF

d+−(v) −
( ∑

v∈S∗
d+−(v) − |{(¬v ∨ u)|v, u ∈ S∗}|

)

+ (|{(¬v ∨ u)|v, u ∈ S}| − |{(¬v ∨ u)|v, u ∈ S∗}|)
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+

∑
v∈VF d−

−(v)
2

+
∑
v∈S∗

d++(v) − 2 ·
(

k

2

)

≥ k–MAX–2SAT(CF , k, S∗) + |{(¬v ∨ u)|v, u ∈ S}|

− |{(¬v ∨ u)|v, u ∈ S∗}| − 2 ·
(

k

2

)
(By Eq. 1)

Plugging |{(¬v ∨ u)|v, u ∈ S∗}| ≤ 2 ·
(
k
2

)
into the above inequality, we get:

k–MAX–2SAT(CF , k, S) ≥ k–MAX–2SAT(CF , k, S∗) − 4 ·
(

k

2

)

= OPT(CF , k) − ελ (since S∗ is an optimal solution and λ =
4·(k

2)
ε )

Finally, as OPT(CF , k) ≥ λ we have:

k–MAX–2SAT(CF , k, S) ≥ (1 − ε) · OPT(CF , k)

Which implies k–MAX–2SAT(CF ,k,S)
OPT(CF ,k) ≥ (1 − ε) ≥ (1 − ε) · MAX–2SAT(C′

F′ ,k′,S′)
OPT(C′

F′ ,k′)

and proves the second case.

The next lemma states an upper-bound for sizeAε
(k).

Lemma 5. sizeAε
(k) is of O

(
k5

ε2

)
where sizeAε

(k) is defined in Definition 4.

Proof. Note that Rε returns either ({C1}, k + 1) or (CF \ C̃F , k). In the first
case sizeAε

(k) is of O(1) and so we need to only consider the case of returning
(CF \ C̃F , k). In this case, (R1) and (R2) are satisfied. Since (R1) is satisfied,
there are less than 2λ variables that appear in at least one clause with at least one
negative literal, i.e., |NF | < 2λ. Therefore, |NF ∪ P̃F | ≤ 2λ + l̃ ≤ 2λ + kλ + k =
O(kλ). (R1) and (R2) together imply that d++(v) + d−

+(v) + d+−(v) + d−
−(v) <

d++(v) + λ < 2λ which means every variable v ∈ VF appears in less than 2λ

clauses of F . Therefore, |CF \C̃F | is less than 2λ·|NF ∪P̃F | = O(kλ2) = O
(

k5

ε2

)
.

We finally prove Theorem 1. For convenience, we restate the theorem here.

Theorem 1. Given a set of t clauses CF = {C1, C2, . . . , Ct} of a 2–CNF for-
mula F and a positive integer k, there is an EPSAKS (efficient polynomial-size
approximate kernelization scheme) for k–MAX–2SAT such that the size of the
output of the reduction algorithm is upper-bounded by O

(
k5

ε2

)
.

Proof. According to Definition 6, the proof is directly derived from Lemma 4
and Lemma 5.
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4 k–WMAX–SAT with Cardinality Constraint on Planar
Formulas

In this section, we present an FPT algorithm as well as a PTAS (Polynomial-
time approximation scheme) for k–WMAX–SAT on a special family of sparse
CNF formulas that we will refer to as planar formulas. We now describe this
family of formulas.

For a CNF formula F , let GF = (CF ∪ VF , E− ∪ E+) be a bipartite graph
such that (Ci, vj) ∈ E+ if Ci contains vj and (Ci, vj) ∈ E− if Ci contains ¬vj .
We call F a planar CNF formula if GF is a planar graph.

Both algorithms presented in this section are designed using Baker’s tech-
nique [2] and dynamic programming on tree decomposition. First, we need the
following lemmas.

Lemma 6 (Eppstein [6]). Let planar graph G have diameter d. Then G has
tree-width at most 3d − 2, and a tree-decomposition of G with such a width can
be found in time O(d · |V (G)|).

Lemma 7. Let F be a planar CNF formula. Then there is an algorithm with
running time O(23d · kd · |CF ∪ VF |) that takes CF = {C1, C2, . . . , Ct}, a weight
function w : CF → R

+, a positive integer k, and a tree decomposition of GF of
width at most d with O(d · |V (GF )|) nodes as input and solves k–WMAX–SAT,
i.e., finds S ⊆ VF such that |S| ≤ k and setting variables of S to true and other
variables to false maximizes the weight of the satisfied clauses.

Proof. First, we construct a nice tree decomposition T = (T, {Xt}t∈V (T )) of
width at most d with O(d · |V (GF )|) nodes in time O(d3 · |V (GF )|) using Lemma
1. Then, we use a dynamic programming routine.

For each t ∈ V (T ) let Vt ⊆ V (GF ) = CF ∪ VF be the union of all the
bags present in the subtree of T rooted at t, including Xt. For each t ∈ V (T ),
S ⊆ (Xt ∩ VF ), C ⊆ (Xt ∩ CF ) and 0 ≤ i ≤ k define the following:

dp[t, S, C, i] :=

Maximum possible weight of satisfied clauses in Vt if we set at
most i variable from Vt to true, set other variables of Vt to
false and ignore variables of VF \ Vt such that Ŝ ∩ Xt = S and
Ĉ ∩ Xt = C where Ŝ is the set of true variables and Ĉ is the
set of satisfied clauses in Vt.

If we manage to compute values of dp, then since Xr = ∅, where r is the root of
T , the answer would be dp[r, ∅, ∅, k] and we can fill the dp array in a bottom-up
manner and in the following way:

– Leaf node: If t is a leaf, Xt = ∅ and we have dp[t, ∅, ∅, i] = 0 for all 0 ≤ i ≤ k.
So in this case, filling each cell of dp takes O(1) time.

– Introduce node: If t is an introduce node with child t′ that Xt = Xt′ ∪ {v},
we consider two cases and fill the entries dp[t, S, C, i] in the following way.
1. v ∈ VF , i.e., v is a variable. Then C ′ ⊆ C might be the set of satisfied

clauses of Xt′ , if it satisfies one of the two below conditions:
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(C1) All clauses in C \ C ′ contain a positive literal of v, i.e., Setting v to
true satisfies all clauses in C \ C ′.

(C2) All clauses in C \ C ′ contain a negative literal of v, i.e., setting v to
false satisfies all clauses in C \ C ′.

So we can compute dp[t, S, C, i] as follows
{

maxC′satisfies (C1) dp[t′, S \ {v}, C ′, i − 1] + w(C \ C ′) if v ∈ S
maxC′satisfies (C2) dp[t′, S, C ′, i] + w(C \ C ′) if v /∈ S

So in this case, filling one cell of dp takes O(2d) time.
2. v ∈ CF , i.e., v is a clause. Note that because of edge coverage and coher-

ence properties, Var(v) ∩ Vt = Var(v) ∩ Xt where Var(v) is the set of
variables present in the clause v, either as a positive or negative literal.
So, there are two possibilities:

(P1) v ∈ C and v gets satisfied by setting all variables of S to true, Xt \ S
to false and ignoring variables of VF \ Xt.

(P2) v /∈ C and v is not satisfied by setting all variables of S to true, Xt \S
to false and ignoring variables of VF \ Xt.

Therefore, we have:

dp[t, S, C, i] =

⎧
⎨
⎩

dp[t′, S, C \ {v}, i] + w(v) if (P1) is true
dp[t′, S, C, i] if (P2) is true
INVALID otherwise

So, in this case filling one cell of dp takes O(1) time.
Overall we can fill dp[t, S, C, i] for an introduce node t in O(2d) time.

– Forget node: If t is a forget node with child t′ that Xt = Xt′ \{w}, we again
consider two cases:
1. w ∈ VF , i.e., w is a variable. Note that w is either set to true or false

and therefore:

dp[t, S, C, i] = max
{

dp[t′, S, C, i] setting w to false
dp[t′, S ∪ {w}, C, i] setting w to true

2. w ∈ CF , i.e., w is a clause.

dp[t, S, C, i] = max
{

dp[t′, S, C, i] w does not get satisfied
dp[t′, S, C ∪ {w}, i] w gets satisfied

Note that in this case filling one cell of dp takes O(1) time.
– Join node: If t is a join node with children t1 and t2 that Xt = Xt1 = Xt2 ,

we consider all possibilities of S1, S2 and C1, C2, and compute the value of
dp[t, S, C, i] by:

max
S1∪S2=S, C1∪C2=C, |S1|≤j≤i

⎛
⎝

dp[t1, S1, C1, j]
+ dp[t2, S2, C2, i − j + |S1 ∩ S2|]
− w(C1 ∩ C2)

⎞
⎠

So in the case of join nodes, we can compute the value of each cell of dp in
O(22d), because of 2d possibilities for S1 ∪ C1 and at most 2d possibilities for
S2 ∪ C2.



130 F. Panolan and H. Yaghoubizade

The total number of array’s cells is O(|V (T )| · 2d · k) and we can fill each cell
in time O(22d), since by Lemma 1 |V (T )| = O(d · |V (GF )|) = O(d · |CF ∪ VF |)
we can fill all the cells in time O(23d · kd · |CF ∪ VF |). Again by Lemma 1,
constructing T is done in time O(d3 · |CF ∪VF | which gives us the overall runtime
of O(23d · kd · |CF ∪ VF |).

Finally, using the standard technique of backlinks, i.e., memorizing for every
cell of dp how its value was obtained, we can find an optimal solution, i.e., a
subset S ⊆ VF such that |S| ≤ k and setting its variables to true maximizes the
weight of the satisfied clauses, within the same running time.

4.1 FPT Algorithm

Here, we use Lemma 6 and Lemma 7 to show that k–WMAX–SAT on planar
formulas is FPT. That is we prove Theorem 2. For convenience, we restate the
theorem here.

Theorem 2. Given a set of t clauses CF = {C1, C2, . . . , Ct} of a planar CNF
formula F , a weight function w : CF → R

+ and a positive integer k, there is an
FPT algorithm for k–WMAX–SAT that runs in O(236k · k3 · |CF ∪ VF |) time.

Proof. Construct GF and without loss of generality suppose the graph is con-
nected. Then, do a breadth-first search (BFS) on the graph starting from an
arbitrary variable. Since GF is bipartite the first level would contain variables,
the second level would contain clauses, the third level would contain variables,
etc.

If the number of levels is more than 2k, for each 0 ≤ i label the level 2i + 1,
which contains variables, with [i mod (k + 1)]. Note that since the number of
levels is at least 2k + 1, we would use all the k + 1 different labels and therefore
there should be a label that all of its variables are set to false in the optimal
answer. We consider all the k + 1 possibilities for this label and each time,
set variables of one of the k + 1 labels, say label l, to false. This makes some
clauses satisfied, then we remove variables with label l and also satisfied clauses
to get a new graph GF,l. Each connected component of GF,l would contain
at most 2k + 1 levels and therefore its diameter is at most 4k. Using Lemma
6 a tree decomposition of GF,l with width at most 12k can be found in time
O(k · |VF ∪ CF |), and thus with O(k · |VF ∪ CF |) nodes. Then using Lemma 7
we can solve k–WMAX–SAT on the CNF formula induced by GF,l in time
O(236k · k2 · |CF ∪ VF |). By doing so for every label 0 ≤ l < k + 1, we can find
the optimal solution in time O(236k · k3 · |CF ∪ VF |).

If the number of levels is at most 2k, we can use Lemma 6 and Lemma 7 on
GF directly.
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4.2 Polynomial-Time Approximation Scheme

Now, we prove Theorem 3. For convenience, we restate the theorem here.

Theorem 3. Given a set of t clauses CF = {C1, C2, . . . , Ct} of a planar CNF
formula F , a weight function w : CF → R

+ and a positive integer k, there is
a polynomial-time approximation scheme that runs in O( 1

ε2 · 2
36
ε · k · |CF ∪ VF |)

time and finds S ⊆ VF such that |S| ≤ k and

k–WMAX–SAT(CF , w, k, S) ≥ (1 − ε) · OPT(CF , w, k)

Proof. Fix an arbitrary 0 < ε ≤ 1, let d = � 1
ε � and suppose S∗ ⊆ VF is an optimal

solution to k–WMAX–SAT on (F , w, k), i.e., |S∗| ≤ k and setting variables of
S∗ to true maximizes the weight of the satisfied clauses. Also, let C∗ be the
set of clauses that get satisfied by setting variables of S∗ to true. Construct
GF and without loss of generality suppose the graph is connected. Then, do a
breadth-first search (BFS) on the graph starting from an arbitrary clause.

If the number of levels is at least 2d, for each 0 ≤ i label the level 2i + 1,
which contains clauses, with [i mod d]. Let CF,l be the set of all clauses with
label l. Note that since the number of levels is at least 2d, we would use all the d
different labels and therefore there should be a label l∗ such that w(C∗ ∩CF,l) ≤
w(C∗)

d = OPT(CF ,w,k)
d .

We consider all the d possibilities for l∗ and each time remove clauses with
one of the labels, say label l, to get a new graph GF,l. Each connected component
of GF,l contains at most 2d levels, and therefore its diameter is at most 4d.

Using Lemma 6 a tree decomposition of GF,l with width at most 12d can be
found in time O(d · |VF ∪ CF |) and thus with O(d · |VF ∪ CF |) nodes. Then using
Lemma 7 we can solve k–WMAX–SAT on the CNF formula induced by GF,l in
time O(236d · kd · |CF ∪ VF |). Let Sl be the optimal solution of k–WMAX–SAT

on the CNF formula induced by GF,l and let k–WMAX–SAT(C, w, k, S) be the
weight of satisfied clauses in C ⊆ CF if we set variables of S to true. Then we
have the following for every label 0 ≤ l < d:

k–WMAX–SAT(CF , w, k, Sl) ≥ k–WMAX–SAT(CF \ CF,l, w, k, Sl)
≥ k–WMAX–SATT(CF \ CF,l, w, k, S∗)
= k–WMAX–SAT(CF , w, k, S∗) − w(C∗ ∩ CF,l)
= OPT(CF , w, k) − w(C∗ ∩ CF,l)

And for l∗ we also have:

k–WMAX–SAT(CF , w, k, Sl∗) ≥ OPT(CF , w, k) − w(C∗ ∩ CF,l∗)

≥ OPT(CF , w, k) − OPT(CF , w, k)
d

≥ (1 − ε) · OPT(CF , w, k)

Therefore, by finding Sl for every label 0 ≤ l < d, we can find the optimal
solution in time O( 1

ε2 · 2
36
ε · k · |CF ∪ VF |).
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5 Conclusion

In this work, we showed that k–MAX–2SAT admits an EPSAKS of size O(k5

ε2 ).
As the monotone variant of the problem, Maximum k–Vertex Cover, admits
an EPSAKS of size O(k

ε ) [13], which also works for weighted graphs, is it possible
to improve the kernel size for k–MAX–2SAT or design an EPSAKS for its
weighted version?

We also showed that k–WMAX–SAT on planar graphs admits an FPT
algorithm as well as a PTAS. Does this problem also admit a kernelization?
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Abstract. Given a rectilinear grid G, in which cells are either assigned a
single color, out of k possible colors, or remain white, can we color white
grid cells of G to minimize the total number of corners of the resulting
colored rectilinear polygons in G? We show how this problem relates to
hypergraph visualization, prove that it is NP-hard even for k = 2, and
present an exact dynamic programming algorithm. Together with a set of
simple kernelization rules, this leads to an FPT-algorithm in the number
of colored cells of the input. We additionally provide an XP-algorithm in
the solution size, and a polynomial O(OPT )-approximation algorithm.

Keywords: Shape complexity · Rectilinear polygons · Set
visualization

1 Introduction

Hypergraphs are a prominent way of modeling set systems. In a hypergraph, ver-
tices correspond to set elements and hyperedges represent sets. To gain insight
into the structure of hypergraphs, many hypergraph visualizations have been
developed. These visualizations can be roughly subdivided into area-based visu-
alizations [12,15,17], resembling the traditional Euler and Venn diagrams [3],
edge-based techniques [1,10,12], where set elements are connected by links, and
matrix-based approaches [14,16], in which columns and rows represent vertices
and hyperedges. The surveys by Alsallakh et al. [2] and Fischer et al. [8] consider
state-of-the-art set visualizations and their classification in more detail.

Most area- and edge-based hypergraph visualizations represent the vertices
as points in the plane, and visualize hyperedges as either regions or connections,
respectively. These hyperedges usually intersect at common vertices to convey
membership, while other intersections are considered to violate planarity [11], a
well-established quality criterion for graph drawings [13].

Other visualization techniques completely prevent visual intersections
between hyperedge representations, such as the grid-based visualization intro-
duced by van Goethem et al. [9]. In this visual encoding, hyperedges are repre-
sented by disjoint (connected) polygons and each vertex corresponds to a cell in
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Fig. 1. (a) A grid with colors assigned to grid cells as in [9]. (b) A disjoint polygon
visualization for Fig. 1a. (c) A subdivision of the grid in Fig. 1a; colors assigned in
Fig. 1a are now assigned to a single cell after subdivision. (d) A coloring of Fig. 1c that
minimizes the number of corners of the colored polygons.

a rectilinear grid. Membership is conveyed by overlap of such a polygon with a
grid cell representing a vertex. In their setting, van Goethem et al. allow each
hyperedge to overlap only those grid cells corresponding to incident vertices and
all such cells must be overlapped, see Figs. 1a and 1b. Their input consists of a
grid, in which each grid cell is assigned a subset of colors, and van Goethem et
al. show how to test whether a disjoint polygon representation of two hyperedges
can be realized, given such a grid and an assignment of colors to grid cells. They
also prove that, if such a representation exists, the complexity within each grid
cell can be bounded. Here, complexity refers to how many times a grid cell is
intersected by hyperedge polygons.

In this paper, we further study these disjoint polygon hypergraph visualiza-
tions. A question left open in [9] is whether it can be beneficial to make use of
empty grid cells, not assigned to any hyperedge: Can coloring such cells allow
for more grids to result in valid visualizations, or can coloring these white cells
reduce the visual complexity? We work towards answering the latter question,
and to do so, we weaken multiple requirements with respect to the original set-
ting. First, we allow hyperedge polygons to also overlap white/empty grid cells
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not assigned to any set. Second, we consider more than two sets, namely any
constant number k ≥ 2. And third, we no longer require that each set is rep-
resented by a single (connected) polygon. The former two adaptations create a
more general problem, in which unused grid cells can be used as well. To deal
with more than two sets, we allow each hyperedge representation to be broken
up into multiple polygons via the latter adaptation. These changes allow us to
represent more hypergraphs in a grid-based disjoint polygon visualization, even
in the restricted case of only two hyperedges.

Thus, we study the shape complexity of polygons in the visualization: With
the intent of simplifying the polygons representing sets, and thereby reducing
the visual complexity, we try to minimize the number of corners of the polygons,
and call this problem MinCorner Complexity.

Adapting the Hypergraph Visualization of [9] to Our Setting. As input,
we consider a grid in which each cell is assigned to at most one hyperedge. We
say that cells assigned to a hyperedge are colored. This does not directly corre-
spond to the original setting of [9], in which each cell represents a hypergraph
vertex incident with potentially multiple hyperedges. However, our input can
be obtained by subdividing the grid of the original setting, and assigning each
hyperedge incident with a vertex to a distinct subcell (see Fig. 1c and 1d). This
leads to two subproblems: finding a good/optimal assignment of colors to grid
cells in the subdivision, and, given the assignment of colors to grid cells, color-
ing the grid to optimize the number of corners (which we called MinCorner
Complexity). In this paper, we consider only the latter subproblem, and we
leave the former question as an open problem. Notice that, especially in sparsely
colored grids, solving MinCorner Complexity will likely lead to few polygons
per hyperedge, similar to the goal of the original setting: A single polygon often
has fewer corners than the sum of corners of the colored grid cells it encom-
passes. Thus, we tangentially still work towards colored grids with few polygons,
sometimes even achieving the goal of the original setting.

Contributions. We formally define MinCorner Complexity in Sect. 2 and
introduce the necessary terminology to work towards our results. In Sect. 3 we
show that the decision version of MinCorner Complexity is NP-complete.
Section 4 presents an exact dynamic programming algorithm with exponential
running time and a polynomial-time O(OPT )-approximation algorithm. This
approximation is closer to optimal when the optimum is small. By introducing
a set of simple kernelization rules, we show that MinCorner Complexity is
fixed-parameter tractable with respect to the number of colored cells, and give
an XP-algorithm with respect to the number of corners in the solution in Sect. 5.
We conclude the paper with future research directions in Sect. 6.

The proofs for statements marked with (�) can be found in the full version [7].

2 Preliminaries

We denote the set {1, 2, . . . , n} by [n] and {n, n+1, . . . ,m} by [n,m]. Let C = [k]
be a set of k (non-white) colors, encoded as integers. We define the color 0 to
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represent white and denote with C0 := C ∪ {0} the set of colors including white.
A matrix G ∈ Cm×n

0 represents a colored m × n grid, which we call a coloring.
With Gi,·, i ∈ [m], we will address the i-th row of the coloring, with G·,j the j-th
column, and with Gi,j , i ∈ [m], j ∈ [n] one of its cells. Since we often address
rows, we will use Gi if there is no risk of confusion. To address all rows from i to
j, i ≤ j, in G, we use G[i,j],·, and analogously for columns G·,[i,j], and to access
a sub-grid we write G[i1,i2],[j1,j2]. Throughout this paper, we implicitly assume
that i and j are in the correct domain. We call a cell Gi,j colored if Gi,j �= 0, and
otherwise we say that it is white. Let K be a non-empty subset of C0. A coloring
H is a valid K -extension of G, if it respects the color of the colored cells in G,
i.e., for all colored cells Gi,j we have Hi,j = Gi,j and for the white cells we have
Hi,j ∈ K. If K is clear from context, it will be omitted. We denote with ΓK(G)
the set of all valid K-extensions and use Γ (G) as a shorthand for ΓC0(G).

Problem Description. As explained in the introduction, we aim to find exten-
sions with few corners. Roughly speaking, a corner is a 90◦- or 270◦-angled bend
of a color in the coloring, which always occurs at a center point of a 2× 2-region
of the grid. Let δc : C2×2

0 → Z
+
0 be a function that counts the number of corners

of a color c ∈ C, i.e., the c-corners, at the center of such a 2 × 2-region. When
counting c-corners, we can treat all other cells as white. We observe the following
distinct scenarios (disregarding symmetries) in a 2 × 2-region.

Above cases lead to the following definition of δc.

δc (C) = |C=c
1,1 + C=c

2,2 − C=c
1,2 − C=c

2,1|, where C=c
i,j :=

{
1 if Ci,j = c

0 otherwise

In order to count all corners of a color c on the entire grid, we iterate over all
2 × 2-regions of the grid and sum up the number of corners of c. To ensure we
do not miss corners on the boundary of the grid, we enlarge the m×n grid G in
each direction by a row/column of white cells, resulting in the (m+2)× (n+2)
grid GP . This is equivalent to initializing GP as a white (m + 2) × (n + 2) grid
and setting GP

[1,m],[1,n] = G. Observe that the added white rows/columns are
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in the row/column with index 0 and m + 1/n + 1. We use this slight abuse of
notation to ease our arguments, as this preserves the row and column indices of
G in GP . We denote by gP the analogous operation for a row g: We add one
white cell left and right of g, such that gP =

(
GP

)
i

for appropriate G and i.
Let Δc : Cm×n

0 → Z
+
0 be a function that counts all corners of color c ∈ C of

a coloring G of the m × n grid. Formally, we can define Δc as follows:

Δc(G) =
m∑

i=0

n∑
j=0

δc

(
GP

[i,i+1],[j,j+1]

)
.

The total number of corners, Δ : Cm×n
0 → Z

+
0 , is the sum of all non-white corners,

i.e., Δ(G) =
∑

c∈C Δc(G). To count the number of corners, of a particular color
or in total, between two (consecutive) rows g and h, we use Δc(g, h) and Δ(g, h),
respectively. With this we can formally define MinCorner Complexity, with
optimal extensions Γ ∗(G), and its decision variant Corner Complexity.

Definition 1. MinCorner Complexity
Given: A set C of k colors and a colored grid G ∈ Cm×n

0 .
Compute: Extension H∗ ∈ Γ ∗(G) s.t. Δ(H∗) ≤ Δ(H ′) for all H ′ ∈ Γ (G).

Definition 2. Corner Complexity
Given: A set C of k colors, a colored grid G ∈ Cm×n

0 , and an integer �.
Question: Does there exist an extension H ∈ Γ (G) with Δ(H) ≤ �?

Before we present our main results, we discuss some useful properties of Δ.

Adding, Removing, and Merging Rows. Since colorings are defined on a
grid, they can be seen as (integer) matrices. Therefore, it is natural to define
operations that modify the structure of the underlying grid rather than its col-
ors. In particular, for a coloring G, we can insert (�/�) some other colored
row/column g at row/column i, or remove (−) row/column i from G:

G �i g :=

⎛
⎝G[1,i−1],·

g
G[i,m],·

⎞
⎠ , G �i g :=

(
G·,[1,i−1] g G·,[i,m]

)
,

G(i,·)− :=
(

G[1,i−1],·
G[i+1,m],·

)
, G(·,i)− :=

(
G·,[1,i−1] G·,[i+1,m]

)
.

Lemma 1 (�). Let G ∈ Cm×n
0 , g ∈ Cn

0 , and i ∈ [m], then Δ(G) ≤ Δ(G �i g).

Lemma 2 (�). Let G ∈ Cm×n
0 and i ∈ [m], then Δ(G(i,·)−) ≤ Δ(G).

Lemmata analogous to Lemma 1 and Lemma 2 can be proved for columns.
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Fig. 2. The result of merging the two highlighted rows.

Finally, one can also merge (⊕) the colorings of two adjacent rows (see Fig. 2).
The merge operator ⊕ for row colorings g, h ∈ Cn

0 is defined as

(g ⊕ h)i :=

{
gi if gi = hi ∨ hi = 0
hi if gi = 0

, for i ∈ [n].

Observe that g ⊕ h is undefined if we have gi �= hi and neither of gi or hi is
0, for some i ∈ [n]. In that case, we set g ⊕ h = ⊥. Additionally, we define that
g ⊕ ⊥ = ⊥ ⊕ g = ⊥, and Δ(⊥) = ∞, and observe the following property.

Property 1. ⊕ is commutative and associative; the white row 0 is the identity.

Let
(
G[i,j]

)⊕, abbreviated as G⊕
[i,j], denote the row coloring after consecu-

tively merging rows i to j of G. We use G⊕ as a shorthand for G⊕
[1,m] and define

G⊕
[i,j] :=

{
Gi if i = j

G⊕
[i,j−1] ⊕ Gj otherwise.

Bounds on the Number of Corners. While finding a minimum-corner exten-
sion of a grid G is NP-hard (see Sect. 3), we can prove bounds on the number of
corners between two consecutive rows and in (extensions of) G in general.

First, it is easy to see that there are no corners between two identical row
colorings. However, distinct rows have at least 2 corners between them.

Property 2. For a row coloring g ∈ Cn
0 it holds that Δ(g, g) = 0.

Lemma 3 (�). For a coloring G ∈ Cm×n
0 , if Gi �= Gi+1 then Δ(Gi, Gi+1) ≥ 2.

Second, as a consequence of Lemma 1, we can bound the number of corners
in G from below by considering the number of corners within an arbitrary row.

Lemma 4 (�). For any coloring G ∈ Cm×n
0 and row Gi, Δ(Gi) ≤ Δ(G) holds.

Finally, we want to argue about the number of corners of a single row. Let
η : Cn

0 → Cn
0 be a function that, for a given row coloring g, extends the coloring by
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doing one sweep over the cells of g from left to right and coloring each white cell
the same color as the previous cell in the row. Additionally, we define η(⊥) = ⊥.
Intuitively, Δ(η(g)) ≤ Δ(g) holds since the number of colored rectangles in g
never increases, but might decrease when two rectangles of the same color merge.
This property generalizes further: For a single row g, η(g) is an optimal extension.

Property 3 For any g ∈ Cn
0 and h ∈ Γ (g), it holds that Δ(η(g)) ≤ Δ(h).

3 Computational Complexity of Corner Complexity

In this section, we show that Corner Complexity, the decision variant
of MinCorner Complexity, is NP-complete. Whilst NP-membership fol-
lows from the corner-counting function, we show NP-hardness using a series
of reductions. The base problem for our reduction is Restricted Planar
Monotone 3-Bounded 3-SAT (see Sect. 3.1), a variant of 3-SAT. The cen-
terpiece of this section is the reduction of the aforementioned problem to
Restricted c-Corner Complexity, a restricted variant of Corner Com-
plexity (Sect. 3.2). The final step is to reduce to Corner Complexity. The
reduction effectively uses only two colors, c and c′, which we sometimes call
(b)lue and (r)ed, respectively.

3.1 Restricted Planar Monotone (RPM) 3-Bounded 3-SAT

An instance of RPM 3-Bounded 3-SAT is a monotone Boolean formula ϕ
in 3-CNF over variables X = {x1, . . . , xn}: Each clause of ϕ has only positive
or only negative literals, forming the sets P and N of positive and negative
clauses, respectively. Furthermore, ϕ is 3-bounded : each variable appears in at
most three positive and in at most three negative clauses. Let the graph G(ϕ)
be the incidence graph of ϕ. We require that G(ϕ) has a restricted planar recti-
linear embedding. This means that we can embed G(ϕ) on a rectilinear grid of
polynomial size in the plane [5, Section 3], separating the positive from the neg-
ative clauses on different sides of the variables. See Fig. 6 for a typical restricted
planar rectilinear embedding of G(ϕ) [4].

Definition 3 RPM 3-Bounded 3-SAT
Given: A monotone Boolean 3-bounded formula ϕ and a restricted planar rec-

tilinear embedding of the associated incidence graph G(ϕ).
Question: Is ϕ satisfiable?

Darmann and Döcker [6] showed that this problem is NP-complete (even
when a variable may appear in at most p positive and at most q negative clauses).

3.2 Via Restricted c-Corner Complexity To Corner Complexity

Restricted c-Corner Complexity is a restricted variant of Corner Com-
plexity that uses only two distinct colors c and c′. Only color c can be used to
find an extension with at most � c-corners, and all grid corners must be c′-colored.
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Definition 4 Restricted c-Corner Complexity
Given: Coloring G ∈ {c, c′}m×n

0 , with c′-colored grid corners, and an integer �.
Question: Does there exist a valid extension H ∈ Γ{c,0}(G) s.t. Δc(H) ≤ �?

Since we can only color white cells in c or leave them white, the white cells
can be used to connect c-colored cells into larger shapes to reduce the number
of c-corners. The c′-colored cells can be seen as obstacles for those connections.

To show NP-hardness of Restricted c-Corner Complexity we reduce
from RPM 3-Bounded 3-SAT, and first create variable and clause gadgets.

Variable Gadget. Figure 3a shows the layout of the variable gadget, consisting
of two 3 × 3-checkerboard-like patterns on the top-left and bottom-right quad-
rants with pathways between them over the other two quadrants. In the top and
bottom row are three white cells each, which we refer to as outlets. These act
as the connection points to the clause gadgets. As each variable occurs at most
three times in both positive and negative clauses, three outlets suffice. When
considering various {b, 0}-extensions over the variable gadget, we observe that
inside a 3× 3-checkerboard-like pattern, it is beneficial to connect the blue cells
in rows or columns to reduce the number of blue corners. We can further reduce
corners by connecting a row from one 3 × 3-checkerboard-like pattern with a
column from the other, using the pathways (see Fig. 3). Then, at least one side
will not have colored outlets in a minimum {b, 0}-extension. Due to the constant
size of the gadget, we can prove this by enumerating all {b, 0}-extensions.

Lemma 5 (�). Any minimum c-corner extension H∗ ∈ Γ ∗
{c,0}(Gxi

) of variable
gadget Gxi

has (1) Δc(H∗) = 18, and (2) colored outlets on at most one side.

We want to emphasize two minimum extensions that represent the true and
false states of a variable (see Fig. 3). While other minimum extensions exist, they
can always be replaced by the true or false extensions.

Clause Gadget. Figure 4 shows the layout of a clause gadget: One blue cell with
a line of white cells to its right. These cells are surrounded by red cells except
for outlets at the bottom (positive clause) or top (negative clause), one for each
clause literal. Each outlet is connected by a vertical pathway to an outlet of the
corresponding variable gadget. Any minimum blue corner extension of a clause

Fig. 3. A variable gadget and its true and false state, coloring different outlets.
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Fig. 4. A positive clause gadget.

gadget contributes at most four corners, as it can leave all white cells white.
If the outlet of a variable gadget is colored, we can extend the clause coloring
as in Fig. 5 to reduce the number of corners by two. We cannot eliminate more
than two blue corners, as the two blue corners left of the initial blue cell always
remain. Lastly, we cannot remove any corner if no outlet is colored.

Lemma 6 (�). Any minimum c-corner extension H∗ ∈ Γ ∗
{c,0}(GC) of a clause

gadget GC contributes either (1) two c-corners if it is connected to at least one
colored outlet of a variable gadget, or (2) it contributes four c-corners.

Complete Construction. For a given instance (ϕ,G(ϕ)) of RPM 3-Bounded
3-SAT we construct a coloring G for a bounded grid as shown in Fig. 6.

To do so, we first create a variable gadget for each variable xi ∈ X and place it
at the rectangular vertex representing xi in G(ϕ). Next, we create a clause gadget
for each clause C ∈ ϕ and place it at the position of C in G(ϕ). The gadgets
determine the size of our grid and we color the remaining area red while ensuring
that the vertical pathways between clause gadgets and variable gadgets remain
white. This process takes polynomial time and results in a polynomial-sized grid
with grid corners colored red. The outcome is a valid instance (G, 18n + 2m) of
Restricted c-Corner Complexity, for c = (b)lue and c′ = (r)ed.

To show that this yields a correct reduction, we observe in one direction that,
starting with a truth assignment T over X that satisfies every clause in ϕ, we
can color the variable gadgets according to the states in Fig. 3. As ϕ is satisfied,
we have for each clause C a variable xi that satisfies C. We then color the
pathway from the single blue cell of GC to the outlet of Gxi

. Due to Lemma 5,
each variable gadget admits 18 blue corners. As at least one outlet is colored for
each clause gadget, Case (1) of Lemma 6 applies and thus each clause gadget
contributes two additional blue corners, resulting in 18n + 2m corners.

For the other direction, Lemma 5 tells us that in any witness extension the
variable gadget has at least 18 blue corners and blue outlets at most on one side.

Fig. 5. Connecting the blue clause gadget cell with a blue variable gadget outlet. (Color
figure online)
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Thus, each clause gadget may contribute only two additional blue corners, which
due to Lemma 6, occurs only if each clause gadget is connected to a colored outlet
of a variable gadget. Therefore, we can create a satisfying truth assignment T
for ϕ that mimics the variable gadget state for xi by setting T (xi) = true, if Gxi

has a colored outlet at the top (or no outlet at all), and T (xi) = false otherwise.

Theorem 1 (�). Restricted c-Corner Complexity is NP-hard.

To complete the overall reduction, we introduce the notion of internal cor-
ners, which are all corners except those at the corner of the grid in G. We denote
with Δ−

c : Cm×n
0 → Z

+
0 the number of internal corners for a color c ∈ C, which is

Δ−
c (G) := Δc(G) −

∑
i∈{0,m}
j∈{0,n}

δc

(
GP

[i,i+1],[j,j+1]

)
.

Here, Δ− is defined analogously to Δ. For two colors c and c′, we can see that in
any {c, c′}-extension of G every internal c-corner is also an internal c′-corner and
vice versa, since there are no white cells. This brings us to Property 4, which we
use to prove Lemma 7: The number of corners of a coloring G does not increase
if we color all white cells with the color that has more corners in G.

Property 4. Any {c, c′}-extension H of G ∈ {c, c′}m×n
0 has Δ−

c (H) = Δ−
c′(H).

x1 x2 x3 x4 x5

¬x2 ∨ ¬x3 ∨ ¬x4

¬x1 ∨ ¬x4 ∨ ¬x5

x1 ∨ x2 ∨ x3 x3 ∨ x4 ∨ x5

x1 ∨ x3 ∨ x5

Fig. 6. Construction of coloring G from a monotone 3-bounded formula ϕ.



144 T. Depian et al.

Lemma 7 (�). Let G ∈ {c, c′}m×n
0 be a coloring in which all grid corners are

colored in c′. There exists an extension H ∈ Γ{c,c′}(G) s.t. Δ(H) ≤ Δ(G).

To show NP-hardness of Corner Complexity, we make use of Lemma 7.
Take an instance (G, �) of Restricted c-Corner Complexity and define the
instance (G, 2�+4) of Corner Complexity. Correctness follows by pairing off
the internal c- and c′-corners in a completely colored grid (Property 4) in addition
to the four c′-corners we have in Restricted c-Corner Complexity at the
corners of G. For NP-membership, notice that Δ is evaluated in polynomial time.

Theorem 2 (�). Corner Complexity is NP-complete, even for k = 2.

4 Computing Low-Complexity Extensions

Despite the hardness result in Sect. 3, our goal is still to compute extensions with
few corners. While the arithmetically simple corner counting function naturally
lends itself to integer linear programming to find an optimal solution (see the
full version [7]), in this section, we focus on dynamic programming (DP).

4.1 Exact Dynamic Programming Algorithm

A core observation utilized by our exact DP-algorithm is that once a 2×2-region
is assigned a fixed coloring, the number of corners at the center of the 2×2-region
will not change again. This property can be scaled up for rows: The number of
corners between two consecutive rows is fixed once a coloring has been assigned.

For a coloring G ∈ Cm×n
0 with C = [k], we define E : Cn

0 × [m + 1] → Z
+
0 as

our dynamic programming table which stores the minimum number of corners
for the top i rows, given a row extension g ∈ Γ (Gi) of the i-th row:

E(g, 1) = Δ(0, g), (1)

E(g, i) = min
h∈Γ (Gi−1)

{
E(h, i − 1) + Δ(h, g)

}
. (2)

Lemma 8 (�). For any G ∈ Cm×n
0 with H∗ ∈ Γ ∗(G), E(0,m + 1) = Δ(H∗).

In the base case (i = 1), we count the corners between a row of white cells
and the first row, which is fixed to coloring g. In all other cases (i > 1), the
procedure examines each entry for the previous row in E. The entry that, when
combined with g, results in the minimum number of corners is chosen. Finally,
observe that E(0,m+1) then stores Δ(H∗) by finishing the evaluation of (H∗)P .

For each of the m rows, there are at most (k+1)n extensions, and every com-
bination of two rows is checked in O(n) time per pair. As the recursion references
only the previous row, at most two rows at a time need to be stored in E.

Lemma 9 (�). For any G ∈ Cm×n
0 with C = [k], E(0,m + 1) can be computed

in O((k + 1)2nmn) time using O((k + 1)n) space.

By additionally storing per table entry the previous row colorings that led
to the minimum number of corners, we enable the DP-algorithm to output a
minimum corner extension. This increases space usage to O((k + 1)nmn).
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4.2 Approximation Algorithm

Using an alternative dynamic programming algorithm we can approximate the
optimal solution in polynomial time. We leverage the observation that in an
optimal extension H∗ ∈ Γ ∗(G), there are often identical consecutive rows.

Let H ′ represent the coloring obtained by retaining only one representative
row from each set of identical consecutive rows in H∗. By Lemma 2, we know
that removing rows does not increase the number of corners. In H ′, any two
consecutive rows cannot be identical, and thus, there must be at least two corners
between any pair of consecutive rows in accordance to Lemma 3. Consequently,
H ′ may only have at most 1

2Δ(H∗) rows in total. Furthermore, each row by itself
can have only Δ(H∗) corners, as per Lemma 4.

The primary objective of our approximation algorithm is to identify a parti-
tion of all rows into sets of consecutive rows that can be merged. By the argu-
ments above, we will find a partition into at most 1

2Δ(H∗) sets, each of which
consists of mergeable rows. Rows in such a set can hence be colored identically,
with at most Δ(H∗) corners, leading to at most 1

2Δ(H∗)2 corners in total.
Let G ∈ Cm×n

0 be a coloring of C = [k]. We define A : [0,m] → Z
+
0 as our

dynamic programming table, which for each row i ∈ [m] stores an approximation
of the number of corners for a minimum corner extension of rows 1 to i:

A(0) = 0, (3)

A(i) = min
j∈[0,i−1]

{
A(j) + Δ

(
η

(
G⊕

[j+1,i]

))}
. (4)

Lemma 10 (�). For G ∈ Cm×n
0 with H∗ ∈ Γ ∗(G), Δ(H∗) ≤ A(m) ≤

1
2 (Δ(H∗))2.

Each entry in the dynamic programming table can be computed in O(mn)
time by iteratively merging the rows inside the min-function of Eq. 4.

Lemma 11 (�). For any G ∈ Cm×n
0 , A(m) can be computed in O(m2n) time

using O(n + m) additional space.

5 Parameterized Complexity

We now investigate the complexity of MinCorner Complexity with respect
to the number of colored cells, and to the number of corners in the solution.

5.1 FPT in the Number of Colored Cells due to Kernelization

We propose a kernelization procedure for our problem that involves the exhaus-
tive application of the following two kernelization rules on a coloring G ∈ Cm×n

0 .

Rule 1: If there is an empty row or column, remove it from the grid.
Rule 2: If there are two consecutive rows or columns that only contain cells of

a singular color c ∈ [k] and white (0), merge them.
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We denote the resulting coloring by G′. To show that both rules are safe, we
prove that the number of corners in optimal solutions of G and G′ are equal.

To show the safety of Rule 1, we can utilize Lemma 2, which states that
removing rows does not increase corners, and Property 2, which observes that
there are no corners between two identical rows. Safety of Rule 2 can be shown
by similar, slightly more sophisticated arguments.

Lemma 12 (�). Kernelization rules 1 and 2 are safe.

Trivially, each rule application takes polynomial time and can be applied at
most a polynomial amount of times. Thus, the entire kernelization procedure
runs in polynomial time. Furthermore, the size of the kernel can be expressed
by a polynomial on the number of colored cells in G. Specifically, Rule 1 ensures
that every row/column has a colored cell. Furthermore, let c∗ ∈ C be the color
that has the most rows and columns where it occurs as a singular color (besides
white), and let C′ = C\{c∗}. If there are r C′-colored cells, then the rows/columns
containing these cells form boundaries between the rows/columns with c∗-colored
cells merged by Rule 2: For two colors, the kernel size depends on only one color.

Lemma 13 (�). Exhaustively applying Rules 1 and 2 on a coloring G ∈ Cm×n
0 ,

with r C′-colored cells, results in a kernel of size at most O(r) × O(r).

By applying the exact DP-algorithm from Sect. 4.1 to the obtained kernel,
we show that MinCorner Complexity is FPT in the number of colored cells
of G.

5.2 XP in the Solution Size

We construct an XP-algorithm, which decides, for a given coloring G ∈ Cm×n
0

with C = [k], and an integer � as parameter, whether there exists an extension
H ∈ Γ (G) such that Δ(H) ≤ �. The algorithm is a modification of the algorithm
presented in Sect. 4.1. Utilizing Lemma 4, we generate only row extensions for
each row of G, which, by themselves, will not admit more than � corners.

Lemma 14 (�). Let Γ ′(g) be the set of all possible extensions of g ∈ Cn
0 of

C = [k] such that Δ(h) ≤ � for each h ∈ Γ ′(g). Then |Γ ′(g)| ≤ (n(k + 1))O(�).

This leads to the following running time and space requirement.

Lemma 15 (�). Deciding whether G ∈ Cm×n
0 of C = [k] admits an extension H

with Δ(H) ≤ � can be done in (n(k + 1))O(�)m time using (n(k + 1))O(�) space.

This solves the problem in XP-time: (nm)λ(�) for some computable function λ.
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6 Conclusion

We studied the combinatorial properties of grid-based hypergraph visualiza-
tions with disjoint polygons, by trying to minimizing the visual complexity. We
assumed as input an assignment of at most one hyperedge per grid cell, which
differs from the standard mapping between set elements and grid cells in [9]. We
leave finding such an assignment, that minimizes the number of polygon corners,
as an open problem. Furthermore, when representing a hyperedge by multiple
polygons, a natural optimization goal is to minimize the number of polygons per
hyperedge. While minimizing shape complexity may incidentally result in few
polygons, the complexity of minimizing the number of polygons remains open.

Acknowledgements. The authors would like to thank anonymous referees for their
careful reviews and pointing us to [6].
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Abstract. Semantic word clouds visualize the semantic relatedness
between the words of a text by placing pairs of related words close to
each other. Formally, the problem of drawing semantic word clouds cor-
responds to drawing a rectangle contact representation of a graph whose
vertices correlate to the words to be displayed and whose edges indi-
cate that two words are semantically related. The goal is to maximize
the number of realized contacts while avoiding any false adjacencies. We
consider a variant of this problem that restricts input graphs to be lay-
ered and all rectangles to be of equal height, called Maximum Layered
Contact Representation Of Word Networks or Max-Layered-
Crown, as well as the variantMax-IntLayeredCrown, which restricts
the problem to only rectangles of integer width and the placement of
those rectangles to integer coordinates.

We classify the corresponding decision problem k-IntLayered-
Crown as NP-complete even for triangulated graphs and k-Layered-
Crown as NP-complete for planar graphs. We introduce three algo-
rithms: a 1/2-approximation for Max-LayeredCrown of triangulated
graphs, and a PTAS and an XP algorithm for Max-IntLayeredCrown
with rectangle width polynomial in n.

1 Introduction

Word clouds can be used to visualize the importance of (key-)words in a given
text. Usually, words will be scaled according to their frequency and, in case of
semantic word clouds, arranged in such a way that closely related words are
placed closer together than words that are unrelated. There are multiple tools
like Wordle1 [12], which was launched in 2008 by Jonathan Feinberg, that allow
for automized drawing of classical word clouds, i.e., word clouds that disregard
semantic relatedness; see Fig. 1 for an example.

However, classical word clouds have certain disadvantages, as they are fre-
quently misinterpreted. This has been analyzed in a survey conducted by Viegas
et al. [12]: different colors and positioning of words give the impression to bear

1 At the time of writing, the tool (usually found at http://www.wordle.net/) is not
available, but the creator states on their website (https://mrfeinberg.com/) that
they have “hopes to bring it back to life”.
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Fig. 1. Randomly arranged word cloud (left) and semantic word cloud (right), gener-
ated using the first chapter of “Alice’s Adventures in Wonderland” by Lewis Carroll.

meaning, even if they don’t. For this reason, it makes sense to pay special atten-
tion to semantic word clouds, which resolve these shortcomings by placing related
words closely together and sometimes using color to indicate, for example, clus-
ters of semantically related words. Semantic relatedness, in this case, can be
measured by how often two words occur together in the same sentence [3].

Tools to generate semantic word clouds are, however, not as widely avail-
able. One such tool can be found online at http://wordcloud.cs.arizona.edu that
implements different algorithms for semantic word clouds [2,3,5]. A semantic
word cloud generated by the tool is shown in Fig. 1. In the given example, the
placement of words was calculated using cosine similarity. Compared to the
classical word cloud generated using the same tool, with the same coloring for
clusters, but a greedy, randomized approach to place words, the advantages of
arranging words semantically become quite clear.

Problem Statement. To formalize the problem of drawing semantic word clouds,
Barth et al. [2] introduced the problem Contact Representation Of Word
Networks (Crown). Given a graph G = (V,E), where every vertex vi of G
corresponds to a word of width wi and height hi, and every (weighted) edge
between two vertices indicates the level of semantic relatedness between the
corresponding words, the goal is to draw a contact representation where each
vertex vi is drawn as an axis-aligned rectangle of width wi and height hi such
that bounding boxes of semantically related words touch.

In this paper, we consider a more restricted variant of the problem, which we
will call (Max-)LayeredCrown, that has been introduced by Nöllenburg et
al. [10]. Here, the input graph is planar and the vertices are assigned to layers.
Furthermore, all bounding boxes have the same height. The goal is to maximize
the number of contacts between semantically related words, while words that
are not semantically related are not allowed to touch.

More formally, the problem is defined as follows. Let G = (V,E) be a planar
vertex-weighted layered graph with L layers, i.e., each vertex is assigned to one
of L layers. The order of vertices within a layer is fixed, i.e., each vertex vi,j can
be identified by its layer 1 ≤ i ≤ L and its position j within the layer. Edges
can only exist between neighboring vertices vi,j , vi,j+1, on the same layer and

http://wordcloud.cs.arizona.edu
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Fig. 2. Internally triangulated graph with 3 layers (left) and a contact representation
(right).

between vertices on adjacent layers. Like Nöllenburg et al., we consider the case
that the edges are unweighted. To each vertex v we assign an axis-aligned unit-
height rectangle R(v) with width w(v), given by the weight of the vertex. We will
also use the notation Ri,j = R(vi,j) and wi,j = w(vi,j); see Fig. 2. The goal is to
calculate the position xi,j for each vertex vi,j , where xi,j denotes the x-coordinate
of the bottom left corner of Ri,j , in such a way that rectangles do not overlap
except on their boundaries. We call such an assignment a representation. Two
rectangles R(v) and R(u) touch if their intersection is a line segment of length
ε > 0. In this case, we say that R(v) and R(u) are in contact. An edge {v, u} is
realized if Rv and Ru are in contact. We call a contact horizontal if Rv and Ru

are neighbors on the same layer and vertical if Rv and Ru are on adjacent layers.
Contacts between rectangles whose vertices are not adjacent are not allowed and
are called false adjacencies. Representations with false adjacencies are invalid;
otherwise, they are valid. Gaps between vertices vi,j , vi,j+1 on the same layer are
allowed.

The maximization problem Maximum Layered Contact Representa-
tion of Word Networks (Max-LayeredCrown) is to find a valid rep-
resentation for a given graph G such that the number of realized contacts is
maximized. The respective decision problem Layered Contact Represen-
tation of Word Networks (k-LayeredCrown) is to decide whether there
exists a valid contact representation that realizes at least k contacts. Many fonts
are monospaced, i.e., all letters and characters occupy the same amount of hori-
zontal space. Thus, we also consider the further restriction that rectangles may
only be of integer width and may only be placed with their lower left corner on
integer coordinates. This implies that two rectangles are in contact if and only if
the intersection of their boundaries is a line segment of positive integer length.
We call those problems Max-IntLayeredCrown and k-IntLayeredCrown.

For information about graph drawing and parameterized complexity in gen-
eral, we refer to books [4,7,8,11].

Related Work. Barth et al. [2] have shown that Crown is strongly NP-hard even
when restricted to trees and weakly NP-hard even when restricted to stars, but
can be solved in linear time on irreducible triangulations. They also provided
constant-factor approximation algorithms for several graph classes like stars,
trees, and planar graphs. These were improved by Bekos et al. [5] and partially
implemented and compared to other algorithms by Barth et al [3].
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Another variant of Crown, called Hier-Crown, restricts the input to be
a directed acyclic graph with a single source and a plane embedding. Hier-
Crown can be solved in polynomial time, but can be shown to become weakly
NP-complete if rectangles are allowed to be rotated [2].

Barth et al. [2] further introduced another variant called Area-Crown,
where the optimization goal shifts from maximizing rectangle contacts to mini-
mizing the area of a bounding box containing the contact representation. They
show that this problem is NP-hard, even if restricted to paths.

Nöllenburg et al. [10] introduced Max-LayeredCrown, but they only con-
sidered triangulated graphs. They gave a linear-time algorithm for triangulated
graphs with only 2 layers and proposed an ILP-formulation for triangulated
graphs with more than 2 layers. They further showed how to solve Area-
LayeredCrown in polynomial time with a flow formulation.

Espenant and Mondal [9] study StreamTables, where one seeks to visualize
a matrix such that each cell is drawn as a rectangle of a specified area, cells in the
same row have uniform height and align horizontally, while maximizing contacts
and/or minimizing excess area. Their model is similar to LayeredCrown on
grids, but false adjacencies are not forbidden, point contacts count as realized
edges, and rows can generally be permuted.

Our Contribution. In this work, we study the computational complexity of
IntLayeredCrown and algorithms for Max-LayeredCrown and Max-Int-
LayeredCrown. In Sect. 2, we classify k-IntLayeredCrown as an NP-
complete problem even for triangulated graphs, using a reduction from Planar
Monotone 3-Sat. We will then adjust the proof to show NP-completeness for
k-LayeredCrown for planar graphs. In Sect. 3, we present a 1/2-approximation
for Max-LayeredCrown on triangulated graphs (Sect. 3.1) and formulate a
dynamic program for Max-IntLayeredCrown that is an XP algorithm if the
maximum rectangle width is polynomial in n (Sect. 3.2). Finally, we combine
the ideas of the two algorithms to formulate a polynomial-time approximation
scheme for Max-IntLayeredCrown if the maximum rectangle width is poly-
nomial in n (Sect. 3.3). We conclude with a list of research questions in Sect. 4.

2 NP-Completeness of k-INTLAYEREDCROWN

In this section, we prove that k-IntLayeredCrown is NP-complete. We first
show that k-IntLayeredCrown lies in NP.

Lemma 1. k-IntLayeredCrown lies in NP.

Proof. For a given contact representation of a layered graph G, one can verify
in polynomial time if the representation is valid and whether at least k contacts
are realized. Thereby, k-IntLayeredCrown is a member of the class NP. ��

We prove NP-hardness by reducing from Planar Monotone 3-Sat, which
is NP-complete [6]. Let B be a boolean formula in conjunctive normal form
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(CNF) and X = {x1, . . . , xn} its variable set. That is, B = C1 ∧ C2 ∧ · · · ∧ Cm

is a conjunction of clauses Ci, where a clause is a disjunction of literals and a
literal is defined as either x or x for a variable x ∈ X. In Planar Monotone
3-Sat, all clauses consist of at most three literals and are either positive (they
only contain positive literals) or negative (they only contain negative literals),
and the variable-clause incidence graph can be drawn such that (i) it is crossing-
free; (ii) all variable vertices lie on the x-axis; (iii) all positive clause vertices lie
above the x-axis; and (iv) all negative clause vertices lie below the x-axis.

We construct a vertex-weighted layered graph G whose contact representa-
tion closely resembles the rectilinear representation of B. To this end, we use
gadgets to represent variables and clauses, as well as an additional gadget to
split/duplicate variable values. Just as in the rectilinear representation, vertices
representing variable gadgets are aligned horizontally, and positive clauses are
drawn above, while negative clauses are drawn below the variable gadgets. The
goal is for G to have a valid contact representation if and only if B is satisfiable.
We choose k as the maximum number of possible contacts in our construction.

Variable Gadget. A variable gadget consists of five vertices vl1 , vl2 , vm, vr2 , vr1

that each have a rectangle width of 1 on layer 1, as well as three vertices ul, um, ur

on layer 0. The rectangles R(ul) and R(ur) both have width 2, R(um) has
width 1; see Fig. 3. As edges between the layers we add ulvl1 , ulvl2 , ulvm, ulvr2 ,
umvr2 , urvr1 , and urvr2 . Note that there is no edge between vm and um, and
the corresponding rectangles are therefore not allowed to touch. We want to use
this to create a gap in each layer, which will allow us to assign opposite variable
values above and below the gadget, thus realizing the notion of positive clauses
above and negative clauses below the variable gadgets.

For the gadget to work as intended we need additional walls on either side.
Walls are constructed from three rectangles of width 1 per layer. Edges are added
in such a way that moving any wall rectangle to either side reduces realized
contacts by at least one and/or introduces false adjacencies; see Fig. 4a.

To determine variable values, we add vertices vx and ux of rectangle width 3
to layers 2 and −1, respectively, with edges to all vertices of the variable gadget
and the innermost wall vertices on the adjacent layers. Since um and vm are not
allowed to touch, they split the rectangles on layers 0 and 1 into two blocks of
rectangles of width 3 and 2, respectively. To maximize contacts, both vx and ux

have to realize vertical contacts to the larger block of width 3 and a horizontal
contact to a wall vertex. Since the blocks of width 3 on layers 0 and 1 are in
contact with opposite walls, so are vx and ux. We interpret a variable assignment
as follows: if vx realizes contacts to vl1 and vl2 , and ux realizes a contact to ur,
the assigned value of the variable is true, otherwise false; see Figs. 3 to 3c.

Note that ul could also realize contacts to vl2 , vm, um instead of vl1 , vl2 and
a wall vertex; see Fig. 3d. However, this does not change the position of ux and
can therefore be disregarded. The same holds for vertices vr2 , vr1 , which could
be moved to the left by one without changing the number of realized contacts;
see Fig. 3e. Every other valid placement of vertices results in the variable gadget
to be wider and thus realize less contacts; see for example Fig. 3f.
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Fig. 3. (a) Contact representation and (b) underlying graph for a variable gadget
with variable assignment true; (c) variable gadget with variable assignment false;
(d, e) alternative representations with the same number of realized contacts; (f) valid
representation realizing fewer contacts.

Fig. 4. (a) Moving wall vertices leads to false adjacencies (red curve) and (b) propa-
gating variable values. (Color figure online)

In order to use variable values within multiple clauses, we will have to prop-
agate them; see Fig. 4b. We do so by adding alternating rows of five vertices
with rectangle width 1 and rows of three vertices of width 2, 1, and 2, essentially
repeating the pattern we used for the variable gadget. The difference is that this
time the middle rectangles have edges to their counterparts in adjacent rows and
are therefore allowed to touch. Thus, the gap stays as assigned by the variable
gadget. We can proceed to add vertices vx and ux as before.

Clause Gadget. Let C be a clause that contains variables xa, xb, xc in B. Recall
that all clauses above the variable layer are positive while all clauses below the
variable layer are negative, and the variable gadgets propagate the positive vari-
able assignment to the top and the negated variable assignment to the bottom.

Assume that xa, xb, xc occur in this order. To determine whether a clause
is satisfied, we use a slider vertex vs. The slider shall realize 4 contacts if the
variable assignments satisfy C, and 3 contacts otherwise. The slider has rectangle
width 2 and can therefore only be in contact with one variable gadget at a time.

We describe the clause gadget for the case that C is a negative clause; see
Fig. 5. The other case is symmetric. Suppose that the propagation of the variable
assignments for xa, xb, xc ends with vertices ua, ub, uc on layer i. On layer i − 1,
we place vs and continue the outermost walls with two vertices of rectangle



On Layered Area-Proportional Rectangle Contact Representations 155

Fig. 5. Contact representation (top) and underlying graph (bottom) for a clause gad-
get, including multiple examples of placements for vs. Unrealized edges between vs and
vertices of adjacent layers are omitted for readability.

width 3. On layer i − 2, we add vertices vl1 , vl2 , vt1 , vb1 , vt2 , vb2 , vt3 , vb3 , vr1 , vr2

in this order to close the bottom of the gadget. The rectangles Rl1 , Rl2 , Rr1 , Rr2

have width 1; Rt1 , Rt2 , Rt3 have width 2. The width of Rb1 , Rb2 , Rb3 is set such
that the remaining space is filled and vt1 , vt2 , vt3 are each placed on the leftmost
position underneath a variable gadget, i.e., on the side of the positive-valued
variable propagation. Edges exist from vs to most vertices of the gadget on
adjacent layers such that the triangulation is preserved and vs can be placed
freely along the whole width of the gadget. For the exact edges, refer to Fig. 5.

The only ways for vs to realize four contacts are the following. (i) it touches
vt1 and vb1 at the bottom, the wall at the left, and ua at the top, if xa has a
negative variable assignment; (ii) it touches vb1 and vt2 at the bottom, ub and
the wall left of ub at the top, if xb has a negative variable assignment; or (iii)
it touches vb2 and vt3 at the bottom, uc and the wall left of uc at the top, if xc

has a negative variable assignment. Thus, vs only realizes four contacts if the
variable assignment satisfies C.

Split Gadget. To duplicate variable values that occur in multiple clauses, we use
a split gadget; see Fig. 6. Let xa be a variable such that its variable assignment
ends at a vertex va. Recall that all clauses above the variable layer are positive
while all clauses below the variable layer are negative. Assume that va lies above
the variable layer, so the variable assignment has to be propagated to a positive
clause; the other case is symmetric. In the split gadget, we want to split the
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Fig. 6. (a) Contact representation and (b) underlying graph for a split gadget.

variable assignment of xa such that there are now two vertices v′
a and v′′

a that
realize the variable assignment of xa. To this end, we create a second tunnel to
the right of the tunnel that va lies in and use a horizontal bar vm that makes
sure that v′′

a must have variable assignment false if va has variable assignment
false; see Fig. 6. Note that the construction also allows v′′

a to have variable
assignment false if va has variable assignment true. However, this is not a
problem since it will propagate the variable assignment to a positive clause;
hence, this cannot satisfy a clause that should be unsatisfied due to the variable
assignment.

Combining the Gadgets. Combining these gadgets, we construct a vertex-
weighted layered graph G for the planar monotone boolean formula B. Let h
be the number of layers of G, and let w be the minimum width of G (i.e., the
sum of rectangle widths among all layers). Obviously, any layered contact repre-
sentation of G has at most w · h contacts. To make sure that the representation
of G has to be drawn inside a designated bounding box of width w and height
h, we add a frame around G consisting of walls of width w · h on the left and
right and w · h stacked rectangles that span the whole width of G at the top
and bottom, creating a graph G+. Moving any rectangle of G outside of the
designated bounding box also moves parts of the frame and thus removes at
least w · h contacts. We choose the number of desired contacts k as the number
of contacts that would be realized if every single gadget maximizes its number
of contacts. A full example can be seen in Fig. 7.

Assume that we have a solution for B. For each variable, we draw the corre-
sponding variable gadget of G+ such that it represents the variable assignment of
the solution, and we propagate the variable assignments along the tunnels and
split gadgets. Since the variable assignment satisfies all clauses, we can place
vs at each clause such that it has 4 contacts, thus maximizing the number of
contacts at every gadget and obtaining k contacts in total.

For the other direction, assume that we have a drawing of G+ that realizes
k contacts. From each variable gadget, we can read the corresponding variable
assignment. Since each clause gadget must have vs in a position such that it has
four contacts (otherwise, there cannot be k contacts in total), every clause has
a satisfied literal. Together with Lemma 1, this proves the following theorem.
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Fig. 7. Contact representation for the boolean formula B with variable set
{x1, x2, x3, x4}, clauses {x1, x2, x3}, {x1, x3, x4} and {x1, x3, x4} and variable assign-
ment x1 = false, x2 = true, x3 = true, x4 = false (Edges between vs and above/be-
low layer left out for readability purposes)..

Fig. 8. If non-integral positions are allowed, then variable assignments may flip.

Theorem 1. k-IntLayeredCrown is NP-complete for internally triangulated
graphs.

Note that the proof cannot be immediately extended to k-LayeredCrown,
as placing rectangles on non-integer positions might lead to situations where a
variable assignment flips; see Fig. 8. However, if we drop the requirement that the
graph is triangulated, then we can adjust the construction by removing unwanted
contacts from the graph, which leads to the following theorem.

Theorem 2. k-LayeredCrown is NP-complete.

3 Parameterized and Approximation Algorithms

In this section, we provide parameterized and approximation algorithms. As a
warmup (Sect. 3.1), we first describe a 1/2-approximation for Max-Layered-
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Crown on triangulated graphs. We then focus on Max-IntLayeredCrown
with the additional constraint that the maximum rectangle width is at most
polynomial in n. Note that practical instances of Max-IntLayeredCrown
will always have bounded maximum rectangle width, as each rectangle corre-
sponds to a word, and words have an upper limit of letters in most languages (in
fact, the longest word in an English dictionary, has 45 letters: pneumonoultra-
microscopicsilicovolcanoconiosis). We first describe an XP-algorithm based on a
dynamic program (Sect. 3.2), which we then use to obtain a PTAS (Sect. 3.3).

3.1 1/2-Approximation Algorithm for MAX-LAYEREDCROWN

We show that a 1/2-approximation exists by describing an algorithm that uses
the following Lemma, proposed by Nöllenburg et al. [10].

Lemma 2 ([10], Theorem 2). A contact-maximal valid representation for a
given triangulated 2-layer graph can be computed in linear time.

In the following theorem, we split a k-layer graph into many 2-layer graphs
and solve these optimally with Lemma 2. Half of these 2-layer graphs are vertex-
disjoint, so their optimal solutions can be combined to a valid solution of the
input graph.

Theorem 3. Max-LayeredCrown on triangulated graphs admits a 1/2-
approximation in linear time.

Proof. Let G be an L-layered graph. For i = 1, . . . , L−1, let Ai be the subgraph
of G induced by the vertices on layers i and i + 1. We construct two groups of
subgraphs Geven =

⋃
i even Ai and Godd =

⋃
i odd Ai; see Fig. 9.

We solve every subgraph Ai, i = 1, . . . , L − 1 optimally using Lemma 2. Let
ALGi be the number of contacts realized for Ai. Let Γ∗ be an optimal drawing of
G that realizes OPT contacts, and let OPTi be the number of contacts realized
for Ai in Γ∗. Since the 2-layer algorithm yields an optimal solution, it holds that
ALGi ≥ OPTi for i = 1, . . . , L−1, so

∑L−1
i=1 ALGi ≥ ∑L−1

i=1 OPTi ≥ OPT. Note
that any two subgraphs Ai, Aj ∈ Geven are vertex-disjoint. Hence, we can obtain
a valid solution for Geven with ALGeven =

∑
i:Ai∈Geven

ALGi contacts by com-
bining the computed solutions for the corresponding subgraphs. Analogously, we
can obtain a valid solution for Godd with ALGodd =

∑
i:Ai∈Godd

ALGi contacts.
We get a 1/2-approximation by choosing the contacts realized by the instances
corresponding to the larger of both sums: max{ALGGeven ,ALGGodd} ≥ OPT /2.

For the running time, note that every vertex lies in at most two subgraphs,
and Lemma 2 solves each subgraph optimally in time linear in its size. ��

3.2 XP-Algorithm for MAX-INTLAYEREDCROWN

We now use a dynamic programming approach to solve Max-IntLayered-
Crown with bounded maximum rectangle width optimally (Fig. 10).
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Fig. 9. 2-layered sub-graphs split into
two groups Godd (blue) and Geven

(green). (Color figure online)

Fig. 10. Three cuts and respective k-
tuples of an optimal solution of a 3-
layered graph.

Theorem 4. Max-IntLayeredCrown is solvable in time O(nW )L, where W
is the maximum rectangle width. If W ∈ poly(n), Max-IntLayeredCrown lies
in XP when parameterized by the number of layers L of the input graph.

Proof. Let G be an L-layered vertex-weighted graph with maximum weight W .
We want to define subproblems based on vertical cuts through integer x-
coordinates; see Sect. 10. At each such cut through any valid representation,
we can obtain the following information: (i) Which vertex has been cut at each
layer (if any)? (ii) At what length was the corresponding rectangle cut (i.e., how
much of the rectangle has already been drawn on the left of the cut)? (iii) If no
vertex has been cut, which vertex will be drawn next on the specific layer?

To formalize this, we use a tuple (v, l) for each layer, where v denotes the
vertex that is being cut and l denotes the length of the rectangle to the left
of the cut. The tuple (v, 0) indicates that v is next in line but has not yet
been placed, while (nil, 0) means that there is no more vertex to be drawn on
the corresponding layer. For every possible cut, we therefore obtain an L-tuple
[(v1, l1), (v2, l2), . . . , (vL, lL)]. As each rectangle has at most width W , there are
no more than ((n + 1) · (W + 1))L such L-tuples. We store in an L-dimensional
table D for each L-tuple the maximum number of contacts that can be achieved
to the right of the corresponding cut.

We set D[(nil, 0), . . . , (nil, 0)] = 0, which corresponds to the right boundary
of the drawing. Consider any L-tuple T and its corresponding cut. To calculate
D[T ], we have to look at each cut T ′ through a solution one coordinate to the
right. Consider any layer i and the corresponding tuple Ti = (vi, li); see Fig. 11.
If T cuts through the middle of vi, i.e., 0 < li < w(vi), then this rectangle has
to continue, i.e., T ′

i = (vi, li + 1). If T cuts through no vertex, i.e., li = 0, then
we can either place vi, i.e., T ′

i = (vi, 1), or not place it yet, i.e., T ′
i = (vi, 0).

Finally, if T touches the right side of vi, i.e., li = w(vi), then we can either
immediately place the next vertex v′

i (if it exists), i.e., T ′
i = (v′

i, 1), or not place
it yet, i.e., T ′

i = (v′
i, 0). Doing this for every layer, we can find each possible next

cut. For each such cut, we calculate whether it is feasible, i.e., whether the newly
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Fig. 11. Possible assignments for an L-tuple at x-coordinate 4 following an assignment
of [(v1, 2), (v5, 1), (v7, 2)] at x-coordinate 3.

placed vertices have any false adjacencies. If it is not feasible, then we discard it;
otherwise, we count how many edges are realized by the newly placed vertices,
and thus calculate D[T ] from D[T ′]. We can obtain the optimum solution for G
from D[(v1, 0), . . . , (vL, 0)], where vi is the leftmost vertex of layer i = 1, . . . , L.

All in all, this leaves us with at most (n · (W +1)+1)L different table entries
that each take O(2L) time to be calculated. The algorithm thus runs in O(nW )L

time. To obtain the solution instead of the number of contacts, we can use an
additional lookup table in the same time. ��

3.3 PTAS for MAX-INTLAYEREDCROWN

In the following, we use Baker’s technique [1] to combine the ideas of the previ-
ously described 1/2-approximation (Sect. 3.1) and dynamic program (Sect. 3.2).

Lemma 3. For every integer � > 0, Max-IntLayeredCrown admits a (1 −
1
� )-approximation in O(nW )�+1 time, where W is the maximum rectangle width.

Proof. If � ≥ L, then we can solve the problem optimally in O(nW )L time using
Theorem 4. Otherwise, similar to Theorem 3, we split the graph into multiple
subgraphs of � layers each, which we will then solve using the dynamic program
described in Theorem 4. We assume that L is evenly divisible by �; otherwise,
we add empty dummy layers to the top, increasing L by at most factor 2. For
technical reasons, we treat layer 0 to be the same as layer L.

For i = 1, . . . , L, let Ai be the subgraph of G induced by the vertices on the
� layers i, . . . , i + � − 1 mod L. We can solve each of these subgraphs optimally
using Theorem 4 in O(nW )� time. Since L ∈ O(n), this takes O(nW )�+1 time
in total. Let ALGi be the number of contacts for Ai obtained this way.

Let Γ∗ be an optimal representation of G that realizes OPT contacts, let
OPTi be the number of horizontal contacts realized for each layer i in Γ∗, and
let OPTi,i+1 denote the number of vertical contacts between layers i and i + 1
in Γ∗. Since we solved Ai optimally, we have

ALGi ≥
(i+�−2) mod L∑

j=i

(OPTj + OPTj,j+1) + OPTi+�−1 .
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Fig. 12. An L-layered graph with one dummy layer split into L subgraphs of � layers,
partitioned into � groups, for L = 8 and � = 4.

Horizontal contacts of each layer are covered by � subgraphs and vertical con-
tacts between pairs {i, i+1} of layers are covered by �−1 subgraphs. Therefore,

L∑

i=1

ALGi ≥ �
L∑

j=1

OPTj +(� − 1)
L−1∑

j=1

OPTj,j+1 ≥ (� − 1)OPT

We then partition these subgraphs into � groups G1 . . . , G� such that Gi =
Ai ∪Ai+� ∪Ai+2� ∪ . . .∪Ai+L−�; see Fig. 12. Note that the subgraphs in a group
are vertex-disjoint, so combining the optimum solutions for Ai, Ai+�, . . . , Ai+L−�

gives an optimum solution for Gi with ALGGi
=

∑L/�−1
j=0 ALGi+j� contacts. Fur-

ther, every subgraph lies in exactly one group, so
∑�

i=1 ALGGi
=

∑L
i=1 ALGi.

We now choose 1 ≤ j ≤ � such that ALGGj
= max�

i=1 ALGGi
. Then,

ALGGj
=

�
max
i=1

ALGGi
≥ 1

�

L∑

i=1

ALGGi
≥ (1 − 1

�
)OPT .

��
For any ε>0, by choosing �=	1/ε
, Lemma 3 provides a PTAS if W∈ poly(n).

Theorem 5. For every ε > 0, Max-IntLayeredCrown admits a (1−ε)-ap-
proximation in O(nW )1+� 1

ε � time, where W is the maximum rectangle width.

4 Conclusion

We have proved that k-IntLayeredCrown and k-LayeredCrown are NP-
complete, and provided an XP-algorithm parameterized by the number of layers
and a PTAS for Max-IntLayeredCrown when rectangle widths are polyno-
mial in n. Several interesting problems remain open, for example: (i) Is there an
FPT-algorithm parameterized by the number of layers for Max-IntLayered-
Crown? (ii) Is there a PTAS for Max-IntLayeredCrown for which the run-
ning time does not depend on the maximum rectangle width? (iii) What can we
do if rectangles can have different (integer) heights, thus spanning more than
one layer?
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Abstract. A (multi)set of segments in the plane may form a TSP tour,
a matching, a tree, or any multigraph. If two segments cross, then we
can reduce the total length with the following flip operation. We remove
a pair of crossing segments, and insert a pair of non-crossing segments,
while keeping the same vertex degrees. The goal of this paper is to devise
efficient strategies to flip the segments in order to obtain crossing-free
segments after a small number of flips. Linear and near-linear bounds on
the number of flips were only known for segments with endpoints in con-
vex position. We generalize these results, proving linear and near-linear
bounds for cases with endpoints that are not in convex position. Our
results are proved in a general setting that applies to multiple problems,
using multigraphs and the distinction between removal and insertion
choices when performing a flip.

Keywords: Planar geometry · Reconfiguration · Matching · Euclidean
TSP

1 Introduction

The Euclidean Travelling Salesman Problem (TSP) is one of the most studied
geometric optimization problems. We are given a set P of points in the plane and
the goal is to find a tour S of minimum length. While the optimal solution has
no crossing segments, essentially all approximation algorithms, heuristics, and
PTASs may produce solutions S with crossings. Given S, the only procedure
known to obtain a solution S′ without crossings and of shorter length is to
perform a flip operation. In our case, a flip consists of removing a pair of crossing
segments, and then inserting a pair of non-crossing segments preserving a tour
(and consequently reducing its length). Flips are performed in sequence until a
crossing-free tour is obtained, in a procedure called untangle.

The same flip operation may be applied in other settings. More precisely,
a flip consists of removing a pair of crossing segments s1, s2 and inserting a
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pair of segments s′
1, s

′
2 in a way that s1, s

′
1, s2, s

′
2 forms a cycle and a certain

graph property is preserved. In the case of TSP tours, the property is being a
Hamiltonian cycle. Other properties have also been studied, such as spanning
trees, perfect matchings, and multigraphs. Notice that flips preserve the degrees
of all vertices and multiple copies of the same edge may appear when we perform
a flip on certain graphs.

When the goal is to obtain a crossing-free TSP tour, we are allowed to choose
which pair of crossing segments to remove in order to perform fewer flips, which
we call removal choice (Fig. 1(a)). Notice that, in a tour, choosing which pair of
crossing edges we remove defines which pair of crossing edges we insert. However,
this is not the case for matchings and multigraphs. There, we are also allowed
to choose which pair of segments to insert among two possibilities, which we call
insertion choice (Fig. 1(b)).

Fig. 1. (a) Three untangle sequences for a tour with different removal choices. (b)
Three untangle sequences for a matching with different insertion choices. We highlight
the segments removed and inserted at each flip.

Using removal or insertion choices to obtain shorter flip sequences has not
been explicitly studied before and opens several new questions, while unifying
the solution to multiple reconfiguration problems. Next, we describe previous
work according to which choices are used. Throughout, P denotes the set of
points and n the number of segments.

Using No Choice: The length (i.e. the number of flips) of any untangle sequ-
ence for a TSP tour is O(n3) [22] and it is easy to construct Ω(n2) examples. The
same proof has been rediscovered in the context of matchings [9] after 35 years. If
P is in convex position, then the number of crossings decreases at each flip, which
gives a tight bound of Θ(n2). If all points except the endpoints of t segments are
in convex position, then the authors [15] recently showed a bound of O(tn2).

Using Only Insertion Choice: It is possible to untangle a matching using only
insertion choice and O(n2) flips [9]. Let σ be the spread of P , that is, the ratio
between the maximum and minimum distances among points in P . Using inser-
tion choice, it is also possible to untangle a matching using O(nσ) flips [7].
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Using Only Removal Choice: If P is in convex position, then by using O(n)
flips we can untangle a TSP tour [25,28], as well as a red-blue matching [7], while
the best known bound for trees is O(n log n) [7]. If instead of convex position, we
have colinear red points in a red-blue matching, then O(n2) flips suffice [7,12].

Using Both Removal and Insertion Choices: If P is in convex position,
then by using O(n) flips we can untangle a matching [7].

1.1 New Results

Previous results are usually stated for a single graph property. Using choices, we
are able to state the results in a more general setting. Proofs that use insertion
choice are unlikely to generalize to red-blue matchings, TSP tours, or trees,
where insertion choice is not available (still, they may hold for both non-bipartite
matchings and multigraphs). In contrast, bounds for multigraphs using only
removal choice apply to all these cases. Previously, we only knew linear or near-
linear bounds when the points P are in convex position and removal choice is
available. The goal of the paper is to obtain linear and near-linear bounds to as
many cases as possible, considering near-convex configurations as well as removal
and insertion choices.

Let P = C ∪T where C is in convex position and the points of T are outside
the convex hull of C, unless otherwise specified. Let S be a multiset of n segments
with endpoints P and t be the number of segments with at least one endpoint
in T . We prove the following results to untangle S, and some are summarized in
Table 1.

Using only insertion choice (Section 2): If T = ∅, then O(n log n) flips
suffice. If T is separated from C by two parallel lines, then O(tn log n) flips
suffice.

Using only removal choice (Section 3): If |T | ≤ 2 and t = O(1), then
O(n log n) flips suffice. In this case, our results hold with the points T being
anywhere with respect to the convex hull of C, however, if both points are
outside, then S must be a matching. As the bound for |T | ≤ 1 holds for trees, it
is useful to compare it against the O(n log n) bound for trees in the convex case
from [7] that strongly uses the fact that S forms a tree. The O(log n) factor is
not present for the special cases of TSP tours and red-blue matchings.

Using both removal and insertion choices (Section 4): If T is sep-
arated from C by two parallel lines, then O(tn) flips suffice. If T is anywhere
outside the convex hull of C and S is a matching, then O(t3n) flips suffice.

In a matching or TSP tour, we have t = O(|T |) and n = O(|P |), however in
a tree, t can be as high as O(|T |2). In a multigraph t and n can be much larger
than |T | and |P |. The theorems describe more precise bounds as functions of all
these parameters. For simplicity, the introduction only shows bounds in terms
of n and t.
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1.2 Related Reconfiguration Problems

Combinatorial reconfiguration studies the step-by-step transition from one solu-
tion to another, for a given combinatorial problem. Many reconfiguration prob-
lems are presented in [18]. We give a brief overview of reconfiguration among
line segments using alternative flip operations.

Table 1. Upper bounds to different versions of the problem with points having O(1)
degree. The letter R corresponds to removal choice, I to insertion choice, and ∅ to no
choice. New results are highlighted in yellow with the theorem number in parenthesis
and tight bounds are bold.

Property: Matching TSP, Red-Blue
Choices: RI I R ∅ R ∅
Convex n [7] n log n (Thm 1) n log n (Thm 3) n2 n [7,25,28] n2

|T | = 1 n (Thm 8) n log n (Thm 2) n log n (Thm 4) n2 [15] n (Thm 4) n2 [15]
|T | = 2 n (Thm 9) n2 [9] n log n (Thm 5) n2 [15] n (Thm 5) n2 [15]
separated tn (Thm 8) tn log n (Thm 2) tn2 [15]
C ∪ T t3n (Thm 9) n2 [9] tn2 [15]

The 2OPT flip is not restricted to crossing segments. It removes and inserts
pairs of segments (the four segments forming a cycle) as the total length
decreases. In contrast to flips among crossing segments, the number of 2OPT
flips performed may be exponential [13].

It is possible to relax the flip definition even further to all operations that
replace two segments by two others forming a cycle [5,6,8,10,14,27]. This defi-
nition has also been considered for multigraphs [16,17,20].

Another type of flip consists of removing a single segment and inserting
another one. Such flips are widely studied for triangulations [3,19,21,23,24,26].
They have also been considered for non-crossing trees [1] and paths. It is possible
to reconfigure any two non-crossing paths if the points are in convex position [4,
11] or if there is one point inside the convex hull [2].

1.3 Preliminaries

Throughout, we consider multigraphs (P, S) whose vertices P (called endpoints)
are points in the plane and edges S are a multiset of line segments. We assume
that the endpoints are in general position and that the two endpoints of a seg-
ment are distinct. Given two (possibly equal) sets P1, P2 of endpoints, we say
that a segment is a P1P2-segment if one endpoint is in P1 and the other is in
P2. Similarly, we say that a segment is a P1-segment if at least one endpoint is
in P1.

We say that two segments cross if they intersect at a single point that is
not an endpoint of either segment. We say that a line crosses a segment if they
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intersect at a single point that is not an endpoint of the segment. We say that
a segment or a line h separates a set of points P if P can be partitioned into
two non-empty sets P1, P2 such that every segment p1p2 with p1 ∈ P1, p2 ∈ P2

crosses h. Several proofs in this paper use the following two lemmas from previous
papers.

Lemma 1 ([22]). Given a multiset S of segments and a line �, let the line
potential of �, denoted λ(�), be the number of segments in S crossing �. Then,
λ(�) never increases at a flip.

Lemma 2 ([9]). Consider a partition S =
⋃

i Si of the multiset S of segments
and let Pi be the set of endpoints of Si. If no segment of

(
Pi

2

)
crosses a segment

of
(
Pj

2

)
for i �= j, then the sequences of flips in each Si are independent.

We say that a segment s is uncrossable if for any two endpoints p1, p2, we
have that p1p2 do not cross s. Lemma 2 implies that an uncrossable segment
cannot be flipped.

Our bounds often have terms like O(tn) and O(n log |C|) that would incor-
rectly become 0 if t or log |C| is 0. In order to avoid this problem, factors in the
O notation should be made at least 1. For example, the aforementioned bounds
should be respectively interpreted as O((1 + t)n) and O(n log(2 + |C|)).

2 Insertion Choice

In this section, we show how to untangle a multigraph using only insertion
choice, that is, our strategies do not choose which pair of crossing segments is
removed, but only which pair of segments with the same endpoints is subse-
quently inserted. We start with the convex case, followed by points outside the
convex separated by two parallel lines.

2.1 Convex

Let P = C = {p1, . . . , p|C|} be a set of points in convex position sorted in coun-
terclockwise order along the convex hull boundary (Fig. 2(a)). Given a segment
papb, we define the depth δ(papb) = |b − a|. This definition resembles but is
not the same as the depth used in [7]. We use the depth to prove the following
theorem.
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Fig. 2. (a) A multigraph (C, S) with |C| = 14 points in convex position and n = 9
segments. (b) Insertion choice for Cases 1 and 2 of the proof of Theorem 1. (c) Insertion
choice for Case 3.

Theorem 1. Every multigraph (C,S) with C in convex position has an untangle
sequence of length O(n log |C|) = O(n log n) using only insertion choice, where
n = |S|.
Proof. Let the potential function φ(S) =

∏
s∈S δ(s). As δ(s) ∈ {1, . . . , |C| − 1},

we have that φ(S) is integer, positive, and at most |C|n. Next, we show that
for any flipped pair of segments papb, pcpd there exists an insertion choice that
multiplies φ(S) by a factor of at most 3/4, and the theorem follows.

Consider a flip of a segment papb with a segment pcpd and assume without
loss of generality that a < c < b < d. The contribution of the pair of segments
papb, pcpd to the potential φ(S) is the factor f = δ(papb)δ(pcpd). Let f ′ be the
factor corresponding to the pair of inserted segments.

Case 1: If δ(papc) ≤ δ(pcpb), then we insert the segments papc and pbpd and
we get f ′ = δ(papc)δ(pbpd) (Fig. 2(b)). We notice δ(papb) = δ(papc)+ δ(pcpb). It
follows δ(papc) ≤ δ(papb)/2 and we have δ(pbpd) ≤ δ(pcpd) and then f ′ ≤ f/2.

Case 2: If δ(pbpd) ≤ δ(pcpb), then we insert the same segments papc and
pbpd as previously. We have δ(papc) ≤ δ(papb) and δ(pbpd) ≤ δ(pcpd)/2, which
gives f ′ ≤ f/2.

Case 3: If (i) δ(papc) > δ(pcpb) and (ii) δ(pbpd) > δ(pcpb), then we insert
the segments papd and pcpb (Fig. 2(c)). The contribution of the new pair of
segments is f ′ = δ(papd)δ(pcpb). We introduce the coefficients x = δ(papc)

δ(pcpb)
and

y = δ(pbpd)
δ(pcpb)

so that δ(papc) = xδ(pcpb) and δ(pbpd) = yδ(pcpb). It follows that
δ(papb) = (1+x)δ(pcpb), δ(pcpd) = (1+y)δ(pcpb) and δ(papd) = (1+x+y)δ(pcpb).
The ratio f ′/f is equal to a function g(x, y) = 1+x+y

(1+x)(1+y) . Due to (i) and (ii),
we have that x ≥ 1 and y ≥ 1. In other words, we can upper bound the ratio
f ′/f by the maximum of the function g(x, y) with x, y ≥ 1. It is easy to show
that the function g(x, y) is decreasing with both x and y. Then its maximum is
obtained for x = y = 1 and it is equal to 3/4, showing that f ′ ≤ 3f/4. �	

2.2 Separated by Two Parallel Lines

In this section, we prove the following theorem, which is a generalization of
Theorem 1.
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Theorem 2. Consider a multigraph (P, S) with P = C ∪ T1 ∪ T2 where C is
in convex position and there exist two horizontal lines �1, �2, with T1 above �1
above C above �2 above T2. Let T = T1 ∪ T2, n = |S|, and t be the number of T -
segments. There exists an untangle sequence of length O(t|P | log |C|+n log |C|) =
O(tn log n) using only insertion choice.

Proof. We start by describing the insertion choice for flips involving at least
one point in T . Let p1, . . . , p|P | be the points P sorted vertically from top to
bottom. Consider a flip involving the points pa, pb, pc, pd with a < b < c < d.
The insertion choice is to create the segments papb and pcpd. As in [9], we define
the potential η of a segment pipj as η(pipj) = |i − j|. Notice that η is an integer
between 1 and |P | − 1. We define ηT (S) as the sum of η(pipj) for pipj ∈ S with
pi or pj in T . Notice that 0 < ηT (S) < t|P |. It is easy to verify that any flip
involving a point in T decreases ηT (S) and other flips do not change ηT (S).
Hence, the number of flips involving at least one point in T is O(t|P |).

For the flips involving only points of C, we use the same choice as in the
proof of Theorem 1. The potential function

φ(S) =
∏

pipj∈S : pi∈C and pj∈C

δ(pipj)

is at most |C|n and decreases by a factor of at most 3/4 at every flip that involves
only points of C.

However, φ(S) may increase by a factor of O(|C|2) when performing a flip
that involves a point in T . As such flips only happen O(t|P |) times, the total
increase is at most a factor of |C|O(t|P |).

Concluding, the number of flips involving only points in C is at most

log4/3

(
|C|O(n)|C|O(t|P |)

)
= O(n log |C| + t|P | log |C|).

�	

3 Removal Choice

In this section, we show how to untangle a multigraph using only removal choice.
We start with the convex case, followed by 1 point inside or outside the convex
hull of C, then 2 points outside the convex hull of C, 2 points inside the convex
hull of C, and 1 point inside and 1 outside the convex hull of C. As only removal
choice is used, all results also apply to red-blue matchings, TSP tours, and trees.

3.1 Convex

Let P = C = {p1, . . . , p|C|} be a set of points in convex position sorted in
counterclockwise order along the convex hull boundary and consider a set of
segments S with endpoints P . Given a segment papb and assuming without loss
of generality that a < b, we define the crossing depth δ×(papb) as the number of
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points in pa+1, . . . , pb−1 that are an endpoint of a segment in S that crosses any
other segment in S (not necessarily papb). We use the crossing depth to prove
the following theorem, which implies a simpler and more general proof of the
O(n log n) bound for trees [7].

Theorem 3. Every multigraph (C,S) with C in convex position has an untangle
sequence of length O(n log |C|) = O(n log n) using only removal choice, where
n = |S|.
Proof. We repeat the following procedure until there are no more crossings. Let
papb ∈ S be a segment with crossings (hence, crossing depth at least one) and
a < b minimizing δ×(papb) (Fig. 3(a)). Let q1, . . . , qδ×(papb) be the points defining
δ×(papb) in order and let i = 
δ×(papb)/2�. Since papb has minimum crossing
depth, the point qi is the endpoint of segment qipc that crosses papb. When
flipping qipc and papb, we obtain a segment s (either s = qipa or s = qipb) with
δ×(s) at most half of the original value of δ×(papb) (Fig. 3(b,c)). Hence, this
operation always divides the value of the smallest positive crossing depth by at
least two. As the crossing depth is an integer smaller than |C|, after performing
this operation O(log |C|) times, it produces a segment of crossing depth 0. As
the segments of crossing depth 0 can no longer participate in a flip, the claimed
bound follows. �	

Fig. 3. Proof of Theorem 3. (a) The segments of a convex multigraph are labeled with
the crossing depth. (b,c) Two possible pairs of inserted segments, with one segment of
the pair having crossing depth � 3

2
� = 1.

3.2 One Point Inside or Outside a Convex Region

In this section, we prove Theorem 4. In the case of TSP tours [25,28] and red-
blue matchings [8], the preprocessing to untangle CC-segments takes O(n) flips.
However, in the case of trees [8] and in general (Theorem 3), the best bound
known is O(n log n). We first state a lemma used to prove Theorem 4.

Lemma 3. Consider a set C of points in convex position, and a multiset S of n
crossing-free segments with endpoints in C. Consider the multiset S ∪{s} where
s is an extra segment with one endpoint in C and one endpoint q anywhere in
the plane. There exists an untangle sequence for S ∪ {s} of length O(n) using
only removal choice.
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Proof. Iteratively flip the segment qp1 with the segment p2p3 ∈ S crossing qp1
the farthest from q. This flip inserts a CC-segment p1p2, which is impossible to
flip again, because the line p1p2 is crossing free. The flip does not create any
crossing between CC-segments. �	

We are now ready to state and prove the theorem.

Theorem 4. Consider a multigraph (P, S) with P = C∪T where C is in convex
position, where T = {q}, and such that there is no crossing pair of CC-segments
(possibly after a preprocessing for the convex case). Let n = |S| and t be the
number of T -segments. There exists an untangle sequence of length O(tn) using
only removal choice.

Proof. For each segment s with endpoint q with crossing, we apply Lemma 3 to
s and the CC-segments crossing s. Once a segment s incident to q is crossing
free, it is impossible to flip it again as we fall in one of the following cases. Let
� be the line containing s.

Case 1: If � is crossing free, then it splits the multigraph in three partitions:
the segments on one side of �, the segments on the other side of �, and the
segment s itself.

Case 2: If � is not crossing free and q is outside the convex hull of C, then
s is uncrossable.

Case 3: If q is inside the convex hull of C, then introducing a crossing
on s would require that q lies in the interior of the convex quadrilateral whose
diagonals are the two segments removed by a flip. The procedure excludes this
possibility by ensuring that there are no crossing pair of CC-segments, and,
therefore, that one of the removed segment already has q as an endpoint.

Therefore, we need at most n flips for each of the t segments incident to q. �	

3.3 Two Points Not in Convex Position

In this section, we consider the case of two points that are not in convex position.
We present the proof for a matching with two points outside a convex region.
The remaining cases hold for general multigraphs but the proofs are long and
technical. These proofs are presented in the full version.

Theorem 5. Consider a matching (P, S) with P = C ∪ T where C is in convex
position, where T = {q, q′}, and such that there is no crossing pair of CC-
segments (possibly after a preprocessing for the convex case). Let n = |S|. There
exists an untangle sequence of length O(n) using only removal choice.

Proof. Throughout this proof, we partition the TT -segments respectively the
CT -segments into two types: TTI-segments and CTI-segments if they intersect
the interior of the convex hull of C and TTO-segments and CTO-segments
otherwise. Next, we describe the removal choices of an untangle sequence of a
matching such as the one shown in Fig. 4(a). We decompose this sequence into
two phases.
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Phase 1: handle a TT -segment. If the TT -segment s = qq′ is in S and
crosses no segment in S, then S is crossing free. If the TT -segment s = qq′ is
in S and crosses at least one segment in S (necessarily a CC-segment), then we
flip s = qq′ with any segment, say s′. The line containing s′ now splits S into
one matching with q and another matching with q′. Figures 4(b) and (c) show
the splitting line in the two possible insertion cases. We untangle each of these
two matchings using O(n) flips by Theorem 4. Figure 4(d) shows an example of
the matching S at the end of Phase 1.

Phase 2: handle CT -segments. We remove an arbitrary CT -segment s,
say the segment incident to q, from S. We then untangle S using O(n) flips
by Theorem 4, and insert the segment s back in S afterwards. Notice that all
crossings are now on s.

While s′, the segment of S that crosses s the farthest away from q, is a CC-
segment, we flip s and s′ and we set s to be the newly inserted CT -segment
incident to q. By Lemma 3, at most O(n) flips are performed in this loop.

Fig. 4. Illustrations for the proof of Theorem 5. (a) Example of the matching S before
Phase 1. (b) & (c) Illustration of the two insertion cases of Phase 1. In both insertion
cases, the highlighted line slpits the matching. (d) Example of the matching S before
Phase 2. (e) & (f) & (g) The three sub-cases of Insertion case 1 of Phase 2. (h) Example
of the Insertion case 2 of Phase 2.

At the end of the loop, either s is crossing free, or s′ is adjacent to q′. Then,
we also flip s and s′.

Insertion case 1: If two CT -segments are inserted, then we examine the
two following three cases.
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If s′ is a CTI-segment, then the line containing s′ now splits S into one
matching with q and another matching with q′ (Fig. 4(e)). Again, we untangle
each of these two matchings using O(n) flips by Theorem 4.

If s′ is a CTO-segment and s is a CTI-segment, then s′ is the only segment
crossing s before the flip. Thus, after the flip, the line containing s splits S
into one matching with q and another matching with q′ (Fig. 4(f)). Again, we
untangle each of these two matchings using O(n) flips by Theorem 4.

If both s and s′ are CTO-segments, then S is crossing free after the flip
(Fig. 4(g)).

Insertion case 2: If the TT -segment qq′ is inserted (Fig. 4(h)), then we
apply Phase 1 to untangle S using O(n) flips.

In total, we have used O(n) flips to untangle S. �	
In the full version, we prove the following two theorems that handle the

remaining cases of two points that are not in convex position.

Theorem 6. Consider a multigraph (P, S) with P = C∪T where C is in convex
position, the points of T are inside the convex hull of C, and T = {q, q′}. Let
n = |S| and t be the number of T -segments. There exists an untangle sequence of
length O(dconv(n)+ tn) using only removal choice, where dconv(n) is the number
of flips to untangle any multiset of at most n segments with endpoints in convex
position.

Proof. (Sketch) The untangle sequence is decomposed in five phases. At the
end of each phase, one more type of crossings is removed, and types of cross-
ings removed in the previous phases are not present, even if they may tem-
porarily appear during the phase. Phase 1. We untangle the CT -segments using
O(dconv(n)) flips. Phase 2. We untangle the CC-segments using O(dconv(n)) flips.
Phase 3. We remove the crossings between CT -segments and CC-segments that
cross qq′ using O(tn) flips. Phase 4. We remove the remaining crossings between
CT -segments and CC-segments using O(tn) flips. Phase 5. We remove the
remaining crossings, which are between qq′ and CC-segments, using O(dconv(n))
flips. �	
Theorem 7. Consider a multigraph (P, S) with P = C∪T where C is in convex
position, and T = {q, q′} such that q is outside the convex hull of C and q′ is
inside the convex hull of C. Let n = |S| and t be the number of T -segments. There
exists an untangle sequence of length O(dconv(n) + δ(q)δ(q′)n) = O(dconv(n) +
t2n) using only removal choice, where dconv(n) is the number of flips to untangle
any multiset of at most n segments with endpoints in convex position.

Proof. (Sketch) The untangle sequence is decomposed in four phases. Phase 1.
We untangle the CC-segments using dconv(n) flips. Phase 2. We remove the cross-
ings between Cq′-segments and CC-segments using O(tn) flips (Theorem 4).
Phase 3. We remove the crossings between Cq-segments using O(t2n) flips.
Phase 4. We remove the crossings between qq′ and CC-segments, using O(tn)
flips. �	
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4 Removal and Insertion Choices

In this section, we show how to untangle a matching or a multigraph using both
removal and insertion choices. We start with the case of points outside the convex
separated by two parallel lines. Afterwards, we prove an important lemma and
apply it to untangle a matching with points outside the convex.

4.1 Separated by Two Parallel Lines

We start with the simpler case in which T is separated from C by two parallel
lines. In this case, our bound of O(n+ t|P |) interpolates the tight convex bound
of O(n) from [7] and the O(t|P |) bound from [9] for t arbitrary segments.

Theorem 8. Consider a multigraph (P, S) with P = C ∪ T1 ∪ T2 where C is
in convex position and there exist two horizontal lines �1, �2, with T1 above �1
above C above �2 above T2. Let n = |S|, T = T1 ∪ T2, and t be the number of
T -segments. There exists an untangle sequence of length O(n + t|P |) = O(tn)
using both removal and insertion choices.

Proof. The algorithm runs in two phases.
Phase 1. We use removal choice to perform the flips involving a point in

T . At the end of the first phase, there can only be crossings among segments
with all endpoints in C. The insertion choice for the first phase is the following.
Let p1, . . . , p|P | be the points P sorted vertically from top to bottom. Consider
a flip involving the points pa, pb, pc, pd with a < b < c < d. The insertion choice
is to create the segments papb and pcpd. As in [9], we define the potential η of a
segment pipj as η(pipj) = |i − j|. Notice that η is an integer from 1 to |P | − 1.
We define η(S) as the sum of η(pipj) for pipj ∈ S with pi or pj in T . Notice
that 0 < η(S) < t|P |. It is easy to verify that any flip involving a point in T
decreases η(S). Hence, the number of flips in Phase 1 is O(t|P |).

Phase 2. Since T is outside the convex hull of C, flips between segments
with all endpoints in C cannot create crossings with the other segments, which
are guaranteed to be crossing free at this point. Hence, it suffices to run an
algorithm to untangle a convex set with removal and insertion choice from [7],
which performs O(n) flips. �	

4.2 Liberating a Line

In this section, we prove the following key lemma, which we use next. The lemma
only applies to matchings and it is easy to find a counter-example for multisets
(S consisting of n copies of a single segment that crosses pq).

Lemma 4. Consider a matching S of n segments with endpoints C in convex
position, and a segment pq separating C. Using O(n) flips with removal and
insertion choices on the initial set S ∪ {pq}, we obtain a set of segments that do
not cross the line pq.
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Proof. For each flip performed in the subroutine described hereafter, at least one
of the inserted segments does not cross the line pq and is removed from S (see
Fig. 5).

Fig. 5. An untangle sequence of the subroutine to liberate the line pq (with n = 4).

Preprocessing. First, we remove from S the segments that do not intersect the
line pq, as they are irrelevant. Second, anytime two segments in S cross, we
flip them choosing to insert the pair of segments not crossing the line pq. One
such flip removes two segments from S. Let p1p2 (respectively p2n−1p2n) be the
segment in S whose intersection point with pq is the closest from p (respectively
q). Without loss of generality, assume that the points p1 and p2n−1 are on the
same side of the line pq.

First Flip. Elementary geometry yields that at least one of the segments among
pp2n−1, qp1, qp2 intersects all the segments of S (see full version).

Without loss of generality, assume that pp2n−1 is such a segment, i.e., that
pp2n−1 crosses all segments of S\{p2n−1p2n}. We choose to remove the segments
pq and p2n−1p2n, and we choose to insert the segments pp2n−1 and qp2n. As the
segment qp2n does not cross the line pq, we remove it from S.

Second Flip. We choose to flip the segments pp2n−1 and p1p2. If n is odd, we
choose to insert the pair of segments pp1, p2p2n−1. If n is even, we insert the
segments pp2, p1p2n−1.

By convexity, one of the inserted segment (the one with endpoints in C)
crosses all other n − 2 segments. The other inserted segment (the one with p as
one of its endpoints) does not cross the line pq, so we remove it from S. Note
that the condition on the parity of n is there only to ensure that the last segment
p2n−3p2n−2 is dealt with at the last flip.

Remaining Flips. We describe the third flip. The remaining flips are performed
similarly. Let s be the previously inserted segment. Let p3p4 be the segment in S
whose intersection point with pq is the closest from p. Without loss of generality,
assume that p3 is on the same side of the line pq as p1 and p2n−1.
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We choose to flip s with p3p4. If s = p2p2n−1, we choose to insert the pair of
segments p2p4, p3p2n−1. If s = p1p2n−1, we choose to insert the pair of segments
p1p3, p4p2n−1.

By convexity, one inserted segment (the one with p2n−1 as an endpoint)
crosses all other n − 3 segments. The other inserted segment does not cross the
line pq, so we remove it from S. Note that the insertion choice described is the
only viable one, as the alternative would insert a crossing-free segment crossing
the line pq that cannot be removed. �	

4.3 Points Outside a Convex Region

We are now ready to prove the following theorem, which only applies to match-
ings because it uses Lemma 4.

Theorem 9. Consider a matching S consisting of n segments with endpoints
P = C ∪ T where C is in convex position and T is outside the convex hull of
C. Let t = |T |. There exists an untangle sequence of length O(t3n) using both
removal and insertion choices.

Proof. Throughout this proof, we partition the TT -segments into two types:
TTI-segment if it intersects the interior of the convex hull of C and TTO-
segment otherwise.

TT -segments. At any time during the untangle procedure, if there is a TTI-
segment s that crosses more than t segments, we apply Lemma 4 to liberate s
from every CC-segment using O(n) flips. Let � be the line containing s. Since λ(�)
cannot increase (Lemma 1), λ(�) < t after Lemma 4, and there are O(t2) different
TTI-segments, it follows that Lemma 4 is applied O(t2) times, performing a total
O(t2n) flips. As the number of times s is inserted and removed differ by at most
1 and λ(�) decreases at each flip that removes s, it follows that s participates in
O(t) flips. As there are O(t2) different TTI-segments, the total number of flips
involving TTI-segments is O(t3).

We define a set L of O(t) lines as follows. For each point q ∈ T , we have
two lines �1, �2 ∈ L that are the two tangents of the convex hull of C that pass
through q. As the lines � ∈ L do not separate C, the potential λ(�) = O(t).
When flipping a TTO-segment q1q2 with another segment q3p with q3 ∈ T (p
may be in T or in C), we make the insertion choice of creating a TTO-segment
q1q3 such that there exists a line � ∈ L whose potential λ(�) decreases. It is
easy to verify that � always exist (see full version). Hence, the number of flips
involving TTO-segments is O(t2) and the number of flips involving TT -segments
in general is O(t3).

All except pairs of CC-segments. We keep flipping segments that are
not both CC-segments with the following insertion choices. Whenever we flip two
CT -segments, we make the insertion choice of creating a TT -segment. Hence, as
the number of flips involving TT -segments is O(t3), so is the number of flips of
two CT -segments.

Whenever we flip a CT -segment p1q with q ∈ T and a CC-segment p3p4,
we make the following insertion choice. Let v(q) be a vector such that the dot
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product v(q) · q < v(q) · p for all p ∈ C, that is, v is orthogonal to a line �
separating q from C and pointing towards C. We define the potential η(pxq) of
a segment with px ∈ C and q ∈ T as the number of points p ∈ C such that
v(q) ·p < v(q) ·px, that is the number of points in C before px in direction v. We
choose to insert the segment pxq that minimizes η(pxq) for x = {1, 2}. Let η(S)
be the sum of η(pxq) for all CT -segments pxq in S. It is easy to see that η(S)
is O(t|C|) and decreases at each flip involving a CT -segment (not counting the
flips inside Lemma 4).

There are two situation in which η(S) may increase. One is when Lemma 4
is applied, which happens O(t2) times. Another one is when a TT -segment and
a CC-segment flip, creating two CT -segments, which happens O(t3) times. At
each of these two situations, η(S) increases by O(|C|). Consequently, the number
of flips between a CT -segment and a CC-segment is O(t3|C|) = O(t3n).

CC-segments. By removal choice, we choose to flip the pairs of CC-
segments last (except for the ones flipped in Lemma 4). As T is outside the
convex hull of C, flipping two CC-segments does not create crossings with other
segments (Lemma 2). Hence, we apply the algorithm from [7] to untangle the
remaining segments using O(n) flips. �	
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Abstract. Given an edge-weighted (metric/general) complete graph
with n vertices, the maximum weight (metric/general) k-cycle/path
packing problem is to find a set of n

k
vertex-disjoint k-cycles/paths such

that the total weight is maximized. In this paper, we consider approxi-
mation algorithms. For metric k-cycle packing, we improve the previous
approximation ratio from 3/5 to 7/10 for k = 5, and from 7/8 ·(1−1/k)2

for k > 5 to (7/8 − 0.125/k)(1 − 1/k) for constant odd k > 5 and to
7/8 · (1 − 1/k + 1

k(k−1)
) for even k > 5. For metric k-path packing, we

improve the approximation ratio from 7/8 · (1 − 1/k) to 27k2−48k+16
32k2−36k−24

for
even 10 ≥ k ≥ 6. For the case of k = 4, we improve the approxima-
tion ratio from 3/4 to 5/6 for metric 4-cycle packing, from 2/3 to 3/4 for
general 4-cycle packing, and from 3/4 to 14/17 for metric 4-path packing.

Keywords: Approximation algorithms · Cycle packing · Path packing

1 Introduction

In a graph with n vertices, a k-cycle/path packing is a set of n
k vertex-disjoint

k-cycles/paths (i.e., a simple cycle/path on k different vertices) covering all
vertices. For an edge-weighted complete graph, every edge has a non-negative
weight. Moreover, it is called a metric graph if the weight satisfies the triangle
inequality; Otherwise, it is called a general graph. Given a (metric/general)
graph, the maximum weight (metric/general) k-cycle/path packing problem
(kCP/kPP) is to find a k-cycle/path packing such that the total weight of the
k-cycles/paths in the packing is maximized.

When k = n, kCP becomes the well-known maximum weight traveling sales-
man problem (MAX TSP). One may obtain approximation algorithms of kCP
and kPP by using approximation algorithms of MAX TSP. In the following, we
let α (resp., β) denote the current-best approximation ratio of MAX TSP on
metric (resp., general) graphs. We have α = 7/8 [19] and β = 4/5 [9].

1.1 Related Work

For k = 2, kCP and kPP are equivalent with the maximum weight perfect match-
ing problem, which can be solved in O(n3) time [10,20]. For k ≥ 3, metric kCP
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and kPP become NP-hard [17], and general kCP and kPP become APX-hard
even on {0, 1}-weighted graphs (i.e., a complete graph with edge weights 0 and
1) [22]. There is a large number of contributions on approximation algorithms.

General kCP. For k = 3, Hassin and Rubinstein [13,14] proposed a randomized
(0.518 − ε)-approximation algorithm, Chen et al. [7,8] proposed an improved
randomized (0.523− ε)-approximation algorithm, and Van Zuylen [32] proposed
a deterministic algorithm with the same approximation ratio. For lager k, Li
and Yu [21] proposed a 2/3-approximation algorithm for k = 4 and a β · (1 −
1/k)2-approximation algorithm for k ≥ 5. On {0, 1}-weighted graphs, Bar-Noy
et al. [2] gave a 3/5-approximation algorithm for k = 3. Note that Berman
and Karpinski [4] gave a 6/7-approximation algorithm for the Maximum Path
Cover Problem, which seeks a set of node disjoint paths such that the number
of edges in all the paths is maximal. Their algorithm could be used to obtain
a (6/7 − ε)-approximation algorithm for general kCP and kPP with k = n on
{0, 1}-weighted graphs.

Metric kCP. For k = 3, Hassin et al. [15] firstly gave a deterministic 2/3-
approximation algorithm and Chen et al. [5] proposed a randomized (0.66768 −
ε)-approximation algorithm. For lager k, Li and Yu [21] proposed a 3/4-
approximation algorithm for k = 4, a 3/5-approximation algorithm for k = 5,
and an α · (1 − 1/k)2-approximation algorithm for k ≥ 6.

General kPP. For k = 3, Hassin and Rubinstein [13] proposed a randomized
(0.5223 − ε)-approximation algorithm, Chen et al. [27] proposed a determin-
istic (0.5265 − ε)-approximation algorithm, and Bar-Noy et al. [2] proposed
an improved 7/12-approximation algorithm. For lager k, Hassin and Rubin-
stein [11] proposed a 3/4-approximation algorithm for k = 4, and a β · (1−1/k)-
approximation algorithm for k ≥ 5. On {0, 1}-weighted graphs, Hassin and
Schneider [16] gave a 0.55-approximation algorithm for k = 3 and the ratio
was improved to 3/4 [2].

Metric kPP. Li and Yu [21] proposed a 3/4-approximation algorithm for k = 3,
a 3/4-approximation algorithm for k = 5, and an α · (1 − 1/k)-approximation
algorithm for k ≥ 6. The best-known result for k = 4 is still 3/4 due to the
general 4PP, by Hassin and Rubinstein [11]. On {1, 2}-weighted graphs, there is
a 9/10-approximation algorithm for k = 4 [23].

General/metric kCP and kPP can be seen as a special case of the weighted
k-set packing problem, which admits an approximation ratio of 1

k−1 − ε [1],
2

k+1 − ε [3], and 2
k+1−1/31850496 − ε [24]. Recently, these results have been fur-

ther improved (see [25,26,28]). They can be used to obtain a 1/1.786 ≈ 0.559-
approximation ratio for general 3CP [28].

1.2 Our Results

We study approximation algorithms for metric/general kCP and kPP.
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Firstly, we consider metric kCP. We propose a (7/8 − 0.125/k)(1 − 1/k)-
approximation algorithm for constant odd k and a 7/8 · (1 − 1/k + 1

k(k−1) )-
approximation algorithm for even k, which improve the best-known approxima-
tion ratio of 3/5 for k = 5 [21] and 7/8 · (1 − 1/k)2 for k ≥ 6 [21]. Moreover, we
propose an algorithm based on the maximum weight matching, which can further
improve the approximation ratio from 17/25 to 7/10 for k = 5. An illustration
of the improved results for metric kCP with k ≥ 5 can be seen in Table 1.

Table 1. Improved approximation ratios for metric kCP with k ≥ 5

Metric kCP 5 6 7 8

Previous Ratio [21] 0.600 0.607 0.642 0.669

Our Ratio 0.700 0.758 0.734 0.781

Secondly, we consider metric kPP. We propose a 27k2−48k+16
32k2−36k−24 -approximation

algorithm for even 10 ≥ k ≥ 6, which improves the best-known approximation
ratio of 7/8 · (1 − 1/k) [11]. An illustration of the improved results for metric
kPP with even 10 ≥ k ≥ 6 can be seen in Table 2.

Table 2. Improved approximation ratios for metric kPP with even 10 ≥ k ≥ 6

Metric kPP 6 8 10

Previous Ratio [11] 0.729 0.765 0.787

Our Ratio 0.767 0.783 0.794

At last, we focus on the case of k = 4 for metric/general kCP and kPP. For
metric 4CP, we propose a 5/6-approximation algorithm, improving the best-
known ratio 3/4 [21], and as a corollary, we also give a 7/8-approximation
algorithm on (1, 2)-weighted graphs. For general 4CP, we propose a 3/4-
approximation algorithm, improving the best-known ratio 2/3 [21]. For metric
4PP, we propose a 14/17-approximation algorithm, improving the best-known
ratio 3/4 [11]. An illustration of the improved results for the case of k = 4 can
be seen in Table 3.

Table 3. Improved results for the case of k = 4

Metric Graphs General Graphs

4CP 3/4 [21] → 5/6 2/3 [21] → 3/4

4PP 3/4 [11] → 14/17 3/4 [11]

Due to limited space, the proofs of lemmas and theorems marked with “*”
were omitted and they can be found in the full version of this paper [31].
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1.3 Paper Organization

The remaining parts of the paper are organized as follows. In Sect. 2, we intro-
duce basic notations. In Sect. 3, we consider metric kCP. In Sect. 3.1, we present
a better reduction from metric kCP to metric TSP, which has already led to an
improved ratio for k ≥ 5. In Sect. 3.2, by using some properties of the current-
best approximation algorithm for metric TSP, we obtain a further improved
ratio. In Sect. 3.2, we consider a simple algorithm based on matching with a bet-
ter ratio for k = 5. In Sect. 4, we consider metric kPP and propose an improved
algorithm for even 10 ≥ k ≥ 6. Note that metric kPP is harder to improve, unlike
metric kCP. In Sect. 5, we propose non-trivial algorithms for metric/general kCP
and kPP with k = 4. In Sect. 5.1, we obtain a better algorithm for general 4CP.
In Sect. 5.2, we obtain a better algorithm for metric 4CP. In Sect. 5.3, we obtain a
better approximation algorithm for metric 4PP. Finally, we make the concluding
remarks in Sect. 6.

2 Preliminaries

We use G = (V,E) to denote an undirected complete graph with n vertices such
that n mod k = 0. There is a non-negative weight function w : E → R≥0 on the
edges in E. For an edge uv ∈ E, we use w(u, v) to denote its weight. A graph
is called a metric graph if the weight function satisfies the triangle inequality;
Otherwise, it is called a general graph. For any weight function w : X → R≥0,
we define w(Y ) =

∑
x∈Y w(x) for any Y ⊆ X.

Two subgraphs or subsets of edges of a graph are vertex-disjoint if they
do not appear a common vertex. We only consider simple paths and simple
cycles with more than two vertices. The length of a path/cycle is the number
of vertices it contains. A cycle packing is a set of vertex-disjoint cycles such
that the length of each cycle is at least three and all vertices in the graph are
covered. Given a cycle packing C, we use l(C) to denote the minimum length
of cycles in C. We also use C∗ to denote the maximum weight cycle packing.
A path (resp., cycle) on k different vertices {v1, v2, . . . , vk} is called a k-path
(resp., k-cycle), denoted by v1v2 · · · vk (resp., v1v2 · · · vkv1). A k-path packing
(resp., k-cycle packing) in graph G is a set of vertex-disjoint n/k k-paths (resp.,
k-cycles) such that all vertices in the graph are covered. Note that we can obtain
a k-cycle packing by completing every k-path of a k-path packing. Let P∗

k (resp.,
C∗
k) denote the maximum weight k-path packing (resp., k-cycle packing). We can

get w(C∗) ≥ w(C∗
k) for k ≥ 3.

A 2-path packing is called a matching of size n/2. The maximum weight
matching of size n/2 is denoted by M∗. An n-cycle is called a Hamiltonian
cycle. MAX TSP is to find a maximum weight Hamiltonian cycle. We simply use
general/metric TSP to denote MAX TSP in general/metric graphs. We use H∗

to denote the maximum weight Hamiltonian cycle. For a k-path P = v1v2 · · · vk
where k is even, we define w̃(P ) =

∑k/2
i=1 w(v2j−1, v2j).
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3 Approximation Algorithms for Metric kCP

In this section, we improve the approximation ratio for metric kCP with k ≥ 5.
We will first present a better black-box reduction from metric kCP to metric
TSP, which is sufficient to improve the previous ratio for k ≥ 5. Then, based
on the approximation algorithm for metric TSP, we prove an improved approx-
imation ratio. Finally, we consider a matching-based algorithm that can further
improve the ratio of metric 5CP.

3.1 A Better Black-Box

Given an α-approximation algorithm for metric TSP, Li and Yu [21] proposed
an α · (1−1/k)2-approximation algorithm for metric kCP. We will show that the
ratio can be improved to α · (1− 0.5/k)(1− 1/k). Moreover, for even k, the ratio
can be further improved to α · (1 − 0.5/k)(1 − 1/k + 1

k(k−1) ). We first consider a
simple algorithm, denoted by Algorithm 1, which mainly contains three following
steps.

Step 1. Obtain a Hamiltonian cycle H using an α-approximation algorithm
for metric TSP;
Step 2. Get a k-path packing Pk with w(Pk) ≥ (1 − 1/k)w(H) from H:
we can obtain a k-path packing by deleting one edge per k edges from H;
since there are (1 − 1/k)n edges in Pk and n edges in H, if we carefully
choose the initial edge, we can make sure that the weight of Pk is at least
(1 − 1/k)n · (1/n) · w(H), i.e., on average each edge has a weight of at least
(1/n) · w(H).
Step 3. Obtain a k-cycle packing Ck by completing the k-path packing Pk.

To analyze the approximation quality, we use the path patching technique,
which has been used in some papers [12,18,19].

Lemma 1 ([12,18]). Let G be a metric graph. Given a cycle packing C, there
is a polynomial-time algorithm to generate a Hamiltonian cycle H such that
w(H) ≥ (1 − 0.5/l(C))w(C).

Since the length of every k-cycle in the maximum weight k-cycle packing C∗
k

equals to k, we have l(C∗
k) = k. By Lemma 1, we have the following lemma.

Lemma 2. w(H∗) ≥ (1 − 0.5/k)w(C∗
k).

Theorem 1. Given an α-approximation algorithm for metric TSP, Algorithm 1
is a polynomial-time α · (1− 0.5/k)(1− 1/k)-approximation algorithm for metric
kCP.

Proof. By the algorithm, we can easily get that w(Ck) ≥ w(Pk) ≥ (1 −
1/k)w(H) ≥ α · (1 − 1/k)w(H∗). By Lemma 2, we have w(Ck) ≥ α · (1 −
0.5/k)(1− 1/k)w(C∗

k). Therefore, the algorithm achieves an approximation ratio
of α · (1 − 0.5/k)(1 − 1/k) for metric kCP. �
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Next, we propose an improved α ·(1−0.5/k)(1−1/k+ 1
k(k−1) )-approximation

algorithm for even k, denoted by Algorithm 2. The previous two steps of Algo-
rithm 2 are the same as Algorithm 1. However, Algorithm 2 will obtain a better
k-cycle packing in Step 3:

New Step 3. For each k-path Pi = vi1vi2 · · · vik ∈ Pk, we obtain k − 1 k-
cycles {Ci1, . . . , Ci(k−1)} where Cij = vi1vi2 · · · vijvikvi(k−1) · · · vi(j+1)vi1 (See
Fig. 1 for an illustration); let Ciji denote the maximum weight cycle from these
cycles; return a k-cycle packing Ck = {Ciji}n/ki=1 .

vi1 vi2 · · · vij vi(j+1) · · · vi(k−1) vik

Fig. 1. An illustration of the k-cycle Cij obtained from Pi, where j ∈ {1, 2, . . . , k− 1}

Lemma 3. It holds that w(Ck) ≥ k−2
k−1w(Pk) + 2

k−1 w̃(Pk).

Proof. Since Ciji is the maximum weight cycle from these cycles, we have

w(Ciji) ≥ 1
k − 1

k−1∑

j=1

w(Cij)

=
1

k − 1

k−1∑

j=1

(w(Pi) + w(vi1, vi(j+1)) + w(vij , vik) − w(vij , vi(j+1)))

=
1

k − 1

⎛

⎝(k − 1)w(Pi) +
k−1∑

j=1

(w(vi1, vi(j+1)) + w(vij , vik)) − w(Pi)

⎞

⎠

=
1

k − 1

⎛

⎝(k − 2)w(Pi) +
k−1∑

j=1

(w(vi1, vi(j+1)) + w(vij , vik))

⎞

⎠ .

By the triangle inequality, we can get that

k−1∑

j=1

w(vi1, vi(j+1)) = w(vi1, vi2) +
k/2∑

j=2

(w(vi1, vi(2j−1)) + w(vi1, vi(2j)))

≥ w(vi1, vi2) +
k/2∑

j=2

w(vi(2j−1), vi(2j))

=
k/2∑

j=1

w(vi(2j−1), vi(2j))

= w̃(Pi).
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Similarly, we can get
∑k−1

j=1 w(vij , vik) ≥ w̃(Pi). Hence,

w(Ciji) ≥ 1
k − 1

⎛

⎝(k − 2)w(Pi) +
k−1∑

j=1

(w(vi1, vi(j+1)) + w(vij , vik))

⎞

⎠

≥ (k − 2)w(Pi) + 2w̃(Pi)
k − 1

.

By doing this for all k-paths in Pk, we can get a k-cycle packing Ck such that
w(Ck) ≥ (k−2)w(Pk)+2w̃(Pk)

k−1 . �

Theorem 2. Given an α-approximation algorithm for metric TSP, for metric
kCP with even k, Algorithm 2 is a polynomial-time α·(1−0.5/k)(1−1/k+ 1

k(k−1) )-
approximation algorithm.

Proof. Recall that all k-paths in Pk are obtained from the α-approximate Hamil-
tonian cycle H. By deleting one edge per k edges from a Hamiltonian cycle H
and choosing the initial edge carefully, we can get a k-path packing Pk such that

(k − 2)w(Pk) + 2w̃(Pk) ≥ (k − 2)(k − 1) + k

k
w(H) =

(k − 1)2 + 1
k

w(H)

since (k−2)w(Pk)+2w̃(Pk) contains the weight of n(k−2)(k−1)+nk
k (multi-)edges

in H. By Lemma 3, we can obtain a k-cycle packing Ck such that

w(Ck) ≥ (k − 2)w(Pk) + 2w̃(Pk)
k − 1

≥ (k − 1)2 + 1
k(k − 1)

w(H)

=
(

1 − 1/k +
1

k(k − 1)

)

w(H).

Since w(H) ≥ α · w(H∗) ≥ α · (1 − 0.5/k)w(C∗
k) by Lemma 2, we have w(Ck) ≥

α · (1 − 0.5/k)(1 − 1/k + 1
k(k−1) )w(C∗

k). �

Note that for metric TSP there is a randomized (7/8 − O(1/
√

n))-
approximation algorithm [12], a deterministic (7/8 − O(1/ 3

√
n))-approximation

algorithm [6], and a deterministic 7/8-approximation algorithm [19]. By Theo-
rem 2, we obtain an approximation ratio of 7/8 · (1 − 0.5/k)(1 − 1/k) for metric
kCP with odd k, and 7/8 · (1 − 0.5/k)(1 − 1/k + 1

k(k−1) ) for metric kCP with
even k.

3.2 A Further Improvement

In this subsection, we show that the approximation ratio of Algorithm 2 can be
further improved based on the properties of the 7/8-approximation algorithm
for metric TSP [19]. We recall the following result.
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Lemma 4 ([19]). Let G be a metric graph with even n. There is a polynomial-
time algorithm to get a Hamiltonian cycle H with w(H) ≥ 5

8w(C∗) + 1
2w(M∗).

For any k-cycle packing with k being even or Hamiltonian cycle with an
even number of vertices, the edges can be decomposed into two edge-disjoint
matchings of size n/2. We can get the following bounds.

Lemma 5. It holds that w(M∗) ≥ 1
2w(C∗

k) for even k and w(M∗) ≥ 1
2w(H∗)

for even n.

Note that for metric kCP with even k, the number of vertices is always even
since it satisfies n mod k = 0. But for odd k, the number may be odd, and
then there may not exist a matching of size n/2. Since we mainly consider the
improvements for constant k, for the case of odd k and n, we can first use nO(k) =
nO(1) time to enumerate a k-cycle in C∗

k , and then consider an approximate k-
cycle packing in the rest graph. The approximation ratio preserves. Hence, we
may assume that n is even for the case of constant k.

Theorem 3 (*). For metric kCP, there is a (7/8 − 0.125/k)(1 − 1/k)-
approximation algorithm for constant odd k and a 7/8 · (1 − 1/k + 1

k(k−1) )-
approximation algorithm for even k.

3.3 An Improved Algorithm Based on Matching

Consider metric kCP with odd k. By deleting the least weighted edge from every
k-cycle in C∗

k , we can get a k-path packing Pk with w(Pk) ≥ (1 − 1/k)w(C∗
k).

Note that Pk can be decomposed into two edge-disjoint matchings of size p :=
(n/k) · (k − 1)/2. Let M∗

p be the maximum weight matching of size p, which can
be computed in polynomial time [10,20]. Then, we can get 2w(M∗

p) ≥ w(Pk) ≥
(1 − 1/k)w(C∗

k). Note that there are also n/k isolated vertices not covered by
M∗

p. Next, we construct a k-cycle packing using M∗
p with the isolated vertices.

The algorithm, denoted by Algorithm 3, is shown as follows.

Step 1. Arbitrarily partition the p edges of M∗
p into n/k sets with the same

size, denoted by S1,S2, . . . ,Sn/k. Note that each edge set contains m :=
(k − 1)/2 edges. For each of the n/k edge sets, arbitrarily assign an isolated
vertex.
Step 2. Consider an arbitrary edge set Si = {e1, e2, . . . , em} with the isolated
vertex v. Assume w.o.l.g. that w(e1) ≥ w(em) ≥ w(ei) for 2 ≤ i < m, i.e.,
w(e1) + w(em) ≥ (2/m)w(Si). Orient each edge ei uniformly at random from
the two choices. Let ti (resp., hi) denote the tail (resp., head) vertex of ei.
Construct a k-cycle Ci such that Ci = vt1h1t2h2 · · · tmhmv.
Step 3. Get a k-cycle packing Ck by packing the k-cycles from the edge sets
and the isolated vertices.

Algorithm 3 can be derandomized efficiently by conditional expectations [29].
Next, we analyze the expected weight of Ci = vt1h1t2h2 · · · tmhmv, obtained

from the edge set Si and the isolated vertex v.
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Lemma 6. It holds that E[w(v, t1)] ≥ 1
2w(e1), E[w(v, hm)] ≥ 1

2w(em), and
E[w(hi, ti+1)] ≥ 1

4 (w(ei) + w(ei+1)) for 1 ≤ i < m.

Proof. Consider E[w(v, t1)]. Since we orient the edge e1 uniformly at ran-
dom, each vertex of e1 has a probability of 1/2 being t1. Hence, we can get
E[w(v, t1)] = 1

2

∑
u∈e1

w(v, u) ≥ 1
2w(e1) by the triangle inequality. Similarly, we

can get E[w(v, hm)] ≥ 1
2w(em).

Consider E[w(hi, ti+1)]. We can get E[w(hi, ti+1)] = 1
4

∑
u∈ei

∑
w∈ei+1

w(u,w).
Let ei = u′u′′ and ei+1 = o′o′′. By the triangle inequality, we can get that

∑

u∈ei

∑

w∈ei+1

w(u,w) = w(u′, o′) + w(u′, o′′) + w(u′′, o′) + w(u′′, o′′)

≥ w(o′, o′′) + w(u′, u′′)
= w(ei) + w(ei+1).

Therefore, E[w(hi, ti+1)] ≥ 1
4 (w(ei) + w(ei+1)) for 1 ≤ i < m. �

Lemma 7. It holds that E[w(Ci)] ≥ 3m+1
2m w(Si).

Proof. Note that

w(Ci) = w(v, t1) + w(v, hm) +
m−1∑

i=1

(w(ti, hi) + w(hi, ti+1))

= w(Si) + w(v, t1) + w(v, hm) +
m−1∑

i=1

w(hi, ti+1).

We can get that

E[w(Ci)] ≥ w(Si) +
1
2
(w(e1) + w(em)) +

1
4

m−1∑

i=1

(w(ei) + w(ei+1))

= w(Si) +
1
2
(w(e1) + w(em)) +

1
2
w(Si) − 1

4
(w(e1) + w(em))

=
3
2
w(Si) +

1
4
(w(e1) + w(em))

≥
(

3
2

+
1

2m

)

w(Si)

=
3m + 1

2m
w(Si),

where the first inequality follows from Lemma 6, and the second from w(e1) +
w(em) ≥ (2/m)w(Si) by the algorithm. �

Theorem 4. For metric kCP with odd k, Algorithm 3 is a polynomial-time
(3/4 − 0.25/k)-approximation algorithm.
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Proof. Recall that 2w(M∗
p) ≥ (1 − 1/k)w(C∗

k) and M∗
p =

⋃n/k
i=1 Si. Using a

derandomization based on conditional expectations [29], by Lemma 7, we can
get that

w(Ck) ≥
n/k∑

i=1

3m + 1
2m

w(Si) =
3m + 1

2m
w(M∗

p) ≥ 3m + 1
4m

(

1 − 1
k

)

w(C∗
k).

Since m = (k − 1)/2, we can get an approximation ratio of 3m+1
4m (1 − 1

k ) =
3/4 − 0.25/k. �

By Theorem 4, we obtain a 7/10-approximation algorithm for metric 5CP,
which improves the previous ratio 17/25 in Theorem 3, and the ratio 3/5 in [21].

Corollary 1. For metric 5CP, Algorithm 3 is a 7/10-approximation algorithm.

4 Approximation Algorithms for Metric kPP

In this section, we consider metric kPP. Using a reduction from metric kPP to
metric TSP, metric kPP admits a 7/8 · (1 − 1/k)-approximation algorithm [11].
Note that, unlike metric kCP, it is not easy to construct a better black box
to improve the ratio. However, we will combine the properties of the 7/8-
approximation algorithm for metric TSP with an algorithm based on matching
to obtain a better approximation ratio for even 6 ≤ k ≤ 10. Next, we assume
that k is even.

The first algorithm, denoted by Algorithm 4, is to use the reduction from
metric kPP to metric TSP [11].

Step 1. Obtain a Hamiltonian cycle H using the 7/8-approximation algo-
rithm for metric TSP [19];
Step 2. Get a k-path packing Pk with w(Pk) ≥ (1−1/k)w(H) from H using
the same method in Step 2 of Algorithm 1.

For every Pi = vi1vi2 · · · vik ∈ P∗
k , let E ′

i = {vi(2j−1)vi(2j)}k/2j=1 and E ′′
i =

{vi(2j)vi(2j+1)}(k−2)/2
j=1 . Then, we can obtain a matching Mn/2 =

⋃
i E

′
i of size

n/2 and a matching Mp =
⋃

i E
′′
i of size p := (n/k) · (k − 2)/2. Note that

w(Mn/2) + w(Mp) = w(P∗
k ). We have the following bounds.

Lemma 8 (∗). w(C∗
k) ≥ k−2

k−1w(P∗
k ) + 2

k−1w(Mn/2).

Lemma 9 (∗). w(Pk) ≥ 5k−10
8k w(P∗

k ) + 2k+3
4k w(Mn/2).

Next, we propose an algorithm, denoted by Algorithm 5, to obtain another
k-path packing P ′

k, which can be used to make a trade-off with Pk. The frame-
work of Algorithm 5 is similar to Algorithm 3 in Sect. 3.3. Let M∗

p denote the
maximum weight matching of size p = (n/k) · (k − 2)/2, which can be computed
in polynomial time [10,20]. Note that w(M∗

p) ≥ w(Mp). There are 2n/k isolated
vertices not covered by M∗

p. Next, we construct a k-path packing using M∗
p with

isolated vertices. Algorithm 5 mainly contains three steps.
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Step 1. Arbitrarily partition the p edges of M∗
p into n/k sets with the same

size, denoted by S1,S2, . . . ,Sn/k. Note that each edge set contains m :=
(k − 2)/2 edges. For each of the n/k edge sets, arbitrarily assign two isolated
vertices.
Step 2. Consider an arbitrary edge set Si = {e1, e2, . . . , em} with the two
isolated vertices u and v. Assume w.o.l.g. that w(e1) ≥ w(em) ≥ w(ei) for
2 ≤ i < m, i.e., w(e1) + w(em) ≥ (2/m)w(Si). Orient each edge ei uniformly
at random from the two choices. Let ti (resp., hi) denote the tail (resp., head)
vertex of ei. Construct a k-path P ′

i such that P ′
i = ut1h1t2h2 · · · tmhmv.

Step 3. Get a k-path packing P ′
k by packing the k-paths from the edge sets

and the isolated vertices.

Algorithm 5 can also be derandomized by conditional expectations.
Next, we analyze the expected weight of P ′

i = ut1h1t2h2 · · · tmhmv, obtained
from the edge set Si and the two isolated vertices u and v.

Lemma 10 (∗). It holds that E[w(u, t1)] ≥ 1
2w(e1), E[w(v, hm)] ≥ 1

2w(em), and
E[w(hi, ti+1)] ≥ 1

4 (w(ei) + w(ei+1)) for 1 ≤ i < m.

Lemma 11 (∗). It holds that E[w(P ′
k)] ≥ 3k−4

2k−4w(M∗
p).

Lemma 12 (∗). w(P ′
k) ≥ 3k−4

2k−4w(Mp).

Theorem 5 (*). There is a 27k2−48k+16
32k2−36k−24 -approximation algorithm for metric

kPP with even k.

The approximation ratio in Theorem 5 is better than 7/8 · (1 − 1/k) for even
10 ≥ k ≥ 6. For k = 4, the ratio is even worse than the ratio 3/4 in [11]. But, in
the next section, we show an improved 14/17 ≈ 0.823-approximation algorithm.

5 Approximation Algorithms for the Case of k = 4

In this section, we study the case of k = 4 for metric/general kCP and kPP. For
metric 4CP, we improve the best-known ratio from 3/4 [21] to 5/6. For general
4CP, we improve the best-known ratio from 2/3 [21] to 3/4. For metric 4PP, we
improve the best-known ratio from 3/4 [11] to 14/17.

5.1 General 4CP

Zhao and Xiao [30] observed some structural properties of the minimum weight
4-cycle packing and the minimum weight matching of size n/2. In fact, these
properties even hold for the maximum weight 4-cycle packing C∗

4 and the maxi-
mum weight matching M∗ of size n/2.

Lemma 13 ([30]). Given C∗
4 and M∗, there is a way to color edges in C∗

4 with
red and blue such that
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(1) the blue (resp., red) edges form a matching of size n/2 Mb (resp., Mr);
(2) C∗

4 = Mb ∪ Mr;
(3) Mb ∪ M∗ is a cycle packing and the length of every cycle is divisible by 4.

An alternative proof of Lemma 13 could be found in [23]. Next, we describe
the approximation algorithm for general 4CP, denoted by Algorithm 6.

Step 1. Find a maximum weight matching M∗ of size n/2.
Step 2. Construct a multi-graph G/M∗ such that there are n/2 super-
vertices one-to-one corresponding to the n/2 edges in M∗, i.e., there is a
function f , and for two super-vertices f(ei), f(ej) such that ei, ej ∈ M∗,
there are four super-edges f(ei)f(ej) between them, corresponding to the
four edges uv with a weight of w(u, v) (u ∈ ei, v ∈ ej).
Step 3. Find a maximum weight matching M∗∗

n/4 of size n/4 in graph G/M∗.
Note that M∗ ∪ M∗∗

n/4 corresponds to a 4-path packing P4 in graph G.
Step 4. Obtain a 4-cycle packing C4 by completing the 4-path packing P4.

Note that w(C4) ≥ w(P4) = w(M∗) + w(M∗∗
n/4).

Lemma 14 (∗). w(M∗∗
n/4) ≥ 1

2w(Mb).

Lemma 15 (∗). w(P4) ≥ 1
2w(M∗) + 1

2w(C∗
4 ).

Theorem 6 (*). Algorithm 6 is a 3/4-approximation algorithm for general
4CP.

5.2 Metric 4CP

Li and Yu [21] proved an almost trivial approximation ratio of 3/4. We show that
their algorithm, denoted by Algorithm 7, actually achieves an approximation
ratio of 5/6.

Step 1. Find a maximum weight matching M∗ of size n/2.
Step 2. Construct a multi-graph G/M∗ such that there are n/2 super-
vertices one-to-one corresponding to the n/2 edges in M∗, i.e., there is a
function f , and for two super-vertices f(ei), f(ej) such that ei, ej ∈ M∗, there
are two super-edges f(ei)f(ej) between them, corresponding to the edge sets
{uz, xy} and {uy, xz} with a weight of w(u, z)+w(x, y) and w(u, y)+w(x, z)
(ux ∈ ei, yz ∈ ej).
Step 3. Find a maximum weight matching M∗∗

n/4 of size n/4 in graph G/M∗.
Note that M∗ ∪ M∗∗

n/4 corresponds to a 4-cycle packing C4 in graph G if we
decompose each super-edge of M∗∗

n/4 into two normal edges.
Step 4. Return C4.

Note that C4 is the maximum weight 4-cycle packing containing the edges of
M∗ by the optimality of M∗∗

n/4. Recall that we can get a 4-path packing P4 such

that w(P4) ≥ 1
2w(M∗)+ 1

2w(C∗
4 ) by Lemma 15. Moreover, if P4 = {uixiyizi}n/4i=1,

M∗ represents the edge set {uixi, yizi}n/4i=1. Let P4 denote the edge set {uizi}n/4i=1.
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Lemma 16 (∗). w(C4) ≥ 3
4w(C∗

4 ) + w(P4).

Lemma 17 (∗). w(C4) ≥ w(C∗
4 ) − 2w(P4).

Theorem 7 (*). Algorithm 7 is a 5/6-approximation algorithm for metric
4CP.

On {1, 2}-weighted graphs we may obtain a better approximation ratio.

Theorem 8 (*). On {1, 2}-weighted graphs, Algorithm 7 is a 7/8-approxi-
mation algorithm for metric 4CP.

5.3 Metric 4PP

At last, we will consider metric 4PP. Recall that we can get a 4-path packing P4

such that w(P4) ≥ 1
2w(M∗) + 1

2w(C∗
4 ) by Lemma 15. For metric 4PP, we will

construct another 4-path packing P ′
4. The algorithm, denoted by Algorithm 8,

is shown as follows.

Step 1. Obtain a 4-path packing P4 such that w(P4) ≥ 1
2w(M∗) + 1

2w(C∗
4 )

using Algorithm 6.
Step 2. Obtain a maximum weight matching M∗∗

n/4 of size n/4 in graph G.
Note that there are also n/2 isolated vertices not covered by M∗∗

n/4.
Step 3. Arbitrarily assign two isolated vertices ui, zi for each edge xiyi ∈
M∗∗

n/4. Assume w.l.o.g. that w(ui, xi) + w(yi, zi) ≥ w(zi, xi) + w(yi, ui).
Step 4. Obtain another 4-path packing P ′

4 by taking a 4-path uixiyizi for
every edge xiyi ∈ M∗∗

n/4 with the two isolated vertices ui, zi.

Let C4 be the 4-cycle packing obtained by completing the maximum weight
4-path packing P∗

4 , i.e., for every 4-path Pi = uixiyizi ∈ P4, we obtain a 4-cycle
Ci = uixiyiziui. Then, let C4 = P∗

4 ∪ P∗
4 . Moreover, let C4 = M1 ∪ M2 such

that M1 and M2 are two matchings of size n/2, and M1 ∩ P∗
4 = ∅. Obtain

another 4-cycle packing C′
4 such that for every 4-path Pi = uixiyizi ∈ P4 there

is a 4-cycle C ′
i = uixiziyiui in C′

4.

Lemma 18 (∗). w(P4) ≥ max{ 1
2w(M1) + 1

2w(P∗
4 ) + 1

2w(P∗
4 ), 3

2w(M1) −
w(P∗

4 )}.
Lemma 19 (∗). w(P ′

4) ≥ 2w(P∗
4 ) − 2w(M1).

Theorem 9 (*). There is a 14/17-approximation algorithm for metric 4PP.

6 Conclusion

In this paper, we consider approximation algorithms for metric/general kCP and
kPP. Most of our results are based on simple algorithms but with deep analysis.
In the future, it would be interesting to improve these approximation ratios,
even on {0, 1}-weighted or {1, 2}-weighted graphs. In particular, one challenging
direction is to design better algorithms for metric/general 3CP and 3PP.
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Abstract. Hub Labeling (HL) is a state-of-the-art technique for accel-
erating shortest path computation in road networks. By utilizing pre-
computed node labels, it can answer distance queries in microseconds on
continent-sized networks. The optimization goal is to get correct query
results with a minimum number of labels. There is an O(log n) approxi-
mation algorithm for the size of an HL with a running time of O(n3 log n).
However, existing practical implementations rely mostly on heuristics for
a special type of HL, so called Hierarchical HL (HHL). Deciding whether
a graph admits a labeling of size at most k is NP-hard for both HL
and HHL. For HHL, an O(

√
n log n) approximation algorithm (called w-

HHL) is known, as well as a parametrized upper bound of O(t log n) on
the average label size, where t denotes the treewidth of the network. In
this paper, we devise an exact HHL algorithm for general graphs. Fur-
thermore, we improve the parametrized approximation factor to O(b),
where b denotes the balanced separator number with b − 1 ≤ t. We also
show that w-HHL provides a constant factor approximation on trees, and
investigate for the first time the practical performance of existing HHL
approximation algorithms. Our theoretical results offer some explana-
tory power for the good performance of HHL on road networks, while
our experimental results show that commonly used methods for HHL are
noticeably outperformed by w-HHL on general graphs as well as trees.

Keywords: Shortest Path · Hub Labeling · Separator ·
Approximation

1 Introduction

The concept of Hub Labeling (HL) was introduced by Cohen et al. [8] to quickly
answer reachability and distance queries on networks with the help of precom-
puted auxiliary data. Given a weighted graph G(V,E, c) with c : E → R+, an HL
assigns to each node a label L : V → 2V such that the so called cover property is
fulfilled, that is, for all connected pairs (s, t) ∈ V , L(s)∩L(t)∩π(s, t) �= ∅ where
π(s, t) denotes the set of nodes on the shortest path from s to t in G. If all nodes
v ∈ V store the shortest path distance cv(w) to each node w ∈ L(v), the cover
property allows for computing the shortest path distance between nodes s and
t via the formula: minv∈L(s)∩L(t)(cs(v) + ct(v)). To compute the set L(s) ∩ L(t)
efficiently, nodes in L(v) are presorted by node ID. Then, the intersection of
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
R. Uehara et al. (Eds.): WALCOM 2024, LNCS 14549, pp. 194–211, 2024.
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any two such sets can be computed in time linear in their sizes by a merge-like
procedure.

Thus, the performance of HL solely depends on the size of the respective
labels. Let Lavg := 1

n

∑
v∈V |L(v)| denote the average label size. Then the space

needed to store an HL is in O(nLavg) and the average query time over all node
pairs is upper bounded by 2Lavg. Accordingly, the natural optimization goal is to
compute an HL with the average node label size as small as possible. Minimizing
Lavg is an NP-hard problem [5]. Hence efficient heuristics that produce moderate
label sizes are used in practice. In particular, heuristics for a special type of HL,
a so called Hierarchical HL, are most prominent.

Definition 1 (Hierarchical Hub Labeling (HHL)). A hub labeling L is
a hierarchical hub labeling if there exists a bijective ordering (rank) r : V →
{1, . . . , n} for n = |V |, s.t., ∀w, v ∈ V : w ∈ L(v) → r(w) ≥ r(v).

So nodes have ranks and the label of a node is only allowed to contain nodes
of higher rank. One of the main advantages of HHL is that it suffices to fix a
ranking function and then the smallest possible HHL that respects this ranking
can be computed in polynomial time. This labeling is called a canonical HHL.

Definition 2 (Canonical HHL). Given a node ordering r, the node w ∈ V is
contained in the label set L(v) of v ∈ V , if and only if w has the highest ranking
on some shortest paths originating from node v.

It is easy to prove that the canonical HHL is both necessary and sufficient to
fulfill the cover property. Determining the ranking function that minimizes Lavg

is still NP-hard [6]. A heuristic is to rank the nodes by degree [9]. While this
works very fast, label sizes might become huge. More sophisticated approaches
use other greedy rankings or are related to Contraction Hierarchy (CH) construc-
tion [2], which is another rank-based preprocessing method for faster shortest
path computation [12]. However, these do not come with provable guarantees.
There do exist approximation algorithms, but with quite large approximation
factors of O(

√
n log n) [6]. Using a nested dissection approach, a parametrized

approximation factor of O(t log n) for label sizes was shown [7], where t denotes
the treewidth of the network. This parameter is known to be small in road net-
works [16]. We will improve the parametrized approximation factor and provide
further novel insights into exact and approximate HHL computation.

1.1 Related Work

HHL was proposed by Abraham et al. [2] and shown to perform well on road
networks using heuristics inspired by contraction hierarchies (CH). It was shown
that HHL outperforms CH significantly with respect to query time. In [10],
O(log n) approximate solutions for HL were compared to heuristically obtained
HHL solutions, showing that HHL labels are 20–50% larger but can also be
computed much faster. The gap in label size is also far from the worst-case gap
of Θ(

√
n) shown for specifically constructed graphs [13]. Several scalable HHL
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heuristics have been investigated in the meantime, offering different trade-offs
between preprocessing time and label size [3,15]. The best known approximation
algorithms for HHL, called w-HHL and g-HHL come with large approximation
factors of O(

√
n log n) [6]. It was also shown that the analysis is tight for g-

HHL. For w-HHL, there exist example instances on which the produced labeling
is larger than the optimum by a factor of Θ( 3

√
n).

There are several parametrized upper bounds for maximum (and thus aver-
age) label sizes in HL and HHL. For HL, an expected upper bound of O(κ log n)
was proven in [14], where κ denotes the skeleton dimension of the network.
This approach relies on a randomized preprocessing scheme. For HHL, labels in
O(h log D) exist where h is the highway dimension and D the network diameter.
Using polynomial-time preprocessing, the bound increases to O(h log D log n) [1].
However, the preprocessing is still too demanding to be used in practice even
on small networks. A more practical approach that also comes with bounded
label sizes was proposed in [7]. It is called nested dissection and was originally
designed for CH computation. The approach relies on recursively dividing the
graph using balanced node separators. The method produces HHL with label
sizes in O(t log n) where t denotes the treewidth. Allowing only polynomial con-
struction time, the label sizes are in O(t log2 n). On trees, where t = 1, the same
strategy yields a 2-approximation for Lavg [17]. There is also a PTAS on trees
[5]. However, the complexity of minimizing label sizes of HHL on trees is still an
open problem.

1.2 Contribution

We investigate HHL algorithms with provable guarantees on general graphs and
on trees. The following are our main contributions:

– We present an exact algorithm for HHL with a running time of O(n22n)
that avoids to iterate over all n! possible ranking functions. While the algo-
rithm does not scale to large networks, it can be used to assess the quality of
heuristics on small instances.

– We improve the parametrized approximation factor of O(t log n) to O(b) for
HHL where b is the balanced separator number of the input graph and b−1 ≤
t.

– We prove that two known O(
√

n log n) approximation algorithms for HHL on
general graphs (namely w-HHL and g-HHL) produce constant-factor approx-
imations on trees. By generalizing an LP-based approach from [5], we prove
the more general result that nested dissection based on α-balanced separators
for α ∈ [1/2, 1) yields an approximation factor of 2α

1−α . For w-HHL and g-HHL
we show that α = 1/

√
2.

– We implement and evaluate the performance of the approximation algorithms
(g-HHL and w-HHL) on a diverse set of benchmarks. We assess their qual-
ity with respect to lower bounds and compare the outcomes to those of the
commonly used HHL heuristics. Despite the large theoretical approximation
factors, it turns out that the approximation algorithms outperform the heuris-
tics drastically.
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2 Preliminaries

Throughout the paper, we assume to be given an undirected connected graph
G(V,E) with non-negative edge weights c : E → R

+ and unique shortest paths
between all pairs of nodes. The latter property is a common assumption that
might also be enforced via symbolic perturbation of the edge weights. We refer
to the shortest path between two nodes s, t ∈ V as π(s, t) = s, . . . , t and to its
cost as c(π(s, t)) or cs(t) = ct(s) for short.

3 An Exact Algorithm for HHL

There are n! many node permutations, each of them defining a valid HHL. A
naive algorithm for computing the optimal HHL with respect to maximum or
average label size is to iterate over all these permutations, to compute the canon-
ical HHL for each, and to keep track of the one with smallest average label
size. The respective running time amounts to O(n3n!). As the label L(v) of a
node v depends on the exact ranking of all the nodes of rank higher than v,
it appears to be difficult to improve that running time. However, to get the
average label size in a canonical HHL, we can also sum over the inverse label
sizes L−1(v) instead, where L−1(v) := {w ∈ V | v ∈ L(w)}. Clearly, it yields∑

v∈V |L(v)| =
∑

v∈V |L−1(v)|. We show next that considering the inverse label
size has a crucial advantage in the design of an exact algorithm, as L−1(v) only
depends on the set of nodes with a rank higher than v but not on their particular
order.

Lemma 1. For a node v, given R(v) := {w ∈ V | r(w) > r(v)}, the inverse
label L−1(v) can be determined in O(n2).

Proof. The inverse label of node v is the set of nodes w for which v is the
node of maximum rank on the shortest path from w to v. Thus, L−1(v) can be
determined by running reverse Dijkstra from v to retrieve the reverse shortest
path tree, and then cutting off all subtrees rooted in a node u ∈ R(v). ��
The lemma can be leveraged to develop a DP that returns the HHL with small-
est possible average label size as follows: We allocate a table with n rows and 2n

columns. Row i corresponds to node i. For each node subset, there is a corre-
sponding column. The columns are sorted increasingly by the subset sizes. The
entries in the first column, which corresponds to the empty set, are all filled
with zeros. The other columns are filled in order using the following rules: Let
the column set be S and the row node v. If v /∈ S, we fill the respective cell
with ∞. Otherwise, we want to enter the smallest summed label size of the
nodes in S assuming that the contained nodes have the |S| highest ranks among
all nodes and v has the lowest rank among the nodes in S. To compute this
value, we consider the smallest entry in column S \ v and add to it the size of
L−1(v) for R(v) = S \ {v}. Once the whole table is filled, the smallest entry in
the last column (which corresponds to the whole node set) divided by n indi-
cates the optimal average label size. The respective ranking can be deduced via
backtracking.
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Theorem 1. The DP algorithm computes the minimum average label size of an
HHL in O(n22n) time using O(n2n) space.

Proof. According to Lemma 1, computing L−1(v) takes O(n2). Using this
method to fill each of the O(n2n) cells in the table would result in an overall run-
ning time of O(n32n). However, we reduce this running time by precomputing
all shortest path trees in O(n3), using O(n2) space. Then, whenever we have to
compute the inverse label size of a node v with given set R(v) of higher ranked
nodes, we simply traverse the precomputed shortest path tree from v and cap it
at nodes in R(v) instead of computing the whole tree from scratch. As the tree
has a size of O(n), the traversal takes only linear time. Therefore, the overall
running time is reduced to O(n22n + n3) = O(n22n). The space consumption is
dominated by the number of table cells.

To show correctness, we prove by induction that the following loop invariant
upholds: Once a table column is completely processed, the minimum value in said
column equals the minimum summed inverse label size of the nodes in the column
set S, given that those have rank higher than the nodes in V \ S. For columns
that refer to single node, that is, S = {v}, we compute L−1(v) with an empty set
R(v) and thus always get |L−1(v)| = n. Adding that to the zero obtained from
the first column, which encodes ∅, the value of n does not change. Clearly, this
is the smallest possible label size for any choice of a highest rank node. For the
induction step, we assume that all columns with set sizes up to k are correctly
processed and now consider a column with set S of size k+1. Let v∗ be the lowest
ranked node in S in the optimal ordering of S. When processing the row v∗, the
node will assume that role and L−1(v∗) will be computed accordingly. Based on
the induction hypothesis that the minimum summed inverse node labels for the
nodes in S \{v∗} can be read from the respective table column, adding |L−1(v∗)|
to said value produces the optimal entry. As in the end the minimum over all
row entries is returned, the correct value produced by row v∗ is retrieved. ��

4 Parametrized Approximation

In [7], it was proven that the maximum (and thus also the average) label size in
an HHL can be upper bounded by O(t log n) where t denotes the treewidth of
the input graph. The rank assignment works via nested graph dissection: First,
a balanced node separator S is computed in the input network. The nodes in the
separator get assigned the highest available ranks (arbitrarily). The algorithm
then recurses on the components that remain after removing S from G. This
results in a decomposition tree T , in which each vertex encodes a separator S in
G and its children are the separators of the connected components C1, . . . , Cd

of G[V \ S]. For a node v ∈ V , its label can be constructed by considering the
vertex in T in which it is contained, computing the path from this vertex to the
root of T and then accumulating all nodes that are contained in the respective
separators. As all S are balanced separators, the depth of T is in O(log n).
Thus the label size is upper bounded by the size of the largest separator in the
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decomposition tree multiplied with O(log n). The maximum separator size in
such a decomposition tree can always be upper bounded by t + 1.

However, we observe that it can also be upper bounded by the balanced
separator number b, which denotes the smallest integer such that every induced
subgraph of G with n′ nodes can be separated by a node set of size at most b
such that the resulting components have size at most (n′ − b)/2. This parameter
is more useful as b ≤ t + 1 holds in any graph and thus the bound is stronger
when using b. We will now proceed to show that the average label size of an
HHL can be even approximated within a factor of O(b) instead of O(b log n),
thus shaving a log factor. As node labels cannot be empty, any upper bound
on the label size immediately provides a matching approximation factor for the
resulting labeling.

To show the improved bound, we define SOLG(G′) to be the average label
size of the nested dissection algorithm on a subgraph G′ of G that respects the
shortest path structure of G. That means, that only shortest paths between
nodes in G′ that are completely contained in G′ are relevant for the labeling.
Shortest paths that leave G′ are then taken care of via the inclusion of the
separator nodes in the respective labels.

Lemma 2. Let G(V,E) be a graph, S a node separator of G with |S| = b, and
C1, . . . , Cd the connected components of G[V \S]. Then we have following upper
bound on the average HHL label size created by the nested dissection algorithm:
SOLG(G) ≤ 1

n

∑d
i=1 |Ci| · SOLG(Ci) + b.

Proof. The solution of nested dissection algorithm SOLG(G) is determined by
declaring the nodes in S to have highest rank among all nodes in G and to then
recurse on the connected components C1, . . . Cd that result from removing the
nodes in S from G. Thus, given the solutions computed on C1, . . . Cd, the final
label of each node consists of the respective component labels plus at most all
the nodes in S. The nodes in S can only have other nodes from S in their label
based on the ranking property. Summing up all label sizes, we get |Ci|·SOLG(Ci)
labels per component plus b additional labels per node. Accordingly, we have
SOLG(G) ≤ 1

n

∑d
i=1 |Ci| · SOLG(Ci) + b. ��

Similar to SOLG(G′) we next define OPTG(G′) as the optimal average label size
for nodes in subgraph G′ to G, considering only shortest paths from G that are
fully contained in G′.

Lemma 3. Let G(V,E) be a graph, S a balanced node separator of G, and
C1, . . . , Cd the connected components of G[V \S], then OPTG(G) ≥ 1

n

∑d
i=1 |Ci|·

OPTG(Ci) + 1
2 .

Proof. Considering a globally optimal HHL L and a component Ci, we have∑
v∈Ci

|L(v) ∩ Ci| ≥ ∑
v∈Ci

OPTG(Ci). That means a global solution restricted
to Ci can not be smaller than a locally optimal solution. Thus, we established
OPTG(G) ≥ 1

n

∑d
i=1 |Ci| · OPTG(Ci). To show the additional +1

2 term, we
consider shortest paths between different components Ci and Cj , i �= j, as well
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as paths emerging from separator nodes. These paths are clearly not covered by
the local component labels. The nodes in S all need to adhere to the trivial lower
bound of having at least one node in their label. Now, we distinguish two cases:

Case I: All nodes in
⊎d

i=1 Ci have at least one label outside of their compo-
nent. As |⊎d

i=1 Ci| = n − |S| and we have established prior that the nodes in S
also have non-empty labels, this gives us n − |S| + |S| = n additional labels in
total, and 1 additional label on average.

Case II: There exists a component Ci and a node v ∈ Ci with L(v) ⊂ Ci,
that is, v has only labels inside of Ci. To fulfill the cover property for all shortest
paths π(v, w) with w ∈ Cj , j �= i we hence need w to have a label inside of Ci

as well. Let C∗ be the largest among the d components, and nodes in C∗ have
only labels inside of C∗. Then minimum additional labels are at least |⊎d

i=1 Ci \
C∗| = n − |S| − |C∗|. As S is a balanced node separator, we have |C∗| ≤ n

2 .
Combining this with the non-empty labels of the separator nodes, we now get
n−|S|− n

2 + |S| = n
2 additional labels in total and 1

2 additional label on average.
��
Theorem 2. Using nested dissection, the average label size of the resulting HHL
is within a factor of 2b of the optimum.

Proof. We prove the theorem by induction on n using SOLG(G) ≤ 2bOPTG(G)
as induction hypothesis. If n = 1, SOLG(G) = OPTG(G) = 1 and b = 1. For
n ≥ 2, by virtue of Lemma 2 and the induction hypothesis, we get

n · SOLG(G) ≤
d∑

i=1

|Ci| · SOLG(Ci) + nb (1)

≤ b(2
d∑

i=1

ni · OPTG(Ci) + n). (2)

Plugging in Lemma 3 that says that 2
∑d

i=1 |Ci| ·OPTG(Ci)+n ≤ 2nOPTG(G),
we deduce nSOLG(G) ≤ b2nOPTG(G). Dividing by n produces the desired
inequality. ��
Our result generalizes the observation that on trees the nested dissection app-
roach yields a constant-factor approximation by showing that indeed the approx-
imation factor solely depends on the separator size but not on the size of the
network as a whole. On trees, balanced separators can easily be determined
in polytime. For planar graphs, constant-factor approximations exist [4]. Thus,
Theorem 2 shows an O(b) approximation for this graph class. For general graphs,
computing the smallest balanced separator constitutes an NP-hard problem in
itself. However, pseudo-approximation algorithms can be used to get separa-
tors with slightly worse balance guarantee and an increase in separator size by
O(log n). The resulting label size is then in O(b log n). Note that this is still an
improvement by a log factor over the previously known result, where demanding
polytime preprocessing results in labels of size O(b log2 n).
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5 HHL Approximation on Trees

Now, we turn our focus to tree graphs T (V,E). No exact polytime algorithm is
known for computing the HHL with minimum average label size on trees. In this
section, we show that g-HHL and w-HHL admit constant-factor approximations
on trees while for general graphs the approximation factor is in O(

√
n log n).

5.1 Upper Bound for α-Balanced Separator Algorithm

The algorithm proposed by Peleg [17] uses nested dissection on trees as described
in the last section. It relies on using a balanced separator on each level of the
decomposition tree. We will now generalize this approach to using α-balanced
separators for α ∈ (0, 1). Such a separator S demands that all components in
T [V \ S] have size at most αn.

It was proven in [5] that the optimal HL on trees is hierarchical. They provide
a primal and dual formulation as shown in Table 1 of HL as linear programs to
show that applying Peleg’s algorithm based on balanced separators with α = 1/2
yields a solution that is a 2-approximation compared to the optimal HL on trees.
First, we recall their approach and then extend their proof to cater for general
α-balanced separators.

Table 1. Primal and Dual LPs for HL on trees [5]

(PRIMAL-LP) (DUAL-LP)

variables αuv and buvw for w ∈ Puv

min :
∑

u∈V

∑

v∈V

xuv

s.t. :
∑

w∈Puv

yuvw ≥ 1, ∀{u, v} ∈ I

xuw ≥ yuvw, ∀{u, v} ∈ I, ∀w ∈ Puv

xvw ≥ yvuw, ∀{u, v} ∈ I, ∀w ∈ Puv

xuv ≥ 0, ∀{u, v} ∈ V × V

yuvw ≥ 0, ∀{u, v} ∈ I, ∀w ∈ Puv

max :
∑

{u,v}∈I

auv

s.t. :auv ≤ buvw + bvuw, ∀{u, v} ∈ I, u �= v

∀w ∈ Puv

auu ≤ buuu, ∀u ∈ V
∑

v:w∈Puv

buvw ≤ 1, ∀(u, w) ∈ V × V

auv ≥ 0, ∀{u, v} ∈ I

buvw ≥ 0, ∀{u, v} ∈ I, ∀w ∈ Puv

bvuw ≥ 0, ∀{u, v} ∈ I, ∀w ∈ Puv

In the formulation of the primal linear program, I is the set of all (unordered)
pairs of vertices. Note that for all vertices u, the pair {u, u} is included as well.
The variables xuv indicate whether v is contained in the label set Hu of u. For
every node w on the shortest path Puv from u to v, the variable yuvw is lower
or equal to both xuw and xvw. For all pairs {u, v} ∈ I, the sum over all yuvw

for all nodes w on Puv must be at least one. This implies that any shortest path
must be covered by at least one node. The goal of the primal linear program is
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to determine the assignments for the variables x and y, minimizing the sum over
the x variables. This is exactly equivalent to minimizing the hub label size.

In the dual linear program, auv is a variable of the unordered pair {u, v} ∈ I,
however variables buvw and bvuw are different variables, where (u, v) ∈ V × V is
an ordered pair.

The authors in [5] derive the constant approximation factor of Peleg’s algo-
rithm by comparing the contribution from each iteration of the heuristic algo-
rithm to the value of DUAL-LP. We adjust the variables assignment in the
DUAL-LP associated with parameter α such that the constraints are still ful-
filled, then apply the analogous upper bound analysis.

Theorem 3. The α-balanced separator algorithm is a 2α
1−α -approximation algo-

rithm on trees for α ∈ [1/2, 1).

Proof. We apply the α-balanced separator algorithm and construct a fractional
solution for the dual linear program. Let T ′ be the current tree of size n′ in one
iteration of the algorithm, and let r be a α-balanced separator. However, since
trees are free of cycles, one vertex is sufficient to cut a tree into subtrees of sizes
at most αn′. Furthermore, such a node r exists for every tree. Let A = 1/αn′ and
B = 1/2αn′. Let T1, . . . , Ta be the connected components from T ′ after removal
of node r.

We assign values for the variables au,v, buvw and bvuw for node pairs {u, v},
where r is contained on the (unique) path from u to v. In the previous iterations,
nodes u and v were in the same subtree. Hence, no previous α-balanced sepa-
rator is contained in their shortest path. After removing r, they lie in different
connected components. Hence, the variables auv, buvw and bvuw are assigned
exactly once during execution of the algorithm.

The rules of assignment are as follows:

auv = A, ∀u ∈ Ti, v ∈ Tj ∧ i �= j
aur = A, ∀u ∈ T ′ \ {r}
arr = brrr = B
buvw = A and bvuw = 0, ∀w ∈ Prv \ {r} : ∀u ∈ Ti, v ∈ Tj ∧ i �= j
buvw = 0 and bvuw = A, ∀w ∈ Pur \ {r} : ∀u ∈ Ti, v ∈ Tj ∧ i �= j
buvr = bvur = B, ∀u ∈ Ti, v ∈ Tj ∧ i �= j
burr = brur = B, ∀u ∈ T \ {r}
We verify that these assignments are feasible solutions for the dual linear

program. As shown in Fig. 1, for all nodes pairs (u, v) ∈ V × V \ {(r, r)} it
follows auv = A = buvw + bvuw = 2B and arr = brrr, so both the first and the
second constraints from DUAL-LP are satisfied.

For the third constraint, consider nodes u ∈ Ti, w ∈ Tj and v /∈ T ′, where
i �= j. If w is not on the shortest u-v path, then buvw will not be assigned. If
w lies on the shortest u-v path, then there must be a balanced separator r′ in
some previous iteration of the algorithm such that w ∈ Pur′ . In this case, the
variable buvw receives the value zero. Therefore, for nodes u ∈ Ti, w ∈ Tj , i �= j,
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Fig. 1. DUAL-LP Assignments

all nodes v whose buvw are non-zero lie in Tj . For u ∈ Ti ∪{r} and w ∈ Tj , where
i �= j, it follows

∑

v|w∈Puv

buvw ≤ |Tj | · A ≤ αn′ · 1
αn′ = 1. (3)

For u ∈ Ti ∪ {r} and w = r, it follows,

∑

v|w∈Puv

buvw =
∑

v|r∈Pur

buvr =
∑

v:r∈Puv

B ≤ n′ · 1
2αn′ ≤ 1. (4)

Hence, the assignments for a and b lead to a feasible solution of DUAL-LP.
Furthermore, we show that the assignments lead to a resulting value that is
at least 1−α

2α of the maximal value. This proves that the algorithm is a 2α
1−α -

approximation algorithm.
During one iteration, we add r into the hub labels of all nodes in T ′. This

increases the cost of hub labeling by n′. Now consider the contribution C of the
assignment in this iteration, which is the sum of all auv such that r lies on the
shortest u-v path, i.e., u and v are in different subtrees after removal of r. Let
t1, . . . , ts be the subtree sizes. It follows that

C =
s−1∑

i=1

s∑

j=i+1

⎛

⎝
∑

u∈Ti,v∈Tj

auv

⎞

⎠ +
s∑

i=1

∑

u∈Ti

aur + arr (5)

= A

s−1∑

i=1

s∑

j=i+1

titj + A(n′ − 1) + B (6)

=
A

2

s∑

i=1

ti

⎛

⎝
s∑

j=1,i �=j

tj

⎞

⎠ + A(n′ − 1) + B. (7)
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Considering that the term
∑s

j=1,i �=j tj = n′ − 1 − ti ≥ n′ − 1 − αn′, it follows

s∑

i=1

ti

⎛

⎝
s∑

j=1,i �=j

tj

⎞

⎠ ≥
s∑

i=1

ti(n′ − 1 − αn′) = (n′ − 1)(n′ − 1 − αn′). (8)

Moreover,

C ≥ (n′ − 1)(n′ − 1 − αn′)
2αn′ +

n′ − 1
αn′ +

1
2αn′ =

(n′)2(1 − α)
2αn′ =

1 − α

2α
n′. (9)

Hence, the α-balanced separator algorithm is a 2α
1−α -approximation algorithm

on trees. ��

5.2 Properties of G-HHL and W-HHL on Trees

Both g-HHL and w-HHL are greedy algorithms for HHL which assign the node
ranks from highest to lowest. g-HHL always selects next the node that is con-
tained in the largest number of shortest paths that do not already contain a
node of higher rank. w-HHL also uses that shortest path count but divides it by
the inverse label size.

To show that g-HHL and w-HHL are 2√
2−1

-approximations on trees, we first
define the center graph on a undirected graph as follows (analogous to [6]): A
center graph Gv = (V,Ev) of node v in graph G = (V,E) contains all the
vertices in G, and there is an edge {u,w} ∈ Ev if and only if there is a shortest
path between u and w via v. According to the definition, g-HHL selects the
node whose center graph has the most edges in each iteration and assigns it the
next highest rank; instead, w-HHL selects the node whose center graph has the
highest density (number of edges divided by the number of non-isolated nodes).

It is trivial to show that g-HHL and w-HHL return the same label sizes on
trees. Since for any node v ∈ T , there is exactly one shortest path from v to any
other node in T . Therefore, the center graph of each node in T does not contain
isolated vertices. Let v ∈ T be the node whose center graph has the highest
number of edges. It follows immediately, that the center graph of v has also the
highest density among all center graphs.

For the same tree, both g-HHL and w-HHL assign v the next highest rank,
every node in T contains v in its label set. After the removal of node v, T
decomposes into subtrees of smaller size. The shortest path pairs covered by
v are separated into different subtrees. Hence, recursively g-HHL and w-HHL
select the same node in each subtree. Hence, the resulting label sizes of both
algorithms are the same.

To proof that g-HHL and w-HHL have a constant approximation factor on
trees, we show that a node v ∈ V maximizing the number of edges in its center
graph is actually an α-balanced separator of the tree T with α ∈ [1/2, 1). Then,
the assertion readily follows from Theorem 3.

Lemma 4. Let T = (V,E) be a tree with n nodes. The vertex v ∈ V whose
center graph Gv of T maximizes the number of edges is a 1√

2
-balanced separator.
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Proof. Let v be the node whose center graph Gv maximizes the number of edges.
Let Tm be the largest subtree rooted at a neighbor of v. Our goal is to find an
upper bound on the size t of Tm. In the worst-case scenario, Tm has as many
nodes as possible, and the center graph Gv still has the most edges. This is
achieved if the number of edges contributed from T\Tm is as large as possible,
i.e., if the nodes in T\Tm form a clique in Gv. Therefore, T\Tm forms a star in
T whose center is v. In this case, these nodes contribute (n−t)(n−t−1)

2 edges in
Gv. If Tm is too large, then there exists some node u on Tm whose center graph
Gu has more edges than Gv. In order to make the center graph Gu have as few
edges as possible (so that Tm can be as large as possible), Tm must be a path.
Hence, u is the balanced separator of T whose center graph has the most edges
among the nodes on Tm. Since Gv has at least so many edges as in Gu, it follows
that (n−t−1)(n−t−2)

2 + t(n − t − 1) + n − 1 ≥ (
n−1
2

)2 + n − 1. Accordingly, the
balance ratio of separator v is t

n ≤ 1√
2
. ��

Based on Lemma 4 and Theorem 3, we obtain the following theorem.

Theorem 4. g-HHL is a 2√
2−1

-approximation algorithm for HL on trees.

6 Experimental Evaluation

This section evaluates the performance of g-HHL, w-HHL, CH-based HHL and
HHL based on balanced separators. Furthermore, we apply the exact algorithm
for HHL on trees and investigate lower and upper bounds.

6.1 On General Graphs

Methods for Contraction Hierarchies (CH) construct node rankings that can be
used for HHL [13]. We always compute the canonical HHL associated with the
CH node ranking.

The algorithm based on balanced separators computes a preferably small 1/2-
balanced separator S in each connected component and assigns them the next
highest rankings. We use KaFFPa in our implementation (a tool included in
KaHIP [18]), which can find small balanced separators in large graphs efficiently
in a heuristic fashion. We again compute the canoncial HHL with respect to the
obtained node ranking.

To evaluate the resulting label size quality of the heuristics, we compare
the results with the label size lower bound from [8]. The authors introduce the
efficiency of a pair of nodes and show that it can be used to derive a general
lower bound for HL on arbitrary graphs. For u, v ∈ V , let hu(v) be the number
of vertices x whose shortest path from u to x contains v, and let Puv be the
set of shortest paths from u to v. Then the efficiency of each node pair (u, v) is
defined as follows: eff(u, v) = max

p∈Puv

max
w∈p

min {hu(w), hv(w)}. For the optimal

average hub labeling size Lavg for the graph G = (V,E) holds that

n · Lavg ≥
∑

(s,t):Pst �=∅

1
eff(s, t)

. (10)
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Note that this bound works well for dense graphs, however, it is less tight on
sparser graphs. For example, on paths or binary trees, the lower bound above
states n ·Lavg ∈ Ω(n) (where n is the number of nodes), though the optimal hub
labeling on these graphs is in Ω(n log n).

We implemented all algorithms in C++ and and executed on a single core
of an AMD Ryzen 7 3700X processor (clocked at 3.6 GHz) with 128 GB main
memory, which had an L3 cache size of 16384K. The operating system was
ubuntu 18.04. KaHIP 2.10 was compiled using Clang 11.0.0 with OpenMPI 1.4.1.

Benchmark Sets. The first benchmark set contains the instances from the
PACE challenge 20201, which were provided for the tree depth decomposition
challenge. The second benchmark set contains the instances from the PACE
challenge 2019 [11], which were provided for the vertex cover challenge. The
last benchmark set consists of road networks extracted from OpenStreetMap2

(OSM). Table 2 presents an overview over all benchmark sets. Benchmark sets
from the PACE challenge contain a variety of graph densities, while the OSM
benchmark set is comparably sparse.

Table 2. Number of nodes, edges and average degree of the graphs in the used bench-
mark sets.

Benchmark Sets #Instances |V | |E| d

PACE 2020 exact 100 [10, 491] [15, 4.100] [2, 65]

PACE 2020 heuristic 40 [105, 7.813] [143, 366.239] [2, 208]

PACE 2019 30 [153, 4.579] [625, 126.163] [3, 164]

OSM 15 [100, 4000] [99, 4336] 2

The average label sizes Lavg of the different approaches, compared to the
lower bound lavg given by efficiency, are shown in Fig. 2. We can observe that
g-HHL and w-HHL compute results of comparable quality. No algorithm could
find a label size smaller than four times the efficiency lower bound on the road
networks. Recall that the efficiency lower bound is less accurate on sparse graphs.
In all PACE instances, the label sizes from both algorithms are within the factor
of 7 from the efficiency lower bound, while the average value of Lavg/lavg is around
three on the PACE instances and still lower than 5 for the OSM instances.
The algorithm based on CH almost always computes worse results than the
previously mentioned algorithms. It performs poorly on the OSM road networks.
In particular, the average ratio to the lower bound is around twelve, and even
the best-case instances have a larger label set than the worst-case instances of
g-HHL and w-HHL.

1 PACE challenge.
2 OSM.

https://pacechallenge.org/2020/td
https://www.openstreetmap.org
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Fig. 2. Comparison of the resulting average label sizes Lavg and the efficiency lower
bound lavg

The balanced separator based algorithm computes the worst results on aver-
age in all instances. On the PACE instances, its average ratio is around six com-
pared to the lower bound, while all other algorithms find smaller hub labels on
average. On the road networks, the balanced separator based algorithm could,
in the best-performed instances, find a solution within the lower bound by a
factor of around 13. It is slightly worse than the worst results of g-HHL and w-
HHL. The average ratio of the solution quality of the balanced separator based
algorithm compared to the lower bound is around 15, about 3 times as large as
g-HHL and w-HHL.

To summarize, we observe that g-HHL and w-HHL compute hub labels of
similar size on all inputs. On average, the CH-based algorithm computes solu-
tions smaller than the balanced separator based algorithm but slightly worse
hub labels than the previous algorithms. The last algorithm based on balanced
separators computes the worst solutions in all instances.

The running times of all algorithms are shown in Fig. 3. Both g-HHL and
w-HHL have very similar running times. In almost all instances, the CH-based
approach is the fastest algorithm. However, on some of the dense graphs, the
running times of CH are even the longest. This results from the fact that CH is
originally designed to work on large and sparse road networks. The last algorithm
based on balanced separators is time-consuming in small instances. This is due to
the computation of a balanced separator involving the execution of KaHIP, which
takes considerable time. However, this approach can be used on large instances
since its asymptotical growth is slower than that of all other algorithms.
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Fig. 3. Running time comparison

6.2 On Trees

To evaluate the performance of Peleg’s algorithm and g-HHL on trees, we gen-
erated two benchmark sets. The first benchmark set includes extracted shortest
path trees from the PACE 2020 heuristic benchmark set. The second one com-
prises our self-generated random trees, which are constructed from a single node
by iteratively adding a new node to a random previous node.

Since both g-HHL and w-HHL behave the same on trees followed from
Sect. 5.2, it is sufficient to only compare Peleg’s algorithm to g-HHL. We applied
Peleg’s algorithm and g-HHL to our two benchmark sets and obtained the result-
ing label sizes Lp and Lg. Furthermore, we also measured the balance ratio
α(v, T ′) of each node v to which g-HHL assigned the highest rank in the subtree
T ′ during the execution. Recall the definition of the balance ratio of a node v in a
tree T ′ with n nodes. The balance ratio of v is the largest connected component
size after removing the node v and its adjacent edges divided by n.

Table 3 presents an overview over the benchmark sets and the maximum
balance ratios. Figure 4 illustrates the resulting label sizes of g-HHL Lg compared
to the label size of Peleg’s algorithm Lp.

Table 3. Number of instances, number of nodes, and the maximum balance ratio
during the execution of g-HHL.

Benchmark Set #Instances |V | max(α(v, T ′))

PACE 2020 Heur 64 [100, 1.319.677] 0.66

Random Trees 66 [100, 448.000] 0.64

The maximum balance ratio α(v, T ′) in the first benchmark set is 0.64 and
0.66 in the second benchmark set, both were significantly lower than 1/

√
2 ≈ 0.707
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Fig. 4. Label size comparison between g-HHL and Peleg’s algorithm. Left: Label size
comparison on PACE2020 heuristic public benchmark set. Right: Label size comparison
on random tree benchmark set.

from the worst case shown in Lemma 4. Furthermore, there are only two instances
in which Lg is larger than Lp, one from each benchmark set. In both instances,
the resulting label sizes of g-HHL exceeded the results from Peleg’s algorithm
by less than 1%. The approximation factor from Theorem 3 depends on the
balance ratio. Since g-HHL and w-HHL do not aim to cover the shortest paths
by the node that separates the tree in the most balanced way, the approximation
factors via Theorem 3 are larger than Peleg’s algorithm. However, our results
demonstrate that the label sizes of g-HHL are in most cases lower or equal to
Lp, and are significantly closer to the optimum than the factor of 2√

2−1
from

Theorem 4.
Furthermore, we implemented the exact algorithm for hierarchical hub label-

ing and applied it on 20000 randomly generated small trees with node sizes lower
or equal to 20. Comparing the hub label sizes resulting from g-HHL and Peleg’s
algorithm to the optimal solution in the same instances, we observed a lower
bound of 1.005 and 1.023. The maximum balance ratio α(v, T ′) of the exact
algorithm never exceed 2/3. Based on this observation, we implemented an algo-
rithm that tries to assign every 2/3-balanced separator with the next highest rank
in each iteration and returns the HHL with the smallest label size, which has a
running time in O(nlog n). After applying this algorithm to randomly generated
trees with node sizes up to 2000, we observed a slightly larger lower bound of
1.034 for g-HHL.

7 Conclusions and Future Work

We have shown novel approximation bounds for HHL, which complement and
improve existing bounds. Table 4 provides an overview of the currently best
known approximation factors for general graphs and trees. Our evaluation inci-
dates that g-HHL and w-HHL perform remarkably well on trees as well as on
general graphs. Improving their scalability to make them applicable to larger
inputs may be an interesting direction for future work. Also, the approximation
factor on trees could potentially be shown to be even smaller than 2√

2−1
. It was
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proven in [5] that the node with the highest rank in an optimal HHL on trees
is a 5/6-balanced separator. Based on our experiments, it may be possible that
optimal solutions adhere to even smaller balance ratios, potentially down to 2/3.

Table 4. Approximation factors of HHL construction algorithms with polynomial run-
ning time, where n is the number of nodes and b is the balanced separator number

algorithm general graph tree

w-HHL O(
√

n log n) [6] 2√
2−1

[Theorem 4]

g-HHL O(
√

n log n) [6] 2√
2−1

[Theorem 4]

balanced separator O(b log n) [Theorem 2] 2 [5]
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Abstract. We use the reconfiguration framework to analyze problems
that involve the rearrangement of items among groups. In various appli-
cations, a group of items could correspond to the files or jobs assigned to
a particular machine, and the goal of rearrangement could be improving
efficiency or increasing locality.

To cover problems arising in a wide range of application areas, we
define the general Repacking problem as the rearrangement of multi-
sets of multisets. We present hardness results for the general case and
algorithms for various classes of instances that arise in real-life scenar-
ios. By limiting the total size of items in each multiset, our results can
be viewed as an offline approach to Bin Packing, in which each bin is
represented as a multiset.

In addition to providing the first results on reconfiguration of multi-
sets, our contributions open up several research avenues: the interplay
between reconfiguration and online algorithms and parallel algorithms;
the use of the tools of linear programming in reconfiguration; and, in the
longer term, a focus on resources in reconfiguration.

1 Introduction

We consider the problem of rearranging items in multisets, from a given source
arrangement to a specified target arrangement. Although our techniques draw on
the problem of Bin Packing and the area of reconfiguration, each one is consid-
ered in a non-traditional way: we view the rearrangement as an offline problem,
not an online one, we view bins and items of the same size as indistinguishable,
and we focus on the feasibility of reconfiguration under various conditions. In
doing so, we set the stage for the exploration of resource-focused reconfiguration,
in which the goal is to determine which extra resources, if any, are needed to
make reconfiguration possible (Sect. 7).
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The reconfiguration framework [9] has been used to consider the step-by-step
modification among configurations, which may encode information such as solu-
tions to the instance of a problem or the state of a geometric object, game, or
puzzle. Common types of questions framed using reconfiguration include struc-
tural properties of the reconfiguration graph, formed by adding edges between
a configuration and any other configuration resulting from the execution of a
single reconfiguration step, as well as the reachability of one configuration from
another [6,12]. In our context, we wish to transform a source configuration into
a target configuration by a sequence of reconfiguration steps (or reconfiguration
sequence); of particular import is the fact that each intermediate configuration
in the sequence conform to the same constraints as the source and target.

Ito et al. studied a related problem [7,8], where the objective is to reconfigure
one “feasible packing” of an instance of the knapsack problem to another, where
a feasible packing is defined as a subset of items summing to a value in a given
range. Under the assumption that the intermediate packings must be feasible,
the authors present hardness results for the decision problem and a polynomial-
time approximation scheme (PTAS) for the optimization problem. In contrast,
in our work, each configuration consists of multiple bins, not a single bin, and
every item must be packed.

We define a problem, Repacking, where, as in Bin Packing, the goal is
to group items to form a packing. Packings are naturally modeled as multisets,
since neither the ordering of multisets nor the ordering of items within a mul-
tiset are important. At a high level, we are considering the reconfiguration of
items in unlabeled, and hence indistinguishable, bins. To avoid confusion with
traditional bin packing (where the bins are distinguishable containers), we refer
to each group of items as a bunch instead of a bin. For full generality, there
are no constraints on the numbers or types of items, composition of bunches, or
allowable packings.

Due to the hardness of the most general form of the problem (Sect. 3), we
turn to situations that might naturally arise in real-life uses of repacking. In
many settings, such as virtual machine placement, the maximum sum of sizes of
items in a multiset can be set to a fixed constant (or capacity). To mimic the
capacity of a container, we define a capacity as the upper bound on the sum of
sizes of items in a bunch. From a practical standpoint, it may be reasonable to
consider scenarios in which the sizes of items and capacities are constant with
respect to the number of multisets under consideration. For example, a typical
data center contains thousands of homogeneous Physical Machines (PMs), each
having a bounded capacity, in terms of bandwidth, CPU, memory, and so on,
and hosting a number of Virtual Machines (VMs). Virtual Machines (“items”)
have various loads, and the total load of VMs assigned to a PM (a “bunch”)
must not exceed the uniform capacity of the PMs. It is desirable to reconfigure
a given assignment of VMs to PMs for reasons such as performing maintenance,
balancing loads, collocating VMs that communicate with each other, and moving
VMs apart to minimize the fault domain [2,11]. Such reconfiguration must occur
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in steps that involve migrating a VM from one PM to another while respecting
the bounded capacity of the PMs at each step.

Our paper is structured as follows. In Sect. 2, we formally define the Repack-

ing problem. We prove that Repacking is NP-hard in Sect. 3. Then, we provide
algorithms for instances relevant to real-life scenarios. In Sect. 4, we consider
instances in which all item sizes are bounded above by a constant fraction of
the capacity, and give an algorithm that reconfigures any instance in which the
unoccupied space is sufficiently large. In Sect. 5, we consider a setting in which
all item sizes and the capacity are powers of 2, fully characterize when reconfig-
uration is possible in such instances, and give a reconfiguration algorithm for all
reconfigurable instances. Motivated by the possibility of solving reconfiguration
problems in parallel, Sect. 6 gives an algorithm that determines, for any given
instance, whether or not reconfiguration is possible by partitioning the source
configuration into smaller parts and only moving an item within its assigned
part. In Sect. 7, we present directions for future work. Proofs that have been
omitted due to space constraints will appear in the full version of the paper.

2 Preliminaries

Our goal is to determine whether it is possible to rearrange items from one con-
figuration (multiset of multisets of items) to another. Stated in the most general
terms, items can have a variety of attributes, such as distinct IDs, and multi-
sets can have not only various attributes but also different capacities. In the
remainder of the paper, we simplify the discussion and notation by assuming
that items are positive integers representing sizes (where items of the same size
are indistinguishable) and bunches are multisets of items (where bunches corre-
sponding to the same multiset are indistinguishable). To facilitate explanation
of algorithms or analysis, at times we might assign names to specific items or
bunches for greater clarity.

To avoid confusion among items, bunches (multisets of items), and multisets
of bunches (multisets of multisets of items), in our choice of notation, we use
the convention that a lower-case letter refers to an item or a number (where at
times Greek letters will also be used for numbers), an upper-case letter refers to
a set or multiset, and a calligraphic letter refers to a multiset of multisets.

To give an example of rearrangement, suppose we wish to transform the two
bunches, ⦃1, 1, 2, 6⦄ and ⦃2, 3, 5⦄, (the first bunch and second bunch, respec-
tively) into the two bunches ⦃1, 3, 6⦄ and ⦃1, 2, 2, 5⦄. In the absence of con-
straints, we can achieve our goal by moving items 1 and 2 from the first bunch
to the second bunch and item 3 from the second bunch to the first bunch. The
task proves more challenging when there is an upper bound on the sum of items
in any bunch, and rendered impossible without extra storage space if the upper
bound is 10.

Although in general the sum of all items in a bunch may be unconstrained,
in this paper we view each bunch as having a positive integer capacity, typically
denoted by κ, as an upper bound. We use vol(B), the volume of B, to denote
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the sum of all the items in bunch B, and require that vol(B) ≤ κ. The term
slack, denoted slack(B), is used to refer to the amount of space in B that is
not occupied by items, where slack(B) =κ− vol(B). By definition, the slack of a
bunch is non-negative. A bunch is empty if it contains no items; in such a case,
the slack will equal the capacity.

Formalizing our terminology, we define a configuration to be a multiset of
bunches, and a legal configuration for capacity κ to be a configuration in which
the volume of each bunch is at most κ. The underlying set of a configuration C,
denoted U(C), is the multiset union of items in all bunches in a configuration;
U is used without a parameter to denote the underlying set of the source and
target configurations.

We transform one configuration to another by a series of steps, each corre-
sponding to the move of a single item. More formally, we move a single item u
from one bunch (the donor bunch, Bd) to another bunch (the recipient bunch,
Br), where we reuse the names Bd and Br to describe two different bunches,
and two different points in time (before and after the move). Between the two
points of time, Bd is changed only by the removal of u, and Br is changed only
by the addition of u. The pairs of bunches (Bd and Br at the first point in time
and Bd and Br at the second point in time) are said to correspond to the move
of a single item.

We consider legal configurations C and D for capacity κ to be adjacent if it
is possible to form D from C by the move of a single item. More formally, C ∖D
consists of two old bunches, D ∖ C consists of two new bunches, and the pair
of old bunches and the pair of new bunches correspond to the move of a single
item. We say that we can get from C to D in a single reconfiguration step if the
two configurations are adjacent. A reconfiguration sequence for capacity κ from
a source configuration CS to CT consists of a sequence of legal configurations for
capacity κ, CS = C0, C1, . . . , CT such that each pair of consecutive configurations
Ci and Ci+1 are adjacent.

We define the following problem Repacking, with instance (CS , CT , κ), as
defined below:

Input: Source and target legal configurations CS and CT for capacity κ.
Question: Is there a reconfiguration sequence for capacity κ from CS to CT ?

Since, as we will show in Theorem 1, Repacking is NP-hard in general, it is
natural to consider extensions and variants of the problem. As defined, the num-
ber of bunches is preserved at each step in the sequence, and hence the number of
bunches available for reconfiguration is the number of bunches in the source (and
hence the target) configuration, denoted |CS |. More generally, we consider the
interplay among various properties of an instance and the relationship between
the sum of the items and the total capacity of all bunches.

3 Complexity of Repacking

We use a reduction from Multiway Number Partitioning [5] to establish
the NP-hardness of Repacking. The Multiway Number Partitioning prob-



216 J. Kam et al.

lem, known to be NP-hard [4], asks whether a given multiset of integers can be
partitioned into m multisets such that the numbers in each multiset sum to at
most α. Given an instance P of the Multiway Number Partitioning prob-
lem, formed by n positive integers, a positive integer m, and a positive integer
α, we define an instance (CS , CT , κ) of Repacking as follows. We may assume
m ≥ 1, n ≥ 2m + 2, and α is at least as large as the largest of the n integers in P .

We set the capacity to be κ= 2(n−m)α and create configurations CS and CT ,
each containing n+ 2 bunches, n of which are identical in the two configurations
(the matching bunches), and two of which will differ in the two configurations
(the non-matching bunches). Each of the n matching bunches consists of an item
of size equal to one of the n integers in P and an item of size κ − α. The two
non-matching bunches store the following items: two items a, b, each of size κ/2,
an item c of size κ/2− 1, and n−m items each of size α (and hence total volume
κ/2). In the source, a and b are in the same bunch, and in the target, a and c
are in the same bunch.

We prove that P is a yes-instance of Multiway Number Partitioning if
and only if (CS , CT , κ) is a yes-instance of Repacking. In particular, we show
that reconfiguration is possible if and only if all of the n−m items of size α can be
moved from the non-matching bunches to the matching bunches. This is indeed
possible if and only if we can rearrange the data items in the n matching bunches
so that n −m bunches each have slack α and the remaining m bunches contain
the n items with sizes corresponding to integers from P , which is equivalent to
having a yes-instance of Multiway Number Partitioning.

Theorem 1. Repacking is NP-hard.

4 Special Case: Instances with Small Items

Intuitively, if items are relatively small and there is enough slack in the source
and target configurations, it seems feasible to reconfigure them. In this section,
we formalize and prove this intuition. In particular, we consider a setting where
all items are of size at most κ/α, for some integer α > 1. We define the average
slack of bunches in a configuration C by 1

|C|
∑

B∈C slack(B), and we assume that
the average slack of CS is at least κ

α+1 +
3ακ

(α+1)|CS | . Since |CS | = |CT | and the total
volume of all bunches is the same in CS and CT , this assumption implies that
the average slack of bunches of CT is at least κ

α+1 +
3ακ

(α+1)|CT | . For larger inputs,
this means that the average slack of bunches converges to a value at least κ

α+1 .
We will describe an algorithm that, under these assumptions, reconfigures CS to
CT (as formally stated in Theorem 3).

Consider a configuration resulting from sorting items in the underlying set U
in non-increasing order of their sizes and placing them, one by one, in the first
bunch with enough slack, and placing them in a new bunch if no such bunch
exists. This configuration, which we call the First-Fit-Decreasing (FFD) configu-
ration, and denote by CFFD , is a canonical configuration for our reconfiguration
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algorithm. That is, we show how to reconfigure both CS and CT to CFFD and
therefore to each other.

In what follows, we describe how a configuration C with bunches of average
slack at least κ

α+1 +
3ακ

(α+1)|C| can be reconfigured to CFFD . This process is applied
to reconfigure CS and CT to CFFD . The algorithm works in stages: each stage
starts with a “compression phase” and then an “FFD-retrieval phase” follows. As
we will show, the compression phase always results in at least one empty bunch,
which is subsequently packed according to the FFD rule. Next, we formally
describe this process.

At the beginning of stage i, we have two types of bunches: FFD bunches and
general bunches. At the beginning of the reconfiguration process, all bunches
are general bunches. As mentioned earlier, items in FFD bunches are packed
according to the FFD rule.

In the compression phase, we will process general bunches one by one in an
arbitrary order. Items within the bunch being processed are also processed one
by one in an arbitrary order. For each item x, we check the previously processed
bunches and move x to the first bunch (with respect to the ordering) with slack
at least equal to x; if no such bunch exists, x remains in its bunch. The following
lemma shows that the compression process always results in empty bunches,
which are subsequently used to increase the number of FFD bunches in the
FFD-retrieval phase. For the proof, we will show that the average slack of the
general bunches at the beginning of stage i, for any i≥1, is at least κ

α+1 +
3ακ

(α+1)βi
,

where βi is the number of general bunches at stage i. At stage 1, this invariant
follows from the assumed lower bound for the average slack of bunches in CS .
For other stages, we prove in Lemma 2 that there is at least one empty bunch
at the end of the compression stage.

Lemma 2. If all items in the underlying set U of the configuration C are of size
at most κ/α for some integer α > 1 and the average slack of all bunches in C is
at least κ

α+1 +
3ακ

(α+1)|C| , then at the end of the compression phase of any stage i≥1,
there is at least one empty general bunch.

In the FFD-retrieval phase of stage i, we will declare any empty general
bunch to be an FFD bunch. By Lemma 2, at least one such bunch exists. We
pack such bunches according to the FFD rule: we process items in the general
bunches in non-increasing order of their sizes and place each item into the first
FFD bunch with enough slack to host it. This process continues until no more
items are in the general bunches or no FFD bunch has enough slack for the
largest remaining item in the general bunches. In the former case, the canonical
configuration CFFD is reached and the process ends. In the latter case, stage i
ends and the process continues with the compression phase of the new stage i+1.

Theorem 3. Suppose the underlying set U of CS and CT is formed by items of
size at most κ/α for some integer α > 1 and the average slack of bunches in CS

and CT is at least κ
α+1 +

3ακ
(α+1)|CS | . Then, it is always possible to reconfigure both

CS and CT to the FFD configuration and, hence, to each other.
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Proof. We use the reconfiguration process described above to reconfigure CS to
CFFD (and then CFFD to CT ). Given the presence of at least one empty bunch at the
end of the compression phase (Lemma 2), the number of FFD bunches increases
at the end of each stage. Eventually, at the end of some stage, all bunches become
FFD bunches, and we obtain the canonical configuration CFFD . ��

5 Special Case: Items and Capacities Are Powers of 2

Consider a setting where the capacity κ and all item sizes are powers of 2. We
characterize input instances in which reconfiguration is possible. In particular,
we show that, as long as the total slack across all bunches is at least equal to the
size of the largest item that must be moved, it is possible to reconfigure CS to CT .
Since this is the minimal requirement for a feasible reconfiguration, in essence
our results show that powers of 2 provide an ideal setting for reconfiguration.

We present an algorithm that processes items in stages by non-increasing
order of size, such that once items in the current stage have been “settled”,
they remain in place during all subsequent stages. Each stage entails repeatedly
identifying two bunches, Bs and Bd, with a surplus and a deficit, respectively,
of items of the current size with respect to the target configuration, and then
moving an item from Bs to Bd. Each move takes place in two phases: in the
compression phase, slack equal to the size of the item is accumulated in a bunch
Btemp, and in the transfer phase, Btemp is used as temporary storage in the
move of an item from Bs to Bd. The remainder of this section formalizes what
it means for an item to be “settled”, and provides the details of the compression
and transfer phases.

Settling. Our results depend on the ability to look at an item size a in a config-
uration C and determine: is there a reconfiguration sequence that reconfigures C
to CT such that no step involves moving an item with size at least a? If we ask
this question about the item sizes in C from largest to smallest, the first item
size for which the answer is ‘no’ is called the size of the largest item in C that
must be moved and denoted by �(C, CT ). For example, if C =⦃⦃32, 16⦄,⦃4, 4, 2⦄⦄
and CT = ⦃⦃32, 4, 4, 2⦄,⦃16⦄⦄, then �(C, CT ) = 16.

To enable us to find �(C, CT ), we introduce the idea of an item size being
“settled”. Informally, an item of size a is settled in its current bunch B if there
is a bunch in the target configuration that contains the same multiset of items
of size at least a as B does, i.e., none of these items need to be moved from their
current positions. The largest item in B whose size is not settled would be “out
of place” if all larger items in B stay where they are for the remainder of the
reconfiguration sequence, i.e., its size is a candidate for the size of the largest
item in the configuration that must be moved. Formally, for any configuration
D, any bunch B ∈ D, and any item size a ∈ B, we define AtLeast(a,B,D) to
be the multiset of items in B that have size at least a. For any a, we say that
item size a is settled if there is a bijection ϕ between the multiset of bunches
containing an item of size a in C and the multiset of bunches containing an item
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of size a in CT , and AtLeast(a,B, C) =AtLeast(a, ϕ(B), CT ) for each bunch B in
C that contains an item of size a.

Practically speaking, one can check if an item size a is settled by iterating
through the multiset of bunches in C that contain an item of size a, pairing each
such bunch B in C with any unpaired bunch BT in CT such that AtLeast(a,B, C)=
AtLeast(a,BT , CT ), and concluding that a is settled if and only if this process
terminates with each bunch in C containing an item of size a and each bunch
in CT containing an item of size a belonging to exactly one pair. The largest
item size in C that is not settled is the size of the largest item in C that must be
moved, that is, �(C, CT ). In what follows, we assume that the total slack across
all bunches is at least �(CS , CT ).

Our algorithm works in stages. For an arbitrary i ≥ 1, let Ci denote the
configuration at the start of the ith stage, and denote by ui the ith largest item
size in the underlying set U . During the ith stage, the algorithm proceeds by
moving items of size at most ui between bunches to ensure that, at the end of
the stage, all items of size ui are settled. After a finite number of stages, all item
sizes are settled, which means that the current configuration is CT .

Throughout its execution, the algorithm maintains a bijection ϕ between a
subset of the bunches of Ci and those of CT . Initially, the domain of this bijection
is empty. Intuitively, for any bunch B ∈ Ci, ϕ(B) indicates the bunch in CT that
B must reconfigure to. At the end, the domain of ϕ contains all bunches of Ci,
and for any B ∈ Ci, bunches B and ϕ(B) contain the same multiset of items,
i.e., Ci is CT .

To extend ϕ, we form a one-to-one mapping between multisets of bunches
C′

i and C′
T selected from Ci (resp., CT ) that were not in the domain (resp., co-

domain) of ϕ at the start of the ith stage. To form C′
i and C′

T of equal size,
we first select any bunch that contains an item of size ui but no item larger
than ui; if no such bunch exists, then we can proceed to the next step, as all
bunches containing ui were mapped in ϕ during previous stages. If the numbers
of bunches in the multisets are not equal, we add to the smaller of C′

i and C′
T

arbitrary bunches with all items smaller than ui. Such bunches must exist as
ϕ is a bijection, and hence Ci and CT contain the same number of multisets
unmapped by ϕ.

Example 1. Suppose C2 = ⦃⦃32, 8⦄,⦃8, 8, 4, 4⦄,⦃8, 8, 4, 2, 2⦄,⦃8, 8⦄,⦃4, 4, 1⦄⦄
and CT = ⦃⦃32, 8, 1⦄,⦃8, 8, 8, 8⦄,⦃8, 8, 4, 2⦄,⦃4, 4, 2⦄,⦃4, 4⦄⦄. At this point,
we are at the start of the second stage of the algorithm, only 32
is settled, and ϕ maps ⦃32, 8⦄ to ⦃32, 8, 1⦄. Therefore, u2 = 8, C′

2 =

⦃⦃8, 8, 4, 4⦄,⦃8, 8, 4, 2, 2⦄,⦃8, 8⦄⦄, and C′
T = ⦃⦃8, 8, 8, 8⦄,⦃8, 8, 4, 2⦄,⦃4, 4, 2⦄⦄

(the last bunch is included in C′
T to ensure |C′

2| = |C′
T |). An arbitrary one-to-one

mapping between bunches in C′
2 to bunches in C′

T extends the domain of ϕ to
bunches that contain 8. For example, ⦃8, 8, 4, 4⦄ ↔ ⦃8, 8, 8, 8⦄, ⦃8, 8, 4, 2, 2⦄ ↔
⦃8, 8, 4, 2⦄, and ⦃8, 8⦄ ↔ ⦃4, 4, 2⦄.

To settle the items of size ui, we consider two bunches in Ci: a surplus bunch
Bs containing more items of size ui than in ϕ(Bs) and a deficit bunch Bd con-
taining fewer items of size ui than in ϕ(Bd). Since Ci and CT have the same
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number of items of size ui, if not all items of size ui have been settled, two such
bunches must exist. In the example above, Bs = ⦃8, 8⦄ and Bd = ⦃8, 8, 4, 4⦄.We
now describe a procedure for moving an item of size ui from Bs to Bd. Repeat-
edly applying this procedure, first for all items in Bs and Bd and then for all
other such pairs of bunches, results in a state where ϕ bijectively maps each
bunch B in Ci containing at least one item of size ui to a bunch in CT containing
at least one item of size ui such that B and ϕ(B) contain the same number of
items of size ui. At that point, all items of size ui are settled, and the current
stage ends, yielding Lemma 4.

Lemma 4. For any i ≥ 2, and any bunch B ∈ Ci in the domain of ϕ, at the
start of ith stage, B and ϕ(B) contain the same number of items of size uj for
all j < i.

In the ith stage, suppose that there is at least one item of size ui that is not
settled (which implies that ui = �(Ci, CT )≤ �(CS , CT )). We move an item of size ui

from Bs to Bd, in two phases: in the compression phase, items of size at most ui

are moved between bunches to accumulate enough slack in at least one bunch
Btemp to host an item of size ui, and in the transfer phase, an item of size ui is
moved from Bs to Bd by using Btemp as a temporary host for the item. We now
provide terminology and a procedure to aid in formalizing the two phases.

We partition the slack of each bunch B into slack items that are maximal
powers of 2; for example, when slack(B) = 14, B contains slack items of sizes
2, 4, and 8. For clarity, we refer to items in the packing as “actual items”, using
All(B) to denote the multiset formed by the actual and slack items in B, all
powers of 2, which sum to κ. We use the term bundle to refer to any multiset
of items from All(B), the sum of which (actual items and slack items) will be
called its bsum.

Procedure Bundles(B, p). Given a bunch B and an integer p < log2 κ such that
All(B) contains at least one element of size at most 2p, the procedure returns two
disjoint bundles, each with bsum equal to 2p. Starting with bundles consisting
of single actual or slack items, Bundles(B, p) repeatedly merges any two bundles
with bsum 2i to form a new bundle with bsum 2i+1 until there is no pair of
bundles each with bsum 2i for any i < p. Finally, two bundles with bsum 2p are
chosen arbitrarily and returned as output.

Example 2. Suppose κ = 64, and B = {32, 4, 4, 4, 4, 2}. Then slack(B) = 14, and
slack items are 8, 4, 2 (underbars represent slack items). Therefore, All(B) =
{32, 8, 4, 4, 4, 4, 4, 2, 2}. Suppose p = 3, and note that there are elements less
than or equal to 2p in All(B). Bundles(B, 3) repeatedly merges bundles of
All(B) that have bsum less than 8. After all merges, the bundles will be
{32}, {8}, {4, 4}, {4, 4}, {4, 2, 2}. Note that there are four bundles with bsum
equal to 8. Bundles(B, 3) returns any of these bundles, say the first two, {8}
and {4, 4}, as its output.

Bundles(B, p) terminates after a finite number of iterations; an item in All(B)
with initial size 2j can be involved in at most p − j merges, since more merges
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would require the merging of two bundles with bsum 2p. Lemma 5 proves the
correctness of the procedure. The proof follows from the bunch capacity κ, the
actual item sizes, and the slack item sizes all being powers of 2.

Lemma 5. Let p be an integer such that p < log2 κ and there is at least one
element of size at most 2p in a bunch B. Bundles(B, p) returns two disjoint
bundles consisting of elements of All(B), each with bsum equal to 2p.

The Compression Phase. This phase reduces the number of slack items in the
configuration by repeatedly merging pairs of slack items of the same size, result-
ing in enough space to make a transfer from Bs to Bd possible (Lemma 6).
Merges take place on any two bunches that contain slack items of equal size
less than ui. Since each merge reduces the total number of slack items by one,
after a finite number of merge operations, the process ends in a state where,
in the current configuration, there is at most one slack item of size 2i for each
i < log2(ui).

More formally, the procedure Merge-slack takes two bunches B1 and B2, each
having a slack item of size 2q with q < log2(ui), and results in one of the bunches
having a slack item of size 2q+1. Merge-slack applies Bundles(B1, q) to obtain
two disjoint bundles consisting of elements of All(B1), each with bsum 2q. At
least one of these bundles, Move, does not contain y, the slack item of B1 that
has size 2q. Since slack item sizes are defined to be maximal powers of 2, and
each bundle in the output of Bundles(B1, q) has bsum 2q (Lemma 5), Move
cannot be entirely formed by slack items (otherwise, its slack items, together
with y, should have formed a larger slack item of size 2q+1). Merge-slack moves
the actual items of the Move bundle from B1 to B2. This is possible because the
sum of the actual items in such a bundle is at most 2q, which is no more than
the available slack in B2 since B2 is assumed to have a slack item of size 2q. As
a result, there will be two slack items of size 2q in B1, which are subsequently
combined into one slack item of size 2q+1.

Example 3. Suppose κ=64 and let B1={32, 4, 4, 4, 4, 2} (with slack items {8, 4, 2})
and B2={32, 16, 8} (with slack item {8}). Each bunch contains a slack item of size
8; thus q = 3. Merge-slack calls Bundles(B1, 3) which, as discussed in Example 2,
returns two multisets {8} and {4, 4}. The actual item, of size 4, in the second
multiset is moved to B2. After the merge, bunches become B1={32, 4, 4, 4, 2} and
B2 = {32, 16, 8, 4}. Note that the set of slack items of B1 is changed to {16, 2}.

Lemma 6. Suppose that, at the start of the ith stage, there is at least one item
with size ui that is not settled. By the end of the compression phase of the ith
stage, there is a bunch Btemp with slack at least ui.

The Transfer Phase. We move an item of size ui from Bs to Bd in Ci in three
steps: (1) moving an item size ui from Bs to Btemp, (2) ensuring there is slack of
size at least ui in Bd, and then (3) moving an item of size ui from Btemp to Bd.
The third step is possible due to the second step, and the first step is possible
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due to the slack of Btemp being at least equal to ui at the end of compression
phase (Lemma 6). It thus suffices to consider the second step.

First, consider the case where Bd does not contain an item of size less than
ui. Then, by Lemma 4, for each j < i, the bunch ϕ(Bd) has the same number of
items of size uj as the bunch Bd. Moreover, by the definition of Bd, the bunch
Bd has fewer items of size ui than the bunch ϕ(Bd), and by assumption, Bd

has no items of size less than ui. Since B and ϕ(Bd) have the same capacity,
it follows that Bd must have slack of size at least ui, as desired. Next, consider
the case where Bd contains at least one item of size less than ui. Then, we
apply Bundles(Bd, log2(ui)) to obtain two bundles from All(Bd), each with bsum
equal to ui. We move the actual items from one of the two subsets returned by
Bundles(Bd, log2(ui)) to Bs, which is always possible since, in step (1), we moved
an item of size ui from Bs to Btemp. After moving the items to Bs, there is slack
of size at least ui in Bd, as desired. From the discussion above, we can conclude
the following theorem:

Theorem 7. Suppose that all items in the underlying set U of the configuration
are powers of 2, and assume that bunch capacity κ is also a power of 2. Let
�(CS , CT ) denote the size of the largest item that must be moved. It is possible to
reconfigure CS to CT if and only if the total slack across all bunches is at least
�(CS , CT ).

6 Special Case: Reconfiguration Within Partitions

In order to efficiently parallelize the process of repacking, we wish to deter-
mine whether the source and target configurations can be each split into smaller
pieces, such that each piece can be reconfigured independently. Determining the
existence of such splits can be formulated as a variant of a transshipment prob-
lem [1,10], that is, a network flow problem that in turn can be solved using
integer linear programming (ILP) in linear time [3]. To represent an instance of
repacking as a directed graph for Partition ILP (defined below), we create a
vertex for each way of assigning the items in each piece to a bounded number of
bunches, and add edges between vertices that capture the movement of a single
item from one bunch to another. We will show that if the reconfiguration is pos-
sible, we can decompose the total flow into a set of paths, path flows, such that
each corresponds to the reconfiguration of a single piece.

Below, we define the repacking problem β-Repacking-κ (Sect. 6.1) and
Partition ILP (Sect. 6.2). We solve β-Repacking-κ (Theorem 9) by proving
that it is equivalent to Partition ILP (Lemma 8).

Lemma 8. Partition ILP has a feasible solution if and only if the correspond-
ing instance (CS , CT ) for β-Repacking-κ is reconfigurable.

Theorem 9. β-Repacking-κ can be solved in linear time.
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6.1 Defining Repacking with Partitions

To decompose our source and target (and hence, all intermediate) configurations
into pieces, we split the underlying set U into “underlying subsets” and allocate a
specific number of bunches to each “underlying subset”. Then, each configuration
of U can be viewed as the disjoint union of “pieces”, where each piece is a
configuration of an “underlying subset”. By restricting moves to occur within
pieces, each piece can be reconfigured independently. Below, we formalize these
definitions, and extend notations of adjacency and reconfiguration sequences to
capture the idea of repacking with partitions.

To formalize “underlying subsets”, we define a partition P=(P1, P2, . . . , P|P|)
of underlying set U to be a sequence of parts, where a part is a pair Pi = (Ui, βi),
Ui is a multiset of items, βi is a positive integer number of bunches, and the
multiset union of all Ui’s is equal to U ; it is a β-bounded partition if βi ≤ β for
all values of i.

We define the assignment of a partition for capacity κ as a sequence of mul-
tisets of bunches A = (A1,A2, . . . ,A|A|), such that for each part Pi = (Ui, βi) in
P, the multiset union of items in Ai is equal to Ui, the number of bunches in
Ai is βi, and each bunch in Ai has volume at most κ. The multiset Ai in A is
called the ith portion, sometimes written as Portion(A, i). An assignment A
is consistent with a configuration C if the disjoint multiset union of all Ai’s is
equal to C; in this case, the underlying set of C will be the union of the Ui’s.

In a reconfiguration sequence that ensures that each move occurs within a
part, each configuration can be expressed as an assignment, where two consecu-
tive assignments differ only in a single portion. Two assignments A and A′ of a
partition P for capacity κ are adjacent if there exists exactly one index j such that
Portion(A, j) and Portion(A′, j) are adjacent (viewed as configurations with
underlying set Uj) and for all i≠j, Portion(A, i)=Portion(A′, i). Accordingly,
a P-conforming reconfiguration sequence for capacity κ from a source configura-
tion CS to a target configuration CT , where P is a partition for the underlying
set of CS (and CT ), is a sequence of assignments of P for capacity κ, such that
the first and last assignments are consistent with CS and CT , respectively, and
each consecutive pair of assignments are adjacent.

For any positive integer constants β, κ, we define the following problem as
β-Repacking-κ, with instance (CS , CT ):

Input: Source and target configurations CS and CT for capacity κ.
Question: Is there a β-bounded partition P of the underlying set of CS such

that there exists a P-conforming reconfiguration sequence for capacity κ from
CS to CT ?

6.2 Defining Partition ILP

In order to represent reconfiguration as a directed graph, we view it as a trans-
shipment problem in which instead of transporting goods from supply to demand
nodes through intermediate nodes (with negative, positive, and zero weights, or
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demands, respectively), the network represents the reconfiguration of a packing.
Moreover, since our goal is to determine feasibility, not cost, the objective func-
tion and edge costs are all set to zero, and demands are constrained to ensure that
we use exactly the bunches in the source configuration CS and target configura-
tion CT : the demands of the supply (resp. demand) nodes induce an assignment
AS (resp. AT ) that is consistent with the source (resp. target) configuration.

To determine whether it is possible to partition the source and target config-
urations, we try all possibilities. A configuration with underlying set Ui ⊆ U is
a subconfiguration of a configuration C with underlying set U , namely a multiset
of bunches that is formed by deleting zero or more items and removing zero or
more empty bunches from C. Given an underlying set U and a capacity κ, we
define β-Subs(U, κ) to be the set of non-empty subconfigurations using subsets
of items in U and at most β bunches of capacity κ (or β-Subs when U and κ
are clear from context).

To form our network, we create three nodes for each subconfiguration I in
β-Subs: an input node xI with non-positive demand, an intermediate node yI
with zero demand, and an output node zI with non-negative demand. Using X,
Y , and Z to denote the sets of input, intermediate, and output nodes, respec-
tively, the graph G is defined as V (G) = X ∪ Y ∪ Z and E(G) = {xIyI : I ∈
β-Subs}∪{yIyJ : I,J ∈ β-Subs, I and J are adjacent}∪{yIzI : I ∈ β-Subs}.

We design Partition ILP (Definition 1) in such a way that, intuitively, given a
solution

[
f d

]
, we can think of f as the flow vector and d as the demand vector for

each node. We wish to ensure that the total flow out of a particular node is equal
to the demands for the node (Constraints 1, 2, 3), and that supply, intermediate,
and demand nodes have demands in the appropriate ranges (Constraint 7). We
want each unit of flow to correspond to a single reconfiguration step, so we require
that a feasible flow be non-negative and integral (Constraint 6). Constraints 4
and 5 relate the assigned demands for each node in X and Z, respectively, to
the multiplicity of bunches in the source and target configurations, respectively.
In particular, Constraint 4 ensures that the demands d from a feasible solution[
f d

]
can be directly related to a β-bounded partition P of the underlying set U

and an assignment AS of P that is consistent with CS : each unit of demand on
each xI corresponds to a portion in AS that is equivalent to I, and, corresponds
to a part in P with the same items and number of bunches as I. In a similar way,
Constraint 5 ensures that the demands d can be directly related to an assignment
AT that is consistent with CT .

In the formal definition below, d : V (G)→Z and f : E(G)→R≥0 are functions
with f extended to arbitrary subsets E of E(G) by defining f(E)=

∑
uv∈E f(uv).

For any vertex v ∈ V (G), we use E+(v) and E−(v) to denote the sets of in-edges
to and out-edges from v. We use mult(B, C) to denote the number of bunches
that are equal to B in the configuration C, namely, the multiplicity of B in C, and
denote as mult(I,A) the number of elements of the assignment A that are equal
to the subconfiguration I. We use BunchTypes to denote the set of all possible
bunches formed of items taken from U such that the volume of the bunch is at
most κ.
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Definition 1. [Partition ILP]

minimize 0T

[
f
d

]

−f(E−(xI)) − d(xI) = 0 ∀I ∈ β-Subs (1)
f(E+(yI)) − f(E−(yI)) = 0 ∀I ∈ β-Subs (2)

f(E+(zI)) − d(zI) = 0 ∀I ∈ β-Subs (3)
∑

I∈β-Subs

mult(B, I) · d(xI) = −mult(B, CS) ∀B ∈ BunchTypes (4)

∑

I∈β-Subs

mult(B, I) · d(zI) =mult(B, CT ) ∀B ∈ BunchTypes (5)

f(uv) ∈ Z≥0 ∀uv ∈ E(G) (6)
d(xI) ∈ Z≤0, d(zI) ∈ Z≥0 ∀I ∈ β-Subs (7)

7 Conclusions and Future Work

We introduced the area of the reconfiguration of multisets, demonstrated the
hardness of the general problem, and provided algorithms for situations in which
items are of bounded size, item and bunch capacities are powers of two, and items
can be partitioned into smaller groups of bunches. Our results are applicable to
a variety of application areas, as well as to the problem of Bin Packing.

In this paper, we have restricted our attention to instances in which all
bunches have the same capacity and in which items and bunches are indistin-
guishable. Future directions of research include the non-uniform case, in which
bunches have different capacities; variants could include restrictions on the min-
imum total size, restrictions on both the minimum and maximum total size, or
other specifications for particular sets of bunches. The instances could be further
generalized by allowing us to distinguish among items or bunches, even those
of the same size or capacity. Another direction for future work is to optimize
the time complexities of the algorithms studied in this paper: while our focus
has been to establish the feasibility of reconfiguration, it is natural to ask how
quickly one can reconfigure one configuration to another.

Our work demonstrates the use of linear programming to make use of parallel
computation in reconfiguration. Further investigations are required to determine
whether similar techniques may be applicable more generally to other types of
reconfiguration problems, and whether other techniques are amenable to paral-
lelization of other reconfiguration problems.

Each of the algorithms presented in the paper is restricted to using the
amount of space provided in the source configuration. A natural extension is
to ask whether there are no-instances for our problems that can be rearranged
using extra space, and if so, how much space would be needed. In shifting the
focus of reconfiguration from length of reconfiguration sequences to the impact
of extra space, we open up a new type of reconfiguration problem.
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We anticipate that resource-focused reconfiguration will find widespread use
in practical settings for a host of various problems. As examples, we consider two
commonly-studied reconfiguration problems, namely Power Supply Recon-

figuration [9] and Independent Set Reconfiguration [9]. In the former
problem, the goal is to reassign customers (each with a specified requirement) to
power stations (each with a specified capacity) in such a way that aside from the
customer being moved, all other customers have an uninterrupted flow of power.
In a resource-focused setting, our goal would be determine how many generators
might be needed to temporarily provide power in order to make reconfigura-
tion possible. For the latter problem, a possible extra resource could be isolated
vertices to which tokens could be temporarily moved in order to allow recon-
figuration to occur. Depending on the problem, there may be more than one
resource that can be measured in the reconfiguration process, yielding further
new research directions as the impacts of resources are considered individually
and in concert.
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Abstract. The shortest path problem is the most classical and funda-
mental problem in the field of graph algorithm. Recently, its reconfigura-
tion variant, namely the Shortest Path Reconfiguration problem,
has received a lot of attention. In this paper, we study the complexity of
k-SPR, which generalizes the Shortest Path Reconfiguration prob-
lem, with respect to k. In k-SPR, we are allowed to replace at most
k consecutive vertices of the current shortest path at a time. We first
show that, for any fixed rational numbers c and ε such that c > 0 and
0 < ε ≤ 1, k-SPR with k = cn1−ε is polynomially solvable if ε = 1 and
c < 1; otherwise, PSPACE-complete. This intractability holds even when
given graphs are restricted to bipartite graphs and r-th power graphs,
where r is any positive integer. Furthermore, when we restrict 0 < ε < 1,
the PSPACE-completeness holds for graphs with maximum degree 3.
Then, we design an FPT algorithm parameterized by μ = n/2 − k ≥ 0
that runs in O(m + 6.730μμ4n) time. Finally, we show that, for any k,
k-SPR can be solved in linear time for K2,3-minor-free graphs.

Keywords: Reconfiguration problem · Graph algorithm ·
Parameterized complexity · Shortest path

1 Introduction

There are frequent situations where one needs to know the shortest route between
two points in the real-world road network. Such a situation can be modeled
as the shortest path problem on a graph. It is well known that the shortest
path problem is solvable in polynomial time by using classic algorithms such as
Dijkstra’s algorithm.

Often the shortest path is used when selecting routes in scheduled bus or
delivery planning. However, one may encounter a situation where the obtained
initial shortest path needs to be changed to another target shortest path, for
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Table 1. The complexity of k-SPR on several graph classes and values of k.

k < 2 any const. k ≥ 2 k = cn1−ε k = n/2 − µ

general PSPACE-comp. FPT
parameterized
by µ

[Theorem 4]

bipartite PSPACE-comp. [3] PSPACE-comp. [Theorem 1]

r-th power PSPACE-comp. [5] PSPACE-comp. [Theorem 2]

claw-free P [3] PSPACE-comp. open

line [5]

max. degree 3 open PSPACE-
comp.
[Theorem 3]

planar P [4] open

K2,3-minor-free P [Theorem 6]

example, due to avoiding road construction or traffic congestion. The simplest
approach is to change directly the former path to the latter path, but such a
drastic change may not be desired in the real-world road network. We want to
change the initial shortest path to the target shortest path in a step-by-step
manner.

The Shortest Path Reconfiguration problem (SPR for short), which
is introduced by Kamiński et al. [8], is one way to model such a situation. In
this problem, we are given two s-t shortest paths on a graph G. Then we are
asked to determine whether or not we can transform one into the other by
iteratively replacing a single vertex of the current s-t shortest path at a time, so
that intermediate results remain s-t shortest paths on G. This problem models
“dynamic” transformations of paths in the real-world road network, while the
conventional shortest path problem deals with a “static” path.

Since SPR was introduced by Kamiński [8], computational complexities based
on various graph classes have been studied. It is known that SPR is PSPACE-
complete for bipartite graphs [3], graphs with bounded bandwidth [13], and r-th
power graphs, where r is any positive integer [5]. On the other hand, SPR can
be solved in polynomial time for:

– chordal graphs and claw-free graphs [3];
– planar graphs and graphs where every vertex has at most two neighbors closer

to s and at most two neighbors closer to t [4];
– grid graphs [2]; and
– permutation graphs, circle graphs, Boolean hypercube, circular-arc graphs,

bridged graphs and constant diameter graphs [5].

As mentioned above, various studies have been conducted on SPR. However,
when considering real-world applications, the constraint of SPR is too strict that
only a single vertex can be replaced at a time. To overcome this situation, k-SPR
was introduced by Gajjar et al. [5]. For a positive rational number1 k, roughly

1 In [5], k was defined as a positive integer. In this paper, however, we allow k to be
a positive rational number in order to accurately state our results.
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speaking, we are allowed to replace at most k consecutive vertices of a path.
Note that 1-SPR is equivalent to SPR, and hence k-SPR is a generalization
of SPR. Gajjar et al. showed that k-SPR is PSPACE-complete for all integer
constants k ≥ 2, even when input graphs are restricted to line graphs [5]. This
is in contrast to the fact that 1-SPR is solvable for line graphs because all line
graphs are claw-free. On the other hand, k-SPR can be solved in polynomial
time when k ≥ n/2 [5], where n is the number of vertices in a graph.

SPR and k-SPR are included in the framework of combinatorial reconfigu-
ration proposed by Ito et al. [7]. In the last decade, the framework is applied
to many “static” (conventional) problems, and their “dynamic” variants have
been extensively studied in the field of theoretical computer science. (See, e.g.,
the surveys of van den Heuvel [6] and Nishimura [11].) In most cases, a “static”
problem and its “dynamic” variant are both intractable. SPR and k-SPR are
rare examples that the problems are intractable while their “static” problem
(the shortest path problem) is tractable.

1.1 Our Contribution

Let n and m denote the number of vertices and edges in a graph, respectively.
The results of Gajjar et al. [5] inform us that k-SPR has a tractability transition
depending on k, that is, k-SPR is intractable if k = Θ(1), whereas k-SPR is
tractable if k ≥ n/2. The question we ask is whether or not k-SPR is tractable
when k lies between Θ(1) and n/2, such as k = Θ(

√
n).

In this paper, we first show that, for any fixed rational numbers c and ε such
that c > 0 and 0 < ε ≤ 1, k-SPR with k = cn1−ε is polynomially solvable if ε = 1
and c < 1; otherwise, PSPACE-complete2. Thus, the problem is intractable for a
wider range of k than Gajjar et al. indicated. This intractability holds even when
given graphs are restricted to bipartite graphs and r-th power graphs, where r
is any positive integer. Furthermore, when we restrict 0 < ε < 1, the PSPACE-
completeness holds for graphs with maximum degree 3. It is worth noting that
the complexity of SPR on graphs with maximum degree 3 remains open.

We then focus on tractable cases. Suppose that k = n/2−μ for a non-negative
rational number μ ≤ n/2. Since k-SPR is solvable in polynomial time when
k ≥ n/2, the parameter μ represents how small k is from the upper bound that
guarantees the solvability of k-SPR. Such a parameter, so-called a (below) guar-
anteed value, was introduced by Mahajan and Raman [9] and has been studied in
the literature, for example, [1,10]. We design an FPT algorithm parameterized
by μ that runs in O(m+6.730μμ4n) time via a dynamic programming algorithm
that generalizes the algorithm proposed by Bonsma [4]. This result means that
k-SPR is polynomially solvable even when k = n/2 − O(log n). Finally, we show
that for any positive rational number k, k-SPR can be solved in linear time for
K2,3-minor-free graphs (See Table 1).

Due to the space limitation, proofs for the claims marked with (♠) are omit-
ted from this extended abstract.
2 In general, k can be an irrational number even if c and ε are rational numbers, but
as we will see later, we guarantee in our proof that k is a rational number.
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2 Preliminaries

Let G = (V,E) be a graph: we also denote by V (G) and E(G) the vertex set and
the edge set of G, respectively. All the graphs considered in this paper are finite
and undirected. For a vertex v of G, we denote by NG(v) the neighborhood of v
in G, that is, NG(v) = {w ∈ V | vw ∈ E}. The degree degG(v) of v is the size
of NG(v), that is, degG(v) = |NG(v)|. For a vertex subset S ⊆ V (G), we denote
by G[S] the subgraph induced by S. For two positive integers i and j such that
i ≤ j, we denote [i, j] = {i, i+1, . . . , j}. We use the shorthand [j] = [1, j]. A path
P of G is a sequence 〈v0, v1, . . . , v�〉 of distinct vertices such that vi−1vi ∈ E for
each i ∈ [�], where the integer � is called the length of P . We denote by V (P )
the set of vertices in P . For two vertices s, t of G, P is called an s-t path of G if
v0 = s and v� = t. An s-t shortest path P of G is an s-t path such that the length
of P is minimized. For vertices v and w of G, the distance between v and w,
denoted by distG(v, w), is defined as the length of a v-w shortest path. A graph
G is said to be connected if there is a path between any two distinct vertices of
G. A maximal connected subgraph of G is called a connected component of G.
An independent set I of G is a vertex subset of G such that there are no edges
between any two vertices in I.

Let k be a rational number, and let P = 〈p0, p1, . . . , p�〉 and Q =
〈q0, q1, . . . , q�〉 be distinct two s-t shortest paths of a graph G. We say that P
and Q are k-adjacent if and only if there are two integers i and j with i ≤ j such
that ph 
= qh for each h ∈ [i, j], ph = qh for each h ∈ [0, �]\ [i, j], and j−i ≤ k−1.
In other words, Q is obtained by replacing the subpath 〈pi, pi+1, . . . , pj〉 of P
with 〈qi, qi+1, . . . , qj〉 with ph 
= qh for every h ∈ [i, j]. Such a replacement of
a subpath with at most k vertices is called a reconfiguration step. The reconfig-
uration graph Rk(G, s, t) is a graph such that its vertex set consists of all s-t
shortest paths of G, and two vertices are adjacent if and only if the correspond-
ing s-t paths are k-adjacent. To avoid confusion, we refer vertices and edge of
Rk(G, s, t) as nodes and links, respectively. Given a graph G, distinct two ver-
tices s, t ∈ V (G), and two s-t shortest paths P,Q of G, the k-SPR problem asks
whether there exists a path of Rk(G, s, t) between the nodes P and Q, that is,
Q is obtained from P by iteratively replacing subpaths with at most k vertices3.
The path of Rk(G, s, t) between the nodes P and Q is called a solution of the
given instance. When k < 1, any subpath of P cannot be replaced and hence
k-SPR is trivially solvable. In the remainder of this paper, we assume that k ≥ 1.
Observe that 1-SPR is exactly SPR.

We introduce here the key notion that will be used throughout this paper.
Let s and t be two vertices of a graph G, and let � = distG(s, t). For each integer
0 ≤ i ≤ �, the i-th layer Li(G) is a vertex subset of G defined as follows:

Li(G) = {v ∈ V (G) : (distG(s, v) + distG(v, t) = distG(s, t)) ∧ (distG(s, v) = i)}.

3 We will also consider the case where k depends on an input graph, such as k = cn1−ε

and k = n/2 − μ. When using such notation, we implicitly assume that k is part of
the input.
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Note that L0(G) = {s} and L�(G) = {t}, and that all the layers of G can be
obtained in linear time by breadth-first search from s and t.

We assume that every vertex in G is contained in some layer. If there is a ver-
tex v that is not contained in any layer, we consider a graph G′ that is obtained
by removing v from G. This graph reduction is safe because Rk(G′, s, t) =
Rk(G, s, t). For the same reason, we may remove edges between vertices in the
same layer. For a vertex v in Li(G), let denote N+

G (v) = NG(v) ∩ Li+1(G) and
N−

G (v) = NG(v) ∩ Li−1(G). We say that Li−1(G) and Li+1(G) are the previous
and next layer of v ∈ Li(G), respectively.

3 PSPACE-Completeness

3.1 Bipartite Graphs

We first show the PSPACE-completeness of k-SPR on bipartite graphs. A graph
G = (V,E) is bipartite if V can be partitioned into two independent sets.

Theorem 1. Let G be a graph with n vertices, and let c and ε be any fixed
rational numbers such that c > 0 and 0 < ε ≤ 1. Unless ε = 1 and c < 1, k-SPR
with k = cn1−ε ≥ 1 is PSPACE-complete even for bipartite graphs.

Note that, if ε = 1 and c < 1, then k < 1 holds and hence k-SPR is trivially
solvable as mentioned before. It follows from Savitch’s Theorem that k-SPR is in
PSPACE [12]. To show that k-SPR is PSPACE-hard, we provide a polynomial-
time reduction from SPR on bipartite graphs to k-SPR. SPR is known to be
PSPACE-complete for bipartite graphs [3].

Since c and ε are positive rational numbers, there exist positive integers a
and b such that ca and εb are integers, and consider minimum such integers a
and b. Note that b−εb is a non-negative integer because ε ≤ 1. One can see that
k-SPR is equivalent to k�-SPR from the definition. This implies that it suffices
to consider the following two cases: b − εb ≥ 1; and b − εb = 0 (hence ε = 1) and
a = 1.

We denote by (G0, s, t, P,Q) an instance of SPR and n0 the number of vertices
in G0. We first construct an intermediate instance (G, s, t, P,Q) of SPR from
(G0, s, t, P,Q) to adjust the number of vertices in a graph for k-SPR. Let R be
a graph consisting of a path with r = (ca)εb−1aεb+1nεb

0 − n0 vertices. Since ca,
a, and εb are fixed positive integers, the path is well-defined and constructed in
polynomial time of n0. We add R into G0 and then connect an endpoint of R
and s in G0 by an edge. The constructed graph is defined as G. Let n denote
the number of vertices in G, and then we have n = cεb−1a2εbnεb

0 . Clearly, no s-t
shortest path of G contains vertices of R. This immediately leads to the following
proposition.

Proposition 1. (G0, s, t, P,Q) has a solution for SPR if and only if (G, s, t,
P,Q) has a solution for SPR.
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Fig. 1. The construction of G3 from G. For a path P = 〈v1, v2, v4, v6〉 of G and its
corresponding path P3 of G3, their vertices are illustrated by squares.

We next construct an instance (Gk, sk, tk, Pk, Qk) of k-SPR from
(G, s, t, P,Q). We set

k = c1/εn(1−ε)/ε. (1)

It should be noted that k is an integer and a polynomial of n0. We have

k = c
1
ε

(
cεb−1a2εbnεb

0

) 1−ε
ε

= c
1+(εb−1)(1−ε)

ε a2b(1−ε)nb−εb
0

= cb−εb+1a2b−2εbnb−εb
0

= (ca)b−εb+1ab−εb−1nb−εb
0 .

Recall that ca, a, and b − εb are fixed integers, and we have assumed that
b − εb ≥ 1; or ε = 1 and a = 1. In both cases, k is an integer and a polynomial
of n0 from the above equation.

We then partition vertices of G into layers by breadth-first search. We con-
struct a graph Gk from G as follows: label vertices of G with v1, v2, . . . , vn, where
s = v1 and t = vn; replace vi with a path Zi = 〈vi,1, vi,2, . . . , vi,k〉; and add an
edge between vi,k and vj,1 of Gk for any vertices vi and vj with vivj ∈ E(G) and
distG(s, vi) < distG(s, vj). We set sk = v1,1 and tk = vn,k. Moreover, we con-
struct a path Pk of Gk from P = 〈vi0 , vi1 , . . . , vi�

〉 by replacing vij
with the path

Zij
, where � is the length of P and ij ∈ [n] for each j ∈ [0, �] (See also Fig. 1).

A path Qk of Gk is obtained in the same way. This completes the construction
of the instance (Gk, sk, tk, Pk, Qk) of k-SPR. Since k is a polynomial of n0, the
construction can be done in polynomial time.

We prove the correctness of our reduction. The following three lemmas com-
plete the proof of Theorem 1.

Lemma 1. Gk is a bipartite graph.

Proof. We show that Gk can be partitioned into two independent sets Xk and
Yk. Recall that the original graph G is bipartite and hence it can be partitioned
into two independent sets X and Y . If k is even, let

Xk = {vi,j : vi ∈ V (G) and j is even}.
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If k is odd, let

Xk = {vi,j : vi ∈ X and j is even} ∪ {vi,j : vi ∈ Y and j is odd}.

In both cases, we define Yk = V (Gk) \Xk. From the construction of Gk, observe
that Xk and Yk are independent sets of Gk. ��
Lemma 2. Let nk = |V (Gk)|. Then, k = cn1−ε

k .

Proof. Observe that nk = kn = c1/εn1/ε. By Eq. (1), we have

k = c1/εn(1−ε)/ε

= c · c(1−ε)/εn(1−ε)/ε

= c
(
c1/εn1/ε

)1−ε

= cn1−ε
k .

��
Lemma 3. (G, s, t, P,Q) has a solution of SPR if and only if (Gk, sk, tk, Pk, Qk)
has a solution of k-SPR.

Proof. First, from the construction of Gk, observe that there exists a bijection
from s-t shortest paths R = 〈vi0 , vi1 , . . . , vi�

〉 of G to sk-tk shortest paths Rk of
Gk consisting of subpaths Zi0 , Zi1 , . . . , Zi�

. In particular, P and Q correspond
to Pk and Qk, respectively.

(Only-if direction.) Suppose that an s-t shortest path R′ of G is obtained
by replacing a vertex vj1 ∈ Li(G) in another s-t shortest path R of G with a
vertex vj2 ∈ Li(G) for some i ∈ [� − 1]. Let Rk and R′

k be sk-tk shortest paths
of Gk corresponding to R and R′, respectively. Observe that there exists two
vertices vj3 and vj4 of G such that vj3 ∈ Li−1(G), vj4 ∈ Li+1(G), and there exist
edges vj3vj1 , vj1vj4 , vj3vj2 , and vj2vj4 in G. From the construction of Gk, there
exist edges vj3,kvj1,1, vj1,kvj4,1, vj3,kvj2,1, and vj2,kvj4,1 in Gk. Thus, we obtain
an sk-tk shortest path R′

k by replacing a subpath Zj1 = 〈vj1,1, vj1,2, . . . , vj1,k〉
in Rk with a subpath Zj2 = 〈vj2,1, vj2,2, . . . , vj2,k〉, where Zj1 and Zj2 contain
k vertices, respectively. Therefore, if Q is obtained from P in G by iteratively
applying reconfiguration steps, then Qk is obtained from Pk in Gk by iteratively
applying the corresponding reconfiguration steps.

(If direction.) Consider that an sk-tk shortest path R′
k of Gk is obtained by

replacing a subpath Sk of an sk-tk shortest path Rk with a subpath S′
k. Note that

each of Sk and S′
k contains at most k vertices. We denote by x and x′ the two

vertices closest to sk of these subpaths, and denote by y and y′ the two vertices
closest to tk of these subpaths. It is clear that x and x′ are contained in the same
layer Lix

(Gk), and y and y′ are contained in the same layer Liy
(Gk). Then, there

exists a vertex u ∈ Lix−1(Gk) adjacent to x and x′, and there exists a vertex
z ∈ Liy+1(Gk) adjacent to y and y′. Recall that, from the construction of Gk,
only vertices contained in

⋃
i∈[�] Lik−1(Gk) can have at least two neighbors in the
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next layers. Similarly, only vertices contained in
⋃

i∈[�] Lik(Gk) can have at least
two neighbors in the previous layers. Thus, u ∈ Lik−1(Gk) and z ∈ L(i+1)k(Gk)
for some i ∈ [� − 1]; otherwise, Sk contains more than k vertices. This means
that Sk and S′

k are actually subpaths Zj1 and Zj2 of Gk for some j1, j2 ∈ [n− 1]
such that vj1 and vj2 are contained in the same layer Li(G). Moreover, it follows
from the existence of u and z in Gk that vj1 and vj2 have common neighbors in
both the previous and next layers of G. Let R and R′ be s-t shortest paths of
G corresponding to Rk and R′

k, respectively. We conclude that an s-t shortest
path R′ is obtained by replacing a vertex vj1 in R with a vertex vj2 . Therefore, if
Qk is obtained from Pk in Gk by iteratively applying reconfiguration steps, Q is
obtained from P in G by iteratively applying the corresponding reconfiguration
steps. ��

3.2 r-th Power Graphs

In this section, we show the PSPACE-completeness of k-SPR for r-th power
graphs.

Definition 1. Let r be a positive integer. The r-th power Gr of a graph G is
a graph such that V (Gr) = V (G) and two vertices u, v ∈ V (Gr) are adjacent if
and only if distG(u, v) ≤ r. A graph G is r-th power graph if there exists a graph
H such that G = Hr.

Theorem 2 (♠). Let G be a graph with n vertices, and let c and ε be any fixed
rational numbers such that c > 0 and 0 < ε ≤ 1. Unless ε = 1 and c < 1, k-SPR
with k = cn1−ε ≥ 1 is PSPACE-complete even for r-th power graphs, where r is
any positive integer.

3.3 Graphs with Maximum Degree 3

Theorem 3 (♠). Let G be a graph with n vertices, and let c and ε be any fixed
rational numbers such that c > 0 and 0 < ε < 1. When k = cn1−ε ≥ 1, k-SPR
is PSPACE-complete even for graphs with maximum degree 3.

4 Fixed-Parameter Tractability

Gajjar et al. showed that k-SPR is solvable in polynomial time if k ≥ n/2 [5].
It is natural to expect that the problem remains tractable when k is slightly
smaller than n/2. In this section, we show that the expectation is correct.

Theorem 4. Let k and μ be non-negative rational numbers, and let n be the
number of vertices in a graph G. When k = n/2 − μ, there exists an algorithm
that solves k-SPR in O(m + 6.730μμ4n) time.
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To prove Theorem 4, we extend a dynamic programming algorithm for
SPR developed by Bonsma [4]. We here give an overview of our algorithm.
Let Gi denote the graph obtained as follows: remove all vertices in layers
Li+1(G) ∪ Li+2(G) ∪ · · · ∪ L�−1(G) from a given graph G, and then add edges
between t and all vertices in Li(G). Observe that G� = G. In the algorithm, we
construct a new graph Hi for each i ∈ [0, �], called the encoding graph, which
is obtained by compressing a reconfiguration graph Rk(Gi, s, t). The encoding
graph Hi preserves necessary information contained in Rk(Gi, s, t) to decide
whether a given instance (G, s, t, P,Q) has a solution. Note that, in general,
our algorithm runs in exponential time because the size of Hi becomes super-
polynomial. Nevertheless, we will show that the size of Hi is bounded by a single
exponential function of μ when k = n/2 − μ.

First of all, we define a link-weight function w for the reconfiguration graph
Rk(G, s, t). For each link PQ of Rk(G, s, t), we set w(PQ) = i for an integer
1 ≤ i ≤ k if two s-t shortest paths P and Q of G differ by exactly i consecutive
vertices. Moreover, for each node P in Rk(G, s, t), we add a self-loop PP with
w(PP ) = 0. The self-loops do not affect on the solution of k-SPR. We will see
that they are useful for constructing our dynamic programming algorithm.

We next introduce the notion of the encoding graph. Suppose that
distG(s, t) = �. For an integer i ∈ [0, �], let Li(G) be the i-th layer. For an
s-t shortest path R of G, let Ri denote the s-t shortest path of Gi obtained by
removing vertices in Li+1 ∪ Li+2 ∪ · · · ∪ L�−1 from R. For two s-t shortest paths
Ri and R′

i, we write Ri ∼i R′
i if the node R′

i is reachable from the node Ri on
Rk(Gi, s, t) without changing a vertex v ∈ Li(G) in Ri. It is not hard to see that
∼i is an equivalence relation. Let V (Rk(Gi, s, t))/ ∼i denote the family of equiv-
alence classes for V (Rk(Gi, s, t)) with respect to ∼i. Observe that a subgraph of
Rk(Gi, s, t) induced by the nodes of an equivalence class in V (Rk(Gi, s, t))/ ∼i

is connected. The encoding graph Hi for a triple (Gi, P,Q), where P and Q are
s-t shortest paths of G, is a graph obtained from Rk(Gi, s, t) as follows:

1. remove all connected components of Rk(Gi, s, t) not containing a node Pi;
2. contract the nodes of each equivalence class in V (Rk(Gi, s, t))/ ∼i into a sin-

gle node x, where we denote by Sx the set of nodes in Rk(Gi, s, t) contracted
into x; and

3. add a self-loop to each node.

We will construct the encoding graph Hi for each i ∈ [0, �] by means of dynamic
programming (without making the reconfiguration graph Rk(Gi, s, t)). To this
end, we provide a link-weight function ηi for Hi defined as follows:

ηi(xy) = min{w(XY ) : X ∈ Sx, Y ∈ Sy,XY ∈ E(Rk(Gi, s, t))},

where xy is a link of Hi. The function ηi means that, in order to obtain an s-t
shortest path in Sy from an s-t shortest path in Sx, a subpath with at least
ηi(xy) vertices containing a vertex in Li(G) must be replaced. We also define
functions ci, pi, and qi used in our algorithm as follows: for each node x in Hi,
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– if every node in Sx is an s-v shortest path of Gi for a vertex v ∈ Li(G), then
ci(x) = v;

– pi(x) = 1 if Pi ∈ Sx, otherwise pi(x) = 0; and
– qi(x) = 1 if Qi ∈ Sx, otherwise qi(x) = 0.

4.1 A Dynamic Programming Algorithm

As the base case, consider i = 0. Then, a graph G0 consists of vertices s, t and
an edge st. Therefore, H0 has a unique node x and Pi = Qi = 〈s, t〉. We set
η0(xx) = 0, c0(x) = s, p0(x) = q0(x) = 1.

Consider i > 0. Assume that Hi−1, ηi−1, ci−1, pi−1, and qi−1 have already
been computed. For a vertex v ∈ Li(G), denote Xv = {a ∈ V (Hi−1) : ci−1(a) ∈
N−

G (v)}. We construct Hi as follows:

1. initialize Hi to a graph with no nodes;
2. for each v ∈ Li(G), consider the subgraph Hv

i−1 of Hi−1 induced by the nodes
in Xv;

3. for each connected component of Hv
i−1, add a node x with ci(x) = v into Hi,

where we denote by Cx the connected component corresponding to x;
4. for two distinct nodes x and y of Hi, add an edge between x and y if and

only if there exist nodes a ∈ V (Cx) and b ∈ V (Cy) such that ab ∈ E(Hi−1)
and ηi−1(ab) ≤ k − 1;

5. for each link xy of Hi, let

ηi(xy) = min{ηi−1(ab) + 1 : a ∈ V (Cx), b ∈ V (Cy)};

6. for each node x of Hi, add a self-loop xx with ηi(xx) = 0;
7. for each node x of Hi, set pi(x) = 1 if and only if ci(x) is a vertex in Pi and

Cx has a node a with pi−1(a) = 1. Similarly, set qi(x) = 1 if and only if ci(x)
is a vertex in Qi and Cx has a node a with qi−1(a) = 1; and

8. remove all connected components of Hi not containing a node x with pi(x) = 1.

We conclude that a given instance (G, s, t, P,Q) has a solution if H� has a node
x with q�(x) = 1; otherwise, (G, s, t, P,Q) has no solution.

4.2 Correctness of Our Algorithm

We show that our algorithm correctly computes the encoding graph Hi for
(Gi, P,Q) and functions ηi, ci, pi, and qi. Recall that our algorithm generalizes
the algorithm for SPR developed by Bonsma [4]. In particular, the definitions
of ci, pi, and qi are the same as the ones in the original algorithm. Therefore,
ci, pi, and qi are correctly computed. What we have to do here is to show the
correctness of Hi and ηi. Obviously, they are correctly computed when i = 0.
Assume that i > 0, and Hi−1 and ηi−1 have been obtained.

For an s-t shortest path R = 〈s = r0, r1, . . . , ri−1, t〉 of Gi−1 and a vertex
v ∈ Li(G), we denote by R+v the new sequence of vertices obtained by inserting
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v between ri−1 and t. For a vertex v ∈ Li(G) and a node a ∈ Xv, let Sa ⊕ v =
{R + v : R ∈ Sa}. Note that, since ci−1(a) ∈ N−

Gi
(v) for every a ∈ Xv, every

sequence in Sa ⊕ v is indeed an s-t shortest path of Gi that contains v.
Let R̂k(Gi, s, t) be the connected component of Rk(Gi, s, t) that contains the

node Pi. We first show that there is a bijection from V (Hi) to V (R̂k(Gi, s, t))/ ∼i

by the following lemmas. In fact, the lemmas and their proof are completely the
same as the ones shown by Bonsma [4]. For this reason, we here omit their proofs.

Lemma 4 ([4]). Let Hi−1 be the encoding graph for (Gi−1, P,Q), and v ∈
Li(G). Let C be a connected component of Hv

i−1. Then,
⋃

a∈V (C)(Sa ⊕ v) is a
set of s-t shortest paths of Gi that is an equivalence class of ∼i.

Lemma 5 ([4]). Let Hi−1 and Hi be encoding graphs for (Gi−1, P,Q) and
(Gi, P,Q), respectively. For every node x ∈ V (Hi), there exists a connected
component Cx of H

ci(x)
i−1 such that Sx =

⋃
a∈V (Cx)

(Sa ⊕ ci(x)).

The following lemma shows the correctness of links in Hi and a link-weight
function ηi.

Lemma 6 (♠). Let Hi be the encoding graph and let x, y ∈ V (Hi). Then,
xy ∈ E(Hi) and ηi(xy) = j with 1 ≤ j ≤ k if and only if there exist nodes a and
b in Hi−1 such that a ∈ V (Cx), b ∈ V (Cy), ab ∈ E(Hi−1), and ηi−1(ab) = j −1.

4.3 Running Time

Theorem 5 (♠). Let (G, s, t, P,Q) be an instance of k-SPR such that G has n
vertices and m edges and distG(s, t) = �. We denote z = max0≤i≤� |Li(G)| and
N = max0≤i≤� |V (Hi)|, where Hi is the encoding graph for (Gi, P,Q). Then, our
dynamic programming algorithm solves k-SPR in O(n + m + �z2N2) time.

4.4 Proof of Theorem 4

Suppose that an instance (G, s, t, P,Q) with distG(s, t) = � of k-SPR is given.
We first provide two simple observations.

Proposition 2. When k ≥ � − 1, any instance (G, s, t, P,Q) has a solution.

Proposition 3. Let i be any integer in [� − 1], and suppose that there exists a
vertex v ∈ V (G) such that Li(G) = {v}. Let P 1 and P 2 be the subpaths of P that
consist of vertices in

⋃
0≤j≤i Lj(G) and

⋃
i≤j≤� Lj(G), respectively. The subpaths

Q1 and Q2 of Q are similarly defined. Then, (G, s, t, P,Q) has a solution if and
only if both (G, s, v, P 1, Q1) and (G, v, t, P 2, Q2) have solutions.

Applying Proposition 3 iteratively, assume that every layer Li(G) of G except
for i = 0 and i = � has at least two vertices. For each i ∈ [�], we say that the
layer Li(G) is narrow if |Li−1(G)| = |Li(G)| = 2.

Let z = max0≤i≤� |Li(G)|. Lemmas 7 and 8 bound the size of the encoding
graph Hi for each i ∈ [0, �].
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Lemma 7 (♠). For an integer i ∈ [0, �], let Hi be the encoding graph for
(Gi, P,Q). If 0 ≤ i ≤ k + 1, then |V (Hi)| ≤ z.

Lemma 8 (♠). For an integer i ∈ [0, �], let Hi be the encoding graph for
(Gi, P,Q). If Li(G) with i ∈ [�] is narrow, then |V (Hi)| ≤ max{|V (Hi−1)|, 2}.

We here define an integer zi for i ∈ [0, �] as follows:

zi =

{
1 if i ≤ k + 1 or the layer Li(G) is narrow;
|Li(G)| otherwise.

We bound the size of V (Hi) with these values.

Lemma 9 (♠). Let N = max0≤i≤� |V (Hi)|. Then, N ≤ z
∏

0≤j≤� zj.

We say that the layer is large if it has at least three vertices. Let α be the
number of large layers after k + 1�-th layer of G. We denote by p1, p2, . . . , pα

integers such that k + 1 < pj ≤ � − 1 and Lpj
(G) is large for every j ∈ [α]. In

addition, we denote by q1, q2, . . . , qβ integers such that k + 1 < qj ≤ � − 1 and
Lqj

(G) is neither narrow nor large for every j ∈ [β]. Let γ =
∑

j∈[α] |Lpj
(G)|.

The following lemma is the final piece of the puzzle in proving Theorem 4.

Lemma 10. If k < � − 1, then 3α + 2β < 2μ − 2, γ < 2μ − 2, and z < 2μ.

Proof. Recall that k = n/2 − μ. The Layers L0(G) and L�(G) have exactly one
vertex, respectively, and Lj(G) for each integer j with 1 ≤ j ≤ k +1 has at least
two vertices. Moreover, |Lpj

(G)| ≥ 3 for each j ∈ [α] and |Lqj
(G)| = 2 for each

j ∈ [β]. Thus, we have

n ≥ 2 + 2k + 1� + 3α + 2β

> 2 + 2k + 3α + 2β

= 2 + n − 2μ + 3α + 2β.

This immediately implies that 3α + 2β < 2μ − 2. Similarly, we have γ < 2μ − 2
because

n ≥ 2 + 2k + 1� + γ

> 2 + 2k + γ

= 2 + n − 2μ + γ,

and z < 2μ because each of the (� − 2) layers, except for L0(G), L�(G), and the
layer with z vertices, has at least two vertices and hence we have

n ≥ 2 + 2(� − 2) + z

> 2 + 2(k − 1) + z

= n − 2μ + z.

��
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We are now ready to prove Theorem 4. Let (G, s, t, P,Q) be an instance of
k-SPR after applying Proposition 3 iteratively. In the remainder of this proof,
assume that every layer of G except for L0(G) and L�(G) has at least two
vertices. If k ≥ � − 1, then we immediately conclude that (G, s, t, P,Q) has a
solution by Proposition 2.

Suppose that Proposition 2 is not applicable, that is, k < � − 1. From
Lemma 10, we have 3α+2β < 2μ−2 and γ < 2μ−2. Since γ =

∑
j∈[α] |Lpj

(G)|
and Lpj

(G) is large for every j ∈ [α], it follows from the definition of zi that
∑

j∈[α]

zpj
< 2μ − 2. (2)

We next bound the size of N = max0≤i≤� |V (Hi)|. Recall that zi = 1 holds if
i ≤ k + 1 or Li(G) is narrow. In addition, observe that zqj

= 2 for every j ∈ [β].
Therefore, from Lemma 9 and z0 = z� = 1, we have

N ≤ z
∏

0≤j≤�

zj

= z
∏

k+1<j≤�−1

zj

= z

⎛

⎝
∏

j∈[β]

zqj

⎞

⎠ ·
⎛

⎝
∏

j∈[α]

zpj

⎞

⎠

= z2β ·
∏

j∈[α]

zpj
. (3)

By combining Eqs. (2), (3), 3α + 2β < 2μ − 2, and the inequality of arithmetic
and geometric means, we have

N < z2μ−1−3α/2 ·
(∑

j∈[α] zpj

α

)α

< z2μ−1−3α/2 ·
(

2μ − 2
α

)α

= z2μ−1

(
μ − 1√

2α

)α

,

where 0 ≤ α < (2μ − 2)/3. The function f(α) = ((μ − 1)/(
√

2α))α for 0 ≤ α <
(2μ − 2)/3 is maximized when α = (μ − 1)/(

√
2e), where e is Euler’s number.

Therefore, we have N < z2μ−1f((μ − 1)/(
√

2e)) = z(2e1/(
√
2e))μ−1. Recall that

z < 2μ by Lemma 10. We conclude that, by Theorem 5, our algorithm runs in
time

O(n + m + �z2 N2) = O(n + m + �z4(4e
√
2/e)μ−1)

= O(m + 6.730μμ4n).
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5 Polynomial-Time Algorithms

In Sect. 4, we showed that k-SPR is efficiently solvable if k is close to n/2. In
this section, we consider a case where k-SPR is solvable for any positive rational
number k.

The contraction of an edge uv in a graph G is to remove the vertices u and v
together with their incident edges and then add a vertex w that is adjacent to all
vertices in NG(u) ∪ NG(v) \ {u, v}. A graph G contains a graph H as a minor if
there is a graph G′ that is obtained from G by iteratively applying contractions
of edges and H is a subgraph of G′. A graph G is said to be H-minor-free if
G does not contain H as a minor. We denote by K2,3 the graph whose vertex
set can be partitioned into two independent sets X of size 2 and Y of size 3
such that xy ∈ E(K2,3) for any two vertices x ∈ X and y ∈ Y . It is well known
that all outerplanar graphs, which are a famous subclass of planar graphs, are
K2,3-minor-free.

Theorem 6 (♠). For any positive integer k, k-SPR can be solved in linear
time for K2,3-minor-free graphs. Moreover, if a given instance (G, s, t, P,Q) has a
solution, then the distance from P to Q in Rk(G, s, t) is at most |V (P )\V (Q)| ≤
� − 1.

6 Conclusion

In this paper, we investigated the complexity of k-SPR depending on k. We
first showed that, for any fixed rational numbers c and ε such that c > 0 and
0 < ε ≤ 1, unless ε = 1 and c < 1, k-SPR with k = cn1−ε ≥ 1 is PSPACE-
complete even for bipartite graphs and r-th power graphs, where r is any positive
integer. On the other hand, we designed a single exponential FPT algorithm for
k-SPR parameterized by μ = n/2 − k ≥ 0. This implies that k-SPR with k =
n/2−O(log n) is solvable in polynomial time. Future research should narrow the
gap between tractability and intractability with respect to k. We also obtained
the similar intractability of k-SPR on graphs with maximum degree 3. However,
our approach does not work when k = Θ(1). It would be interesting to settle
the complexity of k-SPR with k = Θ(1) for graphs with maximum degree 3.
Finally, we designed a linear-time algorithm for K2,3-minor-free graphs. This
result also means the tractability of k-SPR on outerplanar graphs. Surprisingly,
Bonsma showed that 1-SPR is solvable even for planar graphs via a dynamic
programming algorithm [4]. Our dynamic programming algorithm may also be
the key to solving k-SPR on planar graphs when k ≥ 2.
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Abstract. We propose an approach called bounded combinatorial recon-
figuration for solving combinatorial reconfiguration problems based on
Answer Set Programming (ASP). The general task is to study the solu-
tion spaces of combinatorial problems and to decide whether or not
there are sequences of feasible solutions that have special properties. The
resulting recongo solver covers all metrics of the solver track in the most
recent international competition on combinatorial reconfiguration (CoRe
Challenge 2022). recongo ranked first in the shortest metric of the single-
engine solvers track. In this paper, we present the design and algorithm of
bounded combinatorial reconfiguration, and also present ASP encodings
of the independent set reconfiguration problem under the token jumping
rule that is one of the most studied combinatorial reconfiguration prob-
lems. Finally, we present empirical analysis considering all instances of
CoRe Challenge 2022.

Keywords: Combinatorial Reconfiguration · Independent Set
Reconfiguration · Answer Set Programming

1 Introduction

Combinatorial reconfiguration [14,16,24] aims at analyzing the structure and
properties (e.g., connectivity and reachability) of the solution spaces of com-
binatorial problems. Each solution space has a graph structure in which each
node represents an individual feasible solution, and the edges are defined by a
certain adjacency relation. Combinatorial Reconfiguration Problems (CRPs) are
defined in general as the task of deciding, for a given combinatorial problem and
two among its feasible solutions, whether or not one is reachable from another
via a sequence of adjacent feasible solutions. A CRP is reachable if there exists
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such a sequence, otherwise it is unreachable. We refer to the original problem
as source problem in contrast to its reconfiguration problem. CRP solvers are
programs solving combinatorial reconfiguration problems. The solvers output a
reconfiguration sequence as a solution if reachable.

A great effort has been made to investigate the theoretical aspects of
CRPs in the field of theoretical computer science over the last decade. For
many NP-complete source problems, their reconfigurations have been shown to
be PSPACE-complete, including SAT reconfiguration [12,21], independent set
reconfiguration [16,19], dominating set reconfiguration [13,26], graph coloring
reconfiguration [3–5], clique reconfiguration [18], Hamiltonian cycle reconfigura-
tion [15,27], and set covering reconfiguration [16].

However, little attention has been paid so far to its practical aspects. To stim-
ulate research and development on practical CRP solving, the first international
combinatorial reconfiguration competition (CoRe Challenge 2022; [25]) has been
held in 2022. Eight solvers participated in the solver track of CoRe Challenge
2022, including a planning-based solver [6], a ZDD-based solver [17], etc. The
competition used the independent set reconfiguration problem under the token
jumping rule, which is one of the most studied combinatorial reconfiguration
problems.

In this paper, we describe an approach for solving combinatorial reconfigura-
tion problems based on Answer Set Programming (ASP; [1,11,23]). The result-
ing recongo solver reads a CRP instance and converts it into ASP facts. In turn,
these facts are combined with an ASP encoding for CRP solving, which are
afterward solved by efficient ASP solvers, in our case clingo [8]. To show the
effectiveness of our approach, we conduct experiments on the benchmark set of
CoRe Challenge 2022.

ASP is a declarative programming paradigm for knowledge representation
and reasoning in artificial intelligence. The declarative approach of ASP has
distinct advantages. First, ASP provides an expressive language and is well suited
for modeling combinatorial (optimization) problems in artificial intelligence and
computer science [7]. Second, the extension to their reconfiguration problems
can be easily done. Finally, recent advances in multi-shot ASP solving [10] allow
for efficient reachability checking of combinatorial reconfiguration problems.

The main contributions of our paper are as follows:

(1) We present the design and algorithm of bounded combinatorial reconfigura-
tion for solving combinatorial reconfiguration problems based on ASP. Our
declarative approach is inspired by Bounded Model Checking (BMC; [2]),
which is widely used in formal verification of finite state transition systems.

(2) We develop an ASP-based CRP solver recongo1 using clingo’s multi-shot
ASP solving [10]. recongo ranked first at the shortest metric of the single-
engine solvers track in the CoRe Challenge 2022, and ranked second or third
in the other four metrics.

1 An overview of recongo is given in a short paper [28]. The present paper gives
more detailed algorithms, encodings, and empirical analysis of bounded combinato-
rial reconfiguration.
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start state goal state

Fig. 1. An ISRP example

(3) We present an ASP encoding for solving the independent set reconfiguration
problem under the token jumping rule. In algorithm theory, this problem has
been shown to be W[1]-hard when parameterized by k + �, where k is the
size of independent sets and � is the length of reconfiguration sequences [22].

(4) Our empirical analysis considers all 369 instances publicly available from
the CoRe Challenge 2022 website.2 We address the competitiveness of our
declarative approach by contrasting it to other approaches.

Overall, the proposed declarative approach can make a significant contri-
bution to the state-of-the-art of CRP solving as well as ASP application to
combinatorial reconfiguration.

Our encodings are given in the language of clingo [8]. Although we provide
a brief introduction to ASP and its basic language constructs in Sect. 2.2, a
comprehensive introduction to ASP can be found in [9].

2 Background

2.1 Combinatorial Reconfiguration

The combinatorial reconfiguration problem (CRP) is defined as the task of decid-
ing, for a given source problem and two of its feasible solutions Xs and Xg,
whether or not there are sequences of transitions:

Xs = X0 → X1 → X2 → · · · → X� = Xg. (1)

Each state Xi represents a feasible solution of the source problem. We refer to Xs

and Xg as the start and the goal states, respectively. We write X → X ′ if state X
at step t can be followed by state X ′ at step t+1 subject to a certain adjacency
relation. We refer to the sequence (1) as a reconfiguration sequence from Xs to
Xg. The length of the reconfiguration sequence, denoted by �, is the number
of transitions. Regarding the reconfiguration sequences, combinatorial reconfig-
uration problems can be classified into three categories: existent, shortest, and
longest. The existent-CRP is to decide whether or not there are reconfiguration
sequences. The shortest-CRP is to find a shortest reconfiguration sequence. The
2 https://core-challenge.github.io/2022/.

https://core-challenge.github.io/2022/
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longest-CRP is to find a longest reconfiguration sequence that cannot include
any loop.

Let us consider the independent set reconfiguration problem (ISRP). Its
source is the independent set problem, that is, to decide whether or not there
is an independent set in G of size k, for a given graph G = (V,E) and an integer
k. A subset V ′ ⊆ V is called an independent set in G of size k if (u, v) /∈ E for
all u, v ∈ V ′ and |V ′| = k. In the ISRP, each state X in (1) represents an inde-
pendent set. Regarding adjacency relations, we focus on one of the most studied
relations called token jumping [19]. Suppose that a token is placed on each node
in an independent set. The token jumping meaning of X → X ′ is that a single
token “jumps” from the single node in X \ X ′ to the one in X ′ \ X.

Figure 1 shows an example of ISRP. The example consists of a graph having
8 nodes and 8 edges, and the size of independent sets is k = 3. The independent
sets (tokens) are highlighted in yellow. We can observe that the goal state can be
reachable from the start state with length � = 3. For instance, in the transition
from X0 to X1, a token jumps from node 2 in X0 to node 7 in X1.

2.2 Answer Set Programming

Answer Set Programming (ASP) is a declarative programming paradigm widely
used in artificial intelligence. In ASP, problems are represented as logic programs,
which are finite sets of rules of the form:

a0 :- a1 ,...,am,not am+1 ,...,not an.

Each ai is a propositional atom. The connectives ‘:-’, ‘,’, and ‘not’ denote
‘if’, ‘conjunction’, and ‘default negation’, respectively. Each rule is terminated
by a period ‘.’. A literal is an atom a or not a. Intuitively, the rule means
that a0 must be true if a1 ,. . . , am are true and am+1 , . . ., an are false.
Semantically, a logic program induces a collection of so-called answer sets, which
are distinguished models of the program based on stable model semantics [11].
ASP rules have two special cases. One is a fact of the form a0. A fact is
always true and belongs to every answer set. Another is an integrity constraint
of the form :- a1,...,am,not am+1,...,not an. An integrity constraint
means that the conjunction of literals must not hold, and can be used to filter
solution candidates. For instance, :- a1,a2. means a1 and a2 must not
hold simultaneously.

Several extensions have been made to facilitate the use of ASP in practice.
First of all, rules with first-order variables are viewed as shorthand for the set
of their ground instances (i.e., variable-free rules). Further language constructs
include conditional literals and cardinality constraints. The former are of the
form �0:�1,. . .,�m and the latter can be written as �b {c1;. . .;cn} ub,
where all �i are literals, and all cj are conditional literals; �b and ub

indicate lower and upper bounds on the number of satisfied literals in the
cardinality constraint. For instance, a conditional literal like a(X):b(X) in a
rule’s antecedent expands to the conjunction of all instances of a(X) for which
the corresponding instance of b(X) holds. Similarly, 1 { a(X):b(X) } 1 is
true whenever the exact one instance of a(X) (subject to b(X)) is true.



246 Y. Yamada et al.

3 The recongo Approach

Basic Design. Combinatorial reconfiguration problems can be readily expressed
as satisfiability problems. Let x = {x1, x2, . . . , xn} and C(x) be the variables
and the constraints of a source problem, respectively. For its reconfiguration
problem, each state X at step t can be represented by a set of variables xt =
{xt

1, x
t
2, . . . , x

t
n}. Each adjacent relation can be represented by a set of constraints

T (xt−1,xt) that must be satisfied. Optionally, additional constraints S(x0) and
G(x�) can be added to specify conditions on the start state Xs and/or the goal
state Xg, respectively, as well as any other constraints that we want to enforce.
Then, the existence of a reconfiguration sequence (1) of bounded length � is
equivalent to the following satisfiability problem

ϕ� = S(x0) ∧
�∧

t=0

C(xt) ∧
�∧

t=1

T (xt−1,xt) ∧ G(x�). (2)

We use ϕ� to check properties of a reconfiguration relation (a transition relation)
between the possible feasible solutions of the source problem. We call this general
framework “bounded combinatorial reconfiguration”, because we consider only
reconfiguration sequences that have a bounded length �. For reachability check-
ing, if ϕ� is satisfiable, there is a reconfiguration sequence of length �. Otherwise,
we keep on reconstructing a successor (e.g., ϕ�+1) and checking its satisfiability
until a reconfiguration sequence is found. Bounded combinatorial reconfiguration
is an incomplete method, because it can find reconfiguration sequences if they
exist, but cannot prove unreachability in general. However, it can be a complete
method if the diameters of solution spaces are given. Any off-the-shelf satisfia-
bility solvers, such as SAT solvers and CSP solvers, can be used as back-end. In
this paper, we make use of ASP solvers, in our case clingo.

Algorithm. We present an algorithm of bounded combinatorial reconfiguration.
Obviously it is inefficient to fully reconstruct ϕ� in each transition because of
the expensive grounding, which transforms first-order logic programs to variable-
free ones. Instead, we incrementally construct ϕ� from its predecessor ϕ�−1 by
adding C(x�), T (x�−1,x�), and G(x�) and deactivating G(x�−1). This can be
easily done by utilizing clingo’s multi-shot ASP solving [10]. The multi-shot ASP
solving allows for incremental grounding and solving for logic programs and is
well suited to achieve bounded combinatorial reconfiguration.

The pseudo code of a grounding-conscious algorithm for bounded combina-
torial reconfiguration is shown in Algorithm 1. We use five variables at the loop
in Lines 9–24 to control the successive grounding and solving of an input logic
program. The input consists of a problem instance P of ASP fact format and
four subprograms S(x0), C(xt), T (xt−1,xt), and G(xt). The values of Imin and
Imax respectively indicate the minimum number of steps (1 by default) and the
maximum number of steps (none by default). A variable Istop is used to specify
a termination criterion (SAT by default or UNSAT). The value of i indicates each
step, and a variable ret is used to store the solving result. In addition, Isearch is
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Algorithm 1. Grounding-conscious bounded combinatorial reconfiguration
Input P : problem instance of ASP fact format
Input S(x0), C(xt), T (xt−1,xt), G(xt): logic program
Parameter Imin: the minimum number of steps [1]
Parameter Imax: the maximum number of steps [none]
Parameter Istop: termination criterion [SAT]
Parameter Isearch: path search [shortest]
1: ctl ← create an object of ASP solver
2: i ← 0
3: ret ← none
4: model ← none
5: if Isearch = longest then
6: Imin ← Imax

7: end if
8: add a statement “#external query(t).” to G(xt)
9: while (Imax = none or i < Imax) and

(Imin = none or i < Imin or ret = none or ret �= Istop) do
10: parts ← an empty list
11: parts.append(C(xi))

12: parts.append(G(xi))
13: if i > 0 then
14: parts.append(T (xi−1,xi))

15: ctl.release_external(query(i − 1)) {deactivating G(xi−1)}
16: else
17: parts.append(P )
18: parts.append(S(x0))
19: end if
20: ctl.ground(parts)

21: ctl.assign_external(query(i), true) {activating G(xi)}
22: (ret, model) = ctl.solve()
23: i ← i + 1
24: end while
25: ctl.close()
26: if model �= none then
27: print REACHABLE
28: else if Imax �= none and i ≥ Imax then
29: print UNREACHABLE
30: else
31: print UNKNOWN
32: end if

used to switch a search type (shortest by default, longest, or existent), and model
is used to store the answer sets. We note that the external atom query(t) in
Line 8 is used to deactivate G(xt) as well as to activate it.

In each step of the loop, the subprograms stored in the list parts are grounded
and solved. For instance, in step i = 0, the ctl.ground(parts) method in Line
20 grounds P ∧ S(x0)∧ C(x0)∧ G(x0) in which query(0) is set to true in Line
21 in order to activate G(x0). Then, the method ctl.solve() in Line 22 checks
its satisfiability, that is, whether the goal state is reachable from the start state.
Finally, the value of step i is incremented by 1. This process iterates until the
termination criterion is met. Each following step checks the satisfiability of the
logic program P ∧ S(x0)∧ ∧i

t=0 C(xt)∧ ∧i
t=1 T (xi−1,xi)∧ G(xi), in which the

current external atom query(i) is set to true, but the previous query(i − 1) is
permanently set to false in Line 15. The algorithm searches shortest reconfigu-
ration sequences in a default setting. For searching longest ones, all we have to
do is just assigning the value of Imax to Imin in Line 6.
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CRP instance converter ASP facts

logic program

clingo

BCR
algorithm

CRP solution

Fig. 2. The architecture of recongo

Implementation. Bounded combinatorial reconfiguration (BCR) in Algo-
rithm 1 can be easily implemented using clingo’s Python API. The resulting
recongo system is a general-purpose CRP solver. The architecture of recongo is
shown in Fig. 2. recongo reads an CRP instance and converts it into ASP facts.
In turn, these facts are combined with an ASP encoding for CRP solving, which
are afterward solved by the BCR algorithm powered by clingo. recongo covers
all metrics of the solver track in the most recent international competition on
combinatorial reconfiguration (CoRe Challenge 2022).

4 ASP Encoding for Independent Set Reconfiguration

We present an ASP encoding for solving the independent set reconfiguration
problem (ISRP).

Fact Format. The input of ISRP is an independent set problem, a start state,
and a goal state. Listing 1.1 shows an ASP fact format of the ISRP instance in
Fig. 1. The predicate k/1 represents the size of independent sets. The predicates
node/1 and edge/2 represent the nodes and edges, respectively. The predicates
start/1 and goal/1 represent the independent sets of the start and goal states,
respectively. For instance, the atom start(4) means that node 4 is in an inde-
pendent set at the start state.

First Order Encoding. Listing 1.2 shows an ASP encoding for ISRP solving.
The encoding consists of three parts: base, step(t), and check(t). The param-
eter t represents each step in a reconfiguration sequence. The atom in(X,t) is
intended to represent that the node X is in an independent set at step t. The
base part specifies the constraints on the start state S(x0). The rule in Line
3 enforces that in(X,0) holds for each node X in the start state. The step(t)
part specifies the constraints that must be satisfied at each step t. The rules in
Lines 7–8 represent the constraints of independent set C(xt). The rule in Line
7 generates a candidate independent set with size K. The rule in Line 8 enforces
that no two nodes connected by an edge are in an independent set. The rules
in Lines 11–12 represent the adjacency relation T (xt-1,xt). The auxiliary atom
moved_from(X,t) in Line 11 represents that a token jumps from node X to
any other node, from step t-1 to t. The rule in Line 12 enforces that exactly
one token jumps at each step t. The check(t) part specifies the termination
condition that must be satisfied at the goal state G(xt). The rule in Line 16
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k(3).
node(1). node(2). node(3). node(4).
node(5). node(6). node(7). node(8).
edge(1,3). edge(2,5). edge(3,4). edge(3,6).
edge(4,5). edge(5,8). edge(6,7). edge(7,8).
start(1). start(2). start(4).
goal(3). goal(5). goal(7).

Listing 1.1. ASP fact format of ISRP instance in Fig. 1

1 #program base.
2 % start state
3 :- not in(X,0), start(X).
4
5 #program step(t).
6 % independent set constraints
7 K { in(X,t): node(X) } K :- k(K).
8 :- in(X,t), in(Y,t), edge(X,Y).
9

10 % adjacency relation: token jumping
11 moved_from(X,t) :- in(X,t-1), not in(X,t), t > 0.
12 :- not 1 { moved_from(X,t) } 1, t > 0.
13
14 #program check(t).
15 % goal state
16 :- not in(X,t), goal(X), query(t).

Listing 1.2. ASP encoding for ISRP solving

enforces that in(X,t) holds for each node X in the goal state. The volatility of
this rule is handled by a truth assignment to the external atom query(t), as
explained in Algorithm 1. In addition, Listing 1.3 shows a simple encoding that
ensure there is no loop in reconfiguration sequences. This constraint is essential
for longest-ISRP solving.

Hint Constraints. We present a search heuristics and four hint constraints
to accelerate ISRP solving. Their ASP encodings are shown in Listing 1.4. The
hints d1 and d2 are constraints on the bound of distance from the start and goal
states, respectively, in reconfiguration sequences. The hint d1 in Line 3 enforces
that, for each step t, there are at most t nodes that are in the start state but
not in step t. Similarly, the hint d2 in Line 6 enforces that, for each step t
and T∈ {0. . .t-1}, there are at most t-T nodes that are in the goal state but
not in step T. An example of invalid reconfiguration sequences forbidden by d2
is shown in Fig. 3. In the sequence, the lower bound of distance between X�−2

and X� is 3, but it is greater than the possible number of transitions, namely
2. The hints t1 and t2 are constraints that forbid redundant token moves. The
hint t1 in Line 9 enforces that, in two consecutive transitions, no token jumps
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#program step(t).
:- in(X,t):in(X,T); not in(X,t):not in(X,T),node(X); T = 0..t-1; t > 0.

Listing 1.3. No loop constraints for ISRP solving

1 #program step(t).
2 % distance constraint (d1)
3 :- not { not in(X,t): start(X) } t.
4
5 % distance constraint (d2)
6 :- not { not in(X,T): goal(X) } t-T, T = 0..t-1, query(t).
7
8 % token constraint (t1)
9 :- moved_from(X,t-1), in(X,t), t > 1.

10
11 % token constraint (t2)
12 moved_to(X,t) :- not in(X,t-1), in(X,t), t > 0.
13 :- moved_to(X,t-1), not in(X,t), t > 1.
14
15 % maximal independent set heuristic (h)
16 #heuristic in(Y,t): edge(X,Y), not in(X,t). [level_max-t,true]
17 #heuristic in(Y,t): edge(Y,X), not in(X,t). [level_max-t,true]

Listing 1.4. Hint constraints for ISRP solving

back to a node X at step t from which a token jumped before. Similarly, the
hint t2 in Lines 12–13 enforces that no token jumps from a node X at step t to
which a token jumped before. An example of invalid reconfiguration sequences
forbidden by t1 is shown in Fig. 4. The sequence is obviously redundant since
X� can be reachable from X�−2 in one transition. The heuristics h is a domain-
specific heuristics that attempts to make each state to be a maximal independent
set. This can be easily done by using clingo’s #heuristic statements [8]. They
allow for modifying the search heuristic of clingo from within logic programs.
In clingo’s heuristic programming, each atom has a level, and its default value
is 0. For each step t and for each edge(X,Y), the statement in Line 16 gives a
higher level to the atom in(Y,t) if its adjacent node X is not in an independent
set at step t. The statement in Line 17 works in the same way. The distance
constraints d1 and d2 are domain-independent and can be applied to many
CRPs. In contrast, the others are domain-specific constraints for ISRP. We note
that the token hints t1 and t2 cannot be used for longest-ISRP solving.

5 Experiments

To evaluate the recongo approach in Sect. 3 and the recongo encoding in Sect. 4,
we conduct experiments on the benchmark set of the most recent international
competition on combinatorial reconfiguration (CoRe Challenge 2022).
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Fig. 3. An invalid reconfiguration sequence forbidden by d2
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Fig. 4. An invalid reconfiguration sequence forbidden by t1

Our empirical analysis considers all ISRP instances, namely 369 in a total.
They are publicly available from CoRe Challenge 2022 website.3 This ISRP
benchmark set is classified into seven families. The family color04 consists of
202 instances, grid of 49, handcraft of 6, power of 17, queen of 48, sp of
30, and square of 17. The number of nodes of input graphs ranges from 7 to
40,000. We use the proposed encoding in Listing 1.2 and the hint constraints
in Listing 1.4. The no loop constraints in Listing 1.3 are used only for longest-
ISRP solving. We use recongo 0.2 powered by clingo 5. recongo 0.2 searches
shortest reconfiguration sequences when Isearch is existent as well as shortest.
For 23 instances, we assign the total number of all feasible solutions to Imax

(none by default), which can be easily computed by clingo in our preliminary
experiments. We ran our experiments on a Mac OS machine equipped with Intel
Xeon W 12-core 3.3GHz processors and 96 GB RAM. We imposed a time limit
of 1 h for each instance.

Table 1 shows the number of solved instances for existent-ISRP. The columns
display in order reachability and the number of solved instances for each encod-
ing. The best results are highlighted in bold. The no-hint means the recongo
encoding without any hints. The all-hints means the recongo encoding with all
hints. The all-hints/X means the all-hints except X ∈ {d1, d2, t1, t2, h}.
The all-hints solved the most, namely 240 instances out of 369. The hints are
highly effective since the all-hints was able to solve 48 instances more than
the no-hint. Regarding single hint, the distance hint d2 is the most effective
since the difference of all-hints/d2 from the all-hints is the largest, namely
240 − 201 = 39. It is followed by 240 − 233 = 7 of the heuristics h based on
the idea of the maximal independent set. Figure 5 shows a cactus plot where the

3 https://core-challenge.github.io/2022/.

https://core-challenge.github.io/2022/
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Table 1. The number of solved instances for existent-ISRP

all-hints all-hints no-hint
/t2 /t1 /h /d2 /d1

REACHABLE 234 233 233 229 195 232 188
UNREACHABLE 6 6 4 4 6 6 4
Total 240 239 237 233 201 238 192

Fig. 5. Cactus plot of existent-ISRP

horizontal axis (x-axis) indicates CPU times in seconds, and the vertical axis
(y-axis) indicates the number of solved instances. The cactus plot can clearly
show the contrast in performance discussed above between all-hints and
all-hints/d2, as well as between all-hints and no-hint.

Second, we examine the longest-ISRP that is to find longest reconfiguration
sequences without any loop. We here consider two evaluation criteria since find-
ing optimal sequences is quite a hard task. One criterion is the sum of steps
gained from the length of shortest reconfiguration sequences for all the solved
instances. For instance, the instance hc-square-02_01 has a shortest sequence
of length 30 and a longest sequence of length 74. Thus, the number of steps gained
is 74 − 30 = 44. Another criterion is the number of instances for which at least
one sequence was found. The comparison results between encodings are shown
in Table 2. The best results are highlighted in bold. The first row displays all
possible combinations of three hints d1, d2, and h. It is noted that the token
hints t1 and t2 cannot be applied to longest-ISRP. For the former criterion, the
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Table 2. The number of gained steps and solved instances for longest-ISRP

no-hint d1d2h d1d2 d1h d2h d1 d2 h

#steps gained 4,995 21,693 8,058 12,456 20,321 6,656 7,318 12,044

#solved instances 189 221 224 194 213 213 223 191

Table 3. The result of the single-engine solver track in CoRe Challenge 2022

metric 1st 2nd 3rd

solver name PARIS single recongo @toda5603
existent method Planning ASP Greedy & BMC

score 299 (275/24) 244 (238/6) 207 (207/0)

solver name recongo @tigrisg PARIS single
shortest method ASP Brute force & SARSA Planning

score 238 232 213

solver name PARIS single recongo ReconfAIGERation
longest method Planning ASP SAT & BMC

score 144 115 54

recongo encoding with the hints d1d2h has gain the most, namely 21,693 steps
in a total sum. We can observe that the combination of d2 and h can drastically
improve the performance for longest-ISRP solving. For the latter criterion, the
recongo encoding with the hints d1d2 solved the most, but less steps gained.

CoRe Challenge 2022. Finally, we discuss the competitiveness of our approach
by empirically contrasting it to the top-ranked solvers of the CoRe Challenge
2022 [25]. The competition consists of two tracks: solver track and graph track.
The solver track is divided into three metrics. The existent metric is to decide the
reachability of ISRP. Its evaluation index is the number of instances that contes-
tants can solve. The shortest metric is to find reconfiguration sequences as short
as possible of ISRP. Its evaluation index is the number of instances that contes-
tants can find the shortest sequence among all contestants. The longest metric
is to find reconfiguration sequences of as long as possible of ISRP. Its evaluation
index is the number of instances that contestants can find the longest sequence
among all contestants. Each metric is evaluated by two indices: single-engine
solvers and overall solvers. The former index can be applied only to sequential
solvers. The latter index can be applied to all solvers, including portfolio solvers
as well as sequential solvers. The benchmark instances are the same as ones used
in our experiments above. There are no restrictions on solvers used, time limits,
or execution environments. Eight solvers (from seven groups) participated in the
solver track of CoRe Challenge 2022.

Table 3 shows the results of the top-ranked solvers of single-engine solvers
track. The columns display in order the metric and the winner (name, method,
and score) for each rank. Our recongo solver ranked first in the shortest metric,
ranked second both in the existent and longest metrics. Furthermore, recongo
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ranked second in the longest metric and ranked third in the shortest metric of
overall solvers track. Overall, our declarative approach can be highly competitive
in performance. On the other hand, we can observe that many top-ranked solvers
are based on the techniques of BMC [2] and classical planning [20]. Besides them,
ZDD-based solver [17] participated in the solver track.

Discussion. We discuss some more details of the results from a practical point
of view. recongo showed good performance for the color04 and queen families
for all metrics. In particular, recongo was able to find the shortest reconfig-
uration sequences for all instances of color04. The color04 family contains
many instances that have relatively short reconfiguration sequences. In contrast,
recongo is less effective for the grid family since most instances are unreach-
able. To resolve this issue, we will investigate the possibility of incorporating the
numeric abstraction used in the PARIS solver [6] to our declarative approach.

6 Conclusion

We proposed an approach called bounded combinatorial reconfiguration to solv-
ing combinatorial reconfiguration problems. We presented the design and algo-
rithm of bounded combinatorial reconfiguration based on ASP. We also presented
an ASP encoding of the independent set reconfiguration problem. Our empirical
analysis considered all 369 instances publicly available from the CoRe Challenge
2022 site. We showed the competitiveness of our approach by empirically con-
trasting it to other approaches. The resulting recongo system is an ASP-based
CRP solver, which is available from https://github.com/banbaralab/recongo. In
addition to independent set reconfiguration, recongo has been recently applied
to Hamiltonian cycle reconfiguration [28].

The most relevant related fields are bounded model checking [2] and clas-
sical planning [20], in the sense of transforming a given state to another state.
Bounded model checking in general is to study properties (e.g., safety and live-
ness) of finite state transition systems and to decide whether there is no sequence
Xs = X0 → X1 → X2 → · · · → X� = Xg, for which Xs is a start state and
Xg is an error state expressed by rich temporal logic. Classical planning is to
develop action plans for more practical applications and to decide whether there
are sequences of actions for which Xs is a start state and Xg is a goal state.

In contrast, combinatorial reconfiguration is to study the structure and prop-
erties of solution spaces for given combinatorial problems and has several varia-
tions, such as reachability, connectivity, and diameter. This paper focused on the
reachability problem that decides whether there are reconfiguration sequences
for given two of feasible solutions Xs and Xg. When Xs and Xg are not given,
the connectivity problem is to check whether the solution space is connected for
any feasible solution. The diameter problem is to find the diameter of the solu-
tion space, that is, the maximum length of shortest reconfiguration sequences for
any two of feasible solutions. From a broader perspective, combinatorial recon-
figuration can involve the task of constructing problem instances that have the
maximum length of shortest reconfiguration sequences. Such a distinctive task

https://github.com/banbaralab/recongo
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has been used at the graph track of CoRe Challenge 2022. On the other hand,
combinatorial reconfiguration is a relatively new research field. Therefore, the
relationship between those fields has not been well investigated, both from theo-
retical and practical points of view. We will investigate the relationship and will
explore the possibility of synergy between techniques independently developed
in those closely related research fields.
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Abstract. In this paper, we present a faster exact algorithm which
solves the Maximum Induced Matching problem for subcubic graphs.
Here let n be the overall number of vertices and k be the number of
those vertices of degree 3 where all neighbours have also at least degree
2. Then the runtime is at most O(1.2335k) · Poly(n), giving an FPT
bound for the time used by the algorithm; the algorithm uses the result
of Monien and Preis combined with a bound obtained by applying the
measure and conquer technique where the number k replaces n as the
measure used; note that k ≤ n.

Keywords: Branch and Bound · Exponential Time Algorithms ·
Graph Theory · Measure and Conquer · Fixed Parameter Tractable
Problems

1 Introduction

In this paper we will be dealing with only undirected graphs. Given a graph
G = (V,E), where V is its set of vertices and E is its set of edges. We let n
denote the number of vertices in the graph G. For U ⊆ V , we let N(U) denote the
set of neighbours of U in the graph G, that is {e ∈ V : (∃e′ ∈ U)[(e, e′) ∈ E]}.
We let E(U) denote the set of edges in E with both endpoints in U .

For a graph G = (V,E) and a subset S ⊆ V , the induced graph G[S] =
(S,E(S)), has as set of edges all those members (e, e′) ∈ E where e, e′ are both
in S. S is said to be induced matching if every vertex in S has exactly one
neighbour in S. The Maximum Induced Matching problem asks for the largest
possible S such that S is an induced matching. This problem has a number of
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practical applications, such as in VLSI design, network flow problems [9] and risk-
free marriages [18]. The Maximum Induced Matching (MIM) problem is much
harder than the similarly defined Maximum Matching problem where one asks
only for a subset F ⊆ E such that F is a matching (i.e., no vertex is an endpoint
of two edges in F ). While the MIM problem is NP-hard, the second problem
can be solved in polynomial time [21]. Gupta, Raman and Saurabh [11] provided
two subsequent algorithms to solve the MIM problem in time O(1.6957n) and
O(1.4786n), respectively. Chang, Chen and Hung [2] improved the running time
to O(1.4658n) and subsequently they improved it to O(1.4321n). Finally, Xiao
and Tan [20] provided further improvements, running in time O(1.4231n) and
O(1.3752n) where the last algorithm uses exponential space in contrast to the
former ones which use polynomial space. The value O(1.4231n) is also the state
of the art for the special case of graphs with maximum degree 4 [20, Lemma
11] with polynomial space; however, Xiao and Tan [20] did not comment on the
complexity of solving the MIM problem for graphs with maximum degree 3 for
polynomial space.

In this paper, we study a special case of the MIM problem that is limited
to subcubic graphs, where each vertex has at most three neighbours. Prior algo-
rithms that were used to solve the MIM problem on subcubic graphs were rely-
ing on applying the fastest Maximum Independent Set algorithm [19] on the line
graph of G2 (L(G2)) to obtain a running time of O(1.3139n), using polynomial
space.

We present a faster exact algorithm to solve the MIM problem for subcu-
bic graphs in polynomial space and O(1.2335n) time; this paper supersedes the
technical report [12] by solving the MIM problem for subcubic graphs faster
than the previous O(1.2630n) and with a simpler algorithm. To achieve this, we
design a branch and bound algorithm in conjunction with the Measure and Con-
quer technique [4] and the bisection result of Monien and Preis (stated below);
though Monien and Preis also provided bounds for graphs of degree 4, the bisec-
tion width of that subcase is so large that the approach chosen here cannot be
adjusted to higher degrees in a competitive way.

If we allow for the use of exponential space to solve this problem, then the
general pathwidth bounds of Fomin and Høie [5] imply that the algorithm runs
in time O(rn) for every r > 31/6 and thus the problem can be solved in time
O(1.2010n); Kumar and Kumar [16, Theorems 2 and 4] provide their own way
to this and other results. Our algorithm will not match this exponential space
bound but provides with time O(1.2335n) the best polynomial space algorithm
so far.

The interested reader will find more information on exponential time algo-
rithms in the textbooks of Gaspers [7] and of Fomin and Kratsch [6]. Families
of graphs for which maximum induced matching problem is NP-hard has been
studied in great detail by the following references [1,3,9,10,13,14].

2 Definitions and Preliminaries

Now we proceed more formally to introduce the notations used in this paper.
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Definition 1. A subcubic graph is a graph where each vertex has at most three
neighbours. For any subcubic graph, we call a vertex W1-vertex if it has degree
three and all its neighbours have degree at least two. Otherwise, the vertex is
called W0-vertex.

For the naming of vertices in the present work, we use the following conventions:
vertices are usually denoted by a, b, c, d, e where a is of degree one, b of degree
two, c of degree three, d of degree two or three and e of degree zero to three.
Furthermore, subscripts and superscripts can be used to have more names.

Definition 2. Given a subcubic graph (V,E), we also denote by W1 (respec-
tively W0) the set of all the W1-vertices (respectively W0-vertices) in the graph.
We say that there is a meta-edge between two W1-vertices c1 and c2 if there
is a sequence (possibly empty) of W0-vertices d1, d2, . . . , dt such that the graph
has the edges (c1, d1), (dt, c2) and (di, di+1) for i with 1 ≤ i < t (in case t is 0,
then there is an edge between c1 and c2). The meta-edges between c1 and c2 are
denoted by [c1, c2], [c1, c2]′ and [c1, c2]′′ where the primed versions are only used
if there are several such meta-edges and one needs to distinguish them.

The (multi) graph of all W1-vertices and meta-edges between these vertices
is called the meta-graph associated to (V,E). Note that the meta-graph might
be a “multi-graph”, as there maybe multiple meta-edges between two vertices
in the meta-graph.

Sometimes, we also consider the meta-edge (as in above) as the sequence of
edges (c1, d1), (d1, d2), . . ., (dt, c2) and denote/write it as c1 − d1 − d2 . . . dt − c2.
We also sometimes say that the meta-edge [c1, c2] contains/consists of the edges
(c1, d1), (d1, d2), . . . , (dt, c2) or contains the vertices c1, d1, . . . , dt, c2.

If they exist, [c1, c2], [c1, c2]′ and [c1, c2]′′ have only the end vertices c1 and c2 in
common. We note that there are at most three meta-edges between c1, c2 and if
there are three, then c1 and c2 are the only W1-vertices in their component of
the graph.

If S is a subset of V then S defines an induced matching of G if and only if
every vertex in S has exactly one neighbour in S. For the ease of notations, we
also say that an edge is in S if and only if it is in E and both its endpoints are
in S. As the matching is induced, the endpoints of distinct edges in S are not
neighbours in (V,E), that is, not connected by an edge in E.

Note that given a graph G, we can find its W1-vertices and the meta-edges
between them in polynomial time; meta-edges are also called paths and, more
precisely, they are paths whose endpoints are W1-vertices and where no inner
node of the path is a W1-vertex. As we can easily detect a degree one neighbour
of a degree three W0-vertex, one can easily find all the meta-edges starting from
any W1-vertex (to some W1-vertex, including possibly itself). There are at most
three meta-edges between two W1-vertices and the latter happens if and only if
these W1-vertices are only connected to each other through meta-edges.

Furthermore, Monien and Preis showed the following.
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Theorem 3 (Monien and Preis [17]). For every ε > 0, there is a number kε

such that for all subcubic graphs with at least n ≥ kε vertices, a polynomial time
algorithm finds a partition of the graph into two halves, with each half having at
least n/2 − 1/2 vertices, such that there are at most (1/6 + ε) · n edges between
the two halves. This set of edges is called the “bisection” of the graph. For graphs
with less than kε vertices, the algorithm returns the optimal bisection by using
table look-up.

In our earlier technical report [12, Corollary 2], we used this fact to give the
corresponding algorithm for meta-graphs where they originally run the algo-
rithm for possible double-meta-edges between two W1-vertices to be considered
as single meta-edges and then adjust the result such that for each case of original
double-meta-edges between two W1-vertices they choose one of the neighbouring
single meta-edges to replace it. Thus one W1-vertex may be moved from one half
of the bisection into the other. The W1-vertex chosen to be moved is the one
which makes the partition more balanced, that is, which keeps the difference in
the number of W1-vertices between the two sides of the bisection bounded by
two. Thus by relaxing the permitted size difference to two instead of one (as in
the original result of Monien and Preis), one can get that the bisection of the
meta-graph does not have double-meta-edges.

The following proposition is straightforward.

Proposition 4 (Subset Principle). Suppose G = (V,E) is a graph whose
MIM we need to find and that we are considering two alternatives for MIM,

(a) An induced matching S union with MIM of induced subgraph from U ⊆ V ,
where (S ∪ N(S)) ∩ U = ∅ and

(b) An induced matching S′ union with MIM of induced subgraph from U ′ ⊆ V ,
where (S′ ∪ N(S′)) ∩ U ′ = ∅.

Suppose further that above U,U ′, S, S′ satisfy U ⊆ U ′ and |S| ≤ |S′|.
Then, one can ignore the alternative MIM computed by (a) above as it is

bounded in size by the MIM obtained in (b).

Note that we use the above subset principle to cut down on some alternative
expansions S, S′ of a given preliminary matching (with associated remaining
graph U,U ′ respectively).

Lemma 5. Suppose we are considering the MIM problem for a (sub) graph
(U,E(U)). Suppose Y ⊆ X ⊆ U such that there are no edges of the form (e, e′),
with e ∈ X − Y and e′ ∈ U − X. Suppose M is an MIM of U .

Suppose S ⊆ X such that each member of S has exactly one neighbour in S
in the graph (U,E(U)). Suppose that,

(i) (Y − M) ∩ S = ∅, and
(ii) |E(S)| − |E(M ∩ X)| ≥ number of vertices in M ∩ Y which have edges in

E(M) to vertices outside X.

Then S is a part of some MIM in (U,E(U)).
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Proof. Suppose M ′ be the set of vertices in M −X which have an edge in E(M)
to a vertex in X. Let S′ = M ′∪(M∩X). Note that |S| ≥ |S′|. Also, U−X−N(S)
is a superset of U−X−N(M∪X∪M ′). Lemma follows using the subset principle
(Proposition 4). 
�

Intuitively, in the above Lemma, think of Y as “boundary of X”, i.e., the only
vertices in Y which have edges to vertices outside X.

Definition 6 (Simplification Rule SR). Consider a graph (U,E) in which we
want to find an MIM S. Let e be a vertex with a neighbour d of degree at least
two such that all other neighbours of d are of degree one (there may be one or
two such neighbours, say a and perhaps a′). Then using the subset principle, it
can be assumed without loss of generality that d, a ∈ S. Thus we can remove the
vertices e, d, a, a′ from further consideration for finding remaining part of MIM.

The above situation is known in the literature. It is very similar to the pending
edge elimination of Xiao and Tan [20, Lemma 5] and implied by the Simplification
Rule S3 of our earlier technical report [12]. One can adjust the notions of Xiao
and Tan to cover this case fully by saying that d has pending edges if and only
if d has neighbours of degree 1 and furthermore all neighbours of d of degree
2 or more form a clique – note that a single neighbour of degree at least 2
forms always a clique of size 1. In this situation, we can assume by arguments
of Xiao and Tan [20, Lemma 5] that there is a maximum induced matching of
the graph which contains an edge between d and one of its degree 1 neighbours.
For completeness we give a proof below for soundness of the simplification rule.

Proposition 7. Simplification Rule SR is sound.

Proof. Suppose that S is an MIM. The case that e /∈ S is trivial. We now consider
the case that e is in S. Then either d must be in S or some other vertex adjacent
to e must be in S, along with e. Without loss of generality, we can assume that
{e, d} ⊆ S as the proof for either case is similar. Let U = V −S −N(S)−{a, a′},
since after the removal of S′ and N(S′) from V , the vertices a and a′ have 0
degree, and can thus be removed from consideration.

Now, consider S′ = S ∪ {d, a} − {e}. Let U ′ = V − S′ − N(S′) − {a′}, as the
vertex a′ becomes a 0 degree vertex after the removal of S and N(S), and can
thus be removed from consideration.

We have that U ⊆ U ′ and |S| ≤ |S′|, and thus from the Subset Principle
given earlier, we can assume without loss of generality that {d, a} is in MIM. 
�
Proposition 8. (a) If a subcubic graph (component) is acyclic, then an MIM
of the graph can be found in polynomial time in the number of vertices.

(b) If a subcubic graph consists only of W0-vertices, then an MIM of the graph
can be found in time polynomial in the number of vertices.

(c) If a subcubic graph consists of at most a constant κ number of W1-vertices,
then an MIM of the graph can be found in time polynomial in the number of
vertices (though it may be exponential in κ).
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Proof. These three items are consequences of the fact that a graph with at most
κ W1-vertices has path width at most (1/6 + ε)κ + O(1) for any ε > 0 and
therefore the MIM problem can be solved in polynomial time for fixed κ where
the usage of both the computation time and the space is exponential in κ [5,16].
For the sake of completeness, we give here the full proofs.

(a) Note that repeated use of Simplification Rule SR will leave the graph to be
having only disconnected edges. Thus, we can find an MIM in polynomial
time in the number of vertices.

(b) Without loss of generality assume that the graph is connected (otherwise
consider each component separately). If the graph is acyclic, then part (a)
gives us the result. If the graph has a cycle, then one can pick an edge (d, d′)
from it and branch the three cases that both d, d′ are in MIM, or d is not in
MIM or d′ is not in MIM (both d, d′ not being in MIM is covered by both
of the last two cases). This gives at most three cases and after that one can
use part (a) to solve the MIM problem in polynomial time for the graph.

(c) As the number of W1-vertices is bounded by a constant κ, we can consider for
each W1-vertex d one of its neighbours d′ and branch as in (b) for the cases
that both d, d′ are in MIM or d is not in MIM or d′ is not in MIM. This gives
a branching algorithm of complexity O(3κ) ·Poly(n). We assume that κ ≥ 2
in order to also handle the pathological case that there are two W1-vertices
connected by three meta-edges – κ ≥ 2 is sufficient as the graph component
containing these two W1-vertices is then isolated and does neither contain a
further W1-vertex nor a further meta-edge, see Definition 2.
This case-distinction completes the proof. 
�

Note that for any δ with 0 < δ < 1, one can find ε > 0 and corresponding κ
such that for all m ≥ κ, [m

2 − 1]/[m(1/6+ ε)] ≥ 3− δ. We will take δ to be small
enough value.

3 Overview of the Algorithm

Intuitively, we will be constructing a branching tree, where the root of the tree
represents the original graph G with n vertices whose MIM we need to find.
Nodes in the branching tree are of the form (G,U, S,B), where U is a subset
of the vertices of G (the node then represents finding an MIM for the induced
subgraph of G on the vertices U), S denotes a matching in G (not necessarily
maximum) such that the vertices in S and their neighbours in G do not belong
to U . B is a set of meta-edges between two partitions (initially obtained using
Monien Pries algorithm) which are remaining to process when we are in the
branching phase (more on this below). We implicitly assume that the two par-
titions associated with the bisection edges B are also kept (we omit mentioning
them explicitly for ease of notation).
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At a particular node (G,U, S,B) of the branching tree, the algorithm will first
do some simplification of the problem (using the Simplification Rule SR men-
tioned above), and then, if needed, do branching. The branching would only be in
the “branching phases”, where initially a bisection is obtained using the Monien
Preis method for bisecting and then the bisection meta-edges are removed one by
one for each branching as we go down the branching tree (some of the meta-edges
may get automatically removed due to the simplification rule).

It will always be the case that the MIM problem for the subgraph of G at
a node (G,U, S,B) of the branching tree can be solved in polynomial time (in
n) using the solutions of the MIM problem for the subgraphs at its children.
Furthermore, the children of the nodes in the branching tree can be obtained in
polynomial time (in n) from the subgraph represented by the node. Thus the
overall complexity of finding an MIM of the graph G is within a polynomial
factor of the number of leaves in the branching tree. Thus, we wish to bound the
number of leaves in the branching tree.

Let μ denote our measure of complexity for a graph/subgraph (see more
details in the next section). Then we let T (μ) denote the maximum number of
leaf nodes generated by the algorithm when we have μ as the parameter for the
input problem. Since the search tree is only generated by applying a branching
rule, it suffices to consider the number of leaf nodes generated by these rules (as
simplification rules take time only polynomial in n, the number of vertices in the
original graph). To do this, we employ techniques in [15]. Suppose a branching
rule has r ≥ 2 children, with t1, t2, . . . , tr reduction in the complexity measure for
these children (compared to the measure of the subgraph at the parent). Then,
any function T (μ) which satisfies T (μ) ≥ T (μ−t1)+T (μ−t2)+. . . T (μ−tr), with
appropriate base cases, would satisfy the bounds for the branching rule. To solve
the above linear recurrence, one can model this as x−t1 + x−t2 + . . . + x−tr = 1.
Let β be the root of this recurrence, where β ≥ 1. Then any T (μ) = (β′)μ, with
β′ ≥ β would satisfy the recurrence for this branching rule. In addition, we denote
the branching factor τ(t1, t2, . . . , tr) as β. Tuple (t1, t2, . . . , tr) is also known as
the branching vector [6]. If there are k branching rules, with branching factors
β1, . . . , βk, in the branch and bound algorithm, then the overall complexity of
the algorithm can be seen as the largest branching factor among all k branching
rules; i.e. z = max{β1, β2, . . . , βk}, and therefore the time complexity of the
algorithm is bounded above by O(zμ) · Poly(n).

4 Measure and Conquer Algorithm

Assign weight 0 to each of the vertices in W0, and weight 1 to each of the vertices
in W1. The measure μ for a graph is defined as the sum of the weights of all the
vertices in the graph. In other words, μ for a graph is the number of vertices in
W1. By definition, μ ≤ n. Therefore, any algorithm solving in time O(zμ) also
runs in time O(zn) since O(zμ) ⊆ O(zn), for any z > 1.

We now state the main result of this work. Note that the proof implies the
easier formula that the MIM of a subcubic graph with n vertices can be solved
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in O(1.2335n) time; the Poly(n) is absorbed by the uprounding of the branching
factors to 1.2335.

Theorem 9. The MIM problem of a subcubic graph with n vertices out of which
k are W1-vertices can be solved in O(1.2335k) · Poly(n) steps.

Here also the constant κ from above is absorbed as a constant into the O-
expression and κ is a constant independent of k. Next we give the algorithm.

Algorithm MIM(G,U, S,B)
Invariant: G = (V,E) is the original graph. S consists of a matching in G such

that in the original graph G, none of the vertices in S and none of their
neighbours are in U ⊆ V . Thus, if S is a part of some maximum induced
matching of G, then the union of S and any maximum induced matching of
(U,E(U)) will give a maximum induced matching of G.

B if non-empty, denotes that the algorithm is in a branching phase, where the
set of meta-edges in B bisects the W1-vertices of U into two (nearly equal)
parts. We will be branching and removing the meta-edges in the bisection B
one by one.

1. Simplify the graph by setting (G,U, S,B) = Simplify(G,U, S,B).
The procedure Simplify() is given below this algorithm.

2. If B = ∅ and (U,E(U)) is the disjoint union of nonempty graphs (U1, E1) and
(U2, E2) with no edge between U1 and U2 in (V,E) then solve both sub-
graphs independently by using MIM(G,U1, S, ∅) and MIM(G,U2, S, ∅)
and return the union of the two matchings as the answer.

3. If B = ∅ and the induced subgraph over U has at most κ number of W1-
vertices, then compute an MIM S1 for the induced subgraph over U and
return S ∪ S1.

4. If B = ∅ and (U,E(U)) has more than κ W1-vertices, then do a bisection
based on the Monien Preis algorithm obtaining a bisection meta-edge set
B′ and return MIM(G,U, S,B′). This starts a branching phase.

5. If B �= ∅ (we are in a branching phase), then pick one meta-edge [c1, c2] in
B where c1, c2 denote its endpoints.

5.1. Suppose the bisection partitions are P1 and P2. If the component in U
connected to [c1, c2] on one side, say P1 without loss of generality,
consists of at most two W1-vertices, then:

Transfer this component in P1 connected to [c1, c2] to P2. This
move causes some meta-edges B′ ⊆ B to be from P2 to P2.
Then return (G,U, S,B − B′) (i.e., the meta-edges in B′ are
removed). Note that this gives only one child in the branching
tree. Note that at least one meta-edge [c1, c2] was deleted.

5.2. If the meta-edge [c1, c2] contains a W0-vertex with degree three, then
pick one such vertex c, and let a be its neighbouring vertex of degree
one. Then branch based on whether c will be in the MIM or not:

– MIM(G,U − {c, a}, S,B − {[c1, c2]}) and
– MIM(G,U − {c, a} − N(c), S ∪ {c, a}, B − {[c1, c2]}).
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The algorithm then returns the better answer among these two bran-
ches.
Note that, if in the second item above one considers that the neigh-
bour of c used in the matching is not a but some other neighbour d of
c, then not only c and N(c) but also all N(d) have to be removed from
U , and while N(a) = {c}, N({c, d}) is a proper superset of N({c, a}).
Thus by the subset principle only the two branchings above need
to be considered and the above two branches are exhaustive for the
current case in which the meta-edge [c1, c2] contains a W0-vertex of
degree three.
Note that the simplification process (step 2) in the two children will
then remove all the vertices in the meta-edge (and maybe more),
and thus the meta-edge is deleted; similar comment applies for each
of the cases below.

5.3. If the meta-edge [c1, c2] contains no W0-vertices with degree three, then
all the W0-vertices in the meta-edge are of degree two. Suppose the
meta-edge is c1-b1-b2-. . .-bt-c2 where c1, c2 are the two bordering
W1-vertices and all vertices b1, . . . , bt have degree 2. For the ease of
notation, we use b0, bt+1 as aliases for c1, c2 in formulas for S0, S1, S2,
in 5.3.3 below, though these vertices do not have degree 2.

5.3.1 If t = 0, then branch based on whether both c1, c2 are in the MIM, or
c1 is not in the MIM or c2 is not in the MIM (there is some overlap,
when both c1 and c2 are not in the MIM but this is ok, as we are
taking the best of the cases).
That is consider three children,

– MIM(G,U − {c1, c2} − N(c1) − N(c2), S ∪ {c1, c2}, B −
{[c1, c2]}),

– MIM(G,U − {c1}, S, B − {[c1, c2]}),
– MIM(G,U − {c2}, S, B − {[c1, c2]})
and return the best of the three answers.

5.3.2 If t = 1, then branch based on whether (c1, b1) is an edge in the MIM,
or (b1, c2) is an edge in the MIM, or b1 is not in the MIM.
That is, consider three children:

– MIM(G,U−{c1, b1}−N(c1)−N(b1), S∪{c1, b1}, B−{[c1, c2]}),
– MIM(G,U−{b1, c2}−N(b1)−N(c2), S∪{b1, c2}, B−{[c1, c2]}),
– MIM(G,U − {b1}, S,B − {[c1, c2]}),
and return the best of the three answers.

5.3.3 If t ≥ 2, for � ∈ {0, 1, 2}, let S� = {b3h+�, b3h+�+1 : h ≥ 0 and 3h + � ≤
t}, where we take b0 = c1 and bt+1 = c2. Branch based on putting
S0 or S1 or S2 in S, and appropriately removing the corresponding
vertices and their neighbours.
That is, for � ∈ {0, 1, 2}, let
U� =

⋃{{b3h+�, b3h+�+1} ∪ N(b3h+�) ∪ N(b3h+�+1) : 3h + � ≤ t, � ∈
{0, 1, 2}, h ≥ 0}
and consider the three children:
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MIM(G,U − U�, S ∪ S�, B − {[c1, c2]}) for � ∈ {0, 1, 2}.
The algorithm then returns the best answer among these three bran-
ches.

End Algorithm MIM

Function Simplify(G,U, S,B).
While at least one of the following three if-conditions applies to the graph
(U,E(U)) do the following three steps.

1. If there is a W0-vertex c1 in U such that (a) c1 was a W1-vertex before the
previous step of the algorithm and was part of a meta-edge in B, and
(b) there is a meta-edge [c2, c3] in U which has c1 as a vertex in it, and
c2, c3 are in different partitions of the bisection B. Then, place [c2, c3] in
B. Intuitively, above replaces an old meta-edge in B, if c2, c3 above are in
the different partitions of the bisection.

2. If there is a meta-edge [c1, c2] in B such that some of the vertices on this
meta-edge are not in U then remove this meta-edge from B.

3. If there is a vertex d of degree at least two which has a neighbour e of
arbitrary degree and all other neighbours of d (say a and perhaps a′) have
degree 1 in U then update S = S ∪ {a, d} and U = U − {d, e, a, a′}. (Here
a′ = a in the case that the degree of d is 2.)

End While
Return the updated (G,U, S,B).

End Function Simplify

5 Verification of the Properties of the Algorithm

Now we consider the analysis of the algorithm. We shall prove that the cases
are exhaustive, show that the algorithm preserves the optimality of the solution,
the correctness of the algorithm and, finally, establish the overall runtime of the
algorithm.

Proposition 10. The case-distinction of the algorithm is exhaustive.

Proof. In Step 1 of the algorithm, we do some cleaning via the simplify algorithm.
The aim is to (i) update the meta-edges in case some of the vertices in previous
step have been converted from degree 3 to degree 2 vertices or some of the
meta-edges no longer exist (see steps 1 and 2 of procedure Simplify), and (ii)
handle the case when there is a vertex d of degree at least two with exactly one
neighbour e of degree 2 or more (in which case we can without loss of generality,
using the Simplification Rule SR, assume that the MIM has the edge from d to
one of the other neighbours of d).

In Step 2, we deal with disconnected components of the graph. Hence, after
this line, we can assume that our graph is a connected graph.

In Step 3, if there are at most κ number of W1-vertices, then we solve the
problem directly. After which, we can assume that any given instance has more
than κ number of W1-vertices.
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In Step 4, we apply the Monien Preis algorithm to obtain a bisection of
meta-edges B and begin the branching phase.

In Step 5, we deal with the different cases of branching based on a selected
meta-edge. Step 5.1 deals with the case that some component in one the parti-
tions P1 and P2 has no more than three W1-vertices. If the selected meta-edge
contains a degree three W0-vertex, then this case is handled by Step 5.2. Other-
wise, the case is handled by Step 5.3, where we consider the cases of the number
t + 1 of edges in the meta-edge being t = 0 (Step 5.3.1), t = 1 (Step 5.3.2) and
t ≥ 2 (Step 5.3.3).

Therefore, we have covered all cases. 
�
Next, we show that algorithm preserves the optimality of the solution.

Proposition 11. The algorithm generates a maximum induced matching.

Proof. Note that the Simplification Rule SR clearly preserves optimality of the
solution. Step 2 clearly preserves optimality as it works on different components
of the graph separately. Step 3 explicitly computes optimal answer. Step 4 and
Step 5.1 preserve optimality as the subgraph does not change. Step 5.2 preserves
optimality as if c is in an MIM, then by the subset principle we can assume that
(c, a) is in the MIM. Step 5.3.1 preserves optimality as we consider all possible
cases of c1, c2 being in the MIM, where if both c1, c2 are in the MIM, then it must
be via edge (c1, c2) being in the matching. Step 5.3.2 preserves optimality as we
have considered all possible cases for (c1, b1) and (b1, c2) being in the matching.
Now we consider Step 5.3.3.

The edges in the meta-edge [c1, c2] are (c1, b1), (b1, b2), . . . , (bt, c2). Consider
some MIM M of the subgraph U . For the case analysis below, we will use
Lemma 5 with X = {c1, b1, . . . , bt, c2}, and Y = {c1, c2} (except for case 3.1.2
where X,Y are explicitly defined differently), to claim that one of S1, S2, S3 is
contained in some MIM for U , and thus optimality is preserved in step 5.3.3.

We now consider the following cases.
Case 1: Both c1 and c2 are not in M .
Case 1.1: t+1 = 3h. In this case by Lemma 5, there is an MIM of U containing

S1 as E(S1) gives maximum number of edges from [c1, c2] without using c1, c2.
Case 1.2: t + 1 = 3h + 1. In this case E(M) can have at most h edges from

[c1, c2], and both E(S1) and E(S2) achieve this without using either of c1, c2.
Thus, by Lemma 5, there is an MIM of U containing S1 or S2.

Case 1.3: If t+1 = 3h+2, then E(M) has at most h edges from [c1, c2]. E(S2)
achieves h edges from [c1, c2] without using either of c1, c2. Thus, by Lemma 5,
there is an MIM of U containing S2.

Case 2: Only one of c1, c2 is in M . Assume without loss of generality that c1
is in M . Then, (b1, b2) and (bt, c2) are not in E(M).

Case 2.1.1: t + 1 = 3h for some h and (c1, b1) ∈ E(M). Now, E(S0) achieves
maximum number of edges in [c1, c2] without using c2. Thus, by Lemma 5, there
is an MIM of U containing S2.

Case 2.1.2: t+1 = 3h for some h and E(M) does not contain (c1, b1). In this
case E(M) can have at most h − 1 edges from [c1, c2]. Now, E(S1) has h edges
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from [c1, c2] and does not contain c2. Thus, by Lemma 5, there is an MIM of U
containing S1 (as the edge in M from c1 can be dropped due to extra edge in
E(S1)).

Case 2.2: t + 1 = 3h + 1, for some h. In this case E(M) can have at most h
edges from [c1, c2]. E(S2) has h edges, and S2 does not contain c1, c2, b1. Thus,
there is an MIM of U containing S2 as we can replace the edges of E(M) having
at least one end point in b1, . . . , bt by edges of E(S2).

Case 2.3.1: t+1 = 3h+2 for some h and (c1, b1) ∈ E(M). In this case E(S0)
has at least the same number of edges from [c1, c2] as E(M) has from [c1, c2].
Also, S0 does not contain c2. By Lemma 5, there is an MIM of U containing S0.

Case 2.3.2: t+1 = 3h+2 for some h and (c1, b1) �∈ E(M). In this case E(M)
can have at most h of the edges from [c1, c2]. E(S2) has h edges from [c1, c2] and
S2 does not contain c1, c2, b1, bt. Thus, there is an MIM of U containing S2 as
we can replace the edges of E(M) having at least one endpoint in b1, . . . , bt by
edges of E(S2).

Case 3: Both c1, c2 are in M .
In this case (b1, b2) and (bt−1, bt) are not in E(M).
Case 3.1.1: t + 1 = 3h for some h and (c1, b1) is in E(M). In this case E(S0)

contains at least the same number of edges from [c1, c2] as E(M), and c2, bt �∈ S0.
By Lemma 5, there is an MIM of U containing S0.

Case 3.1.2: t + 1 = 3h and (c1, b1) is not in E(M). In this case if M has
h edges from [c1, c2], then it could be only be by M containing S2. Otherwise,
E(M) has at most h − 1 edges from [c1, c2]. E(S2) has h edges from [c1, c2] and
it does not contain c1, b1. Thus, using Lemma 5 with X = {b1, b2, . . . , bt, c2} and
Y = {b1, c2}, we have that there is an MIM containing S2.

Case 3.2.1: t+1 = 3h+1 for some h and E(M) has at least one of (c1, b1) or
(bt, c2). In case E(M) has h+1 edges from [c1, c2], then S0 is contained in E(M).
In case E(M) has at most h edges from [c1, c2], then as E(S0) has h + 1 edges
and S0 contains both c1, c2, by Lemma 5, we have that some MIM contains S0.

Case 3.2.2: t + 1 = 3h + 1 for some h and E(M) does not contain any of
(c1, b1) or (bt, c2). In this case E(M) has at most h − 1 edges from [c1, c2]. As
E(S0) has h + 1 edges, using Lemma 5, we have that some MIM contains S0.

Case 3.3.1: t + 1 = 3h + 2 for some h and E(M) has at most h edges from
[c1, c2]. Then, E(S2) has h edges from [c1, c2] and S2 does not contain c1, c2, b1, bt.
Thus, there is an MIM of U containing S2 as we can replace the edges of E(M)
having at least one endpoint in b1, . . . , bt by edges of E(S2).

Case 3.3.2: t + 1 = 3h + 2 for some h and E(M) has h + 1 edges from
[c1, c2]. Then, E(M) must contain at least one of (c1, b1) or (bt, c2). In these
cases, consider E(S0) and E(S1) respectively, which both contain h + 1 edges
from [c1, c2] and do not contain c2 and c1 respectively. Thus, using Lemma 5,
we have that some MIM contains S0 or S1 respectively in this case.

Thus, step 5.3.3 preserves optimality. 
�
Note that it follows from Propositions 10 and 11 that the algorithm is correct.

Proposition 12. The running time of the algorithm is O(1.2335k) · Poly(n).
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Proof. Note that the general idea of the algorithm works by repeatedly applying
the Monien Preis algorithm to get a bisection and we branch on the meta-edges
until the component has small enough number of W1-vertices for us to apply
Step 3 directly. Recall that the leaves of the branching tree are small enough
sub-graphs of the graph G. We bound the overall runtime of the algorithm by
bounding the number of leaves in the branching tree. For this, we bound the
number of leaves R(μ, e), of the branching tree whose associated subgraph has a
fixed vertex e of the graph G (here μ denotes the complexity measure, number
of W1-vertices in the graph). Thus,

∑
e∈V R(μ, e) will bound the total number

of leaves. As mentioned earlier, the complexity of the algorithm is bounded by
Poly(n) times the number of leaves in the branching tree. As the number of
vertices in V can be absorbed in Poly(n), it is thus sufficient to bound R(μ, e),
for each vertex e.

Now we explain the details. As mentioned above, branching happens only in
phases, where initially using the Monien Preis method, the graph is partitioned
in two parts (nearly equal), where the number of bisection edges is at most
m(1/6+ε), where m is the number of W1-vertices in the corresponding subgraph.

For bounding R(μ, e), for arbitrary vertex e, we will consider only those
branches of the computation tree whose subgraph contains e. In particular, if
there are two disjoint components of the graph, only one will produce a sub-
computation tree which contributes to R(μ, e). This can be used to calculate the
branching factor of rules removing a bisection meta-edge. Only one side of the
bisection will eventually contain e and therefore all W1-vertices on the other side
of the bisection can be counted as removed; these vertices will be counted in an
amortised way per cutting of an meta-edge in the bisection.

Thus, in the analysis below, we only need to worry about the W1-vertices
from the partition corresponding to the vertex e as above (plus some of the W1-
vertices which were moved over from the other partion due to step 5.1 above).
As there are at most m(1/6 + ε) number of bisection edges and each partition
consists initially of at least m/2−1 number of W1-vertices, we can allocate credit
of (m/2−1)/(m(1/6+ε)) ≥ 3−δ for each deletion of bisection meta-edge, i.e., for
each of the branching steps in step 5 of the algorithm. We call this AuxCredit in
the analysis below. Note that this also means that for the other reductions in the
number of W1-vertices, we should consider only reductions due to W1-vertices
in the same partition side as e, since the reductions due to other partition has
already been taken into account due to AuxCredit, and thus cannot be counted
twice.

Now our aim is to inductively bound R(s, e), the number of leaves of the
subtree starting with s W1-vertices which contain the vertex e among others.

We will show that R(s, e) ≤ ps, where p = 1.2335 is the above chosen strict
upper bound of all the “branching factors” that are obtained in the cases below.
Here the choice of 1.2335 as the upper bound follows the conventions, as usually
only the first four digits after the decimal dot are considered, but any other
upper bound would also do.
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Suppose that at any node (with s W1-vertices in the subgraph associated
with it) in the branching tree we have reduction in number of W1-vertices for
its r children respectively as α1, α2, . . . , αr (where each αi is positive) after the
simplification process (step 1) in that child; we do this “after the simplification”
for ease of our calculations. Note that this is fine as the simplification process
does not do any branching. Note also that for bounding the value R(s, e) when
computing the reductions in α1, α2, . . ., we need to consider only the reduction
from “the same part in the bisection partition to which vertex e belongs”, as
we have already considered the vertices from the other side in AuxCredit; the
subtrees produced by other branches will be counted in other terms R(n, e′).

Let γ > 1 be such that

γs =
∑

i:1≤i≤r

γs−αi

where this γ is represented as τ(α1, α2, . . . , αr). Then, using any β ≥ γ would
give a valid bound for R(s, e) with respect to “this branching” in the branching
tree.

Now, step 5.1 above has only one branch and is therefore a reduction rule.
This will only take polynomial time in n.

In step 5.2, the reduction on each side of the partition reduces at least one
W1-vertex after the simplification process (the W1-vertices at the end of the
meta-edge [c1, c2]) and thus the reduction in the number of W1-vertices is at
least 4 − δ (taking into account AuxCredit mentioned above) on each side, for
each of the two cases. Thus, the branching factor is at least τ(4 − δ, 4 − δ).

In step 5.3, first note that following:
If the vertex c1 (respectively c2) is removed from the children subgraph, then

either it causes another bisection edge to be deleted, or it causes at least 2 other
W1-vertices to be removed or become W0-vertices in the same partition side as
c1 (respectively c2) after the simplification process in the child nodes. To see
this, consider the following exhaustive cases. If the two meta-edges (different
from [c1, c2]) originating from c1 both lead to a W1-vertex c, then there must be
a meta-edge from c to another W1-vertex c′. After simplification process, as c1 is
removed, c is also removed and c′ either gets removed or becomes a W0-vertex.
If the two meta-edges (different from [c1, c2]) originating from c1 lead to two
different W1-vertices c and c′, then after simplification process both c and c′

either get removed or become W0-vertices. The only remaining case is when the
meta-edge from c1 leads to itself, which is already considered in step 5.1. Thus,
in each of the above possibilities, when c1 (respectively c2) gets removed from
child subgraph, we get at least two additional decrease of W1-vertices on the
same side of the partition or a further reduction 3 − δ due to AuxCredit for the
additional deletion of bisection edge (in addition to c1 being removed). Thus,
besides the deletion of the bisection edge from c1, there is at least an additional
reduction of three W1-vertices in this case.

Now we consider each of the substeps in step 5.3.
In step 5.3.1, clearly, c1 (respectively c2) is removed from at least 2 of the

three children nodes. Thus, the branching factor is at least τ(4 − δ, 6 − δ, 6 −
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δ). Here 3 − δ in each child is due to AuxCredit for the bisection edge to c1
(respectively c2), 1 in each child is due to c1, c2 becoming W0-vertices or being
removed from children, furthermore 2 in at least two of the children is due to
two additional W1-vertices being removed or becoming W0-vertices as mentioned
above or additional 3 − δ AuxCredit due to another additional bisection edge
being deleted.

In step 5.3.2, similarly, c1 (respectively c2) is removed in at least two of
the children as both are neighbours of b1. Thus, branching factor is at least
τ(4 − δ, 6 − δ, 6 − δ) as in the case of step 5.3.1.

In step 5.3.3, note that c1 is removed from at least two of the children sub-
graph as c1 is a neighbour of b1 which is in S0 and S1. Similarly for c2 (though
which of S0, S1, S2 is used depends on t mod 3). Thus, branching factor is at
least τ(4 − δ, 6 − δ, 6 − δ) as in the case of step 5.3.1.

Now τ(4, 4) < 1.1893 and τ(4, 6, 6) < 1.2335. Thus, as the worst branching
factor is strictly below p = 1.2335, the value δ can be chosen to be small enough
due to the gap above in the inequality (δ = 10−6 works). 
�

6 Conclusion

The present work investigates the complexity of the MIM problem on subcubic
graphs. For graphs of degree at most four, the best known polynomial space
algorithm has the same bound as the overall best polynomial space algorithm
using time O(1.4231n) [20] and any improvement to the special case of degree
4 would result in an improvement of the algorithms for the general problem
as well. However, the case of graphs with maximum degree 3 has in general
only been solved by invoking the maximum independent set of line graphs, a
method which gives a O(1.3139n) time and polynomial space algorithm. The
current work gives an improved use of the bisection method of Monien and Preis
and obtains a polynomial space algorithm running in time O(1.2335n). Here, by
adding a polynomial multiplicative factor Poly(n), 1.2335n can be replaced by
1.2335k, where k is the number of those degree three vertices in the graph whose
neighbours all have at least degree two.
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Abstract. We consider the problems of maintaining exact minimum
cuts and ρ-approximate cuts in dynamic graphs under the vertex-arrival
model. We investigate the trade-off between the stability of a solution—
the minimum number of vertex flips required to transform an induced
bipartition into another when a new vertex arrives—and its quality. Triv-
ially, in a graph with n vertices any cut can be maintained with n/2 ver-
tex flips upon a vertex arrival. For the two problems, in general graphs
as well as in planar graphs, we obtain that this trivial stability bound
is tight up to constant factors, even for a clairvoyant algorithm—one
that knows the entire vertex-arrival sequence in advance. When ρ is
relaxed more than certain thresholds, we show that there are simple and
stable algorithms for maintaining a ρ-approximate cut in both general
and planar graphs. In view of the negative results, we also investigate
the quality-stability trade-off in the amortized sense. For maintaining
exact minimum cuts, we show that the trivial O(n) amortized stability
bound is also tight up to constant factors. However, for maintaining a
ρ-approximate cut, we show a lower bound of Ω( n

ρ2 ) average vertex flips,

and give a (clairvoyant) algorithm with amortized stability O
(

n log n
ρ log ρ

)
.

Keywords: Dynamic Minimum Cut · Stability · Approximation

1 Introduction

Given an undirected graph G = (V,E), a cut (S, S) is a partition of V into two
non-empty sets S and S. The size or value of the cut, denoted by w(S, S), is
the total number of edges connecting a node in S with a node in S. A minimum
cut, or min-cut, is a cut with the smallest size. Finding such a cut is a classic
combinatorial optimization problem and has numerous practical and theoretical
applications [1]. Throughout, we call this problem Minimum Cut. For a positive
integer k, graph G is said to be k-edge connected if every cut in G has size at
least k. Let λ(G) denote the value of a min-cut in G. For a parameter ρ ≥ 1, a
ρ-approximate cut (X,X) is a cut with value at most ρλ(G); that is, w(X,X) ≤
ρλ(G).
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We consider the problem of maintaining an exact or approximate min-cut in
the vertex-arrival model, where the graph G is subject to changes over time due
to new vertices being inserted into G. Starting with the empty graph G0, new
vertices arrive one by one together with all their incident edges to previously
arrived vertices, thus producing a sequence of graph instances (G0, G1, . . . , Gn)
with n the number of vertices in Gn. We further assume that each graph in the
sequence is connected. Traditionally, maintaining near-optimal solutions is the
main objective in a dynamic setting. In practice, however, it may also be costly
to implement the necessary changes to go from a valid solution at time i to a
valid solution at time i + 1. As a result, we are also interested in the stability
of the maintained solutions or how different consecutive solutions are from each
other. Following the framework by De Berg et al.[2], we say that a dynamic
algorithm is a γ-stable ρ-approximation algorithm if, upon each vertex arrival,
at most γ changes are required to transform the currently maintained solution
into a solution in the augmented graph, and each solution is a ρ-approximation.

To define the difference between consecutive solutions in dynamic graph cuts
we use the notion of vertex flips. Let (X,X) be a cut in a graph G, a vertex
flip is the operation of a vertex v switching sides from X to X (or vice versa).
Consider two consecutive graphs Gi = (V,E) and Gi+1 = (V ∪ {v}, E′), and let
Si = (X,X) and Si+1 = (Y ∪ {v}, Y \ {v}) be cuts in Gi and Gi+1, respectively.
We say that the difference between Si and Si+1 is the minimum number of vertex
flips required to transform one cut into the other, and denote it by D(Si, Si+1) =
min(δ(Si, Si+1), |V | − δ(Si, Si+1)), where δ(Si, Si+1) = |X ∪ Y | − |X ∩ Y | is
the cardinality of the symmetric difference X�Y . (Equivalently, we may write
D(Si, Si+1) = min(|X�Y |, |X�Y |).) We remark that the newly arrived vertex
v has no contribution to the calculation.

Related Work. In general, the challenge to maintain a (high-quality) solution to
a dynamic problem while aiming to minimize changes to the solution, is known
as optimization with bounded recourse. Here, the phrase “recourse” refers to
the changes one is allowed to make to a solution. For various problems, results
are known; we mention Gupta et al. [9] and Bernstein et al. [4] for work on
maintaining matchings and flows, Imase and Waxman [13], Megow et al.[14] and
Gu et al.[8] for work on maintaining (Steiner) trees and Hamiltonian cycles,
and Feldkord et al.[5] and Han and Makino [10] for work on bin packing and
knapsack. In many cases, the computational time spent in an iteration (the
update time) is a relevant aspect of these works; in particular, for the min-cut
problem results along these lines can be found in [6,7,12,15,16]. There is also
work that focuses on the “difference” between two consecutive solutions, while
not taking explicitly computational time into account; we mention Wasim and
King [17] for work on Max-Cut, and De Berg et al. [3] for work on independent
and dominating set. We follow this latter line of work, i.e., given the definition
of difference between two min-cuts as formulated above, we establish trade-offs
between the stability of a solution and its quality.
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Our Results. We study stable approximation algorithms for Minimum Cut in
the vertex-arrival model. More precisely, we obtain lower and upper bounds on
the stability of dynamic min-cuts on general graphs as well as planar graphs.
The results are summarized in Table 1.

Table 1. Summary of results on γ-stability for Minimum Cut.

Graph class Exact ρ-Approximation

Lower bound Upper bound Lower bound Upper bound

General
n−1
2

n−1
2

n−2
2

(for ρ < n−2
2

− 2) n−1
2

(for ρ < n−2
2

− 2)

0 (for ρ > n−1
2

) 2 (for ρ > n−1
2

)

Planar
n−1
2

n−1
2

n−2
2

(for ρ < 5) n−1
2

(for ρ < 5)

0 (for ρ ≥ 5) 2 (for ρ ≥ 5)

General (amortized)
n
16

n−1
4

Ω(n/ρ2) O
(

n log n
ρ log ρ

)

For general graphs, we show that an algorithm maintaining an exact mini-
mum cut may need n−1

2 vertex flips in each iteration. This result is tight (as one
can always change from one cut to another one using at most n−1

2 vertex flips),
and applies to both the oblivious setting—when the algorithm has no knowledge
of the vertex-arrival sequence other than the previously arrived elements—and
the clairvoyant setting—when the algorithm is allowed to see the entire sequence
of vertex arrivals in advance. Similar results apply to the special case of planar
graphs. In contrast, the problem becomes trivial in trees (where starting from a
tree consisting of a single edge, we can always keep the partition of the vertex set
induced by that edge as the cut) and in complete graphs (where we can always
keep the same vertex as one of the parts of the cut). For general graphs in the
amortized case, we show that in order to maintain an exact minimum cut, Θ(n)
vertex flips are needed.

We now turn to the case of maintaining a ρ-approximate cut. For general
graphs, we show that similar to the exact case, an algorithm may need n−2

2
vertex flips in each iteration, but only when ρ < n−2

2 − 2. In contrast, when
ρ > n−1

2 , we show that two vertex flips per iteration suffices to maintain a ρ-
approximate cut. Both results are tight up to constant terms. Similar results
apply for planar graphs when ρ < 5 and ρ ≥ 5, respectively. Finally, for general
graphs in the amortized case, we show that to maintain a ρ-approximate cut
at least Ω(n/ρ2) vertex flips are needed. We accompany this result by giving a
clairvoyant algorithm with amortized stability O

(
n log n
ρ log ρ

)
.

Roadmap. Like Table 1, the presentation of the results is split into two parts.
First, in Sect. 2, we present the results about maintaining exact minimum cuts.
Then, in Sect. 3, we discuss the results on maintaining ρ-approximate cuts. We
conclude with some general remarks in Sect. 4.
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2 Maintaining Exact Minimum Cuts

We start with the oblivious setting, in which an algorithm has no knowledge of
the input sequence, other than the previously arrived vertices. We use deg(v) to
denote the degree of a vertex v.

Theorem 1. There is no exact γ-stable algorithm for Minimum Cut in general
graphs of size n ≥ 9 such that γ <

⌊
n−1
2

⌋
.

Proof. For every n ≥ 9, we present a sequence of graph instances (G1, . . . , Gn)
(see Fig. 1) for which an exact stable algorithm requires at least

⌊
n−1
2

⌋
vertex

flips to maintain an exact minimum cut. Let Gn−1 be the graph consisting of
two cliques A and B, where |A| =

⌈
n−1
2

⌉
and |B| =

⌊
n−1
2

⌋
, connected to each

other by means of two edges (a1, b1) and (a2, b2) for arbitrary a1, a2 ∈ A and
b1, b2 ∈ B. The graph Gn has one more vertex u, which is connected by a single
edge to an arbitrary vertex in clique A.

Note that for n − 1 ≥ 8 the cliques A and B have at least four vertices,
and so the only minimum cut for Gn−1 is (A,B) which has value 2. When the
vertex u arrives, ({u}, A ∪ B) is the unique minimum cut. Hence, any algorithm
maintaining a minimum cut must move all

⌊
n−1
2

⌋
vertices of B into the part of

the cut containing A. �	

Fig. 1. Graph Gn for the proof of the lower bound in Theorem 1. Cliques A and B
(gray) are connected by means of two edges between arbitrary vertices. Vertex u (black)
is connected to an arbitrary vertex in clique A. After its arrival, any algorithm must
perform n−1

2
vertex flips to maintain an exact minimum cut.

At first glance, it might appear that an algorithm that can react to an
incoming update only with past information is too restrictive when trying to
obtain a good quality-stability trade-off. However, even in a setting where the
algorithm has access to the entire vertex-arrival sequence in advance—what we
call, the clairvoyant setting—Theorem 1 still holds. Simply observe that, in
the proof of Theorem 1, the algorithm must find solutions Sn−1 = (A,B) and
Sn = ({u}, A ∪ B) at timesteps n − 1 and n respectively since these are the only
available min-cuts in Gn−1 and Gn, respectively.

Corollary 1. There is no clairvoyant exact γ-stable algorithm for Minimum
Cut in general graphs of size n ≥ 9 such that γ <

⌊
n−1
2

⌋
.
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In search of better quality-stability trade-offs, we turn our attention to planar
graphs. But like the general case, we obtain that Ω(n) vertex flips may be needed.
This is tight with respect to the trivial upper bound of n−1

2 vertex flips.

Corollary 2. There is no exact γ-stable algorithm for Minimum Cut in planar
graphs such that γ <

⌊
n−1
2

⌋
, even in the clairvoyant setting.

Proof. Similar to the proof of Theorem 1, but replacing the cliques A and B by
two planar graphs of connectivity at least 3 (e.g., each a maximal planar graph
on n−1

2 vertices). �	

Amortized Analysis. We saw in Theorem 1 that there are vertex arrival
sequences where at least one iteration requires n−1

2 vertex flips to maintain an
exact min-cut. It is natural to ask whether this behavior is only limited to a
handful of iterations. If true, we could design an algorithm that, on average,
requires only a few vertex flips per iteration. However, as the following shows,
the average stability of maintaining an exact min-cut is not much better than
the worst case: there exists a sequence of vertex arrivals such that each arrival
induces Ω(n) many vertex flips.

Theorem 2. There is no stable and exact algorithm for Minimum Cut in gen-
eral graphs with amortized stability γ < n

16 − 2.

Proof. For every n ≥ 32, we present a sequence of graph instances (G1, . . . , Gn)
for which an exact stable algorithm requires at least n

16 −2 vertex flips on average
(hence Ω(n2) flips in total) to maintain an exact minimum cut. The graph Gn

consists of three cliques A, B, and C of equal size n+5
4 , connected to each other

by the edges (a1, b1), (a2, c1), and (b2, c2), for arbitrary a1, a2 ∈ A, b1, b2 ∈ B,
and c1, c2 ∈ C. Additionally, there is one more edge (a3, c3) for arbitrary a3 ∈ A
and c3 ∈ C, and two more edges (b3, c4), (b4, c5) for arbitrary b3, b4 ∈ B and
c4, c5 ∈ C. Graph Gn has n−15

4 additional vertices, denoted by set D, each of
which shares an edge with every vertex in clique C. Moreover, D is partitioned
into two disjoint sets D1 and D2 of equal size |D|/2, where each vertex in D1

(resp. D2) is connected to exactly two arbitrary vertices in clique A (resp. B).
There are no more edges in Gn. See Fig. 2 for an illustration.

Consider the vertex arrival sequence σ = (v1, v2, . . . , vn) where the vertices
in A ∪ B ∪ C all arrive in the prefix subsequence σ1 = (v1, v2, . . . , v�), with 	 =
3(n+5)

4 , and vertices in D arrive according to subsequence σ2 = (v�+1, . . . , vn).
Let σ2 be a permutation of vertices in D such that v�+i ∈ D1 if i is odd,
and v�+i ∈ D2 if i is even. We prove the main claim by showing that each
vertex arrival in σ2 induces n+5

4 vertex flips. The idea is to have the minimum
cut oscillate between cuts (A,A) and (B,B) as vertices in D1 and D2 arrive
alternately.
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A B

C
v +1

vn−1

v +2

vn

. .
.

..
.

... ...

. . .

...
Fig. 2. Graph Gn for the proof of the lower bound in Theorem 2. Cliques A, B, and
C are highlighted in gray. The vertices in set D are highlighted in black. Of these
vertices, those to the left (resp. right) of clique C belong to the set D1 (resp. D2). The
alternated arrival of vertices from D1 and D2 induce Ω(n) vertex flips per iteration.

First, we notice that after the 	-th vertex has arrived, cuts (A,A), (B,B)
and (C,C) have values 3, 4 and 5, respectively. Any other cut in the subgraph
G[A∪B∪C] must cross a clique and thus have value at least n+1

4 . Thus, the min-
cut at timestep 	 is S� = (A,A). Next, after vertex v�+1 ∈ D1 arrives, the value
of cuts (A,A) and (C,C) increase by 2 and n+5

4 units, respectively; while the
value of cut (B,B) remains unchanged. Therefore, the min-cut at timestep 	+1
becomes S�+1 = (B,B). Similarly, after vertex v�+2 ∈ D2 arrives, the value of
cut (B,B) increases by 2 units while cut (A,A) remains unchanged, thus making
S�+2 = (A,A) the min-cut again; and so on for the remaining vertex arrivals in
σ2. The key observations are (i) that the min-cut at every timestep i is unique
and has value less than n+5

4 −1, and (ii) |w(A,A)−w(B,B)| = 1 is an invariant
throughout the arrival sequence σ2. From observation (ii), it follows that every
vertex arrival in σ2 increases the connectivity of the graph in a single unit. Now,
by definition of Gn, we know that δA,B = D((A,A), (B,B)) = n+5

4 . So, the total
number of vertex flips performed for sequence σ2 is |σ2| · δA,B = n−15

4 · n+5
4 .

And averaged over the entire sequence σ, we obtain an amortized stability of at
least1 n

16 − 2; which proves the theorem. �	
Like Theorem 1, the lower bound of Theorem 2 is tight up to constant factors.

To see this, simply consider a vertex arrival sequence where each update induces
the maximum number of vertex flips at each iteration. Clearly, the amortized
stability in this case is n−1

4 .

3 Maintaining Approximate Cuts

We now consider the stability of maintaining approximate cuts. Theorem 1 shows
that maintaining an exact solution is very expensive in terms of stability. Perhaps

1 Because n
16

− 2 < n−15
4

· n+5
4

· 1
n

= n−10
16

− 75
16·n for any n > 5.



Stable and Dynamic Minimum Cuts 279

surprisingly, the following result shows that no better trade-off can be achieved
for approximate solutions.

Theorem 3. There is no γ-stable ρ-approximation algorithm for Minimum
Cut in general graphs of size n ≥ 10 such that ρ <

⌊
n−2
2

⌋ − 2 and γ <
⌊

n−2
2

⌋
.

Proof. For every n ≥ 10, we present a sequence of graph instances (G1, . . . , Gn)
for which a stable approximation algorithm requires at least

⌊
n−2
2

⌋
vertex flips

to obtain an approximation ratio less than 	 where 1 < 	 ≤ ⌊
n−2
2

⌋ − 2 (when
	 =

⌊
n−2
2

⌋ − 2 the main claim follows)2. The graph Gn has two cliques A and
B of roughly equal size such that |A| ≥ ⌊

n−2
2

⌋
and |B| ≥ ⌊

n−2
2

⌋
, connected to

each other by means of a single edge (a, b), for arbitrary a ∈ A and b ∈ B. In
addition, Gn has two more vertices u and w. Vertex w has deg(w) = 2(	−1) and
shares half of its edges with arbitrary vertices from clique A and the other half
with arbitrary vertices from clique B. Vertex u has deg(u) = 1 and is connected
to an arbitrary vertex in clique A. See Fig. 3 for an illustration of graph Gn.

Consider any dynamic algorithm for maintaining a ρ-approximate cut and
let Si denote the cut maintained by the algorithm after the first i vertices have
arrived. Consider the graph defined above, where the vertices in A ∪ B arrive in
the first n−2 timesteps, followed by vertex u at timestep n−1 and w at timestep
n. First, we show that at timestep n−2—that is, right after the vertices in A∪B
have arrived—the algorithm must maintain the cut (A,B) as the solution; i.e.,
Sn−2 = (A,B). This follows from the fact that the graph Gn−2 has a single min-
cut of value 1—namely, the cut (A,B)—and any other cut in Gn−2 has value
at least

⌊
n−2
2

⌋ − 1 > 	. Hence, only the cut (A,B) has approximation ratio less
than 	.

We now show that at timestep n—after vertices u and w arrive—our algo-
rithm will have performed

⌊
n−2
2

⌋
-many vertex flips. First, we observe that at

timestep n − 1 (after vertex u arrives) the graph Gn−1 presents only three 	-
approximate cuts: the two min-cuts (A ∪ {u}, B) and ({u}, A ∪ B), and the
2-approximate cut (A,B ∪ {u}). These are the only 	-approximate cuts because
any other cut partitions clique A and/or clique B into two non-empty sets, thus
cutting at least

⌊
n−2
2

⌋ − 1 edges. Thus, at timestep n − 1, our algorithm must
pick one of these cuts as Sn−1). Next, after the final vertex w arrives at timestep
n, only the (unique) min-cut ({u}, A ∪ B ∪ {w}) is a valid ρ-approximate cut3.
Therefore, at timestep n, our algorithm must find Sn = ({u}, A ∪ B ∪ {w}).
Now we show that no matter the choice for Sn−1, there is a timestep where the
difference between two consecutive solutions is

⌊
n−2
2

⌋
.

Case 1. Let Sn−1 = (A ∪ {u}, B). (The case for Sn−1 = (A,B ∪ {u}) is similar
and is thus omitted.)

2 Solving 1 <
⌊

n−2
2

⌋ − 2 for integer n results in our stated bound of n ≥ 10.
3 Because any clique-crossing cut has value at least

⌊
n−2
2

⌋ − 1 > � since deg(v) ≥⌊
n−2
2

⌋ − 1 ∀v ∈ A ∪ B. And any non-clique-crossing cut (except the min-cut) must
cut at least � edges: one edge shared by cliques and � − 1 edges shared by w with
one of the cliques.
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As mentioned above, the only valid solution at timestep n is Sn = ({u}, A ∪
B ∪ {w}), but D(Sn−1, Sn) ≥ ⌊

n−2
2

⌋
; that is, cut Sn is at least

⌊
n−2
2

⌋
ver-

tex flips away from Sn−1. Therefore, at least
⌊

n−2
2

⌋
vertex flips are needed at

timestep n.

Case 2. Let Sn−1 = ({u}, A ∪ B). In contrast to the previous case, the dif-
ference between consecutive solutions Sn−1 and Sn here is D(Sn−1, Sn) = 0.
However, the difference between Sn−2 and Sn−1 is D(Sn−2, Sn−1) ≥ ⌊

n−2
2

⌋
,

because Sn−2 = (A,B). Therefore, at least
⌊

n−2
2

⌋
vertex flips are performed at

timestep n − 1.

This proves that any algorithm on (G1, . . . , Gn) requires at least
⌊

n−2
2

⌋
vertex

flips to find an ρ-approximate cut such that ρ < 	. Since 	 =
⌊

n−2
2

⌋ − 2 in the
worst case, the claim follows. �	

w

u
A B

... ...

− 1 − 1

Fig. 3. Graph Gn for the proof of the lower bound in Theorem 3. Cliques A and B
(gray) are connected by a single edge between arbitrary vertices. Vertex u (black) is
connected to an arbitrary vertex in clique A, and vertex w (black) to � − 1 arbitrary
vertices in A and B, respectively. After the arrival of both u and w, any dynamic
algorithm must perform n−2

2
vertex flips to maintain a ρ-approximate cut.

Similar to the case of maintaining an exact minimum cut, a clairvoyant algo-
rithm fares no better than an oblivious one.

Corollary 3. There is no clairvoyant γ-stable ρ-approximation algorithm for
Minimum Cut in general graphs of size n ≥ 10 such that ρ <

⌊
n−2
2

⌋ − 2 and
γ <

⌊
n−2
2

⌋
.

Proof. This follows directly from the proof of Theorem 3. Observe that at
timesteps n − 2 and n, respectively, the space of valid ρ-approximate cuts con-
tains a single solution. Hence, even a clairvoyant algorithm is required to find
solutions Sn−2 = (A,B) and Sn = ({u}, A∪B) at timesteps n− 2 and n respec-
tively. The only freedom that the algorithm can exert is at timestep n−1, where
the space of valid ρ-approximate cuts contains three possible solutions. But as
we have proved, any of the three possibilities for Sn−1 still lead the algorithm
to make

⌊
n−2
2

⌋
vertex flips in some timestep. �	

Similarly, we have the following for planar graphs.
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Corollary 4. There is no γ-stable ρ-approximation algorithm for Minimum
Cut in planar graphs such that ρ < 5 and γ < n−2

2 , even in the clairvoyant
setting.

Proof. For every n ≥ 24 divisible by 12, there is a planar graph H on n vertices
with edge-connectivity five, and with at least six vertices incident to the outer
face (see e.g. [11, Fig. 1]). Then, we can use the proof of Theorem 3 by replacing
the clique clusters A and B with two copies of H on n−2

2 vertices (assuming that
n−2
2 is divisible by 12) and setting 1 < 	 ≤ 4. Notice that, since the planar graph

H has more than four vertices incident to the outer face, the arrived vertex w
can indeed share at most one edge with each of these vertices while the overall
graph remains planar. �	

Amortized Analysis. Using a similar construction as in the proof of Theorem 2
it is not hard to obtain an Ω(log n/ log ρ) lower bound on the amortized stability
of maintaining a ρ-approximate cut in a graph. In the following, however, we
derive an even better bound.

Theorem 4. Any dynamic ρ-approximation algorithm for Minimum Cut in
general graphs has average stability Ω(n/ρ2), even in the clairvoyant setting.

Proof. We present a sequence of graph instances (G1, . . . , Gn) for which main-
taining a ρ-approximate cut requires Ω(n/ρ2) vertex flips on average. We assume
that ρ = o(

√
n) since, otherwise, the theorem is trivial. In the following, we use

V (t) to denote the vertex set of graph instance Gt.
Consider the vertex arrival sequence σ = (v1, . . . , vn) where, at time t = 2n/3,

the graph Gt consists of two cliques A and B of equal size n/3, with ρ + 1 edges
between them. Notice that at this time, the cut X(t) = (A,B) is a minimum
cut, and is in fact the only ρ-approximate cut available. We partition the rest of
the sequence (vt+1, . . . , vn) into n

3(1+(ρ+1)2) batches bi of size 	 = 1 + (ρ + 1)2.
We will argue that for each batch, there is a sequence of vertex arrivals such
that any algorithm must perform Ω(n) vertex flips.

Let bi = (vp(i), . . . , vq(i)) denote the vertex arrival sequence of the i-th batch,
with p(i) = (t + 1) + 	 · (i − 1) and q(i) = p(i) + 	. The vertices arrive as follows.
First, vertex vp(i) arrives with an edge to an arbitrary vertex in V (p(i) − 1) \
A and no other incident vertices. At this point in time, the cut X(p(i)) =
({vp(i)}, V (p(i) − 1)) is a minimum cut, and the only available ρ-approximate
cut. Now, each new vertex arriving at time j ∈ [p(i) + 1, q(i)] has edges to all
other vertices in V (j−1)\A. Notice that at the end of the batch—that is, at time
q(i)—the cut X(q(i)) = (A, V (q(i))\A) will be the only available ρ-approximate
cut since any other cut must partition either the set V (q(i)) \ A, the set A, or
both and thus has value at least ρ + 1. See Fig. 4 for an illustration of the graph
after the arrival of vertex vq(1).
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A B

vp(1)

vp(1)+1

vq(1)

···

...

...

...
ρ + 1

Fig. 4. Graph Gt for the proof of the lower bound in Theorem 4 at time t = 2n/3+�+1;
that is, after the arrival of the vertices in the first batch b1 = (vp(1), . . . , vq(1)). Cliques
A and B are highlighted in gray, while vertices in b1 are highlighted in black.

The claim that Ω(n)-many vertex flips are required in a batch bi follows from
the fact that any algorithm must maintain cuts X(p(i)) and X(q(i)) at times
p(i) and q(i), respectively. Then, by definition of difference between two cuts, we
have that: (i) for any batch bi we have D(X(p(i)),X(q(i))) = |A|, and (ii) for any
two consecutive batches bi and b + i + 1 we have D(X(q(i)),X(p(i + 1))) = |A|.
(Notice that, at the start of the first batch b1, we also have D(X(t),X(p(1))) =
|A|, with t = 2n/3). In other words, in every batch, all the vertices in the set A
must be flipped twice.

Now, since there are n
3(1+(ρ+1)2) batches and each one performs Ω(n)-many

vertex flips, the main claim follows. �	

3.1 Improved Upper Bounds

Theorem 3 is tight with respect to the trivial upper bound of n−1
2 vertex flips.

However, as Theorem 5 below shows, when the approximation factor of the
maintained cut is large, very simple and stable algorithms exist. First, we prove
the following lemma. We say that a cut (X,X) is a singleton cut if one of X or
X consists of a single vertex.

Lemma 1. Any graph G = (V,E) has an n−1
2 -approximate cut that is a single-

ton.

Proof. Consider the singleton cut induced by the vertex of minimum degree, and
let dmin be its degree. Now consider an optimal cut (A,B). Define m := |A| and
assume without loss of generality that m ≤ n/2. Since dmin ≤ n−1, we are done
when the value of a minimum cut is at least 2, so assume that it is 1. Note that A
has at most

(
m
2

)
internal edges, accounting for a total degree of 2·(m

2

)
. Since each

vertex in A has degree at least dmin, we thus have at least m · dmin − m(m − 1)
edges crossing the cut. But we just observe that the minimum cut value is 1, so
m · dmin − m(m − 1) ≤ 1, which implies that dmin ≤ (m − 1) − 1

m < n−1
2 . �	

Lemma 1 immediately implies that there is a 2-stable n−1
2 -approximation

algorithm, namely the algorithm that maintains a singleton cut that gives a
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n−1
2 -approximation. (Note that switching between two singleton cuts requires at

most two vertex flips.) Thus we obtain the following theorem.

Theorem 5. There is a 2-stable n−1
2 -approximation algorithm for Minimum

Cut in general graphs.

For planar graphs, a similar situation occurs when ρ ≥ 5, since we know that
any planar graph has a vertex of degree at most 5. A singleton cut consisting of
such a vertex is thus a 5-approximate cut, and maintaining one such cut requires
at most two vertex flips per iteration.

Theorem 6. There is a 2-stable 5-approximation algorithm for Minimum Cut
in planar graphs.

Amortized Analysis. Contrary to the case of maintaining an exact minimum
cut, the Ω(n/ρ2) amortized lower bound of Theorem 4 is not tight with respect
to the trivial O(n) upper bound. We now reduce this gap by showing a new
upper bound for maintaining a ρ-approximate cut in the clairvoyant setting.

Theorem 7. There exists a clairvoyant ρ-approximation algorithm for Mini-

mum Cut with amortized stability O
(

n log n
ρ log ρ

)
.

For the sake of clarity, we introduce a slightly different notation. We use v(t)
to denote the vertex arriving at time t and let G(t) := (V (t), E(t)) represent
the graph obtained after the arrival of vertex v(t). We let OPT(t) denote the
value of a minimum cut in G(t), and let ALG(t) denote the value of the cut
maintained by our algorithm at time t. To identify a cut in G(t), we specify only
the bipartition set X(t) ⊂ V (t) that contains vertex v(1), and use cost(X(t)) to
denote its value in G(t). We use D(X(t),X(t + 1)) to denote the difference—as
defined in the introduction—between cuts X(t) and X(t + 1).

Next, we state two simple results that form the basis of our algorithm.

Lemma 2. Let X(t) be any cut in G(t) and let t′ ≤ t. If V (t′) �⊆ X(t) then the
set Y (t′) = V (t′) ∩ X(t) is a feasible cut in G(t′) with cost(Y (t′)) ≤ cost(X(t)).

Proof. Note that V (t′) ∩ X(t) �= ∅ since v(1) ∈ V (t′) ∩ X(t). Moreover, V (t′) ∩
X(t) �= ∅ since V (t′) �⊆ X(t). Hence, Y (t′) is a feasible cut. Further, the edges
crossing the cut Y (t′) must be a subset of the edges crossing the cut X(t), hence
the value of the cut Y (t′) cannot be greater than that of X(t). �	
Lemma 3. If OPT(t+1) < OPT(t), then the cut X(t+1) = V (t) is the unique
minimum cut in G(t + 1).

Proof. For the sake of contradiction, suppose there is a cut Y (t+1) ⊂ V (t) with
cost(Y (t + 1)) ≤ OPT(t + 1). But then the cut Y (t) = Y (t + 1) \ {v(t + 1)} has
cost(Y (t)) < OPT(t + 1) ≤ OPT(t), contradicting that OPT(t) is minimum. �	
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The Algorithm. Consider the sequence OPT (2), . . . , OPT (n) of minimum cut
values at times t = 2, . . . , n. We can partition the time interval [2, n] into sub-
intervals, or phases, Ii such that OPT (t) is non-decreasing for all t ∈ Ii. Notice
that, by Lemma 3, the minimum cut at the start of a phase is always a singleton
cut. Now, let s be a parameter. With the aid of clairvoyance, the algorithm can
distinguish between two types of phases: a short phase—when |Ii| ≤ s—and a
long phase—when |Ii| > s.

In a short phase Ishort = [tstart, tend], the algorithm adopts the following
simple strategy: For all t ∈ Ishort, maintain the cut Xalg(t) = V (t) \ {v(tstart)}.

Lemma 4. For any short phase Ishort = [tstart, tend], we have:

1. D(Xalg(t),Xalg(t + 1)) = 0 for all t ∈ [tstart, tend − 1], and
2. ALG(t) ≤ (s − 1) · OPT(t) for all t ∈ Ishort.

Proof. The first part of the lemma trivially follows from the definition of cut
difference and the fact that Xalg(t + 1) ∩ Xalg(t) = {v(t)}. The second part
follows from the fact that by Lemma 3, the starting cut Xalg(tstart) is minimum,
and from observing that each vertex arrival after tstart can only increase the
degree of v(tstart) in one unit. Putting this together with the fact that OPT(t) ≥
OPT(tstart) for all t ∈ Istart implies the result. �	

Now, let Ilong be a long phase, and let ρ be the approximation guarantee we
want to achieve with the algorithm. We define a sub-phase Isub = [tstart, tend] of
phase Ilong as a maximal time interval such that OPT(tend) ≤ ρ · OPT(tstart),
with tstart, tend ∈ Ilong. (With a slight abuse of notation, we are re-using the
notation tstart and tend here, to also denote the start and end of a sub-phase.)
Notice that there can be up to O(log n/ log ρ) sub-phases in a long phase. Ide-
ally, we would like our algorithm to identify sub-phases in a long phase and for
each sub-phase adopt the following strategy: For all t ∈ Isub, maintain the cut
Xalg(t) = V (t)∩Xopt(tend), where Xopt(tend) is a minimum cut in G(tend). This
has the potential to grant us similar results to Lemma 4. The strategy, how-
ever, is flawed: the cut Xalg(t) might be infeasible since there can be some time
t′ ∈ Isub for which V (t′) ⊆ Xopt(tend).

To refine this strategy, we further partition a sub-phase Isub = [tstart, tend]
into sub-intervals Ii

sub = [ti, ti+1) as follows. First, we let t0 := tstart. Then, given
ti, we define ti+1 as the time immediately after the “furthest” time t ∈ Isub such
that Xopt(t)—a minimum cut in G(t)—induces a feasible cut in G(ti). More
formally, ti+1 = 1 + max{t | t ≤ tend and V (ti) �⊆ Xopt(t)}. Now, as our new
strategy, for each sub-interval Ii

sub = [ti, ti+1) let the algorithm perform the
following: For all t ∈ Ii

sub, maintain the cut Xalg(t) = V (t) ∩ Xopt(ti+1 − 1).

Lemma 5. For any sub-phase Isub = [tstart, tend] of a long phase we have:

1.
∑

t D(Xalg(t),Xalg(t + 1)) = O(n) for all t ∈ [tstart, tend − 1], and
2. ALG(t) ≤ ρ · OPT(t) for all t ∈ Isub.
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Proof. We start with the second part of the lemma. First, observe that Xalg(t)
is feasible throughout Isub, since on each sub-interval [ti, ti+1) of Isub we have
that Xopt(ti+1 − 1) induces a feasible cut on G(ti), hence also on G(t) for all
t ∈ [ti, ti+1). Now, for each sub-interval Ii

sub of Isub, by Lemma 2 we have
ALG(t) ≤ OPT(ti+1 − 1) for all t ∈ Ii

sub. But OPT(ti+1 − 1) ≤ ρ · OPT(tstart)
for every sub-interval of Isub. Hence, ALG(t) ≤ ρ · OPT(tstart) for all t ∈ Isub.

Now we prove the first part of the lemma. Recall that v(1) ∈ Xalg(t) for all
t ∈ Isub. First, observe that any vertex is placed into Xalg(t) at most once during
any given sub-interval. (It is simply assigned to the maintained set Xalg(t) of
the bipartition or its complement.) Now, let Ii

sub = [ti, ti+1) be a sub-interval
of Isub. We claim that a vertex v ∈ Xalg(ti) cannot be flipped out of Xalg(t) in
any t such that ti+1 ≤ t ≤ tend. This follows because, otherwise, there would
be a time t′ ≥ ti+1 − 1 such that Xopt(t′) induces a feasible cut in G(ti), which
violates the condition that ti+1 − 1 was maximal. Therefore, a vertex can be
flipped in the sub-phase Isub at most once. Accounting for all vertices then gives
the result. �	

We are now ready to prove Theorem 7.

Proof of Theorem 7. The approximation ratios of short and long phases are
(s − 1) and ρ, respectively. Hence, the approximation ratio of the algorithm
is max(s − 1, ρ). Now we analyze the stability of the algorithm. First observe
that, by Lemma 4, there are no vertex flips performed in short phases. As for
long phases, we know that each can have at most O( log n

log ρ ) sub-phases and, by
Lemma 5, each sub-phase performs at most O(n) vertex flips in total. There are
at most n

s long phases, hence the total number of vertex flips performed by long
phases is n

s · O(n · log n
log ρ ) = O(n2 log n

s log ρ ).
We only have left to account for the number of vertex flips induced at the

start of each phase and sub-phase; namely, when going from one phase (resp.
sub-phase) to the next. Notice that, by Lemma 3, going from a short phase to
another phase (either short or long) induces a single vertex flip. On the other
hand, going from a long phase to a short phase, as well as from a long phase to
another long phase, can each induce O(n) vertex flips. Hence, the total number
of vertex flips performed at the start of long phases is O(n2

s ). Finally, within
each long phase, the total number of vertex flips performed when going from
the end of one subphase to the beginning of the next subphase is O(n · log n

log ρ ). In

total for every long phase then, we have O(n2 log n
s log ρ ) vertex flips.

Putting all this together, we get that the total number of vertex flips per-
formed by the algorithm is O(n2 log n

s log ρ ). The result of the theorem then follows
by setting s = ρ and dividing the total number of vertex flips by n. �	

4 Concluding Remarks

We studied the stability of dynamic algorithms for Minimum Cut under the
vertex-arrival model. We showed that, for general and planar graphs, the trivial
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stability bound is tight up to constant factors in both the oblivious and clair-
voyant settings. This holds for maintaining both exact and ρ-approximate cuts.
When the approximation ratio satisfies ρ ≥ n−1

2 in general graphs and ρ ≥ 5
in planar graphs, we show that there are simple 2-stable ρ-approximation algo-
rithms for Minimum Cut. In the amortized case, we also obtained that the
trivial stability bound is tight up to constant factors, but only for the exact
case. When maintaining ρ-approximate cuts, we showed that there are better-
than-trivial average stability bounds—namely, a lower bound of Ω(n/ρ2) and a
clairvoyant algorithm with amortized stability O

(
n log n
ρ log ρ

)
.

The lower bound proofs in this work rely on specific constructions that may
never show up in practice. We believe that situations in which a vertex inser-
tion induces many vertex flips are rare. As such, the average case analysis of
amortized stability of min-cuts seems like an interesting research direction. This
is further motivated by the average-case results obtained in this work. Another
promising approach toward improved stable approximation algorithms for min-
cut is to consider graphs of bounded degree. Finally, we believe that exploring
other problems from the viewpoint of stability is an interesting endeavor.
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Abstract. We study the problem of black hole search by a set of mobile
agents, where the underlying graph is a dynamic cactus. A black hole is a
dangerous vertex in the graph that eliminates any visiting agent without
leaving any trace behind. Key parameters that dictate the complexity of
finding the black hole include: the number of agents required (termed as
size), the number of moves performed by the agents in order to determine
the black hole location (termed asmove) and the time (or round) taken to
terminate. This problem has already been studied where the underlying
graph is a dynamic ring [6]. In this paper, we extend the same problem
to a dynamic cactus. We introduce two categories of dynamicity, but
still, the underlying graph needs to be connected: first, we examine the
scenario where, at most, one dynamic edge can disappear or reappear
at any round. Secondly, we consider the problem for at most k dynamic
edges. In both scenarios, we establish lower and upper bounds for the
necessary number of agents, moves and rounds.

Keywords: Black hole search · Dynamic cactus graph · Dynamic
networks · Time-varying graphs · Mobile Agents · Distributed
Algorithms

1 Introduction

We study the black hole search problem (also termed as BHS) in a dynamic
cactus graph, where edges can reappear and disappear, i.e., goes missing over
time so the underlying graph remains connected. More precisely, the network is a
synchronous cactus graph where one of the vertices (or nodes) is a malicious node
that eliminates any visiting agent without leaving any trace of their existence
upon arrival on such nodes; that node is termed as Black Hole [7]. This scenario
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frequently arises within networked systems, particularly in situations requiring
the safeguarding of agents from potential host attacks. Presently, apart from
the research paper concerning ring networks [6], there exists limited knowledge
regarding this phenomenon when the network exhibits dynamic characteristics.
Therefore, the focus of our study is to expand upon our findings in this context. In
our investigation, we consider a collection of mobile agents, all of whom execute
the same algorithm synchronously. Initially, these agents are positioned at a
node that is confirmed to be free from any black hole threat; these nodes are
referred to as ‘safe nodes’. The primary objective is to efficiently determine the
location of the black hole within the network in the shortest possible time while
ensuring at least one agent survives and possesses knowledge of the black hole’s
whereabouts.

Related Work. The black hole search problem is well-studied in varying under-
lying topologies such as rings, grids, torus, etc. This problem has been first intro-
duced by Dobrev et al. [7], in which they solved this problem in a static arbitrary
topology. They have obtained tight bounds on the number of agents, while also
establishing cost of a size-optimal solution. After this seminal paper, there has
been a plethora of work done in this domain under different graph classes such
as trees [3], rings [8], tori [16] and in graphs of arbitrary topology [2,7]. Now,
in all the above literature, the study has been performed when the underlying
graph is static.

While most of the study has been done on static networks, very little litera-
ture is known about black hole search especially in dynamic graphs. The study
of mobile agents in dynamic graphs is a fairly new area of research. Previously,
the problem of exploration has been studied in a dynamic rings [4,13], torus
[12], cactuses [14] and in general graphs [11]. Di Luna et al. [5] investigated
the gathering problem by mobile agents in a dynamic ring. Flocchini et al. [9]
studied the black hole search problem in a different class of dynamic graphs,
defined as periodically varying graphs, they showed the minimum number of
agents required to solve this problem is γ + 1, where γ is the minimum number
of carrier stops at black holes. Di Luna et al. [6], studied the black hole search
problem in a dynamic ring, where they have established optimal algorithms in
terms of number of agents, moves and rounds in two communication models. In
this paper, we aim to solve similar problem, where we want to determine the
position of a black hole with the least number of agents, but in our case, we have
considered the underlying topology to be a dynamic cactus graph.

Our Contributions. We obtain the following results when the cactus graph
has at most one dynamic edge at any round.

– Establish the impossibility of finding black hole in a dynamic cactus with 2
agents.

– With 3 agents we establish lower bound of Ω(n1.5) rounds, Ω(n1.5) moves,
and we also establish upper bound of O(n2) rounds and O(n2) moves.

– With 4 agent improved lower bounds are Ω(n) rounds and Ω(n) moves.

Next, when the cactus graph has at most k (k > 1) dynamic edges at any round.
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– Establish the impossibility of finding the black hole with k + 1 agents.
– With k +2 agents we establish lower bound of Ω((n + 2 − 3k)1.5) rounds and

Ω((n + 2 − 3k)1.5 + 2k) moves.
– With 2k + 3 agents improved lower bounds are Ω(n + 2 − 3k) rounds, Ω(n +

2 − k) moves, and we establish an upper bound of O(kn) rounds and O(k2n)
moves (Table 1).

Table 1. Summary of Results (k > 1), where LB, UB and DE represent lower bound,
upper bound and dynamic edge, respectively.

# DE # Agents Moves Rounds

1 3 Ω(n1.5) Ω(n1.5) LB (Cor 1 & Thm 2)

3 O(n2) O(n2) UB (Thm 9)

4 Ω(n) Ω(n) LB (Thm 3)

k k + 2 Ω((n + 2− 3k)1.5 + 2k) Ω((n + 2− 3k)1.5) LB (Cor 2 & Thm 6)

2k + 3 Ω(n + 2− k) Ω(n + 2− 3k) LB (Thm 7)

2k + 3 O(k2n) O(kn) UB (Thm 10 & Thm 11)

Organization: Rest of the paper is organized as follows. In Sect. 2, we discuss
the model and preliminaries. Section 3, we give the lower bounds. In Sect. 4,
we present the algorithm and its correctness for both the single and multiple
dynamic edge cases and finally conclude in Sect. 5. Due to the restrictions in
the page limit, the pseudo codes of the algorithms, proofs of the theorems and
lemmas, as well as a detailed explanation of cautious [6], pendulum [6] and pebble
walk are omitted and can be found in the full version of this paper [1].

2 Model and Preliminaries

Dynamic Graph Model: We adapt the synchronous dynamic network model
by Kuhn et al. [15] to define our dynamic cactus graph G. The vertices (or nodes)
in G are static, whereas the edges are dynamic, i.e., the edges can disappear (or in
other terms go missing) and reappear at any round. The dynamicity of the edges
holds as long as the graph is connected. The dynamic cactus graph G = (V,E)
is defined as a collection of undirected cactus graphs < G0, G1, · · · , Gr, · · · >,
where Gr = (V,Er) is the graph at round r, |V | = n and E = ∪∞

r=0Er, where
|Er| = mr denotes the number of edges in Gr. The adversary maintains the
dynamicity of G, by disappearing or reappearing certain edges at any round r
such that the underlying graph is connected. This model of dynamic networks is
studied in [15] and is termed as a 1-interval connected network. The degree of a
node u ∈ G is denoted by deg(u), in other words, deg(u) denotes the degree of the
node u in G0. The maximum degree of the graph G is denoted as Δ. The vertices
(or nodes) in G are anonymous, i.e., they are unlabelled, although, the edges are
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labelled, an edge incident to u is labelled via the port numbers 0, · · · , deg(u)−1.
The ports are labelled in ascending order along the counter-clockwise direction,
where a port with the port number i denotes the i-th incident edge at u in the
counter-clockwise direction. Any edge e = (u, v) is labelled by two ports, one
among them is incident to u and the other incident to v, they have no relation
in common. Any number of agents can pass through an edge concurrently. Each
node in G has a local storage in the form of a whiteboard, where the size of the
whiteboard at a node v ∈ V is O(deg(v)(log deg(v) + k log k)), where deg(v) is
the degree of v and k is the maximum number of dynamic edge. The whiteboard
is essential in order to store the list of port numbers attached to the node. Any
visiting agent can read and/or write information corresponding to port numbers.
Fair mutual exclusion to all incoming agents restricts access to the whiteboard.
The network G contains a malicious node termed as black hole, which eliminates
any incoming agent without leaving any trace of its existence.

Agent: Let A = {a1, · · · , am} be a set of m ≤ n agents, they are initially co-
located at a safe node termed as home. Each agent has a distinct Id of size
�log m� bits taken from the set [1,m] where each agent is a t-state automata,
with local storage of O(n log Δ) bits of memory, where t ≥ αn log Δ and α is any
positive integer. The agents visiting a node know the degree of that node and
can determine which of the edges has disappeared (or missing) at that particular
node, based on the whiteboard information. The agent while moving from u to
v along the edge e knows the port along which it left u and the port along which
it entered v. Further, the agents can see the Ids of other agents residing at the
same node and can communicate with them.

Round: The agents operate in synchronous rounds, where each agent gets acti-
vated in each round. At any time an agent ai ∈ A gets activated, and they
perform the following steps in a round: “Communicate-Compute-Move” (CCM),
while it is active. The steps are defined as follows:

– Communication: Agents can communicate among themselves when they are
at the same node at the same time. They also communicate via whiteboard.
In this step, the agents can also observe their own memory.

– Compute: An agent based on the gathered information, local snapshot (i.e.,
information gathered on whether any other agent is present at the current
node), internal memory and contents of the whiteboard, either decides to stay
or choose the port number in case it decides to move.

– Move: The agent moves along the chosen port to a neighboring port, if it
decides to move. While it starts to move, the agent writes the information in
its memory and also writes on the whiteboard of its current node.

An agent takes one unit of time to move from a node u to another node v
following the edge e = (u, v).

Time and Move Complexity: Since the agents operate in synchronous rounds,
each agent gets activated at each round to perform one CCM cycle synchronously.
So, the time taken by the algorithm is measured in terms of rounds. Another
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parameter is move complexity, which counts the total number of moves per-
formed by the agents during the execution of the algorithm.

Configuration: We define Cr to be the configuration at round r which holds
the following information: the contents in the whiteboard at each node, the con-
tents of the memory of each agent and the locations of the agent at the start of
r. So, C0 in the initial configuration at the start of an algorithm H, whereas Cr

is the configuration obtained from Cr−1 after an execution of H at round r − 1.

3 Lower Bound Results

In this section, we first study the lower bound on the number of agents, move
and round complexities required to solve the BHS problem when at most one
edge is dynamic in a round. Subsequently, we generalize this when at most k
dynamic edges can be present in a round such that the underlying graph remains
connected.

3.1 Lower Bound Results on Single Dynamic Edge

Here, we present all the results related to a dynamic cactus graph when at most
one edge is dynamic at any round.

Theorem 1 (Impossibility for single dynamic edge). Given a dynamic
cactus graph G of size n > 3 with at most one dynamic edge at any round such
that the underlying graph is connected. Let the agents know that the black hole
is located in any of the three consecutive nodes S = {v1, v2, v3} inside a cycle
of G. Then it is not possible for two agents to successfully locate the black hole
position. The impossibility holds even if the nodes are equipped with whiteboard.

The above theorem is a consequence of Lemma 1 in [6].

Corollary 1 (Lower bound for single dynamic edge). In order to locate
the black hole in a dynamic cactus graph G with at most one dynamic edge at
any round, any algorithm requires at least 3 agents to solve the black hole search
problem in G.

Lemma 1 ([6]). If an algorithm solves the black hole search problem in O(n ·
f(n)) moves with 3 agents, then there exists an agent that explores a sequence
of at least Ω( n

f(n) ) nodes such that:

– The agent does not communicate with any other agents while it explores the
sequence.

– The agent visits at most n
4 nodes outside the sequence while exploring.

In the next theorem, we give a lower bound on the move and round complexity
required by any algorithm in order to solve the black hole search problem in a
dynamic cactus.



Black Hole Search in Dynamic Cactus Graph 293

Theorem 2. Given a dynamic cactus graph G, with at most one dynamic edge,
any algorithm H which solves the black hole search problem with 3 agents requires
Ω(n1.5) rounds and Ω(n1.5) moves, when the agents have distinct Ids, they are
co-located and each node has a whiteboard.

The above theorem is a consequence of Theorem 6 in [6]. The next theorem,
gives an improved lower bound on the move and round complexity when 4 agents
try to locate the black hole instead of 3.

Theorem 3. Given a dynamic cactus graph G, with at most one dynamic edge
at any round. In the presence of whiteboards, any algorithm H solves the black
hole search problem with 4 agents in Ω(n) rounds and Ω(n) moves when the
agents have distinct Ids and they are co-located.

The next observation gives a brief idea about the movement of the agents
on a cycle inside a dynamic cactus graph. It states that, when a single agent is
trying to explore any unexplored cycle, the adversary has the power to confine
the agent on any single edge of the cycle. Moreover, in case of multiple agents
trying to explore a cycle inside a cactus graph, but their movement is along one
direction, i.e., either clockwise or counter-clockwise, then also the adversary has
the power to prevent the team of agents from visiting further unexplored nodes.

Observation 4 ([6]). Given a dynamic cactus graph G, and a cut U (with |U | >
1) of its footprint connected by edges e1 in the clockwise direction and e2 in the
counter-clockwise direction to the nodes in V \U . If we assume that all the agents
at round r are at U , and there is no agent which tries to cross to V \U along e1
and an agent tries to cross along e2, then the adversary may prevent agents to
visit nodes outside U .

The above observation follows from Observation 1 of [6]. The next lemma
follows from the structural property of a cactus graph.

Lemma 2. Consider three consecutive nodes {v0, v, v1} in a cactus graph G,
then any path from u to v in G must pass through either v0 or v1.

Proof. We prove the above claim by contradiction. Suppose there exists a u to
v path which neither passes through v0 nor v1, so in order to have an alternate
path which does not pass through v0 or v1, implies that there must be at least
one edge or a path passing from half-1 to half-2 (refer to Fig. 1), where we define
half-1 to be the subgraph on and above the horizontal half-line passing through
v, whereas half-2 is the subgraph below the horizontal half-line passing through
v. Now, the presence of such an edge or path, implies that there is at most one
common edge between two cycles, and this violates the characteristic of a cactus
graph. Hence, there cannot be any such u to v path which neither passes through
v0 nor v1. �	
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Fig. 1. Represents that any (u, v) path either passes through v0 or v1

3.2 Lower Bound Results for Multiple Dynamic Edges

Here, we present all the lower bound results for a dynamic cactus graph G, when
at most k edges are dynamic at any round.

Theorem 5 (Impossibility for multiple dynamic edges). Given, a
dynamic cactus graph G with at most k dynamic edges at any round. It is impos-
sible for k + 1 agents, to successfully locate the black hole position, regardless of
the knowledge of n, k and the presence of a whiteboard at each node.

Corollary 2 (Lower bound for k dynamic edges). In order to locate the
black hole in a dynamic cactus graph G with at most k dynamic edges at any
round, any algorithm requires at least k + 2 agents.

The next two theorems give lower bound and improved lower bound on move
and round complexity with k + 2 and 2k + 3 agents, respectively.

Theorem 6. Given a dynamic cactus graph G, with at most k dynamic edges
at any round. In the presence of whiteboard, any algorithm H which solves the
black hole search problem with k + 2 agents requires Ω((n + 2 − 3k)1.5) rounds
and Ω((n + 2 − 3k)1.5 + 2k) moves when the agents have distinct Ids and they
are co-located.

Theorem 7. Any algorithm H in the presence of whiteboard which solves the
black hole search problem with 2k + 3 agents in a dynamic cactus graph with at
most k dynamic edges at any round, requires Ω(n+2−3k) rounds and Ω(n+2−k)
moves when each agent have a distinct Id and they are co-located.

4 Black Hole Search in Dynamic Cactus

In this section, we first present a black hole search algorithm in the presence of
at most one dynamic edge, and then we present an algorithm to find the black
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hole in the presence of at most k dynamic edges. The number of agents required
to find the black hole is presented and further, the move and round complexities
are analyzed for each algorithm.

4.1 Black Hole Search in Presence of Single Dynamic Edge

In this section, we present two black hole search algorithms, one for the agents
and the other for the LEADER, in the presence of at most one dynamic edge in
a cactus graph. Our algorithms require each node v to have some local storage
space, called whiteboard. Moreover, it requires 3 agents a1, a2 and a3, respectively.
Among these three agents, we consider a3 to be the LEADER. The task of the
LEADER is different from the other 2 agents. More precisely, LEADER fol-
lows SingleEdgeBHSLeader(), whereas a1 and a2 follows SingleEdgeBH-
SAgent(). Next, we discuss the contents of the whiteboard.

Whiteboard: For each node v ∈ G, a whiteboard is maintained with a list of
information for each port of v. For each j, where j ∈ {0, · · · , deg(v) − 1}, an
ordered tuple (f(j), Last.LEADER) is stored on it, where the function f is
defined as follows: f : {0, · · · , deg(v) − 1} −→ {⊥, 0, 1}∗,

f(j) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⊥, if j is yet to be explored by any agent
0 ◦ A, if the set of agents in A has visited j but cannot

fully explore the sub-graph originating from j

1, if the sub-graph corresponding to j is fully explored
and no agent is stuck

The symbol “◦” refers to the concatenation of two binary strings. We define A
to be the set of agents which has visited that particular port. More precisely,
if a1 and a2 both visits the port j, then we have A = {a1, a2}. We discuss the
entries on the whiteboard with the help of the following example. Consider a
port j at a node u, along which only a1 has passed, but is unable to completely
explore the sub-graph originating from j. In this case, the function f(j) returns
the binary string 001, where the first 0 represents that the sub-graph originating
from j is not fully explored, and the next 01 represents the Id of a1, so we have
A = {a1}.

The entry Last.LEADER stores the bit 1 if j is the last visited port in v by
the LEADER, otherwise, it stores 0.

Each agent (i.e., a1 and a2) performs a t-Increasing-DFS [10], where the
movement of a1 and a2 can be divided in to two categories explore and trace:

– In explore, an agent performs either cautious or pendulum walk depending on
the instruction of the LEADER. In this case, an agent visits a node for the
first time, i.e., it only chooses a port j, such that f(j) = ⊥.

– In trace, an agent performs pendulum walk, where it visits a node that has
already been visited by the other agent. In this case, an agent a1 (or a2)
chooses a port j, where f(j) = 0 ◦ A and A = {a2} (or A = {a1}).
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The task of the LEADER can be explained as follows:

– Instructs a1 or a2 to perform either cautious or pendulum walk.
– Maintains the variables lengthai

and Pai
(ai ∈ {1, 2}), while ai is perform-

ing pendulum walk. The LEADER increments lengthai
by 1, whenever ai

traverses a new node and report this information to LEADER. Moreover,
Pai

is the sequence port traversed by ai from the initial node from which it
started its pendulum walk to the current explored node.

– It also maintains the variables Lai
and PLai

, where Lai
calculates the length

of the path traversed by LEADER away from the initial position of ai and
PLai

stores the sequence of these ports.
– Lastly, terminates the algorithm whenever it knows the black hole position.

An agent a1 or a2 fails to report to LEADER, for one of the following reasons:
it has either entered the black hole or it has encountered a missing edge along its
forward movement. The algorithm SingleEdgeBHSLeader() assigns only the
LEADER to communicate with the remaining agents, in order to instruct them
regarding their movements, whereas the agents a1 and a2 do not communicate
among themselves. The agents ai (where i ∈ {1, 2}) stores Pai

while performing
pendulum walk and passes this information, whenever it meets with LEADER.

Next, we discuss in detail the description of the algorithm.

Algorithm Description: In this section, we give a high-level description of the
algorithms SingleEdgeBHSAgent() and SingleEdgeBHSLeader().

Description of SingleEdgeBHSAgent(): This algorithm is executed by the
agents a1 and a2, in which they are either instructed to perform cautious or pen-
dulum walk. The agents perform t-Increasing-DFS [10] strategy for deciding
the next port, further that port is indeed chosen by the agent for its movement
based on the whiteboard information. Before commencing the algorithm, each
port is labelled as (⊥, 0). Initially, the agents start from home, where without
loss of generality, a1 is instructed to perform cautious and a2 is instructed to
perform pendulum walk. Let us consider a1 is at a node u, then the decision
taken by a1 based on the contents of the whiteboard is as follows:

– If ∃ at least one port with f() value as ⊥ and i being the minimum among
them, then choose that port and move to its adjacent node u′ via i from u.

– If there is no such port i at u, with f(i) = ⊥, then it backtracks accompanying
the LEADER to a node where ∃ such i with f(i) = ⊥.

Now, suppose a1 reaches u′ through the i-th port and it is safe, then it returns
back to u in the subsequent round, on condition that the edge (u, u′) remains.
Otherwise, it stays at u′ until the edge reappears. Now, while it returns back to
u, if LEADER is found, then it accompanies LEADER to u′ in the next round.
Otherwise, it moves towards LEADER following Last.LEADER entries at the
whiteboard.

Next, suppose a2, is at a node v, then the decision taken by a2 based on the
whiteboard contents at v is as follows:
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– If ∃ at least one port with f() value as ⊥ and i being the minimum among
them, then choose that port and move to its adjacent node v′ via i from v.

– If there is no such port i with f(i) = ⊥, but ∃ a port j with f(j) = 0 ◦ A,
where A = {a1} then it chooses that port and moves to its adjacent node v′.
Otherwise, if A = {a2} or A = {a1, a2}, then it chooses a different available
port, or backtracks to a node where there exists an available port.

– If all ports have f() value as 1, then it backtracks to a port where each port
value is not 1.

Suppose, a2 travels to v′ using the port i, then it updates Pa2 = Pa2 ∪ {i},
and after visiting v′ it moves towards LEADER, based on the stored ports,
and if it is unable to find the LEADER, then it follows Last.LEADER to
meet the LEADER. Now, whenever it meets the LEADER it provides the
sequence of ports Pai

of the path it has traversed since it started pendulum walk
to the LEADER. Moreover, if at any moment it encounters a missing edge and
no other agent is waiting for that missing edge, then it waits until the edge
reappears. Now, irrespective of cautious or pendulum walk, whenever an agent
a1 (or a2) moves forward along a port i (say), it updates f(i) = f(i) ◦ a1 (or
f(i) = f(i) ◦ a2) in whiteboard with respect to i.

Description of SingleEdgeBHSLeader(): This algorithm is executed by the
LEADER. It initially instructs a1 to perform cautious and a2 to perform pen-
dulum walk. Whenever an agent, suppose a2, while performing pendulum walk,
explores a new node and meets with LEADER, it increments lengtha2

by 1 and
stores the sequence of port Pa2 from a2. On the other hand, if the LEADER
moves from its current position away from a2, it increments La2 by 1 and updates
the sequence of ports PLa2 it has taken, after each such movement. Suppose, if
the LEADER moves away from ai from its current node u to a node v along
the port i. It does the following things: first, it updates Last.LEADER at u
corresponding to i as 1, while the rest to 0. Second, it increments Lai

by 1 and
lastly, updates PLai

= PLai
∪{i}. Further, whenever LEADER finds a missing

edge along its path, it stops until the edge reappears. The instructions made by
LEADER related to the movement of a1 and a2 are as follows:

– If a2 without loss of generality (w.l.o.g), fails to report while performing
pendulum, but a1 is performing cautious walk, then LEADER instructs a1

to perform pendulum walk.
– If LEADER is stuck at one end of the missing edge, then it instructs both

a1 and a2 to perform pendulum walk if not already performing the same.
– If LEADER finds a dynamic edge reappear, while both a1 and a2 are per-

forming pendulum walk, then it instructs either a1 or a2 to perform cautious
walk, based on the fact which among a1 or a2 is faster to report to LEADER.

Next, we discuss the situations, when LEADER decides that either a1 or a2

has entered the black hole and terminates the algorithm.

– If a1 w.l.o.g, while performing cautious walk fails to return, but the edge
between LEADER and a1 remains, then LEADER identifies a1 to be in
black hole.
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– If a1 w.l.o.g, while performing cautious walk fails to return, but the edge
between LEADER and a1 is missing, on the other hand a2 which is perform-
ing pendulum walk also fails to return, then LEADER identifies a2 to be in
black hole.

– If both a1 and a2 is performing pendulum walk, and LEADER is stuck at
one end of the missing edge. In this situation, if both a1 and a2 fails to report,
then LEADER moves towards the agent a1 (or a2) with the help of Pa1 and
PLa1 (or Pa2 and PLa2) based on the fact which among them is last to report
to the LEADER, suppose that agent is a1, then we have the following cases.
If a1 is found, then the LEADER understands a2 has entered the black hole.
If a1 cannot be found and there is no edge that is missing, then LEADER
identifies a1 to be in black hole. If a1 cannot be found, and there is an edge
which is missing, then LEADER waits, and if then also a2 fails to report
then LEADER identifies a2 to be in the black hole.

Correctness and Complexity: In this section, we prove the correctness of
our algorithm, as well as give the upper bound results in terms of move and
round complexity.

Lemma 3. Given a dynamic cactus graph G with at most one dynamic edge at
any round r. Our Algorithms SingleEdgeBHSAgent() and SingleEdgeBH-
SLeader(), ensures that at most 2 agents are stuck due to a missing edge.

Lemma 4. The LEADER following the algorithm SingleEdgeBHS
Leader(), ensures that among the 2 agents stuck due to a missing edge, even-
tually, one must be the LEADER.

Lemma 5. An agent a1 or a2 following the SingleEdgeBHSAgent(), does
not enter an infinite cycle.

Lemma 6. Algorithm SingleEdgBHSAgent(), ensures that in the worst
case, every node in G is explored by either a1 or a2 until it either enters the
black hole or detects it.

Observation 8. Algorithm SingleEdgeBHSLeader(), ensures that
LEADER does not enter the black hole.

Lemma 7. In the worst case, a1 and a2 executing algorithm SingleEdgBH-
SAgent(), enters black hole in O(n2) rounds.

Lemma 8. Let us consider, the agents a1 or a2 enter the black hole at round r
while executing SingleEdgeBHSAgent(), then the LEADER following Sin-
gleEdgeBHSLeader() detects the black hole node in r + O(n2) rounds.

Lemma 9. The LEADER following the algorithm SingleEdgeBHS
Leader() correctly locates the black hole position.
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Proof. We discuss all possible scenarios that can occur while executing the algo-
rithm SingleEdgeBHSLeader().

a1 enters black hole at u during cautious walk: In this case, if the edge
e = (u, v) between LEADER and a1 is missing, then LEADER waits at
v until e reappears. Meanwhile, a2 is performing pendulum walk, and since
there is at most one dynamic edge at any round, hence a2 will eventually
reach u, i.e., enter the black hole from an alternate path. Now, in this case,
the LEADER after waiting 2(lengtha2

+ 1 + La2) rounds, concludes that
a2 has entered black hole. The conclusion is indeed correct, as one end of
the edge which is missing, is occupied by the LEADER and the other end
contains the black hole. Since there is at most one dynamic edge in G at any
round. So, a2 faces no obstruction while exploring the graph, until it enters
the black hole. Hence, within 2(lengtha2

+ 1 + La2) rounds a2 otherwise will
have reported back to LEADER.

a1 enters black hole during pendulum walk: a1 which is initially performing
cautious walk, then performs pendulum walk for two reasons.

a2 fails to report: This situation arises when a1 is initially performing cau-
tious walk with LEADER, and a2 which is performing pendulum walk, fails
to report. In this scenario, the LEADER instructs a1 to perform pendulum
walk, while it moves towards a2 following Pa2 and PLa2 for La2 + lengtha2

+1
round. Now we have two possibilities: first, a2 is found and second a2 is not
found. If a2 is found, then it is instructed to either perform cautious or pendu-
lum walk, based on the fact that there is a forward missing edge or not. Now,
in this situation, since a1 has entered the black hole and fails to report, then
LEADER moves towards a1 while instructing a2 to perform pendulum walk.
If the LEADER does not find the edge missing corresponding to the last vis-
ited port of a1, then it concludes that a1 has entered the black hole. Otherwise,
if LEADER gets stuck at a node v due to a missing edge e = (u, v), then it
remains stationary, and while a2 will either get stuck at u or eventually enter
black hole. So, ultimately a2 also fails to report and LEADER not knowing
the reason behind a2’s failure to report, moves towards a2 leaving the node v.
If a2 is found, i.e., it got stuck at u then it correctly concludes a1 has entered
the black hole, whereas if LEADER encounters another missing edge while
moving towards a2, then after waiting for an additional 2(La1 + lengtha2

+1)
round, it correctly concludes a1 has entered the black hole, as otherwise, a1

will have reported to LEADER. Otherwise, if a2 is not found, and there is
no missing edge, then also LEADER correctly concludes that a2 has entered
the black hole, as otherwise, a2 will have reported back to LEADER.

a1 and a2 both performs pendulum walk : This situation has arised because
a2 initially stopped reporting due to a missing edge, while a1 is perform-
ing cautious walk. Now, as LEADER moves towards a2 it instructs a1 to
change its movement to pendulum walk. Moreover, it finds a2 and the edge
has not reappeared, in this situation, a2 is further instructed to continue pen-
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dulum walk whereas LEADER remains stationary at one end of the missing
edge. If both a1 and a2 fail to return, then LEADER identifies at least one
among them has entered the black hole. It is because, LEADER holds one
end of the missing edge, and at most one agent may be stuck at the other
end, whereas the remaining agent must return if it has not entered the black
hole. So, LEADER moves towards the last reported agent a1 (say w.l.o.g).
If a1 is not found and there is no edge that is missing in the forward direc-
tion, then LEADER correctly identifies the black hole position. Otherwise, if
LEADER finds a missing edge along its path towards a1 and then it further
waits for 2(lengtha2

+1+La2) rounds, within which if a2 also fails to return,
then LEADER concludes a2 has entered the black hole. Since LEADER has
moved towards a1 and encountered a missing edge, this implies that the ear-
lier missing edge has reappeared. Hence, a2 has no other obstruction towards
LEADER, if it is originally stuck due to the earlier missing edge.

The explanation is similar when a2 enters the black hole while performing either
cautious or pendulum walk. So, we have shown that in each case the LEADER
correctly determines the black hole location. �	
Theorem 9. The agent following algorithms SingleEdgeBHSAgent() and
SingleEdgeBHSLeader(), correctly locates the black hole in a dynamic cactus
graph G with at most one dynamic edge at any round with O(n2) moves and in
O(n2) rounds.

4.2 Black Hole Search in Presence of Multiple Dynamic Edges

In this section, we present a black hole search algorithm MultiEdgeBHS()
for the agents, where the underlying cactus graph can have at most k dynamic
edges, such that the underlying graph remains connected. A team of 2k+3 agents,
A = {a1, · · · , a2k+3} executes MultiEdgeBHS(), where they start from a safe
node also termed as home. Next, we define the content of information that can
be present on a whiteboard.

Whiteboard: For each node v ∈ G, a whiteboard is maintained with a list of
information for each port of v. For each port j, where j ∈ {0, · · · , deg(v) − 1},
an ordered tuple (g1(j), g2(j)) is stored on the whiteboard. The function g1 is
defined to be exactly the same as the function f in Sect. 4.1. On the other hand,
the function g2 is defined as follows, g2 : {0, . . . , deg(v) − 1} → {⊥, 0, 1},

g2(j) =

⎧
⎪⎨

⎪⎩

⊥, if an agent is yet to visit the port j

0, if no agent has returned to the node v along j

1, otherwise

Each agent performs a t-Increasing-DFS [10], where the movement of each
agent can be divided into two types explore and trace:
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– In explore, an agent performs either cautious walk or pebble walk depending
on the situation.

– In trace, an agent walks along the safe ports of a node v, i.e., all such port
j ∈ v with g2(j) = 1.

Our algorithm MultiEdgeBHS() requires no LEADER, unlike our previous
algorithms in Sect. 4.1. In this case, each agent executes their operations, based
on the whiteboard information they gather at each node.

Next, we give a detailed description of the algorithm MultiEdgeBHS().

Outline of Algorithm: The team of agents A = {a1, . . . , a2k+3} are initially
located at a safe node, termed as home. Initially, the whiteboard entry corre-
sponding to each port at each node in G is (⊥,⊥). The lowest Id agent present
at home, i.e., a1 decides to perform cautious walk. At the first round, it chooses
the 0-th port and if the edge corresponding to 0-th port exists, then it moves
along it to an adjacent node v while updating (g1(0), g2(0)) at home from (⊥,⊥)
to (0 ◦ a1, 0). Now, if v is safe, and the edge (home, v) exists then it returns to
home at the second round, while updating g2(0) at home to 1, i.e., marking the
edge (home, v) as safe. Further, if at the third round the edge (home, v) exists,
then a1 accompanies A\{a1} to v while updating g1(0) = g1(0) ◦ A′, where
A′ = {a2, · · · , a2k+3}. Otherwise, if the edge disappears at the second round,
then a1 and a2 remains at v and home, respectively until the edge reappears,
whereas the remaining agent continues to perform their respective movement.

Consider a scenario where the edge (home, v) disappears at the third round
when all the A agents are at home. In this case, a1 remains at home until the
edge reappears, whereas the remaining agents continue to perform cautious walk
along the other available ports. Whenever the edge reappears, suppose at r-th
round, then it starts pebble walk. The movement of a1 performing pebble walk is
as follows: at r + 1-th round a1 moves to v, further the agent moves as follows:

– If there exists a port i at v with g2(i) = 0, and the edge exists, then at the
r+2-th round a1 stays at v. If no agent returns along i-th port at the r+2-th
round, a1 concludes that the node w.r.to the port i is the black hole node.
Otherwise, if an agent aj returns (for some j > 1), then both a1 and aj start
cautious walk. Moreover, if the edge does not exist, and there is no other
agent at v waiting for the missing i-th port, then a1 waits until the edge
reappears. Otherwise, if there is already an agent waiting, then a1 decides to
move from v to some adjacent node or backtrack based on the available ports
at v.

– If there exists a port i with g2(i) = ⊥, then at r + 2-th round, a1 chooses
that port and moves to the adjacent node (if the edge exists) while updating
(g1(i), g2(i)) to (0 ◦ a1, 0).

– If each port at v is having its g2() value as 1, then at r + 2-th round a1

backtracks to home, if (home, v) exists, otherwise stays at v until the edge
reappears.

In general, whenever multiple agents meet at a node, they start cautious
movement. Moreover, when a single agent waiting for a dynamic edge reappears,
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then it starts pebble walk. In addition, whenever an agent finds a port i at some
node in G with g2(i) = 0 and the edge exists, then after waiting for a round if
no agent returns via the port i, then it concludes the adjacent node w.r.to i is
the black hole node.

Correctness and Complexity: In this section we analyze the correctness and
complexity of our algorithm MultiEdgeBHS().

Lemma 10. Given a dynamic cactus graph G with at most k dynamic edges at
any round r. Our algorithm, MultiEdgeBHS() ensures that at most 2 agents
are stuck due to a dynamic edge at any round.

Lemma 11. In the worst case at most 2 agents are consumed by a black hole,
while the agents are following the algorithm MultiEdgeBHS().

Lemma 12. Our algorithm MultiEdgeBHS() ensures that no agent enters
an infinite cycle.

Lemma 13. MultiEdgeBHS() ensures that any agent that is not stuck due
to a missing edge can explore the remaining graph until it either enters the black
hole or detects it.

Theorem 10. Given a dynamic cactus graph G with at most k dynamic edges
at any round. Our algorithm MultiEdgeBHS() ensures that it requires at most
2k + 3 agents to successfully locate the black hole position.

Theorem 11. The team of agents A = {a1, a2, · · · , a2k+3} following Multi-
EdgeBHS(), locates the black hole in a dynamic cactus graph G with at most k
dynamic edges at any round with O(kn) rounds and in O(k2n) moves.

5 Conclusion

In this paper, we studied the black hole search problem in a dynamic cactus
for two types of dynamicity. We propose algorithms and lower bound and upper
bound complexities in terms of a number of agents, rounds and moves in each
case of dynamicity. First, we studied at most one dynamic edge case, where we
showed with 2 agents it is impossible to find the black hole, and designed a black
hole search algorithm for 3 agents. Our algorithm is tight in terms of number of
agents. Second, we studied the case when at most k edges are dynamic. In this
case, also we propose a black hole search algorithm with 2k + 3 agents. Further,
we propose that it is impossible to find the black hole with k + 1 agents in this
scenario. A future work is to design an algorithm that has a tight bound in
terms of a number of agents when the underlying graph has at most k dynamic
edges. Further, it will be interesting to find an optimal algorithm in terms of
complexity in both cases of dynamicity.
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Abstract. An H-graph is an intersection graph of connected subgraphs
of a suitable subdivision of a fixed graph H. Many important classes of
graphs can be expressed as H-graphs, and in particular, every graph is
an H-graph for a suitable graph H. An H-graph is called proper if it
has a representation where no subgraph properly contains another. We
consider the recognition and isomorphism problems for proper U -graphs
where U is a unicyclic graph, i.e. a graph which contains exactly one
cycle. We prove that testing whether a graph is a (proper) U -graph, for
some U , is NP-hard. On the positive side, we give an FPT -time recog-
nition algorithm for a fixed U , parameterized by |U |. As an application,
we obtain an FPT -time isomorphism algorithm for proper U -graphs,
parameterized by |U |. To complement this, we prove that the isomor-
phism problem for (proper) H-graphs is GI -complete for every fixed H
which is not unicyclic nor a tree.

Keywords: H-graph · recognition · isomorphism · FPT -time

1 Introduction

The concept of H-graphs was introduced originally by Biró, Hujter and Tuza in
1992 [6]. This notion generalizes and relates to many important classes of graphs
that are well-known in the literature, for instance, interval graphs, circular-arc
graphs, and chordal graphs.

A graph G has an H-representation if G can be represented as an intersection
graph of connected subgraphs of the graph H, i.e., if each vertex of G can be
assigned a connected subgraph of H such that two subgraphs intersect if and
only if the corresponding vertices are adjacent. A subdivision of H is a graph
obtained by replacing any edge of H by an induced path of arbitrary length.
Then, G is an H-graph if there is a subdivision H ′ of H such that G has an
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H ′-representation. In this language, interval graphs are K2-graphs, circular-arc
graphs are K3-graphs, and chordal graphs are the union of all T -graphs, where
T runs through all trees.

The study of H-graphs was revived in [9] after partially answering the open
question posed by Biró, Hujter and Tuza: What is the complexity of testing
whether a given graph is an H-graph for a fixed H? In particular, the recognition
problem is NP-complete if H contains the diamond graph as a minor, and when
H is a tree, XP-time algorithms were given parameterized by the size of H.

There are several variations of the recognition problem that are relevant for
H-graphs. Firstly, both the graph G and the graph H can be a part of the input
and the question is whether G is an H-graph. This problem is NP-complete even
for chordal graphs and for the case when H is a tree [18]. Another variation is
when the input is a graph G and the graph H is fixed – this is the question
asked by Biró, Hujter, and Tuza. Further, we consider a third variant. To that
end, let H be a class of graphs. By H-graphs, we mean the class of graphs G
for which there exists a graph H ∈ H such that G is an H-graph. For instance,
if T is the class of all trees, then T -graphs are exactly all chordal graphs [16].
The recognition problem for H-graphs, has a graph G on the input and asks
whether there is an H ∈ H such that G is an H-graph. In the case of T -graphs,
the problem is well-known and solvable in polynomial time [16,23].

Two graphs G and H are called isomorphic, denoted by G � H, if there
exists a bijection f from V (G) to V (H) such that {u, v} ∈ E(G) if and only if
{f(u), f(v)} ∈ E(H). The graph isomorphism problem is to determine whether
two graphs are isomorphic, and a problem is called GI-complete if it can be
reduced to the graph isomorphism problem in polynomial time. Considering H-
graphs, the isomorphism problem is GI -complete for (proper) Sd-graphs where
Sd is a star with d rays when d is a part of the input. This extends to (proper)
H-graphs when H is a tree or a unicyclic graph, and it can be solved in FPT -
time for all H-graphs when H contains no cycle, parameterized by the size of H
[1–3,5].

Our Results. Lately, there has been a noticeable interest towards H-graphs
concerning the recognition and isomorphism problems [1–6,8–10,15,18]. In this
paper, we aim to advance this research further considering two special types
of H-graphs. Let G be an H-graph and R be an H-representation of G. R is
called proper if no representing subgraph in R contains another, and Helly if the
common intersection of all subgraphs in R representing the vertices of each clique
in G is non-empty. Then, G is a proper (resp. Helly) H-graph if it has a proper
(resp. Helly) H-representation. We focus on the parameterized complexity of
the recognition and isomorphism problems on proper U -graphs where U is a
unicyclic graph.

– In Sect. 2, we show that the recognition problem is NP-hard on U-graphs and
proper U-graphs, where U is the class of all unicyclic graphs.

– Sections 3 and 4 deal with proper U -graph recognition for a fixed unicyclic
graph U . In Sect. 3, we show that chordal proper U -graphs and proper Helly
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U -graphs can be recognized in FPT -time. Section 4 extends this result to all
proper U -graphs.

– Section 5 and 6 deal with the isomorphism problem. In Sect. 5, we show that
the isomorphism of proper U -graphs can be tested in FPT -time. Section 6
complements this by showing that (proper) H-graph isomorphism is GI -
complete if H is not unicyclic.

Preliminaries. Let U be the fixed unicyclic graph that contains exactly one
cycle, and several paths and trees connected to this cycle, and its order |U | be
our parameter. We call the unique cycle and the vertices of U the “circle” and
“nodes” not to be confused with the cycles and vertices of a U -graph, respec-
tively.

An interval graph is the intersection graph of a set of intervals on the real
line. Both the recognition and isomorphism problems can be solved in linear
time on interval graphs [7] and proper interval graphs [11,17].

A circular-arc graph is the intersection graph of a set of arcs around a circle.
Circular-arc graphs can be recognized in linear time [22] and it was announced
that they can be tested for isomorphism in polynomial time [19]. Moreover, both
the recognition and isomorphism problems are linear time solvable on proper
circular-arc graphs [11,12]. Therefore, we assume that U �= K3 since K3-graphs
are circular-arc graphs.

Consider a particular U -representation R and a clique C of a U -graph G.
Then, C is called Helly in R if all vertices of C mutually intersect at some point
of U in R, and otherwise, non-Helly. By definition, the size of a non-Helly clique
is at least 3. A U -graph is Helly (resp. non-Helly) if it has some (resp. no) U -
representation where all its cliques are Helly. Note that non-Helly circular-arc
graphs may have exponentially many maximal cliques which do not correspond
to the points of the circle [21]. We also call such cliques of proper U -graphs
around the unique circle of U non-Helly. It is known that Helly circular-arc
graphs can be recognized and tested for isomorphism in linear time [11,20].

A graph is called chordal if it contains no hole, i.e. an induced cycle of length
at least 4. They can be recognized in linear time [23] while their isomorphism is
GI-complete [25], i.e. “as hard as” the isomorphism of general graphs that is nei-
ther known to be solvable in polynomial time nor NP-complete. They are equiva-
lently defined as the intersection graphs of subtrees of a suitable tree T [16]. With
T on the input, T -graph recognition is NP-complete [18] and T -graph isomor-
phism is GI -complete [25]. However, when T is fixed, T -graph recognition can
be solved in XP-time [9] and T -graph isomorphism can be solved in FPT -time
[1,10]. On proper T -graphs, both the recognition and the isomorphism problems
are solvable in FPT -time [5,8]. Therefore, we also assume that U �= T for any
tree T .

2 NP-Hardness of (Proper) U-Graph Recognition

In this section, we show that the recognition problem is NP-hard for U-graphs
and proper U-graphs where U is the class of unicyclic graphs. A hypergraph is a
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graph where an edge, called a hyperedge, can join more than two vertices. If every
edge of a hypergraph X joins k vertices, then X is called k-uniform. Hypergraph
c-coloring is the problem of assigning one of c pre-given colors to each vertex
such that every hyperedge joins vertices of at least two different colors.

We define the problem HellyCliquesCARC(G; C) as follows: Given a
circular-arc graph G and a set C of cliques of G, decide if there exists a circular-
arc representation of G such that all cliques in C are Helly. The 2-coloring prob-
lem for 3-uniform hypergraphs was shown to be NP-hard [14], and we reduce it
to the HellyCliquesCARC(G; C) problem and give the following.

Lemma 1. The problem HellyCliquesCARC(G; C) is NP-hard even if we
restrict to circular-arc graphs that are the complements of perfect matchings for
which every circular-arc representation is proper.

Using Lemma 1, we get the following.

Corollary 2. The recognition problem is NP-complete for U-graphs and proper
U-graphs where U is the class of all unicyclic graphs.

3 Recognizing Chordal Proper and Proper Helly
U -Graphs

In this section, we give two FPT -procedures to decide whether i) a given chordal
graph G is a proper U -graph, and ii) a given graph G is a proper Helly U -
graph. We refer to the maximal cliques of G placed on the branching nodes (i.e.,
the nodes of degree at least 3) of U as the branching cliques. In a proper U -
representation of G (if G is a proper U -graph), it is known that every branching
clique can be extended to a maximal clique [9].

We first consider the case when the input graph G is chordal. It is known
that chordal graphs can be recognized in linear time and they have linearly many
maximal cliques which can be listed in linear time [23]. Therefore, given a graph
that is chordal, we can list its set of maximal cliques efficiently. Among these
maximal cliques, our aim is to identify a bounded number of maximal cliques
which can exclusively be placed on the branching nodes of the circle in FPT -time
parameterized by |U |. The following was proven in [5].

Lemma 3 [5, Lemma 7.3]. Given a proper T -graph G for a fixed tree T , one
can identify a set of maximal cliques of G that can be used as branching cliques
in a proper T -representation of G in FPT-time, and its size is O(|T |2).

Building upon Lemma 3, we get the following.

Lemma 4. Given a proper U -graph G with polynomially many maximal cliques
for a fixed unicyclic graph U , one can identify an isomorphism-invariant set C
of cliques that contains all maximal cliques placed on the branching nodes of U
in some proper U -representation of G in FPT-time, and its size is O(|U |3).
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We call this set of maximal cliques rich cliques. Since their number in proper
U -graphs is bounded, we can try all assignments of them to the branching nodes
on the circle of U in FPT -time. Given a graph G, we assume the following:

A1. G is not a proper U1-graph for some subgraph or minor U1 of U since
the number of subgraphs and minors of U is bounded and we can apply
Procedure 5 to test if G is a proper U1-graph for each such U1.

A2. G is connected due to two facts. Firstly, every component of a disconnected
proper U -graph without a rich clique forms an interval graph. Thus, all of
them can be placed on an edge incident to a leaf of U . Secondly, the number
of rich cliques, thus the components carrying a rich clique is bounded, and
we can try all possible assignments of such components to the subgraphs
of U .

Procedure 5. Given a connected chordal graph G on n vertices and a fixed
unicyclic graph U , we decide whether G is a proper U -graph as follows:

1. Let B be the branching nodes on the circle of U , and deg(B) be the sum of
degrees of nodes of U in B.

2. Find the set C of rich cliques of G. If |C| < |B|, or |C| is not bounded by
O(|U |3), return that G is not a proper U -graph.

3. Looping through each assignment f : C → B:
(a) Let Cf denote the branching cliques placed on the circle of U , and X

denote the (connected) components of G − Cf .
(b) If there are more than deg(B)−|B| components in X , move on to another

assignment.
(c) For each branching node bi ∈ B:

i. For every bt ∈ B, let Ct ⊆ Cf denote the clique placed on bt w.r.t. f .
ii. Let P denote the maximal induced subgraph of the circle of U con-

taining bi and every bj ∈ B such that Ci ∩ Cj �= ∅.
iii. If P does not contain at least one branching node bj:

– Let Y � U denote the maximal connected subtree of U which
contain only P from the circle.

– Let Y∗ be the union of the branching cliques and the components
placed on Y , and additionally the components Xk and Xl placed
on the edges next to the ends of P on the circle if they exist.

– If G[Y∗] is not a proper Y -graph, move on to another assignment.
iv. Else if P is a circle and no component in X is placed on P :

– Let D ⊆ Cf denote the set of branching cliques which have mini-
mal intersections with Ci by vertex inclusion.

– If more than two branching cliques in D have distinct intersections
with Ci, move on to another assignment.

– If no pair of branching cliques in D is placed on consecutive
branching nodes on P , move on to another assignment.

– Let {bj , bj+1} ∈ B be any pair of consecutive branching nodes
such that Cl ∩ Ci � Ck ∩ Ci for all bk appearing on the path
between bi and bl not passing through bl′ where l ∈ {j, j + 1} and
l′ = {j, j + 1} \ l.
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– Let e be the edge between bj and bj+1, Y = U−e be the maximally
connected subtree of U which contains P − e from the circle, and
Y∗ = G − (Cj ∩ Cj+1).

– If G[Y∗] is a proper Y -graph, return that G is a proper U -graph.
Otherwise, move on to another assignment.

v. Else, P is a circle and some components in X are placed on P :
– If there exist more than one such component, move on to another

assignment.
– Let Xk ∈ X be that unique component placed on the edge e of P

between the branching nodes bj and bj+1.
– Let Y = U − e denote the maximal connected subtree of U which

contains only P − e from the circle.
– Let Y∗ be the union of the branching cliques and the compo-

nents placed on Y , and additionally two copies of Xk one with its
attachment in Cj and the other with its attachment in Cj+1.

– If G[Y∗] is a proper Y -graph and G[Cj ∪ Xk ∪ Cj+1] is a proper
interval graph, return that G is a proper U -graph. Otherwise,
move on to another assignment.

(d) Return that G is a proper U -graph.
4. Return that G is not a proper U -graph.

We first give the following sequence of statements to prove that Procedure 5
correctly decides whether a given chordal graph is a proper U -graph in FPT -time
(Fig. 1).

Fig. 1. (a), (b) and (c) illustrate the Step iii, iv and v of Procedure 5, respectively.

Lemma 6. Let G be a connected proper U -graph and Cf be the set of maximal
cliques placed on the branching nodes on the circle of U in some proper U -
representation of G. Then, G − Cf has at most deg(B) − |B| components.

Lemma 7. Let G be a connected chordal proper U -graph. In the setting of Pro-
cedure 5:
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1. If the assignment f results in a proper U -representation of G, then every
G[Y∗] in Step iii is a proper Y -graph for the obtained tree Y .

2. If there exists no G[Y∗] obtained from Step iv or v, then the application of
Step iii for distinct branching nodes in B correctly tests if G has a proper
U -representation with respect to f .

Lemma 8. Consider a connected chordal proper U -graph G in the setting of
Procedure 5. Assume that the maximal cliques in Cf can be placed on the branch-
ing nodes of the circle of U in some proper U -representation of G. If P is as
defined in Step iv, then the following hold:

1. There exist at most two distinct minimal intersections with Ci.
2. At least two such maximal cliques are placed on consecutive nodes in B.

Proof. Assume that Ci ∩Cj and Ci ∩Ck are distinct minimal intersections with
Ci by inclusion of the vertices, and also for Cl ∈ Cf , Ci ∩ Cl is another distinct
minimal intersection with Ci. Since G is a connected proper U -graph, the induced
subgraph of G placed on the circle of U forms a circular-arc graph and its cliques
have a circular ordering. However, Ci ∩ Cm �= ∅ for all Cm �= Ci ∈ Cf in Step
iv, thus the existence of at least three distinct minimal intersections with Ci

means that the induced subgraph of G placed on the circle of U does not form
a circular-arc graph which means that there are at most two maximal cliques
Cj �= Ck ∈ Cf which have distinct minimal intersections with Ci. In addition,
due to the connectedness of G, and again since the induced subgraph of G placed
on the circle of U forms a circular-arc graph, there exists at least one pair of
maximal cliques Cj and Ck placed on consecutive nodes of B. 
�

Lemma 9. Considering a connected chordal proper U -graph G and the assign-
ment f in the setting of Procedure 5, if there is more than one component of X
placed on P , then G does not have a proper U -representation with respect to f .

Proof. Assume that f results in a proper U -representation of G but there exists
another component Xl of X placed on an edge of P other than e as every edge
of a proper U -representation carries at most one component [5]. However, since
P is a circle, every maximal clique in Cf shares a vertex in common with Ci

but then, Xl can not be represented properly. Thus, G can not have a proper
U -representation with respect to f . 
�

Lemma 10. Considering a connected chordal graph G and the assignment f in
the setting of Procedure 5, Steps iv and v correctly test whether G is a proper
U -graph with respect to f .

Theorem 11. Proper chordal U -graphs can be recognized in FPT-time.

Since all maximal cliques of graphs with polynomially many maximal cliques
can be listed in polynomial time [24], we obtain the following.

Theorem 12. One can decide whether an input graph with polynomially many
maximal cliques is a proper U -graph in FPT-time parameterized by |U |.
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We now focus on the recognition problem for proper Helly U -graphs, i.e.
proper U -graphs which have at least one proper U -representation such that all
cliques are Helly. It has been shown that every (proper) Helly H-graph G has
at most |H| + |E(H)| · |G| maximal cliques which is linear on the order of the
input graph G [9]. Recall that all maximal cliques of graphs with polynomially
many maximal cliques can be listed in polynomial time [24]. With the same
assumptions, we modify Procedure 5 to decide whether a given graph G is a
proper Helly U -graphs as follows:

1. Before Step 1, we start listing the maximal cliques of G using the algorithm
of [24]. If the listing procedure outputs at least 1 + |U | + |E(U)| · |G| maximal
cliques, stop the enumeration and return that G is not a proper Helly U -
graph.

2. In Step 2, we only consider the assignments f such that G[Cf ] is a Helly
circular-arc graph tested using the algorithm of [20].

3. We return that G is a proper Helly U -graph or not analogous to Procedure 5.

Theorem 13. Proper Helly U -graphs can be recognized in FPT-time.

4 Recognizing Proper U -Graphs in General

In this section, we assume that the input graphs do not have polynomially many
maximal cliques since otherwise we can use Procedure 5 by Theorem 12. There-
fore, we assume that the input graph is not a proper Helly U -graph and not a
chordal graph. Given a graph G, we make use of the following observations:

– If G is a proper U -graph but not Helly, every proper U -representation of
G contains a non-Helly clique C. Since T -graphs satisfy the Helly prop-
erty, C (along with all such cliques) must be placed on the circle in
every U -representation. As being non-Helly may depend on a particular U -
representation, we aim to identify the set of non-Helly clique vertices, i.e.
the vertices belonging to the cliques that are non-Helly in all proper U -
representations.

– If G is not chordal, it contains at least one “hole”, i.e. an induced cycle L
of length at least 4. Since T -graphs are chordal, L (along with all holes in
G) must be placed on the circle in every U -representation if G is a (proper)
U -graph. Hence, our goal is to identify the set of all vertices contained in the
holes, referred as the set of hole vertices.

– The set of all vertices that are placed completely outside of the circle of U
in a proper U -representation forms a (possibly disconnected) chordal graph.
Here, the term “completely on” S ⊆ U means that a vertex v is represented
with some subgraph of (a subdivision of) S. Conversely, if v is placed “outside
of” S ⊆ U , it is represented with some subgraph of (a subdivision of) U \ S.

We first give the following lemma which provides i) an upper bound on the
length of every hole L of a proper U -graph which is placed completely on the
circle of U , and ii) an upper bound on the length of any hole L.
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Lemma 14. Let G be a proper U -graph that is not Helly nor chordal. In a
proper U -representation of G, the length of a hole that is placed completely on
the circle of U is at most 6, and the length of any hole is linearly bounded in |U |.

Note that in proper Helly U -graphs, the length of holes is not bounded since
they do not contain non-Helly cliques. However, they can be recognized in FPT -
time by Theorem 11. On the other hand, one can identify all holes of proper
U -graphs by brute-force in XP-time by testing all d-tuples of vertices for 4 ≤
d ≤ |U | by Lemma 14 and we will show how to compute them in FPT -time.

Recall that a dominating edge of a circular-arc graph is an edge covering the
whole circle and having two disconnected intersections. Considering a proper
U -graph G, we focus on the dominating edges around the circle of U which may
not form dominating edges in G. We refer to the union of end-vertices of all
dominating edges covering the circle of U as the set of dominating edge vertices.

Lemma 15. Let L be a hole and VL be the set of hole vertices of a proper U -
graph G.

1. If G is not chordal and not a proper Helly U -graph, one can identify the set
of non-Helly clique vertices of G in polynomial time given VL.

2. One can in polynomial time identify the set of dominating edge ver-
tices given VL.

3. If v is a vertex of G adjacent to at least 3 vertices of L, v must be placed (not
necessarily completely) on the circle of U in every (proper) U -representation.

We give the following procedure to obtain the set V (L) of hole vertices,
and the possibly empty set V (R) of revealed vertices. Informally, the revealed
vertices do not appear in any hole but also must be represented (not necessarily
completely) on the circle of U due to their neighborhoods in V (L) if G is a
proper U -graph.

Procedure 16. Given a connected graph G which is not chordal, we identify
the sets V (L) and V (R) ⊆ V (G) \ V (L) of hole and revealed vertices as follows:

1. Let V (L) and V (R) be the initially empty sets of hole and revealed vertices
of G, respectively.

2. For each u ∈ V (G) and each pair of its neighbors v �= w ∈ NG(v) such that
{v, w} /∈ E(G):

– Identify the shortest path P between v and w in G−(NG[u]\{v, w}) using
Dijkstra’s algorithm [13]. If P �= ∅, V (L) ← V (L) ∪ V (P ) ∪ {u, v, w}.

3. For each vertex u ∈ V (G) \ V (L):
– If u has at least three neighbors in V (L) forming an induced path in

G, then V (R) ← V (R) ∪ u. This can be checked by identifying whether
there exist three distinct vertices v, w, x ∈ (NG[u] \ u) ∩ V (L) forming an
induced path of length 2 in G.

4. Return V (L) and V (R) as the sets of hole and revealed vertices, respectively.

Lemma 17. Procedure 16 correctly identifies the set V (L) of hole vertices and
the set V (R) of revealed vertices in polynomial time.
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Proof. The correctness and complexity of identifying the set V (L) of hole vertices
depends on the Dijkstra’s algorithm [13], and greedily checking the neighborhood
of each vertex of G. We now prove that V (R) is indeed a revealed set. It is clear
that V (R) can be computed in polynomial time. Since only the consecutive
vertices of holes are connected by an edge, each vertex u having at least three
neighbors v, w, x ∈ V (L) appearing as an induced path in G has to be placed
on the circle by Lemma 15. Also, if u has more that three such neighbors, some
triple among them still form an induced path of length 2, and therefore, it is
sufficient to check all three neighbors of u in polynomial time. 
�

Note that since U is unicyclic, every vertex found using Procedure 16 lies on
the circle of U in every proper U -representation if the input is a proper U -graph.

Lemma 18. For a connected proper U -graph G, consider the following sets:

– VL and VR: The sets of hole and revealed vertices found using Procedure 16.
– VC : The union of sets of non-Helly clique vertices and dominating edge ver-

tices found using Lemma 15 given VL ∪ VR.

Then, G[VL ∪ VR ∪ VC ] is a circular-arc graph with fixed cyclic ordering.

Proof. As G is a proper U -graph, the vertices in VL ∪ VR must be placed (not
necessarily completely) on the circle of U by Lemma 17, and VC must be placed
(not necessarily completely) on the circle of U since every T -graph satisfies the
Helly property for a tree T , both G[VL∪VR] and G[VL∪VR∪VC ] form circular-arc
graphs. In addition, the cyclic order of G[VL ∪ VR] is fixed (up to reversal) since
VL only contains the vertices of holes and VR only contains the vertices which
neighbors in VL form induced paths. Since, holes and induced paths have fixed
circular orderings, G[VL ∪ VR] has a fixed circular ordering. Also, each vertex of
VC has neighbors in VL ∪ VR which have a fixed ordering in G[VL ∪ VR]. This
also means that G[VL ∪ VR ∪ VC ] has a fixed circular ordering. 
�

We introduce the following notion that helps in recognizing proper U -graphs.

Definition 19. Let VL, VR and VC be as in the setting of Lemma 18 for a
connected graph G. Let X be the set of components in G − (VL ∪ VR ∪ VC) such
that |X | ≤ |U | and each component of X has at most two upper attachments
in G[VL ∪ VR ∪ VC ]. Let F be the family of all those upper attachments of the
components in X . Let B be the branching nodes on the circle of U . We call a
partition of X into subsets X1, . . . ,X|B| a Helly partition if the following hold:

a) For every pair 1 ≤ i < j ≤ |B|, it holds that Xi ∩ Xj = ∅.
b) For each 1 ≤ i ≤ |B|, Xi contains at most deg(bi)−2 components with exactly

1 upper attachment where deg(bi) denotes the degree of bi ∈ B.
c) Let F1, . . . ,F|B| be the subfamilies of F such that for every 1 ≤ i ≤ |B|,

Fi consists of exactly 1 upper attachment of each component Xj ∈ Xi with
respect to the fixed cyclic order of G[VL ∪ VR].

d) For each bi ∈ B, it holds that |Xi| = |Fi| ≤ deg(bi).
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e) The union CFi
of all vertices of G contained in each Fi forms a clique in G.

f) The circular-arc graph G[VL ∪ VR ∪ VC ] has a circular-ones property with
CF1 , . . . , CF|B| appearing in this order.

g) For every pair 1 ≤ i �= j ≤ |B|, there exists no Xk ∈ Xi such that any of the
(at most 2) upper attachments of Xk has an intersection with CFj

which is a
strict superset of the intersection of the upper attachment of some Xl ∈ Xj.

Lemma 20. There are at most (|U | + 4)|U | Helly partitions of X into dis-
tinct choices of subfamilies F1, . . . ,F|B| and they can be computed in FPT-time
(Fig. 2).

Fig. 2. After the sets described in Lemma 18 are found, teal and orange components
are obtained without their deterministic placements on U . Teal components have two
upper attachments, marked with blue stars, and must be placed on the circle of U .
Conversely, orange components have one upper attachment, marked with red stars,
and can not be placed on the circle of U . (Color figure online)

We now give Procedure 21 to recognize general proper U -graphs.

Procedure 21. Given a connected graph G on n vertices and a fixed unicyclic
graph U , we decide whether G is a proper U -graph as follows:

1. If G is chordal, then run Procedure 5 and return its output.
2. Check whether G is a proper Helly U -graph using Procedure 5 with Theo-

rem 13. If it returns that G is a proper Helly U -graph, return its output.
3. Using Procedure 16, find the sets VL and VR of hole and revealed vertices, resp.
4. Using Lemma 15, given the set VL ∪VR, identify the union VC of sets of non-

Helly clique vertices and dominating edge vertices. If G[VL ∪ VR ∪ VC ] is not
a circular-arc graph, return that G is not a proper U -graph by Lemma 18.

5. Find the set X of components of G− (VL ∪VR ∪VC). If X has more than |U |
components, return that G is not a proper U -graph.

6. Identify the upper attachments of each component of X in G[VL ∪ VL ∪ VC ]
with respect to the fixed cyclic order of G[VL ∪ VR]. If there is a component
with at least 3 upper attachments, return that G is not a proper U -graph.

7. Every component in X has at most 2 upper attachments. Let B denote the
branching nodes on the circle of U , deg(B) be the sum of degrees of nodes
in B and F be the family of all upper attachments. If there are more than
deg(B) such attachments in F , return that G is not a proper U -graph.
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8. Compute all Helly partitions of X into X1, . . . ,X|B|, and the (possi-
bly maximal) cliques {CF1 , . . . , CF|B|} for distinct choices of subfamilies
{F1, . . . ,F|B|}.

9. For each partition X1, . . . ,X|B| and choice of subfamilies of F , use Procedure 5
from Step (a) with Cf = {CF1 , . . . , CF|B|} and the components X of G − Cf .
(a) If Procedure 5 returns that G is a proper U -graph, return its output.

10. Return that G is not a proper U -graph.

Lemma 22. One can in FPT-time identify a set of (maximal) Helly cliques in
Step 8 of Procedure 21 if the input graph has (such) a proper U -representation.

We shortly mention that the proof of Lemma 22 follows from the bound on
the number of components. Thus, we get the following.

Theorem 23. Proper U -graph recognition is in FPT parameterized by |U |.

5 Isomorphism Testing for Proper U -Graphs

In this section, we show how to test proper U -graph isomorphism in FPT -time
parameterized by |U |. We assume connectedness since there are polynomially
many pairs of connected components if we are given disconnected graphs, and
utilize Procedure 5 and Procedure 21 considering the same assumptions given
on the corresponding sections. We first modify Procedure 5 as follows:

1. On the input, we are given two connected proper U -graphs G1 and G2 on n
vertices which are both chordal or proper Helly U -graphs, along with U .

2. Let Ci be the isomorphism invariant set of rich cliques of Gi for i ∈ {1, 2} by
Lemma 4. In Step 2, we check whether |C1| = |C2| holds.

3. Using Procedure 5, we fix a proper U -representation of G1 where f : C1 → B
denotes the assignment of branching cliques on the circle. Let Cf

1 ⊆ C1 be
those cliques and Ci

1 be the maximal clique of Cf
1 placed on the branching

node bi ∈ B in the current assignment f .
4. We denote each assignment C2 → B by g, and consider those g that match to

f as being in Step iii, iv and v of Procedure 5. Thus, P is the same for both
graphs in every step. Let Cg

2 ⊆ C2 be the branching cliques on the circle w.r.t.
g, and Ci

2 be the maximal clique of Cg
2 placed on the branching node bi ∈ B

in the current assignment g. We require that |Ci
1| = |Ci

2| for every bi ∈ B.
5. For each branching node bi of U , we compute the subtree Y1 � U and the

graph Y∗
1 obtained by G1 as in Procedure 5. Let Y2 � U be the corresponding

subtree for G2 and Y∗
2 be the graph obtained by G2 w.r.t. the assignment g.

6. We first check whether Y1 � Y2, and instead of checking for proper Y -graph
recognition, we test whether G1[Y∗

1 ] � G2[Y∗
2 ] using the proper Y -graph

isomorphism testing for the tree Y1 � Y2 given in [5].
7. In Step iv, we additionally check if |C1

j ∩ C1
j+1| = |C2

j ∩ C2
j+1|.

8. In Step v, we check whether the defined interval graphs are isomorphic proper
interval graphs using the algorithm given in [7].
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9. We return either G1 � G2 or G1 �� G2 analogous to Procedure 5.

Theorem 24. The above modifications to Procedure 5 result in a correct FPT-
time isomorphism testing for chordal proper and proper Helly U -graphs.

With analogous modifications to Procedure 21, we get the following.

Theorem 25. Proper U -graph isomorphism can be tested in FPT-time.

6 GI -Completeness for H-Graphs and Proper H-Graphs

In this section, we prove that if H is not unicyclic nor a tree, then proper
H-graph isomorphism is GI-complete. Since the class of proper H-graphs is a
subclass of H-graphs for every H, this also implies the GI -completeness of H-
graph isomorphism in general. The key is the following theorem where B denotes
the 5-vertex graph consisting of two triangles intersecting at exactly one vertex.

Theorem 26. Proper B-graph isomorphism is GI-complete.

Note that if a graph H is a minor of a graph H ′, then every H-graph is
an H ′-graph. Clearly, every B-graph can be represented as a D-graph where D
denotes the diamond graph, i.e. K4 minus one edge. This immediately gives the
following.

Corollary 27. If H is not unicyclic nor a tree, then the isomorphism problem
for the class of all proper H-graphs and the class of all H-graphs is GI-complete.

To prove Theorem 26, we give the following lemmas.

Lemma 28. If G is a disjoint union of stars, then its complement G is a proper
circular-arc graph.

From a connected graph G = (V,E), we construct a new graph G∗ as follows:

1. Let G′ = (V ∪ Vi, E
′) and G′′ = (V ∪ Vi ∪ Vj , E

′′) be the graphs resulting
from subdividing each edge of G and G′, respectively.

2. Let G′′′ be the graph obtained from G′′ by adding all edges between V and Vi.
3. Finally, we set the graph G∗ to be the complement of G′′′.

Lemma 29. Let G be a connected graph. Then, G∗ is a proper B-graph.

Lemma 30. Let G1 and G2 be connected graphs with minimum degree at least
three. Then, G1 and G2 are isomorphic if and only if G∗

1 and G∗
2 are isomorphic.

Proof of Theorem 26. G1
∗ can be constructed from G1 in polynomial time, and

by Lemma 29, G1
∗ is a proper B-graph. Clearly, the isomorphism problem for the

class of all graphs with minimum degree three is GI -complete, and by Lemma 30,
G1 and G2 with minimum degree three are isomorphic if and only if G1

∗ � G2
∗.

It follows that proper B-graph isomorphism is GI -complete. 
�



Recognition and Isomorphism of Proper H-Graphs for Unicyclic H in FPT 317

7 Conclusions

We have shown that proper U-graph recognition is NP-hard where U is the
class of all unicyclic graphs, and proper H-graph isomorphism is GI -complete
when H is not unicyclic nor a tree. For a fixed U , we gave FPT -procedures to
recognize and test the isomorphism of proper U -graphs parameterized by |U |.
What remains to be shown is how to solve the same problems in FPT -time for
general U -graphs.

Acknowledgments. We would like to thank Steven Chaplick and Petr Hliněný for
their helpful ideas concerning the hardness results.
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Abstract. It is well known that almost all graphs are canonizable by a
simple combinatorial routine known as color refinement. With high prob-
ability, this method assigns a unique label to each vertex of a random
input graph and, hence, it is applicable only to asymmetric graphs. The
strength of combinatorial refinement techniques becomes a subtle issue if
the input graphs are highly symmetric. We prove that the combination
of color refinement with vertex individualization produces a canonical
labeling for almost all circulant digraphs (Cayley digraphs of a cyclic
group). To our best knowledge, this is the first application of combina-
torial refinement in the realm of vertex-transitive graphs. Remarkably,
we do not even need the full power of the color refinement algorithm.
We show that the canonical label of a vertex v can be obtained just by
counting walks of each length from v to an individualized vertex.

1 Introduction

As it is well known, the graph isomorphism problem is very efficiently solvable
in the average case by a simple combinatorial method known as color refinement
(also degree refinement or naive vertex classification). When a random graph Gn

on n vertices is taken as an input, this algorithm produces a canonical labeling
of all vertices in Gn by coloring them initially by their degrees and then by
refining the color classes as follows: Two equally colored vertices u and v get
new distinct colors if one of the initial colors occurs in the neighborhoods of u
and v with different multiplicity. In this way, every vertex gets a unique color
with probability 1−O(n−1/7) (Babai, Erdős, and Selkow [4]). Thus, the method
produces a canonical labeling for almost all graphs on a fixed set of n vertices.

This approach is not applicable to regular graphs, even with many refinement
rounds, because if all vertices have the same degree, then the refinement step
makes obviously no further vertex separation. Weisfeiler and Leman [33] came
up with a more powerful refinement algorithm which colors pairs of vertices
instead of single vertices. The idea can be lifted to k-tuples of vertices, for each
integer parameter k, and the general approach is referred to as the k-dimensional
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Weisfeiler-Leman algorithm, abbreviated as k-WL. Thus, 2-WL is the original
algorithm in [33], and 1-WL corresponds to color refinement. Remarkably, 2-WL
is powerful enough to produce a canonical labeling for almost all regular graphs
of a given vertex degree (Bollobás [8]; see also [23]).

Further restriction of regular input graphs to vertex-transitive graphs is chal-
lenging for combinatorial refinement because no vertex classification is at all
possible in this case. Indeed, 2-WL assigns the same color to any two vertices
u and v because u is mapped to v by an automorphism of the graph. The
same holds for any dimension k. In fact, the Cai-Fürer-Immerman construc-
tion [10] of non-isomorphic graphs Xk and Yk indistinguishable by k-WL can be
modified so that these graphs become vertex-transitive [17]. A natural way to
enhance combinatorial refinement is to combine it with vertex individualization
[25]. This algorithmic approach proves to be advantageous in many contexts (see,
e.g., [3]) but still cannot overcome the obstacle posed by the CFI graphs. Indeed,
(k + k′)-WL supersedes any combination of k-WL with prior individualization
of k′ vertices. As a consequence, isomorphism of vertex-transitive graphs cannot
be solved by a constant-dimensional WL algorithm even under individualization
of any constant number of vertices.

Motivated by the question of whether or not these basic obstacles persist
in the average case setting, we focus in this paper on Cayley graphs and, more
specifically, on circulant graphs, that is, Cayley graphs of a cyclic group. While
the canonization problem for this class of graphs is known to be solvable in poly-
nomial time [16] by advanced algebraic methods, it is an open question whether
this can be done by using k-WL for some dimension k; see [30]. This poses an
ongoing challenge for the combinatorial refinement method, especially because
the research on isomorphism of circulant graphs has a long history with many
deep results (see [2,16,27,28] and the references therein) and because k-WL
with small dimension k is known to be applicable to many other natural graph
classes (like, e.g., planar graphs [21]). The recent paper [22] investigates the
round complexity of 2-WL on circulant graphs, exploiting the close connections
of the subject with intricate mathematical concepts. Circulant graphs are also
interesting on their own right as they naturally appear and are intensively inves-
tigated in many other theoretical and applied areas; see, e.g., the books [9,12,14].
After all, our primary motivation for the study of circulant graphs is that this is
the most natural first choice of a graph class for benchmarking of combinatorial
refinement in the realm of vertex-transitive graphs.

Our goal is to show that the individualization-refinement approach can be
used to canonize almost all circulants at minimal computational costs. Our treat-
ment covers also circulant directed graphs, which is advantageous for expository
purposes as the case of digraphs is technically somewhat simpler. We show that
the individualization of a single vertex suffices for random circulant digraphs,
and that two individualized vertices are enough in the undirected case (in fact,
we just perform color refinement twice, each time with a single individualized
vertex). In both the directed and the undirected cases we keep the overall running
time within O(n2 log n), which is the standard running time of color refinement
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[11]. This is possible due to the fact that our input graphs are vertex-transitive
and, hence, it does not actually matter which one of the vertices is individual-
ized. Here, n denotes the number of vertices. Thus, our time bound is actually
linearithmic, that is, it is O(N log N) for the input length N where the input
(di)graph is presented by the adjacency matrix and the cyclic structure is not
explicitly given (see below the discussion of different representation concepts).
Note also that, as one can expect, our average-case bound O(n2 log n) is sub-
stantially better than the worst-case bound resulting from [16]. We summarize
our main result in a somewhat condensed form as follows.

Theorem 1. A uniformly distributed random circulant (di)graph is with proba-
bility at least 1−n−1/2+o(1) canonizable by color refinement combined with vertex
individualization in running time O(n2 log n).

Theorem 1 includes two statements, one for undirected graphs (where all
undirected circulant graphs are equiprobable) and the similar statement for
directed graphs. Note that the concept of a uniform distribution of n-vertex
circulants is somewhat ambiguous as the notion of an n-vertex circulant alone
can be defined in three different natural ways:

– as a Cayley (di)graph of the cyclic group Zn,
– as an isomorphism class of Cayley (di)graphs of Zn (which we call an unlabeled

circulant),
– as a (di)graph on the vertex set {0, 1, . . . , n − 1} isomorphic to a Cayley

(di)graph of Zn (which we call a labeled circulant).

We prove Theorem 1 first for random Cayley (di)graphs and then extend it to
the other two concepts. The transition from one distribution to another is quite
general and is based on known results in algebraic graph theory [7,13,27].

Remarkably, we show that canonization of a random circulant does not even
need the full power of color refinement and can actually be accomplished by
a weaker algorithmic tool. Let G be an arbitrary (di)graph on the vertex set
V = {0, 1, . . . , n−1}, and let T ⊆ V . The walk matrix WT = (wij)i,j∈V is defined
by setting wij to be the number of walks of length j from the vertex i to a vertex
in T . If A is the adjacency matrix of G and χT denotes the characteristic vector
of the subset T , then WT is formed by the columns χT , AχT , A2χT , . . . , An−1χT .
The theory of walk matrices, including their applicability to isomorphism testing,
has been developed by Godsil [18] and by Liu and Siemons [24]. Let GT be
obtained from G by coloring all vertices in T by the same color. We call GT

walk-discrete if the rows of WT are pairwise different. For any walk-discrete GT ,
the walk matrix WT yields a canonical labeling of the vertices of GT . This purely
algebraic canonization method can be superseded by the purely combinatorial
method of color refinement because if wuj �= wvj for some j, then color refinement
assigns distinct colors to the vertices u and v in GT (see Sect. 2.1 for details).

Let W = WV be the standard walk matrix of G = GV . Obviously, G is
walk-discrete whenever W is non-singular. Noteworthy, the rank of W for an
undirected graph G is equal to the number of different main eigenvalues of the
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adjacency matrix A; see [19]. As shown by O’Rourke and Touri [29], a random
undirected graph Gn has non-singular walk matrix with high probability. As a
consequence, Gn is with high probability canonizable by computing its standard
walk matrix.

The above theory essentially exploits the fact that the adjacency matrices of
undirected graphs are symmetric and, by this reason, does not apply to directed
graphs. Nevertheless, we obtain the following spectral criterion for circulant
digraphs.

Lemma 2. Let X be a Cayley digraph of a cyclic group and X0 = X{0} be its
version with one individualized vertex. Let W0 be the walk matrix of X0. Then
W0 is non-singular (implying that X0 is walk-discrete) if and only if X has
simple spectrum, that is, all eigenvalues of X are pairwise distinct.

Suppose now that X is an undirected Cayley graph of Zn. In this case, the
map x �→ (−x) mod n is an automorphism of X0, which implies that the walk
matrix of X0 has at most �(n + 1)/2� different rows. If this bound is achieved,
we call X0 walk-saturated. As we will show, this property is sufficient for efficient
canonization of X. On the other hand, the spectrum of X has at most �(n+1)/2�
different eigenvalues. If there are exactly so many eigenvalues, we say that X has
saturated spectrum. We have the following analog of Lemma 2 for the undirected
case.

Lemma 3. Let X be a Cayley graph of the cyclic group Zn. Then W0 has the
maximum possible rank �(n + 1)/2� (implying that X0 is walk-saturated) if and
only if X has saturated spectrum.

Lemmas 2 and 3 imply that the walk matrix can be used for canonization
of a circulant whenever it has simple (for digraphs) or saturated (for graphs)
spectrum. The following theorem, therefore, estimates the probability that this
canonization method is successful on a random circulant.

Theorem 4.

1. A uniformly distributed random Cayley digraph of Zn has simple spectrum
with probability at least 1 − n−1/2+o(1).

2. A uniformly distributed random Cayley graph of Zn has saturated spectrum
with probability at least 1 − n−1/2+o(1).

Theorem 1 follows from Theorem 4 on the account of Lemmas 2 and 3.
Theorem 4 is our main technical contribution, which can be of independent
interest in the context of the research on random circulant matrices [9,26].

The paper is organized as follows. A detailed description of our canonical
labeling algorithm is given in Sect. 2. Lemmas 2 and 3 are proved in Sect. 3, where
they are restated as Lemma 7. The proofs of Theorems 4 and 1 are presented in
Sects. 4 and 5 respectively.
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2 The Walk Matrix and Color Refinement

2.1 Definitions and a Relationship

Speaking of a directed graph or, for short, digraph G = (V,E), we always assume
that G is loopless, that is, the adjacency relation E ⊂ V 2 is irreflexive. Without
loss of generality we suppose that G is defined on the vertex set V = {0, 1, . . . , n−
1}. If E is symmetric, G is referred to as an (undirected) graph. The definitions
given below for digraphs apply, as a special case, also to graphs.

For t ∈ V , we write Gt to denote the digraph G with distinguished ver-
tex t. The vertex t is called terminal or individualized. We consider Gt to be
a vertex-colored digraph where all vertices are equally colored with the excep-
tion of t which has a special color. An isomorphism from Gt to another vertex-
individualized digraph Hu is defined as a digraph isomorphism from G to H
taking t to u.

A walk in G is a sequence of vertices x0x1 . . . xk such that (xi, xi+1) ∈ E for
every 0 ≤ i < k. We say that x0x1 . . . xk is a walk of length k from x0 to xk.
Note that a one-element sequence x0 is a walk of length 0. Given a digraph Gt

with terminal vertex t, we define its walk matrix Wt = (wx,k)0≤x,k<n by setting
wx,k to be the number of walks of length k from x to t. Let

Wt(x) = (wx,0, wx,1, . . . wx,n−1)

be the row of Wt corresponding to the vertex x. If φ is an isomorphism from Gt

to Hu, then clearly Wu(φ(x)) = Wt(x). This means that Wt(x) can be used as a
canonical label for a vertex x in Gt. We call Gt walk-discrete if Wt(x) �= Wt(x′)
for all x �= x′. Thus, the walk matrix yields a canonical labeling for the class of
walk-discrete digraphs with an individualized vertex.

As it was mentioned in Sect. 1, the walk matrix is efficiently computable
by linear algebraic operations. For walk-discrete digraphs, the corresponding
canonical labeling can also be obtained combinatorially by the color refinement
algorithm (CR). Let C0 be the initial coloring of Gt, that is, C0(x) = C0(x′) and
C0(x) �= C0(t) for all x �= t and x′ �= t. CR iteratively computes new colorings

Ci+1(x) =
(
Ci(x), {{Ci(y)}}y∈N(x)

)
,

where {{}} denotes a multiset and N(x) = {y : (x, y) ∈ E} is the out-
neighborhood of x. The color classes of Ci+1 refine the color classes of Ci. As
soon as the color partition stabilizes, CR terminates and outputs the current
coloring at that point. To prevent the exponential increase of the color encod-
ing, the colors are renamed after each refinement step (we never need more than
n color names). A relationship between CR and the walk counts was observed
in [31]. We use the following adaptation of this result for our purposes.

Lemma 5. If wx,k �= wx′,k, then Ck(x) �= Ck(x′).
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Proof. Using the induction on k, we prove that wx,k = wx′,k whenever Ck(x) =
Ck(x′). In the base case of k = 0, the equalities wx,0 = wx′,0 and C0(x) = C0(x′)
are equivalent by definition. Assume that Ck(y) = Ck(y′) implies wy,k = wy′,k for
all y and y′. Let Ck+1(x) = Ck+1(x′). By the definition of the refinement step,
we have {{Ck(y)}}y∈N(x) = {{Ck(y)}}y∈N(x′). Using the induction assumption,
from here we derive the equality {{wy,k}}y∈N(x) = {{wy,k}}y∈N(x′). The equality
wx,k+1 = wx′,k+1 now follows by noting that wx,k+1 =

∑
y∈N(x) wy,k. ��

Lemma 5 shows that a canonical labeling of a walk-discrete digraph Gt can
be obtained by running CR on Gt rather than by directly computing the walk
matrix. Recall that CR can be implemented in time O(n2 log n) [6,11,20].

2.2 Cayley Graphs of a Cyclic Group

Let Zn denote a cyclic group of order n. More specifically, we let Zn = {0, 1, . . . ,
n− 1} and consider the addition modulo n on this set. The Cayley digraph X =
Cay(Zn, S) is defined by a connection set S ⊆ Zn\{0} as follows: V (X) = Zn

and (x, y) ∈ E(X) if and only if y − x ∈ S. Note that S = N(0), the out-
neighborhood of 0. If S is inverse-closed, i.e., S = −S, then E(X) is symmetric
and we speak of a Cayley graph. Cayley (di)graphs of Zn are also called circulant
(di)graphs or circulants.

For u ∈ Zn, let Xu be the vertex-individualized version of X. Since X is
vertex-transitive, all Xu are isomorphic to each other, and we can speak about
X0 without loss of generality. Clearly, in order to canonize X, it is sufficient
to canonize X0. Therefore, the canonization method in the preceding subsection
applies to any Cayley digraph X = Cay(Zn, S) provided that X0 is walk-discrete.
We just have to individualize an arbitrary vertex of X and then run CR.

This method does not work for circulant graphs. Indeed, define ρ : Zn → Zn

by ρ(x) = −x. If S = −S, then ρ is an automorphism of X = Cay(Zn, S) and,
hence, W0(ρ(x)) = W0(x). This implies that the walk matrix W0 has at most
�(n + 1)/2� different rows, and X0 cannot be walk-discrete. If this maximum is
attained, we call X0 walk-saturated.

Lemma 6. Let X = Cay(Zn, S), where S = −S, and suppose that X0 is walk-
saturated. Fix u �= 0 such that u �= n/2 if n is even. Then

(W0(x),Wu(x)) �= (W0(y),Wu(y))

for any two different vertices x and y of X.

Proof. Since X0 is walk-saturated, the equality W0(x) = W0(y) for x �= y is
possible only if y = ρ(x), i.e., y = −x in Zn. Note that Wu(x) = W0(x − u).
Therefore, the equality Wu(x) = Wu(y) implies that y = 2u − x. The equalities
y = −x and y = 2u − x can be fulfilled simultaneously only if 2u = 0, which is
excluded. ��
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Lemma 6 justifies the correctness of the following algorithm for the class of
walk-saturated circulant graphs.

Canonical labeling algorithm

Input: a circulant graph X.

1. Individualize an arbitrary vertex of X. By vertex-transitivity, we can without
loss of generality assume that the individualized vertex is 0.

2. Run CR on X0. Let C be the obtained coloring of the vertex set.
3. Let c be the lexicographically least color such that there are exactly two

vertices u1 and u2 with C(u1) = C(u2) = c. If such c does not exist, then
give up. Let u be any of u1 and u2. Individualize u in X.

4. Run CR on Xu. Let C ′ be the obtained coloring.
5. To each vertex x, assign the label L(x) = (C(x), C ′(x)).
6. Check that all labels L(x) are pairwise distinct. If not, then give up.

For each circulant input graph, our canonization algorithm either produces
a vertex labeling L or explicitly gives up (doing always the same for isomorphic
inputs). The labeling L is canonical because it does not depend on which ver-
tex is individualized in Step 1 (by vertex-transitivity) nor in Step 3 (because
u1 and u2 are interchangeable by an automorphism of X0). Lemma 6 ensures
that the algorithm succeeds whenever X0 is walk-saturated, and this will allow
us to estimate the success probability based on Lemma 3 (cf. Lemma 7) and
Theorem 4.

Finally, we remark that if the algorithm is run on a non-circulant input graph
and outputs a vertex labeling, then this labeling does not need to be canonical. To
make it canonical in all cases, Steps 1 and 3 have to be performed for all possible
individualized vertices, which can yield 2n different labelings L1, . . . , L2n. Of all
these candidate labelings, the algorithm chooses that which yields the isomorphic
copy of X with lexicographically least adjacency matrix. The running time of
this algorithm variant is O(n3 log n). The similar modification is as well possible
in the case of digraphs.

3 The Walk Matrix and the Spectrum of Circulants

3.1 The Spectrum of a Circulant

Let A = (aij) be the adjacency matrix of a circulant digraph X, that is, A is the
0–1 matrix whose rows and columns are indexed by the elements 0, 1, . . . , n − 1
of Zn such that aij = 1 exactly when (i, j) ∈ E(X), that is, j − i ∈ S. Note that
A is a circulant matrix, which means that the (i + 1)-th row of A is obtained
from its i-th row by the cyclic shift in one element to the right.

Let ω be an n-th root of unity, i.e., ω ∈ C and ωn = 1. For the vector
Vω = (1, ω, ω2, . . . , ωn−1)�, the definition of a circulant matrix easily implies
the equality

AVω =
(
a0 + a1ω + a2ω

2 + · · · + an−1ω
n−1

)
Vω =

⎛
⎝∑

j∈S

ωj

⎞
⎠ Vω,
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where (a0, a1, a2, . . . , an−1) is the first row of A, that is, the characteristic vector
of S ⊂ Zn. We conclude that Vω is an eigenvector of A corresponding to the
eigenvalue λω,S =

∑
j∈S ωj .

Now, let ω = ζn be a primitive n-th root of unity. To be specific, we fix
ζn = e−2πi/n. The n vector-columns Vω for ω = ζ0n, ζ1n, ζ2n, . . . , ζn−1

n form a Van-
dermonde matrix with non-zero determinant. It follows that these n vectors are
linearly independent and, therefore, λζ0

n,S , λζ1
n,S , . . . , λζn−1

n ,S is the full spectrum
of A. The i-th eigenvalue in this sequence will be denoted by

λi,S =
∑
j∈S

ζij
n . (1)

3.2 Discrete Fourier Transform

Let CZn denote the vector space of all functions from Zn to the field of complex
numbers C with pointwise addition and pointwise scalar multiplication. The
pointwise multiplication on C

Zn will be denoted by ◦. Another way to introduce
a product on C

Zn is to consider the convolution α ∗ β of two functions α, β :
Zn → C, which is defined by (α ∗ β)(x) =

∑
y∈Zn

α(x − y)β(y) for each x ∈ Zn.
Both ◦ and ∗ are bilinear and, therefore, both (CZn , ◦) and (CZn , ∗) are n-
dimensional algebras over C. The algebra (CZn , ∗) can alternatively be seen as
the group algebra of Zn over C and, as such, it is semisimple by Maschke’s
theorem; see, e.g., [15, Section 7.1]. Like any two n-dimensional commutative
semisimple C-algebras, the algebras (CZn , ∗) and (CZn , ◦) are isomorphic (see
[15, Corollary 2.4.2]). We now describe an explicit algebra isomorphism from
(CZn , ∗) to (CZn , ◦).

For T ⊆ Zn, let χT ∈ C
Zn be the characteristic function of T . In particular,

χZn
is the identically one function. For x ∈ Zn, we set δx = χ{x}.

For α : Zn → C, define α̂ : Zn → C by

α̂(i) =
n−1∑
j=0

ζij
n α(j). (2)

The discrete Fourier transform (DFT) is the linear operator F : CZn → C
Zn

defined by F(α) = α̂. In the standard basis δ0, δ1, . . . , δn−1, the DFT is rep-
resented by the matrix F = (ζij

n )i,j∈Zn
. Since F is the familiar Vandermonde

matrix with non-zero determinant, the map F is a linear isomorphism from C
Zn

onto itself. It is well known and easy to derive from the definitions that

F(α ∗ β) = F(α) ◦ F(β). (3)

3.3 The Rank of the Walk Matrix

An obvious sufficient condition for a digraph X0 to be walk-discrete is the non-
singularity of its walk matrix W0. In the case of Cayley graphs X = Cay(Zn, S),
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this observation has the following analog: The vertex-individualized graph X0

is walk-saturated whenever its walk matrix W0 has maximum possible rank
�(n + 1)/2�. In both cases, the condition that W0 has maximum possible rank
admits a spectral criterion.

Recall that an n × n matrix has simple spectrum if all n of its eigenvalues
are pairwise distinct. In the case of an undirected graph X = Cay(Zn, S), where
S = −S, Equality (1) implies that λa,S = λb,S for a �= b whenever a + b = n. If
the eigenvalues of A are unequal otherwise, that is, A has �(n + 1)/2� distinct
eigenvalues, then we say that X has saturated spectrum (i.e., λi has multiplicity
1 if i = 0 or if n is even and i = n/2, and multiplicity 2 otherwise).

Lemma 7. Let X = Cay(Zn, S) and W0 be the walk matrix of X0.

1. rk W0 = n if and only if X has simple spectrum.
2. Let S = −S. Then rkW0 = �(n+1)/2� if and only if X has saturated spectrum.

Proof. 1. A vector-column (a0, a1, . . . , an−1)� will be identified in a natural way
with the function α ∈ C

Zn such that α(x) = ax for x ∈ Zn. In this way, the
columns of the walk matrix W0 correspond to the functions η0, η1, . . . , ηn−1 where
ηk(x) = wx,k. Thus, the rank of W0 is equal to the dimension of the linear
subspace U of CZn spanned by these functions.

Note that

ηk+1(x) =
∑

y∈N(x)

ηk(y) =
∑

y∈Zn

χS(y − x)ηk(y)

=
∑

y∈Zn

χ−S(x − y)ηk(y) = (χ−S ∗ ηk)(x).

It follows that η0 = δ0, η1 = χ−S , η2 = χ−S ∗ χ−S and, generally, ηk = χ
∗(k)
−S

is the (k − 1)-fold convolution of k copies of the characteristic function χ−S of
the set −S.

Let us apply the discrete Fourier transform F . Note that F(δ0) is the all-ones
vector. As easily seen from (1) and (2), F(χ−S) is the vector whose entries are the
eigenvalues λ0,−S , λ1,−S , . . . , λn−1,−S of X ′ = Cay(Zn,−S), the transpose of the
digraph X where all arcs are reversed. If X ′ has at least two equal eigenvalues,
then Equality (3) readily implies that, seen as vectors, F(η0),F(η1), . . . ,F(ηn−1)
have a common pair of equal coordinates. Therefore, dimU = dim F(U) ≤ n−1.

Conversely, suppose that all eigenvalues of X ′ are pairwise distinct.
Recall that F(U) contains the vectors F(δ0) = (1, 1, . . . , 1)� and F(χS) =
(λ0,−S , λ1,−S , . . . , λn−1,−S)�. By (3), F(U) contains also the vectors F(χ∗(k)

S ) =(
(λ0,−S)k, (λ1,−S)k, . . . , (λn−1,−S)k

)� for all k < n. These n vectors form a Van-
dermonde matrix, which is non-degenerate because all λi,−S are pairwise distinct.
It follows that dimU = dimF(U) = n.

We have shown that rkW0 = n exactly when the transpose digraph X ′ has
simple spectrum. It remains to note that the spectra of X and X ′ are simulta-
neously simple or not. This follows from (1) by applying the automorphism of
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the cyclotomic field Q(ζn) from the Galois group Aut(Q(ζn)/Q) mapping ζn to
ζ−1
n (and fixing Q).1

2. This part is proved by virtually the same argument (which is even some-
what simpler because we do not need to consider the transpose of X). ��

4 Proof of Theorem 4

We set ζn = e−2πi/n. As discussed in Subsect. 3.1, a circulant X = Cay(Zn, S)
has eigenvalues λ0, λ1, . . . , λn−1 where

λa =
∑
j∈S

ζaj
n =

n−1∑
j=0

χS(j)ζaj
n .

Let σj = χS(j). If X is a random digraph, i.e., the connection set S is chosen
uniformly at random among all subsets of Zn\{0}, then σ1, σ2, . . . , σn−1 is a
Bernoulli process, that is, these n − 1 random variables are independent and
identically distributed with σj taking each of the values 0 and 1 with probability
1/2. If X is a random graph, i.e., the connection set S = −S is chosen randomly
among all inverse-closed subsets, the values σ1, σ2, . . . , σ�n/2	 form a Bernoulli
process, and the remaining values are determined by the equality σj = σn−j .
For each a = 0, 1, . . . , n − 1, the eigenvalue

λa =
n−1∑
j=1

σjζ
aj
n (4)

becomes a random variable taking its values in the cyclotomic field Q(ζn).
We will use the following observation. As usually, φ(n) stands for Euler’s

totient function.

Lemma 8. No two different subsets of {ζj
n : 1 ≤ j ≤ n/ ln n} have equal sums

of their elements.

Proof. The known lower bounds for φ(n) (see, e.g., [5]) imply that φ(n) > n/ ln n
for n ≥ 3. The existence of such subsets would therefore yield a non-trivial linear
combinations with rational coefficient of 1, ζn, ζ2n, . . . , ζ

φ(n)−1
n , contradicting the

fact that these numbers form a basis of Q(ζn) considered as a vector space over Q.
��

Our overall strategy for proving Theorem 4 will be to use the union bound

P[λa = λb for some 0 ≤ a, b ≤ n − 1] ≤
∑

0≤a,b≤n−1

P[λa = λb]

1 Recall that Q(ζn) is obtained by adjoining ζn to the field of rationals Q. In other
words, this is the smallest subfield of C containing Q and ζn.
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and to show that the right hand side is bounded by n−1/2+o(1). The summation
goes through the pairs of unequal a and b, which in the undirected case also have
to satisfy the condition a + b �= n. We split the set of all such pairs a, b in three
classes P1, P2, P3 and prove that

∑
(a,b)∈P�

P[λa −λb = 0] is sufficiently small for
each  = 1, 2, 3. To define the sets P1, P2, P3, let us introduce some notation.

Given an integer a, let

g(a) = n/ gcd (a, n) and a′ = a/ gcd (a, n).

Note that
ζaj
n = ζa′j

g(a). (5)

The integers a′ and g(a) are coprime, and we set r = (a′)−1 mod g(a).
Furthermore, let g = g(a) and ξ = ζg. Since ξ is a g-th primitive root of

unity, the g − 1 numbers

ξ = ζar
n , ξ2 = ζ2ar

n , . . . , ξg−1 = ζ(g−1)ar
n (6)

(where the equalities are due to (5)) are pairwise distinct. It is useful to note that
they appear in the right hand side of (4) for the g−1 indices j = r, 2r, . . . , (g−1)r,
which are understood modulo n.

Given another integer b, set η = ζbr
n and note that the g − 1 numbers (where

g = g(a) as defined above)

η = ζbr
n , η2 = ζ2br

n , . . . , ηg−1 = ζ(g−1)br
n (7)

appear in the same places in the corresponding expression for λb. Let h = g(b).
Considering a pair of different a and b, we will always assume without loss

of generality that g ≥ h. Let g′ = g′(a, b) be the minimum positive integer such
that ηg′

= 1. Note that g′ ≤ h ≤ g. Thus, the number of different numbers in
the sequence (7) is equal to g′ if g′ < g and to g′ − 1 if g′ = g.

Note that η �= ξ. Otherwise we would have ζar
n = ζbr

n and h = g. By (5), this
would imply ζa′r

g = ζb′r
g and, as a consequence, a′ = b′ and a = b.

Let ε > 0 be an arbitrarily small constant. Once this parameter is fixed, n
will be supposed to be sufficiently large. We divide the set of all pairs a, b into
three parts P1, P2, P3 and, correspondingly, split our analysis into three cases.
We give a detailed argument for digraphs (Part 1 of the theorem), which with
minor changes works also for graphs (Part 2). We comment on these changes in
the end of the proof.

Case 1: P1 = {(a, b) : g ≥ n10ε and g′ ≥ nε}. Note that η �= 1 for else g′ = 1.
For the argument arg(z) of a complex number z, we suppose that arg(z) ∈ [0, 2π).
Note that arg(η) > arg(ξ) because η �= ξ and g(b) ≤ g. We claim that there exists
s such that 1 ≤ s ≤ ln10 n and

either arg(ηs) < 2π/ ln10 n or arg(η−s) < 2π/ ln10 n.

Indeed, there exist s1 and s2 such that 1 ≤ s1 < s2 ≤ ln10 n ≤ g′ and the
distance between ηs2 and ηs1 in the circle {z ∈ C : |z| = 1} is at most 2π/ ln10 n
and non-zero. We can take s = s2 − s1.



330 O. Verbitsky and M. Zhukovskii

We now consider three subcases. If arg(η−s) < 2π/ ln10 n, then we set K ={
s, 2s, . . . , �ln2 n�s}. Note that
{
arg(ξk)

}
k∈K

⊂ (0, 2π/ ln8 n) and
{
arg(ηk)

}
k∈K

⊂ (2π − 2π/ ln8 n, 2π), (8)

which also implies {
ξk

}
k∈K

∩ {
ηk

}
k∈K

= ∅. (9)

The second case we consider is that arg(ηs) < 2π/ ln10 n and ηs �= ξs. As easily
seen, there exists a subset K ⊂ {s, 2s, . . . , �ln2 n�s} of size at least �ln2 n�/2
such that, while

{
arg(ξk)

}
k∈K

⊂ (0, 2π/ ln8 n) and
{
arg(ηk)

}
k∈K

⊂ (0, 2π/ ln8 n), (10)

Equality (9) holds anyway.
We now show that in the above two cases the equality λa = λb, i.e.,

n−1∑
j=1

σjζ
aj
n =

n−1∑
j=1

σjζ
bj
n (11)

has small probability. Let us expose the values of all random variables σj except-
ing σkr with k ∈ K (recall that the indices are considered modulo n). Equality
(11) can now be written as

c1 +
∑
k∈K

σkrξ
k = c2 +

∑
k∈K

σkrη
k

for some constants c1 and c2. In other words, we estimate the probability of the
event that for a random subset K ′ ⊆ K the random variable

∑
k∈K′(ξk − ηk)

is equal to a fixed number. Consider two different subsets K1,K2 ⊆ K. The
equality ∑

k∈K1

(ξk − ηk) =
∑

k∈K2

(ξk − ηk)

is equivalent to ∑
k∈K1

ξk +
∑

k∈K2

ηk =
∑

k∈K2

ξk +
∑

k∈K1

ηk, (12)

which is impossible due to (9) and Lemma 8. Lemma 8 is applicable due to (8)
and (10) (in the former case, both sides of (12) have to be multiplied by ζt

n for a
small t). We conclude that λa = λb with probability at most 2−|K| = n−Θ(lnn).

There remains the case that arg(ηs) < 2π/ ln10 n and ηs = ξs. Consider the
complex numbers ηks+1 − ξks+1 for 0 ≤ k ≤ ln2 n. Their absolute values are
equal as |ηks+1 − ξks+1| = |ξks(η − ξ)| = |η − ξ|. Moreover, these numbers are
pairwise different and close to each other in the circle {z ∈ C : |z| = |η − ξ|}
because

∣∣arg(ηks+1 − ξks+1) − arg(η(k−1)s+1 − ξ(k−1)s+1)
∣∣

=
∣∣arg(ξks(η − ξ)) − arg(ξ(k−1)s(η − ξ))

∣∣ = s arg(ξ) ≤ 2π

ln10 n
.
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In order to estimate the probability of (11), let us expose all random variables
σj excepting σ(ks+1)r with 0 ≤ k ≤ ln2 n. Lemma 8 implies that there is at
most one assignment of the unexposed variables satisfying (11). This yields the
probability bound n−Θ(lnn). We conclude that

∑
(a,b)∈P1

P[λa = λb] = |P1|n−Θ(lnn) = n−Θ(lnn).

Case 2: P2 = {(a, b) : g < n10ε}. Let J = {j < n : ζaj
n = ξ}. Note that

|J | = n
g > n1−10ε. Moreover, J contains a subset J ′ ⊆ J of size |J ′| ≥ |J |/h >

n1−20ε such that the numbers ζbj
n for all j ∈ J ′ are equal to the same h-th root

of unity η′. If h < g, then clearly ξ �= η′. If h = g, then we have η′ = η and,
hence, ξ �= η′ as well.

Let us expose all random variables σj except those for j ∈ J ′. Equality (11)
then implies that

∑
j∈J ′ σj = c for a constant c. The probability of the last event

is bounded by
( |J ′|
�|J ′|/2	

)
2−|J ′| = O(|J ′|−1/2) = O(n−1/2+10ε).

We now estimate the number of pairs (a, b) in P2. Recall that a = gcd (a, n)a′,
where a′ ≤ n/ gcd (a, n) = g < n10ε. The factor gcd (a, n) of a can be chosen
in at most d(n) ways, where d(n) denotes the total number of divisors of n. It
is known [1, Theorem 13.12] that d(n) = nO(1/ ln lnn). Since there are less than
n10ε possibilities to choose the factor a′, the element a can be chosen in at most
n11ε ways, and the same holds true as well for b. It follows that |P2| ≤ n22ε, and
we conclude that

∑
(a,b)∈P2

P[λa = λb] = O(|P2|n−1/2+10ε) = O(n−1/2+32ε).

Case 3: P3 = {(a, b) : g ≥ n10ε while g′ < nε}. Set m to be the largest
integer such for the corresponding element of the sequence (6) we have arg(ξm) <
2π/ ln2 n. Let J = {r, 2r, . . . ,mr}. Note that |J | = m ≥ n8ε. Moreover, J
contains a subset J ′ ⊆ J of size |J ′| ≥ |J |/g′ > n7ε such that the numbers ζbj

n

for all j ∈ J ′ are equal to the same h-th root of unity η′.
Let us expose all σj except for j ∈ J ′. By Chernoff’s bound, we have

1
2 |J ′| − |J ′|2/3 <

∑
j∈J ′ σj < 1

2 |J ′| + |J ′|2/3 with probability no less than
1 − 2 exp(−|J ′|1/3) > 1 − exp(−nε). Consider the event (11) conditioned on∑

j∈J ′ σj = m for a fixed integer m such that 1
2 |J ′|−|J ′|2/3 < m < 1

2 |J ′|+|J ′|2/3.
Lemma 8 implies that Equality (11) can be satisfied by at most one assign-
ment to the variables σj for j ∈ J ′. Therefore, (11) is fulfilled with probabil-
ity at most 1/

(|J ′|
m

)
, which does not exceed 2−n6ε

. This readily implies that∑
(a,b)∈P3

P[λa = λb] ≤ exp(−(1 + o(1))nε).
Summing up, we see that

∑
0≤a,b≤n−1 P[λa = λb] = O(n−1/2+ε) for each

ε > 0 and sufficiently large n. This proves Part 1 of Theorem 4. The proof of
Part 2 is virtually the same. It should only be noted that for an unexposed
random variable σj , in place of the term σjζ

aj
n we now have to deal with σjζ

aj
n +
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σn−jζ
a(n−j)
n = σj(ζaj

n + ζ−aj
n ). Lemma 8 is still applicable after multiplication

of the whole sum by ζt
n for a small t. In the first subcase of Case 1, there is

a possibility that η−s = ξs, which is treated similarly to the third subcase of
Case 1.

Remark 9. The probability bound in Theorem 4 is nearly optimal. As can be
shown, a random digraph Cay(Zn, S) for n = 3p with p prime has repeated
eigenvalues with probability Ω(n−1/2). Also, the spectrum of a random graph
Cay(Zn, S) for n = 5p is not saturated with the same probability bound.

5 Proof of Theorem 1

We are now ready to prove our main result. Theorem 1 holds true for each of
the three concepts of a circulant:

– A Cayley (di)graph X = Cay(Zn, S). The uniform probability distribution of
X means that the connection set S is equiprobably chosen among all subsets
of Zn\{0} in the case of digraphs and among all inverse-closed subsets in the
case of graphs.

– An unlabeled circulant, i.e., an isomorphism class of Cayley (di)graphs X =
Cay(Zn, S). The uniform distribution means that each isomorphism class on
Zn is chosen equiprobably. In the algorithmic setting, an isomorphism class
is presented by its representative (a (di)graph from the class). Alternatively,
we can think of the probability distribution on all Cayley (di)graphs X =
Cay(Zn, S) in which each X appears with probability 1/(n s(X)), where n

is the total number of n-vertex unlabeled circulants and s(X) is the number
of connection sets S such that Cay(Zn, S) ∼= X.

– A labeled circulant, i.e., a (di)graph on the vertex set {0, 1, . . . , n − 1} iso-
morphic to some X = Cay(Zn, S). The uniform distribution is considered on
all n-vertex (di)graphs in this class.

In each of the three cases, we use the same canonization algorithm pre-
sented in Subsect. 2.2. For digraphs, the algorithm is extremely simple: We just
individualize one vertex in an input digraph X and run CR on the obtained
vertex-colored graph X0. In this way we either get an individual label for each
vertex of X or the algorithm gives up. The labeling is canonical for all circulants
X, and it is successfully produced whenever X0 is walk-discrete. For graphs, the
algorithm is a little bit more complicated and is discussed in detail in Subsect.
2.2. It succeeds whenever X0 is walk-saturated.

In Subsect. 3.3 we noted two sufficient spectral conditions: X0 is walk-discrete
whenever X has simple spectrum, and X0 is walk-saturated whenever X has
saturated spectrum. This reduces our task to estimating the probability that
the random digraph X has simple spectrum and, respectively, that the random
graph X has saturated spectrum. In the case of Cayley (di)graphs, the proof is
completed by applying Theorem 4.

It remains to show that the estimate of Theorem 4 stays as well true for the
uniformly distributed labeled and unlabeled circulants. A complete treatment of
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these two cases can be found in the full version of the paper [32] where we present
a general way to convert an estimate for one distribution into an estimate for
another distribution with a small overhead cost.
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Abstract. Consider the following parameterized counting variation of
the classic subset sum problem, which arises notably in the context of
higher homotopy groups of topological spaces: Let v ∈ Qd be a ratio-
nal vector, (T1, T2 . . . Tm) a list of d × d rational matrices, S ∈ Qh×d a
rational matrix not necessarily square and k a parameter. The goal is to
compute the number of ways one can choose k matrices Ti1 , Ti2 , . . . , Tik

from the list such that STik · · · Ti1v = 0 ∈ Qh.
In this paper, we show that this problem is #W[2]-hard for param-

eter k. As a consequence, computing the k-th homotopy group of a d-
dimensional 1-connected topological space for d > 3 is #W[2]-hard for
parameter k. We also discuss a decision version of the problem and its
several modifications for which we show W[1]/W[2]-hardness. This is in
contrast to the parameterized k-sum problem, which is only W[1]-hard
(Abboud-Lewi-Williams, ESA’14). In addition, we show that the decision
version of the problem without parameter is an undecidable problem, and
we give a fixed-parameter tractable algorithm for matrices of bounded
size over finite fields, parameterized by the matrix dimensions and the
order of the field.

Keywords: parameterized complexity · W[2]-hardness ·
undecidability · k-sum · homotopy group

1 Introduction

Topology is one of the most important and active areas of mathematics, emerging
from vast generalizations of geometry (see, e.g., [13] for a gentle introduction
along this path). In full generality, it studies fundamental properties of topological
spaces, which generalize a broad array of geometric objects (including manifolds,
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Hilbert spaces, algebraic varieties and even embeddings of graphs). The concept
of a topological space allows to speak in a very general manner about the “shape”
of a space, and a prime goal of topology consists in classifying spaces according
to their shapes. For instance, it is intuitively obvious that a mug with a handle
and a football should belong to distinct classes of shapes, for instance because
one has a hole in it and the other, preferably, does not. Whether or not, then,
a mug with sharp edges and a doughnut belong to the same class is a different
question, and good reasons exist for choosing either way of answering it.

Thus, clearly, any such classification depends on the precise way in which
the classes are defined and the structures provided on top of purely topologi-
cal information (such as differential information, i.e., about “sharp edges”); one
particularly important way of doing so is to make a single class out of all those
shapes that can be deformed into each other according to specific rules retaining.
The usual notion of equivalence under deformation of shapes corresponding to
general topological spaces is furnished by homotopy, which, very roughly speak-
ing, identifies any two shapes that can be obtained from one another through
arbitrary deformations without “tearing” or “cutting” (and hence identifying the
mug with the doughnut, while differentiating both from the football).

Associated to this notion are the so-called homotopy groups of a topological
space, denoted πk, for k ≥ 1. The most intuitive of them is the group π1, which
is often called the fundamental group of the space. It captures certain data about
the different ways that loops (that is, closed curves in the space) can pass through
the space. The higher homotopy groups (k > 1) correspond to ways of routing
higher-dimensional “loops” in the space, and Whitehead’s Theorem provides a
crucial equivalence between the structure of homotopy groups and the homotopy
class of a broad category of topological spaces called CW-complexes [20,21]. The
present paper deals with an intermediate problem related to the computation
of homotopy groups, which allows to show lower bounds for the complexity of
computing the higher homotopy groups of a topological space.

Before speaking about computational tasks associated with topological
spaces, one needs to define how a topological space is even represented. While
the generality of the concept may make it seem hard to come up with such a
representation in general, the usual path taken in computational topology is as
follows: Many topological spaces can be described by finite structures, e.g., by
abstract simplicial complexes, which are simply collections of point sets closed
under taking subsets, and it hence suffices to provide the maximal subsets of a
simplicial complex to specify it in full. Such structure can then be used as an
input for a computer and therefore, it is natural to ask how hard it is to compute
these homotopy groups of a given topological space, represented by an abstract
simplicial complex.

Novikov in 1955 [17] and independently Boone in 1959 [5] showed undecid-
ability of the word problem for groups. Their result also implies undecidability
of computing the fundamental group. In fact, even determining whether the
fundamental group of a given topological space is trivial is undecidable.
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On the other hand, for 1-connected spaces (for those, whose π1 is trivial) it
is known that their πk for k > 1 are finitely generated abelian groups which
are always isomorphic to groups of the form Zn ⊕ Zp1 ⊕ Zp2 ⊕ · · · ⊕ Zpm

, where
p1, . . . , pm are powers of prime numbers.1 An algorithm for computing πk of a
1-connected space, where k > 1, was first introduced by Brown in 1957 [7].

In 1989, Anick [4] proved that computing the rank of πk, that is, the number
of direct summands isomorphic to Z (represented by n in the expression above) is
#P-hard for 4-dimensional 1-connected spaces.2 Another computational problem
called VEST, which we define below, was used in Anick’s proof as an intermedi-
ate step. Briefly said, #P-hardness of VEST implies #P-hardness of computing
the rank of πk, which is the motivation for studying the problem in the present
article.

Vector Evaluated After a Sequence of Transformations (VEST). The
input of this problem defined by Anick [4] is a vector v ∈ Qd, a list (T1, . . . , Tm)
of rational d × d matrices and a rational matrix S ∈ Qh×d where d,m, h ∈ N.

For an instance of VEST let an M -sequence be a sequence of integers
M1,M2,M3, . . ., where

Mk := |{(i1, . . . , ik) ∈ {1, . . . , m}k;STik
· · · Ti1v = 0}|.

Given an instance of VEST and k ∈ N, the goal is to compute Mk.
From an instance of VEST, it is possible to construct a corresponding alge-

braic structure called 123H-algebra in polynomial time whose Tor-sequence is
equal to the M -sequence of the original instance of a VEST. This is stated in
[4, Theorem 3.4] and it follows from [2, Theorem 1.3] and [3, Theorem 7.6].

Given a presentation of a 123H-algebra, one can construct a corresponding
4-dimensional simplicial complex in polynomial time whose sequence of ranks
(rk π2, rk π3, . . .) is related to the Tor-sequence of the 123H-algebra. In partic-
ular, it is possible to compute that Tor-sequence from the sequence of ranks
using an FPT algorithm.3 This follows from [19] and [8]. To sum up, hardness of
computing Mk of VEST implies hardness of computing πk.

Parameterized Complexity and theW-Hierarchy. Parameterized complex-
ity classifies decision or counting computational problems with respect to a given
parameter(s). For instance, one can ask if there exists an independent set of size
k in a given graph or how many independent sets of size k (for counting version)
are in a given graph, respectively, where k is the parameter. From this viewpoint,
we can divide decision problems into several groups which form the W-hierarchy :

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP.

The class FPT consists of decision problems solvable in time f(k)nc, where
f(k) is a computable function of the parameter k, n is the size of input and c is a
1 Note that Zn is a direct sum of n copies of Z while Zpi is a finite cyclic group of

order pi.
2 When k is a part of the input and represented in unary.
3 The notion of FPT algorithm is defined in the next paragraph.
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constant, while the class XP consists of decision problems solvable in time cnf(k).
We also refer to algorithms with running time f(k)nc (cnf(k) correspondingly)
adis FPT (XP) algorithms. The class W[1] consists of all problems which admit
a parameterized reduction to the satisfiability problem of a boolean circuit of
constant depth with AND, OR and NOT gates such that there is at most 1
gate of higher input size than 2 on each path from the input gate to the final
output gate (this number of larger gates is called weft), where the parameter is
the number of input gates set to TRUE. Here, a parameterized reduction from
a parameterized problem A to a parameterized problem B is an algorithm that,
given an instance (x, k) of A, in time f(k)nc produces an equivalent instance
(x, k′) of B such that k′ ≤ g(k), for some computable functions f(·), g(·), and a
constant c.

The class W[i] then consists of problems that admit a parameterized reduc-
tion to the satisfiablity problem of a boolean circuit of a constant depth and
weft at most i, parameterized by the number of input gates set to TRUE.

It is only known that FPT � XP, while the other inclusions in the W-hierarchy
are not known to be strict. However, it is strongly believed that FPT � W[1].
Therefore, one cannot expect existence of an algorithm solving a W[1]-hard prob-
lem in time f(k)nc where f(k) is a computable function of k and c is a constant.
For the detailed presentation of W-hierarchy and parameterized complexity in
general we refer the reader to [15].

Analogously, one can define classes FPT and XP for counting problems. That
is, a class of counting problems solvable in time f(k)nc or cnf(k), respectively.
Problems for which there is a parameterized counting reduction to a problem
of counting solutions for a boolean circuit of constant depth and weft at most i
then form class #W[i]. Note that there are decision problems from FPT whose
counting versions are #W[1]-hard, e.g., counting paths or cycles of length k
parameterized by k [14]. Similarly to the decision case, if a counting problem
is shown to be #W[i]-hard for some i one should not expect existence of an
algorithm solving this problem in time f(k)nc. For more details on parameterized
counting we refer the reader to [14].

In our case, the number k of the homotopy group πk plays the role of the
parameter. In 2014 Čadek et al. [9] proved that computing πk (and thus, also
computing the rank of πk) is in XP parameterized by k.

A lower bound for the complexity from the parameterized viewpoint was
obtained by Matoušek in 2013 [16]. He proved that computing Mk of a VEST

instance is #W[1]-hard. This also implies #W[1]-hardness for the original prob-
lem of computing the rank of higher homotopy groups πk (for 4-dimensional
1-connected spaces) for parameter k. Matoušek’s proof also works as a proof for
#P-hardness and it is shorter and considerably easier than the original proof of
Anick in [4].

In this paper, we strengthen the result of Matoušek and show that computing
Mk of a VEST instance is #W[2]-hard. Our proof is even simpler than the
previous proof of #W[1]-hardness.
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Theorem 1. Given a VEST instance, computing Mk is #W[2]-hard when
parameterized by k.

Theorem 1 together with the result of Anick [4] implies the following.

Corollary 1. Computing the rank of the k-th homotopy group of a d-
dimensional 1-connected space for d > 3 is #W[2]-hard for parameter k.

Remark 1. Note that computing Mk of a VEST instance is an interesting natu-
ral self-contained problem even without the topological motivation. We point out
that our reduction showing #W[2]-hardness of this problem uses only 0, 1 values
in the matrices and the initial vector v. Moreover, each matrix will have at most
one 1 in each row. Therefore, such construction also shows #W[2]-hardness of
computing Mk of a VEST instance in the Z2 setting. That is, for the case when
T1, T2, . . . Tm ∈ Zd×d

2 , S ∈ Zh×d
2 and v ∈ Zd

2.

The Decision Version of VEST. We also provide a comprehensive overview
of the parameterized complexity of VEST as a decision problem, where given an
instance of VEST one needs to determine whether Mk > 0. In addition to the
standard variant of the problem, we consider several modifications of VEST:
when the matrices have constant size, when the matrix S is the identity matrix,
when we omit the initial vector and the target is identity/zero matrix etc.

Unfortunately, even considering the simplifications above, we show that
nearly all versions in our consideration are W[1]- or W[2]-hard. The following
table is an overview of our results.

Size of matrices a) v and S b) only v c) only S d) no v, no S

1. 1 × 1 P P 0 P P

I W[1]-hard W[1]-hard
2. 2 × 2 W[1]-hard W[1]-hard 0 W[1]-hard W[1]-hard

I

3. input size W[2]-hard W[2]-hard 0 W[2]-hard W[2]-hard
I W[1]-hard W[1]-hard

The first column stands for the standard VEST while the second stands for
the VEST without the special matrix S or alternatively, for the case when S is
the identity matrix. Therefore, the hardness results for the first column follow
from the second.

The third and the fourth columns are without the initial vector v. In this
case, we want to choose k matrices Ti1 , Ti2 , . . . , Tik

such that STik
· · · Ti1 (or

Tik
· · · Ti1 , respectively) is equal to a given target matrix. It is natural to assume

the following two target matrices: the zero matrix (the rows labeled by 0) and
the identity matrix (the rows labeled by I). Again, the hardness results for the
third column follow from the fourth.
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Regarding the 1×1 case, the only nontrivial case is when the target is I = 1.
The W[1]-hardness results for the 1 × 1 case also implies W[1]-hardness for the
2 × 2 case and the input size case when the target is the identity matrix.

Therefore, in Sect. 3 we prove hardness for

– “1 d) I” (Theorem 3),
– “2 b)” (Theorem 5),
– “2 d) 0” (Theorem 4).

The W[2]-hardness for “3 c)” follows from the proof of Theorem 1 (see Remark 3)
and we show that “3 b)” and “3 d) 0” are equivalent to “3 a)” under parameterized
reduction (Theorems 6, 7).

Remark 2. We should also point out that we actually do not know what is the
perameterized complexity class containing VEST. However, we conjecture that
it is W[2] when there is no restriction for the size of matrices, and W[1] when
the size of matrices is bounded.

Fixed-Parameter Tractability over Finite Fields. Our results, summarized
in the table above, show that VEST remains hard even on highly restricted
instances, such as binary matrices with all the ones located along the main
diagonal, or matrices of a constant size. However, it turns out that combination
of these two restrictions – on the field size and the matrix sizes – makes even
the counting version of VEST tractable.

We proceed by lifting tractability to the matrices of unbounded size but with
all non-zero entries occurring in at most the p first rows.

Theorem 2. Given an instance of VEST and k ∈ N, computing Mk is FPT
with respect to |F| and p, if all non-zero entries of matrices belong to p first rows.

The problem remains FPT with respect to |F| and p even if the task is to find
the minimal k for which Mk > 0, or to report that there is no such k.

Undecidability of VEST Without Parameter. In contrast, we show in the
last section (Sect. 5) that for F = Q the problem of determining whether there
exists k such that Mk > 0 for an instance of VEST is an undecidable problem.4

2 The Proof of #W[2]-Hardness of VEST

In this section, we prove that computing Mk of a VEST instance is #W[2]-hard
(Theorem 1). Our reduction is from the problem of counting dominating sets of
size k which is known to be #W[2]-complete (see [14]) and which we recall in
the paragraph below.

For a graph G(V,E) and its vertex v ∈ V let N [v] denote the closed neigh-
borhood of a vertex v. That is, N [v] := {u ∈ V ; {u, v} ∈ E}∪{v}. A dominating
4 One of the reviewers thankfully pointed out related results about the matrix mor-

tality problem (see, e.g., [10]) which give a shorter proof of this fact and which also
give a proof of undecidability of VEST without the initial vector and the parameter.
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set of a graph G(V,E) is a set U ⊆ V such that for each v ∈ V there is u ∈ U
such that v ∈ N [u].

Number of dominating sets of size k

Input: A graph G(V,E) and a parameter k.
Question: How many dominating sets of size k are in G?

0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 1

Fig. 1. The submatrix of Tu consisting of rows and columns u1, . . . , u4. The rest of
the non-diagonal entries of Tu are zeros. The diagonal entries Tw1,w1

u for w ∈ N [u] are
zeros, the rest of the diagonal entries are ones.

Proof (of Theorem 1). As we said, we show an FPT counting reduction from the
problem of counting dominating sets of size k to VEST.

Let G(V,E) be the input graph and let n = |V |. The corresponding instance
of VEST will consist of n matrices {Tu : u ∈ V } of size 4n × 4n, one for each
vertex, and a matrix S of the same size. Whence, the initial vector v must be
of size 4n. For each vertex u ∈ V , we introduce four new coordinates u1, . . . , u4

and set vu1 = 1,vu2 = vu3 = 0 and vu4 = 1.
We define the matrices {Tu : u ∈ V } and S by describing their behavior.

Let x be a vector which is going to be multiplied with a matrix Tu (that is,
some intermediate vector obtained from v after potential multiplications). The
matrix Tu sets xw1 to zero for each w ∈ N [u], which corresponds to domination of
vertices in N [u] by the vertex u, and also sets xu2 to xu3 and xu3 to xu4 . The rest
of the entries of x including xu4 are kept, see Fig. 1. The matrix S then nullifies
coordinates u3, u4 and keeps the coordinates u1 and u2 for each u ∈ V . In other
words, S is diagonal such that Su1,u1 = Su2,u2 = 1 and Su3,u3 = Su4,u4 = 0.

The parameter remains equal to k.
For correctness, let u1, . . . , uk be any vertices from V , and let r be the vector

obtained from v after multiplying by the matrices Tu1 , . . . , Tuk (observe that the
order of multiplication does not matter since all Tu, u ∈ V , pairwise commute).
By construction, for every vertex u ∈ V , the entry ru1 = 0 if and only if u is
dominated by some ui, i ∈ [k], and ru2 = 0 if and only if Tu appears among
Tu1 , . . . , Tuk at most once. Indeed, if Tu is selected once then ru2 = vu3 = 0
while if it is selected more than once then ru2 = vu4 = 1. If Tu is not among
Tu1 , . . . , Tuk then ru2 = vu2 = 0.

Therefore, r = STu1 · · · Tukv is a zero vector if and only if u1, . . . , uk are
pairwise distinct and form the dominating set in G. This provides a one-to-
one correspondence between subsets of matrices yielding the solution of VEST

and dominating sets of size k in G. It remains to note that every such subset
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of matrices gives rise to k! sequences that have to be counted in Mk. Hence,
Mk = k!Dk where Dk is the number of dominating sets of size k in G. The
reduction is clearly FPT since the construction does not use parameter k and is
polynomial in size of the input. �	
Remark 3. Note that the decision version of the problem of Dominating Sets

of Size k is W[2]-hard. For showing W[2]-hardness of the decision version of
VEST we need not deal with the repetition of matrices. In particular, we do not
need the special coordinates u2, u3, u4 and therefore, the corresponding instance
of VEST can consist only of diagonal 0, 1 matrices of size n × n.

3 Modifications of VEST

In this section, we prove hardness for the variants of the decision version of
VEST we have discussed in the introduction. First of all, we recall a well-known
W[1]-hard k-Sum problem [1].

k-Sum

Input: A set A of integers and a parameter k.
Question: Is it possible to choose k distinct integers from A such that their

sum is equal to zero?

We note that in the versions of k-Sum studied in the literature the goal is to
pick distinct elements of the input set in order to achieve 0 or eventually another
number. However, the motivation for VEST does not suggest that the matrices
applied to the vector have to be distinct. Thus, in order to model VEST by
k-Sum, it is more natural to also allow repetition of numbers. For our particular
proofs, we will use the following version with target number 1.

At-Most-k-Sum with Repetitions and Target 1

Input: A set A of integers and parameter k.
Question: Is it possible to choose at most k integers from A (possibly with

repetition) such that their sum is equal to 1?

We are not aware of any previous studies on parameterized complexity of
At-Most-k-Sum with Repetitions and Target 1, nor does it seem that
there exists a simple parameterized reduction from the original variant of the
problem to the one with repetitions. The proof of W[1]-hardness of this problem
is deferred to the full version [6]. When we assume multiplication instead of
addition, the following problem arises.

k-Product with Repetitions

Input: A set A of rational numbers and a parameter k.
Question: Is it possible to choose k numbers from A (possibly with repetitions)

such that their product is equal to 1?
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W[1]-hardness for this problem might be a folklore result but we present a com-
plete proof using a reduction from k-Exact Cover, which is known to be
W[1]-hard (see [12]).

k-Exact Cover

Input: A universe U , a collection C of subsets of U and a parameter k.
Question: Can U be partitioned into k sets from C?

Theorem 3. k-Product with Repetitions is W[1]-hard parameterized by k.

Proof. We show a parameterized reduction from k-Exact Cover. For each
element u ∈ U we associate one prime pu, then for each C ∈ C we set iC :=
p

∏
c∈C pc where p is a prime which is not used for any element from U and

s := 1
pk

∏
u∈U pu

.
The integers iC for each C ∈ C and s then form the input for (k+1)-Product

with Repetitions

If C1, C2, . . . , Ck ∈ C is a solution of k-Exact Cover then s
∏k

i=1 iCi
= 1.

Conversely, let q1, q2, . . . , qk+1 be a solution of the constructed (k + 1)-
Product with Repetitions. First of all, note that s must be chosen precisely
once. Indeed, all numbers except for s are greater than 1 and thus, s must be
chosen at least once. If it were chosen more than once it would not be pos-
sible to cancel a power of pk in the denominator since the numerator would
contain at most pk−1. Therefore, the product of q1, q2, . . . , qk+1 is of the form
siCjk

iCjk−1
· · · iCj1

= 1 which means that each prime representing an element of
U in the denominator is canceled. In other words, each element of U is covered.
Note also that since s is chosen precisely once there cannot be any repetition
within iCjk

iCjk−1
. . . iCj1

.
The reduction is parameterized since we only need the parameter k for k

multiplications of 1
p and first n + 1 primes, where n = |U |, can be generated in

time O(n3) using, e.g., the Sieve of Eratosthenes for (n+ 1)2. This follows from
the fact, that the first n primes lie among 1, . . . , n2. For more details we refer
the reader to the full version [6]. �	

Let us now call the variant of VEST without S and v Matrix k-Product
with Repetitions. As we have mentioned in the introduction we consider two
cases regarding the target matrix, namely, the Identity matrix and the Zero
matrix.

Matrix k-Product with Repetitions resulting to Zero Matrix

Input: A list of d × d rational matrices and a parameter k.
Question: Is it possible to choose k matrices from the list (possibly with rep-

etitions) such that their product is the d × d zero matrix?
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Matrix k-Product with Repetitions resulting to Identity Matrix

Input: A list of d × d rational matrices and a parameter k.
Question: Is it possible to choose k matrices from the list (possibly with rep-

etitions) such that their product is the d × d identity matrix?

Note that Matrix k-Product with Repetitions resulting to Identity

Matrix for 1 × 1 matrices is exactly k-Product with Repetitions. There-
fore W[1]-hardness for Matrix k-Product with Repetitions resulting to

Identity Matrix for all matrix sizes follows from Theorem 3.
Regarding Matrix k-Product with Repetitions resulting to Zero

Matrix, we can easily see that it is solvable in linear time for 1 × 1 matrices.
Indeed, it is sufficient to check whether Ti = 0 for some i. However, already for
2 × 2 matrices the problem becomes hard.

Theorem 4. Matrix k-Product with Repetitions resulting to Zero

Matrix is W[1]-hard for parameter k even for 2 × 2 integer matrices.

Proof. We reduce from At-Most-k-Sum with Repetitions and Target 1.

For every integer x let us define the matrix Ux :=
(
1 x
0 1

)

. It is easy to

see that UxUy = Ux+y. Let I be an instance of At-Most-k-Sum with Rep-

etitions and Target 1 with the set of integers A and parameter k. We cre-
ate an equivalent instance I ′ of Matrix (k + 2)-product with Repetitions

Resulting to Zero Matrix with the set of matrices {Ua : a ∈ A} ∪ {X},

where X =
(

0 0
−1 1

)

.

For correctness, assume that I is a YES-instance and a1, . . . , a� ∈ A are such
that � ≤ k and

∑�
i=1 ai = 1. Consider the following product of � + 2 matrices:

X ·
l∏

i=1

Uai
· X = X · U∑�

i=1 ai
· X = XU1X =

(
0 0

−1 1

) (
1 1
0 1

) (
0 0

−1 1

)

= 0.

For the other direction, assume that I ′ is a YES-instance. Let �, 1 ≤ � ≤ k + 2,
be the minimal integer such that there are matrices T1, . . . , T� from {Ua : a ∈
A} ∪ {X} with T�T�−1 · · · T1 = 0 ∈ Q2×2. Since the matrix X is idempotent
(i.e. X2 = X), it does not appear two times in a row, otherwise we could reduce
the length of the product. Notice that X should appear at least once, since
the determinants of all Ua are non-zero. Assume that there is precisely one
occurrence of X, then the product has form:

UrXUs =

(
1 r

0 1

) (
0 0

−1 1

) (
1 s

0 1

)

=

(
−r −rs + r

−1 1 − s

)


= 0.

Hence, X appears at least twice. Let us fix any two consequent occurrences and
consider the partial product between them:

XUrX =

(
0 0

−1 1

)(
1 r

0 1

)(
0 0

−1 1

)

=

(
0 0

r − 1 1 − r

)

= (1 − r) · X.
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If r 
= 1, we would get a shorter product resulting in zero, which contradicts to
minimality of �. Hence r = 1, so the product of Ua that appear between two
occurrences of X is equal to U1. Since there are at most k of such Ua and the
sum of corresponding indices a is equal to 1, we obtain a solution to I. �	

We can use a similar approach to establish hardness of the VEST problem
without S (or alternatively when S is the identity matrix). Recall that here the
task is to obtain not necessarily a zero matrix but any matrix which contains a
given vector v in a kernel.

Theorem 5. VEST is W[1]-hard for parameter k even for 2×2 integer matrices
and when S is the identity matrix.

The proof of this theorem is very similar to the proof of Theorem 4 and it can
be found in the full version [6].

At the end of this section, we show that VEST is equivalent to VEST

without S (in other words, when S = Id) and to Matrix k-Product with

Repetitions resulting to Zero Matrix.

Theorem 6. There is a parameterized reduction from VEST to the special case
of VEST where S is the identity matrix, and the other way around.

Proof. One direction is trivial since the case when S = I is just a special case of
VEST.

Regarding the other, let
(
S ∈ Qh×d, T1, T2, . . . , Tm ∈ Qd×d,v ∈ Qd, k

)
be an

instance of VEST. First, we observe that without loss of generality we can
suppose that S is a square matrix (in other words, h = d). Indeed, if h < d then
we just add d − h zero rows to S. If h > d we add h − d zero columns to S,
h − d zero entries to v and h − d zero rows as well as h − d zero columns to each
Ti, obtaining a new instance

(
S′ ∈ Qh×h, T ′

1, T
′
2, . . . , T

′
m ∈ Qh×h,v′ ∈ Qh, k

)
of

VEST, where S′ =
(
S 0

)
, T ′

i =
(

Ti 0
0 0

)

, i = 1, . . . , m, and v′ =
(
v
0

)

.

Now, assuming d = h, we add 2 dimensions. To the vector v we add k on the
(d+1)-st position and 1 on the (d+2)-nd position. To each matrix Ti we add a
2× 2 submatrix which subtracts the (d+ 2)-nd component of a vector from the
(d + 1)-st. To the matrix S we add a submatrix which nullifies the (d + 2)-nd
component and multiplies the (d + 1)-th component by 10. Thus, we obtain:

v′ =

⎛

⎝
v
k
1

⎞

⎠ , S′ =

⎛

⎝
S 0 0
0 10 0
0 0 0

⎞

⎠ , T ′
i =

⎛

⎝
Ti 0 0
0 1 −1
0 0 1

⎞

⎠ , i = 1, . . . ,m.

The new parameter is set to k + 1. If there is a solution of the original prob-
lem, that is, there are k matrices Ti1 , . . . , Tik

such that STik
Tik−1 · · · Ti1v = 0,

then S′T ′
ik

T ′
ik−1

· · · T ′
i1
v′ = 0, since 1 is k times subtracted from the (d + 1)-st

component of v′ and the (d + 2)-nd component is then nullified by S′.
Conversely, if there are k + 1 matrices Y1, Y2, . . . , Yk+1, where each Yi is

either S′ or T ′
j for some j, such that r = Yk+1Yk · · · Y1v′ = 0 then Yk+1 must be
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equal to S′ and the rest of the matrices are of type T ′
j , otherwise rd+1 
= 0 or

rd+2 
= 0. Indeed, at first k matrices of type T ′
j must be selected to nullify the

(d + 1)-st component: if Yi = S′ for some i ≤ k, this would increase the non-
zero (d + 1)-st component, so there would be no way to nullify it by remaining
matrices Yi+1, . . . , Yk+1. At the same time, S′ should be necessarily selected once
to nullify the (d + 2)-nd component, so Yk+1 = S′. Therefore, by restricting the
matrices Y1, . . . , Yk to the first d coordinates we obtain a solution to VEST with
matrix S. �	
Theorem 7. VEST and Matrix k-Product with Repetitions resulting

to Zero Matrix are equivalent under parameterized reduction.

Note that one implication is relatively straightforward. Regarding the other,
the idea is to again “simulate” the special matrix S and the vector v by an
ordinary matrix and force them to be selected as the leftmost and the rightmost,
respectively. For the complete proof, please see the full version [6].

4 Fixed-Parameter Tractability over Finite Fields

While most of the hardness results for VEST and its variations in the previous
section use constant-sized matrices, the entries of these matrices can be arbitrar-
ily large. Here, we study the variation of the problem when all the matrices have
entries from some finite field. Notice that restricting the field size by itself does
not make the problem tractable: recall the reduction from dominating set from
Sect. 1 which also works over Z2. However, along with a bound on the matrix
sizes this makes the problem tractable.

Lemma 1. Computing Mk for a given instance of VEST over a finite field F

is FPT when parameterized by the size of F and the size of matrices.

Proof. Let Md
F

be the set of all d×d matrices with entries from F, then |Md
F
| =

|F|d2
. For every X ∈ Md

F
and every integer i ∈ [k] we will compute the number

ai
X of sequences of i matrices from the input such that their product is equal to

X. In particular, this allows to obtain Mk =
∑

X∈Md
F
: SXv=0 ak

X .
For i = 1 the computation can be done simply by traversing the input matri-

ces. Assume that ai
X have been computed for all the matrices X and all i ∈ [j].

We initiate by setting aj+1
X = 0 for every X ∈ Md

F
. Then, for every pair (X, q),

where X ∈ Md
F

and q ∈ [m], we increment aj+1
XTq

by aj
X . In the end we will then

have a correctly computed value aj+1
Y =

∑m
q=1

∑
X : XTq=Y aj

X . �	
Our next step is to consider the matrices of unbounded size, but with at most

p first rows containing non-zero entries. In particular, if F = Z2, we can associate
to every such matrix T a graph with the vertex set [d] such that there exists an
edge between the vertices i and j, i ≤ j, if and only if T i,j = 1. Conversely, a
graph with the vertex set [d] can be represented by such a matrix if and only if
the vertices in [p] form its vertex cover.
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Every matrix with all but the first p rows equal to zero has form
(

A B
0 0

)

,

where A is p × p matrix and B is p × (d − p) matrix. Further, we will denote
matrices of this form by (A|B). Observe that the product of two such matrices
has the same form: (A1|B1)(A2|B2) = (A1A2|A1B2).

Corollary 2.
∏k

i=1 (Ai|Bi) =
((∏k

i=1 Ai

)
|
(∏k−1

i=1 Ai · Bk

))
= (XAk|XBk),

where X =
∏k−1

i=1 Ai. In particular, the product does not depend on Bi for i < k.

Theorem 2. Given an instance of VEST and k ∈ N, computing Mk is FPT
with respect to |F| and p, if all non-zero entries of matrices belong to p first rows.

Proof. We slightly modify the definition of ai
X from the proof of Lemma 1. Now,

for every i ∈ [k] and every matrix X ∈ Mp
F
, let ai

X be the number of sequences
of i matrices Tj = (Aj |Bj) from the input such that corresponding product of
Aj is equal to X.

The values of ai
X for every i ∈ [k − 1] can be computed in the same

way as in the proof of Lemma 1. Given this information, we can count the
sequences of length k that nullify v. Indeed, by Corollary 2, the number of
such sequences with the rightmost matrix Tj = (Aj |Bj) is precisely bj =∑

X∈Mp
F
: S·(XAj |XBj)·v=0 ak−1

X , and Mk is then equal to
∑m

j=1 bj . �	
We remark that the algorithm for computing ai

X from the last proof can be
exploited to determine minimal k such that Mk > 0, or to report that there is
no such k. For this, we run the algorithm with k = 1, then with k = 2 and so on.
If after some iteration k = j+1 we obtain that Mi = 0 for all i ∈ [j] and there is
no X ∈ Mp

F
such that a1

X = · · · = aj
X = 0 and aj+1

X 
= 0, we may conclude that
Mk = 0 for all k ∈ N, since every product of length more than j can be obtained
as a product of length at most j, and none of the latter nulify v. Otherwise,
there exists at least one X ∈ Mp

F
such that a1

X = · · · = aj
X = 0 and aj+1

X 
= 0.
Note that every X ∈ Mp

F
can play this role only for one value of k. Therefore,

it always suffices to make |Mp
F
| iterations of the algorithm.

5 Undecidability of VEST

In this section, we show that determining whether there exists k ∈ N such that
Mk > 0 for an instance of VEST is an undecidable problem. We reduce from
Post’s Correspondence Problem which is known to be undecidable [18].

(Binary) Post’s Correspondence Problem

Input: m pairs (v1, w2), (v2, w2), . . . , (vm, wm) of words over alphabet
{0, 1}.

Question: Is it possible to choose k pairs (vi1 , wik
), (vi2 , wi2) . . . , (vik

, wik
), for

some k ∈ N, such that vi1vi2 · · · vik
= wi1wi2 · · · wik

?
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For a word v ∈ {0, 1}∗ let |v| be its length and let (v)2 be the integer value of
v interpreting it as a binary number. Moreover, we associate with v the matrix

Tv =
(

2|v| − (v)2 (v)2
2|v| − (v)2 − 1 (v)2 + 1

)

,

which allows to model concatenations as the following lemma suggests.

Lemma 2. Let v, w be binary words. Then, TvTw = Twv where wv is the con-
catenation of w and v.

The construction of Tv is a based on [11][Satz 28, p. 157] which we are aware
of thanks to Günter Rote. For the complete proof of Lemma 2, see the full
version [6].

Reduction. Given an instance of Post’s Correspondence Problem we
describe what an instance of VEST may look like. For each pair (v, w) we

define T(v,w) =
(

Tv 0
0 Tw

)

, we set the initial vector v := (0, 1, 0, 1)T and S :=

(1, 0,−1, 0). The undecidability of VEST then follows from the following lemma.

Lemma 3. Let (vi1 , wi1), (vi2 , wi2) . . . , (vik
, wik

) be k pairs of binary words.
Then ST(vik

,wik
) · · · T(vi1 ,wi1 )

v = 0 if and only if vi1 · · · vik
= wi1 · · · wik

.

Proof. By Lemma 2, T(vik
,wik

) · · · T(vi2 ,wi2 )
T(vi1 ,wi1 )

= T(vi1vi2 ···vik
,wi1wi2 ···wik

).
The vector v selects the second column of the submatrix Tvi1vi2 ···vik

and the
second column of the submatrix Twi1wi2 ···wik

. Therefore, the result is equal to
(
(vi1vi2 · · · vik

)2 , (vi1vi2 · · · vik
)2 + 1, (wi1wi2 · · · wik

)2 , (wi1wi2 · · · wik
)2 + 1

)T
.

The final result after multiplying S with the vector above is the following 1-
dimensional vector (vi1vi2 · · · vik

)2 − (wi1wi2 · · · wik
)2. �	
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Abstract. We propose efficient algorithms for enumerating the cele-
brated combinatorial structures of maximal planar graphs, called canon-
ical orderings and Schnyder woods, and the related classical graph draw-
ings by de Fraysseix, Pach, and Pollack [Combinatorica, 1990] and by
Schnyder [SODA, 1990], called canonical drawings and Schnyder draw-
ings, respectively. To this aim (i) we devise an algorithm for enumerating
special e-bipolar orientations of maximal planar graphs, called canonical
orientations; (ii) we establish bijections between canonical orientations
and canonical drawings, and between canonical orientations and Schny-
der drawings; and (iii) we exploit the known correspondence between
canonical orientations and canonical orderings, and the known bijection
between canonical orientations and Schnyder woods. All our enumeration
algorithms have O(n) setup time, space usage, and delay between any
two consecutively listed outputs, for an n-vertex maximal planar graph.

Keywords: Enumeration algorithms · Planar graphs · Canonical
orderings · Schnyder woods · Worst-case delay

1 Introduction and Overview

An enumeration algorithm lists all the solutions of a problem, without duplicates,
and then stops. Its efficiency is measured in terms of setup time, space usage,
and delay between the outputs of two consecutive solutions; see, e.g., [3,42,50,
58]. In this paper, we present efficient algorithms to enumerate: (i) straight-
line grid drawings produced with the algorithms by de Fraysseix, Pach, and
Pollack [25,26] (FPP-algorithm) and by Schnyder [52] (S-algorithm), and (ii)
the corresponding combinatorial structures. To the best of our knowledge, these
are the first enumeration algorithms for drawings of graphs.

Notable applications of graph drawing enumeration algorithms include:
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Fig. 1. (a), (b) The two canonical orderings with first vertex u of a maximal planar
graph G. (c) The unique canonical orientation with first vertex u of G. (d) The unique
Schnyder wood of G.

(1) Users can benefit from having multiple alternative drawings that highlight
different features of the graph, enabling them to choose the most suitable
for their specific needs; this strategy has been used already in [8].

(2) Machine-learning-based graph drawing tools profit from multiple drawings
of a graph; small-delay enumeration algorithms may fuel the training process
of these tools.

(3) Computer-aided systems that aim to verify geometric and topological state-
ments can leverage enumeration algorithms to explore the solution space of
graph drawing problems.

Preliminary Definitions. We consider graphs and digraphs with multiple
edges. A maximal planar graph is a planar graph without parallel edges to which
no edge can be added without losing planarity or simplicity. A plane graph is a
planar graph with a prescribed embedding.

Let G be a maximal plane graph and let (u, v, z) be the cycle delimit-
ing its outer face, where u, v, and z appear in this counter-clockwise order
along the cycle. A canonical ordering of G with first vertex u is a labeling of the
vertices v1 = u, v2 = v, v3, . . . , vn−1, vn = z such that, for every 3 ≤ k ≤ n − 1
(see Figs. 1(a), 1(b), and [26]):

(CO-1) The plane subgraph Gk ⊆ G induced by v1, v2, . . . , vk is 2-connected; let
Ck be the cycle bounding its outer face;

(CO-2) vk+1 is in the outer face of Gk, and its neighbors in Gk form an (at least
2-element) subinterval of the path Ck − (u, v).

A canonical ordering of G is a canonical ordering of G with first vertex x,
where x ∈ {u, v, z}. If G′ is a maximal planar graph, a canonical ordering of
G′ is a canonical ordering of a maximal plane graph isomorphic to G′. Let
π = (v1, . . . , vn) be a canonical ordering of G with first vertex v1. Orient every
edge (vi, vj) of G from vi to vj if and only if i < j. The resulting orientation
is the canonical orientation of G with respect to π. An orientation D of G is a
canonical orientation with first vertex u if there exists a canonical ordering π of
G with first vertex u such that D is the canonical orientation of G with respect
to π; see Fig. 1(c). A canonical orientation of G is a canonical orientation with
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first vertex x, where x is a vertex in {u, v, z}. Finally, if G′ is a maximal planar
graph, a canonical orientation of G′ is a canonical orientation of a maximal plane
graph isomorphic to G′.

A vertex or edge of G is internal if it is not incident to the outer face and
outer otherwise. A Schnyder wood of G is an assignment of directions and of the
colors 1, 2 and 3 to the internal edges of G such that (see Fig. 2 and [52]):

(S-1) For i = 1, 2, 3, each internal vertex x has one outgoing edge ei of color i.
The outgoing edges e1, e2, and e3 appear in this counter-clockwise order
at x. Further, for i = 1, 2, 3, all the incoming edges at x of color i appear
in the clockwise sector between ei+1 and ei−1, where i + 1 = 1 if i = 3
and i − 1 = 3 if i = 1.

(S-2) At the outer vertices u, v, and z, all the internal edges are incoming and of
color 1, 2, and 3, respectively. If G′ is a maximal planar graph, a Schnyder
wood of G′ is a Schnyder wood of a maximal plane graph isomorphic to
G′.

x

e2

e3

e1
u

z

v

)2-S()1-S(

Fig. 2. Illustration for the properties of a Schnyder wood.

Our Contributions. First, we present an algorithm that enumerates all canoni-
cal orientations of an n-vertex maximal plane graph G by applying edge contrac-
tion or removals. This results in smaller graphs, whose canonical orientations are
recursively enumerated and modified to obtain canonical orientations of G by
orienting the contracted or removed edges. To achieve polynomial delay, contrac-
tions and removals should be applied only if the corresponding branch of compu-
tation produces at least one canonical orientation of G. We determine necessary
and sufficient conditions for a subgraph of G to allow for an orientation that can
be extended to a canonical orientation of G. We establish topological properties
that determine whether applying a contraction or a removal results in a graph
satisfying these conditions. Additionally, we create efficient data structures for
testing and applying the operations based on these properties.

Second, we prove that canonical orderings are topological sortings of canoni-
cal orientations. This allows our algorithm for enumerating the former to be used
for enumerating the latter. Moreover, since canonical orientations are in corre-
spondence with Schnyder woods [22, Theorem 3.3], our algorithm for enumer-
ating canonical orientations can also be used to enumerate all Schnyder woods
of G.
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Third, we show that applying the FPP-algorithm with different canonical
orderings corresponding to the same canonical orientation yields the same draw-
ing of G. This establishes a correspondence between the canonical orientations
of G and the drawings produced by the FPP-algorithm. Together with our
algorithm for enumerating canonical orientations, this allows us to enumerate
such drawings.

Finally, we show that the drawings generated by the S-algorithm are in bijec-
tion with the Schnyder woods. This, the bijection between canonical orientations
and Schnyder woods, and our algorithm for enumerating canonical orientations
enable us to enumerate the drawings of G produced by the S-algorithm.

All our enumeration algorithms have O(n) setup time, space usage, and worst-
case delay.

Related Results. The planar straight-line drawings of maximal planar graphs
generated by the FPP-algorithm [25,26] and by the S-algorithm [52] are funda-
mental in graph drawing [28,45,57] and find applications in other fields, e.g.,
knot theory [15,36,37] and computational complexity [7,34,51]. Further, the
combinatorial structures conceived for these algorithms, i.e., canonical order-
ings and Schynder woods, are used for a plethora of problems in graph draw-
ing [1,2,4,20,23,27,30,31,33,41,46] and beyond [5,11–13,18,38,39]. Canonical
orderings and Schnyder woods appear to be distant concepts. However, Schny-
der [52] has shown how to get a Schnyder wood from a canonical ordering. Also,
their relationship is explained by the concept of canonical orientations, which
in [22] are proved to be in bijection with the Schnyder woods; see also [44].

While enumerating graph drawings is a novel subject, the enumeration of
graph orientations has a rich literature. The enumeration of acyclic orientations
and k-arc-connected orientations are studied in [6,19,55] and [10], respectively.
An st-orientation of a graph G is an acyclic orientation of G such that s and t are
its unique source and sink, respectively. In [24] a polynomial-delay algorithm is
provided for enumerating st-orientations. In [53], the algorithm in [24] is refined
to obtain linear delay, if the input is biconnected and planar. Our paper is
connected to these algorithms through a result by de Fraysseix and Ossona de
Mendez [22]: There is a bijection between the canonical orientations and the
bipolar orientations such that every internal vertex has at least two incoming
edges. Our enumeration algorithm for canonical orientations follows the strategy
of [24,53] for enumerating bipolar orientations of biconnected planar graphs.
However, requiring that every internal vertex has at least two incoming edges
dramatically increases the complexity of the problem and reveals new and, in
our opinion, interesting topological properties of the desired orientations.

The canonical orientations of a maximal plane graph form a distributive
lattice L [32]. By the fundamental theorem of finite distributive lattices [9],
there is a finite poset P whose order ideals correspond to the elements of L
and it is known that |P | is polynomial in n [32, page 10]. Enumerating the order
ideals of P is a studied problem. In [35] an algorithm is presented that lists all
order ideals of P in O(Δ(P )) delay, where Δ(P ) is the maximum indegree of the
covering graph of P . However, the algorithm has three drawbacks that make it
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unsuitable for solving our problems. First, the guaranteed delay of the algorithm
is amortized, and not worst-case. Second, the algorithm uses O(w(P ) · |P |) =
O(n3) space, where w(P ) = O(n) is the width of P , and O(|P |2) = O(n4)
preprocessing time. Third and most importantly, each order ideal is produced
twice by the algorithm, rather than just once as required by an enumeration
algorithm. Similarly, the algorithms in [48,54,56] are affected by all or by part
of the above drawbacks.

Open Problems. Our research sparkles new questions. In general, for a graph
G and a drawing style D, we may ask for algorithms to enumerate the drawings
of G respecting D. Examples include: (i) enumerating the planar straight-line
drawings of a planar graph on a given grid; (ii) enumerating the orthogonal
representations of a plane graph with at most b bends; and (iii) enumerating the
upward planar embeddings of a single-source or triconnected DAG.

Full details of omitted or sketched proofs can be found in the full version of
the paper [21].

2 Canonical Orientations

In [22, Lemma 3.6–3.7, Theorem 3.3], the following characterization has been
shown, for which we provide an alternative proof in the full version of the paper.

Theorem 1. ([22]). Let G be an n-vertex maximal plane graph and let (u, v, z)
be the cycle delimiting its outer face, where u, v, and z appear in this counter-
clockwise order along the cycle. An orientation D of G is a canonical orientation
with first vertex u if and only if D is a uz-orientation in which every internal
vertex has at least two incoming edges.

Our proof of Theorem 1 also implies the following.

Lemma 1. Any topological sorting of a canonical orientation with first vertex
u of a maximal plane graph G is a canonical ordering of G with first vertex u.

Let h1 and h2 be parallel edges in a plane graph. We denote by �(h1, h2)
the open region bounded by h1 and h2, and say that �(h1, h2) is a multilens if
it contains no vertices in its interior. Note that �(h1, h2) might contain edges
parallel to h1 and h2 in its interior, or it might coincide with an internal face of
the graph; see Fig. 3. We now provide some crucial definitions.

Definition 1. A biconnected plane graph G with two distinguished vertices s and
t is called well-formed if it satisfies the following conditions (refer to Fig. 3):

(1) s and t (which are called the poles of G) are incident to the outer face of G
and s immediately precedes t in clockwise order along the cycle Co bounding
such a face;

(2) all the internal faces of G have either two or three incident vertices;
(3) multiple edges, if any, are all incident to s; and
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G

b3

b1

r1

r3

t

b2

r2

s

Fig. 3. Any two of the edges r1, r2, and r3 form a multilens, the edges b2 and b3
form a multilens, whereas neither b2 nor b3 forms a multilens with b1; the multilenses
�(r1, r2), �(r2, r3), and �(b2, b3) are also faces.

(4) if two parallel edges h1 and h2 with end-vertices s and x exist such that
�(h1, h2) is not a multilens, then two parallel edges h′

1 and h′
2 between s

and a vertex y �= x exist such that �(h′
1, h

′
2) is a multilens and such that

�(h′
1, h

′
2) ⊂ �(h1, h2).

Definition 2. An st-orientation D of a well-formed biconnected plane graph G
with poles s and t is inner-canonical if every internal vertex has at least two
incoming edges in D.

Definition 3. Let G be a plane graph. The contraction of an edge e = (u, v)
removes e from G and “merges” u and v into a new vertex w. Let e, eu

1 , . . . , eu
h and

e, ev
1, . . . , e

v
k be the clockwise order of the edges incident to u and to v, respectively.

Then the clockwise order of the edges incident to w is eu
1 , . . . , eu

h, ev
1, . . . , e

v
k.

Note that the contraction of an edge may introduce parallel edges or self-
loops.

Let G be a well-formed biconnected plane graph with poles s and t. Let
e1, e2, . . . , em be the counter-clockwise order of the edges incident to s, where
e1 and em are the rightmost and leftmost edge incident to s, respectively, and
let v1, . . . , vm be the end-vertices of e1, . . . , em different from s, respectively.
Moreover, let G∗ be the plane multigraph resulting from the contraction of e1 in
G; see Fig. 4(a). Also, if G contains parallel edges, let j ∈ {1, . . . , m − 1} be the
smallest index such that ej and ej+1 define a multilens of G; denote by G− the
plane graph resulting from the removal of e1, . . . , ej from G; see Fig. 4(b). The
next lemmas prove that, under certain conditions, G∗ and G− are well-formed
multigraphs and can be used to obtain inner-canonical orientations of G.

Lemma 2. Suppose that G does not contain parallel edges between s and w1,
where w1 is the vertex that follows s in counter-clockwise direction along the outer
face of G. Then G∗ is a well-formed biconnected plane graph with poles s and t.
Also, let D∗ be an inner-canonical orientation of G∗. The orientation D of G
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Fig. 4. Illustration for the contraction of e1 (a) and the removal of e1, . . . , ej (b).

obtained from D∗ by orienting the edge (s, w1) away from s and by keeping the
orientation of all other edges unchanged is inner-canonical.

Lemma 3. Suppose that G contains parallel edges and let j ∈ {1, . . . , m− 1} be
the smallest index such that ej and ej+1 define a multilens of G. Suppose also
that either j = 1, or j > 1 and v2, . . . , vj are not incident to the outer face of
G. Then the graph G− is a well-formed biconnected plane graph with poles s and
t. Also, let D− be an inner-canonical orientation of G−. The orientation D of
G obtained from D− by orienting the edges e1, e2, . . . , ej away from s and by
keeping the orientation of all other edges unchanged is inner-canonical.

By induction on |E(G)| and using Lemmas 2 and 3 we can prove the following.

Lemma 4. Every well-formed biconnected plane graph G with poles s and t has
at least one inner-canonical orientation.

Section 2.1 is devoted to the proof of the following main result.

Theorem 2. Let G be a well-formed biconnected plane graph with ϕ edges.
There is an algorithm with O(ϕ) setup time and space usage listing all the inner-
canonical orientations of G with O(ϕ) delay.
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Provided that Theorem 2 holds, we can prove the following.

Lemma 5. Let G be an n-vertex maximal plane graph and (u, v, z) be the cycle
delimiting its outer face fo, where u, v, and z appear in this counter-clockwise
order along fo. There is an algorithm with O(n) setup time and space usage
listing all the canonical orientations of G with first vertex u with O(n) delay.

Proof (sketch): We have that G is a well-formed biconnected plane graph with
poles u and z. By Theorem 1, any canonical orientation of G with first vertex
u is a uz-orientation such that every internal vertex has at least two incoming
edges, i.e., an inner-canonical orientation. Also, any inner-canonical orientation
of G is canonical. This, combined with G having O(n) edges, implies that the
algorithm in Theorem 2 enumerates all canonical orientations of G within the
stated bounds. ��

Theorem 3. There is an algorithm A1 (resp. A2) with O(n) setup time and
space usage listing all canonical orientations of an n-vertex maximal plane (pla-
nar) graph with O(n) delay.

Proof (sketch): Algorithm A1 uses the algorithm for the proof of Lemma 5
three times, i.e., once for each choice of the first vertex among the three vertices
incident to the outer face of the input graph G. Algorithm A2 applies 4n − 8
times algorithm A1, since there are 4n − 8 maximal plane graphs that are iso-
morphic to G. ��

2.1 The Inner-Canonical Enumerator Algorithm

We now describe the Inner-Canonical Enumerator (ICE) algorithm that
enumerates all the inner-canonical orientations of a well-formed biconnected
plane graph G with poles s and t (see Theorem 2). In the full version of the
paper [21], we provide implementation details, data structures, and pseudocode
for achieving the claimed worst-case bounds.

The ICE algorithm works recursively as follows. In the base case, G is the
single edge em = (s, t), and its unique inner-canonical orientation is the one with
the edge em directed from s to t. Otherwise, the algorithm considers four cases.

In Cases 1 and 2, G contains parallel edges and e1 is the unique edge between
s and w1. Let j ∈ {2, . . . , m − 1} be the smallest index such that ej and ej+1
define a multilens of G. In Case 1, there exists an index i ∈ {2, . . . , j} such
that vi is incident to the outer face of G, while in Case 2 such an index does not
exist. In Case 3, G does not contain parallel edges. Finally, in Case 4, G contains
parallel edges between s and w1. Note that exactly one of Cases 1–4 applies to G.

In Cases 1 and 3, we contract the edge (s, w1). Let G∗ be the resulting plane
graph which, by Lemma 2, is biconnected and well-formed. Thus, the algorithm
can be applied recursively to enumerate all inner-canonical orientations of G∗.
The algorithm obtains all inner-canonical orientations of G from the ones of G∗

as in Lemma 2.
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In Case 4, we remove the edges e1, e2, . . . , ej . Let G′ be the resulting plane
graph which, by Lemma 3, is biconnected and well-formed. Thus, the algorithm
can be applied recursively in order to enumerate all inner-canonical orientations
of G′. The algorithm obtains all inner-canonical orientations of G from the ones
of G′ as in Lemma 3.

In Case 2, the algorithm branches and applies both the contraction and
the removal operations. Precisely, first we contract the edge (s, w1), obtaining
a well-formed biconnected plane graph G∗. After all inner-canonical orientations
of G∗ have been used to produce inner-canonical orientations of G as in Lemma
2, we remove the edges e1, e2, . . . , ej from G, obtaining a well-formed biconnected
plane graph G′, from which the remaining inner-canonical orientations of G are
produced as in Lemma 3.

Note that the ICE algorithm outputs an inner-canonical orientation each
time the base case applies. The next lemma summarizes its correctness.

Lemma 6. The ICE algorithm outputs all and only the inner-canonical orien-
tations of G without repetitions.

3 Enumeration of Canonical Orderings and Drawings

We show how to efficiently enumerate the canonical orderings and drawings of
a maximal plane or planar graph G. By Theorem 3, the canonical orientations
of G can be generated efficiently. By Lemma 1, for every canonical orientation D
of G, the canonical orderings π of G such that D is the canonical orientation of G
with respect to π are the topological sortings of D. Since there exist O(1)-delay
algorithms [47,49] for listing all such topological sortings, we get the following.

Theorem 4. There is an algorithm with O(n) setup time and space usage listing
all canonical orderings of an n-vertex maximal plane/planar graph with O(n)
delay.

Fig. 5. Illustrations for the FPP-algorithm. (a) Γk. (b) Γk+1.

We show how to enumerate the planar straight-line drawings produced by
the FPP-algorithm [26]. Its input is an n-vertex maximal plane graph G, whose
outer face is delimited by a cycle (u, v, z) and a canonical ordering π = (v1 =
u, v2 = v, v3, . . . , vn = z) of G. The FPP-algorithm works in steps.
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The first step constructs a planar straight-line drawing Γ3 of G3 with v1,
v2, and v3 at (0, 0), (2, 0), and (1, 1), respectively, and defines sets M3(v1) =
{v1, v2, v3}, M3(v3) = {v2, v3}, and M3(v2) = {v2}.

For k = 3, . . . , n−1, step k−1 constructs a planar straight-line drawing Γk+1
of Gk+1 by modifying Γk as follows; see Fig. 5. Let w1 = u,w2, . . . , wr = v be
the clockwise order of the vertices along the outer face of Gk. Assume that step
k − 2 has defined, for i = 1, . . . , r, a subset Mk(wi) of the vertices of Gk, where
Mk(w1) ⊃ · · · ⊃ Mk(wr). Let wp, wp+1, . . . , wq be the neighbors of vk+1 in Gk,
where p < q. Then Γk+1 is obtained from Γk by increasing the x-coordinate of
each vertex in Mk(wp+1) by one unit, the x-coordinate of each vertex in Mk(wq)
by one additional unit, and placing vk+1 at the intersection of the line through wp

with slope +1 and the line through wq with slope −1. Then step k − 1 proceeds
to define the sets:

(i) Mk+1(wi) = Mk(wi) ∪ {vk+1}, for i = 1, . . . , p;
(ii) Mk+1(vk+1) = Mk(wp+1) ∪ {vk+1}; and
(iii) Mk+1(wi) = Mk(wi), for i = q, . . . , r.

We call canonical drawing with base edge (u, v) the drawing Γn of G constructed
by the FPP-algorithm; we often say that Γn corresponds to π. The following is
the main tool for our enumeration algorithm.

Theorem 5. Let G be an n-vertex maximal plane graph and (u, v, z) be the cycle
delimiting the outer face of G, with u, v, and z in this counter-clockwise order
along the cycle. There is a bijective function f from the canonical orientations of
G with first vertex u to the canonical drawings of G with base edge (u, v). Also,
given a canonical orientation with first vertex u, the corresponding canonical
drawing with base edge (u, v) can be constructed in O(n) time.

Proof (sketch): The function f is as follows. Consider any canonical orienta-
tion D of G with first vertex u and let π be any canonical ordering with first
vertex u that extends D (that is, the canonical orientation of G with respect π is
D). Then f(D) is the canonical drawing with base edge (u, v) that corresponds
to π. Since π can be computed as any topological sorting of D in O(n) time [40]
and the FPP-algorithm can be implemented in O(n) time [17], the second part
of the statement follows. Clearly, f is injective. Indeed, any distinct canonical
orientations D1 and D2 of G differ on the orientation of some edge (a, b). Thus,
for any two canonical orderings π1 and π2 that extend D1 and D2, respectively,
we have that b follows a in π1 and precedes a in π2 (or vice versa). Hence, the
y-coordinate of b is larger than the one of a in f(D1) and smaller than the one of
a in f(D2) (or vice versa), thus f(D1) and f(D2) are not the same drawing. The
core of the proof that f is surjective is in the proof of the following statement.

Claim 1. Any two canonical orderings π and τ that extend D are such that the
canonical drawings of G corresponding to π and τ are the same drawing.

The proof of Claim 1 is by induction on |V (G)| and it relies on a natural extension
of the concepts of canonical ordering, orientation, and drawing to biconnected



360 G. Da Lozzo et al.

internally-triangulated plane graphs; hence, in the following, the outer face of G
might have more than three incident vertices. The proof of Claim 1 exploits the
following claim, which is also proved by induction on the size of G.

Claim 2. Let z1, . . . , zr be the clockwise order of the vertices along the outer face
of G, let Mπ(z1), . . . , Mπ(zr) (let Mτ (z1), . . . , Mτ (zr)) be the sets associated
to z1, . . . , zr, respectively, by the FPP-algorithm, when applied with canonical
ordering π (resp. τ). For i = 1, . . . , r, the sets Mπ(zi) and Mτ (zi) coincide.

The inductive proof of Claim 1 distinguishes two cases.
In Case 1, π and τ have the same last vertex. This can be removed from both,

resulting in canonical orderings λ and ξ, respectively, of a smaller graph G′. By
induction, the canonical drawings of G′ corresponding to λ and ξ coincide. This
and the fact that the sets associated to the vertices along the boundary of G′

by the FPP-algorithm when applied with canonical orderings λ and ξ coincide
imply that the canonical drawings of G corresponding to π and τ also coincide.

In Case 2, π and τ do not have the same last vertex. Then we define a
sequence of canonical orderings of G such that: (i) the first canonical ordering in
the sequence is τ ; (ii) any two canonical orderings consecutive in the sequence
coincide, except for two vertices, whose positions are adjacent and swapped in the
two canonical orderings; and (iii) the last canonical ordering in the sequence has
the same last vertex as π. Note that the last canonical ordering in the sequence
and π are such that the corresponding canonical drawings of G are the same
drawing, by Case 1. The proof that the canonical drawings of G corresponding
to two consecutive canonical orderings in the sequence are the same drawing
relies on the similarity of such canonical orderings. By transitivity, we get that
the canonical drawings of G corresponding to π and τ are the same drawing. ��

Theorem 3 and Theorem 5 imply the following.

Theorem 6. There is an algorithm with O(n) setup time and space usage list-
ing all canonical drawings of an n-vertex maximal plane/planar graph with
O(n) delay.

4 Enumeration of Schnyder Woods and Drawings

We now show how to efficiently enumerate the Schnyder woods and drawings
of an n-vertex maximal plane graph G. The Schnyder woods and the canonical
orientations of G are in bijection [22]. Further, given a canonical orientation of
G, the corresponding Schnyder wood of G can be constructed in O(n) time [14,
16,26,27,29,43,52]. This, together with Theorem 3, implies the following.

Theorem 7. There is an algorithm with O(n) setup time and space usage listing
all Schnyder woods of an n-vertex maximal plane/planar graph with O(n) delay.

We now deal with the enumeration of the planar straight-line drawings pro-
duced by the algorithm by Schnyder [52], known as Schnyder drawings. The
S-algorithm takes as input (see Fig. 6(a)) an n-vertex maximal plane graph G,
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whose outer face is delimited by a 3-cycle (u1, u2, u3), where u1, u2, and u3
appear in this counter-clockwise order along the cycle, and a Schnyder wood
W = (T1, T2, T3) of G, where Ti contains ui, for i = 1, 2, 3.

Fig. 6. (a) A Schnyder wood W of a maximal plane graph G. (b) Paths P1(4), P2(4),
and P3(4), and cycles Cx(4) and Cy(4). (c) The Schnyder drawing s(W).

The S-algorithm assigns coordinates (0, 0), (2n − 5, 0), and (0, 2n − 5) to u1,
u2, and u3, respectively. For a cycle C, let #f (C) be the number of internal faces
of G inside C. For i = 1, 2, 3, properties (S-1) and (S-2) of W imply that Ti

contains a directed path Pi(w) from any internal vertex w to ui; see Fig. 6(b).
Also, P1(w), P2(w), and P3(w) only share w [52]. Let Cx(w) and Cy(w) be the
cycles P1(w)∪P3(w)∪ (u1, u3) and P1(w)∪P2(w)∪ (u1, u2), respectively. Then
the algorithm assigns coordinates (#f (Cx(w)),#f (Cy(w))) to w; see Fig. 6(c).

The following is the main tool for our enumeration algorithm.

Theorem 8. Let G be an n-vertex maximal plane graph. There is a bijective
function s from the Schnyder woods of G to the Schnyder drawings of G. Also,
given a Schnyder wood of G, the corresponding Schnyder drawing of G can be
constructed in O(n) time.

Proof (sketch): The function s is the S-algorithm, which can be implemented
in O(n) time [52], from which the second part of the statement follows. The core
of the proof that s is bijective consists of proving that a Schnyder drawing Γ
uniquely determines the Schnyder wood W = (T1, T2, T3) such that s(W) = Γ .
This follows from the fact that in Γ , for each vertex v of G, the edges of T1, T2,
and T3 incoming into v have slopes in the intervals (0◦, 90◦), (135◦, 180◦), and
(270◦, 315◦), respectively, while the edges of T1, T2, and T3 outgoing from v have
slopes in the intervals (180◦, 270◦), (315◦, 360◦), and (90◦, 135◦), respectively; see
[27]. Thus, whether each edge (u, v) of G belongs to T1, T2, or T3 and whether it
is directed from u to v or vice versa is uniquely determined by its slope in Γ . ��

Theorem 7 and Theorem 8 imply the following.

Theorem 9. There is an algorithm with O(n) setup time and space usage listing
all Schnyder drawings of an n-vertex maximal plane graph with O(n) delay.
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Abstract. In this paper we first define (t, s)-completely independent
spanning trees, which is a generalization of completely independent span-
ning trees. A set of t spanning trees of a graph is (t, s)-completely inde-
pendent if, for any pair of vertices u and v, among the set of t paths
from u to v in the t spanning trees, at least s ≤ t paths are internally
disjoint. By (t, s)-completely independent spanning trees, one can ensure
any pair of vertices can communicate each other even if at most s − 1
vertices break down. We prove that every maximal planar graph has a set
of (3, 2)-completely independent spanning trees, every tri-connected pla-
nar graph has a set of (3, 2)-completely independent spanning trees, and
every 3D grid graph has a set of (3, 2)-completely independent spanning
trees. Also one can compute them in linear time.

Keywords: Independent Spanning Trees · Spanning Tree

1 Introduction

Two paths from vertex u to v are internally disjoint if they have no common
internal vertex.

A set of t spanning trees of a graph is completely independent if, for any pair
of vertices u and v, the set of t paths from u to v in the t spanning trees are
internally disjoint (and edge disjoint) [5]. A necessary and sufficient condition
for the existence of a set of t completely independent spanning trees is known
[4,5].

In this paper we generalize the concept of completely independent spanning
trees as follows. A set of t spanning trees of a graph is (t, s)-completely inde-
pendent if, for any pair of vertices u and v, among the set of t paths from u to
v in the t spanning trees, at least s ≤ t paths are internally disjoint. By (t, s)-
completely independent spanning trees, one can ensure any pair of vertices can
communicate each other even if at most s− 1 vertices break down. The original
completely independent spanning trees are (t, t)-complete spanning trees.

Intuitively, when we have t interconnection (spanning tree) networks, we want
to ensure s ≤ t of separate (independent) routes for each pair of vertices. The
original completely spanning tree concept may be too strong for some appli-
cations and may fail to construct them, however (t, s)-completely independent
tree concept may be a flexible choice for some applications and may increase the
chance to construct them.
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In this paper, we first design an algorithm to construct a set of (3, 2)-
completely independent spanning trees in a given maximal planar graph based on
the realizer [18], then design an algorithm to construct a set of (3, 2)-completely
independent spanning trees in a given tri-connected planar graphs based on the
canonical decomposition [11], then design an algorithm to construct a set of
(3, 2)-completely independent spanning trees in a given 3D grid graph. Those
algorithms are simple and run in O(n) time, where n is the number of vertices
of the given graph.

The remainder of this paper is organized as follows. Section 2 gives some def-
initions and two basic lemmas. In Sect. 3 we design our first algorithm which
constructs a set of (3, 2)-completely independent spanning trees in a given max-
imal planar graph. In Sect. 4 we design our second algorithm which constructs
a set of (3, 2)-completely independent spanning trees in a given tri-connected
planar graph. In Sect. 5 we design our third algorithm which constructs a set of
(3, 2)-completely independent spanning trees in a given 3D grid graph. Finally
Sect. 6 is a conclusion.

2 Preliminaries

A tree is a connected graph with no cycle. A rooted tree is a tree with a designated
vertex as the root. Given a graph G, a spanning tree of G is a subgraph of G
which is a tree and contains all vertices of G.

A graph is planar if it can be embedded on the plane so that no two edges
intersect geometrically except at a vertex to which they are both incident. A
plane graph is a planar graph with a fixed plane embedding.

A graph G with more than k vertices is k-connected if removal of any k − 1
vertices results in a connected graph.

A 3D grid graph with size Lx ×Ly ×Lz is the graph consisting of vertex set
{(x, y, z)|0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, 0 ≤ z ≤ Lz, and x, y, z are integers } and edge
set {{(x1, y1, z1), (x2, y2, z2)} | |x1 − x2| + |y1 − y2| + |z1 − z2| = 1}.

Independent Spanning Trees
Let n be the number of vertices of a given graph G. A set of t rooted spanning
trees with a common root r of a graph G is independent if, for any vertex v,
the set of t paths from r to v in the t spanning trees are internally disjoint.
It is conjectured that, for any k ≥ 1, every k-connected graph G has a set of k
independent spanning trees rooted at any vertex [12,19]. If G is bi-connected then
one can find two independent spanning trees in linear time by the st-numbering
[1,10]. If G is tri-connected then one can find three independent spanning trees
in O(n2) time by the ear-decomposition [1,2]. If G is four-connected then one can
find four independent spanning trees in O(n3) time by the chain-decomposition
[3]. If G is a tri-connected planar graph then one can find three independent
spanning trees in linear time by the canonical decomposition [1]. If G is a four-
connected planar graph then one can find four independent spanning trees in
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O(n3) time [8] then in linear time [13,14]. If G is a five-connected planar graph
then one can find five independent spanning trees in polynomial time [9]. If G
is a five-connected maximal planar graph then one can find five independent
spanning trees in linear time by the 5-canonical decomposition [15,16].

Completely Independent Spanning Trees
A set of spanning trees is completely independent if, for any pair of vertices u
and v, the set of paths from u to v in the spanning trees are internally disjoint
(and edge disjoint) [5]. A necessary and sufficient condition for the existence of
k completely independent spanning trees is known [4,5].

(t, s)-Completely Independent Spanning Trees
A set of t spanning trees is (t, s)-completely independent if, for any pair of vertices
u and v, among the set of t paths from u to v in the t spanning trees, at least s
paths are internally disjoint.

Realizer
Every maximal planar graph with n ≥ 4 vertices is tri-connected, and has a
unique embedding on a sphere only up to mirror copy [6]. In the embedding each
face has exactly three vertices on the boundary. Given a maximal planar graph
G with n vertices, we can compute a maximal plane graph G′ corresponding
to G in linear time [7]. Let rr, rb, ry be the three vertices on the outer face of
G′, and assume that they appear on the outer face clockwise in this order. A
partition {Er, Eb, Ey} of inner edges of G′ is called a realizer of G′ if the following
conditions (re1)–(re3) are satisfied [18]. See an example in Fig. 1(b). Let Tr be
the tree induced by all edges in Er. Similarly, let Tb and Ty be the trees induced
by all edges in Eb and Ey, respectively.
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Fig. 1. (a) A maximal plane graph G (b) a realizer of G (c) three spanning thees of G.
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(re1) Tr is a tree spanning all inner vertices of G and rr. Similarly, Tb is a
tree spanning all inner vertices of G and rb, and Ty is a tree spanning all inner
vertices of G and ry.
(re2) Every inner edge incident to rr is in Tr. Similarly, every inner edge incident
to rb is in Tb, and every inner edge incident to ry is in Ty.
(re3) Define the orientation of each inner edge as follows. In tree Tr, we regard
rr as the root of Tr, and orient each edge in Tr from a child to its parent.
Similarly, we regard rb and ry as the roots of Tb and Ty, respectively, and define
the orientation of each inner edge in Tb and Ty from a child to its parent.
Then, for each inner vertex v, all edges incident to v appear around v clockwise
in the following order. (See Fig. 2)

Exactly one outgoing edge in Tr.
Zero or more incoming edges in Ty.
Exactly one outgoing edge in Tb.
Zero or more incoming edges in Tr.
Exactly one outgoing edge in Ty.
Zero or more incoming edges in Tb.

Fig. 2. Illustration for the condition of a realizer.

We sometimes regard the set of three rooted trees Tr, Tb, Ty a realizer of G.
The above explanation is from [17]. The following lemma is known.

Lemma 1. [18] Every maximal plane graph has a realizer. One can find it in
linear time.

Canonical Decomposition
Every tri-connected planar graph has a unique embedding on a sphere only up
to mirror copy [6]. Given a tri-connected planar graph G with n vertices, we can
compute a plane graph G′ corresponding to G in linear time [7]. Let v1, v2, vn

be the three consecutive vertices on the outer face of G′, and they appear on
the outer face counterclockwise in order (v1, v2, vn). A partition V1, V2, · · · , Vh of
vertices of G′ is called a canonical decomposition of G′ if the following conditions
(cd1)–(cd4) are satisfied [11]. See an example in Fig. 6(a). Let Gi be the subgraph
of G′ induced by V1 ∪ V2 ∪ · · · ∪ Vi, and Let Gi be the subgraph of G′ induced
by Vi+1 ∪ Vi+2 ∪ · · · ∪ Vh.
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Fig. 3. An illustration for (cd3).

(cd1) V1 = {v1, v2}.
(cd2) For each i = 2, 3, · · · , h, Gi is bi-connected.
(cd3) For each i = 2, 3, · · · , h− 1, Vi is either (1) a vertex u on the outer face of
Gi having at least one neighbor in Gi (See Fig. 3(a)), or (2) consecutive vertices
{u�, u�+1, · · · , ur} on the outer face of Gi such that each vertex has degree two
in Gi and has at least one neighbor in Gi (See Fig. 3(b)).
(cd4) Vh = {vn}.

One can regard the canonical decomposition of a maximal plane graph is a
realizer.

The following lemma is known.

Lemma 2. [11] Every tri-connected plane graph has a canonical decomposition.
One can find it in linear time.

3 Algorithm I

In this section we design a linear time algorithm to construct a set of (3, 2)-
completely independent spanning trees in a given maximal planar graph with n
vertices. The algorithm is based on the realizer [18].

Let Tr, Tb, Ty be a realizer of a maximal planar graph. We have the following
lemma.

Lemma 3. [18][Theorem 4.6] For any inner vertex v, let S be the set of three
paths consisting of (1) the path from v to rr in Tr, (2) the path from v to rb in
Tb and (3) the path from v to ry in Ty. Then any two paths in S share only v.
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Proof. Assume otherwise for a contradiction. If the path from v to rr in Tr and
the path from v to ry in Ty share a vertex except v, then let u �= v be the first
such vertex in the path from v to rr in Tr (See Fig. 4 (b)), then, by the planarity,
(re3) is not satisfied at u. (A red path never crosses a yellow path from right to
left.) A contradiction.

Fig. 4. Illustration for Lemma 3.

Fig. 5. Illustration for Theorem 1.

Similar for the other cases. See Fig. 4 (c). ��
Given a realizer of a plane graph G′ corresponding to a maximal planer graph

G, let T ′
r be the spanning tree of G′ rooted at rr consisting of Tr and two edges

(ry, rr) and (rb, rr). Similarly, let T ′
b be the spanning tree of G′ rooted at rb

consisting of Tb and two edges (rr, rb) and (ry, rb), and T ′
y be the spanning tree

of G′ rooted at ry consisting of Ty and two edges (rb, ry) and (rr, ry). See an
example in Fig. 1(c).

We have the following theorem.

Theorem 1. T ′
r, T

′
b, T

′
y are (3, 2)-completely independent spanning trees.

Proof. For an inner vertex v, let Y (v) be the region surrounded by the path from
v to rr in T ′

r, the path from v to rb in T ′
b and edge (rr, rb). Similarly, let R(v)

be the region surrounded by the path from v to rb in T ′
b, the path from v to ry
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in T ′
y and edge (rb, ry) and B(v) be the region surrounded by the path from v

to ry in T ′
y, the path from v to rr in T ′

r and edge (ry, rr).
Given two vertices u and v in G′, let S be the set of three paths consisting

of the path from u to v in T ′
r, the path from u to v in T ′

b and the path from u
to v in T ′

y. Then we show that some pair of paths in S are internally disjoint.
If {u, v} ⊂ {rr, rb, ry} then the claim holds. Assume otherwise.
We have the following three cases to consider.

Case 1: Y (v) contains u. See Fig. 5(a).
The path from u to v in T ′

r and the path from u to v in T ′
b are internally

disjoint. (If the path from u to v in T ′
r and the path from u to v in T ′

b are not
internally disjoint, then, similar to the proof of Lemma3, we can show that there
is a vertex where (re3) does not satisfied. A contradiction.)
Case 2: Y (u) contains v. See Fig. 5(b).

The path from u to v in T ′
r and the path from u to v in T ′

b are internally
disjoint.

Similar to Case 1.
Case 3: Otherwise.

Then either B(v) contains u (See Fig. 5(c)) or R(v) contains u.
The path from u to v in T ′

b and the path from u to v in T ′
y are internally

disjoint. (Also the path from u to v in T ′
r and the path from u to v in T ′

y are
internally disjoint.) Similar to the proof of Lemma 3.

Fig. 6. (a) A canonical decomposition of a tri-connected plane graph. (b) Three span-
ning trees.

4 Algorithm II

In this section we design a linear time algorithm to construct a set of (3, 2)-
completely independent spanning trees in a given tri-connected planar graph
with n vertices. The algorithm is based on the canonical decomposition [11].

Given a tri-connected planar graph G, let G′ be the corresponding plane
graph, and V1, V2, · · ·Vh its canonical decomposition. We define, for each vertex
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v of G, three outgoing edges ll(v), rl(v) and h(v) from v, as follows. We call
those edges left leg, right leg and head of v, and intuitively each left leg points
lower left, each right leg points lower right and each head points upward.

For vertex in V1 = {v1, v2} we define as follows. rl(v1) = (v1, v2) and ll(v2) =
(v2, v1). And v1 has no left leg and v2 has no right leg.

For each vertex v ∈ V2 ∪ V3 ∪ · · · ∪ Vh, we have the following two cases.
If |Vi| = 1 then let Vi = {v} and u�, u�+1, · · · , ur be the neighbor of v on

the outer face of Gi−1 and assume that they appear in this order clockwise. We
define ll(v) = (v, u�) and rl(v) = (v, ur).

If |Vi| > 1 then let Vi = {v1, v2, · · · , vk}, and they appear in this order
clockwise on the outer face of Gi and v0 and vk+1 be the neighbor of v1 and
the neighbor of vk on the outer face of Gi−1, respectively. Then, for each j =
1, 2, · · · k, we define ll(vi) = (vi, vi−1) and rl(vi) = (vi, vi+1).

For vn ∈ Vh we define ll(vn) = v1 and rl(vn) = v2.
Also, for each vertex v ∈ V1 ∪ V2 ∪ · · · ∪ Vh−1, let u ∈ Vh′ be the neighbor

of v with the maximum h′. (For tie we choose the rightmost vertex.) We define
h(v) = (v, u). For vn ∈ Vh, vn has no head.

We regard v1, v2, vn as the three roots rb, rr, ry, respectively.
Let Tr be the tree rooted at rr consisting of all right legs. Similarly, let Tb

be the tree rooted at rb consisting of all left legs and let Ty be the tree rooted
at ry consisting of all heads. The set of those three trees is called a realizer of a
triconnected plane graph [1].

We have the following lemma.

Lemma 4. [1] Each of trees Tr, Tb, Ty is a spanning tree of G′. For each inner
vertex v of G′ all edges incident to v appear around v clockwise in the following
order.

– Exactly one outgoing edge in Tr. (Optionally it is shared with either one
incoming edge in Tb or one incoming edge in Ty)

– Zero or more incoming edges in Ty.
– Exactly one outgoing edge in Tb. (Optionally it is shared with either one

incoming edge in Ty or one incoming edge in Tr)
– Zero or more incoming edges in Tr.
– Exactly one outgoing edge in Ty. (Optionally it is shared with either one

incoming edge in Tr or one incoming edge in Tb).
– Zero or more incoming edges in Tb.

Proof. We denote the claim by (cd).
We can prove (cd) by induction on Vi, that is, for each i, the following (1)–(5)

holds. (1) (cd) holds on each vertex of Gi having no neighbor in Gi, (2) a relax
version of (cd) holds on each vertex of Gi having a neighbor in Gi, (3) the right
legs induce a spanning tree of Gi rooted at rr, (4) the left legs induce a spanning
tree of Gi rooted at rb, (5) the heads induce a spanning forest of Gi with each
root on the outer face of Gi and each root has a neighbor in Gi.
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Lemma 5. [1][Lemma 6] For any vertex v, let S be the set of three paths con-
sisting of (1) the path from v to rr in Tr, (2) the path from v to rb in Tb and
(3) the path from v to ry in Ty. Then any two paths in S share only v.

Proof. Assume otherwise for a contradiction. If the path from v to rr in Tr and
the path from v to ry in Ty share vertex u �= v, then, by the planarity, the
condition (cd) of lemma 4 is not satisfied at u. A contradiction.

Similar for other cases.

Theorem 2. Tr, Tb, Ty are (3, 2)-completely independent spanning trees.

Proof. Similar to Theorem 1 we can prove the following.
Given two vertices u and v in G, let S be the set of three paths consisting of

the path from u to v in Tr, the path from u to v in Tb and the path from u to v
in Ty. Then some pair of paths in S are internally disjoint.

��

5 Algorithm III

In this section we design a linear time algorithm to construct a set of (3, 2)-
completely independent spanning trees in a given 3D grid graph with size Lx ×
Ly × Lz. We assume Lx ≥ 1, Ly ≥ 1, Lz ≥ 1.

Let G be a grid graph with size Lx × Ly × Lz. For a vertex (x, y, z) with
x < Lx we define its parent vertex as (x+1, y, z), and for a vertex (x, y, z) with
x = Lz and y > 0 we define its parent vertex as (Lz, y − 1, z), and for a vertex
(x, y, z) with x = Lx, y = 0 and z > 0 we define its parent vertex as (Lx, 0, z−1).
The root rx is the vertex at (Lx, 0, 0) and it has no parent. Then for each vertex
of G except the root rx we append the edge connecting v and its parent. Those
edges induces the spanning tree of G and we denote it as Txyz. The path from
a vertex (x, y, z) to rx in Txyz consists of three line segments, those are (1) the
line segment from (x, y, z) to (Lx, y, z), (2) the line segment from (Lx, y, z) to
(Lx, 0, z), and (3) the line segment from (Lx, 0, z) to (Lx, 0, 0).

Similarly, we define the spanning tree Tyzx with the root ry at (0, Ly, 0) and
the spanning tree Tzxy with the root rz at (0, 0, Lz). The path from a vertex
(x, y, z) to the root ry in Tyzx consists of three line segments, those are (1)
the line segment from (x, y, z) to (x,Ly, z), (2) the line segment from (x,Ly, z)
to (x,Ly, 0), and (3) the line segment from (x,Ly, 0) to (0, Ly, 0). Similarly the
path from a vertex (x, y, z) to the root rz in Tzxy consists of three line segments,
those are (1) the line segment from (x, y, z) to (x, y, Lz), (2) the line segment
from (x, y, Lz) to (0, y, Lz), and (3) the line segment from (0, y, Lz) to (0, 0, Lz).

Note that the second part and the third part of Pxyz(u, rx), which is the path
from u to rx in Txyz, locate on the plane with x = Lx, and the second part and
the third part of Pyzx(u, ry) locate on the plane with y = Ly.

We have the following theorem.

Theorem 3. Txyz, Tyzx, Tzxy are (3, 2)-completely independent spanning trees.
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Fig. 7. Illustration for the cases.

Proof. For any pair of two vertices u and v in G we show if the path Pxyz(u, v)
connecting u and v in Txyz and the path Pyzx(u, v) connecting u and v in Tyzx

are not internally disjoint, then either (a) Pxyz(u, v) and the path Pzxy(u, v)
connecting u and v in Tzxy are internally disjoint, or (b) Pyzx(u, v) and the path
Pzxy(u, v) connecting u and v in Tzxy are internally disjoint.

Assume that Pxyz(u, v) and Pyzx(u, v) are not internally disjoint.
We have the following four cases.

Case 1: x(u) ≤ Lx, x(v) < Lx, y(u) < Ly and y(v) ≤ Ly hold.
If z(u) �= z(v) then Pxyz(u, v) and Pyzx(u, v) are internally disjoint. A con-

tradiction. See Fig. 7 (a). If z(u) = z(v) and either x(u) = x(v) or y(u) = y(v)
then Pxyz(u, v) and Pyzx(u, v) are internally disjoint. A contradiction.

So assume otherwise. Now z(u) = z(v), x(u) �= x(v) and y(u) �= y(v) hold. See
Fig. 7 (b). If Pxyz(u, r) and Pyzx(v, r) cross at a vertex c on the plane z = z(u).
Then Pxyz(u, v) and Pzxy(u, v) are internally disjoint. See Fig. 7 (c).
Case 2: x(u) ≤ Lx, x(v) = Lx, y(u) < Ly and y(v) ≤ Ly hold.
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If z(u) �= z(v) then Pxyz(u, v) and Pyzx(u, v) are internally disjoint. See Fig. 7
(d). So assume otherwise.

If z(u) = z(v) and Pxyz(u, v) and Pyzx(u, v) share some vertex c on the plane
z = z(u). See Fig. 7 (e), then Pxyz(u, v) and Pzxy(u, v) are internally disjoint.
See Fig. 7 (f).
Case 3: x(u) ≤ Lx, x(v) = Lx, y(u) = Ly and y(v) ≤ Ly hold.

If x(u) = Lx then Pxyz(u, v) and Pyzx(u, v) are internally disjoint. So assume
otherwise.

If Pxyz(u, v) and Pyzx(u, v) cross at a vertex c on the line with x = Lx and
y = Ly. See Fig. 7 (g). Then Pxyz(u, v) and Pzxy(u, v) are internally disjoint.
Case 4: x(u) ≤ Lx, x(v) ≤ Lx, y(u) = Ly and y(v) = Ly hold.

If Pxyz(u, v) and Pyzx(u, v) share some vertex c on the plane y = Ly then
Pxyz(u, v) and Pzxy(u, v) are internally disjoint. See Fig. 7 (h).

Otherwise Pxyz(u, v) and Pyzx(u, v) are internally disjoint. See Fig. 7 (i).
Each of other cases is symmetric to one of above cases.

��

6 Conclusion

In this paper we have defined (t, s)-completely independent spanning trees which
is a generalization of completely independent spanning trees. Then we have
designed an algorithm to construct a set of (3, 2)-completely independent span-
ning trees in a given maximal planar graph, an algorithm to construct a set
of (3, 2)-completely independent spanning trees in a given tri-connected planar
graph, and an algorithm to construct a set of (3, 2)-completely independent span-
ning trees in a given 3D grid graph. Those algorithms are simple and run in O(n)
time, where n is the number of vertices of the given graph.

Can we design an algorithm to construct a set of (t, s)-completely indepen-
dent spanning trees for other classes of graphs and some other choices of t and
s?
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Abstract. In this paper, we introduce the problem of finding an orien-
tation of a given undirected graph that maximizes the burning number
of the resulting directed graph. We show that the problem is polynomial-
time solvable on Kőnig–Egerváry graphs (and thus on bipartite graphs)
and that an almost optimal solution can be computed in polynomial
time for perfect graphs. On the other hand, we show that the problem
is NP-hard in general and W[1]-hard parameterized by the target burn-
ing number. The hardness results are complemented by several fixed-
parameter tractable results parameterized by structural parameters. Our
main result in this direction shows that the problem is fixed-parameter
tractable parameterized by cluster vertex deletion number plus clique
number (and thus also by vertex cover number).

Keywords: Burning number · Graph orientation · Fixed-parameter
algorithm

1 Introduction

The burning number of a directed or undirected graph G, denoted b(G), is the
minimum number of steps for burning all vertices of G in the following way: in
each step, we pick one vertex and burn it; and then between any two consecutive
steps, the fire spreads to the neighbors (to the out-neighbors, in the directed
setting) of the already burnt vertices. In other words, b(G) is the minimum
integer b such that there exists a sequence 〈w0, . . . , wb−1〉 of vertices such that
for each vertex v of G, there exists i (0 ≤ i ≤ b − 1) such that the distance from
wi to v is at most i. Note that each wi corresponds to the vertex that we picked
in the (b − i)th step.

The concept of burning number is introduced by Bonato, Janssen, and
Roshanbin [6,7] as a model of information spreading, while the same concept
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Fig. 1. The star graph K1,n with n ≥ 2.

was studied already in 1992 by Alon [1]. The central question studied so far on
this topic is the so-called burning number conjecture, which is about the worst
case for a burning process and states that b(G) ≤ �√n� for every connected undi-
rected graph with n vertices. The conjecture has been studied intensively but it
is still open (see [5] and the references therein). Recently, it has been announced
that the conjecture holds asymptotically, that is, b(G) ≤ (1 + o(1))

√
n [41]. For

the directed case, the worst cases are completely understood in both weakly
and strongly connected settings [29]. Since the problem of computing the burn-
ing number is hard [4,36,40], several approximation algorithms [34,35,38] and
parameterized algorithms [3,30,32] are studied.

In this paper, we investigate the worst case for a directed graph in the setting
where we only know the underlying undirected graph. That is, given an undi-
rected graph, which is assumed to be the underlying graph of a directed graph,
we want to know how bad the original directed graph can be in terms of burn-
ing number. This concept is represented by the following new graph parameter:
the orientable burning number of an undirected graph G, denoted B(G), is the
maximum burning number over all orientations of G; that is,

B(G) = max orientation
#»
G of G b(

#»

G).

See Fig. 1. Recall that an orientation
#»

G of an undirected graph G is a directed
graph that gives exactly one direction to each edge of G. Now the main problem
studied in this paper is formalized as follows.

Problem: Orientable Burning Number (OBN)
Input: An undirected graph G = (V,E) and an integer b.
Question: Is B(G) ≥ b?

In the setting of information spreading applications, this new problem can
be seen as the one determining directions of links in a given underlying net-
work structure to make the spread of something bad as slow as possible. Note
that the dual problem of minimizing the burning number by an orientation is
equivalent to the original graph burning problem on undirected graphs since
b(G) = minorientation

#»
G of G b(

#»

G). To see this equality, observe that each edge is
used at most once and only in one direction to spread the fire (see Fig. 1).
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1.1 Our Results

We first present, in Sect. 3, several lower and upper bounds connecting the ori-
entable burning number of a graph with other parameters such as the inde-
pendence number. In particular, for perfect graphs, we present almost tight
lower and upper bounds that differ only by 2 and can be computed in polyno-
mial time. We also consider Kőnig–Egerváry graphs, which generalize bipartite
graphs. Although our bounds for them are not exact, we show that the orientable
burning number of a Kőnig–Egerváry graph can be computed in polynomial time.

Next we consider the computational intractability of OBN in Sect. 4. We
show that OBN is W[1]-hard parameterized by the target burning number b.
Although the proof of this result implies the NP-hardness of OBN for general
graphs as well, we present another NP-hardness proof that can be applied to
restricted graph classes that satisfy a couple of conditions. For example, this
shows that OBN is NP-hard on planar graphs of maximum degree 3.

To cope with the hardness of OBN, we study structural parameterizations
in Sect. 5. We first observe that some sparseness parameters (e.g., treewidth)
combined with b make the problem fixed-parameter tractable. The main question
there is the tractability of structural parameterizations not combined with b.
We show that OBN parameterized by cluster vertex deletion number plus clique
number is fixed-parameter tractable. As a corollary to this result, we can see
that OBN parameterized by vertex cover number is fixed-parameter tractable.

Due to the space limitation, some parts are shortened or omitted. The proofs
of the statements marked with � are given in the full version.

1.2 Related Problems

Although the problem studied in this paper is new, the concept of orientable
number has long history in the settings of some classical graph problems.

The most relevant is the orientable domination number. The orientable dom-
ination number of an undirected graph G, denoted DOM(G), is the maximum
domination number over all orientations

#»

G of G. That is,

DOM(G) = max
orientation

#»
G of G

γ(
#»

G),

where γ(
#»

G) is the size of a minimum dominating set of the directed graph
#»

G.1 Erdős [19] initiated (under a different formulation) the study of orientable
domination number by showing that DOM(Kn) 	 log2 n, where Kn is the com-
plete graph on n vertices. Later, the concept of orientable domination number
is explicitly introduced by Chartrand et al. [12]. We can show that orientable
domination number (plus 1) is an upper bound of orientable burning number
(see Observation 3.1).

There are two other well-studied problems. One is to find an orientation that
minimizes the length of a longest path, which is equivalent to the graph coloring
1 In a directed graph, a vertex dominates itself and its out-neighbors.
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problem by the Gallai–Hasse–Roy–Vitaver theorem [20,25,42,43]. The other one
is to find a strong orientation that minimizes or maximizes the diameter. It is
NP-complete to decide if a graph admits a strong orientation with diameter 2 [13]
and the maximum diameter of a strong orientation is equal to the length of a
longest path in the underlying 2-edge connected graph [23].

2 Preliminaries

We assume that the readers are familiar with the theory of parameterized algo-
rithms. (For standard concepts, see [16].)

Terms in Graph Burning. Let D = (V,A) be a directed graph. By N+
�,D[v], we

denote the set of vertices with distance at most � from v in D. We often omit
D in the subscript and write N+

� [v] instead when it is clear from the context. A
burning sequence of D with length b is a sequence 〈w0, w1, . . . , wb−1〉 ∈ V b such
that

⋃
0≤i≤b−1 N+

i [wi] = V . Note that the burning number of D is the minimum
integer b such that D has a burning sequence of length b. We call the ith vertex
wi in a burning sequence the fire of radius i and say that wi burns N+

i [wi].

Some Basic Graph Terms. Let G = (V,E) be a graph. The complement of
G is denoted by G. For S ⊆ V , let G[S] denote the subgraph of G induced
by S. For S ⊆ V , let G − S = G[V \ S]. For a graph G, let α(G) denote
the independence number, χ(G) the chromatic number, ω(G) the clique number,
θ(G) the clique cover number, μ(G) the matching number. (See the full version
for their definitions.) Note that α(G) = ω(G) and χ(G) = θ(G).

A graph G = (V,E) is a perfect graph if ω(G[S]) = χ(G[S]) holds for all
S ⊆ V . Equivalently, G is a perfect graph if α(G[S]) = θ(G[S]) holds for all
S ⊆ V since the class of perfect graphs is closed under taking complements [37].
The class of perfect graphs contains several well-studied classes of graphs such
as bipartite graphs and chordal graphs (see, e.g., [8]). A graph G = (V,E) is a
Kőnig–Egerváry graph if α(G) = |V | − μ(G). It is known that every bipartite
graph is a Kőnig–Egerváry graph [17,31].

Structural Parameters of Graphs. Let G = (V,E) be a graph. A vertex cover
of G is a set S ⊆ V such that G − S has no edge. The vertex cover number of
G, denoted vc(G), is the minimum size of a vertex cover of G. A cluster vertex
deletion set of G is a set S ⊆ V such that each connected component of G − S
is a complete graph. The cluster vertex deletion number of G, denoted cvd(G),
is the minimum size of a cluster vertex deletion set of G.

Observation 2.1 (�). χ(G) ≤ cvd(G) + ω(G) ≤ 2 vc(G) + 1 for any graph G.

We can see that cvd(G) + ω(G) is an upper bound of vertex integrity, and thus
of treedepth, pathwidth, treewidth, and clique-width. We are not going to define
these parameters as we do not explicitly use them in this paper. For their defi-
nitions, see [21,26].
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3 General Lower and Upper Bounds

In this section, we present lower and upper bounds of orientable burning number,
which are useful in presenting algorithmic and computational results in the rest
of the paper. We start with a simple observation that orientable burning number
is bounded from above by orientable domination number plus 1.

Observation 3.1 (�). B(G) ≤ DOM(G) + 1 for every graph G.

Since DOM(G) ∈ O(α · log |V (G)|) [10,24], Observation 3.1 implies that B(G) ∈
O(α · log |V (G)|).

For orientable domination number, it is known that α(G) ≤ DOM(G) ≤
n − μ(G) for every n-vertex graph G [11,12]. The following counterpart for
orientable burning number can be shown in almost the same way.
Lemma 3.2 (�). For every n-vertex graph G, α(G) ≤ B(G) ≤ n − μ(G) + 1.

The equality α(G) = n − μ(G) for Kőnig–Egerváry graphs implies that
DOM(G) = α(G) for them [11]. On the other hand, because of the additive
factor +1 in Lemma 3.2, the bounds only give that B(G) ∈ {α(G), α(G) + 1}
for Kőnig–Egerváry graphs. By taking a closer look at their structure, we can
present a characterization that determines which is the case.
Theorem 3.3 (�). Let G be a Kőnig–Egerváry graph with more than four ver-
tices, then

B(G) =

{
α(G) + 1 if G = mP2,

α(G) otherwise,

where m = |E| and mP2 is the disjoint union of m edges.
This immediately gives the complexity of Orientable Burning Number

for Kőnig–Egerváry graphs.

Corollary 3.4. Orientable Burning Number on Kőnig–Egerváry graphs is
solvable in polynomial time.

A tournament is an orientation of a complete graph. A king of a tournament
T = (V,A) is a vertex v ∈ V such that N+

2 [v] = V [39]. The following fact due
to Landau [33] is well known.

Proposition 3.5 ([33]). In a tournament, every vertex with the maximum out-
degree is a king.

By using Proposition 3.5, we can show the following upper bound of orientable
burning number in terms of clique cover number.
Lemma 3.6 (�). For every graph G, B(G) ≤ θ(G) + 2.

Recall that θ(G) = α(G) holds for every perfect graph G. Hence, Lemmas 3.2
and 3.6 imply the following almost tight bounds for perfect graphs.

Corollary 3.7. For every perfect graph G, α(G) ≤ B(G) ≤ α(G) + 2.

Since α(G) of a perfect graph G can be computed in polynomial time [22], one
can compute in polynomial time a value b such that b ≤ B(G) ≤ b + 2. We left
the complexity of OBN on perfect graphs unsettled.
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4 Hardness of the Problem

Now we demonstrate that Orientable Burning Number is intractable in
general. We show that OBN is NP-hard, and OBN is W[1]-hard parameterized
by the target burning number b.

We can see that our reduction showing the W[1]-hardness also shows NP-
hardness in general. However, we present the separate reduction for NP-hardness
as it has a wider range of applications. Basically, our reduction for W[1]-hardness
works only for dense graphs, while the one for NP-hardness works also for sparse
graphs like planar graphs.

In this short version, we only give the proof of the W[1]-hardness and the
proofs of the following results are given in the full version.

Theorem 4.1 (�). Let G be a graph class such that Independent Set is
NP-complete on G. If G is closed under additions of isolated vertices, then Ori-
entable Burning Number on G is NP-hard.

Corollary 4.2 (�). Orientable Burning Number is NP-hard on planar
graphs of maximum degree 3.

4.1 W[1]-Hardness Parameterized by b

Given an undirected graph G = (V,E) and a partition (V1, . . . , Vk) of V into
cliques, Multicolored Independent Set (MCIS) asks whether G contains
an independent set of size k. It is known that MCIS parameterized by k is W[1]-
complete [16]. We reduce MCIS parameterized by k to OBN parameterized by b.

Theorem 4.3. Orientable Burning Number on connected graphs is W[1]-
hard parameterized by the target burning number b.

Proof. Let (G,V1, . . . , Vk) be an instance of MCIS. Let H be the connected graph
obtained from G by first adding a set I of four isolated vertices and then adding
a universal vertex u. We prove that (H, k + 4) is a yes-instance of OBN if and
only if (G, k) is a yes-instance of MCIS.

To show the if direction, assume that G has an independent set S of size k.
Since S ∪ I is an independent set of H, there is an orientation

#»

H of H such that
each vertex in S ∪ I has in-degree 0, and thus b(

#»

H) ≥ k + 4.
In the following, we show the only-if direction. Assume that (H, k + 4) is a

yes-instance of OBN and an orientation
#»

H of H satisfies b(
#»

H) ≥ k + 4.
We construct a sequence σ = 〈w0, . . . , wk+3〉 as follows. If all vertices in I

are of in-degree 0, then we set w0, w1, w2, w3 to the vertices in I. Otherwise,
we set w3 to u and set w0, w1, w2 to three vertices of I including the ones of
in-degree 0 (if any exist). For 1 ≤ i ≤ k, we set wi+3 to a king of the tournament
#»

H[Vi]. Recall that a king of a tournament can reach the other vertices in the
tournament in at most two steps. Recall also that every tournament has a king,
which can be found in polynomial time (see Proposition 3.5). We can see that
σ is a burning sequence of

#»

H (with length k + 4) as follows. Each vertex of
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in-degree 0 in {u} ∪ I, if any exists, is burned by itself, and the other vertices in
{u} ∪ I are burned by w3. For 1 ≤ i ≤ k, wi+3 burns Vi as i + 3 > 2 and wi+3 is
a king of

#»

H[Vi]. Since b(
#»

H) ≥ k + 4, σ is a shortest burning sequence of
#»

H.
Now we show that {w4, . . . , wk+3} is an independent set of G, which implies

that (G,V1, . . . , Vk) is a yes-instance of MCIS. Suppose to the contrary that G
has an edge between vertices wp, wq ∈ {w4, . . . , wk+3}. By symmetry, we may
assume that (wp, wq) ∈ A(

#»

H). Let σ′ = 〈w′
0, . . . , w

′
k+2〉 be the sequence obtained

from σ by skipping wq, that is, a sequence σ′ defined as

w′
i =

{
wi 0 ≤ i ≤ q − 1,

wi+1 q ≤ i ≤ k + 2.

We show that σ′ is a burning sequence of
#»

H, which contradicts that σ is shortest.
As {w′

0, w
′
1, w

′
2, w

′
3} = {w0, w1, w2, w3}, we have

⋃
0≤i≤3 N+

i [w′
i] ⊇ {u} ∪ I.

For 4 ≤ i ≤ q − 1, we have w′
i = wi, and thus N+

i [w′
i] = N+

i [wi] ⊇ Vi−3. For
q ≤ i ≤ k + 2, w′

i = wi+1 is a king of Vi−2, and thus N+
i [w′

i] ⊇ Vi−2. The
discussion so far implies that V (G) \ Vq−3 ⊆ ⋃

0≤i≤k+2 N+
i [w′

i].
Now it suffices to show that Vq−3 is also burned by σ′. Since wq is a king

of Vq−3, we have Vq−3 ⊆ N+
2 [wq]. As (wp, wq) ∈ A(

#»

H), it holds that N+
2 [wq] ⊆

N+
3 [wp]. Since p ≥ 4, N+

3 [wp] ⊆ N+
p−1[wp] holds. The chain of inclusions implies

that Vq−3 ⊆ N+
p−1[wp]. Since wp ∈ {w′

p−1, w
′
p}, we have Vq−3 ⊆ N+

p−1[w
′
p−1] or

Vq−3 ⊆ N+
p−1[w

′
p] ⊆ N+

p [w′
p]. This implies that Vq−3 is burnt by w′

p−1 or w′
p. ��

5 Structural Parameterizations

In this section, we consider some structural parameterizations of Orientable
Burning Number. Given Theorem4.3, which shows that OBN is intractable
when parameterized by the target burning number b, it is natural to consider
the problem parameterized by some structural parameters of the input graph.

The first observation is that some sparseness parameters combined with b
make the problem tractable. In particular, we can show the following.

Corollary 5.1 (�). Orientable Burning Number is fixed-parameter trac-
table parameterized by b plus average degree.

Corollary 5.1 implies that OBN is fixed-parameter tractable parameterized by
b + treewidth, and OBN on planar graphs is fixed-parameter tractable parame-
terized by b. Recall that OBN is NP-hard on planar graphs even if the maximum
degree is 3 (Corollary 4.2). On the other hand, the parameterized complexity of
OBN parameterized solely by treewidth remains unsettled.

Next we consider structural parameterizations not combined with b. As the
first step in this direction, we consider parameters less general than treewidth
such as vertex cover number. In some sense, vertex cover number is one of the
most restricted parameters that is an upper bound of treewidth (see [21]).
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We show that OBN parameterized solely by vertex cover number is fixed-
parameter tractable. Our proof is actually for a slightly more general case, where
the parameter is cluster vertex deletion number plus clique number. In the rest
of this section, we prove the following theorem.

Theorem 5.2. Orientable Burning Number is fixed-parameter tractable
parameterized by cluster vertex deletion number plus clique number.

Theorem 5.2 and Observation 2.1 imply the fixed-parameter tractability
parameterized by vertex cover number.

Corollary 5.3. Orientable Burning Number is fixed-parameter tractable
parameterized by vertex cover number.

Proof of Theorem 5.2. In the proof, we use the theory of monadic second-
order logic on graphs (MSO2), which will be introduced right before we use it.
If we allow an MSO2 formula to have length depending on b, it is not difficult to
express OBN. However, this only implies the fixed-parameter tractability of OBN
parameterized by a parameter combined with b. To avoid the dependency on b,
we have to bound the length of an MSO2 formula with a function not depending
on b. To this end, we make a series of observations to bound the number of parts
not used in a good burning sequence, then represent the problem by expressing
the unused parts instead of the used parts.

Useful Observations. In the following, let (G, b) be an instance of OBN. Let ω
be the clique number of G; that is, ω = ω(G). Let S be a cluster vertex deletion
set of G with size s = cvd(G). Our parameter is k := ω + s. Note that finding S
is fixed-parameter tractable parameterized by s [27], and thus by k as well. Let
C1, . . . , Cp be the connected components of G − S, which are complete graphs.
When we are dealing with an orientation

#»

G of G, we sometimes mean by Ci the
tournament

#»

G[V (Ci)]. For example, we may say “a king of Ci.”

Claim 5.4. If b ≤ p, then (G, b) is a yes-instance.

Proof. By picking arbitrary one vertex from each Ci, we can construct an inde-
pendent set of size p. By Lemma3.2, B(G) ≥ α(G) ≥ p ≥ b. ��
Claim 5.5. If b > p + s + 2, then (G, b) is a no-instance.

Proof. Let
#»

G be an orientation of G. It suffices to show that b(
#»

G) ≤ p + s + 2.
For each Ci, we place a fire of radius at least 2 at a king of Ci. For each vertex
in S, we place a fire of arbitrary radius. If we have not used the fires of radii 0
and 1, then we place them at arbitrary vertices. ��
By Claims 5.4 and 5.5, we may assume that p < b ≤ p + s + 2.

Let � be the length of a longest path in G. We assume that � ≥ 1 since
otherwise G cannot have any edge and the problem becomes trivial. Note that
in every orientation

#»

G or G, the length of a longest directed path is at most �.
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Claim 5.6. � ≤ sω + s + ω − 1.

Proof. Let P be a longest path in G. Since P can visit at most |S|+1 connected
components of G−S, we have |V (P )| ≤ |S|+(|S|+1)ω as each Ci is a complete
graph. The claim follows as |S| = s and |E(P )| = |V (P )| − 1. ��

In a burning sequence of an orientation of G, we call a fire of radius at least
� a large fire. Note that a large fire w burns all vertices that can be reached from
w in the orientation as no directed path in the orientation is longer than �.

In the following, we focus on burning sequences of length b − 1 since we are
going to express the non-existence of such sequences. Let L = max{0, b− 1− �};
that is L is the number of large fires in a sequence of length b − 1. Observe that
L ≤ p + s as b − 1 − � ≤ b − 2 ≤ p + s.

A burning sequence of an orientation of G is good if the following conditions
are satisfied:

1. two large fires do not have the same position;
2. each Cj contains at most one large fire;
3. if a large fire is placed in some Ch, then it is placed at a king of Ch.

Claim 5.7. Let
#»

G be an orientation of G. If
#»

G admits a burning sequence with
length b − 1, then there is a good burning sequence of

#»

G with the same length.

Proof. From a burning sequence σ of
#»

G with length b − 1, we first construct a
sequence σ1 that satisfies the first condition of the goodness. We repeatedly find
two large fires placed at the same vertex and then replace arbitrary one of them
with another vertex not occupied by any large fire. The replacement is possible
as L is not larger than the number of vertices. Since two large fires placed at
the same vertex burn the same set of vertices, the obtained sequence is still a
burning sequence of

#»

G. When there is no pair of large fires occupying the same
vertex, we stop this phase and call the resultant sequence σ1.

Next we modify σ1 to obtain a sequence σ2 that satisfies the first and sec-
ond conditions. Assume that two large fires wi and wj are placed in the same
connected component Ch of G − S and that (wi, wj) ∈ A(

#»

G). (Recall that Ch

is a complete graph.) Since wi is a large fire, it burns every vertex that can be
reached from wi. In particular, wi burns all vertices reachable from wj . Hence,
wj is useless for burning the graph. We replace wj with another vertex v such
that v is not occupied by any large fire and if v belongs to some Ch′ , then there
is no large fire belonging to Ch′ prior to the replacement. This is always possible
as L ≤ p + s. We exhaustively apply this replacement procedure and get σ2,
which satisfies the first and second conditions of the goodness.

Finally, we obtain a sequence σ3 from σ2 by replacing each large fire that is
placed in some Ch with a king of Ch. We can see that σ3 is a burning sequence
of

#»

G since the new large fire placed at a king of Ch burns all vertices reachable
form the king and the king can reach all vertices in Ch. Since σ3 satisfies all
conditions of goodness and has the same length as σ, the claim holds. ��
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If σ is a good burning sequence of an orientation
#»

G of G with length b−1, then
the sum of the following two numbers is p+s−L: (1) the number of vertices in S
not occupied by the large fires of σ, and (2) the number of connected components
of G − S not including large fires of σ. Since L = max{0, b − 1 − �} and p < b,
it holds that p + s − L < s + � + 1. Since � can be bounded from above by a
function of k = s + ω, so is p + s − L. Thus our MSO2 formula can have length
depending on p + s − L, the number of unused parts.

MSO2 Expressions. We now express the problem in the monadic second-order
logic on graphs. A formula in the monadic second-order logic on graphs, denoted
MSO2, can have variables representing vertices, vertex sets, edges, and edge sets.
As atomic formulas, we can use the equality x = y, the inclusion x ∈ X, the
adjacency relation adj(x, y) meaning that vertices x and y are adjacent, and the
incidence relation inc(e, x) meaning that a vertex x is an endpoint of an edge e.
Atomic formulas can be recursively combined by the usual Boolean connectives
¬, ∧, ∨, ⇒, and ⇐ to form an MSO2 formula. Furthermore, variables in an
MSO2 formula can be quantified by ∃ and ∀. If an MSO2 formula φ(X) with
one free (vertex-set or edge-set) variable X is evaluated to true on a graph G
and a subset S of V (G) or E(G), we write G |= φ(S). It is known that, given an
MSO2 formula φ(X), a graph G, and a subset S of V (G) or E(G), the problem
of deciding whether G |= φ(S) is fixed-parameter tractable parameterized by the
length of φ plus the treewidth of G [2,9,14].

In the following, we construct an MSO2 formula φ(X) such that G |= φ(S)
if and only if (G, b) is a yes-instance of OBN, S is a minimum cluster vertex
deletion set, p < b ≤ p + s + 2, and the sum of the numbers of unused vertices
in S and unused connected components of G − S is p + s − L. Recall that
s = cvd(G) = |S|, ω = ω(G), p is the number of connected components in G−S,
and L is the number of large fires in a sequence of length b − 1. Also, we show
that the length of φ(X) is bounded from above by a function of k = s+ω. Since
the treewidth of G is at most s + ω (see [21]), this implies Theorem5.2.

The formula φ(X) asks whether there exists an orientation
#»

G of G such that
no sequence 〈w0, . . . , wb−2〉 of length b − 1 is a good burning sequence of

#»

G.
In MSO2, we can handle orientations of k-colorable graphs by first assuming a
default orientation using a k-coloring and then represent the reversed edges by a
set of edges [15,28].2 More precisely, such a formula first expresses a k-coloring
and a set of reversed edge, and then it considers each edge as oriented from the
vertex with a smaller label to the one with a larger label if and only if the edge
is not a reversed one. Note that Observation 2.1 implies that G is k-colorable.
We use this technique and thus φ(X) has the following form:

φ(X) = ∃V1, . . . , Vk ⊆ V, ∃F ⊆ E : proper-coloring(V1, . . . , Vk) ∧ φ1,

where proper-coloring(V1, . . . , Vk) expresses that V1, . . . , Vk is a proper k-
coloring of G. We define proper-coloring(V1, . . . , Vk) in the full version (�).
2 There is another way for handling orientation by using a variant of MSO2 defined

for directed graphs, where we can fix an arbitrary orientation first (without using a
k-coloring) and then represent reversed edges by an edge set. See e.g., [18].
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The subformula φ1 can use the formula arc(u, v) expressing that there is an
arc from u to v in the orientation defined by V1, . . . , Vk and F , where

arc(u, v) = adj(u, v) ∧ (
((u < v) ∧ ¬rev(u, v)) ∨ (¬(u < v) ∧ rev(u, v))

)
,

with (u < v) =
∨

1≤i<j≤k(u ∈ Vi ∧ v ∈ Vj) and rev(u, v) = ∃e ∈ F : inc(e, u) ∧
inc(e, v).

Given an orientation defined above, the subformula φ1 expresses that there
is no good burning sequence of length b − 1 for this orientation. Indeed, we set
φ1 = ¬φ2 and give a definition of φ2 that expresses there is a good burning
sequence of length b − 1. We assume that b − 1 > � since the other case can
be easily obtained from the expression of this case. The subformula φ2 has the
following form

φ2 = ∃w0, . . . , w�−1 ∈ V, ∃u1, . . . , up+s−L ∈ V :
∧

1≤i<j≤p+s−L(ui �= uj)

∧ ∧
1≤i<j≤p+s−L((ui /∈ X) ∧ (uj /∈ X) ⇒ ¬adj(ui, uj)) ∧ φ3,

where w0, . . . , w�−1 simply correspond to the first � fires in a (good) burning
sequence and u1, . . . , up+s−L correspond to the representatives of unused parts.
More precisely, if ui ∈ X, then it means that ui is not used by any large fire;
if ui /∈ X and thus ui belongs to some connected component C of G − X, then
it means that no vertex in C is used by large fires. Note that the second line
of the formula forces that u1, . . . , up+s−L are distinct and not chosen multiple
times from one connected component of G − X. (Recall that X is promised to
be a cluster vertex deletion set.) Now φ3 expresses that every vertex is burned.
Hence, it can be expressed as φ3 = ∀v ∈ V : burned(v), where the definition of
burned(v) is given below.

To define burned(v), observe that v is burned if and only if one of the fol-
lowing conditions is satisfied:

1. some wi (0 ≤ i ≤ � − 1) has a directed path of length at most i to v;
2. some large fire has a directed path to v.

We express the first case as burned-small(v) and the second as burned-large(v),
and thus burned(v) = burned-small(v)∨burned-large(v). The first case is easy
to state as

burned-small(v) =
∨

0≤i≤�−1 reachablei(wi, v),

where reachabled(x, y) means that there is a directed path of length at most d
from x to y, which can be defined as

reachabled(x, y) = ∃z0, . . . , zd ∈ V : (z0 = x) ∧ (zd = y) ∧
∧

0≤j≤d−1((zj = zj+1) ∨ arc(zj , zj+1)).

On the other hand, the second case is a bit tricky as the large fires are not
explicitly handled. Recall that the vertices u1, . . . , up+s−L tell us which vertices
in X are not large fires and which connected components of G − X include no



388 J. Courtiel et al.

large fires. From this information, we can determine whether a vertex x is used
as a large fire by setting large-fire(x) = ¬unused(x), where

unused(x) =
∨

1≤i≤p+s−L(x = ui)

∨
(
(x /∈ X) ∧ ∨

1≤i≤p+s−L((ui /∈ X) ∧ adj(x, ui))
)

.

Note that the correctness of the second line depends on the assumption that
each connected component of G−X is a complete graph. Now burned-large(v)
can be expressed as follows.

burned-large(v) = ∃x ∈ V : large-fire(x) ∧ reachable�(x, v).

The length of the entire formula φ(X) depends only on k, �, and p + s − L,
where � and p + s − L can be bounded from above by function depending only
on k. This completes the proof of Theorem 5.2.

6 Concluding Remarks

In this paper, we initiated the study of Orientable Burning Number (OBN),
which is the problem of finding an orientation of a graph that maximizes
the burning number. We first observed some graph-theoretic bounds and then
showed algorithmic and complexity results.

We showed that OBN is NP-hard even on some classes of sparse graphs
(Theorem 4.1). However, we do not know whether OBN belongs to NP. We can
see that it belongs to ΣP

2 since it is an ∃∀-problem that asks for the existence
of an orientation of a given graph such that all short sequences of fires are not
burning sequences of the oriented graph (see [44] for a friendly introduction to
ΣP

2 ). It would be natural to suspect that the problem is indeed ΣP
2 -hard.

Question 6.1. Does OBN belong to NP, or is it ΣP
2 -complete?

In contrast to the NP-hardness of the general case, we showed that the prob-
lem is solvable in polynomial time on bipartite graphs or more generally on
Kőnig–Egerváry graphs (Corollary 3.4). We also showed that for perfect graphs,
which form a large superclass of bipartite graphs, we can compute the orientable
burning number with an additive error of 2 (Corollary 3.7). Given these facts,
we would like to ask whether the problem can be solved in polynomial time on
perfect graphs or on some of its subclasses such as chordal graphs.

Question 6.2. Is OBN polynomial-time solvable on perfect graphs, or on some
of its (non-bipartite) subclasses such as chordal graphs?

In the parameterized setting, we showed that OBN parameterized by the
target burning number b is W[1]-hard in general (Theorem 4.3), while it is fixed-
parameter tractable on some sparse graphs such as planar graphs (Corollary 5.1).
We then studied the setting where b is not part of the parameter. In this case, we
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showed that OBN parameterized solely by vertex cover number (or more gener-
ally by cluster vertex deletion number plus clique number) is fixed-parameter
tractable (Theorem 5.2). It would be interesting to study the complexity of
parameterizations by more general parameters, e.g., vertex integrity [21].

Question 6.3. Is OBN fixed-parameter tractable when parameterized solely by
treewidth, pathwidth, treedepth, vertex integrity, or other related parameters?

Finally, we ask a graph-theoretic question. Most of the algorithmic and com-
plexity results in this paper directly or indirectly used the relations between the
orientable burning number and the independence number shown in Sect. 3. As
shown there, we have α(G) ≤ B(G) and B(G) ∈ O(α(G) · log n). Now the ques-
tion would be the maximum difference between α(G) and B(G). At this point,
we only know that the maximum gap is at least 2 as B(Kn) = 3 = α(Kn) + 2
for n ≥ 5 (�).

Question 6.4. Is there a graph G with B(G) > α(G) + 2? Is there a function f
such that B(G) ≤ f(α(G)) for every graph G?
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Abstract. The problem of determining whether a graph G contains
another graph H as a minor, referred to as the minor containment prob-
lem, is a fundamental problem in the field of graph algorithms. While it is
NP-complete when G and H are general graphs, it is sometimes tractable
on more restricted graph classes. This study focuses on the case where
both G and H are trees, known as the tree minor containment problem.
Even in this case, the problem is known to be NP-complete. In contrast,
polynomial-time algorithms are known for the case when both trees are
caterpillars or when the maximum degree ofH is a constant. Our research
aims to clarify the boundary of tractability and intractability for the tree
minor containment problem. Specifically, we provide dichotomies for the
computational complexities of the problem based on three structural
parameters: the diameter, pathwidth, and path eccentricity.
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1 Introduction

In the field of graph algorithms, given two graphs G and H, the problem of deter-
mining whether G contains H is a fundamental problem. This type of problem,
such as (induced) subgraph isomorphism [4], minor containment [13], and topo-
logical embedding [12], is often NP-complete when G and H are general graphs.
Therefore, extensive research has been conducted on whether these problems can
be efficiently solved on more restricted classes of graphs [3,7,8,13]. The class of
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Table 1. In these tables, diam, pe, and pw denote the diameter, path eccentricity,
and pathwidth, respectively. The first row represents the values that a tree T has, and
the first column represents the values that a tree P has. There is no need to consider
problems in these areas marked “meaningless”.

diam ≤ 3 4 5 ≥ 6

≤ 3 P
4 NPC

5

≥ 6 meaningless

pe ≤ 1 2 ≥ 3

≤ 1 P
2 NPC

≥ 3 meaningless

pw 1 2 ≥ 3

1 P

2 NPC

≥ 3 meaningless

trees is the most fundamental one among such graph classes. For all the prob-
lems listed above, except the minor containment problem, there are polynomial
time algorithms [1,14,18], even for generalized versions [6].

We focus on the minor containment problem, which is the problem of deter-
mining whether graph G contains graph H as a minor. Even when both G and
H are trees, in which case we call the problem Tree Minor Containment,
it remains NP-complete [13]. Furthermore, it remains NP-complete even if the
diameters of both trees are constant [13]. However, polynomial-time algorithms
are known for cases where the maximum degrees of H is constant [2,11,16] or
when both trees are caterpillars [7,15]. Therefore, what condition makes Tree

Minor Containment tractable is a natural question. In what follows, we denote
G and H as T and P , respectively, since both graphs are trees.

1.1 Our Contributions

In this paper, we show dichotomies for three different structural parameters,
diameter, pathwidth, and path eccentricity. We summarize dichotomies with
respect to each parameter in Table 1.

Even when the diameters of T and P are constant, it is known that Tree

Minor Containment is NP-complete [13]. Although they did not clarify the
exact value of the constant, it can easily be observed that the constant is 8, which
is not tight. Our first contribution is to provide the tight diameter requirement
for Tree Minor Containment to be NP-complete.

Theorem 1. Tree Minor Containment is NP-complete if the diameters of T
and P are at least 6 and 4, respectively. Otherwise, Tree Minor Containment

can be solved in polynomial time.

When the pathwidths of both trees are 1 (or equivalently, both trees are
caterpillars), Tree Minor Containment can be solved in polynomial time [7,
15]. Our second contribution is extending the positive result to the case where
the pathwidth of T is arbitrary, and proving tight NP-completeness.

Theorem 2. Tree Minor Containment is NP-complete if the pathwidths of
both trees are at least 2. Otherwise, Tree Minor Containment can be solved
in polynomial time.
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As evident from the theorem above, a caterpillar is an important class to
consider when studying the tractability of Tree Minor Containment. The
path eccentricity is known as a more direct parameter to express “caterpillar-
likeness,” [5,9] which is defined as the distance from a specific path to the farthest
vertex. The path eccentricity of a caterpillar is 1, and a tree of a path eccentricity
2 is called a lobster. Our third contribution is the following.

Theorem 3. Tree Minor Containment is NP-complete if the path eccen-
tricities of T and P are at least 3 and 2, respectively. Otherwise, Tree Minor

Containment can be solved in polynomial time.

By definition, for a tree, the path eccentricity is at most the pathwidth. There-
fore, the positive result for the case where both T and P have path eccentricity
of 2 can be seen as encompassing cases that were not covered by considering the
dichotomy for pathwidth.

1.2 Related Work

The most significant result concerning the minor containment problem is prob-
ably the Graph Minor Theory developed by Robertson and Seymour [17]. They
proved that the minor containment problem can be solved in f(H) ·O(|V (G)|3)-
time, where f is some computable function. Using this algorithm, they proved
the existence of an algorithm that determines whether a graph G satisfies any
minor-closed property in O(|V (G)|3) time. Kawarabayashi, Kobayashi, and Reed
improved this time complexity to O(|V (G)|2) [10].

Matoušek and Thomas proved that this problem remains NP-complete even
on trees with bounded diameters [13]. Furthermore, they addressed the minor
containment problem on graphs with treewidth k, and provided a polynomial-
time algorithm for cases where H is connected and its degree is bounded and
Gupta et al. provided a polynomial-time algorithm for the case where both G
and H are k-connected and have pathwidth at most k [7]. Their results can also
be applied to the subgraph isomorphism problem and the topological embedding
problem.

A generalization of Tree Minor Containment, called the tree inclusion
problem, has also been investigated. In this problem, we are given two rooted
trees, T and P , with labeled vertices, and the objective is to determine whether
it is possible to repeatedly contract vertices of T towards their parent until T
matches P , including the labels. The special case where all vertices have the
same label corresponds to Tree Minor Containment. Kilpeläinen and Man-
nila showed that there is an FPT-time algorithm parameterized by the maxi-
mum degree of P . It runs in O(4deg(P ) · poly(n)) time [11], and Akutsu et al.
improved this result to O(2deg(P ) ·poly(n)) time, where deg(P ) is the maximum
degree of P [2]. Miyazaki, Hagihara, and Hirata have provided a polynomial-time
algorithm for the case where both T and P are caterpillars [15]. Additionally,
Kilpeläinen and Mannila have proved that the problem remains NP-complete
even when T has depth 3 [11]. However, it should be noted that their proof
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relies on the existence of labels, so it does not directly imply our NP-completeness
result for the Tree Minor Containment for trees with bounded diameters.

As another generalization of Tree Minor Containment, the problem of
finding the smallest tree containing two trees as minors is also investigated.
For this problem, Nishimura, Ragde, and Thilikos gave an FPT-time algorithm
parameterized by the maximum degree [16].

2 Preliminaries

Let T be a tree and n be the number of vertices or nodes in T . We denote the
set of vertices and edges of T as V (T ) and E(T ), respectively. For a vertex v,
the set of vertices adjacent to v is the neighbors of v and denoted by NT (v). The
cardinality of the neighbor of v is the degree of v and is denoted by degG(v).
Moreover, the degree of G is defined by maxv∈V degG(v) and denoted by deg(G).
For two vertices u, v ∈ V , the distance between u and v is the length of a shortest
u-v path. We denote the distance between u and v as dist(u, v). The diameter
of a tree T , denoted by diam(T ), is the maximum distance between two vertices
in T . For a set of edges F , we denote an edge-induced subgraph T [E \ F ] as
T − F . Similarly, we denote an induced subgraph T [V \ U ] as T − U . For a
tree T and a set of vertices U , vertex contraction T/U is the graph obtained by
considering all vertices in U identical. More precisely, V (T/U) := (V \ U)∪ {w}
and E(T/U) := {{u, v} | {u, v} ∈ E(T ) ∧ u, v ∈ V (T/U)} ∪ {{w, v} | v ∈ V (T/
U) ∧ ∃u ∈ U, {u, v} ∈ E(T )}. For two disjoint trees T = (V,E) and P = (U,F ),
we denote the forest (V ∪ U,E ∪ F ) as T ∪ P .

A tree T is caterpillar if T becomes a path by removing all leaves in T .
Moreover, T is lobster if T becomes a caterpillar by removing all leaves in T .
As a generalization of lobsters, a tree T is k-caterpillar if T becomes a path by
removing all leaves k times. We call the minimum value of k path eccentricity
of T . Therefore, T is a path if and only if k = 0, T is a caterpillar if and only
if k ≤ 1, and T is a lobster if and only if k ≤ 2. A path P is a backbone of a
k-caterpillar T if for any v ∈ T , P has a vertex u such that dist(u, v) ≤ k.

We next define the pathwidth of T = (V,E). The pathwidth of T is defined
by a path decomposition of T . A path decomposition of T is a pair (X , P ), where
P = (VP , EP ) is a path and X = {Xi | i ∈ VP } is a family of subsets of V , called
bags that satisfies the following conditions. (I)

⋃
i∈VP

Xi = V , (II) for each edge
e ∈ E, there is a bag Xi such that T [Xi] contains e, and (III) for all v ∈ V ,
we define the set of vertices U := {i ∈ VP | v ∈ Xi} and P [U ] is connected.
For a path decomposition (X , P ), the width of this decomposition is defined by
maxXi∈X |Xi| − 1. Moreover, the pathwidth of T is the minimum width of any
path decomposition. We denote it as pw(T ).

A tree P is a minor of a tree T if there exists a surjective map called minor
embedding (or simply embedding) f : T → P such that

– for all v ∈ V (P ), the subgraph of T induced by f−1(v) is connected, and
– for all e = (u, v) ∈ E(P ), there exists an edge e′ = (u′, v′) of T such that

f(u′) = u and f(v′) = v.
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If P is a minor of T , we say that T contains P as a minor.
Finally, we give the definition of the problem addressed in this paper.

Tree Minor Containment

Input: Two trees T and P .
Question: Is P a minor of T?

Theorems and lemmas marked with (∗) are shown in the appendix due to
space limitation.

3 NP-completeness of Tree Minor Containment

We show that Tree Minor Containment is NP-complete even if diameters
of T and P are at least 6 and 4, respectively, or pathwidths of T and P are at
least 2. In Sect. 3.1, we show that Tree Minor Containment is NP-complete
if diameters of T and P are at least 6 and 4, respectively. Moreover, in Sect. 3.2,
we show that Tree Minor Containment is NP-complete if pathwidths of T
and P are at least 2.

3.1 Bounded Diameter and Bounded Path Eccentricity

In this subsection, we improve the previous bound in [13]. To this end, we show
the NP-completeness of Inclusive Set Cover, a variant of Set Cover. To
define Inclusive Set Cover, we introduce some notations. The disjoint union
of two sets A and B is, denoted by A 	 B, {(a, 0) : a ∈ A} ∪ {(b, 1) : b ∈ B}.
The disjoint union of a family of sets A = (Ai)i∈λ is

⋃
i∈λ{(a, i) : a ∈ Ai}, and

denoted by
⊔

i∈λAi or simply
⊔

A. We often consider an element (x, i) ∈ A	B (or
(x, i) ∈

⊔
i∈λAi) simply as an element x ∈ A ∪ B (or x ∈

⋃
i∈λ Ai respectively).

We are ready to define Inclusive Set Cover.

Inclusive Set Cover

Input: A set U = {1, 2, . . . , n}, a collection of m sets S ⊆ 2U , and an integer
k ∈ N.
Question: Does there exist R ⊆ S such that |R| ≤ k and there is a surjection
f :

⊔
R → U such that v ≥ f((v, i)) for each (v, i) ∈

⊔
R?

Lemma 4. (∗)Inclusive Set Cover is NP-complete.

Theorem 5. Tree Minor Containment is NP-complete even if the diame-
ters of T and P are at least 6 and 4, respectively.

Proof. It is clear that this problem is in NP. We show the NP-completeness of
Tree Minor Containment by providing a reduction from Inclusive Set

Cover. From an instance 〈U,S, k〉, we construct trees T and P as follows (see
also Fig. 1). We first explain how to construct P . We consider stars R1, . . . , Rn,
X1, . . . , Xm−k, and Y1 . . . , Yk. Each star Ri, Xi, and Yi have i, n3, and n2 leaves,
respectively. Moreover, we add one vertex p that connects all the centers in
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R1, . . . , Rn, X1, . . . , Xm−k, and Y1 . . . , Yk. Finally, we add 3n4 leaves to p and
obtain a tree P with the diameter 4.

We next explain how to construct T . We construct m rooted trees T1, . . . , Tm

as follows. Let ti be the root of Ti and Si be a set of integers {si
1, . . . , s

i
�} in S.

Each Ti has n3 leaves as children of ti. For each si
j , we add the star with si

j

leaves as a child of ti. Moreover, we add one star with n2 leaves as a child of
ti and one vertex t that connects all the roots in T1, . . . , Tm. Finally, we add
3n4 leaves to t and obtain a tree T with the diameter 6. In what follows, for
each Ti, Ri, Xi, and Yi, we denote the root of Ti, Ri, Xi, and Yi as ti, ri, xi, yi,
respectively. Moreover, we denote the set of subtrees {T1, . . . , Tm}, {R1, . . . , Rn},
{X1, . . . , Xm−k}, and {Y1, . . . , Yk} as T , R, X , and Y, respectively.

Completeness. Let {Sa1 , . . . , Sak
} be a subset of S that has a surjection f from⊔

S to U satisfying v ≥ f((v, i)) for each (v, i) ∈
⊔

S. In what follows, we assume
that T and P are rooted at t and p, respectively. We give an embedding g from
T to P that satisfies g(t) = p. We pick a subtree Tai

for each ai and define
g(tai

) = p. For each integer in Sai
= {sai

1 , . . . , sai

� }, we obtain the set of integers⋃
s∈Sai

{f((s, i))}. From the construction of Tai
, Tai

has � stars as subtrees.
Moreover, j-th star has sai

j leaves. Therefore, we can embed a subtree in Tai

with sai
j leaves into a subtree in P with f((sai

j , i)) leaves since sai
j ≥ f((sai

j , i)).
Moreover, for each Tai

, we can embed one subtree in Y since g(tai
) = p. Therefore

we can embed all subtrees in P without each X . For each j ∈ {1, . . . , n} \
{a1, . . . , ak}, Tj has a subtree with n3 leaves. Therefore, each X can be embedded
in each Tj . Finally, since both t and p have 3n4 neighbors with the degree 1, T
has a P as a minor.

Soundness. We first show that any embedding g : T → P satisfies g(t) = p.
Suppose that g(t) �= p. Since g−1(p) does not contain t, g−1(p) is contained in
a connected component in T − {t}. However, each connected component has at
most n3 + 3n2/2 leaves despite p having 3n4 leaves. Therefore, each connected
component does not contain a star with 3n4 leaves as a minor, and g(t) = p. In
what follows, we regard T and P as rooted trees rooted at t and p, respectively.

We next show that T has m − k trees Ti that satisfies g(ti) = x for some
X ∈ X , where x is the root of X. Since g(t) = p, g−1(x) is contained in some Ti.
If g(ti) �= x, g−1(X) is contained in a connected component in Ti − x. However,
each connected component in Ti − x has at most n2 leaves despite X having n3

leaves. Therefore g(ti) = x holds. Moreover, since g(t) = p and g(ti) = x, Ti has
no vertices v such that g(v) �∈ V (X). Since X has m − k subtrees, T has m − k
subtrees as above.

Let {Ta1 , . . . , Tak
} be the subtrees in T that satisfies g(ti) �= x for any X ∈ X .

We show that for any Tai
, either g(tai

) = p or g(tai
) = y for some Y ∈ Y, where

y is the root of Y . If g(tai
) �= p and g(tai

) �= y for any Y ∈ Y, V (Tai
) \ {tai

}
has no vertices v such that g(v) = y since any v does not adjacent to t even if y
adjacent to p. Moreover, Tai

contains at most one subtree in Y even if g(tai
) = p

or g(tai
) = y. Since Y has k subtrees, any embedding satisfies either g(tai

) = p
or g(tai

) = y.
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From the above discussion, for each X ∈ X , g−1(x) contains a child of t and
for each Y ∈ Y, g−1(y) contains a child of t. Moreover, when g(ti) = x, Ti has
no vertex v such that g(v) �∈ V (X). Similarly, when g(ti) = y, Ti has no vertex
v such that g(v) �∈ V (Y ). Therefore, for any R ∈ R, g−1(R) consists of vertices
in Ti satisfying g(ti) = p. From the definition of Ti, Ti − {ti} has |Si| + 1 stars.
Since g(ti) = p, g−1(R) is contained in a star in Ti −{ti}. Therefore, the number
of leaves of this star is greater than or equal to the number of leaves of R. Since
T has at most k subtrees such that g(ti) �= x for any X ∈ X , if we select Si if
and only if g(ti) �= x for any X ∈ X , the number of sets is at most k. Moreover,
since g is an embedding from T to P , these selections from S are a solution of
〈U,S, k〉. Therefore, 〈U,S, k〉 is a yes-instance if T contains P as a minor. �	

Fig. 1. An example of the construction of T and P in the proof of Theorem5

Since pe(T ) ≤ k if diam(T ) = 2k, we obtain the following corollary.

Corollary 1. Tree Minor Containment is NP-complete even if the path
eccentricities of T and P are 3 and 2, respectively.

3.2 Bounded Pathwidth

In this subsection, we show that Tree Minor Containment is NP-complete
even if the pathwidths of T and P are 2. To prove this, we first consider the
following problem, which we call Inclusive Poset Pair Cover.
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Inclusive Poset Pair Cover

Input: A partial ordered set 〈U,≤U 〉, a subset X of U2, and a pair (Y,Z)
where Y is a subset of U2 and Z is a subset of U .
Question: Does there exists two injections f : Y → X and g : Z → X×{1, 2}
such that

– f(Y ) ∩ {x ∈ X : (x, i) ∈ g(Z)} = ∅,
– if f((y1, y2)) = (x1, x2) then (y1 ≤U x1)∧(y2 ≤U x2) or (y2 ≤U x1)∧(y1 ≤U

x2), and
– if g(z) = ((x1, x2), i) then z ≤U xi.

Lemma 6. (∗)Inclusive Poset Pair Cover is NP-complete.

From here, we provide a proof of the following theorem.

Theorem 7. Tree Minor Containment is NP-complete even if the path-
widths of T and P are 2.

We show the NP-completeness by presenting a reduction from Inclusive

Poset Pair Cover. Let 〈〈U,≤U 〉,X, (Y,Z)〉 be an instance of Inclusive

Poset Pair Cover. Let U = {u0, u1, . . . , un−1}. Without loss of generality,
we can assume that X, Y , and Z are not empty, and U contains exactly all of
the elements that appear in X, Y , and Z. We can also assume 2|X| = 2|Y |+ |Z|
without loss of generality, because creating a new element u of U which is smaller
than any element of U and adding u to Z does not change the solution as long
as 2|X| > 2|Y | + |Z|. First of all, we define the following notation, to describe
an element of the partial order 〈U,≤U 〉 into a caterpillar.

Definition 1. The order caterpillar of a ∈ U is a graph OCat(a) such that

– the vertex set is the union of V a = {va
0 , va

1 , . . . , va
n−1, v

a
n, va

n+1}, La = {lai :
ui ≤U a}, and

– the edge set is
⋃

0≤i≤n{va
i , va

i+1} ∪
⋃

lai ∈La{va
i , lai }.

An example of order caterpillar is shown in Fig. 2. Note that va
n and va

n+1 do not
correspond to any elements in U , and guarantees that the maximum path length
from v0 in any order caterpillar is exactly n. Since the degree of every vertex lai
is 1, and since an edge set

⋃
0≤i≤n−2{va

i , va
i+1} forms a path graph, every order

caterpillar is a caterpillar. Note that the number of vertices is at most 2n+2 for
every order caterpillar.

Observation 8. Every order caterpillar is a caterpillar, and hence its pathwidth
is 1.

Definition 2. Let a, b ∈ U . When lbi ∈ Lb if lai ∈ La for all i ∈ {0, · · · , n − 1},
we can define the mapping f : OCat(b) → OCat(a) such that f(vb

i ) = va
i for all

i ∈ {0, . . . , n + 1} and f(lbi ) = lai if ui ≤U a, f(lbi ) = va
i if ui �≤U a, and we call

this mapping f the natural embedding from OCat(b) to OCat(a). If there exists
i such that lbi �∈ Lb and lai ∈ La, we say that the natural embedding from OCat(b)
to OCat(a) does not exists.
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u0

u1 u2

u3 u4

u5

u6

U
OCat(u4)

vu4
0 vu4

1 vu4
2 vu4

3 vu4
4 vu4

5 vu4
6 vu4

7 vu4
8

lu4
0 lu4

2 lu4
4 lu4

6

OCat(u5)

vu5
0 vu5

1 vu5
2 vu5

3 vu5
4 vu5

5 vu5
6 vu5

7 vu5
8

lu4
0 lu4

1 lu4
3lu4

2 lu4
5 lu4

6

Fig. 2. Examples of a partial order set U = {u0, . . . , u6} and the order caterpillars of
u4 and u5. Partial order ≤U denoted by the Hasse diagram of 〈U,≤U 〉, i.e., an arrow
from a to b indicates a ≤U b and there is no c such that a <U c <U b. In pictures
of order caterpillars, a white node denotes a node such that there is no corresponding
vertex in U .

Clearly, for a, b ∈ U , the natural embedding from OCat(b) to OCat(a) is an
embedding from OCat(b) to OCat(a) if it exists. By the transitivity and reflex-
ivity of ≤U relation, we have the following.

Observation 9. (∗) Let a, b ∈ U . There exists the natural embedding from
OCat(b) to OCat(a) if and only if a ≤U b.

Construction of Tree Minor Containment instance 〈T, P 〉. See Fig. 3 for
the whole image of Tree Minor Containment instance 〈T, P 〉. For a pair
x = (a, b), we write x1 for the first element a and x2 for the second element b.

We first define a family of trees (Tx)x∈X to describe T . Let x ∈ X. Each
tree Tx consists of three part, two subtrees TL

x and TR
x , and a root vertex rx.

A subtree TL
x is just OCat(x1), and TR

x is just OCat(x2). Connect rx to vx1
0 in

TL
x and vx2

0 in TR
x . Then we obtain a family of trees (Tx)x∈X . Note that each

Tx is a caterpillar such that its backbone has 2n + 5 vertices and the number
of vertices is at most 4n + 5. Add a new vertex rT and connect rT to all rx in
Tx, then we obtain a tree T . Note that the number of vertices of T is at most
(4n + 5) · |X| + 1. Since each connected component of T − {rT } is a caterpillar,
its pathwidth is 1, and the pathwidth of T is at most 2.

We next explain how to construct P . First, we construct a family of trees
(Qy)y∈Y by an analogous way to (Tx)x∈X . That is, for y ∈ Y , tree Qy is a
tree has a root vertex ry and two substrees QL

y and QR
y such that QL

y is just
OCat(y1), QR

y just OCat(y2), and ry is connected to vy1
0 in QL

y and vy2
0 in QR

y .
Next, we define a family of trees (Rz)z∈Z , where each tree Rz is just OCat(z).
Finally, we add a new vertex rP and connect rP to each ry in Qy and each vz

0

in Rz, and then we obtain P . Note that the number of vertices of P is at most
(4n + 5) · |Y | + (2n + 2) · |Z| + 1. Since each connected component of P − {rP }
is a caterpillar, its pathwidth is 1, and the pathwidth of P is at most 2.

Lemma 10. (∗) If 〈〈U,≤U 〉,X, (Y,Z)〉 is a yes-instance then P is a minor of
T .
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rT
T

rx1

TL
x1

TR
x1

rx2

TL
x2

TR
x2

rx|X|

TL
x|X| TR

x|X|

P
rP

ry1

QL
y1

QR
y1

ry2

QL
y2

QR
y2

ry|Y |

QL
y|Y | QR

y|Y |

Rz1 Rz2 Rz|Z|

Fig. 3. An example of the reduction in the proof of Theorem7.

Lemma 11. (∗) If P is a minor of T then 〈〈U,≤U 〉,X, (Y,Z)〉 is a yes-instance.

This completes the proof of Theorem 7.

4 Polynomial-Time Algorithms with Small Path
Eccentricity and Its Application for the Other Positive
Results

We give two polynomial-time algorithms for Tree Minor Containment with
a small path eccentricity. The former algorithm determines whether a tree T
contains a caterpillar P . The latter algorithm determines whether a lobster T
contains a lobster P . In Sect. 4.3, we give polynomial-time algorithms for all
cases in Table 1 using the above two algorithms. Throughout this section, we
assume |V (P )| ≥ 2; otherwise, the problem is trivial.

4.1 Tree-Caterpillar Containment

We begin by considering the case where P is a caterpillar. The algorithm is given
in Algorithm 1. It is easy to verify that Algorithm 1 works in polynomial time.
Briefly, Algorithm 1 first guesses a backbone C of T (u-v path) that corresponds
to the backbone of P , and then finds out how to contract C to form the backbone
of P by a greedy method. Moreover, the algorithm is based on the fact that
contracting an internal vertices in V (T ) \ C to a vertex in C does not affect
whether there is a minor embedding f : T → P such that f(C) maps to the
backbone of P since P is a caterpillar. Thus, it can be computed whether the
backbone of P can be embedded into C by focusing only on the number of leaves.

Theorem 12. If P is a caterpillar, Algorithm 1 returns yes if and only if P is
a minor of T .

Proof. Assume that P is embedded into T by a mapping f . Let ei be the edge
connecting f−1(bi) and f−1(bi+1) for i = 1, . . . , s − 1. Then, there exists a
path in T in which e1, . . . , es−1 appear in this order. Take a minimal such path
C = (c1, . . . , ct). Consider the case we have u = c1 and v = ct in the loop starting
from line 6.
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Algorithm 1: A polynomial-time algorithm for tree-caterpillar contain-
ment.
1 Procedure CatInTree(T, P )
2 Let B = (b1, . . . , bs) be a backbone of P ;
3 for i = 1, . . . , s do
4 Let Pi be the connected component of P − E[B] containing bi;
5 Let pi be the number of leaves in Pi other than bi;

6 for u, v ∈ V (T ) do
7 Let C = (u = c1, . . . , ct = v) be the u-v path in T ;
8 for i = 1, . . . , t do
9 Let Ti be the connected component of T − E[C] containing ci;

10 Let li be the number of leaves in Ti other than ci;

11 x ← 0, flag ← true;
12 for i = 1, . . . , s do
13 Let j be the smallest index such that pi ≤ ∑j

k=x+1 lk;
14 if There is no such j then
15 flag ← false;
16 break;

17 x ← j;

18 if flag = true then return yes ;

19 return no;

Using the integers 1 = z1, . . . , zs+1 = t + 1, for each i = 1, . . . , s, we
define f−1(bi) ∩ C = {czi

, . . . , czi+1−1}. Let Tj′,j =
(⋃j

k=j′ Tk

)
/{cj′ , . . . , cj}

for 1 ≤ j′ ≤ j ≤ s. Then, the mapping naturally induced by f embeds Pi

into Tczi ,czi+1−1 . In particular, the number of leaves in Tczi ,czi+1−1 , denoted as
∑czi+1−1

k=czi
lk, is greater than or equal to pi. Therefore, for j ≤ czi

and czi+1−1 ≤ j′,

it holds that pi ≤
∑j′

k=j lk. In particular, considering the i-th iteration of the
loop starting from line 12 and denoting the value of x at the end of that iter-
ation as xi, it is clear by induction that xi ≤ czi+1−1 always holds. Hence, the
algorithm returns “yes”.

Conversely, assuming that the algorithm returns “yes”, we consider the cor-
responding C = (c1, . . . , ct). We define xi as above for each i = 1, . . . , s. Then,
it holds that pi ≤

∑czi+1−1

k=czi
lk. For each i = 1, . . . , s, let vi,1, . . . , vi,pi

be the
vertices in Pi other than bi, and let v′

i,1, . . . , v
′
i,pi

be pi selected leaves (not on
C) in Tczi

, . . . , Tczi+1
, respectively. Define f(w) as follows:

f(w) =

{
vi,j (w = v′

i,j)

bi

(
w ∈

⋃czi+1−1

k=czi
V (Tk) \ {v′

i,1, . . . , v
′
i,pi

}
) .

Then, f is a mapping that embeds P into T . �	
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4.2 Lobster-Lobster Containment

In this section, we provide a polynomial-time algorithm for Tree Minor Con-

tainment when both T and P are lobsters, i.e., have path eccentricity 2. The
overall strategy of Algorithm 2 is the same as Algorithm 1, first guess a back-
bone of T , and decide where to contract it to form the backbone of P . However,
deciding whether the (partial) minor relation holds after contracting the vertices
in the guessed backbone is not as simple as when P is a caterpillar. This means
we need to solve the following subproblem.

Depth 2 Tree Minor Embedding from Lobster (D2M)
Input: Lobster T , vertex rT of T , and tree P such that the distance of each
vertex of P is at most 2 from rP .
Question: Is there an embedding from P into T such that f(rT ) = rP ?

Lemma 13. (∗)D2M can be solved in polynomial time.

Proof (sketch). The essential case is when rT is in a backbone C = (c1, . . . , ck =
rT , . . . , ct) of T . Since P − rP is a disjoint union of stars (here, a graph with
a single vertex is also called a star), if we fix an interval of the backbone
{cl, . . . , cr} � rT that is contracted to rT , then D2M can be reduced to the
problem to determine whether a disjoint union of stars contains a disjoint union
of stars as a minor, and this problem can be solved in polynomial time. Thus,
D2M can be solved by trying all intervals {cl, . . . , cr}. Otherwise, except for
some special cases, we can show that rT must be contracted with a vertex that
is closer to the backbone of T , and thus D2M is finally reduced to the case that
rT is on a backbone of T . �	

We denote a polynomial time algorithm that computes the solution of D2M by
EmbedFull(T, rT , P, rP ).

We present an algorithm that computes the solution of Tree Minor Con-

tainment when both trees are lobsters by using EmbedFull(·) as a subroutine.

Theorem 14. (∗) Algorithm 2 returns yes if and only if P is a minor of T .

4.3 Applications of Algorithms 1 and 2

As shown in Table 1, we give polynomial-time algorithms for Tree Minor

Containment with small diameter, path eccentricity, and pathwidth. Since we
already show the case pe(P ) ≤ 1 in Theorem 12 and pe(T ) ≤ 2 in Theorem 14,
we show the cases with small diameters and pathwidths. These results can be
easily shown by using the results in previous subsections.

Theorem 15. Tree Minor Containment can be solved in polynomial time
when diam(P ) ≤ 3 or diam(T ) ≤ 5.
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Algorithm 2: An algorithm for the case that both of trees are lobsters
1 Procedure LobInLob(T, P )
2 Let B = (b1, . . . , bs) be a backbone of P ;
3 for i = 1, . . . , s do
4 Let Pi be the connected component of P − E[B] containing bi;

5 for u, v ∈ V (T ) do
6 Let C = (u = c1, . . . , ct = v) be the u − v path in T ;
7 for i = 1, . . . , t do
8 Let Ti be the connected component of T − E[C] containing ci;

9 x ← 0, flag ← true;
10 for i = 1, . . . , s do
11 Let j be the smallest index such that

EmbedFull(Tx+1,j , cx+1, Pi, bi) returns yes, where
Tx+1,j =

(⋃j
k=x+1 Tk

)
/{cx+1, . . . , cj};

12 if There is no such j then
13 flag ← false;
14 break;

15 x ← j;

16 if flag = true then return yes ;

17 return no;

Proof. Since a tree with a diameter at most 3 is a caterpillar, we can solve Tree

Minor Containment when diam(P ) ≤ 3 from Theorem 12. Moreover, when
diam(P ) > diam(T ), T does not contains P as a minor obviously. Therefore, we
can assume that diam(P ) ≤ diam(T ). Since a tree with a diameter at most 5 is
a lobster, Tree Minor Containment can be solved in polynomial time when
diam(P ) ≤ diam(T ) ≤ 5 from Theorem 14. �	

Theorem 16. Tree Minor Containment can be solved in polynomial time
when pw(P ) ≤ 1.

Proof. Since a tree with pathwidth 1 is a caterpillar, we obtain a polynomial-time
algorithm from Theorem12. �	
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removals to make the remaining connected components small. In this
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the problem of computing the unweighted/weighted vertex integrity. As
structural graph parameters, we consider well-known parameters such as
clique-width, treewidth, pathwidth, treedepth, modular-width, neighbor-
hood diversity, twin cover number, and cluster vertex deletion number.
We show several positive and negative results and present sharp com-
plexity contrasts.
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where G−S denotes the graph obtained from G by deleting all vertices in S, and
cc(G − S) is the set of connected components of G − S. For a vertex-weighted
graph G = (V,E,w) with weight function w : V → Z

+, we can also define the
weighted vertex integrity of G, denoted wvi(G), by replacing |S| and |V (C)| with
w(S) and w(V (C)) in the definition, respectively, where w(X) =

∑
v∈X w(v) for

X ⊆ V .1 Note that the unweighted vertex integrity vi(G) can be still defined
for a vertex-weighted graph G = (V,E,w) by ignoring w (or using a unit-weight
function).

In this paper, we study the problems of computing the unweighted/weighted
vertex integrity of a graph, which can be formalized as follows:

Problem. Unweighted/Weighted Vertex Integrity
Input. A graph G (with w : V → Z

+ in the weighted version) and an
integer k.

Question. Is vi(G) ≤ k?/Is wvi(G) ≤ k?

Note that the complexity of Weighted Vertex Integrity may depend on the
representation of the vertex-weight function w. We denote by Binary/Unary
Weighted Vertex Integrity the two cases where w is encoded in binary and
unary, respectively.

Unweighted Vertex Integrity has been studied on several graph classes.
It is NP-complete on planar graphs [6], and on co-bipartite graphs and chordal
graphs [9]. On the other hand, the problem becomes tractable when the input is
restricted to some classes of graphs: trees and cactus graphs [2, without proofs],
graphs with linear structures (such as interval graphs, circular-arc graphs, per-
mutation graphs, trapezoid graphs, and co-comparability graphs of bounded
dimension) [20], and on split graphs [23]. The parameterized complexity of
Unweighted Vertex Integrity with the natural parameter k was first
addressed by Fellows and Stueckle [12], who showed that it can be solved in
O(k3kn) time. Drange et al. [9] later generalized and improved the result by
presenting an algorithm for Weighted Vertex Integrity with the running
time O(kk+1n). The existence of an O(cknO(1))-time algorithm for a constant c
is open even in the unweighted case. Drange et al. [9] also presented an O(k3)-
vertex kernel for Weighted Vertex Integrity. Using an approximation algo-
rithm by Lee [22, Theorem 1] for a related problem as a subroutine, the vertex
integrity can be approximated within a factor of O(log opt), where opt is the
vertex integrity.

The O(kk+1n)-time algorithm for Weighted Vertex Integrity by
Drange et al. [9] implies that Weighted Vertex Integrity is fixed-parameter
tractable parameterized by weighted vertex integrity and Unweighted Ver-
tex Integrity is fixed-parameter tractable parameterized by unweighted ver-
tex integrity. To the best of our knowledge, there has been no other result deal-

1 We consider positive weights only since a vertex of non-positive weight is safely
removed from the graph.
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ing with structural parameterizations of the Unweighted/Weighted Vertex
Integrity.

Recently, vertex integrity has been studied as a structural graph parameter
since it is an upper bound of treedepth and a lower bound of vertex cover number
plus 1. This line of research has been studied extensively [5,16,17,21].

1.1 Our Results

In this paper, we study Unweighted/Weighted Vertex Integrity param-
eterized by well-studied structural parameters and show sharp complexity con-
trasts. Our results can be summarized as follows (see Fig. 1):

(1) Unweighted Vertex Integrity is
– FPT parameterized by cluster vertex deletion number (Theorem 3.5),
– W[2]-hard parameterized by pathwidth (Corollary 4.5),

(2) Unary Weighted Vertex Integrity is
– FPT parameterized by modular-width (Theorem 3.3),
– W[1]-hard parameterized by cluster vertex deletion number and

unweighted vertex integrity or by feedback vertex set number and
unweighted vertex integrity (Theorem 4.1),

– XP parameterized by clique-width (Theorem 3.2) (and thus polynomial-
time solvable on distance hereditary graphs);

(3) Binary Weighted Vertex Integrity is
– FPT parameterized by neighborhood diversity and by twin cover number

(Corollary 3.1),
– NP-complete on subdivided stars (and thus paraNP-complete parameter-

ized simultaneously by cluster vertex deletion number, unweighted vertex
integrity, and feedback vertex set number) (Theorem 4.2).

Since we focus on the classification of the parameterized complexity with respect
to different parameters, we do not optimize or specify the running time of our
algorithms.

We also show that Unary Weighted Vertex Integrity is NP-complete
on planar bipartite graphs of maximum degree 4 and line graphs. We include
these results in the full version.

1.2 Related Graph Parameters

Since the concept of vertex integrity is natural, there are a few other parameters
defined in similar ways. The fracture number [10] of a graph is the minimum k
such that one can remove at most k vertices to make the maximum size of a
remaining component at most k. The starwidth [11] is the minimum width of
a tree decomposition restricted to be a star. The safe number [13] of G is the
minimum size of a non-empty vertex set S such that each connected component
in G[S] is not smaller than any adjacent connected component in G − S. As
structural graph parameters, these parameters including vertex integrity are
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Fig. 1. The complexity of Unweighted/Weighted Vertex Integrity with struc-
tural parameters. (See Sect. 2 for the definitions of the acronyms.) All but the one
with a reference are shown in this paper or implied by other results. The double, sin-
gle, and rounded rectangles indicate paraNP-complete, W[∗]-hard, and fixed-parameter
tractable cases, respectively. A connection between two parameters implies that the one
above generalizes the one below; that is, one below is lower-bounded by a function of
the one above.

equivalent in the sense that one is small if and only if the others are small.
More precisely, the starwidth, the fracture number, and the vertex integrity of
a graph differ only by a constant factor, while the safe number may be as small
as the square root of the vertex integrity. Note however that computing them
exactly would be quite different tasks. For example, computing the safe number
is NP-hard on split graphs [1], while computing the unweighted vertex integrity
is polynomial-time solvable on them [23]. Furthermore, in the binary-weighted
setting, we can see that computing the fracture number or the safe number is
NP-hard on complete graphs as it generalizes the classical NP-complete problem
Partition [15], while the computation of the vertex integrity becomes trivial
as it is equal to the sum of the vertex weights in this case.

The �-component order connectivity is the minimum size p of a vertex set
such that the removal of the vertex set makes the maximum size of a remaining
connected component at most � [9]. Although we cannot directly compare this
parameter to vertex integrity, some of the techniques used in this paper would
be useful for studying �-component order connectivity as well.

2 Preliminaries

We assume that the readers are familiar with the theory of fixed-parameter
tractability. See standard textbooks (e.g., [7]) for the definitions omitted in this
paper. The proofs of the statements marked with � are omitted here and given
in the full version.

For a graph G, we denote its clique-width by cw(G), treewidth by tw(G),
pathwidth by pw(G), treedepth by td(G), vertex cover number by vc(G), feed-
back vertex set number by fvs(G), modular-width by mw(G), neighborhood
diversity by nd(G), cluster vertex deletion set number by cvd(G), and twin cover
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number by tc(G). We defer their definitions until needed and if a full definition
is not necessary, we omit it and present only the properties needed. (See, e.g.,
[14,18,25] for their definitions.) Note that for a vertex-weighted graph, we define
these structural parameters on the underlying unweighted graph.

For a weighted graph G = (V,E,w), a set S ⊆ V is a wvi(k)-set if

w(S) + max
C∈cc(G−S)

w(V (C)) ≤ k.

A wvi(k)-set is a wvi-set if k = wvi(G). In the analogous ways, vi(k)-set and
vi-set are defined.

Irredundant Set. Let G be a graph and S ⊆ V (G). A vertex v ∈ S is redundant
if at most one connected component of G − S contains neighbors of v. The set
S is irredundant if it contains no redundant vertices. A vertex is simplicial if
its neighborhood is a clique. Since no vertex set can separate a clique into two
or more connected components, simplicial vertices cannot belong to irredundant
sets.

Observation 2.1. An irredundant set contains no simplicial vertex.

The following is shown in [9, Lemma 3.1] for simplicial vertices, but their proof
works for this generalization to redundant vertices.

Lemma 2.2 (�, [9, Lemma 3.1]). Let G = (V,E,w) be a vertex-weighted
graph. If S ⊆ V contains a redundant vertex v, then

w(S \ {v}) + max
C∈cc(G−(S\{v}))

w(V (C)) ≤ w(S) + max
C∈cc(G−S)

w(V (C)).

Corollary 2.3. A graph with a wvi(k)-set has an irredundant wvi(k)-set.

We denote by N(v) and N [v] the (open) neighborhood and the closed
neighborhood of v, respectively. For a set S of vertices, we define N(S) =⋃

v∈S N(v) \ S. Two vertices u, v ∈ V (G) are twins if they have the same neigh-
borhood except for themselves; that is, if N(u) \ {v} = N(v) \ {u} holds. A
twin class T of G is a maximal set of twin vertices in G. We can show that an
irredundant set contains either none or all of a twin class.

Lemma 2.4 (�). Let G be a graph. If S ⊆ V (G) is an irredundant set, then
for each twin class T of G it holds that T ∩ S = ∅ or T ⊆ S.

3 Positive Results

Here we present our algorithmic results. In the descriptions of algorithms, we
sometimes use a phrase like “to guess something.” For example, when an integer
� belongs to {1, . . . , c}, we may say that “we guess � from {1, . . . , c}.” This means
that we try all possibilities � = 1, . . . , c, and output the optimal one, where the
optimality depends on (and should be clear from) the context. We thus need a
multiplicative factor of c in the running time. After “guessing” some object, we
assume that the object is fixed to one of the candidates.

The proofs of the following results are given in the full version.
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Corollary 3.1 (�). Binary Weighted Vertex Integrity is fixed-
parameter tractable parameterized by neighborhood diversity and by twin cover
number.

Theorem 3.2 (�). Unary Weighted Vertex Integrity belongs to XP
parameterized by clique-width.

3.1 The Unary-Weighted Problem Parameterized by mw

Now we consider modular-width [14], which is a generalization of both neigh-
borhood diversity and twin cover number, and show that Unary Weighted
Vertex Integrity is fixed-parameter tractable with this parameter.

Let H be a graph with two or more vertices v1, . . . , vc, and let H1, . . . , Hc

be c disjoint graphs. The substitution H(H1, . . . , Hc) of the vertices of H by
H1, . . . ,Hc is the graph with

V (H(H1, . . . , Hc)) =
⋃

1≤i≤c

V (Hi),

E(H(H1, . . . , Hc)) =
⋃

1≤i≤c

E(Hi)

∪ {{u,w} | u ∈ V (Hi), w ∈ V (Hj), {vi, vj} ∈ E(H)}.

That is, H(H1, . . . , Hc) is obtained from the disjoint union of H1, . . . , Hc by
adding all possible edges between V (Hi) and V (Hj) for each edge {vi, vj} of H.
Each V (Hi) is a module of H(H1, . . . , Hc).

A modular decomposition is a rooted ordered tree T such that each non-leaf
node with c children is labeled with a graph of c vertices and each node represents
a graph as follows:

– a leaf node represents the one-vertex graph;
– a non-leaf node labeled with a graph H with c vertices v1, . . . , vc (and thus

with exactly c children) represents the graph H(H1, . . . , Hc), where Hi is the
graph represented by the ith child.

A modular decomposition of a graph G is a modular decomposition whose root
represents a graph isomorphic to G. The width of a modular decomposition is the
maximum number of children of an inner node. The modular-width of a graph
G, denoted mw(G), is the minimum width of a modular decomposition of G. It
is known that a modular decomposition of the minimum width can be computed
in linear time (and thus has a liner number of nodes) [24].

Theorem 3.3. Unary Weighted Vertex Integrity is fixed-parameter
tractable parameterized by modular-width.

Proof. Let G = (V,E,w) be a vertex-weighted graph. We guess an integer � ∈
{1, . . . ,w(V )} such that G has an irredundant wvi-set S such that

max
C∈cc(G−S)

w(V (C)) = �.
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As there are only w(V ) candidates of �, which is polynomial in the input size,
we can assume that � is correctly guessed.2

We compute a modular decomposition of G with width mw(G) in linear
time [24] and then proceed in a bottom-up manner. For each graph G′ rep-
resented by a node in the modular decomposition, we compute the minimum
weight of a set S irredundant in G′ such that maxC∈cc(G′−S) w(V (C)) ≤ �. Let
μ(G′) denote the minimum weight of such S.

We first consider the case where G′ has only one vertex v. If w(v) ≤ �, then
we set μ(G′) = 0 as the empty set is irredundant. Otherwise we set μ(G′) = ∞
since the entire vertex set {v} is redundant.

In the following, we consider the case of G′ = H(H1, . . . , Hc). For simplicity,
we identify the vertices v1, . . . , vc of H with the integers 1, . . . , c. For a hypothet-
ical irredundant set S that we are looking for, we guess a partition (If, Ip, I∅) of
{1, . . . , c} such that

– if i ∈ If, then V (Hi) ⊆ S;
– if i ∈ Ip, then V (Hi) ∩ S 
= ∅ and V (Hi) 
⊆ S;
– if i ∈ I∅, then V (Hi) ∩ S = ∅.

As there are only 3c ≤ 3mw(G) candidates for the partition (If, Ip, I∅), we assume
that we have correctly guessed it. For each connected component C of H − If,
we compute the minimum weight μ(C) of vertices that we need to remove from
the modules of G′ corresponding to C.

Claim 3.4. Each i ∈ Ip has degree 0 in H − If.

Proof (Claim 3.4). Let Ci be the connected component of H − If that contains
i. Suppose to the contrary that |V (Ci)| ≥ 2. Observe that for each edge {j, h} ∈
E(Ci), the subgraph of G′ induced by (V (Hj) ∪ V (Hh)) \ S is connected since
both V (Hj)\S and V (Hh)\S are nonempty as j, h /∈ If and there are all possible
edges between them as {j, h} ∈ E(Ci) ⊆ E(H). This fact and the connectivity of
Ci imply that (

⋃
j∈V (Ci)

V (Hj))\S induces a connected component D of G′ −S.
Since i ∈ Ip, there are vertices u ∈ V (Hi) ∩ S and v ∈ V (Hi) \ S (⊆ V (D)).

Let w be a neighbor of u such that w /∈ S. If w ∈ V (Hi), then w belongs to D. If
w /∈ V (Hi), then v is also adjacent to w since Hi is a module. This implies that
w belongs to D in this case as well. Hence, no connected component of G′ − S
other than D may contain a neighbor of u. This implies that u is redundant, a
contradiction. ♦

Claim 3.4 implies that a component C of H − If is either a singleton formed
by some i ∈ Ip, or one formed by a subset of I∅. In the second case, μ(C) = 0
if the total weight of the vertices in the corresponding modules is at most �;
and μ(C) = ∞ otherwise. For the first case, let i ∈ Ip be the vertex forming C.
By Claim 3.4, every neighbor j of i in H satisfies j ∈ If (if any exists). Thus,
2 Note that this is the only part that requires the unary representation of weights.

Note also that we cannot binary-search � as the irredundancy makes the problem
non-monotone.
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S ∩ V (Hi) has to be irredundant for Hi. This implies that μ(C) = μ(Hi) as we
can consider Hi independently from the rest of the graph. Thus we can compute
μ(G′) as

μ(G′) =
∑
i∈If

w(V (Hi)) +
∑
i∈Ip

μ(Hi).

Since μ(Hi) for every i ∈ Ip is already computed in the lower layers of the
bottom-up computation, the computation of μ(G′) can be done in polynomial
time. This completes the proof. �

3.2 The Unweighted Problem Parameterized by cvd

The cluster vertex deletion number [8] of a graph G, denoted cvd(G), is the
minimum size of a cluster vertex deletion set ; that is, a set of vertices whose
removal makes the remaining graph a disjoint union of complete graphs. Finding
a minimum cluster vertex deletion set is fixed-parameter tractable parameterized
by cvd(G) [19], and thus we assume that such a set is given when cvd(G) is part
of the parameter. Note that the definition directly implies that cvd(G) ≤ tc(G).
By considering subdivided stars and complete bipartite graphs, one can see that
cluster vertex deletion number is incomparable with neighborhood diversity and
modular-width.

We show that Unweighted Vertex Integrity is fixed-parameter
tractable parameterized by cluster vertex deletion number. This result pro-
vides an interesting contrast with the W[1]-hardness (Theorem 4.1) and
NP-completeness (Theorem 4.2) of Unary/Binary Weighted Vertex
Integrity, respectively, parameterized by the same parameter.

Theorem 3.5. Unweighted Vertex Integrity is fixed-parameter tractable
parameterized by cluster vertex deletion number.

We split the proof of Theorem 3.5 into two parts. In the first part, we show
that the problem can be solved by solving 2O(2k) instances of a subproblem
(SubViCvd) defined below, where k = cvd(G). In the second part, we present
an algorithm that solves the subproblem in time g(k) ·poly(|V (G)|) with some g.

A vertex set S is (D, k)-feasible if S ∩ D = ∅ and |S| ≤ k. An (D, k)-feasible
vi-set of a graph G is a set S ⊆ V (G) that minimizes |S|+maxC∈cc(G−S) |V (C)|
under the condition that S is (D, k)-feasible. Since making a set smaller never
loses (D, k)-feasibility, we can directly use Lemma 2.2 to obtain the (D, k)-
feasible counterparts of Corollary 2.3, Observation 2.1, and Lemma 2.4. Thus
we can use them also for the (D, k)-feasible setting.

Now the subproblem is defined as follows.

Problem. SubViCvd
Input. A graph G, an integer k, and a cluster vertex deletion set D of G with

|cc(G[D])| ≤ k.
Output. A (D, k)-feasible vi-set of G.
Parameter. k.
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Note that in an instance (G, k,D) of SubViCvd, the size of D is not necessarily
bounded by a function of k.

Reduction to Nice Instances of SUBVICVD. Let G be a graph and D be
a cluster vertex deletion set of G with cvd(G) = k. We find a vi-set S of G
such that each twin class of G is either completely contained in S or has no
intersection with S. By Lemma 2.4, such a vi-set exists.

Let C be a connected component of G − D that has the maximum number
of vertices. Since C is a complete graph, the vertices of C − S are included in
the same connected component of G − S. Thus, vi(G) ≥ |S| + |V (C) \ S| =
|S \ V (C)|+ |V (C)|. On the other hand, as D is a vi(|D|+ |V (C)|)-set, we have
vi(G) ≤ |D| + |V (C)| = k + |V (C)|. Hence, we have

|S \ V (C)| ≤ k. (1)

For each twin class T ⊆ V (C) of G with |T | > k, we guess whether T ⊆ S
or not. Since C is a complete graph and N(V (C)) ⊆ D, there are at most 2k

different twin classes in C, and thus there are at most 22
k

possible ways for this
guess. Let SC be the union of the twin classes T ⊆ V (C) guessed as T ⊆ S.
Now, by Eq. (1), it suffices to find an (∅, k)-feasible vi-set of G − SC .

We now guess which vertices of D are included in S. We call the set of
guessed vertices SD. There are at most 2k possible options for this guess. Note
that D \ SD is a cluster vertex deletion set of G − (SC ∪ SD).

Let G′ = G − (SC ∪ SD) and D′ = D \ SD. Assuming that SC and SD are
correctly guessed, the remaining problem is to find a (D′, k)-feasible vi-set of the
graph G′. That is, our task is to solve the instance (G′, k,D′) of SubViCvd.

Before solving the instance of SubViCvd, we enlarge the cluster vertex dele-
tion set. Let D′

+ be the union of D′ and all twin classes T in G′ − D′ satisfying
both |T | > k and N(T ) ∩ D′ 
= ∅. Adding such large twin classes is safe as
we are finding a set of size at most k. To see that (G′, k,D′

+) is an instance of
SubViCvd, observe that |cc(G′[D′

+])| ≤ |cc(G′[D′])| ≤ k since each vertex in
D′

+ \ D′ has neighbors in D′.
The discussion so far shows that it suffices to solve 22

k+k instances (G′, k,D′
+)

of SubViCvd such that each twin class T of G−D′
+ satisfies |T | ≤ k or N(T )∩

D′
+ = ∅. We call such an instance nice.

Solving a Nice Instance of SUBVICVD. Let (G, k,D) be a nice instance of
SubViCvd. (Notice that we renamed the objects.)

For a vertex v ∈ V (G) \ D, let ND(v) be the set of connected components
of G[D] that include a neighbor of v; that is, ND(v) = {C ∈ cc(G[D]) | N(v) ∩
V (C) 
= ∅}. Since D is a cluster vertex deletion set of G, two vertices v, v′

with ND(v) = ND(v′) in the same connected component of G − D, which is a
complete graph, play the same role in SubViCvd. Namely, if a (D, k)-feasible
vi-set S contains v but not v′, then (S \{v})∪{v′} is also a (D, k)-feasible vi-set.
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We say that K,K ′ ∈ cc(G − D) are of the same type if (1) for every non-
empty C ⊆ cc(G[D]), |{v ∈ K | ND(v) = C}| = |{v ∈ K ′ | ND(v) = C}|, and (2)
{v ∈ K | ND(v) = ∅} and {v ∈ K ′ | ND(v) = ∅} are both empty or both non-
empty. The relation of having the same type is an equivalence relation among
the connected components of G−D. Observe that there are at most 2(k+1)2

k−1

equivalence classes (or types) as |cc(G[D])| ≤ k and every twin class of G − D
with neighbors in D has size at most k.

Claim 3.6. There is a (D, k)-feasible vi-set S of G satisfying the conditions that
(1) N(S) ⊆ D and (2) if P and Q are connected components of G−D that have
the same type and |V (P )| < |V (Q)|, then S intersects P only if S intersects Q
as well.

Proof (Claim 3.6). Let S be a (D, k)-feasible vi-set of G that contains no simpli-
cial vertex. (Recall that Observation 2.1 can be used also in the (D, k)-feasible
setting.) We can see that N(S) ⊆ D since each vertex in V (G) \ D is either
a vertex with a neighbor in D or a simplicial vertex. (Recall that D is a clus-
ter vertex deletion set.) We assume that, under this condition, S maximizes
β(S) :=

∑
C∈cc(G−D), V (C)∩S 	=∅ |V (C)|. Let P and Q be connected components

of G − D that have the same type and |V (P )| < |V (Q)|. Observe that P and Q
both contain vertices with no neighbors in D since they have the same type but
different sizes. Suppose to the contrary that S intersects P but not Q.

Since S contains no simplicial vertex, each vertex in S ∩ V (P ) is adjacent
to some vertices in D, and thus V (P ) \ S 
= ∅. Since P and Q have the same
type, for every non-empty subset C ⊆ cc(G[D]), the numbers of vertices in P
and Q having neighbors exactly in C are the same. Thus there is an injection
f : S ∩ V (P ) → V (Q) such that for each v ∈ S ∩ V (P ), the neighbors of v
and f(v) belong to the same set of connected components of G[D]. Let S′ be
the set obtained from S by swapping S ∩ V (P ) with f(S ∩ V (P )); that is,
S′ = (S \V (P ))∪f(S∩V (P )). Note that |S| = |S′| and |V (P )\S| < |V (Q)\S′|.

Let CP and CQ be the (possibly identical) connected components of G − S
that contain V (P ) \ S (
= ∅) and V (Q) \ S (= V (Q)), respectively. Similarly, let
C ′

P , C ′
Q be the connected components of G−S′ that contain V (P )\S′ (= V (P ))

and V (Q) \ S′ (
= ∅), respectively. Note that such components are well defined
as P and Q are complete graphs and V (P ) \ S and V (Q) \ S′ are non-empty.
We show that

max{|V (CP )|, |V (CQ)|} ≥ max{|V (C ′
P )|, |V (C ′

Q)|}. (2)

Observe that CP = CQ if and only if C ′
P = C ′

Q, and in such a case, they have the
same number of vertices. In the following, we assume that CP 
= CQ (and thus
C ′

P 
= C ′
Q). This implies that CQ and C ′

Q have no intersection with P . Let p and
q be the number of vertices in P and Q, respectively, that have no neighbors in
D. Note that p < q. Since V (P ) \ S and V (Q) \ S′ have the same adjacency to
cc(G[D]), we have |V (CP )| − p = |V (C ′

Q)| − q and |V (C ′
P )| − p = |V (CQ)| − q,

and thus |V (CP )| < |V (C ′
Q)| and |V (C ′

P )| < |V (CQ)|. We can also see that
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V (C ′
Q) ⊆ V (CQ) since S\V (P ) = S′\V (Q) and CQ and C ′

Q have no intersection
with P . Thus Eq. (2) holds.

Observe that cc(G − S) \ {CP , CQ} = cc(G − S′) \ {C ′
P , C ′

Q}. This implies
that S′ is also a (D, k)-feasible vi-set. This contradicts the assumption that β(S)
is maximum as β(S′) = β(S) − |V (P )| + |V (Q)| > β(S). ♦

Let S be a (D, k)-feasible vi-set satisfying the conditions in Claim 3.6. Observe
that the second condition guarantees that if S intersects k′ (≤ k) connected
components K1, . . . ,Kk′ of G−D with the same type, then K1, . . . ,Kk′ are the
largest ones in that type. In other words, for each type of connected components
of G−D, only the k largest ones (where ties are broken arbitrarily) can intersect
S. This observation leads to the following algorithm for solving SubViCvd on
the nice instance (G, k,D).

1. Select at most k connected components of G − D.
– When selecting multiple components of the same type, pick them in non-

decreasing order of their sizes (by breaking ties arbitrarily).
– There are at most (2(k + 1)2

k−1)k options for this phase as there are at
most 2(k + 1)2

k−1 types.
2. From each of the selected connected components, select at most k vertices

(while keeping the total number of selected vertices to be at most k).
– The vertices of a connected component of G−D with neighbors in D can

be partitioned into at most 2k − 1 equivalence classes by ND. Thus there
are at most k2k−1 options for one selected connected component.

– In total, there are at most (k2k−1)k possible options for this phase.

The number of candidates for (D, k)-feasible vi-set S enumerated in the algo-
rithm above is bounded by a function g(k) that depends only on k. Since they
can be enumerated in time polynomial per candidate, the algorithm runs in
g(k) · poly(|V (G)|) time.

4 Negative Results

The proofs of the following results are given in the full version.

Theorem 4.1 (�). Unary Weighted Vertex Integrity is W[1]-hard
parameterized by cluster vertex deletion number plus unweighted vertex integrity
or by feedback vertex number plus unweighted vertex integrity.

Theorem 4.2 (�). Binary Weighted Vertex Integrity is NP-complete
on subdivided stars.
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4.1 The Unweighted Problem Parameterized by pw

Given a graph G, and integers � and p, Component Order Connectivity
asks whether the �-component order connectivity of G is at most p. The special
case of Component Order Connectivity with � = p is called Fracture
Number. (See Sect. 1.2 for the definitions of �-component order connectivity and
fracture number.)

To show the W[2]-hardness of Unweighted Vertex Integrity parame-
terized by pathwidth, we first show that Fracture Number (and thus Com-
ponent Order Connectivity as well) is W[2]-hard parameterized by path-
width, and then we present a pathwidth-preserving reduction from Component
Order Connectivity to Unweighted Vertex Integrity.

Let G = (V,E) be a connected graph. A set S ⊆ V is a connected safe set if
G[S] is connected and |S| ≥ |V (C)| for each C ∈ cc(G−S). Given a graph G and
an integer k, Connected Safe Set asks whether G contains a connected safe
set of size at most k. Belmonte et al. [4] showed that Connected Safe Set
is W[2]-hard parameterized by pathwidth even if the input graph G contains a
universal vertex. This almost directly implies that Fracture Number is W[2]-
hard parameterized by pathwidth as we show below. Here we omit the definition
of pathwidth as it is not necessary.

Proposition 4.3. Fracture Number is W[2]-hard parameterized by path-
width.

Proof. Let G = (V,E) a graph that contains a universal vertex u. We show
that (G, k) is a yes-instance of Connected Safe Set if and only if (G, k) is a
yes-instance of Fracture Number.

To show the only-if direction, assume that (G, k) is a yes-instance of Con-
nected Safe Set. A minimum connected safe set S ⊆ V satisfies that |S| ≤ k
and |V (C)| ≤ |S| ≤ k for each C ∈ cc(G − S). Hence, (G, k) is a yes-instance of
Fracture Number.

To show the if direction, assume that (G, k) is a yes-instance of Fracture
Number. Let S ⊆ V be a set such that |S| ≤ k and |V (C)| ≤ k for each
C ∈ cc(G − S). We may assume without loss of generality that |S| = k by
adding arbitrary vertices if necessary. If G[S] is connected, then S is indeed a
connected safe set and we are done. Assume that S is not connected, and thus
S does not contain the universal vertex u. Since u is a universal vertex, G − S
is connected, which implies that |V \ S| ≤ k. Now we construct a set S′ of size
k by first picking u and then adding arbitrary k − 1 vertices. Since S′ contains
u, the graph G[S′] is connected. As |V \ S′| = |V \ S| ≤ k, it holds for each
C ∈ cc(G − S′) that |C| ≤ k = |S′|. Thus, S′ is a connected safe set of size k. �
Lemma 4.4. There is a polynomial-time reduction from Component Order
Connectivity to Unweighted Vertex Integrity that increases pathwidth
by at most 1.

Proof. Let (H, �, p) be an instance of Component Order Connectivity. We
set k = �p+�+p. We construct a graph G by attaching p pendants (i.e., vertices
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of degree 1) to each vertex of H and then adding k+1 copies of K1,k−p−1. Note
that pw(G) ≤ pw(H) + 1 since removing the degree-1 vertices in G decreases its
pathwidth by at most 1 (see [4]) and pw(K1,k−p−1) = 1. We show that (G, k) is
a yes-instance of Unweighted Vertex Integrity if and only if (H, �, p) is a
yes-instance of Component Order Connectivity.

To prove the if direction, assume that (H, �, p) is a yes-instance of Com-
ponent Order Connectivity and S ⊆ V (H) satisfies that |S| ≤ p and
maxC∈cc(H−S) |V (C)| ≤ �. We show that S is a vi(k)-set of G. Since |S| ≤ p, it
suffices to show that maxC∈cc(G−S) |V (C)| ≤ k −p. If C ∈ cc(G−S) contains no
vertex of H, then C is one of the copies of K1,k−p−1 or a single-vertex compo-
nent corresponding to a pendant. Otherwise, V (C)∩ V (H) induces a connected
component of H −S, and thus |V (C)| = (p+1)|V (C)∩V (H)| ≤ (p+1)� = k−p.

To prove the only-if direction, assume that (G, k) is a yes-instance of
Unweighted Vertex Integrity and S is an irredundant vi(k)-set of G. Since
there are k + 1 copies of K1,k−p−1, there is one that does not intersect S. This
implies that maxC∈cc(G−S) |V (C)| ≥ k − p, and thus |S| ≤ p. Let S′ = S ∩V (H)
and let C ′ ∈ cc(H − S′) be an arbitrary connected component of H − S′. As
|S′| ≤ p, it suffices to show that |V (C ′)| ≤ �. Let C be the connected compo-
nent of G − S such that V (C ′) ⊆ V (C). Observe that S contains no vertices of
degree 1 since such vertices are redundant. This implies that, for each vertex of
C ′, C contains all p pendants attached to it, and thus, |V (C)| ≥ (p+1)|V (C ′)|.
Since |V (C)| ≤ k = �p + � + p < (p + 1)(� + 1), we have |V (C ′)| < � + 1. �

Now Lemma 4.4 and Proposition 4.3 imply the following.

Corollary 4.5. Unweighted Vertex Integrity is W[2]-hard parameterized
by pathwidth.

5 Concluding Remarks

We initiated the first systematic study of the problem of computing unweighted
and weighted vertex integrity of graphs in terms of structural graph parameters.
Our results show sharp complexity contrasts of the problem. (See Fig. 1.) There
are still some cases where the complexity of the problem is unknown. For exam-
ple, what is the complexity of Unweighted Vertex Integrity parameterized
by treedepth or by feedback vertex set number, and what is the complexity of
Binary Vertex Integrity parameterized by modular-width?
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that are isomorphic to H. For a connected graph H, both problems are polyno-
mially solvable if H has at most two vertices (resp. at most two edges) because
they can be reduced to the Maximum Matching problem, whereas the prob-
lems are shown to be NP-complete if H has at least three vertices (resp. at
least three edges) [8,11]. Furthermore, both problems are naturally extended to
Vertex Disjoint H-Packing and Edge Disjoint H-Packing [7,11], which
respectively ask for finding a collection S of k vertex-disjoint and edge-disjoint
subgraphs of G that are isomorphic to some graph in a (possibly infinite) fixed
collection H of graphs. These problems are also well studied in specific cases of
H. In particular, when H is paths or cycles, it has received much attention in the
literature because of the variety of possible applications [2,3,5,12,13]. In both
cases, Vertex Disjoint H-Packing and Edge Disjoint H-Packing remain
NP-complete for planar graphs [3,9].

Recently, Xu and Zhang proposed a new variant of Edge Disjoint H-
Packing, which they call Path Set Packing, from the perspective of network
design [18]. In the Path Set Packing problem, given an undirected graph G, a
non-negative integer k, and a collection L of simple paths in G, we are required to
find a subcollection S ⊆ L of (at least) k paths that are mutually edge-disjoint.
Notice that L may not be exhaustive: Some paths in G may not appear in L.
If H consists of a finite number of paths, Edge Disjoint H-Packing can be
(polynomially) reduced to Path Set Packing because H is fixed and hence all
paths in G isomorphic to some graph in H can be enumerated in polynomial
time. Xu and Zhang showed that for a graph G with n vertices and m edges,
the optimization variant of Path Set Packing is hard to approximate within
a factor O(m1/2−ε) for any constant ε > 0 unless NP = ZPP, while the prob-
lem is solvable in O(|L|n2) time if G is a tree and in O(|L|twΔn) time if G has
treewidth tw and maximum degree Δ [18]. Very recently, Aravind and Saxena
investigated the parameterized complexity of Path Set Packing for various
parameters. For instance, Path Set Packing is W[1]-hard even when param-
eterized by pathwidth plus maximum degree plus solution size [1]. To the best
of our knowledge, except for Path Set Packing, such a variant has not been
studied for Edge Disjoint H-Packing, nor Vertex Disjoint H-Packing.

Our Contributions. In this paper, motivated by Path Set Packing, we
introduce list variants of Vertex Disjoint H-Packing and Edge Disjoint
H-Packing. In the Vertex Disjoint List H-Packing (resp. Edge Disjoint
List H-Packing) problem, we are given a graph G, a non-negative integer k,
and a collection (list) LH of subgraphs of G such that each subgraph in LH
is isomorphic to some graph in H. The problem asks whether there exists a
subcollection S ⊆ LH such that |S| ≥ k and subgraphs of G in S are vertex-
disjoint (resp. edge-disjoint). If LH contains all subgraphs of G isomorphic to
some graph in H, the problem is equivalent to Vertex Disjoint H-Packing
(resp. Edge Disjoint H-Packing). Thus, the tractability of the list variants
implies that of the original problems. If H = {H} for a fixed graph H, then
we call these problems simply Vertex (Edge) Disjoint List H-Packing
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Table 1. The complexity of Vertex Disjoint C�-Packing (left) and Edge Disjoint
C�-Packing (right).

Δ(G) = 3 Δ(G) ≥ 4

� = 3 P [6] NPC [6]
� = 4

P [Thm 4] NPC [Thm 6]
� = 5

� ≥ 6 NPC [Thm 5]

Δ(G) = 3 Δ(G) = 4 Δ(G) ≥ 5

� = 3 P [6] NPC [6]
� = 4

P [Thm 4] NPC [Thm 7]
� = 5

� ≥ 6 NPC [Thm 5]

and Vertex (Edge) Disjoint H-Packing, respectively. For a positive integer
�, we denote by P� and C� the path and the cycle of � vertices, respectively.
(We assume � ≥ 3 for C�.) When P = {P� : � ≥ 1}, Edge Disjoint List
P-Packing is equivalent to Path Set Packing. Therefore, Edge Disjoint
List H-Packing generalizes both Edge Disjoint H-Packing and Path Set
Packing.

We first give sufficient conditions to solve Vertex (Edge) Disjoint List
H-Packing on bounded degree graphs in polynomial time. These conditions
directly indicate the polynomial-time solvability of Vertex (Edge) Disjoint
List C�-Packing on graphs of maximum degree 3 for � ∈ {3, 4, 5}. It is worth
noting that Vertex Disjoint P3-Packing remains NP-complete even for 2-
connected bipartite planar cubic graphs [13]. In contrast, we show that Vertex
(Edge) Disjoint C�-Packing on planar graphs of maximum degree 3 is NP-
complete for any � ≥ 6. As Vertex (Edge) Disjoint C�-Packing can be
represented by its list variant, this result also indicates the hardness of Ver-
tex (Edge) Disjoint List C�-Packing. We also give the NP-completeness of
Vertex (Edge) Disjoint C�-Packing on planar graphs of maximum degree
4 for any � ≥ 4. Therefore, we provide the complexity dichotomy of Vertex
(Edge) Disjoint C�-Packing with respect to the maximum degree of a given
graph and �, as summarized in Table 1.

Second, we design a polynomial-time algorithm for Vertex Disjoint List
H-Packing on bounded-treewidth graphs, provided that all graphs in H are
connected. This implies that Vertex Disjoint List H-Packing belongs to
XP parameterized by treewidth. Note that the connectivity condition on H is
essential, because otherwise one can see that the problem is NP-complete even
on forests (see Theorem 3). On the other hand, we show that Vertex Disjoint
List P-Packing and Vertex Disjoint List C-Packing parameterized by
pathwidth plus k are W[1]-hard, where P = {P� : � ≥ 1} and C = {C� : � ≥ 3}.
This result implies that there is probably no FPT algorithm for the problems
parameterized by treewidth. One might think that XP algorithms parameterized
by treewidth could also be designed for the edge-disjoint versions. We give a neg-
ative answer. We show that Edge Disjoint List P-Packing and Edge Dis-
joint List C-Packing parameterized by bandwidth plus k are W[1]-hard even
for outerplanar and two-terminal series-parallel graphs, which have treewidth at
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most 2. In particular, the W[1]-hardness for Edge Disjoint List P-Packing,
which is equivalent to Path Set Packing, strengthens the result of [1].

The above hardness results prompt us to further investigate the complexity
of Edge Disjoint List P�-Packing and Edge Disjoint List C�-Packing on
bounded-treewidth graphs. In this paper, we focus on series-parallel graphs, also
known as graphs of treewidth at most 2. We show that Edge Disjoint List
P4-Packing and Edge Disjoint List C5-Packing remain NP-complete even
for series-parallel graphs. Since Edge Disjoint List P3-Packing is solvable in
polynomial time for general graphs by reducing to Maximum Matching, the
former implies the complexity dichotomy of Edge Disjoint List P�-Packing
on series-parallel graphs with respect to �. The remaining task is to settle the
complexity of Edge Disjoint List C�-Packing on series-parallel graphs for
� ≤ 4. We finally provide an algorithm that, given an n-vertex series-parallel
graph and a collection LH of cycles with length � ≤ 4, solves Edge Disjoint
List C�-Packing in O(|LH| + n2.5) time.

Due to the space limitation, several proofs, marked ♠, are omitted in this
paper, which can be found in the full version.

2 Preliminaries

For a positive integer i, we denote [i] = {1, 2, . . . , i}.
Let G be a graph. Throughout this paper, we assume that G is simple, that

is, it has neither self-loops nor parallel edges. The sets of vertices and edges of
G are denoted by V (G) and E(G), respectively. For v ∈ V (G), we denote by
NG(v) the set of neighbor of v and by dG(v) the degree of v in G. The maximum
degree of a vertex in G is denoted by Δ(G) and the minimum degree of a vertex
in G is denoted by δ(G). We may simply write uv to denote an edge {u, v}. For
a positive integer t, we denote by tG the disjoint union of t copies of G. For a
graph H, the H-vertex-conflict graph of G, denoted IVH(G), is defined as follows.
Each vertex of IVH(G) corresponds to a subgraph isomorphic to H in G. Two
vertices of IVH(G) are adjacent if and only if the corresponding subgraphs in G
share a vertex. The H-edge-conflict graph of G, denoted IEH(G), is defined by
replacing the adjacency condition in the definition of IVH(G) as: two vertices of
IEH(G) are adjacent if and only if they share an edge in G.

A claw is a star graph with three leaves. A graph is said to be claw-free if it
has no claw as an induced subgraph. Minty [14] and Sbihi [16] showed that the
maximum independent set problem can be solved in polynomial time on claw-
free graphs. This immediately implies the following proposition, which is a key
to our polynomial-time algorithms.

Proposition 1. If IVH(G) is claw-free, then Vertex Disjoint List H-
Packing can be solved in nO(|V (H)|) time. Moreover, if IEH(G) is claw-free, then
Edge Disjoint List H-Packing can be solved in nO(|V (H)|) time as well.

We consider several width parameters of graphs, such as treewidth, path-
width, and bandwidth. Due to the space limitation, we do not give their pre-
cise definitions in this paper. For the treewidth, pathwidth, and bandwidth
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of G, we denote them by tw(G), pw(G), and bw(G). We may simply write
them as tw, pw, and bw without specific reference to G. It is well known that
tw(G) ≤ pw(G) ≤ bw(G) for every graph G [4].

3 List C�-packing on bounded degree graphs

In this section, we focus on Vertex Disjoint List C�-Packing and Edge
Disjoint List C�-Packing on bounded degree graphs.

Theorem 1. Vertex Disjoint List H-Packing can be solved in polynomial
time if the following inequality holds:

Δ(G) ≤ 2δ(H) −
⌊ |V (H)|

3

⌋
.

Proof. By Proposition 1, it suffices to show that if IVH(G) has a claw as an induced
subgraph, then G has a vertex of degree more than 2δ(H)−�|V (H)|/3�. Let H∗,
H1, H2, and H3 be induced copies of H in G such that they correspond to an
induced claw in IVH(G) whose center is H∗. This implies that V (H∗)∩V (Hi) 
= ∅
for 1 ≤ i ≤ 3 and V (Hi) ∩ V (Hj) = ∅ for 1 ≤ i < j ≤ 3. This implies
that some copy of H, say H1, satisfies |V (H∗) ∩ V (H1)| ≤ �|V (H)|/3�. Let
v ∈ V (H∗)∩V (H1). The vertex v has at least δ(H) neighbors in each of H∗ and
H1 and at most �|V (H)|/3� − 1 of them belong to V (H∗) ∩ V (H1). Thus,

dG(v) ≥ 2δ(H) − (|V (H∗) ∩ V (H1)| − 1)

≥ 2δ(H) −
(⌊ |V (H)|

3

⌋
− 1

)

> 2δ(H) −
⌊ |V (H)|

3

⌋
,

which proves the claim. �
Theorem 2 (♠). Edge Disjoint List H-Packing can be solved in polyno-
mial time if the following inequality holds:

Δ(G) ≤ 2δ(H) −
⌊ |E(H)|

3

⌋
,

except that H = tK2 for 3 ≤ t ≤ 5.

Let us note that the exception in Theorem 2 is critical for the tractability of
Edge Disjoint List H-Packing. In fact, Edge Disjoint List H-Packing
is NP-complete even if G = nK2 and H = 3K2, which satisfy that Δ(G) = 1 ≤
2δ(H) − �|E(H)|/3�. This intractability is shown by reducing Exact Cover
by 3-Sets, which is known to be NP-complete [10], to Edge Disjoint List
H-Packing. In Exact Cover by 3-Sets, we are given a universe U and a
collection C of subsets of U , each of which has exactly three elements and asked
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P P ′

Fig. 1. An example of the construction of G′ for � = 6. Bold lines indicate a matching
of each cycle.

whether there is a pairwise disjoint subcollection C′ of C that covers U (i.e.,
U =

⋃
S∈C′ S). This problem is a special case of Edge Disjoint List H-

Packing, where G has a copy of K2 corresponding to each element in U and
S consists of all copies of 3K2 corresponding to C. This reduction also proves
that Vertex Disjoint List H-Packing is NP-complete even if G = nK2 and
H = 3K2.

Theorem 3. Vertex Disjoint List H-Packing and Edge Disjoint List
H-Packing are NP-complete even if G = nK2 and H = 3K2.

As consequences of Theorems 1 and 2, we have the following positive results.

Theorem 4. For � ∈ {4, 5}, there are polynomial-time algorithms for Vertex
Disjoint List C�-Packing and Edge Disjoint List C�-Packing on graphs
of maximum degree 3.

Contrary to this tractability, for any � ≥ 6, Vertex Disjoint C�-Packing
and Edge Disjoint C�-Packing are NP-complete even on planar graphs of
maximum degree 3.

Theorem 5. For � ≥ 6, Vertex Disjoint C�-Packing and Edge Disjoint
C�-Packing are NP-complete even on planar graphs of maximum degree 3.

Proof. Since Vertex Disjoint C�-Packing and Edge Disjoint C�-Packing
are equivalent on graphs of maximum degree 3, we only consider Vertex Dis-
joint C�-Packing.

To show NP-hardness, we perform a polynomial-time reduction from Inde-
pendent Set, which is known to be NP-complete even on planar graphs with
maximum degree 3 and girth at least p for any integer p [15]. Here, the girth of
G is the length of a shortest cycle in G.

Let G be a planar graph with Δ(G) ≤ 3 and girth at least �+1. We construct
a graph G′ as follows. For each v ∈ V (G), G′ contains a cycle Cv of length �.
These cycles are called primal cycles in G′. Let Mv be an arbitrary matching
in Cv with |Mv| = 3. For two adjacent vertices u, v in G, we identify one of the
edges in Mu and in Mv as shown in Fig. 1.

The edges in Mv are called shared edges. By removing the shared edges from
Cv, we obtain three paths, which we call private paths in Cv. Note that each
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private path belongs to exactly one primal cycle in G′. The construction of G′

is done. It is easy to observe that G′ is planar and has maximum degree 3. Also
observe that the degree of each internal vertex of a private path is exactly 2.

We first claim that the length of cycles in G′ except for primal cycles is
greater than �. To see this, let C be an arbitrary cycle that is not a primal
cycle in G′. As shared edges form a matching in G′, C must contain at least
one private path P in Cv for some v ∈ V (G). If C contains all the private paths
in Cv, the length of C is greater than �, except for the case C = Cv. Thus, we
assume that C does not contain one of the private paths, say P ′, in Cv. Let
W = (v0, v1, . . . , vt) be a sequence of vertices of G defined as follows. We first
contract all shared edges in C. Then, the contracted cycle can be partitioned
into maximal subpaths P0, . . . , Pt such that each Pi consists of edges of (possibly
more than one) private paths in Cvi

for some vi ∈ V (G). Due to the maximality
of Pi, we have vi 
= vi+1 for 0 ≤ i ≤ t, where the addition in the subscript is
taken modulo t + 1. Moreover, the sequence contains at least two vertices as C
contains P and does not contain P ′, meaning that it must have a private path
in Cv′ for some v′ 
= v. For any pair of private paths in Cu and in Cw, they are
adjacent with a shared edge if and only if u and w are adjacent in G. Thus, W
is a closed walk in G.

Suppose that W contains a “turn”, that is, vi = vi+2 for some i. This implies
that C contains all private paths of Cvi+1 , which implies that the length of C
is more than �. Otherwise, W contains a cycle in G. Since the girth of G is at
least �+1, W has more than � edges. Hence, C contains more than �+1 private
paths.

Now, we are ready to prove that G has an independent set of size at least k
if and only if G′ has a C�-packing of size at least k. From an independent set
of G, we can construct a vertex-disjoint C�-packing by just taking primal cycles
corresponding to vertices in the independent set. Since every cycle except for
primal cycles has length more than �, this correspondence is reversible: From a
vertex-disjoint C�-packing of G′ with size k, we can construct an independent
set of G with size k.

Using a similar strategy of Theorem 5, we prove the following theorems. �
Theorem 6 (♠). For � ∈ {4, 5}, Vertex Disjoint C�-Packing is NP-
complete even on planar graphs of maximum degree 4.

Theorem 7 (♠). For � ∈ {4, 5}, Edge Disjoint C�-Packing is NP-complete
even on planar graphs of maximum degree 4.

4 VERTEX DISJOINT LIST H-PACKING on bounded-
treewidth graphs

In Sect. 5, we will see that Edge Disjoint List H-Packing is intractable
even if H contains a single small connected graph and an input graph is series-
parallel. In contrast to this intractability, Vertex Disjoint List H-Packing is
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polynomial-time solvable on series-parallel graphs and, more generally, bounded-
treewidth graphs, if H consists of a finite number of connected graphs. More
precisely, we show that Vertex Disjoint List H-Packing is XP parameter-
ized by treewidth, provided that H consists of connected graphs. We also show
that Vertex Disjoint List Path Packing is W[1]-hard parameterized by
pathwidth.

Theorem 8 (♠). Vertex Disjoint List H-Packing is solvable in nO(tw)

time, provided that all graphs in H are connected, where n is the number of
vertices in the input graph.

We would like to note that the connectivity of H is crucial as we have seen in
Sect. 3 that Vertex Disjoint List H-packing is NP-complete even if G = nK2

and H = 3K2.
The following theorem complements the positive result of Theorem 8.

Theorem 9 (♠). Vertex Disjoint List P�-Packing is W[1]-hard parame-
terized by pw + k.

5 EDGE DISJOINT LIST H-PACKING on series-parallel
graphs

This section is devoted to showing several positive and negative results on series-
parallel graphs. The class of series-parallel graphs is a well-studied class of graphs
and is equivalent to the class of graphs of treewidth at most 2.

A two-terminal labeled graph is a graph G with distinguished two vertices
called a source s and a sink t. Let G1 = (V1, E1) (resp. G2 = (V2, E2)) be a
two-terminal labeled graph with a source s1 and a sink t1 (resp. a source s2 and
a sink t2). A series composition of G1 and G2 is an operation that produces the
two-terminal labeled graph with a source s and a sink t obtained from G1 and
G2 by identifying t1 and s2, where s = s1 and t = t2. A parallel composition of
G1 and G2 is an operation that produces the two-terminal labeled graph with
a source s and a sink t obtained from G1 and G2 by identifying s1 and s2,
and identifying t1 and t2, where s = s1(= s2) and t = t1(= t2). We denote
G = G1 • G2 if G is created by a series composition of G1 and G2, and denote
G = G1 ‖ G2 if G is created by a parallel composition of G1 and G2. We say
that a two-terminal labeled graph G is a two-terminal series-parallel graph if one
of the following conditions is satisfied: (i) G = K2 with a source s and a sink
t; (ii) G = G1 • G2 for two-terminal series-parallel graphs G1 and G2; or (iii)
G = G1 ‖ G2 for two-terminal series-parallel graphs G1 and G2.

We say that a graph G (without a source and a sink) is a series-parallel
graph if each biconnected component is a two-terminal series-parallel graph by
regarding some two vertices as a source and a sink1.

1 Some papers refer to a two-terminal series-parallel graph simply as a series-parallel
graph. In this paper, we distinguish them explicitly to avoid confusion.
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5.1 Hardness

A graph G is outerplanar if it has a planar embedding such that every vertex
of G meets the unbounded face of the embedding. Every outerplanar graph is
series-parallel but may not be two-terminal series-parallel. The following two
theorems indicate that Edge Disjoint List H-Packing remains intractable
even when a given graph is highly restricted.

Theorem 10 (♠). Edge Disjoint List P-Packing parameterized by
bw(G) + k is W[1]-hard even for outerplanar and two-terminal series-parallel
graphs, where k is a solution size.

Theorem 11 (♠). Edge Disjoint List C-Packing parameterized by
bw(G) + k is W[1]-hard even for outerplanar and two-terminal series-parallel
graphs, where k is a solution size.

We next focus on the case where H consists of a single graph and show that
the problem remains hard. Let K2,n denotes the complete bipartite graph such
that one side consists of two vertices and the other side consists of n vertices.

Theorem 12 (♠). Edge disjoint List P4-packing remains NP-complete
even for the class of K2,n.

Obviously, K2,n is a two-terminal series-parallel graph. Since Edge disjoint
List P3-packing is solvable for general graphs, Theorem 12 suggests that the
complexity dichotomy with respect to path length still holds for very restricted
graphs. Moreover, Theorem 12 immediately provides the following corollary,
which strengthens the hardness result in [1] that Path Set Packing is W[1]-
hard when parameterized by vertex cover number of G plus maximum length of
paths in a given collection L.

Corollary 1. Path Set Packing is NP-complete even when a given graph has
vertex cover number 2 and every path in L is of length 3.

We also show the complexity of Edge disjoint List C5-packing, which
highlights the positive result in Sect. 5.2.

Theorem 13 (♠). Edge disjoint List C5-packing remains NP-complete
even for two-terminal series-parallel graphs.

5.2 Polynomial-Time Algorithm of EDGE DISJOINT LIST C�-PACKING

for � ≤ 4

We design a polynomial-time algorithm for Edge disjoint List C�-packing
for � ≤ 4 on two-terminal series-parallel graphs. Actually, we give a stronger
theorem.

Theorem 14. Let C≤4 = {C3, C4}. Given a series-parallel graph G with n ver-
tices and a collection LH of cycles in G of length at most 4, Edge disjoint
List C≤4-packing is solvable in O(|LH| + n2.5) time.
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We first note that we may assume that a given graph G is biconnected: the
problem can be solved independently in each biconnected component. Moreover,
from the definition of series-parallel graphs, every biconnected series-parallel
graph can be regarded as a two-terminal series-parallel graph. We thus consider
a polynomial-time algorithm that finds a largest solution of a given two-terminal
series-parallel graph.

e1 e2

e3 e4

e5 e6 e7

‖
‖ •

• • e5 •

e1 e2 e3 e4 e6 e7

‖

• • •

e1 e2 e3 e4 e5 e6 e7

)c()b()a(

Fig. 2. (a) The graph G, (b) the decomposition tree of G, and (c) the layered decom-
position tree of G.

The recursive definition of a two-terminal series-parallel graph G naturally
gives us a rooted full binary tree T representing G, called the decomposition tree
of G (see Fig. 2(a) and (b)). To avoid confusion, we refer to a vertex and an edge
of T as a node and a link, respectively. For a node x of T , let Tx be a subtree of
T rooted at x. Each leaf of T corresponds to an edge of G whose endpoints are
labeled with a source s and a sink t. Each internal node x of T is labeled either
• or ‖. Suppose that x has exactly two children x1 and x2. The label • indicates
a series composition of two-terminal series-parallel graphs defined by Tx1 and
Tx2 . The label ‖ indicates a parallel composition of two-terminal series-parallel
graphs defined by Tx1 and Tx2 . We refer to nodes labeled • as •-nodes and to
nodes labeled ‖ as ‖-nodes. We denote by Gx the graph composed by Tx. Let r
be the root of T . Then, we have Gr = G. Note that, since G1 • G2 and G2 • G1

produce different two-terminal graphs, we assume that children of a •-node are
ordered. In addition, since we have assumed G is 2-connected, the root r of T is
labeled ‖ (assuming G has at least three vertices).

At the beginning of our algorithm, we construct a decomposition tree T ′ of a
given graph G in linear time [17], and then transform it into a suitable form for
our algorithm as follows (see also Fig. 2(c)). If a •-node x of T ′ has a child •-node
x′, then we contract a link xx′ without changing the order of series compositions.
For example, suppose that x has children x1 and x′; x′ has children x2 and x3;
and Gx = Gx1 • Gx′ . Then, we contract the link xx′ so that Gx = G1 • G2 • G3.
The contracted tree still tells how to construct G. Similarly, if a ‖-node x of T ′

has a child ‖-node x′, then we contract the link xx′. We iteratively contract such
links until each •-node has only leaves or ‖-nodes as its children, and ‖-node has
only leaves or •-nodes as its children. Note that each ‖-node has at most one
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leaf of T ′ as its children because G has no multiple edges. The tree obtained in
this way is called a layered decomposition tree of G and is denoted by T .

Let C be a cycle of a graph G = (V,E). For a subgraph G′ = (V ′, E′) of G, we
say that C enters G′ if C has both an edge in E′ and an edge in E \E′. Suppose
that there is a •-node x of T such that x has c ≥ 4 children x1, x2, . . . , xc. Then,
no cycle of length at most 4 enters Gx; since Gx is created by series compositions
of at least four two-terminal labeled graphs, every cycle entering Gx has length
at least 5. Thus, the problem can be solved independently in each of Gx and the
remaining part.

Assume that each •-node x of T has at most three children. Before explaining
dynamic programming over T , we give the following key lemma.

Lemma 1 (♠). Let x be any node of a layered decomposition tree T of a two-
terminal series-parallel graph G and LH be a collection of cycles in G of length
at most 4. For any solution S ⊆ LH of G, there exists at most one cycle in S
that enters Gx.

Let S be a largest solution of G. Suppose that x is a •-node of T with c
children x1, x2, . . . , xc. For an integer i ∈ [c], let si and ti denote a source and a
sink of Gxi

, respectively. We distinguish the following two cases to consider:

(s1) at least one cycle C in S enters Gx and siti ∈ E(C) for every integer i ∈ [c];
(s2) at least one cycle C in S enters Gx and siti /∈ E(C) for some integer i ∈ [c].

Similarly, for a ‖-node x with a source s and a sink t, we also distinguish the
following two cases to consider:

(p1) at least one cycle C in S enters Gx and st ∈ E(C);
(p2) at least one cycle C in S enters Gx and st /∈ E(C);

We note that the above cases are not exhaustive: there may be no cycle in S
entering Gx. It is not necessary to consider such a case in the construction of
our algorithm. We also note that by Lemma 1, there are no more than one
(edge-disjoint) cycle satisfying these conditions.

Let Lx
H be a restriction of LH to Gx, that is, Lx

H = {H ∈ LH : E(H) ⊆
E(Gx)}. In our algorithm, for each node x of T , we compute the largest size of
a subcollection Sx with Sx = S ∩ Lx

H. Let f•(x) be the largest size of Sx for
a •-node x, and let f‖(x) be the largest size of Sx for a ‖-node x. Notice that,
originally, leaves of T are labeled neither • nor ‖, and hence f•(x) and f‖(x)
cannot be defined for the leaves. For algorithmic simplicity, we consider a leaf x
as a •-node if its parent is labeled ‖, and as a ‖-node if its parent is labeled •.
This simplification allows us to define f•(x) and f‖(x) for a leaf x accordingly.

We also define the truth values b•
j (x) and b

‖
j (x) for each j ∈ {1, 2} and

each node x of T . We set b•
j (x) = 1 (resp. b

‖
j (x) = 1) if and only if there

exists a mutually edge-disjoint subcollection S ′
x of Lx

H that satisfies the following
conditions:

– |S ′
x| = f•(x) (resp. |S ′

x| = f‖(x));
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– there exists a cycle C ∈ LH \ Lx
H corresponding to the case (sj) (resp. (pj));

– all subgraphs in S ′
x and C are edge-disjoint.

Intuitively speaking, b•
j (x) = 1 (and b

‖
j (x) = 1) if and only if we can further add

a cycle C entering Gx into a partial solution at an ancestor of x.
We are ready to explain how to compute f•(x), f‖(x), b•

j (x), and b
‖
j (x) for

each node x of T and each j ∈ {1, 2}.

Leaf Node. Suppose that x is a leaf of T . Let s and t be the source and
the sink of Gx, respectively. One can verify that the following equalities hold:
f•(x) = f‖(x) = 0; b•

1(x) = b
‖
1(x) = 1 if and only if there exists a cycle C in LH

such that st ∈ E(C); and b•
2(x) = b

‖
2(x) = 0.

Internal •-node. Suppose that x is a •-node with c children x1, . . . , xc. Since
Gx consists of series compositions of Gx1 , . . . , Gxc

, every cycle in Gx is contained
in Gxi

for some i. We thus have

f•(x) =
∑
i∈[c]

f‖(xi).

We next compute b•
j (x) for each j ∈ {1, 2}. Recall that x has at most three

children.
Suppose that c = 3. If there exists a cycle C ∈ LH\Lx

H that enters Gx, then it
passes through s1 and t3, meaning that it enters Gxi

for all i ∈ [3]. Conversely,
for every i ∈ [3], if there is a cycle Ci ∈ LH \ Lxi

H such that Ci enters Gxi
,

then it must have E(Ci) = {s1t1, s2t2, s3t3, t3s1}, that is, the cycle is uniquely
determined C = Ci for i ∈ [3]. It is easy to observe that C is edge-disjoint
from any cycles in Sx if and only if it is edge-disjoint from any cycles in Sxi

for
all i ∈ [3]. Hence, we have b•

1(x) = b
‖
1(x1) ∧ b

‖
1(x2) ∧ b

‖
1(x3). This also implies

that there is no cycle C ∈ S that enters Gx and siti /∈ E(C), which yields that
b•
2(x) = 0.

Suppose next that c = 2. By the similar argument to the case c = 3, we have
b•
1(x) = 1 if and only if b

‖
1(x1) ∧ b

‖
1(x2) = 1 and there is a cycle C ∈ LH \ Lx

H
such that s1t1, s2t2 ∈ E(C). We explain how to decide b•

2(x). If there is a cycle
C ∈ LH \Lx

H with s1t1 /∈ E(C) that enters Gx, then it enters both Gx1 and Gx2 ,
and it holds that s2t2 ∈ E(C) because the length of C is at most 4. Conversely,
for a cycle C1 ∈ LH \ Lx1

H such that C1 enters Gx1 and s1t1 /∈ E(C1), C1 also
enters Gx2 and Gx, and s2t2 ∈ E(C1) holds. The same argument is applied
to a cycle C ∈ LH \ Lx

H with s2t2 /∈ E(C) that enters Gx. Thus, we have
b•
2(x) = (b‖

2(x1) ∧ b
‖
1(x2)) ∨ (b‖

1(x1) ∧ b
‖
2(x2)).

Internal ‖-node. Suppose that x is a ‖-node with c children x1, . . . , xc. Let s
and t be the source and the sink of Gx, respectively.

To compute f‖(x), we construct an auxiliary graph Ax whose vertex set is
{a1, a2, . . . , ac}. We associate each child xi of x with a vertex ai. Let i, j ∈ [c]
be distinct integers. Suppose that xi and xj are internal nodes of T . Then, Ax
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has an edge aiaj if b•
1(xi) ∧ b•

1(xj) = 1 and there exists a cycle in Lx
H that

enters both Gxi
and Gxj

. Note that such a cycle C satisfies |E(C) ∩ E(Gxi
)| =

|E(C)∩E(Gxj
)| = 2, which means that C must satisfy the case (s1) for •-nodes

xi and xj . Suppose next that xi is an internal node and xj is a leaf of T . In this
case, st ∈ E(Gxj

). Then, Ax has an edge aiaj if at least one of the following
conditions is satisfied:

1. xi has exactly c children with c ∈ {2, 3}, b•
1(xi) = 1, and there exists a cycle

C in Lx
H of length c + 1 that enters both Gxi

and Gxj
; or

2. b•
2(xi) = 1.

Note that, in the second case b•
2(xi) = 1, there is a cycle C ∈ LH \ Lxi

H entering
Gxi

such that xi has a child y with |E(C)∩E(Gy)| ≥ 2. This implies that C has
exactly three edges in Gxi

and hence we have st ∈ E(C). Also note that there
is no case that both xi and xj are leaves because G has no parallel edges. We
complete the construction of Ax.

The intuition of the auxiliary graph Ax is as follows. If there is an edge
aiaj ∈ Ax, then we can further add a cycle C in Gxi

‖ Gxj
that is edge-disjoint

from any cycles in
⋃

h∈[c] Sxh
. We can simultaneously add such cycles for other

edges in Ax. However, by Lemma 1, we cannot add more than one cycles entering
Gxi

. Thus, in order to add as many such cycles as possible, the corresponding
edges must form a matching in Ax. In fact, the following equality holds.

f‖(x) =
∑
i∈[c]

f•(xi) + |M∗
x |, (1)

where M∗
x be a maximum matching of Ax.

To compute b
‖
j (x) for each j ∈ {1, 2}, we construct additional auxiliary graphs

A1
x and A2

x from Ax. Let A1
x be the graph obtained from Ax as follows. We first

add a vertex a′. Then, we add an edge a′ai if x has a leaf child xi and there is
a cycle C ∈ LH \ Lx

H such that C enters Gx and st ∈ E(C).
Similarly, let A2

x be the graph obtained from Ax as follows. We first add a
vertex a′′. Then, for each i ∈ [c], we add an edge a′′ai if xi is an internal node
of T , b•

1(xi) = 1 and there is a cycle C ∈ LH \ Lx
H that enters Gxi

.
Let M1

x and M2
x be maximum matchings of A1

x and A2
x, respectively. We let

b
‖
1(x) = 1 if and only if |M1

x | > |M∗
x |; and b

‖
2(x) = 1 if and only if |M2

x | > |M∗
x |.

Finally, we conclude that f‖(r) is the size of a largest solution of G. Due to
the space limitation, detailed proofs of the correctness and running time of our
algorithm are postponed to the full version.
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