
Research on MagicGrid-Based Requirements
Development Process of Flight Control System

Hangqi Liu1, Yong Chen1(B), Meng Zhao1, and Zhuo Yin2

1 School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, China
{liuhangqi,aerocy,magicmeng}@sjtu.edu.cn

2 Shanghai Institute of Satellite Engineering, Shanghai, China

Abstract. With the development of aviation technology, the complexity of air-
craft systems has been increasing. The development of requirements for aircraft
systems has become increasingly important. However, traditional requirements
development methods often overly rely on text and manual operations, result-
ing in unclear requirements, difficulties in changes, and low efficiency. They are
no longer able to meet the needs of designers and developers. As an emerging
requirements development method, the MagicGrid method fully considers the
complexity and scalability of the system, and through the decomposition and
organization of system-level requirements, designers can understand the system
requirements more clearly, and is being continuously applied to aircraft system
design.However, in current engineering practice, the MagicGrid method has not
yet been fully implemented due to its high complexity and insufficient tool support.
Therefore, this paper describes the process of requirements development using the
MagicGrid method in detail, and demonstrates the specific process through a prac-
tical case of requirements development for the flight control system.Finally, the
advantages and disadvantages of the method were further analyzed, and some
feasible solutions were proposed, providing new practice and experience for the
application of the MagicGrid method in aircraft system design.

Keywords: MagicGrid · Civil Aircraft System · Requirements development

1 Introduction

As a typical complex product system, aircraft have the characteristics of high research
and development costs, high degree of technological intensity, long development cycle,
and strong interdisciplinary nature [1]. It requires comprehensivemulti-disciplinary tech-
nologies to optimize the overall performance of the aircraft. Requirements development
is the beginning of civil aircraft development, the basis of civil aircraft development, and
runs through the entire life cycle of aircraft development [2]. It transmits the customer’s
requirements layer by layer, so that the final produced aircraft meets the customer’s
requirements and the requirements of operational safety.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Z. Jing and X. Zhan (Eds.): ICASSE 2023, LNEE 1153, pp. 32–51, 2024.
https://doi.org/10.1007/978-981-97-0550-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0550-4_3&domain=pdf
https://doi.org/10.1007/978-981-97-0550-4_3


Research on MagicGrid-Based Requirements Development Process 33

The traditional requirements developmentmethods can often be termed as document-
based systems engineering, with documents as the core in the requirements development
process. However, in the face of highly dynamic and interactive activities, the infor-
mation expression with the document-based systems engineering approach was often
incomplete, making it difficult to ensure the integrity and consistency of engineering
requirements, and ambiguity is easy to occur [3]. Additionally, the lack of testing and
verification methods makes the requirements development process difficult, and it is
easy to bring early requirements problems into the later design process, resulting in sub-
stantial changes to the system design process. Therefore, the traditonal document-based
systems engineering approach cannot effectively support the development of complex
systems of today [4].

Therefore, there should be some new methods for developing the requirements for
complex engineering systems. This research examines the MagicGrid approach to see
whether it can be applied to the requirements development of complex systems,especially
for the development of aircraft systems.MagicGrid is an approach based on system engi-
neering thought, which aim to solve the shortcomings of traditional requirements devel-
opment methods. Compared with the traditional requirements development method,
MagicGrid is expected to provide several advantages. First, it is a model-based systems
engineering method [5], which has the advantages of visualization and automation. This
allows systems engineers and other stakeholders to better understand the system, reduc-
ingmanual errors, and improving the efficiency and quality of system development. Sec-
ond, theMagicGrid method emphasizes the traceability of requirements, which can help
designers better manage the requirements development process. Finally, the MagicGrid
method has better scalability and can be flexibly adjusted and optimized according to
actual requirements. Therefore, the MagicGrid method can well solve the existing prob-
lems in the field of requirements development and improve the quality and efficiency of
requirements development.

However, there are still some challenges in the practical application of theMagicGrid
method. Firstly, the MagicGrid method is relatively complex and requires developers
to have high capabilities in order to understand the required technology. In addition,
the MagicGrid method requires a lot of experience accumulation to identify and handle
problems that arise. Secondly, the types and quantities of aircraft system requirements are
enormous, requiring an efficient method for requirement collection and management.
Finally, the MagicGrid method needs the support from corresponding tools, and the
current tools still have some shortcomings. Therefore, in order to better apply it to
aircraft system design, further research and exploration are needed.

The purpose of this article is to investigate the applicability of theMagicGridmethod
in aircraft system requirements development, and to exploit how to use this method to
solve the existing problems of traditional requirements development methods. Through
the in-depth analysis of the MagicGrid method and the actual case studies of the devel-
opment of flight control system requirements, the feasibility of the MagicGrid method
in aircraft system requirement development is further verified, providing reference for
developers and designers. Finally, some existing deficiencies are identified, and sug-
gestions for improvement are proposed to better apply the MagicGrid method to solve
problems in the requirement development process.



34 H. Liu et al.

2 Overview of the MagicGrid Method

The MagicGrid modeling method, initially developed by No Magic and later integrated
into the Dassault Systems 3DE platform, is a relatively recent addition. The MagicGrid
approach is based on a framework, which can be represented as a Zachman-style matrix
[6]. Its main process is shown in the Fig. 1.

Fig. 1. The Structure of the MagicGrid

FromFig. 1, we can know that theMagicGridmethodmainly includes three domains:
the problem domain, the solution domain and the implementation domain [7]. Each
domain considers and captures four aspects of the system, and these four aspects
correspond to the SysML pillars as requirements, behavior, structure, and parameters
[8].

The problem domain modeling is the starting point of the MagicGrid method. Its
main task is to analyze the requirements of stakeholders [9], and refine them using
SysML model elements. The problem domain is divided into two levels, black box and
white box [10]. As shown in Fig. 2, the black box mainly focuses on how it is related
to the outside world. After completing the black-box modeling of the problem domain,
it enters the white-box modeling stage, which involves expanding the black-box model
and analyzing it from the inside. In essence, white-box modeling relies on the black-box
model, and the output at this stage will be more detailed and complete in describing the
system [11].

The main modeling process of the solution domain is shown in Fig. 3. Through
modeling in the solution domain, it can help developers understand the problem domain,
better discover and understand user requirements [12], reduce the risk and cost of system
design.



Research on MagicGrid-Based Requirements Development Process 35

Fig. 2. The Process of the Problem Domain

Fig. 3. The process of the Solution Domain

So far, the two core levels of the MagicGrid method have been fully implemented.
Although the MagicGrid method defines the physical requirement specification of the
implemented system, its detailed design is not part of MBSE, so it will not be analyzed.
The following chapters 3 and 4 will describe the development process of the problem
domain and solution domain through examples, providing a clearer understanding of the
process of requirements development based on the MagicGrid method.



36 H. Liu et al.

3 System-Level Requirements Development

3.1 Black Box Modeling

In the black box modeling stage of the problem domain, the system is considered as a
black box, which means that we only need to analyze the input and output of the system,
as well as the interaction logic between the system and external participants, without
specifying its dynamic behavior and internal structure. According to the MagicGrid
method, black-box modeling mainly includes three parts: stakeholder requirements,
system use cases, and system environment. The following model diagrams will detail
the modeling processes for each part.

Initial Stakeholder Needs. The MagicGrid method centers around establishing exe-
cutable system models. Modeling is driven by requirements, so identifying system
stakeholders, capturing stakeholder needs, and establishing SysML demand models are
prerequisites for problem domain modeling. Stakeholder needs are those directly or
indirectly related to the product or project, which should be captured, analyzed. But
these needs obtained are often very rough, and, therefore, require detailed analysis and
refinement [13]. Because this article mainly focuses on the development of functional
requirements, as shown in the Fig. 4, three pieces of stakeholder needs related to flight
control functions are listed as examples.

Fig. 4. Initial Stakeholder Needs

Definition and Analysis of Use Case. Use case is a model element derived from the
abstraction of the functional requirements in the requirements model, which represents
those functional activities that can be directly triggered or participated by external actors.
The use case is the core element of the use case diagram and the basis for subsequent
modeling and analysis. It will run through the entire project life cycle. In the MagicGrid
method, the use cases mainly exist in the problem domain modeling stage, and the use
cases are extracted by the top-level functions of the attitude control module. The use
case diagram shown in Fig. 5 is established.



Research on MagicGrid-Based Requirements Development Process 37

Fig. 5. The Use Case Digram

The use case analysis is mainly to describe the use cases defined in the above process
from the perspective of behavior, that is, to establish the dynamic behavior model of the
aircraft system. Because we are currently in the black box stage, the established SysML
behavior model mainly focuses on the interaction logic with external participants. The
Fig. 6 shows a black-box activity diagramof the use case, displaying the systemworkflow
from an external perspective. There are mainly two swim lanes, representing the pilot
and the aircraft respectively, where the pilot represents the external participant in the
context of the use case.

Fig. 6. The activity diagram of adjusting the altitude of the aircraft



38 H. Liu et al.

SystemContext. The systemenvironment or systemcontextmainly describes the exter-
nal environment of the system, that is, creates a structural view of different use cases
from an external perspective. In addition to the system itself, elements in a particular
system’s environment should include the external systems or users that interact with the
system in that environment.

Through the analysis and definition of the system environment, developers can better
understand the system requirements and ensure that system entities can interact well with
the outside world. As shown in Fig. 7, the system environment of the aircraft, the pilot
is an external participant, providing control to it.

Fig. 7. The System Context for the aircraft system

3.2 White Box Modeling

After the completion of the black-box perspective modeling, we can enter the second
stage of problem domain modeling: white-box modeling. White-box means the break-
down of black-box to gain deeper understanding of how the system operates. Through
in-depth analysis of the system’s functions, functional modules and associated logical
subsystems are identified. In essence, the white box modeling stage is to refine and
decompose the black box model, and assign more detailed requirements, activities and
structures to system function modules.

System-Level Function Analysis. At this stage, establish a more detailed activity dia-
gram model, and assigns behavioral activities to specific subsystems based on certain
control logic, that is, which subsystems should satisfy which system behaviors.



Research on MagicGrid-Based Requirements Development Process 39

Because this paper mainly studies the flight control system, it mainly analyzes the
systems related to flight control.In the specific workflow, after receiving the target height
command, it is necessary to carry out comprehensive calculation and processing of the
height command, and then output the operation commands to other activities through
the object flow.As shown in the Fig. 8, the thrust command, pitch command and trim
Command are respectively output to other activities that change the thrust, control aircraft
pitch, and perform trim operations. The four swim lanes represent the defined logical
subsystems, and the corresponding swim lane implement corresponding activity.

Fig. 8. The SwimLane diagram of reaching target altitude

System-Level Architecture. With the completion of dynamic behavior modeling in
the problem domain,the model describes the external and internal behavior activities of
the aircraft system in detail from two perspectives of system use cases and functional
analysis. However, we still need to further analyze the internal composition structure
according to the results of functional analysis.

As shown in the Fig. 9, after further analysis, the related systems of the aircraft
are decomposed, the internal IBD diagram of the system is established, the internal
functional architecture model is described, and the port transmission of the internal
system is established. And according to the events or data information transmitted by
the port, the internal systems are connected to each other or to external ports.



40 H. Liu et al.

Fig. 9. The internal architecture for the Flight Control Unit

System-Level Requirements and Traceability
During the above problem domainmodeling process, a stakeholder requirementmodel is
established to meet the problem domain design task. In order to meet the precise system
architecture design requirements, it is necessary to establish a system requirements
specification to guide the domain modeling work. System requirements are derived from
stakeholder requirements [12], and are refined and enriched according to the model of
the problem domain.

System requirements are the premise of system design. Different from stakeholder
needs, system requirements are observable, system-specific, and precise expressions.
This articlemainly discusses the development of the functional requirements of the flight
control system, so we only list the functional requirements. As shown in the Fig. 10, five
functional requirements for the aircraft system are listed for examples.

Fig. 10. The functional requirements for the aircraft system



Research on MagicGrid-Based Requirements Development Process 41

In addition, it is necessary to establish traceability from system requirements to stake-
holder requirements, that is, to determine which system requirements are derived from
which stakeholder needs.At the same time,traceability relationships between system
requirements and problem domain model elements need to be established to determine
which system requirements are refined from which elements.

As shown in the Fig. 11, the left part of the picture is the traceability relationship
between system requirements and stakeholder requirements. The horizontal row of the
correlation matrix represents the system requirements, and the vertical row represents
the stakeholder requirements. The arrow indicates that the system requirements of this
row point to the stakeholder requirements of this column. The right part of the picture
is the traceability relationship between system requirement and problem domain model
elements. Similarly, the horizontal rows of the matrix represent the system requirements,
and the vertical rows represent the model elements of the problem domain.

Fig. 11. The traceability for the System-level requirements and elements

4 Component-Level Requirements Development

For the aircraft system, since the overall architecture system is relatively mature and the
system composition of the control flight attitude module is relatively clear, the develop-
ment of system-level requirements can be realized in the field of white-box modeling
without re-analysis in the solution domain. Next, the component-level requirements will
be further analyzed based on MagicGrid’s solution-domain method.

4.1 System-Level Modeling

Defining Subsystems. After the completion of system requirements, the high-level
solution structure of the aircraft needs to be established. The HLSA model specifies all
logical subsystems in a single hierarchy.Since this article only focuses on the develop-
ment of the flight control system, only the relevant systems are analyzed. Furthermore, as
the aircraft system is a relatively well-structured product system, its system composition
is relatively clear, so its HLSA model composition is the same as the problem domain.
As shown in Fig. 12, not only the logical subsystem is specified, but also the subsystem
ports and the data flow transmitted by the ports are specified.



42 H. Liu et al.

Fig. 12. The High-level Solution Architecture for the aircraft system

Structural Modeling of Primary Flight Control System. This paper selects the pri-
mary flight control system as the research object, and based on the required functions,six
components of the main flight control system are mainly defined, including the elevator
position sensor, remote electronic control unit, elevator aileron computer, actuator,main
flight control computer and the actuator control electronic device. The connection rela-
tionships between each component and their respective port information are also defined,
as shown in the Fig. 13. Three interaction ports between the main flight control system
and the external system, the first is the pitch command transmitted by the automatic
flight system; the second is the energy supply provided by the power unit; and the third
is the pitch signal that needs to be sent to the indication/recording system.

Fig. 13. The internal architecture of the Primary Flight Control System



Research on MagicGrid-Based Requirements Development Process 43

Behavioral Modeling of Primary Flight Control System. After clarifying the sub-
system structure model, it is also necessary to implement the subsystem behavior mod-
eling, to ensure the integrity of the requirements-structure-behavior system design. At
this stage, it is necessary to establish an independent behavior model for each subsys-
tem. These models can be relatively abstract and not too detailed, but must completely
describe the behavior characteristics and functions of each subsystem. After the behav-
ior models of each subsystem are established, they need to be integrated to ensure the
coordination between the various subsystems and the consistency of the system as a
whole.

The following Fig. 14 is the activity diagram for the subsystem design, which assigns
the activity elements of the main flight control system to their respective components,
clarifying which system behaviors should be performed by which components. First,
the actuator control electronic device receives the pitch command and converts it into
a recognizable signal, which is sent to the main flight control computer for preliminary
calculation. Finally, the elevator aileron computer drives the actuator to work according
to the control signal. When the pitch adjustment is completed, data is transmitted back to
the main flight control computer through the elevator position sensor, and the completed
pitch signal is transmitted to the external system.

Fig. 14. The swimlane diagram of controlling pitch deflection



44 H. Liu et al.

Based on the above subsystem activity diagram, it is possible to capture the state of
the subsystem and the transition relationships between these states, in order to establish
a SysML state machine that describes the changes in the subsystem’s operational states.
As shown in Fig. 15, the state model of the primary flight control system. Initially, when
the system receives the pitch command, it will enter the conversion state. Through the
conversion, the pitch command becomes an identifiable signal. It then proceeds through
the calculation state and execution state. When the execution action is completed, the
system enters the check state to determine whether the altitude requirement has been
met. If the required altitude is not reached, the system will continue executing until
the it is satisfied. Finally, when the pitch command is completed, the system enters the
maintenance state to maintain the current flight attitude.

Fig. 15. The state diagram of thePrimary Flight Control System

Subsystem-Level Requirements and Traceability. As the refinement and concretiza-
tion of system requirements, subsystem-level requirements defines the requirements that
the subsystem must meet in order to satisfy the system requirements. They serve as the
basis for realizing system requirements and the foundation for component requirements
at the next level. As shown in the Fig. 16, there are 5 obtained functional requirements
about the primary flight control system.



Research on MagicGrid-Based Requirements Development Process 45

Fig. 16. The funtional requirements for the Primary Flight Control System

In addition, the traceability from subsystem requirements to system requirements
can be established, that is, to determine which subsystem requirements are derived from
which system requirements, as well as the traceability between subsystem requirements
and solution prototype elements. As shown in Fig. 17, the left part of the picture shows
the traceability relationship between subsystem requirements and system requirements
where the horizontal rows represents subsystem requirements and the vertical columns
represents system requirements. Similarly, the right part of the picture shows the trace-
ability relationship between system requirements and subsystem elements. In this case,
the horizontal rows represent the model elements of the subsystem, and the vertical
columns represent the system requirements.

Fig. 17. The traceability for the Subsystem-level requirements and elements



46 H. Liu et al.

4.2 Component-Level Modeling

Definition of components. After the requirements at the subsystem level are completed,
enter the component layer. First, we need to establish the structure model of the main
flight control system. Similar to the flight control system model, all components are
specified in a single hierarchical structure. As shown in Fig. 18.

Fig. 18. The High-level Solution Architecture of the Primary Flight Control System

Component structure modeling. When the function allocation is completed within
the primary flight control system, its internal solution structure can be studied. This
paper selects the main flight control computer of the main flight control system as
the research object. According to the required functions, five components were mainly
defined, including the input/output interface, central processing unit (CPU), controller
memory and sensor data filter. The connection relationships between the components and
the port information of each component were also defined, as shown in the Fig. 19. Four
interaction ports between themain flight control computer and external componentswere

Fig. 19. The internal architecture for the Primary Flight Control Computer



Research on MagicGrid-Based Requirements Development Process 47

defined, including the identifiable signal received by the main flight control computer;
the position information received by the main flight control computer; the power supply
provided by the power unit,and the control signal that needs to be sent to the remote
electronic control device when the main flight control computer completes execution.

Component Behavior Modeling
After the structuremodel of themain flight control computer is clarified, behavioralmod-
eling should be carried out. Figure 20 shows the activity diagram. Firstly, the input/output
interface receives the identifiable signal andpasses it to the central processing unit (CPU).
The CPU reads the signal and stores it in the Memory. The Controller monitors the data
in the Memory, and when new pitch signal data is detected in Memory, the Controller
will send a signal to notify the CPU. The CPU reads the latest pitch signal data from
Memory according to the signal from Controller, and inputs it into the Sensor Data Filter
for filtering. The signal data processed by the Sensor Data Filter is then passed back to
the CPU for calculation, and finally generate corresponding control command.

Fig. 20. The Swimlane diagram of recieving pitch command

Component-Level Requirements and Traceability. Component requirements, as the
specificization of subsystem requirements at the component level, can enable developers
to better understand and implement the system. According to the analysis of the main
flight control computer structure and behavior model, component-level requirements
can be obtained, as shown in Fig. 21.



48 H. Liu et al.

Fig. 21. The functional requirements for the Primary Flight Control Computer

Similarly, the traceability relationship between component requirements and sub-
system requirements and the traceability relationship between subsystem requirements
and component elements can be established, as shown in Fig. 22.

Fig. 22. The traceability for the Component-level requirements and elements

Through the solution domain process of MagicGrid, the high-level system require-
ments have been successfully transformed into implementable component-level require-
ments, and traceability relationship has been established between each layer of require-
ments to ensure that the source of each requirement can be traced, ensuring the accu-
racy of requirements, and providing clear guidance and assurance for the subsequent
developers.



Research on MagicGrid-Based Requirements Development Process 49

5 Discussion

Through the description of the MagicGrid method and its application in the actual
requirements development process, it can be found that the MagicGrid method can pro-
duce good results in the requirements development process of complex systems; it can
deeply understand and analyze the needs of stakeholders, and it is clear Requirements
representation can also help team members better understand and collaborate, track and
manage requirements more accurately; they can also have a clearer understanding of
the development system for the layered thinking of the problem domain and solution
domain raised by it, greatly improve development efficiency.

Although the MagicGrid method has advantages over traditional requirement devel-
opment methods in some aspects, there are still some drawbacks. One of the main
problems is consistency, because the MagicGrid method is based on text and may suf-
fer from semantic ambiguity and inconsistency. For example, different people may use
different vocabulary to describe the same requirement, which may result in duplicated
or unclear requirements in the model.

To address this issue, a synonym dictionary can be defined to map different expres-
sions to the same concept, thus avoiding inconsistency caused by different expressions.
For example, when processing requirements for controlling an plane’s height, different
expressions such as “controlling the plane attitude angle”, “controlling the plane pitch
angle”, and “controlling the plane climb and descent angle” can be mapped to the same
concept, such as “controlling the pitch angle”. This can eliminate semantic ambiguity
and inconsistency and better understand and process requirements. In building a syn-
onym dictionary, techniques such as corpus and word vectors can be used to match and
map words or phrases with similar semantics (Fig. 23).

Fig. 23. Synonym replacement

Another approach is to use named entity recognition (NER) to identify professional
terms, adopt a standardized terminology, and maintain it jointly by users and developers
to ensure consistency of understanding. This can effectively eliminate the problem of
duplication or ambiguity of requirements caused by different people using different
words, and improve the accuracy and reliability of the model. For example, for the
requirement “the aircraft transmits tower instructions to the pilot,” NER technology can
identify the subject (plane), object (pilot), and action (transmit tower instructions) in the
requirement, and form a structured description to express the content and object of the
requirement more clearly.



50 H. Liu et al.

First, a certain amount of requirements data needs to be sorted out and labeled
to establish a training set. Labeling requirements can use methods such as markup
language to mark different parts of the requirements (such as subjects, objects, actions,
etc.) separately (Fig. 24).

Fig. 24. Label the data

Next, named entity recognition is used to train on the labeled data to learn how
to recognize different entity types and their positions in sentences. During the training
process, the accuracy of themodel can be continuously optimized by adjusting algorithm
parameters and increasing training data (Fig. 25).

Fig. 25. The Process of Training Labeled Data

After the training is completed, entity information can be extracted from the require-
ment text by referencing the optimal model. For example, the requirement “The plane
transmits tower instructions to the pilot” can extract entities “The palne”, “the pilot”
and “transmit tower instructions” and form a structured description, such as “the plane
transmits tower instructions to the pilot”. This structured description can express the
content and object of the requirement more clearly, avoid unnecessary ambiguity and
inconsistency, and improve the accuracy and reliability of the model (Fig. 26).

Fig. 26. The result of Named Entity Recognition



Research on MagicGrid-Based Requirements Development Process 51

6 Conclusion

Requirements development, as the foundation of the aircraft development, runs through
the entire life cycle of aircraft development. However, traditional requirements develop-
ment method is based on text, which has problems such as incomplete information
expression and ambiguity. Therefore, this paper proposes to introduce the require-
ments development method based on MagicGrid into the aircraft system design pro-
cess. This paper demonstrates the specific process of using MagicGrid for require-
ments development in the flight control system example, successfully obtaining system-
level, subsystem-level and component-level requirements, and establishing traceability
to achieve requirement traceability. However, this method also has problems of some
redundant and ambiguous requirements. Therefore, this paper proposes some improve-
ment ideas, but it still needs further improvement and integration with the MagicGrid
method in the future work, in order to better apply the MagicGrid method to solve the
problrms in the aircraft system requirement development process and improve the quality
of requirement development.

References

1. Chen, Y., Tian, B., Liu, Z., Xie, Y.: Philosophical thoughts on some basic concepts of civil
aircraft development system engineering. Civil Aircraft Des. Res. 03, 35–41 (2017)

2. Deng, Z.: Overview of the application of requirements engineering in civil aircraft life cycle
project management. Technol. Vision 26, 255 (2015)

3. Wu, Y., Liu, J., Zheng, D.: Analysis of model-based systems engineering technology. Aviat.
Sci. Technol. 9, 69–73 (2015)

4. Zhang, B., Qi, F., Xing, T., Liu, Y., Wang, W.: Research and practice of model-based manned
spacecraft development method. Aeronaut. J. 41(7), 72–80 (2020)

5. Estefan, J.A.: Survey of model-based systems engineering (MBSE) methodologies. Incose
MBSE Focus Group 25(8), 1–12 (2007)

6. Morkevicius, A., Aleksandraviciene, A., Armonas, A., Fanmuy, G.: Towards a common sys-
tems engineeringmethodology to cover a complete system development process. In: INCOSE
International Symposium, vol. 30, no. 1, pp. 138–152 (2020)

7. Wang, L., Zhan, C.: Modeling and analysis of civil aircraft top level RNP system architecture.
In: Journal of Physics: Conference Series, vol. 1827, no. 1, p. 012118. IOP Publishing (2021)

8. Lu Z, Liu X, Mao Y, Fan H, Zhao Y.: Application of model-based system engineering method
in satellite overall design. Spacecraft Eng. (03), 7–16 (2018)

9. Weihao, L., Yuqiang, G., Qipeng, C., Hui, Z.: Model-based system engineering adoption for
trade-off analysis of civil helicopter fuel supply system solutions. In: Krob, D., Li, L., Yao, J.,
Zhang, H., Zhang, X. (eds.) Complex SystemsDesign&Management, pp. 311–323. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-73539-5_24

10. Morkevicius, A., Aleksandraviciene,A., Krisciuniene,G.: FromUAF to SysML: transitioning
from system of systems to systems architecture. In: INCOSE International Symposium, vol.
31, no. 1, pp. 585–598 (2021)

11. Cui, Z., et al.: MBSE for civil aircraft scaled demonstrator requirement analysis and
architecting. IEEE Access 10, 43112–43128 (2022)

12. Herfman, H.: Model-Based System Engineering Best Practices. Aviation Industry Press,
Beijing (2014)

13. Yang, M., Qian, X., Wang, J.: Research on capture method of civil aircraft operational
requirements based on DoDAF modeling. J. Armament Eng. (06), 81–85 (2018)

https://doi.org/10.1007/978-3-030-73539-5_24

	Research on MagicGrid-Based Requirements Development Process of Flight Control System
	1 Introduction
	2 Overview of the MagicGrid Method
	3 System-Level Requirements Development
	3.1 Black Box Modeling
	3.2 White Box Modeling

	4 Component-Level Requirements Development
	4.1 System-Level Modeling
	4.2 Component-Level Modeling

	5 Discussion
	6 Conclusion
	References


