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Abstract. Tower cranes play a crucial role in construction, but their complex
dynamics and under-actuation pose significant control challenges. This research
proposes a sophisticated multi-variable state-constrained controller for tower
cranes with varying cable lengths. By introducing auxiliary terms, the controller
effectively constrains the actuated variables, underactuated variables, and specific
composite variables, ensuring precise cargo positioning and swing suppression.
The control approach for tower cranes in this paper enhances both safety and
operational efficiency. Finally, the proposed method’s feasibility and robustness
are validated through simulation experiments.
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1 Introduction

The tower crane is a typical example of underactuated systems, characterized by having
fewer input variables than output variables [1–3]. Despite cost and structural advantages,
designing controllers for them is complex due to limited input and high state coupling,
posing significant challenges. Current manual operation leads to low efficiency and
safety risks. Efficient tower crane controllers are crucial for improved performance and
safety [4].

Over the years, tower cranes have seen extensive research in various controlmethods,
including Sliding Mode Control (SMC), adaptive algorithms, and their combinations,
aimed at enhancing performance, safety, and efficiency [5–7]. SMC offers robustness,
rapid response, and precision, but may generate chattering. To address this, studies
combine adaptive methods with SMC for smoother and more adaptable control. Tower
crane dynamics are influenced by uncertainties and disturbances, handled by adaptive
control algorithms, which adjust parameters in real-time for improved robustness [8,
9]. Additionally, fuzzy control and Observer-Based Nonlinear Control are employed
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for systems with imprecise information, estimating states and disturbances for effective
monitoring and correction [10–12].

In construction, tower cranes aim for rapid and precise positioning while suppress-
ing cargo swing. Although significant progress has been made in achieving these goals,
further improvements are needed. In certain scenarios, operating at different heights
leads to variations in cable lengths, inducing swing due to factors like wind and iner-
tia. Dynamic cable length adjustment is essential for stable operations. Strong coupling
among state variables requires constraints to ensure precise load control, especially
in complex work environments with potential obstacles. Effective constraints prevent
collisions and ensure reliable control. Constraints on both actuated and underactuated
variables are crucial to prevent excessive swing angles and instability, avoiding acci-
dents. Reasonable constraints on composite load position variables enhance operational
efficiency and trajectory tracking.

This paper proposes a nonlinear control method for a five-degree-of-freedom tower
crane with varying cable lengths, aiming to achieve multi-variable state constraints. The
contributions are:

1) Establishing a model for the tower crane with variable cable lengths, enabling precise
cargo hoisting, jib rotation, trolley transport, and effective swing suppression.

2) Devising a multi-variable constraint strategy, confining all state variables within
well-defined ranges, including actuated, underactuated, and composite variables
representing the load position.

3) Applyingmulti-variable constraints to ensure stable system dynamics, enabling accu-
rate control of the load position and orientation for safe and efficient tower crane
operation.

The structure of this article is as follows: In Sect. 2, the dynamic model of the
system is introduced, and in Sect. 3, the controller design is presented. In Sect. 4, simu-
lation tests using Simulink are performed, comparing the proposed method with the PD
(Proportional-Derivative) approach.

2 Problem Formulation

2.1 Tower Crane System Dynamics

Based on the Lagrangian modeling technique, we derive the dynamic equations corre-
sponding to the five degrees of freedom (DOF), resulting in five second-order nonlinear
differential equations expressed as follows:

M (q)q̈ + C(q, q̇)q̇ + G(q) = U − Uf (1)

where q = [φ x l θ1 θ2]T denotes the system state vector, l corresponds to the cable
length, x and φ represent the displacement of the trolley and the angle of the jib slew,
respectively. Additionally, θ1 and θ2 refer to the swing angles of the payload, the
input vector U=[Fφ Fx Fl 0 0]T consists of three control inputs: the tower rotating
torque (Fφ), the trolley driving force (Fx), and the rope tension (Fl). Additionally,
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Uf=[f φ fx fl d1θ̇1 d2θ̇2]T represents friction vector, d1, d2 represents the coeffi-
cients of friction M (q), C(q, q̇) ∈ R

3×3 are inertia and centripetal-Coriolis matrices,
respectively, andG(q) = [0 0mg−mgcosθ1cosθ2 mglsinθ1cosθ2 mglcosθ1sinθ2]T is the
gravitational force vector.

1

2

Fig. 1. Model of 5-DOF varying-cable-length tower cranes.

The DOF can be categorized into two vectors: actuated states (qa) and unactuated
states (qu). The actuated states control the jib slew angle, trolley position, and suspension
cable length, while the unactuated states correspond to the swing angles of the payload.

qa = [φ x l]T,qu = [θ1 θ2]T (2)

Therefore, Eq. (1) is arranged into two equations

M11q̈a + M12q̈u + C11q̇a + C12q̇u + G1 = u − �aq̇a (3)

M21q̈a + M22q̈u + C21q̇a + C22q̇u + G2 = −�uq̈u (4)

where M11,C11 ∈ R
3×3,M21,C21 ∈ R

2×3,M22,C22 ∈ R
2×2, M12,C12 ∈ R

3×2, G1 ∈
R
3,

G2 ∈ R
2, �a ∈ R

3×3,�u ∈ R
2×2,�aq̇a and �uq̇u represent the part corresponding

to the actuated and the underactuated of Uf .
The following reformulation of the equations will allow the control inputs to affect

the unactuated dynamics. Equations (3) and (4) are rewritten as follows:

q̈a = M−1
a (u − �aq̇a − Caq̇a − Cuq̇u − Ga + M12M

−1
22 �uq̇u) (5)
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where Ma,Ca ∈ R
3×3,Cu ∈ R

3×2,Ga ∈ R
3,�a ∈ R

3×3, �u ∈ R
2×2, denote some

auxiliary matrices/vectors defined as follows:

Ma = M11 − M12M
−1
22 M21,Ca = C11 − M12M

−1
22 C21 (6)

Cu = C12 − M12M
−1
22 C22,Ga = G1 − M12M

−1
22 G2 (7)

2.2 Control Objective

For system (1), our objective is to design an appropriate control input to achieve the
following goals:

Realize the positioning performance of the jib and trolley while eliminating the
double-pendulum angles. So that the cantilever and the cart can reach the desired posi-
tion accurately respectively, the sway angle of the payload can be suppressed to zero,
described as

lim
t→∞[φ(t), x(t), l(t), θ1(t), θ2(t)]

T = [φd , xd , ld0, 0]
T (8)

Throughout the control process, the maximum amplitudes of the actuated and
unactuated state variables are limited to a suitable range:

qim < qi < qiM , i ∈ {1, 2, ...5} (9)

where qi(t) represents the ith state variable, while qim and qiM stand for the lower and
upper bounds of qi(t),respectively.

The payload position must be confined within an appropriate safety range. The
expression for the payload position is as follows:

φ1(q) = xp(t) = x + l sin θ1 (10)

φ1m < φ1(q) < φ1M (11)

where φ1 represents the state variable, while φ1m and φ1M stand for the lower and upper
bounds of φ1(t), respectively.

Property1 [12]:M (q) is positive-definite, and Ṁ (q)/2−C(q, q̇) is skew-symmetric,
meaning that

ξT[Ṁ (q)

2
− C(q, q̇)]ξ = 0,∀ξ ∈ R

5 (12)

3 Control System Design

In this section, we aim to address the diverse constraints, encompassing both actuated
and unactuated state constraints, as well as constraints on specific composite variables.
To achieve the objectives specified in Eqs. (8) - (11), we will devise auxiliary terms,
incorporating constrained variable signals and actuated velocity signals.
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By examining the comprehensive expression ofMa, it can be demonstrated thatMa
is a positive-definite matrix. Moreover, the shapedmechanical energy function of Eq. (1)
can be represented as follows:

Es(t) = 1

2
q̇TM (q)q̇ + mgl(1 − cos θ1 cos θ2) (13)

where m denote the mass of trolley. Kinetic energy is a nonnegative scalar quantity and
the value of mgl(1− cos θ1 cos θ2) is always nonnegative. It is evident that Es(t) is non-
negative. By calculating the time derivative of Eq. (13) and performing simplifications
using Eqs. (1), (12), we can derive the following relationship:

Ės = q̇TM (q)q̈ + 1

2
q̇T Ṁ (q)q̇ + mgl̇(1 − cos θ1 cos θ2)

+mpglθ̇1 sin θ1 cos θ2 + mpglθ̇2 cos θ1 sin θ2

= (Fφ − fφ)φ̇ + (Fx − fx)ẋ + (Fl − fl + mg)l̇

(14)

The primary objective of the controller is to attain the desired position of the actuated
states while eliminating the unactuated states, which increases complexity to the control
design. First, we introduce the actuated state error vector as follows:

ea = qa − qad = [
φ − φd x − xd l − ld

]T
(15)

eu = qu − qud = [
θ1 θ2

]T
(16)

where ea represents the tracking error of the actuated states. The desired positions of the
trolley, jib and cable lengths are xd , φd and ld , respectively. On the other hand, the error
eu corresponds to the unactuated states, where the desired swing angles are set to zero.

Furthermore, the positioning error of qi(t) is defined as

ei = qi − qid = μT
i ea, i ∈ {1, 2, 3} (17)

where μi ∈ R
3 represents the unit vector as

μT
i =

i−1
︷ ︸︸ ︷[
0 · · · 0 1 0 · · · 0 ]

(18)

Next, based onEq. (14),wedevise the auxiliary function�1(t) to address the actuated
state constraints.

�1 =
3∑

i=1

αi

2

e2i
(qi − qiM )2(qi − qim)2

(19)

Following that, we define a scalar function as

V1 = kEEs + 1

2
kvq̇TaMaq̇a + �1 + 1

2
eTaκpea, (20)
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where kE and kV ∈ R+ represent positive control gains, while κp ∈ R
3×3 signifies

a positive definite diagonal control gain matrix. By calculating the time derivative of
Eq. (20) and performing certain simplifications, we arrive at the ensuing relationship:

V̇1 = −kE q̇Ta�aq̇a − kE q̇Tu�uq̇u + kE q̇Tau + kvq̇TaMaq̈a + 1

2
kvq̇Ta Ṁaq̇a + q̇Taκpea + �̇1

= q̇Ta [(kE + kv)I3u + B1] − (kE + kv)q̇Ta�aq̇a − kE q̇Tu�uq̇u
(21)

where I3 denotes the 3 × 3 identity matrix. To simplify and facilitate the derivation, an
auxiliary term B1 is designed as

B1 = −kv(Caq̇a + Cuq̇u + Ga) + 1

2
kvṀaq̇a + kυM11M

−1
12 �uq̇u

OO + {κp +
3∑

i=1

αi[ (qi − qiM )(qi − qim) − ei(2qi − qiM − qim)

(qi − qiM )3(qi − qim)3
]μiμ

T
i } · eaO

(22)

By deriving from Eq. (21), we first design a regulation controller:

u = [(kE + kv)Im]−1 · [−B1 − (q̇Tuκd1q̇u + qTuκd2qu)κd3q̇a] (23)

where κd1, κd2 ∈ R
2×2, κd3, κp ∈ R

3×3 denote positive definite control gain diagonal
matrices.

The regulation controller is meticulously formulated by iteratively analyzing and
combining unactuated variables with actuated variables. During this process, careful
consideration is given to the definitions of δi and qi, resulting in an intricate controller
design achieved through repetitive trial-and-error analysis [12].

�2 =
5∑

i=4

αi

2
sec[δi(qi − qi)

2]q̇Ta q̇a (24)

which is an elaborate combination of unactuated variables and actuated variables derived
by repetitive trial-and-error analysis, where δi and qi are defined as

δi = 2π

(qim − qiM )2
, qi = qim + qiM

2
(25)

It is demonstrated that (24) effectively addresses unactuated state constraints in [12].
Based on this, concerning the composite variable φ1, we design an auxiliary function,
denoted as

�3 = β1

2
ln2[1 − ε1(φ1 − φ1)

2]q̇Ta q̇a (26)

where β1 is a nonnegative control gain, and ε1, φ1 are defined as

ε1 = 4

(φ1m − φ1M )2
, φ1 = φ1m + φ1M

2
(27)
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Next, a scalar function V3(t) is constructed based on Eqs. (20), (24), and (26) in the
following manner:

V3 = V1 + �2 + �3 ⇒ V̇3 = V̇1 + �̇2 + �̇3, (28)

where �̇2 and �̇3 are given by

�̇2 =
5∑

i=4

αiq̇Ta {sec[δi(qi − qi)
2]q̈a

+δi tan[δi(qi − qi)
2] · sec[δi(qi − qi)

2](qi − qi)q̇iq̇a}
(29)

�̇3 = β1q̇Ta {ln2[1 − ε1(φ1 − φ1)
2]q̈a − ln[1 − ε1(φ1 − φ1)

2] 2ε1(φ1 − φ1)φ̇1

1 − ε1(φ1 − φ1)
2
q̇a}
(30)

Following that, we obtain the following relationship based on Eqs. (21), (22), (28),
(29) and (30):

V̇3 = q̇Ta (Au + B + C + D) − kE q̇Tu�uq̇u (31)

where A, B, C, D are explicitly given by

A = (kE + kv)I3

+{
5∑

i=4

αi sec[δi(qi − qi)
2] + β1 · ln2[1 − ε1(φ1 − φ1)

2]}M−1
a ,

D = Wγ

(32)

C = −(kv + kE)�aq̇a

−{
5∑

i=4

αi sec[δi(qi − qi)
2] + β1 ln

2[1 − ε1(φ1 − φ1)
2]}M−1

a �aq̇a
(33)

B = −kv(Caq̇a + Cuq̇u + Ga) + 1

2
kvṀaq̇a

+{κp +
3∑

i=1

αi[ (qi − qiM )(qi − qim) − ei(2qi − qiM − qim)

(qi − qiM )3(qi − qim)3
]μiμ

T
i }ea

−
5∑

i=4

αi{sec[δi(qi − qi)
2]M−1

a (Caq̇a + Cuq̇u + Ga)

−δi tan[δi(qi − qi)
2] sec[δi(qi − qi)

2](qi − qi)q̇i · q̇a}
−β1{ln2[1 − ε1(φ1 − φ1)

2]M−1
a (Caq̇a + Ga + Cuq̇u)

+ ln[1 − ε1(φ1 − φ1)
2] 2ε1(φ1 − φ1)φ̇1

1 − ε1(φ1 − φ1)
2
q̇a}

(34)
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where W ∈ R
3×2, γ ∈ R

2 are defined as

W = kvM12M
−1
22 + {

5∑

i=4

αi sec[δi(qi − qi)
2]

+β1 ln
2[1 − ε1(φ1 − φ1)

2]}M−1
a M12M

−1
22

(35)

γ = [λ4q̇4 λ5q̇5 ]T = Q · θ (36)

where Q ∈ R
2×2, θ ∈ R

2 are given by

Q = diag{θ̇1, θ̇2} (37)

θ = [λ4 λ5]T (38)

Let Y (q, q̇) be defined as

Y (q, q̇) = W · Q (39)

Subsequently, D can be transformed into the following expression:

D = Y (q, q̇) · θ (40)

Utilizing these auxiliary terms, a new controller is formulated as follows:

u = A−1[−B − (q̇Tuκd1q̇u + qTuκd2qu)κd3q̇a − Y (q, q̇) · θ
∧

] (41)

the vector θ̂ ∈ R
2 represents the approximation for the unknown vector θ, and its update

law is as follows:
.

θ
∧

= �−1
θ Y (q, q̇)Tq̇a (42)

The matrix �θ ∈ R
2 represents a positive definite update gain diagonal matrix. The

parameters κd1, κd2, κd3, and κp are defined in Eq. (23). Moreover, the parameters αi
and β1 are selected as nonnegative values, while kE and kv are chosen from the set of
positive real numbers.

Due to space constraints, we will not elaborate on the stability proof in this article.



620 H. Guo et al.

4 Simulink Results

In this section, we conduct simulations using MATLAB/Simulink software to evalu-
ate the performance of the proposed method. Additionally, we select the Proportional-
Derivative (PD) method as a comparative approach and present corresponding experi-
mental results for further validation. In this set of experiments, both the proposed con-
troller and a PD controller are employed to accomplish the task of transporting the cargo
from its initial position to the desired target location.

The simulation platform is set up with the following system parameters:
m = 1kg,M = 7kg,J = 6.8kg · m, g = 9.8m/s2.
The initial/final conditions are set as φ(0) = 0deg, x(0) = 0m, l(0) = 1.5m,

φd = 30 deg, xd = 0.5m, and ald = 0.9m

Figures 2–3 show the simulation results of the jib slew angle φ, trolley translation
displacement x, cable length l, payload swing angles θ1, θ2 and control torque/forces
Fφ, Fx, Fl.

4.1 Simulink Group1

In this group, to effectively demonstrate the control performance of the designed con-
trol strategy, we include a comparative analysis with the well-established Proportional-
Derivative (PD) control method. The PD controller can be written as

Fφ = −kpφeφ − kdφφ̇ + Ff φ − kφ(θ̇21 + θ̇22 )φ̇ (43)

Fx = −kpxex − kdxẋ + Ffx − kx(θ̇
2
1 + θ̇22 )ẋ (44)

Fl = −kplel − kdl i − mpg + dl l̇ − kl(θ̇
2
1 + θ̇22 )l̇ (45)

In this group, the control gains of the designed control method are tuned as

kpφ = 28, kdφ = 0.8, kpx = 24.8, kdx = 8, kpl = 15, kdl = 5,

kφ = 200, kx = 200, kl = 200.

Figure 2 displays the experimental results of the PD method: at 2 s, the cable length
and the angle of the jib slew reach the target positions, and the trolley almost precisely
reaches its target position. The swing angle θ1 ∈ (−2deg, 2deg) and stabilizes at 6 s.
The swing angle θ2 ∈ (−1.5deg, 1.5deg) and stabilizes at 11 s.
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Fig.2. The results of Simulink group1. (a) Bule line: jib slew angle, trolley translation displace-
ment, cable length, payload swing angles. (b) Red line: Control torque/forces. (Color figure
online)

4.2 Simulink Group2

In this group, the multi-variable constraint controller proposed in this paper is used for
simulation experiment test.

In addition to achieving the target position, this controller also satisfies the variable
constraints:

φ ∈ (−1deg, 36deg), x ∈ (−0.01m, 0.51m), θ1 ∈ (−4deg, 4deg),

θ2 ∈ (−2deg, 2deg), l ∈ (0.8m, 2m).

The simulation platform is set up with the following system parameters:

kE = 7, kv = 1, kp = diag{120, 150, 120}, kd1 = diag{3, 7}, kd2 = diag{7, 3},
kd3 = diag{103, 94, 85}, α1 = α2 = α3 = α4 = 0.01, β = 0.01,�θ = diag{7, 10}.
Figure 3 displays the experimental outcomes of the proposed method in this study:

at 2 s, the cable length reaches the target length. The trolley and the angle of the jib slew
almost satisfy the target requirements. The swing angle θ1 ∈ (−1deg, 1deg) and begins
to stabilize at 5 s. The swing angle θ2 ∈ (−0.5deg, 0.5deg) eventually stabilizing at 11 s.
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Fig. 3. The results of Simulink group2. (a) Bule line: jib slew angle, trolley translation dis-
placement, cable length, payload swing angles. (b) Red line: Control torque/forces. (Color figure
online)

By comparing Figs. 2 and 3, it is evident that both the jib angle, trolley translation and
cable length rapidly and accurately reach their respective desired values. The positioning
errors of the jib and trolley are almost negligible. Additionally, the proposed controller
effectively suppresses the load swing, resulting in minimal residual oscillation. Both
the proposed controller and the PD controller achieve the control objectives effectively.
However, the proposed method incorporates constraint variables to prevent the system
fromexceeding safety limits,which sets it apart from the PDcontroller. It is also observed
that the PD controller achieves faster target positioning, but the proposedmethod exhibits
satisfactory positioning speed as well. Furthermore, the PD method induces larger load
swing compared to the proposed method. The swing range in the proposed method is
only half that of the PD controller, although it requires slightly more time to reach the
balance position. The experimental results demonstrate that the proposed control method
excels in precise positioning and effective swing suppression.

5 Conclusion

This paper primarily focuses on the constrained actuated variables, underactuated vari-
ables, and compound variables in a 5-DOF tower crane. To tackle this issue, we propose
a novel controller that incorporates relevant auxiliary terms and constructs a new Lya-
punov function to satisfy various variable constraints. The effectiveness of the proposed
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controller is validated through comparative experiments with a traditional PD controller.
The experimental results demonstrate the robustness and performance of our method,
achieving the goals of precise cargo positioning and effective swing suppression. More-
over, the proposed controller exhibits stable and smooth control outputs for the system
states, providing a practical solution for tower cranes with varying cable lengths, and
the experimental results further confirm its superiority.
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