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Abstract. As a typical underdrive system, an overhead crane has been widely
used in modern industrial production and transportation. However, when the load
volume in the crane system is too large or the hook quality is too large, the bridge
crane system will show the characteristics of double-pendulum, increasing the
difficulty of control. Based on this, this paper proposes a time-optimal trajectory
planning method for the double-pendulum bridge crane system, which can be
obtained. Specifically, the paper first transforms the system kinematics model;
based on this basis Then, considering the various constraints including the two-
level swing angle and the trolley speed and acceleration limit, the optimization
problem is transformed into a nonlinear programming problem which is easier to
solve, and the trajectory constraints can be considered very conveniently in the
conversion process. Solving the nonlinear programming problem yields the time-
optimal trolley trajectory. Finally, the simulation results show that the time-optimal
trajectory planning method has satisfactory control performance.

Keywords: Double Pendulum Crane · Trajectory Planning · Chebyshev
Pseudo-Spectrum Method

1 Introduction

In the industrial production process, in order to transport the load to the desired position,
various crane systems, including bridge crane, cantilever crane, tower crane, Marine
crane and Marine crane, have been widely used. In order to simplify the mechanical
structure of the crane system, the load is not often directly controlled, but indirectly
drags the load to the target position through the movement of the trolley. As a result of
this structure, the control input dimension of the crane system is smaller than the degree
of freedom dimension to be controlled. The system with this feature is the so-called
underdrive system [1]. Due to the removal of some drivers of the system, increasing the
system freedom and improving the system flexibility, the underdrive system is superior
to the full drive system in terms of energy saving, price reduction, and enhanced system
adaptability. However, external disturbance, crane start and stop, speed change and so
on will make the load swing, which will not only reduce the transport efficiency of the
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crane, but also bring huge safety risks. Therefore, the automatic control method of crane
system has practical significance and wide application value, which has received the
attention of scholars.

In recent years, domestic and foreign scholars have put forward many control meth-
ods for the control problem of bridge crane system. In order to simplify the control
algorithm design of bridge crane system, a control method based on partial feedback
linearization is proposed [2, 3]. Fang et al. proposed a new two-step design strategy,
namely motion planning stage and adaptive tracking control stage to control such an
underactuated system as an overhead crane [4]. Peng et al. investigated the impact of
uncertainty on the crane movement in the stage of trajectory planning, proposed an
uncertain method based on interval model [5]. In literature [6], Singhose et al. used
the idea of input shaping to control the crane system, which could effectively suppress
the load residual swing. In [7], Fang et al. design a series of energy-based controllers
to regulate the trolley to a desired position while reducing the pendulation of the pay-
load at the same time. Chen et al. present a time optimal trajectory planning scheme
for double pendulum crane systems, which can yield a global time-optimal swing-free
trajectory [8]. Sun et al. proposed an optimal trajectory planning method for double
pendulum crane based on differential flatness theory, considering a series of constraints
such as system swing angle constraints and trolley speed constraints [9]. In [10], Sun
et al. proposes a trajectory planning method based on phase plane analysis, which can
better suppress load swing and eliminate residual swing. Vaughan et al. proposed a tra-
jectory planning method based on phase plane analysis, which can better suppress load
swing and eliminate residual swing [11]. Guo et al. designed an energy-based control
method by analyzing the passivity of the crane system [12]. In [13], a linear slidingmode
control method was proposed based on the complex dynamic model of double pendu-
lum overhead crane system, which can effectively weaken the system chattering. Zhang
et al. proposed a trajectory planning strategy for double pendulum bridge crane based
on swing angle constraint [14]. Wang et al. integrated the smooth shaping technology
and active disturbance rejection control as an anti-swing control method for double-
pendulum crane, which can solve the problem of long anti-swing time, low positioning
accuracy and poor anti-disturbance ability of double-pendulum overhead crane without
payload swing angle sensor [15]. Aiming at the problem that the load swing of double
pendulum crane is difficult to be measured directly in the actual production process,
Xiao et al. proposed a sliding mode control method of double pendulum crane based
on load swing state estimation is proposed [16]. Kang et al. proposed a control strategy
combining adaptive neural network and packet fuzzy control based on double pendulum
bridge crane system to solve the control problem of underdriven nonlinear system [17].
In [5], Peng et al. proposed an uncertainty research method based on interval model to
Reduce the influence of uncertainty on crane movement. Although the above control
strategies can realize the control of the double-swing crane system, they are difficult to
ensure the maximum operation efficiency of the crane system.
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In order to improve the transport efficiency of the double pendulum crane system, a
global time optimal trajectory planningmethod is proposed,which can realize the control
objectives of accurate positioning of the trolley and rapid load elimination at the same
time. Different from the existing methods, the proposed method can obtain the global
time optimal trolley trajectory. Specifically, the kinematic model of the crane system is
transformed first, and an acceleration-driven system model is obtained. Then, by using
this model, considering various physical and safety constraints in the crane system, a
function to be optimized with transport time as the optimization objective is constructed.
In order to facilitate the solution of the optimization problem, Chebyshev pseudo-
spectrum method is used to discretization and approximation the obtained optimiza-
tion problem and corresponding constraints at Chebyshev-Gauss-Lobatto (CGL) points.
Finally, the effectiveness of the proposed method is verified by numerical simulation.

2 Problem Statement

The crane model with double pendulum effect is shown in Fig. 1, whose dynamic
characteristics is illustrate as follows:

(m1 + m2)l2 cos θ1ẍ + (m1 + m2)l21 θ̈1+
m2l1l2 cos(θ1 − θ2)θ̈2 + m2l1l2 sin(θ1 − θ2)θ̇

2
2+

(m1 + m2)gl1 sin θ1 = 0
(1)

m2l2 cos θ2ẍ + m2l1l2 cos(θ1 − θ2)θ̈1+
m2l22 θ̈2 − m2l1l2θ̇21 sin(θ1 − θ2)+
m2gl2 sin θ2 = 0

(2)

where m, m1, m2 denote the masses of the the trolle, the hook and the load, respectively,
l1 denote the length of the rope, l2 represent the equivalent rope length, which denote
the distance between the load centroid and the centroid of the hook. x(t) represent the
trolley movement, θ1(t), θ2(t) describe the angles of the two pendulums, g is the gravity
acceleration constant.

Fig. 1. Schematic illustration for the crane model with double-pendulum effects.
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Divide (1) and (2) by (m1 + m2) l1 and m2l2, respectively, we can obtain:

cos θ1ẍ + l1θ̈1 + m2l2
m1+m2

cos(θ1 − θ2)θ̈2 +
m2l2

m1+m2
sin(θ1 − θ2)θ̇

2
2 + g sin θ1 = 0

(3)

cos θ2ẍ + l1 cos(θ1 − θ2)θ̈1 + l1θ̈2−
l1θ̇21 sin(θ1 − θ2) + g sin θ2 = 0

(4)

Equations (3) and (4) describe the coupling relationship between vehicle position
shift x(t) and the two stage swing angles θ1(t) and θ2(t) of the system, that is, the
influence of trolley motion on load swing. This method is based on the analysis of the
coupling relationship and the planning of a trolley trajectory with the ability to reduce
the pendulum.

Considering the safety, efficiency and physical constraints of the actual crane system,
this paper will plan a trolley trajectory with analytical expression for the underactuated
crane systemwith double pendulum effect. The specific control objectives to be achieved
are as follows [9]:

1) To reach the target position quickly and accurately, the trolley ought to get the
destination xf at time t = T from its initial position x0 at time t = 0, while velocity and
acceleration signals ought to be zero. Then we have

x(0) = ẋ(0) = ẍ(0) (5)

x(T ) = xf , ẋ(T ) = ẍ(T ) = 0 (6)

where, T represents the time required for the transportation process and the initial
position x0 = 0.

2) In the entire control task, the trolley velocity and acceleration should be kept in
suitable ranges, in sense that

|ẋ(t)| ≤ vmax, |ẍ(t)| ≤ amax (7)

where, vmax, amax represent the permitted trolley velocity and acceleration, respectively.
3) In order to ensure that the load can be processed directly at the end of the task,

when the trolley reaches the target position, there should be no residual swing and the
angular velocity is zero, that is

θ1(0)= θ̇1(0)= 0, θ1(T ) = θ̇1(T )= 0 (8)

θ2(0) = θ̇2(0)= 0, θ2(T ) = θ̇2(T ) = 0 (9)
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4) To avoid the collision caused by the violent swing of the load, the swing angle
and angular velocity of the two stage swing should be kept in suitable ranges during the
transport process, that is

|θ1(t)| ≤ θ1max, |θ2(t)| ≤ θ2max (10)

∣
∣θ̇1(t)

∣
∣ ≤ ω1max,

∣
∣θ̇2(t)

∣
∣ ≤ ω2max (11)

where, θ1max, θ2max, ω1max, ω2max represent the permitted payload swing angle and
angular velocity amplitudes, respectively.

In summary, the following optimization problems can be constructed:

min T
s.t. x(0) = ẋ(0) = ẍ(0) = 0

x(T ) = xf , ẋ(T ) = ẍ(T ) = 0
|ẋ(t)| ≤ νmax, |ẍ(t)| ≤ amax

θ1(0) = θ̇1(0) = 0, θ1(T ) = θ̇1(T ) = 0,
θ2(0) = θ̇2(0) = 0, θ2(T ) = θ̇2(T ) = 0,
|θ1(t)| ≤ θ1max, |θ2(t)| ≤ θ2max∣
∣θ̇1(t)

∣
∣ ≤ ω1max,

∣
∣θ̇2(t)

∣
∣ ≤ ω2max

(12)

Next, we propose a pseudo-spectral method to solve the optimization problem, and
a time optimal trajectory is planned for the trolley.

3 Trajectory Planning

In this section, a time-optimal trajectory planning strategy based on pseudo-spectrum
method is proposed, and the trajectory of the trolley is obtained by solving (12). Specif-
ically, the kinematic model of the crane system is transformed into an acceleration
driving model, in which the acceleration of the crane can be regarded as the system
input. Then, based on the acceleration driving model, the original optimization problem
can be rewritten into a new form. Then the constrained optimization problem is trans-
formed into a series of nonlinear programming problems by using Chebyshev pseudo-
spectrummethod. Finally, by solving the nonlinear optimization problem, we can obtain
the time-optimal trolley trajectory.
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3.1 Transformation of System Models

In order to facilitate subsequent trajectory planning, the double-pendulum crane system
model and optimization problem (12) is transformed here. For this purpose, the system
full state vector ζ (t) is defined as follows:

ζ = [

x ẋ θ1 θ̇1 θ2 θ̇2
]T

(13)

According to the kinematics model (3) and (4) of the system, the acceleration of the
vehicle can be taken as the input of the system. At this point, the kinematic model can
be transformed into the following form [8]:

ζ̇ = f (ζ )+ h(ζ )u (14)

where, u(t) is the acceleration of the trolley ẍ(t), f (ζ ), h(ζ ) represents the auxiliary
function with respect to ζ (t), in the following form:

f (ζ ) = [

ẋ 0 θ̇1 A θ̇2 B
]T

(15)

h(ζ ) = [

0 1 0 C 0 D
]T

(16)

For the convenience of description, auxiliary variables A, B, C, D are defined as follows:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A = − m2C1−2

l1(m1+m2)−m2l1C2
1−2

[

l1S1−2θ̇
2
1 + m2l2

m1+m2
S1−2C1−2θ̇

2
2

−g(S2 − S1C1−2)
] − 1

l1
gS1 − m2l2

l1(m1+m2)
S1−2θ̇

2
2

B = m1+m2
l2(m1+m2)−m2l2C2

1−2

[
m2l2

m1+m2
S1−2 × C1−2θ̇

2
2 + l1S1−2θ̇

2
1

−g(S2 − S1C1−2)
]

C = m2C1−2

l1(m1+m2)−m2l1C2
1−2

(C2 − C1C1−2) − 1
l1
C1

D = − m1+m2
l2(m1+m2)−m2l2C2

1−2
(C2 − C1C1−2)

(17)

In formula, the following simplified form is used:

S1 = sin θ1, S2 = sin θ2, C1 = cos θ1, C2 = cos θ2

S1−2 = sin(θ1 − θ2), C1−2 = cos(θ1 − θ2)

Using the resulting acceleration driven system model (14), the original optimization
problem (12) can be transformed into the following form:

min T (18a)

s.t. ζ̇ = f (ζ )+ h(ζ )u (18b)

ζ (0)= [

0 0 0 0 0 0
]T

(18c)
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ζ (T ) = [

xf 0 0 0 0 0
]T

(18d)

|ẋ(t)| ≤ vmax, |u̇(t)| ≤ amax (18e)

|θ1(t)| ≤ θ1max, |θ2(t)| ≤ θ2max (18f)

∣
∣θ̇1(t)

∣
∣ ≤ ω1max,

∣
∣θ̇2(t)

∣
∣ ≤ ω2max (18g)

By solving this optimization problem, the optimal time T ∗ required to complete the
control objective and the corresponding optimal trolley trajectory can be obtained.

3.2 Trajectory Planning Based on Chebyshev Pseudo-spectrum Method

In order to obtain the time-optimal vehicle trajectory, the key is how to solve the con-
strained optimization problem. In this paper, the Chebyshev pseudo-spectrum method
is used to deal with the optimization problem, and the time optimal solution and the
optimal trajectory can be obtained conveniently. Different from most existing methods,
this method can analyze and process the original system more directly, and can obtain
the global time optimal solution.

In order to adapt to the requirements of the Chebyshev pseudo-spectrummethod, it is
necessary to use coordinate transformation to transform the time interval corresponding
to the trajectory from t ∈ [0,T ] to the interval τ ∈ [−1, 1], that is

τ = 2t

T
− 1 (19)

In Chebyshev pseudo-spectrum method, the selection of interpolation points (i.e.
CGL points) is

τi = cos((N − k)π/N ), i = 0, · · · ,N (20)

These nodes all fall on the interval [−1, 1] and satisfy τ0 = −1, τN = 1. In particular,
they are the extreme value of the N degree Chebyshev polynomial TN (t), and the jth
Chebyshev polynomial is

Tj(t) = cos
(

j cos−1 t
)

, j = 0, · · · ,N (21)
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Then, the system state quantity and input quantity to be planned can be discretely
expressed in the following form:

ζ (τ0), ζ (τ1), ζ (τ2), · · · , ζ (τN )

u(τ0), u(τ1), u(τ2), · · · , u(τN )

Using these nodes, the Lagrange interpolation polynomial is constructed as follows:

φj(τ ) = (−1)j+1(1 − τ 2
)

ṪN (τ )

N 2cj
(

τ − τj
) (22)

where

cj =
{

2, j = 0,N
1, 1 ≤ j ≤ N − 1

Using Eq. (22) and the values of the system state quantity and input quantity at
CGL point, the system state quantity trajectory and input quantity trajectory can be
approximated in the following way:

ζ (τ ) ≈
N

∑

j=0

ζ
(

τj
)

φj(τ ), u(τ ) ≈
N

∑

j=0

u
(

τj
)

φj(τ ) (23)

where ζ
(

τj
)

, u
(

τj
)

represent the system state quantity and input quantity at τ = τj,
respectively. Take the derivative of Eq. (23), and use the specific form of the interpolation
function in Eq. (22) to calculate and simplify, and the derivative of the trajectory of the
state quantity can be obtained as follows:

ζ̇ (τi) =
N

∑

j=0

ζ
(

τj
)

φ̇j(τi) =
N

∑

j=0

ζ
(

τj
)

Dji(τi) (24)

where, ζ̇ (τi) represents the derivative of the state locus at τ = τi. Dji(τi) represents the
derivative of φj at τ = τi, in the following form:

Dji =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ci(−1)i+j

cj(τi−τj)
, i �= j

− τi
2
(

1−τ 2i

) , 1 ≤ i = j ≤ N − 1

2N 2+1
6 , i = j = 0

− 2N 2+1
6 , i = j = N

(25)
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By using (24), (25) and the trajectory values at CGL points, the differential equation
constraint (18b) in optimization problem (18) can be discretized and approximated. The
specific results are as follows:

N
∑

i=0

ζ (τi)Dji − T

2

[

f (ζ (τi)) + h((ζ (τi)))u(τi)
] = 0 (26)

Next, the boundary condition constraints in the optimization problem also need to be
transformed into algebraic constraints, where the formula (18c) can be directly rewritten
as follows:

ζ (τ0)= [

0 0 0 0 0 0
]T

(27)

For the end time, using the Clenshaw-Curtis integral, (18d) can be expressed as:

ζ (τN ) = ζ (τ0) + T

2

N
∑

i=1

ωi
[

f (ζ (τi)) + h((ζ (τi)))u(τi)
]

(28)

where, ωi is Clenshaw-Curtis weight. When N is even
⎧

⎪⎨

⎪⎩

ω0 = ωN = 1
N 2−1

ωs = ωN−s = 4
N

N/2∑

k=0

1
1−4k2

cos 2πks
N , s= 1, 2, · · · , N

2

(29)

When N is odd
⎧

⎪⎨

⎪⎩

ω0 = ωN = 1
N 2

ωs = ωN−s = 4
N

N−1
2∑

k=0

1
1−4k2

cos 2πks
N , s= 1, 2, · · · , N−1

2

(30)

To sum up, all constraints in the optimization problem can be expressed in the
form of algebraic constraints. Based on this, the original optimization problem can
be transformed into a nonlinear programming problem with algebraic constraints, as
follows:

min T
s.t.
N∑

i=0
ζ (τi)Dji − T

2

[

f (ζ (τi)) + h((ζ (τi)))u(τi)
] = 0

ς(τ0) = [

0 0 0 0 0 0
]T

ζ (τ0) + T
2

N∑

i=1
ωi

[

f (ζ (τi)) + h((ζ (τi)))u(τi)
] =

[

xf 0 0 0 0 0
]T

ζ (τ ) − γ ≤ 0, − ζ (τ ) − γ ≤ 0
u(τ ) − amax ≤ 0, − u(τ ) − amax ≤ 0

(31)
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where, the vector γ has the following form:

γ = [∞ vmax θ1max ω1max θ2max ω2max
]T

For the above constrained nonlinear programming problem, this paper chooses Sequen-
tial quadratic programming (SQP) to solve it, and the following time-optimal state vector
sequence can be obtained:

ζ (τ0), ζ (τ1), ζ (τ2), · · · , ζ (τN )

The above formula is the optimal sequence of time discrete state vectors. By taking
the first two terms of each vector (trolley displacement and trolley velocity) and interpo-
lating them, the corresponding time-optimal trolley displacement and velocity trajectory
can be obtained.

4 Simulation Results

In this section, to verify the effectiveness of the designed trajectory planning method,
we use MATLAB to conduct some simulations. The used parameters are set as

M = 6.5 kg, m1 = 2.0 kg, m2 = 0.5 kg

g = 9.8 kg, l1 = 0.5m, l2 = 0.4m

The target position of the trolley is selected as xf = 0.6m, and the trajectory
constraints are selected as follows:

θ1max = θ2max = 2 deg, vmax = 0.3 m/s

ω1max = ω2max = 5 deg, amax = 15 m/s2

The simulation results are shown in Fig. 2 and 3. As can be seen fromFig. 2, when the
trolleymoves according to the planned trajectory, it only takes T*= 5.9895 s to complete
the given transport task, and the trolley can accurately reach the target position. In the
whole process, the speed of the vehicle does not exceed the given limit vmax = 0.3m/s.
At the same time, it can be seen from Fig. 3 that the maximum swing angle of both
the first and the second order swing angles does not exceed the given value of 2°, and
there is no residual swing at the end of transportation. This also ensures the safety of the
load during transport. Similarly, the angular velocity corresponding to the two stages
of oscillation is also kept within the given range. Then we increased the load weight
and rope length, and the simulation results are shown in Fig. 4. As can be seen from
Fig. 4, when the load weight and rope length increase, the swing angle is still within the
restricted range. In summary, the simulation results verify the efficiency and safety of
the proposed optimal trajectory planning method.
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Fig. 2. Simulation results of trolley position and velocity

Fig. 3. Simulation results of first and second order swing angles and angular velocities
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Fig. 4. Simulation results after increasing load weight and rope length

5 Conclusion

In this paper, a time-optimal trajectory planning strategy based on Chebyshev pseudo-
spectrum method is proposed for the overhead crane with double pendulum effect.
Specifically, firstly, the kinematic model of the crane system is transformed into an
acceleration driving model, and based on this model, a constrained optimization prob-
lem is constructed considering various constraints. Then, the optimization problem is
processed by Chebyshev pseudo-spectrum method and transformed into nonlinear pro-
gramming problem which is more convenient to solve. On this basis, the time optimal
vehicle trajectory can be obtained. The trajectory planningmethod proposed in this paper
not only considers the object of the pendulum, but also can deal with the actual physical
constraints such as the pendulum angle constraint, the angular velocity constraint, the
trolley velocity constraint and the acceleration constraint. Different from the existing
methods, the proposed method can obtain the global time optimal trolley trajectory.
Finally, the effectiveness of the proposed method is verified by numerical simulation.
In future work, the angular acceleration constraint will be considered in the trajectory
planning process to obtain better control effect.
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