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Abstract. In this paper, we present TAC-SUM, a novel and efficient
training-free approach for video summarization that addresses the limi-
tations of existing cluster-based models by incorporating temporal con-
text. Our method partitions the input video into temporally consecutive
segments with clustering information, enabling the injection of temporal
awareness into the clustering process, setting it apart from prior cluster-
based summarization methods. The resulting temporal-aware clusters
are then utilized to compute the final summary, using simple rules for
keyframe selection and frame importance scoring. Experimental results
on the SumMe dataset demonstrate the effectiveness of our proposed
approach, outperforming existing unsupervised methods and achieving
comparable performance to state-of-the-art supervised summarization
techniques. Our source code is available for reference at https://github.
com/hcmus-thesis-gulu/TAC-SUM.
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1 Introduction

Video summarization is a crucial research area that aims to generate concise
and informative summaries of videos, capturing their temporal and semantic
aspects while preserving essential content. This task poses several challenges,
including identifying important frames or shots, detecting significant events, and
maintaining overall coherence. Video summarization finds applications in diverse
fields, enhancing video browsing, retrieval, and user experience [4].

The current state-of-the-art methods in summarizing videos are SMN [24]
and PGL-SUM [5]. SMN stacks LSTM and memory layers hierarchically to cap-
ture long-term temporal context and estimate frame importance based on this
information. Its training, however, relies on LSTMs and is not fully paralleliz-
able. PGL-SUM uses self-attention mechanisms to estimate the importance and

H.-D. Huynh-Lam and N.-P. Ho-Thi—Both authors contributed equally to this
research.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
W. Q. Yan et al. (Eds.): PSIVT 2023, LNCS 14403, pp. 15–28, 2024.
https://doi.org/10.1007/978-981-97-0376-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0376-0_2&domain=pdf
http://orcid.org/0000-0003-3046-3041
http://orcid.org/0000-0002-7363-2610
https://github.com/hcmus-thesis-gulu/TAC-SUM
https://github.com/hcmus-thesis-gulu/TAC-SUM
https://doi.org/10.1007/978-981-97-0376-0_2


16 H.-D. Huynh-Lam et al.

dependencies of video frames. It combines global and local multi-head atten-
tion with positional encoding to create concise and representative video sum-
maries. Both SMN and PGL-SUM heavily rely on human-generated summaries
as ground truth, introducing biases and inconsistencies during training.

To eliminate the need for labeled data required by supervised approaches,
unsupervised algorithms have been explored, such as Generative Adversarial
Networks [3] and Reinforcement Learning [30]. While achieving remarkable
results without annotations, their performance gains have been minor compared
to supervised methods, and the computational requirements can be high with
GPU usage.

A line of research focusing on the use of clustering algorithms for video
summarization has been pioneered by De et al. [9] and followed by Mahmoud
et al. [18] to create interpretable summaries without labels and training. Such
methods demonstrate acceptable performance in low-resource environments, but
their effectiveness has yet to be competitive with learnable approaches.

In this paper, we propose a training-free approach called Temporal-Aware
Cluster-based SUMmarization (TAC-SUM) to address the challenges encountered
by previous studies. This method leverages temporal relations between frames
inside a video to convert clusters of frames into temporally aware segments. Specif-
ically, frame similarities available from these clusters are used to divide the video
into non-overlapping and consecutive segments. The proposed algorithm then
applies simple and naive rules to select keyframes from these segments as well as
assign importance scores to each frame based on its segment’s information. Our
approach is expected to outperform existing cluster-based methods by injecting
temporal awareness after the clustering step. It eliminates the need for expensive
annotation, increases efficiency, and offers high interpretability due to its visualiz-
ability and transparent rules. An important distinction from some previous unsu-
pervised studies is that TAC-SUM currently relies on naive rules, leaving ample
room for future improvement, including the integration of learnable components,
which have been successful in learning-free algorithms [18].

We conduct quantitative and qualitative experiments on the SumMe dataset
[11] to evaluate our method’s performance in video summarization. The quantita-
tive experiment shows that our approach significantly outperforms existing unsu-
pervised methods and is comparable to current state-of-the-art supervised algo-
rithms. The qualitative study demonstrates that our approach produces effective
visual summaries and exhibits high interpretability with the use of naive rules.

The main contributions presented in the paper are as follows:

– We introduce the integration of temporal context into the clustering mech-
anism for video summarization, addressing the shortcomings of traditional
cluster-based methods.

– We propose a novel architecture that effectively embeds temporal context into
the clustering step, leading to improved video summarization results.

– Our approach demonstrates superior performance compared to existing
cluster-based methods and remains competitive with state-of-the-art deep
learning summarization approaches.
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2 Related Work

Video summarization techniques can be broadly classified into two categories:
supervised methods and unsupervised methods. While supervised methods
demonstrate superior performance in domain-specific applications, they rely
heavily on labeled data, making them less practical for general video summa-
rization tasks where labeled data may be scarce or costly to obtain. As a result,
unsupervised methods remain popular for their versatility and ability to generate
summaries without the need for labeled data. Within unsupervised approaches,
clustering algorithms have emerged as a popular choice.

Cluster-based video summarization methods utilize the concept of grouping
similar frames or shots into clusters and selecting representative keyframes from
each cluster to form the final summary. These approaches have shown promise
in generating meaningful summaries, as they can capture content diversity and
reduce redundancy effectively. Prior works have explored various clustering tech-
niques for video summarization. Mundu et al. [20] employed Delaunay triangu-
lation clustering using color feature space, but high computational overhead lim-
ited its practicality. De et al. [9] utilized K-means clustering with hue histogram
representation for keyframe extraction. Shroff et al. [23] introduced a modified
version of K-means that considers inter-cluster center variance and intra-cluster
distance for improved representativeness and diversity. Asadi et al. [6] applied
fuzzy C-means clustering with color component histograms. Mahmoud et al.
[19] used DBSCAN clustering with Bhattacharya distance as a similarity metric
within the VSCAN algorithm. Cluster-based methods offer simplicity and inter-
pretability, often relying on distance metrics like Euclidean or cosine similarity
to group similar frames. Their computational efficiency allows for scalability to
large video datasets. However, traditional cluster-based approaches have limi-
tations. Notably, they may overlook temporal coherence, leading to fragmented
and incoherent summaries. Additionally, handling complex video content with
multiple events or dynamic scenes can pose challenges, as these methods primar-
ily rely on visual similarity for clustering.

With the rise of deep learning, video summarization has seen significant
advancements. In supervised approaches, temporal coherence is addressed by
modeling variable-range temporal dependencies among frames and learning
their importance based on ground-truth annotations. This has been achieved
using various architectures, such as LSTM-based key-frame selectors [25,27–29],
Fully Convolutional Sequence Networks [22], and attention-based architectures
[10,15,16].

However, achieving temporal coherence in unsupervised learning poses chal-
lenges. One promising direction is the utilization of Generative Adversarial
Networks (GANs). Mahasseni et al. [17] combined an LSTM-based key-frame
selector, a Variational Auto-Encoder (VAE), and a trainable Discriminator in
an adversarial learning framework to reconstruct the original video from the
summary. Other works extended this core VAE-GAN architecture with tailored
attention mechanisms to capture frame dependencies at various temporal gran-
ularities during keyframe selection [12–14]. These methods focus on important
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Fig. 1. Pipeline of the proposed approach showcasing four modules and information
flow across main stages.

temporal regions and model long-range dependencies in the video sequence.
Although GAN-based models have shown promise in generating coherent sum-
maries, they face challenges of unstable training and limited evaluation criteria.

The proposed method leverages cluster-based models by utilizing visual rep-
resentations generated by unsupervised deep learning approaches such as DINO
[7]. Addressing the problem of temporal coherence, our developed TAC-SUM
introduces the temporal context into the process. This integration of temporal
context enhances the summarization performance, as demonstrated by experi-
mental results.

3 Proposed Approach

Our approach selects an ordered subset S = {It1 , It2 , . . . , ItL} of L frames from
a video I = {I1, I2, . . . , IT }, where T is the total number of frames and the
summarized subset S is obtained by selecting frames indexed at ti positions.
The timestamp vector t comprises such positions {t1, t2, . . . , tL}. In Fig. 1, we
illustrate the four stages of our method as distinct modules. Each stage comprises
several steps tailored to the specific role and algorithm implemented. We provide
a detailed explanation of each stage in the remaining text of this section. In
addition, Sect. 3.4 is dedicated to clarifying several technical details related to
the implementation of our approach.

3.1 Generating Contextual Embeddings

This stage extracts the context of an input video I from its frames It. It involves
two steps: sampling the video and constructing embeddings for each sampled
frame.

Sampling Step. To reduce computational complexity, we employ a sampling
technique to extract frames from I into a sequence of samples Î. The frame rate
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of Î is matched to a pre-specified frame rate R. This method ensures representa-
tiveness and serves as normalization for different inputs. The sampling process
involves dividing the original frames within a one-second period into equal-length
snippets and selecting the middle frame of each snippet as the final sample.

Embedding Step. For each sampled frame Îi, we utilize a pre-trained model
to extract its visual embedding ei. The pre-trained model is denoted as a func-
tion g : R

W×H×C −→ R
D that converts Îi into an embedding vector of size

D. All embeddings are concatenated to form the contextual embedding of the
sampled video E = {e1, e2, . . . , eT̂ }. Figure 2 gives two examples of contextual
embeddings.

Fig. 2. Visual illustration of contextual information.

Fig. 3. Overall pipeline for the Contextual Clustering step.

3.2 From Global Context to Local Semantics

This stage distills global information from the contextual embedding E into
finer, local levels. Our method comprises two steps: using traditional clustering
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to propagate contextual information into partition-level clusters, and further
distilling partition-level information into sample-level.

Contextual Clustering. Clustering the contextual embeddings E captures
global and local relationships between visual elements in the video. We first
reduce the dimension of E to a reduced embedding Ê. A coarse-to-fine clus-
tering approach is then applied to divide the sampled frames into K clusters,
creating a label vector c ∈ NT̂ . More details can be found in Fig. 3. Starting
with the contextual embedding E ∈ R

T̂×D, a reduced embedding Ê ∈ R
T̂×D̂ is

computed using PCA and t-SNE. A traditional clustering method called BIRCH
algorithm [26] is applied to compute coarse clusters of sampled frames, creating a
sample-level notation for coarse clusters ĉ = {ĉ1, ĉ2, . . . , ĉT̂ }. Then, a hierarchical
clustering algorithm is employed to combine coarse clusters into finer clusters
with the number of eventual clusters is pre-determined based on a sigmoidal
function and a maximum threshold. The fine cluster is formed as the union of
at least one coarse cluster. Clusters are progressively merged based on affinity
between them. This approach achieves a hierarchical clustering that effectively
propagates information from the global level Ê to the local level c, enabling us
to extract semantically meaningful clusters.

Semantic Partitioning. Following the contextual clustering step, each sam-
pled frame Îi is assigned a label ci corresponding to its cluster index. An outlier
elimination removes possible outliers and a refinement step consolidates smaller
partitions into larger ones with a threshold ε. A smoothing operation is applied
to labels by assigning the final label ĉi of each frame by taking a majority vote
among its consecutive neighboring frames. Once frames have been assigned their
final labels C, they are partitioned into sections P based on these labels. The
semantic partitioning P =

{P1,P2, . . . ,PN̂

}
obtained from the above process

contains N̂ sections which are then progressively refined with length condition.
Algorithm for this refinement is delineated as follows with a parameter ε denot-
ing the minimum partition’s length allowed in the result. Initially, the number

Fig. 4. Comparison between cosine-interpolated scores and flat scores are demonstrated
for two examples.
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of partitions N is set to N̂ . Subsequently, while the minimum length of the par-
titions is less than ε, the index of the shortest partition î is determined. The
left and right sides of partition î are merged with their respective neighboring
partitions and their lengths are updated accordingly. The indexes of P are then
updated and the number of partitions N is reduced by 1. This process continues
until all partitions have a length of at least ε. This partitioning result allows us
to focus on individual semantic parts within the video and analyze their charac-
teristics independently, enabling more detailed analysis and summary generation
in subsequent stages.

3.3 Keyframes and Importance Scores

After the partitioning step, the resulted partitions P are used to generate
keyframes k which carry important information of the original input. An impor-
tance score vi is calculated for every sampled frame Îi.

Keyframes Selection. The set of keyframes k is a subset of the indexes of
sampled frames k ⊂ t, and is a union of partition-wise keyframes k(i), that is

k =
N⋃

i=1

k(i). There are three options for extracting the partition-wise keyframes

k(i) from its associated partition Pi which are respectively Mean, Middle, and
Ends. These options can be further combined into more advanced settings such
as the rule Middle + Ends demonstrated in Fig. 4.

Importance Scores. The individual importance scores vi of all sampled frames
Îi form a vector of importances v ∈ R

T̂ . We initialize the importance score v̂
to be the length of the section it belongs to. The final importance score of each
sample vi is computed by scaling the initialized value v̂i using a keyframe-biasing
method. Several biasing options are given to either increase the importance of
frames closer to keyframes or decrease the scores of others. Different interpolating
methods are used to fill the importance scores of samples between key positions.
Two options for interpolation are cosine and linear. An example illustrating
the difference between cosine-interpolated importances and flat scores is given
in Fig. 4. By determining the importance scores of frames, we can prioritize and
select the most significant frames for inclusion in the video summary.

3.4 Implementation Details

Before the feature extraction step, the video is sampled with a target frame
rate of R = 4 frames per second. We experiment with 2 pre-trained models
to generate embeddings for each frame: DINO [7] and CLIP [21]. The input
frame is processed using the pre-trained image processor associated with the
pre-trained model. The output is an image, which is fed into the pre-trained
model to obtain embeddings. For DINO, we select the first vector (cls token) in
its output embedding as the semantic embedding of the sample. We concatenate
the vector from all frames in to obtain the contextual embedding.
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For dimension reduction, we utilize models from scikit-learn, including
PCA and t-SNE. The number of clusters K in contextual clustering is then
computed by the equation provided in Sect. 3.2. In the semantic partition step,
we set the window size W for mode convolution to 5, and the minimum length
ε for each segment to 4. For keyframe selection, we employ the setting Middle
+ End. In the importance scoring step, we use cosine interpolation and set
keyframe biasing scheme to Increase the importances of keyframes with B = 0.5.

4 Experiments

4.1 Dataset

For evaluating the performance of our TAC-SUM model, we utilize the SumMe
dataset [11]. This benchmarking dataset consists of 25 videos ranging from 1
to 6 min in duration, covering various events captured from both first-person
and third-person perspectives. Each video is annotated with multiple (15–18)
key-fragments representing important segments. Additionally, a ground-truth
summary in the form of frame-level importance scores (computed by averaging
the key-fragment user summaries per frame) is provided for each video to support
supervised training.

4.2 Evaluation Measures

The summary selected by our summarizer is then compared with those gen-
erated by humans to determine its correctness, in other words, whether that
summary is good or not depends on its similarity with regard to the annotated
ones. A widely established metric for this comparison is f-measure, which is
adopted in prior works [1,5,8]. This metric requires an automatic summarizer
to generate a proxy summary Ŝ from pre-computed consecutive segmentations
S associated with each video in the dataset. The f-measure metric is computed
as f1-score between the segments chosen by automatic method against ground-
truth selected by human evaluators. Previous studies [5,25] have formulated the
conversion from importances to choice of segments as a Knapsack problem so
that a simple dynamic programming method can be implemented to recover the
proxy summary from outputted scores. The formulation includes lengths of seg-
ments as weighting condition while individual segment’s value is computed using
importance scores. More detailed information can be found in prior research [25].

4.3 Comparison with State-of-the-art Methods

The performance of our proposed TAC-SUM approach is compared with var-
ious summarization methods from the literature in Table 1. These referenced
approaches include both supervised and unsupervised algorithms that have
been previously published, and the evaluation metric used is established under
Sect. 4.2. As a general baseline, we include a random summarizer, which assigns
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Table 1. Comparison of performance in f-measure (%) among previous approaches
and our method together with rankings on unsupervised only as well as in general.

Methods F-Score
Rank

(Unsupervised)

Rank

(General)

Random summary 40.2 7 13

Supervised

SMN [24] 58.3 - 1

VASNet [10] 49.7 - 10

PGL-SUM [5] 57.1 - 2

H-MAN [16] 51.8 - 5

SUM-GDA [15] 52.8 - 4

SUM-DeepLab [22] 48.8 - 12

Unsupervised

CSNet [13] 51.3 2 6

AC-SUM-GAN [1] 50.8 3 7

CSNet+GL+RPE [14] 50.2 4 8

SUM-GAN-AAE [3] 48.9 6 11

SUM-GDAunsup [15] 50.0 5 9

TAC-SUM (ours) 54.48 1 3

importance scores to each frame based on a uniform distribution. The final per-
formance is averaged over 100 sampling runs for each video [2].

The results in Table 1 highlight the effectiveness of our training-free approach,
which achieves remarkable performance without any learning aspect. It outper-
forms existing unsupervised models by at least 3.18%, demonstrating its ability
to generate high-quality summaries. Moreover, our model ranks third when com-
pared to state-of-the-art supervised methods, showing competitive performance
and even surpassing several existing approaches.

It is worth noting that the SMN method has been evaluated using only one
randomly created split of the used data [24]. Apostolidis et al. [2] suggest that
these random data splits show significantly varying levels of difficulty that affect
the evaluation outcomes.

We acknowledge that the pre-trained models used in our architecture were
originally trained on general image datasets, which may not perfectly align with
the distribution of the specific dataset used in this evaluation. Despite this poten-
tial distribution mismatch, our proposed method exhibits strong performance on
the evaluated dataset, showcasing the generalizability and adaptability of this
training-free framework.

4.4 Ablation Study

To assess the contribution of each core component in our model, we conduct
an ablation study, evaluating the following variants of the proposed architec-
ture: variant TAC-SUM w/o TC: which is not aware of temporal context
by skipping the semantic partitioning stage (Sect. 3.2), and the full algorithm
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Table 2. Ablation study based on the performance (F-Score(%)) of two variants of
the proposed approach on SumMe

Settings F-Score

TAC-SUM w/o TC 46.00

TAC-SUM (ours) 54.48

Table 3. Comparison of performance (F-Score(%)) with different embedding pre-
trained models

Setting F-Score

Embedding Model Best Config

dino-b16 Euclidean PCA (34) + t-SNE (2) 54.48

clip-base-16 Euclidean PCA (44) + t-SNE (3) 52.33

TAC-SUM (ours). The results presented in Table 2 demonstrate that remov-
ing the temporal context significantly impacts the summarization performance,
thus confirming the effectiveness of our proposed techniques. The inclusion of
temporal context enhances the quality of the generated summaries, supporting
the superiority of our proposed TAC-SUM model.

As mentioned in Sect. 3.4, we conducted experiments using different pre-
trained models for visual embedding extraction. Table 3 compares the result of
the framework using different pre-trained models: dino-b16 and clip-base-16.
Both models are base models with a patch size of 16. The “Best Config” column
shows the configuration that achieved the best result, including the distance
used in the clustering step (Euclidean), the algorithms used for embedding size
reduction (PCA and t-SNE), and the dimension of the reduced embeddings
represented by the number next to the reducer. The results presented in Table 3
demonstrate that our proposed framework performs relatively well with various
pre-trained models, showcasing its flexibility and efficiency. The ability to work
effectively with different pre-trained models indicates that our approach can
leverage a wide range of visual embeddings, making it adaptable to various video
summarization scenarios. This flexibility allows practitioners to choose the most
suitable pre-trained model based on their specific requirements and available
resources.

4.5 Qualitative Assessment

To evaluate the interpretability of the proposed approach, we compared the auto-
matically generated importance scores with those assigned by human annota-
tors. Figure 5 displays the importance scores obtained through averaging human
annotations as well as the scores generated by the proposed method. The flat
result shows that each computed partition may be associated with one or several
peaks in the user summaries, located at different positions within the partition.
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Fig. 5. Comparison of importance scores between user-annotated scores and scores
generated by the proposed method under the unbiased flat rule as well as the biased
cosine rule.

Fig. 6. Comparison between the representatives sampled from the original video with
its summarization as a set of keyframes.

Longer partitions, which have higher flat scores according to the definition, tend
to provide a more stable estimation of users’ peaks. The experimental result
also provides insights into the keyframe-biasing method employed in the pro-
posed method, wherein higher importance is assigned to frames that are closer
to keyframes. This figure reveals that the majority of the peaks in the cosine
scores align with the peaks of the annotated importance. However, there are some
peaks in the users’ scores that are not captured by the cosine interpolation.

A visual inspection of our method’s summarization results is conducted in
which a reference video is analyzed against its summary generated through the
approach. We present the inspection’s result in Fig. 6 with the original frames
of the reference video and selected keyframes. The original frames are sampled
every 5 s from the video, which shows a man playing a game of sliding down a
slope and jumping into a pool of water. The keyframes are selected based on
their importance scores, which are higher than the average on the video level.
Our method preserves the main content and events of the video and selects
diverse and representative keyframes that show different aspects of the video.
Our method generates informative and expressive keyframes that convey the
main theme, message, or story of the video.
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4.6 Limitations

While the proposed method offers several advantages which have been already
illustrated in the experimental results, it also has certain limitations that should
be acknowledged. Naive rules for scoring and selection of keyframes are being
used. Therefore, our current approach may not always accurately predict frame
importance. Incorporating more sophisticated scoring mechanisms can enhance
the summarization process. Limited learnability is demonstrated by our
method as it lacks the ability to improve in a data-driven way due to its cur-
rent reliance on predefined rules. Future research could explore integrating data-
driven approaches like machine learning algorithms or attention mechanisms to
enhance adaptability.

5 Conclusion

In this paper, we introduced TAC-SUM, an unsupervised video summarization
approach that incorporates temporal context for generating concise and coher-
ent summaries. The contextual clustering algorithm has successfully partitioned
frames into meaningful segments, ensuring temporal coherence. Experimental
results show that our method significantly outperforms traditional cluster-based
approaches and even is competitive with state-of-the-art supervised methods on
the SumMe dataset.

Despite its success, TAC-SUM has limitations related to pre-trained mod-
els and data-driven improvement. To address these limitations, future work will
focus on integrating learnable components into the model to enhance the summa-
rization process and improve adaptability to various video domains. This includes
replacing the current algorithm for contextual clustering with a deep neural net-
work having trainable parameters, enabling the model to capture more complex
patterns and adapt to diverse video datasets. Additionally, various architec-
tures and training techniques will be explored to transform the naive rules of
importance into a data-driven scoring process, allowing complicated scores to be
predicted.
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