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Abstract. In this paper, we use a cantilevered double parallel slender structure
single deformation piezoelectric energy harvester as a model and combine it with
the Lamb-Oseen vortex model, where the effect from fluid vortices is used as an
external load, and a metal sheet is attached to the free end of the energy harvester
for capturing the shear force generated by wind-generated vortices on the double
beams model. The closed-form solution of the bending forced vibration of the
piezoelectric energy harvester is solved by establishing the relevant model and
deriving the equations. Euler- Bernoulli beam assumptions are used to develop
a coupled electromechanical model for the harvester with an intermediate spring
layer and a transverse damping is considered, and Green’s functions and Laplace
transform techniques are used to solve the vibration equations for the coupled
piezoelectric vibration system. By solving for the voltage as a function of Green’s
functions and using Matlab software, we can obtain the functional relationship
between the voltage of the harvester and the elastic coefficient of the interlayer
and the position of the metal plate setting.

Keywords: Piezoelectric energy harvester · Euler- Bernoulli beam model ·
Green’s function · Laplace transform · Vortex-induced vibration

1 Modeling of Piezoelectric Energy Harvester with Cantilevered
Double Straight Beams

1.1 Mechanical Equilibrium Control Equations with Electrically Coupled Effects

This paper investigates a cantilevered double-beam single-deformation piezoelectric
energy harvester, which is subjected to external irregularly distributed loads P1,P2. As
shown in Fig. 1, the energy harvester is based on a homogeneous Eulerian beam model,
which consists of a combination of an upper piezoelectric layer and a lower structural
layer of the beam system, and the length of the piezoelectric beams are assumed to be L.
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Fig. 1. Cantilevered double beams single deformation piezoelectric energy harvester

Fig. 2. Cross-section of piezoelectric energy harvester

Figure 2 showsa cross-sectionof a single-deformationpiezoelectric energyharvester,
where: bs is the width of the beam structural layer; bp is the width of the piezoelectric
layer; hs is the width of the beam structural layer; hp is the thickness of the piezoelectric
layer; ha is the distance from the neutral axis (NA) to the lowermost surface of the
beam structural layer; hb is the distance from the neutral axis (NA) to the bottom of the
piezoelectric layer, and hc is the distance from the neutral axis (NA) to the top surface
of the piezoelectric layer.

When we consider an air damping coefficient ca, the vibration control equations for
a double beams system can be written as [1–3]:

∂2M1(x, t)

x2
+ ca

∂wrel1(x, t)

∂t
+ m

∂2wrel1(x, t)

∂t2
+ K(w1 − w2) = P1 (1)

∂2M2(x, t)

x2
+ ca

∂wrel2(x, t)

∂t
+ m

∂2wrel2(x, t)

∂t2
+ K(w2 − w1) = P2 (2)

where ∂wrel(x, t) is the transverse deflection of the beam,M (x, t) is the internal bending
moment of the beam, ca is the viscous air damping coefficient, and m is the mass per
unit length of the beam.
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In order to obtain an expression for the internal bending moment M (x, t) of the
beams, we can utilize the intrinsic relationship between the piezoelectric layer and the
structural layer of the beams [4], and brought into the Eqs. (1)(2):

(EI)eff
∂4wrel1(x, t)

∂x4
+ ca

∂wrel1(x, t)

∂t
+ m

∂2wrel1(x, t)

∂t2
+ K(w1 − w2)

+ϑv1(t)

[
dδ(x − x1)

dx
− dδ(x − x2)

dx

]
= P1

(3)

(EI)eff
∂4wrel2(x, t)

∂x4
+ ca

∂wrel2(x, t)

∂t
+ m

∂2wrel2(x, t)

∂t2
+ K(w2 − w1)

+ϑv2(t)

[
dδ(x − x1)

dx
− dδ(x − x2)

dx

]
= P2

(4)

where: δ(x) is the Dirac function, (EI)eff is the bending stiffness of the composite
cross-section, ϑ is the coupling coefficient, they can be expressed as:

(EI)eff = Esbs(h3b − h3a) + Epbp(h3c − h3b)

3
(5)

ϑ = −Epbpd31
2hp

(h2c − h2b) (6)

1.2 Control Equations for Circuits with Mechanical Coupling Effects

Equations (3)(4) are the vibration control equations for the double beams system under
electrical coupling, we utilize the following piezoelectric intrinsic relations [4]:

Dy(x, t) = d31Epεxx(x, t) − εs33
v(t)

hp
(7)

where Dy(x, t) is the potential shift parallel to the beam thickness direction, εs33 is the
dielectric constant, and εxx(x, t) is the average bending strain.

The bending deformation of the structure will generate a potential shift in the piezo-
electric layer, which will be collected by the electrodes, and the charge can be obtained
by integrating the potential shift over the electrode region q(t).Since the current ii(t) is
related to the capacitance, the voltage across the resistor can be expressed as [4]:

vi(t) = Rliii(t) = −Rli

[∫ x2

x1
d31Ephpcbp

∂2wreli(x, t)

∂x2∂t
dx − εs33bp(x2 − x1)

hp

dvi(t)

dt

]
(8)
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2 Green’s Function Solutions for Piezoelectric Vibrations of Double
Straight Beams

2.1 Vibration and Piezoelectric Equations Solving

Assuming that the external transverse loads are time-harmonic loads, we can let the
deflections and voltages take a similar form to the following, separating the time
parameters from the displacements:

pi(x, t) = Pi(x)e
i�t,w(x, t) = W (x)ei�t, v(t) = Vei�t (9)

Substitution of Eq. (9) into Eqs. (3) (4) and (8):

W ′′′′
1 + a2W1 + a4W2 = b2P1(x) − b3V1[δ′(x − x1) − δ′(x − x2)] (10)

W ′′′′
2 + c2W2 + c4W1 = d2P2(x) − d3V2[δ′(x − x1) − δ′(x − x2)] (11)

i�CpRl + 1

Rl
Vi = −i�β

∫ x2

x1
W ′′

i (x)dx (12)

where:

a2 = i�ca − μ1�
2 + K

E1I1
, a4 = − K

E1I1
, b2 = 1

E1I1
, b3 = ϑ

E1I1

c2 = i�ca − μ2�
2 + K

E2I2
, c4 = − K

E2I2
, d2 = 1

E2I2
, d3 = ϑ

E2I2

(13)

For a linear system, the principle of superposition should be satisfied. Therefore, the
dynamic response of a double-beam system subjected to loads P1(x) and P2(x) is the
sum of the responses of the systems subjected to P1(x) and P2(x) respectively. This
shows that the solution of Eqs. (10) and (11) is the sum of the solutions of the following
four cases.

Case 1:

W ′′′′
1 + a2W1 + a4W2 = b2δ(x − x0) (14)

W ′′′′
2 + c2W2 + c4W1 = 0 (15)

where δ(·) is the Dirac delta function [5, 6] and x0 denotes the location where the unit
harmonic load acts. Laplace transformations of Eqs. (14), (15):

Q(s)W 1(s) = (s4 + c2)(s
3W1(0) + s2W ′

1(0) + sW ′′
1 (0) + W ′′′

1 (0) + b2e
−sx0)

−a4(s
3W2(0) + s2W ′

2(0) + sW ′′
2 (0) + W ′′′

2 (0))
(16)

Q(s)W 2(s) = (s4 + a2)(s
3W2(0) + s2W ′

2(0) + sW ′′
2 (0) + W ′′′

2 (0))

−c4(s
3W1(0) + s2W ′

1(0) + sW ′′
1 (0) + W ′′′

1 (0) + b2e
−sx0)

(17)
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Q(s) = (s4 + a2)(s
4 + c2) − a4c4 (18)

Divide Q(s) to the right end of the equations and perform an inverse transformation
of W 1(s) and W 2(s):

G11(x, x0) = H (x − x0)φ11(x − x0) + φ21(x)W1(0) + φ31(x)W
′
1(0) + φ41(x)W

′′
1 (0)

+φ51(x)W
′′′
1 (0) + φ61(x)W2(0) + φ71(x)W

′
2(0) + φ81(x)W

′′
2 (0) + φ91(x)W

′′′
2 (0)

(19)

G12(x, x0) = H (x − x0)φ12(x − x0) + φ22(x)W1(0) + φ32(x)W
′
1(0) + φ42(x)W

′′
1 (0)

+φ52(x)W
′′′
1 (0) + φ62(x)W2(0) + φ72(x)W

′
2(0) + φ82(x)W

′′
2 (0) + φ92(x)W

′′′
2 (0)

(20)

The expression of ϕ are displayed in Appendix A. Using the boundary conditions at
x = 0, The terms in the Green’s functions with a coefficient of 0 can be removed:

G11(x, x0) = H (x − x0)φ11(x − x0) + φ41(x)W
′′
1 (0)

+φ51(x)W
′′′
1 (0) + φ81(x)W

′′
2 (0) + φ91(x)W

′′′
2 (0)

(21)

G12(x, x0) = H (x − x0)φ12(x − x0) + φ42(x)W
′′
1 (0)

+φ52(x)W
′′′
1 (0) + φ82(x)W

′′
2 (0) + φ92(x)W

′′′
2 (0)

(22)

Using the boundary conditions at the end of x = L, we can derive the second and
third order derivatives of the above equations to obtain the following matrix equation:

⎡
⎢⎢⎣

φ′′
41(L) φ′′

51(L) φ′′
81(L) φ′′

91(L)

φ′′′
41(L) φ′′′

51(L) φ′′′
81(L) φ′′′

91(L)

φ′′
42(L) φ′′

52(L) φ′′
82(L) φ′′

92(L)

φ′′′
42(L) φ′′′

51(L) φ′′′
82(L) φ′′′

92(L)

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣
W1′′(0)
W ′′′

1 (0)
W ′′

2 (0)
W ′′′

2 (0)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−φ′′
11(L − x0)

−φ′′′
11(L − x0)

−φ′′
12(L − x0)

−φ′′′
12(L − x0)

⎤
⎥⎥⎦ (23)

Case 2:
The Green’s functions for case 2 can be obtained by solving the following equations:

W ′′′′
1 + a2W1 + a4W2 = 0 (24)

W ′′′′
2 + c2W2 + c4W1 = d2δ(x − x0) (25)

The solution process is similar to case 1, its Green’s functions are expressed as:

G21(x, x0) = H (x − x0)φ11(x − x0) + φ41(x)W
′′
1 (0)

+φ51(x)W
′′′
1 (0) + φ81(x)W

′′
2 (0) + φ91(x)W

′′′
2 (0)

(26)

G22(x, x0) = H (x − x0)φ12(x − x0) + φ42(x)W
′′
1 (0)

+φ52(x)W
′′′
1 (0) + φ82(x)W

′′
2 (0) + φ92(x)W

′′′
2 (0)

(27)

The expression of ϕ are displayed in Appendix A. According to the superposition
principle, the displacement solution can be expressed as:[

W11(x)

W21(x)

]
=

∫ L

0

[
G11(x; ξ)

G12(x; ξ)

]
P1(ξ) +

[
G21(x; ξ)

G22(x; ξ)

]
P2(ξ)dξ (28)
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Case 3:
The Green’s functions for case 3 can be obtained by solving the following equations:

W ′′′′
1 + a2W1 + a4W2 = b3V1δ

′(x − x0) (29)

W ′′′′
2 + c2W2 + c4W1 = 0 (30)

The Green’s functions can be solved in a similar way:

G31(x, x0) = V1H (x − x0)φ11(x − x0) + φ41(x)W
′′
1 (0)

+φ51(x)W
′′′
1 (0) + φ81(x)W

′′
2 (0) + φ91(x)W

′′′
2 (0)

(31)

G32(x, x0) = V1H (x − x0)φ12(x − x0) + φ42(x)W
′′
1 (0)

+φ52(x)W
′′′
1 (0) + φ82(x)W

′′
2 (0) + φ92(x)W

′′′
2 (0)

(32)

The expression of ϕ are displayed in Appendix A.
Case 4:
The Green’s functions for case 4 can be obtained by solving the following equations:

W ′′′′
1 + a2W1 + a4W2 = 0 (33)

W ′′′′
2 + c2W2 + c4W1 = d3V2δ

′(x − x0) (34)

The Green’s functions can be solved in a similar way:

G41(x, x0) = V2H (x − x0)φ̂11(x − x0) + φ41(x)W
′′
1 (0)

+φ51(x)W
′′′
1 (0) + φ81(x)W

′′
2 (0) + φ91(x)W

′′′
2 (0)

(35)

G42(x, x0) = V2H (x − x0)φ̂12(x − x0) + φ42(x)W
′′
1 (0)

+φ52(x)W
′′′
1 (0) + φ82(x)W

′′
2 (0) + φ92(x)W

′′′
2 (0)

(36)

The expressions of ϕ̂ are displayed in Appendix A. According to the superposition
principle, the displacements W12 and W22 can be expressed by the Green’s functions
G31, G32, G41, G42 and can be expressed as the following volume integrals.

[
W12(x)

W22(x)

]
=

∫ L

0

[
G31(x; ξ)

G32(x; ξ)

]
[δ(ξ − x2) − δ(ξ − x1)]

+
[
G41(x; ξ)

G42(x; ξ)

]
[δ(ξ − x2) − δ(ξ − x1)]dξ

(37)
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2.2 Decoupling of Electromechanical Eulerian Double Beams Systems

According to the principle of superposition of linear systems, the steady state displace-
ment W1 can be divided into W11,W12 two parts; similarly W2 can be divided into
W21,W22 two parts. So, the expressions for W1 and W2 are:

W1 = W11 + W12 =
∫ L

0
G11(x; ξ)P1(ξ) + G21(x; ξ)P2(ξ)dξ

+
∫ L

0
G31(x; ξ)[δ(ξ − x2) − δ(ξ − x1)] + G41(x; ξ)[δ(ξ − x2) − δ(ξ − x1)]dξ

(38)

W2 = W21 + W22 =
∫ L

0
G12(x; ξ)P1(ξ) + G22(x; ξ)P2(ξ)dξ

+
∫ L

0
G32(x; ξ)[δ(ξ − x2) − δ(ξ − x1)] + G42(x; ξ)[δ(ξ − x2) − δ(ξ − x1)]dξ

(39)

Substituting Eqs. (38) (39) into Eq. (8) yields a functional relationship between the
voltage and the Green’s functions for the four cases:

m1V1 = m2 + m3V2

n1V2 = n2 + n3V1
(40)

m1 =
(
i�CpRl + 1

Rl

)
+ i�β

x2∫
x1

G
′′
31(x; x2) − G

′′
31(x; x1)dx

m2 = −i�β

x2∫
x1

[∫ L

0
G11(x; ξ)P1(ξ) + G21(x; ξ)P2(ξ)dξ

]′′
dx

m3 = −i�β

x2∫
x1

G
′′
41(x; x2) − G

′′
41(x; x1)dx

n1 =
(
i�CpRl + 1

Rl

)
+ i�β

x2∫
x1

G
′′
42(x; x2) − G

′′
42(x; x1)dx

n2 = −i�β

x2∫
x1

[∫ L

0
G12(x; ξ)P1(ξ) + G22(x; ξ)P2(ξ)dξ

]′′
dx

n3 = −i�β

x2∫
x1

G
′′
32(x; x2) − G

′′
32(x; x1)dx

(41)

The expressions for voltage we can easily derive from the algebraic Eq. (40) through
the linear expressions for voltage V1 and voltage V2:

V1 = m2n1 + m3n2
m1n1 − m3n3

,V2 = m1n2 + m2n3
m1n1 − m3n3

(42)



202 X. Zhao and H. Jiang

3 Eddy-Current Induced Vibration of Piezoelectric Energy
Harvester

Fig. 3. Schematic diagram of a piezoelectric energy harvester subjected to vortex shedding
aerodynamic loads

As shown in Fig. 3, vortex shedding will generate aerodynamic loads. The Lamb-
Oseen vortex model [7], which is used in this system, produces a vertical load that can
be expressed as [8]:

Fv = −1

2
Wf ρa

∫ Lf

0
(vc�r − �2r2

4
)dx (43)

where ρa is the air density;Wf and Lf are the width and length of the sheet, respectively;
D is the diameter of the solid cylinder, which is an immovable obstacle; U0 is the mean
fluid velocity; r = ((x− xc)2 + y2c )

0.5 is the distance from the point A(x, 0) on the sheet
to the center C(xc, yc) of the vortex, where (xc, yc) is the position and vc is the velocity
of the center of the vortex; and the vortex strength � is:

� = (0/4πvet)exp(−r20/4vet) (44)

where 0 = (U0D)/2St is the initial velocity cycle, St is the Strouhal number related to
the Reynolds number, r0 is the radius of the rigid vortex core [8], ve is the equivalent
dissipation factor of the vortex, t = dr/U0, dr is the relative distance between the vortex
center and the plate. In this study, the Reynolds number of St = 0.21 ranges from 103

to 105, corresponds to a flow rate of 0.05 to 5 m/s. In addition, U0 can be expressed by
the velocity vc [8].

When the vortex center is located at yc = 1.3 × D
/
2, the vortex coming off the

cylinder is stable. When the vortex moves to the middle of the thin lobe, the equivalent
harmonic force Fv reaches its maximum value, i.e. xc = Lf

/
2, dr = d . Therefore, the

expression of Fmax [8]:

Fmax = −1

2
Wf ρa

∫ Lf

0
{�vc

√
(x − Lf

2
)2 + (

1.3D

2
)2 − �2

4
[(x − Lf

2
)2 + (

1.3D

2
)2]}dx

(45)
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Substituting into Eq. (42) gives the expression for the voltage:

V1 = −
i�β

x2∫
x1

[
G′′
11(x;L)λFmax + G′′

21(x;L)(1 − λ)Fmax
]
dx × n1

m1n1 − m3n3

−
m3 × i�β

x2∫
x1

[
G′′
12(x;L)λFmax + G′′

22(x;L)(1 − λ)Fmax
]
dx

m1n1 − m3n3

(46)

V2 = −
m1 × i�β

x2∫
x1

[
G′′
12(x;L)λFmax + G′′

22(x;L)(1 − λ)Fmax
]
dx

m1n1 − m3n3

−
i�β

x2∫
x1

[
G′′
11(x;L)λFmax + G′′

21(x;L)(1 − λ)Fmax
]
dx × n3

m1n1 − m3n3

(47)

V = V1 + V2 (48)

4 Numerical Analysis

Through the computational derivation of the theory, we can get the expression of the
voltage generated by the base model under vortex-induced vibration. In the following,
we will explore the effects of different external excitation distributions and elasticity
coefficients of springs on the voltage by setting up two sub-models without changing
the boundary conditions and Green’s functions, respectively.

4.1 Effect of External Excitation Distribution on Voltage

Since the position of the metal sheet in this model can be moved up and down, thus the
magnitude of the external excitation force received by the two beams in the vibration
model of the cantilevered double beams system can be changed, as shown in Fig. 4.
We modeled the data by Matlab software, and after numerical analysis, we can get the
magnitude of the voltage collected by the piezoelectric trap in different cases. As shown
in Figs. 5, 6, 7.

In this model λ is the external excitation distribution coefficient. Therefore the
external excitation forces on the two beams are Fv1 = λFv and Fv2 = (1 − λ)Fv

respectively.
Figures 5 and 6 show us the relationship between the voltage of the piezoelectric

energy harvester and the frequency of the external excitation force, respectively. Since the
physical properties of the two beams are set up the sameway, the two beams produce peak
voltages at the same frequency of the external excitation force, which is 3388 Hz as well
as 9317 Hz. When we change the Lambda (i.e., we change the magnitude of the external
excitation force applied to the two beams), the performance of the piezoelectric energy
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Fig. 4. Schematic diagram of piezoelectric energy harvester subjected to vortex shedding
aerodynamic loads (without considering the spring layer)

Fig. 5. Variation of V1 with aerodynamic load excitation frequency for different lambda

Fig. 6. Variation of V2 with aerodynamic load excitation frequency for different lambda
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Fig. 7. Variation of piezoelectric energy harvester Voltage with Lambda when � = 2661

harvester’s power generation changed, but it did not affect the frequency magnitude of
the external excitation force corresponding to the peak voltage.

FromFig. 7, it can be seen that the voltage of the piezoelectric energy harvester varies
linearly with the magnitude of the external excitation force for a certain frequency of
the external excitation force, and the sum of the voltages generated by the two beams is
a constant value.

4.2 Influence of the Elasticity Coefficient of the Middle Layer on the Voltage
of a Piezoelectric Energy Harvester

In this model, as shown in Fig. 8. The two piezoelectric energy harvesters have a spring
layer with an elasticity coefficient of K between them. An external excitation force of
magnitude both 0.5Fv is transmitted to the piezoelectric energy harvesters by setting two
identical metal sheets mounted on the cantilever end of each of the two beams. Thus,
the relationship between the elasticity coefficient of the middle layer and the voltage of
the piezoelectric energy harvester is explored, as shown in Fig. 9.

Fig. 8. Schematic of a piezoelectric energy harvester with an intermediate layer subject to vortex
shedding aerodynamic loading
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Fig. 9. Variation of piezoelectric energy harvester voltage with elasticity coefficient of the middle
layer, � = 2661.

Figure 9 shows the change rule of piezoelectric energy harvester voltage with the
elasticity coefficient of the intermediate layer K when � = 2661. From this figure, it
can be seen that: the power generation is highest when the intermediate layer is not
added; when the elasticity coefficient is in the range of 0–0.7, the power generation
efficiency of the double-beam system is fluctuating; when the elasticity coefficient is
greater than 0.7, the constraint capacity of the double-beam system is strong, and the
voltage fluctuates in a small range but the overall are smaller than the voltage of not
adding the spring layer The voltage of the double-cantilever beams system fluctuates
in a small range, but is generally smaller than that without the spring layer. Thus, the
addition of an intermediate spring layer to the energy harvester of the double cantilever
beams has an inhibiting effect on the power generation efficiency, andwhen the elasticity
coefficient is too large, the generated voltage will gradually converge to a constant value.

5 Conclusions

In this paper, we build a double parallel cantilever energy harvesting system by using
the vortex excitation force generated by vortex shedding as the external load. We discuss
the effects of different sizes of external loads on the power generation efficiency of the
dual-beam system;we also explore the effects on the voltagemagnitudewith the addition
of an intermediate spring layer. The following are the main conclusions of this paper.

(1) The voltage of each beam of the energy harvester of the double-parallel structure
varies linearly with the magnitude of the external excitation force, but does not affect
the frequency of the external excitation force corresponding to the peak voltage.

(2) The addition of an intermediate layer will reduce the power generation efficiency of
the double-parallel cantilever energy harvester to a certain extent, and the voltage
will be bullied to fluctuate; when the elasticity coefficient of the intermediate layer
is large, the voltage is suppressed and tends to be constant.
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Appendix A

φ
(k)
11 (x) = −

8∑
i=1

ski Ai(x)a4d2;φ
(k)
12 (x) =

8∑
i=1

ski Ai(x)(s
4
i + a2)d2

φ11(x) =
8∑

i=1

Ai(x)(s
4
i + c2)b3si;φ12(x) = −

8∑
i=1

Ai(x)c4b3si

φ̂11(x) = −
8∑

i=1

Ai(x)a4d3si; φ̂12(x) =
8∑

i=1

Ai(x)(s
4
i + a2)d3si

φ11(x) =
8∑

i=1

Ai(x)(s
4
i + c2)b2, φ21(x) =

8∑
i=1

Ai(x)(s
4
i + c2)s

3
i

φ31(x) =
8∑

i=1

Ai(x)(s
4
i + c2)s

2
i , φ41(x) =

8∑
i=1

Ai(x)(s
4
i + c2)si

φ51(x) =
8∑

i=1

Ai(x)(s
4
i + c2), φ61(x) = −

8∑
i=1

Ai(x)a4s
3
i

φ71(x) = −
8∑

i=1

Ai(x)a4s
2
i , φ81(x) = −

8∑
i=1

Ai(x)a4si

φ91(x) = −
8∑

i=1

Ai(x)a4

φ12(x) = −
8∑

i=1

Ai(x)c4b2, φ22(x) = −
8∑

i=1

Ai(x)c4s
3
i

φ32(x) = −
8∑

i=1

Ai(x)c4s
2
i , φ42(x) = −

8∑
i=1

Ai(x)c4si

φ52(x) = −
8∑

i=1

Ai(x)c4, φ62(x) =
8∑

i=1

Ai(x)(s
4
i + a2)s

3
i

φ72(x) =
8∑

i=1

Ai(x)(s
4
i + a2)s

2
i , φ82(x) =

8∑
i=1

Ai(x)(s
4
i + a2)si

φ92(x) =
8∑

i=1

Ai(x)(s
4
i + a2)

Ai(x) = esix

(si − s1)..(si − si−1)(si − si+1)..(si − s8)
(i = 1 ∼ 8)
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